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goal of launching a large-scale longitudinal quantitative/qualitative survey on
the life courses of Italians. The first wave of this survey, called Italian Lives
(ITA.LI), was conducted between the last quarter of 2019 and the first quarter
of 2021. The second wave is currently underway.

The purpose of this volume is to illustrate some aspects of the Italian
Lives survey that are particularly relevant for the proper analysis of the data
collected during the survey itself. Specifically, the volume is divided into four
chapters. The first illustrates the sample design of the first wave of Italian Lives,
providing a detailed description of each sampling stage. The second chapter
describes the procedure used to construct the survey weights and provides an
assessment of the representativeness of the weighted realized sample of the
survey. The third chapter presents the variance estimation method chosen
for the survey and illustrates its implementation. Finally, the fourth chapter
provides a brief guide to the analysis of the Italian Lives data using the Stata
statistical software.
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1

sample design

1.1. Introduction

The basic purpose of survey research is to gather information about the units
of a finite population of interest: voters of Massachusetts’s 7th Congressional
District in 2020; registered supporters of the UK’s Labour Party on January 1,
2022; students enrolled in a university course in Paris in the 2021/22 academic
year; people living in Italy on December 31, 2021; and so on. Since it is generally
impractical or impossible – given existing time and resource constraints – to
study the target population in its entirety, survey researchers typically limit
themselves to examining a subset of it, called a sample.

The ideal requirement of any survey sample is that it be representative of
the target population (Lohr 2022). This means that the conclusions drawn
from the sample must be able to be generalized – within estimable margins
of error – to the entire population of interest. However, there is no single,
one-size-fits-all way tomeet this requirement. That is, a sample that aims to be
representative of the target population can be selected in many different ways.
The way the sample of a given survey is selected from the target population –
i.e., the set of procedures that are carried out to choose the units of the target
population to be contacted for interview – is called the sample design of the
survey (Groves et al. 2009).

In general, the choice of the sample design for a given survey depends
on the survey goals, as well as on the availability of information about the
target population. In any case, the sample design must be chosen to ensure
that the information of interest can be collected in a manner appropriate to
the research objectives (Shapiro 2008a).

The purpose of this chapter is to illustrate the sample design of the first
wave of the Italian Lives survey (henceforth ITA.LI). The next section provides
a general overview of the sample design. Fourmore sections follow, presenting
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a detailed description of the key features of each sampling stage. The seventh
section discusses the field implementation of the sample design. Finally, the
last section offers an assessment of the representativeness of the realized
sample prior to survey weighting adjustment.

1.2. Overview

The target population of ITA.LI is defined as all persons aged 16 and over
residing in private households in Italy at the time of interview.

Given the available financial resources, the target sample size of the survey
was set at approximately 5,000 households. With an estimated average number
of two eligible persons per household (Istat 2019), this corresponds to around
10,000 targeted individuals.

To reach this target, ITA.LI used a four-stage area probability sample de-
sign with stratification at the first stage (Levy and Lemeshow 2008; Lohr
2022). Figure 1.1 provides a stylized illustration of the sampling process. First,
a random sample of Italian municipalities was drawn, stratified by region,
degree of urbanization, and population size. Second, within each selected
municipality, a random sample of residential addresses was chosen. Third, a
single household was picked at random from each selected address. Finally, all
household members aged 16 and over were considered eligible for interview.

The choice of such complex design was dictated by two main reasons. On
the one hand, since CAPI was adopted as the interview mode, limiting the
fieldwork to a relatively small set of geographical clusters of households (the
first-stage sample of Italian municipalities) increased the cost-efficiency of the
design (Potter 2008). On the other hand, the constraints on available sampling
frames – specifically, the impossibility of accessing exhaustive and updated

Figure 1.1 Schematic representation of the ITA.LI sample design.
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lists of private households resident in Italy – left no other choice than going
through lists of residential addresses (available at the municipality level) to
reach households.

The following four sections provide a detailed description of the key fea-
tures of each sampling stage.

1.3. Primary Sampling Stage

The primary sampling units (PSUs) of the ITA.LI sample design are the 8,000
or so municipalities into which Italy is divided.

Based on both the available financial resources and the target sample
size (see Section 1.2), a sample of 280 PSUs was set for the study. To ensure
widespread coverage of the national territory – and hence a good representa-
tion of the large socio-economic and cultural heterogeneity that characterizes
Italy – prior to selection, PSUs were stratified following a two-step procedure.

First, PSUs were partitioned into 46 preliminary strata defined by a reduced
combination of the 20 administrative regions that make up Italy and the three
degrees or urbanization defined by Eurostat (2021).1 Second, within each of
these preliminary strata, PSUs were further stratified based on population
size, resulting in a total of 150 strata.

Of these 150 strata, 20 contained only a single self-representing PSU, i.e., a
PSU that is large enough to be selected with certainty and is assigned its own
stratum (Groves et al. 2009; Hall 2008). The remaining 130 strata contained
two or more non-self-representing PSUs; from each of these strata, two PSUs
were selected without replacement and with probability proportional to size,
using the number of private households registered to reside in the PSUs as
the measure of size.

The probability of selection of PSUs is then defined as follows:

𝜋𝑙 |ℎ =


1, if ℎ ∈ self-representing
𝑀𝑙ℎ

𝑀ℎ

× 2, if ℎ ∈ non-self-representing
(1.1)

where 𝑙 indexes PSUs; ℎ indexes strata; 𝜋𝑙 |ℎ denotes the probability of selection
of PSU 𝑙 from stratum ℎ; 𝑀𝑙ℎ denotes the number of private households
registered to reside in PSU 𝑙 of stratum ℎ; and 𝑀ℎ denotes the total number
of private households registered to reside in stratum ℎ.

1 Of the 60 possible combinations of administrative region and degree of urbanization,
25 were merged into 11 super-classes because they were either empty or too sparsely
populated (see Figure 1.2 below).
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Figure 1.2 Stratification plan for the primary sampling stage of the ITA.LI sample
design: Self-representing (orange squares) and non-self-representing (blue squares) strata,
by administrative region and degree of urbanization.

Figure 1.2 offers a graphical summary of the stratification plan for the
primary sampling stage of the ITA.LI sample design. Figure 1.3, in turn, shows
the spatial distribution of the 280 PSUs selected for the study.
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Figure 1.3 Spatial distribution of the self-representing (orange) and non-self-
representing (blue) PSUs selected for the ITA.LI sample design.

1.4. Secondary Sampling Stage

Given the target population of ITA.LI (see Section 1.2), the ideal secondary
sampling units of the survey would be the private households residing in the
selected PSUs. Exhaustive and updated lists of such households, however,
are neither publicly available nor usable by anyone other than authorized
public institutions. Therefore, an intermediate sampling unit was introduced
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between the PSUs and the households, namely residential addresses.
Specifically, the secondary sampling units (SSUs) of the ITA.LI sample design

are all the residential addresses located in the 280municipalities selected at
the primary sampling stage, i.e., the addresses in each sampled PSU at which
one or more private households were officially registered to reside at the
beginning of the study.

Official lists of residential addresses are kept by the Registry Office of each
municipality. Although such lists are not publicly available, the ItalianNational
Institute of Statistics – our partner in designing the sample (Lucchini et al.
2023) – is entitled to access them and, thus, was able to use them as sampling
frames to draw the desired sample of SSUs from each selected PSU.

Within each PSU, the SSU sample size was determined as follows. First,
the target household sample was distributed among the 150 first-stage strata
using proportional allocation (Larsen 2008). Formally:

𝑚ℎ ≈ 𝑀ℎ × 𝑓 (1.2)

where𝑚ℎ denotes the target number of private households allocated to stratum
ℎ; 𝑓 = 𝑚/𝑀 denotes the sampling fraction; 𝑚 denotes the target household
sample size; 𝑀 denotes the total number of private households registered to
reside in Italy; and all other symbols are defined as above.

Second, the target number of households allocated to each stratum was
equally distributed among the sampled PSUs belonging to that stratum. For-
mally:

𝑚𝑙ℎ =
𝑚ℎ

𝑛1ℎ
(1.3)

where 𝑚𝑙ℎ denotes the target number of households allocated to PSU 𝑙 of
stratum ℎ; 𝑛1ℎ denotes the number of sampled PSUs belonging to stratum ℎ;
and all other symbols are defined as above.

Since – as anticipated above (see Section 1.2) – the third stage of the ITA.LI
sample design requires that a single household be randomly drawn from each
selected SSU, in principle the SSU sample size for each PSU 𝑙 of stratum ℎ

should equal 𝑚𝑙ℎ. In survey research, however, it is common experience that,
for various reasons (e.g., unavailability, ineligibility, nonresponse), a number
of sample units are lost in the data collection process.

The most common way of tackling this problem is to inflate the designated
sample size to compensate for anticipated loss of sample units. To be effective,
though, this strategy requires that accurate estimates of study outcome rates
be available (Valliant et al. 2018). An alternative – adopted in this study – is to
use the sample replicates approach (Lavrakas 2008b). This strategy entails “to
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randomly select a large number of sample cases under a ‘worst-case scenario,’
randomly subdivide the full sample into data collection subsamples (sometimes
called sample replicates), and release only the number of replicates necessary
to meet the analytic objectives.” (Valliant et al. 2018, p. 183). To ensure that the
released sample can be considered a simple random sample of the designated
sample, “once a replicate has been released for data collection, all cases in that
replicate must be worked and given a disposition code.” (Valliant et al. 2018,
p. 184).

The implementation of the sample replicates approach in the ITA.LI sam-
ple design was as follows. First, the designated SSU sample size for each
PSU 𝑙 of stratum ℎ was set at 𝑛2𝑙ℎ = 𝑚𝑙ℎ × 8, so as to allow for very low
contact/eligibility/response rates. Second, to make the pursuit of the target
sample size as flexible as possible, each designated SSU sample was partitioned
into small sample replicates of size 4.

Within each PSU, SSUs were selected without replacement and with proba-
bility proportional to size, using the number of private households registered
to reside in the SSUs as the measure of size. The probability of selection of
SSUs is then defined as follows:

𝜋𝑘|𝑙ℎ =
𝑀𝑘𝑙ℎ

𝑀𝑙ℎ

× 𝑛2𝑙ℎ (1.4)

where 𝜋𝑘|𝑙ℎ denotes the probability of selection of SSU 𝑘 from PSU 𝑙 of stratum
ℎ; 𝑀𝑘𝑙ℎ denotes the number of private households registered to reside in SSU
𝑘 of PSU 𝑙 and stratum ℎ; and all other symbols are defined as above.

Figure 1.4 displays the designated SSU sample size for each PSU of the
ITA.LI sample design.

1.5. Tertiary Sampling Stage

The tertiary sampling units (TSUs) of the ITA.LI sample design are all the
private households that, at the time of interview, were regularly residing at
the addresses selected at the secondary sampling stage.

Since no official list of all private households residing at each selected SSU
was available a priori, the construction of suitable sampling frames for TSU se-
lection was deferred to the fieldwork stage. Specifically, following the practice
known as field listing (Kalton et al. 2014), it was planned to assign interviewers
the task of constructing a list of all private households apparently residing at
each selected SSU, and then randomly drawing one of these households from
the list (for details, see Lucchini et al. 2023).
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Figure 1.4 Designated SSU sample size for each selected PSU of the ITA.LI sample
design. The solid circles representing PSUs are drawn with size proportional to the
corresponding SSU sample size.

Within each SSU, the TSU to be contacted for interview was selected by
simple random sampling. Thus, the probability of selection of TSUs is:

𝜋 𝑗|𝑘𝑙ℎ =
1

𝑀𝑘𝑙ℎ

(1.5)

where 𝜋 𝑗|𝑘𝑙ℎ denotes the probability of selection of TSU 𝑗 from SSU 𝑘 in PSU
𝑙 of stratum ℎ; and all other symbols are defined as above.
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1.6. Ultimate Sampling Stage

The ultimate sampling units (USUs) of the ITA.LI sample design are all persons
aged 16 and over who, at the time of interview, were members of the private
households selected at the tertiary sampling stage.

Since all eligibles individuals were selected in the sample with certainty,
the probability of selection of each USU is equal to 1. Formally:

𝜋𝑖| 𝑗𝑘𝑙ℎ = 1 (1.6)

where 𝜋𝑖| 𝑗𝑘𝑙ℎ denotes the probability of selection of USU 𝑖 from TSU 𝑗 in SSU
𝑘 and PSU 𝑙 of stratum ℎ.

It is worth noting that the ITA.LI sample design is epsem, i.e., all units in the
target population have the same a priori probability of being selected in the
designated sample (Battaglia 2008). Specifically, for self-representing strata,
the a priori probability of each unit 𝑖 in the target population to be selected in
the designated sample is defined as follows:

𝜋𝑖(sr) = 𝜋𝑙 |ℎ · 𝜋𝑘|𝑙ℎ · 𝜋 𝑗|𝑘𝑙ℎ · 𝜋𝑖| 𝑗𝑘𝑙ℎ

= 1 · 𝑀𝑘𝑙ℎ

𝑀𝑙ℎ

× 𝑛2𝑙ℎ ·
1

𝑀𝑘𝑙ℎ

· 1

= 1 · 𝑀𝑘𝑙ℎ

𝑀𝑙ℎ

× 𝑀ℎ × 𝑓 × 8
𝑛1ℎ

· 1
𝑀𝑘𝑙ℎ

· 1

= 𝑓 × 8

(1.7)

since 𝑛1ℎ = 1 and 𝑀𝑙ℎ ≡ 𝑀ℎ. For self-representing strata, then, the a priori
probability of each unit 𝑖 in the target population to be selected in the desig-
nated sample equals the sampling fraction 𝑓 adjusted for the sample-replicate
inflation factor. The same holds true for non-self-representing strata:

𝜋𝑖(nsr) = 𝜋𝑙 |ℎ · 𝜋𝑘|𝑙ℎ · 𝜋 𝑗|𝑘𝑙ℎ · 𝜋𝑖| 𝑗𝑘𝑙ℎ

=
𝑀𝑙ℎ

𝑀ℎ

× 2 · 𝑀𝑘𝑙ℎ

𝑀𝑙ℎ

× 𝑛2𝑙ℎ ·
1

𝑀𝑘𝑙ℎ

· 1

=
𝑀𝑙ℎ

𝑀ℎ

× 2 · 𝑀𝑘𝑙ℎ

𝑀𝑙ℎ

× 𝑀ℎ × 𝑓 × 8
𝑛1ℎ

· 1
𝑀𝑘𝑙ℎ

· 1

= 𝑓 × 8

(1.8)

since 𝑛1ℎ = 2.

1.7. Sample Design Implementation

Typically, in survey research, the implementation of any complex sample
design is far from perfect. There are several things that can go wrong at each
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sampling stage. Overall, we can classify them into three main categories: issues
related to the quality of the sampling frames, issues related to the quality of
the fieldwork, and issues related to the participation in the survey (Biemer
and Lyberg 2003; Groves et al. 2009; Lavrakas 2008a).

First, sampling frames may exclude one or more units in the target popu-
lation (undercoverage) and/or include ineligible units (i.e., units that do not
belong in the target population). Second, interviewer performance during
fieldwork may undermine the successful implementation of the sample design
in several ways; most notably, interviewers might generate incorrect or in-
complete field-listed sampling frames, devote more time and effort to locating
or contacting some kinds of sampling units rather than others, circumvent
field sampling rules, and achieve comparatively low cooperation rates. Finally,
regardless of interviewers’ efforts, designated respondents may be unwilling
or unable to participate in the survey. All in all, these issues result in what are
known as coverage error and nonresponse error.

To a greater or lesser extent, all the above issues affected the implementation
of the ITA.LI sample design. As regards, in particular, sampling frames, al-
though the Registry Office lists of residential addresses used to select SSUs are
generally expected to be of good quality, their degree of update and complete-
ness – and, therefore, their coverage of the target population – is likely to vary
across municipalities. Also, albeit interviewers were given strict guidelines
on how to construct the list of private households residing at each sampled
SSU and how to select the designated household from this list (Lucchini et al.
2023), evidence from fieldwork monitoring and ex-post data quality analysis
suggests that the task was not always properly executed.

Like in most current survey research, however, the main issue in the im-
plementation of the ITA.LI sample design was the limited propensity of the
designated respondents to participate in the survey. In this regard, it is worth
noting that, in addition to the general unwillingness to cooperate that charac-
terizes today’s sample surveys (Luiten et al. 2020), ITA.LI suffered the adverse
effects of the COVID-19 pandemic, which arose when fieldwork was about
halfway through2 and is known to have sharply reduced the response rate of
many sample surveys (see, for instance, Rothbaum and Hokayem 2021; U.S.
Bureau of Labor Statistics 2022).

Figure 1.5 documents the implementation of the ITA.LI sample design by
reporting the final dispositions (AAPOR 2016) assigned to the sampling units
selected at each sampling stage of the survey, along with the corresponding
absolute frequencies.

2 For details on the ITA.LI fieldwork, see Lucchini et al. (2023).
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Figure 1.5 Implementation of the ITA.LI sample design: Final dispositions and corre-
sponding absolute frequencies.
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First, we can see that the realized household sample size (𝑚 = 4,900) is
very close to the target (𝑚 = 5,001). To achieve this result, it was necessary to
release 14,264 residential addresses, or 37% of the designated sample of SSUs.
This means that, on average, some 2.9 addresses had to be screened to reach
one eligible responding household. Figure 1.6 shows that such input-to-output
ratio varies considerably across macro-strata, taking values as low as 1.2 (in
the small northern region of Valle d’Aosta) and as high as 5.8 (in the cities of
the southern region of Abruzzo). However, the observed variation exhibits no
consistent pattern by administrative region or degree of urbanization.

Back to Figure 1.5, we can see that of the 14,264 residential addresses
making up the released SSU sample, 7.2% were classified as ineligible,3 1.1%
were attributed the unknown eligibility status,4 and the other 91.7% were
found eligible.

Proceeding to the tertiary sampling stage, Figure 1.5 shows that of the
13,078 households selected from the eligible residential addresses, 0.2% were
classified as ineligible, 20.2% received the unknown eligibility status,5 and
the remaining 79.6% were considered eligible. Of the latter, 47.1% agreed to
participate in the survey.

A total of 11,389 individuals were found to belong to the 4,900 responding
households. Of these, 10,080were 16 years of age or older at the time of contact
and, therefore, declared eligible for interview. Some of them, however, refused
(10.6%) or were unable (0.4%) to cooperate, so that in the end only 8,967
interviews were completed, corresponding to a within-household individual
response rate of 89%. Most interviews were administered to self-respondents,
but a small proportion (2.1%) were answered by proxy respondents.6

Based on the information reported in Figure 1.5 – and putting proxy in-
terviews on the same par with self-respondent interviews – the household
Response Rate 1 (AAPOR 2016) of ITA.LI amounts to 37.1%. By comparison,
the sixth Italian wave of the Survey of Health, Ageing and Retirement in Eu-
rope, carried out in 2014, had – for its refreshment sample – a household
Response Rate 1 of 44.9% and a within-household individual response rate of
92.9% (Bergmann et al. 2019).

3 Specifically, 4% were assigned AAPOR disposition code “4.50 Not a housing unit”; 0.3%
code “4.51 Business, government office, other organization”; 2.1% code “4.61 Regular vacant
residences”; and 0.8% code “4.62 Seasonal/Vacation/Temporary residence”.

4 Specifically, 0.4% were assigned AAPOR disposition code “3.11 Not attempted or worked”;
0.1% code “3.17 Unable to reach/unsafe area”; and 0.6% code “3.18 Unable to locate address”.

5 Specifically, 1.7% were assigned AAPOR disposition code “320 Unknown if eligible house-
hold”, while 18.5% were classified as “3.21 No screener completed”.

6 For rules on the use of proxy respondents in ITA.LI, see Lucchini et al. (2023).
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Figure 1.6 Average number of screened residential addresses per responding household,
by administrative region and degree of urbanization (blue = values below the mean;
red = values above the mean).

Figure 1.7 shows how both the household Response Rate 1 and the within-
household individual response rate of ITA.LI differ across macro-strata. As
we can see, the household Response Rate 1 varies widely between a low of
19.7%, recorded in the cities of Abruzzo, and a high of 83%, observed in Valle
d’Aosta. The within-household individual response rate, on the other hand,
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Figure 1.7 Household Response Rate 1 / Within-household individual response rate,
by administrative region and degree of urbanization (blue = values above the mean;
red = values below the mean).

is less variable, ranging from 75.9% in the cities of Abruzzo to 100% in the
cities of Marche. It is worth noting that the two response rates do not covary
systematically, nor do they exhibit any consistent pattern of variation by
administrative region or degree of urbanization.
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1.8. Sample Representativeness

As mentioned above (see Section 1.1), in order for a sample survey to produce
valid estimates of the quantities of interest, it is required that its realized
sample be representative of the target population, i.e., faithfully reproduce –
within estimable margins of error – its attributes, or at least those of direct
interest to the study.

When implemented perfectly, an epsem sample design – such as the one
adopted for ITA.LI (see Section 1.6) – is expected to produce representative
samples without any adjustment (Daniel 2012). However, as we saw in the
previous section, the implementation of the ITA.LI sample design was far from
perfect. On one hand, it is possible that the sampling frames used to select
the SSUs and the TSUs failed to include all the units in the target population,
resulting in undercoverage. On the other hand, and more importantly, the ex-
ecution of the sampling process was characterized by fairly high nonresponse
rates, especially at the household level.

Together, undercoverage and nonresponse make up the nonobservation
error, which is the exclusion of a subset of the target population from the
survey (Bethlehem et al. 2011; Kish 1965). Such exclusion may undermine the
representativeness of the realized sample of a survey. This occurs when the
composition of the excluded population differs from the composition of the
included population with respect to one or more variables of interest. In
general, the greater this difference – called the contrast – the lower the rep-
resentativeness of the sample. Moreover, the negative impact of the contrast
increases with the relative size of the excluded population (Bethlehem et al.
2011; Groves 2006). In symbols:

𝐵(𝑌 ) = 𝐾𝑌 �̃� (1.9)

where 𝐵(𝑌 ) denotes the deviation from perfect representativeness with re-
spect to variable 𝑌 in a given survey sample; 𝐾𝑌 denotes the contrast between
the included and excluded populations with respect to 𝑌 ; and �̃� denotes the
relative size of the excluded population.

As for ITA.LI, its high nonresponse rate clearly indicates that the relative
size of the excluded population �̃� – whether or not there is undercoverage –
is fairly large and, therefore, could have a substantial bearing on the represen-
tativeness of the realized sample of the survey. It remains to be determined,
however, whether the contrast 𝐾𝑌 is large enough to realize these potential
detrimental effects on representativeness.
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The estimation of 𝐾𝑌 requires knowledge of the distribution of 𝑌 among
both survey respondents and nonrespondents. With ITA.LI, this knowledge is
not available with respect to nonrespondents and, therefore, 𝐵(𝑌 ) must be
estimated directly, without going through the calculation of 𝐾𝑌 .

One of the most common ways to achieve this goal is the benchmark com-
parison approach, which involves comparing the distribution of 𝑌 among
survey respondents with the corresponding distribution from a benchmark
data source, usually a population census (Groves 2006; Lohr 2022). The dissim-
ilarity between these two distributions – variously measured – corresponds
exactly to 𝐵(𝑌 ) (Bethlehem et al. 2011).

In the following, the benchmark comparison approach is used to assess
the representativeness of the ITA.LI realized sample with respect to some key
variables. In this respect, a few remarks are in order:
• The data source used as the benchmark is the Italian Permanent Census of
Population and Housing, carried out by Istat since 2018. Specifically, the
data used herein refer to December 31, 2019.7

• Only a small set of standard sociodemographic variables are examined, the
ones in common between ITA.LI and the available census data.

• Currently, census data are only available in aggregate form, which places
some limitations on the comparison with ITA.LI. In particular, while the
target population of ITA.LI is limited to persons aged 16 and over residing
in private households (see Section 1.2), the available census data are for the
whole resident population, including the institutional residents.8 This means
that there is a mismatch between the two sources of data to be compared,
in terms of both age and residence type.

• In the analyses that follow, the age mismatch is addressed by proper sub-
setting of the data. The mismatch in residence type, on the other hand, is
accommodated by subtracting the estimated number of institutional resi-
dents from each census count of interest. These estimated numbers were
obtained based on the available information on the subject: the distribution
by region of institutional residents in the year 2019; and the distribution
by region, sex, and age of institutional residents in the year 2011.9

7 Data were taken from https://www.istat.it/it/censimenti/popolazione-e-abitazi

oni/risultati.
8 Institutional residents are all persons who are not members of private households but live
in institutional collective dwellings, such as military installations, correctional and penal
institutions, religious institutions, hospitals, and so forth.

9 Data for 2019 were taken from the Italian Permanent Census of Population and Housing
(see footnote 7 above). Data for 2011 were taken from http://dati-censimentopopolazio

ne.istat.it/Index.aspx.

https://www.istat.it/it/censimenti/popolazione-e-abitazioni/risultati
https://www.istat.it/it/censimenti/popolazione-e-abitazioni/risultati
http://dati-censimentopopolazione.istat.it/Index.aspx
http://dati-censimentopopolazione.istat.it/Index.aspx
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• Survey data are considered in their raw form, so as to assess the representa-
tiveness of the ITA.LI realized sample before survey weighting adjustment.
Figures 1.8 to 1.16 display the results of our assessment. For each variable

𝑌 considered in the analysis, five pieces of information are reported: (a) the
percent distribution of 𝑌 in the realized sample; (b) the percent distribution of
𝑌 in the benchmark population; (c) the ratio (with associated 95% confidence
interval) of the sample relative distribution to the population relative distribu-
tion of 𝑌 ; (d) the index of dissimilarity (𝐷) between the sample and population
distributions of 𝑌 ;10 and (e) the Pearson’s 𝑋2 statistic (with associated p-value)
for a goodness-of-fit test – with survey design correction – of whether the sam-
ple distribution of 𝑌 differs significantly from the corresponding population
distribution.11

To begin, Figures 1.8 and 1.9 assess the representativeness of the ITA.LI
realized sample by using households as the units of analysis. Specifically, Figure
1.8 shows the extent to which the distribution of variable Region of residence
as observed in the sample differs from that in the population. As we can see,
the index of dissimilarity takes value 4.5, meaning that, overall, about one
sampled household out of 20 should have come from a different region to
exactly reproduce the population distribution of the variable under scrutiny.
Although this value is not exceedingly large,12 the results of the goodness-of-fit
test (𝑋2 = 184.4, 𝑝 = 0.000) clearly show that the sample relative distribution
of variable Region of residence is significantly different from the corresponding
distribution in the population. The two graphs that make up Figure 1.8 suggest
that much of this difference comes from the over-representation, within the
sample, of some small regions – in particular Valle d’Aosta andMolise – which
is offset by the under-representation of Lombardia and Sicilia.

Figure 1.9 shows that the discrepancy between the ITA.LI realized sample
and the benchmark population at the household level is even larger when
a second variable is considered: Household size, defined as the number of
stable household members. In this case, the index of dissimilarity rises up
to 9.8, more than twice the previous value. Of course, the goodness-of-fit
test (𝑋2 = 231.5, 𝑝 = 0.000) confirms that the sample relative distribution of

10 The index of dissimilarity 𝐷 (Duncan and Duncan 1955) was computed using the user-
written Stata command reldist (Jann 2021).

11 The test was performed using the user-written Stata command mgof (Jann 2008).
12 As a way of comparison, the average index of dissimilarity between the sample and popula-

tion distributions of two large British surveys – BHPS Wave 1 and Understanding Society
Wave 1 – in terms of seven key variables is 2.7 (own calculations based on data reported in
Lynn and Borkowska 2018). More generally, according to Agresti (2013) two distributions
should be considered quite close when 𝐷 < 3.
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Figure 1.8 Household-level representativeness of the ITA.LI realized sample with re-
spect to variable Region of residence. The left graph compares the percent distribution
of the variable in the sample (orange filled bar) with the corresponding distribution in
the benchmark population (blue empty bar). The right graph displays the ratio (with
associated 95% confidence interval) of the sample relative distribution to the population
relative distribution of the variable (y-axis in logarithmic scale). The bottom of the graph
reports the index of dissimilarity (𝐷) between the sample and population distributions of
the variable, and the Pearson’s 𝑋2 statistic (with associated p-value) for a goodness-of-fit
test of whether the sample distribution of the variable differs significantly from the
corresponding population distribution.
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Figure 1.9 Household-level representativeness of the ITA.LI realized sample with re-
spect to variable Household size. For details on graph content, see Figure 1.8 caption and
text.

the variable under examination differs significantly from the corresponding
population distribution. The charts reveal that the main sources of such large
discrepancy are the under-representation of single-person households (27.3%
in the sample versus 35.1% in the population) and the corresponding over-
representation of two-person households (35.5% versus 27.1%).

Let us now turn to evaluating the representativeness of the ITA.LI realized
sample by taking individuals as the units of analysis. Figures 1.10 through 1.16
describe the difference between such sample and the benchmark population
with respect to the relative distribution of seven variables: sex, age group,
region of residence, educational degree, occupational status, marital status,
and citizenship.

Starting with variable Sex, Figure 1.10 shows that the discrepancy between
its sample and population relative distributions is fairly small (𝐷 = 2.5), albeit
statistically significant (𝑋2 = 22.2, 𝑝 = 0.000), and takes the form of a mild
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D = 2.5     X 2 = 22.2 (p = 0.000)

Figure 1.10 Individual-level representativeness of the ITA.LI realized sample with
respect to variable Sex (persons aged 16 years and over). For details on graph content,
see Figure 1.8 caption and text.
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Figure 1.11 Individual-level representativeness of the ITA.LI realized sample with
respect to variable Age group (persons aged 16 years and over). For details on graph
content, see Figure 1.8 caption and text.

under-representation of males, offset by an equivalent over-representation of
females.

The case of variable Age group, depicted in Figure 1.11, is very similar. Again,
the lack of representativeness of the ITA.LI realized sample with respect to
this variable is statistically significant (𝑋2 = 65.8, 𝑝 = 0.000), but the index of
dissimilarity takes a rather low value (𝐷 = 2.8). The largest discrepancies be-
tween the sample and the benchmark population are due to older individuals.
Specifically, there is a clear over-representation of 65-74 year olds and, on the
other hand, a significant under-representation of people aged 85 years and
over.

Turning to variable Region of residence, represented in Figure 1.12, the sit-
uation is unsurprisingly similar to that already observed at the household
level (see Figure 1.8). On the one hand, the dissimilarity between the sample
and population distributions of the variable at hand is noticeable (𝐷 = 5.4)
and statistically significant (𝑋2 = 444.2, 𝑝 = 0.000). On the other hand, this
dissimilarity is characterized by the over-representation of the smaller re-
gions – particularly evident with Valle d’Aosta and Molise – paralleled by the
under-representation of two of the largest Italian regions: Lombardia and
Sicilia.
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Figure 1.12 Individual-level representativeness of the ITA.LI realized sample with
respect to variable Region of residence (persons aged 16 years and over). For details on
graph content, see Figure 1.8 caption and text.

With variable Educational degree, the discrepancy between the ITA.LI re-
alized sample and the benchmark population rises substantially. As seen in
Figure 1.13, in this case the dissimilarity index has a value of 𝐷 = 7.6 and
the goodness-of-fit test appears highly significant (𝑋2 = 219.5, 𝑝 = 0.000).
Going into detail, the charts show that this deficit in representativeness is
attributable to the under-representation of the educational degrees placed
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Figure 1.13 Individual-level representativeness of the ITA.LI realized sample with
respect to variable Educational degree (persons aged 25 years and over). For details on
graph content, see Figure 1.8 caption and text.

at the opposite ends of the range (elementary school certificate and univer-
sity degrees), coupled with a parallel over-representation of the intermediate
educational degrees (middle school certificate and high school diploma).

The representativeness of the ITA.LI realized sample becomes acceptable
again with respect to variable Occupational status. Figure 1.14 shows that its
sample relative distribution differs only slightly – though significantly (𝑋2 =

41.1, 𝑝 = 0.000) – from the corresponding population distribution (𝐷 = 2.7).
Such difference takes the form of a modest over-representation of both job
seekers and retired people, matched by an equally low under-representation
of homemakers and persons in other status (mainly unable to work).
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Figure 1.14 Individual-level representativeness of the ITA.LI realized sample with
respect to variable Occupational status (persons aged 25 years and over). For details on
graph content, see Figure 1.8 caption and text.
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Figure 1.15 Individual-level representativeness of the ITA.LI realized sample with
respect to variableMarital status (persons aged 16 years and over). For details on graph
content, see Figure 1.8 caption and text.

As we can see from Figure 1.15, a low level of discrepancy between the sam-
ple and the population relative distributions also characterizes variableMarital
status (𝐷 = 2.7), in the form of a slight over-representation of partnered and
widowed persons, together with an analogous mild under-representation of
single and divorced people.

Finally, Figure 1.16 reveals a substantial under-representation of non-Italian
residents in the ITA.LI realized sample, within which they constitute a share
that is less than half of that in the benchmark population (3.6% versus 8%).

In summary, our analysis shows that the ITA.LI realized sample has both
positive and negative aspects when it comes to its representativeness. At the
household level, the sample’s representativeness exhibits its most glaring short-
coming with respect to variable Household size, where two-person households
are substantially over-represented at the expense of single-person households.
At the individual level, on the other hand, while variables Sex, Age group,Occu-
pational status andMarital status reveal relatively small discrepancies between
the sample and the benchmark population, variables Educational degree and
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Figure 1.16 Individual-level representativeness of the ITA.LI realized sample with
respect to variable Citizenship (persons aged 20 years and over). For details on graph
content, see Figure 1.8 caption and text.
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Citizenship turn out to be rather off the mark. Specifically, on one side people
holding an elementary school certificate or a university degree are largely
under-represented in favor of those who have a middle school certificate or a
high school diploma; on the other side, non-Italian residents are only half of
those who should be in a perfectly representative sample. Overall, these find-
ings suggest the need to adjust the ITA.LI realized sample through appropriate
weighting, a topic that will be covered in the next chapter.



2

survey weighting

2.1. Introduction

A survey weight 𝑤𝑖 is a positive numerical value assigned to each unit 𝑖 of
a survey’s realized sample, such that it expresses the number of units in the
target population represented by 𝑖 (Heeringa et al. 2017). Survey weights are
a critical component of any survey data analysis since – when calculated
and applied correctly – they allow for population inference, i.e., they help
obtain (approximately) unbiased estimators for the quantities of interest in
the target population (Heeringa et al. 2017; Valliant et al. 2018). Specifically,
survey weights do this by compensating for “unequal selection probabilities,
nonresponse, noncoverage, and sampling fluctuations fromknown population
values” (Kalton and Flores-Cervantes 2003, p. 81).

Generally, survey weights are developed in three stages (Haziza and Beau-
mont 2017). First, each unit in the designated sample is assigned a base weight
(or design weight) equal to the inverse of its probability of selection in the
sample; if – as in the case of ITA.LI – the sample replicates approach was
used and the released sample is smaller than the designated sample, then the
base weight will need to be adjusted accordingly (Valliant et al. 2018). Second,
the base weights assigned to the eligible responding units are adjusted to
compensate for the removal from the sample of both units with unknown
eligibility and nonresponding units. Finally, most often the resulting weights
from the previous two stages are subjected to calibration, i.e., they are further
adjusted “so that survey weighted estimates agree with known population
totals available from external sources (e.g., the census or administrative data)
for important variables” (Haziza and Beaumont 2017, p. 207); survey weight
calibration has two main purposes: to compensate for nonobservation error
and, possibly, to improve the precision of survey estimators (Heeringa et al.
2017; Kalton and Flores-Cervantes 2003). It should be noted that, in case of
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multistage sample designs, base weights are computed separately for each
sampling stage, while their adjustments for unknown eligibility and nonre-
sponse are calculated incrementally as one moves from one sampling stage to
the next (Valliant and Dever 2018).

The aim of this chapter is to describe the procedure used to construct the
ITA.LI survey weights. The next section provides a general overview of the
procedure, while the subsequent four sections illustrate its implementation
for each of the sampling stages of the ITA.LI sample design. The chapter
concludes with a section dedicated to an assessment of the representativeness
of the ITA.LI weighted realized sample. The exposition that follows draws
extensively on two reference texts that are mentioned here once and for all:
Valliant et al. (2018) and Valliant and Dever (2018). Any additional relevant
literature will be cited as usual.

2.2. Overview

As mentioned in the previous section, the process of survey weight construc-
tion relies on two basic operations: the calculation of base weights and their
adjustment. In the case of a multistage sample design such as the one used
for ITA.LI, this process runs sequentially through the various sampling stages.
Specifically, at each stage the corresponding conditional base weights are first
calculated. Then – from the second stage onwards – the conditional base
weights are multiplied by the weights calculated at the previous stage, thus
obtaining the unconditional base weights for the current stage. Finally, these
weights are adjusted as needed, resulting in the adjusted base weights for the
stage at hand. When the units of a given sampling stage (e.g., households or
individuals) are units of analysis for the survey, the adjusted base weights for
that stage constitute the final survey weights for the respective units, possibly
after calibration.

Figure 2.1 offers a diagrammatic representation of the process of construc-
tion of the ITA.LI survey weights. As we can see, this is a rather complex
procedure that begins with the calculation of the base weights assigned to the
PSUs and results in two sets of final weights: that for households, obtained
at the tertiary sampling stage, and that for individuals, which is the terminal
output of the entire process.

The following four sections provide a complete description of the proce-
dure followed to calculate the ITA.LI survey weights at each sampling stage of
the survey.
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Figure 2.1 Diagrammatic representation of the process of construction of the ITA.LI
survey weights.
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2.3. Primary Sampling Stage

As shown in Figure 2.1, the starting point of the procedure was the calculation
of the PSU base weights, defined as the inverse of the probability of each
sampled PSU to be selected in the study. Formally:

𝑑0𝑙 =
1
𝜋𝑙 |ℎ

(2.1)

where 𝜋𝑙 |ℎ is defined as in Equation 1.1.

2.4. Secondary Sampling Stage

Figure 2.1 shows that going from the PSU base weights to the SSU adjusted
base weights involved four steps.

First, we computed the SSU conditional base weights, defined as the inverse
of the probability of selection of each sampled SSU from its parent PSU.
Formally:

𝑑0𝑘|𝑙 =
1
𝜋𝑘|𝑙ℎ

(2.2)

where 𝜋𝑘|𝑙ℎ is defined as in Equation 1.4.
Second, the SSU conditional base weights were multiplied by the PSU base

weights to obtain the SSU unconditional base weights. Formally:

𝑑0𝑘 = 𝑑0𝑘|𝑙 × 𝑑0𝑙 (2.3)

The selection probabilities used in Equation 2.2 refer to the designated
sample. However, as we know from Section 1.7, only a random subsample of
the designated SSUs was actually fielded. To account for this subsampling, the
SSU unconditional base weights were adjusted as follows:

𝑑1𝑘 = 𝑑0𝑘 × 𝑎1𝑘 (2.4)

where 𝑎1𝑘 denotes the subsampling weight adjustment factor for SSU 𝑘. This
element is defined below:

𝑎1𝑘 =


𝑛2𝑙ℎ

𝑟2𝑙ℎ
, if 𝑘 ∈ released sample

0, if 𝑘 ∈ unreleased sample
(2.5)

where 𝑛2𝑙ℎ denotes the designated SSU sample size for PSU 𝑙 of stratum ℎ;
and 𝑟2𝑙ℎ denotes the number of SSUs that were actually released for fieldwork
in PSU 𝑙 of stratum ℎ.



survey weighting 29

Finally, the SSU unconditional base weights were further adjusted to ac-
count for the 163 SSUs with unknown eligibility status (see Figure 1.5). The
rationale behind this adjustment is simple and intuitive: units of unknown eli-
gibility are zeroed out and the weights associated with them are redistributed
to units for which the eligibility status is known. If we assume that the prob-
ability of having the unknown eligibility status is not constant but varies
depending on some properties of the SSUs, then the magnitude of weight
adjustment will need to vary accordingly. To this end, typically SSUs are di-
vided into a number of distinct classes based on variables that are assumed
to be associated with eligibility status, and the weight adjustment factor is
calculated separately for each class.

Most commonly, there is very limited information on units with unknown
eligibility status. Therefore, the definition of adjustment classes is usually
based on simple criteria. In our case, we partitioned the SSUs into 46 classes
corresponding to the first-stage preliminary strata defined in Section 1.3. Then,
for each class 𝑐 = 1, . . . , 46, we calculated the unknown eligibility weight
adjustment factor as follows:

𝑓𝑐(unk-ssu) =

∑
𝑘∈𝑠𝑠𝑢𝑐 𝑑1𝑘∑
𝑘∈𝑠𝑠𝑢𝑐,kn 𝑑1𝑘

(2.6)

where 𝑠𝑠𝑢𝑐 denotes the complete set of SSUs belonging to class 𝑐; 𝑠𝑠𝑢𝑐,kn
denotes the subset of 𝑠𝑠𝑢𝑐 containing only the SSUs of known eligibility; and
𝑑1𝑘 is defined as in Equation 2.4.

Based on 𝑓𝑐(unk-ssu) , we derived the unknown eligibility weight adjustment
factor for each SSU 𝑘 using the following rule:

𝑎2𝑘 =

{
𝑓𝑐(unk-ssu) , if 𝑘 ∈ 𝑠𝑠𝑢𝑐,kn
0, if 𝑘 ∈ 𝑠𝑠𝑢𝑐,unk

(2.7)

where 𝑠𝑠𝑢𝑐,unk denotes the subset of 𝑠𝑠𝑢𝑐 containing the SSUs of unknown
eligibility; and all other symbols are defined as above.

Lastly, by applying the adjustment factor 𝑎2𝑘 to weights 𝑑1𝑘, we obtained
the SSU adjusted base weights:

𝑑2𝑘 = 𝑑1𝑘 × 𝑎2𝑘 (2.8)

After all these stepswere completed, 14,101 SSUs resulted in being assigned
a non-zero weight. Of these, the ineligible units were discarded, so that only
the 13,078 eligible SSUs were passed to the next stage.
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2.5. Tertiary Sampling Stage

The steps taken to arrive at the TSU adjusted base weights closely mimic
those used for generating the SSU adjusted base weights. In the case of TSUs,
however, the resulting weights were further fine-tuned by calibration, so as
to obtain the final household weights.

Specifically, first of all, the TSU conditional base weights were calculated,
defined as the inverse of the probability of selection of each sampled TSU
from its parent SSU. Formally:

𝑑0𝑗|𝑘𝑙 =
1

𝜋 𝑗|𝑘𝑙ℎ
(2.9)

where 𝜋 𝑗|𝑘𝑙ℎ is defined as in Equation 1.5.
Second, the TSU conditional base weights were multiplied by the SSU

adjusted base weights to obtain the TSU unconditional base weights. Formally:

𝑑0𝑗 = 𝑑0𝑗|𝑘𝑙 × 𝑑2𝑘 (2.10)

Then, two adjustments were applied in sequence to the TSU unconditional
base weights: one for unknown eligibility and the other for nonresponse. Re-
garding the former, the same procedure as described in the previous section
was followed. Precisely, the TSUs were partitioned into the 46 classes cor-
responding to the first-stage preliminary strata of the ITA.LI sample design,
and for each class 𝑐 the unknown eligibility weight adjustment factor was
calculated as follows:

𝑓𝑐(unk-tsu) =

∑
𝑗∈𝑡𝑠𝑢𝑐 𝑑0𝑗∑
𝑗∈𝑡𝑠𝑢𝑐,kn 𝑑0𝑗

(2.11)

where 𝑡𝑠𝑢𝑐 denotes the complete set of TSUs belonging to class 𝑐; 𝑡𝑠𝑢𝑐,kn
denotes the subset of 𝑡𝑠𝑢𝑐 containing only the TSUs of known eligibility; and
𝑑0𝑗 is defined as in Equation 2.10.

Based on 𝑓𝑐(unk-tsu) , we derived the unknown eligibility weight adjustment
factor for each TSU 𝑗 using the following rule:

𝑎1𝑗 =

{
𝑓𝑐(unk-tsu) , if 𝑗 ∈ 𝑡𝑠𝑢𝑐,kn
0, if 𝑗 ∈ 𝑡𝑠𝑢𝑐,unk

(2.12)

where 𝑡𝑠𝑢𝑐,unk denotes the subset of 𝑡𝑠𝑢𝑐 containing the TSUs of unknown
eligibility; and all other symbols are defined as above.
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Finally, by applying the adjustment factor 𝑎1𝑗 to weights 𝑑0𝑗, we obtained
the following adjusted weights:

𝑑1𝑗 = 𝑑0𝑗 × 𝑎1𝑗 (2.13)

A second adjustment was applied to the TSU unconditional base weights
to account for the non-responding eligible TSUs. With proper adaptation,
the approach taken closely mirrors that just described for calculating the
unknown eligibility weight adjustment factor. First, for each of the 46 classes
defined above, the nonresponse weight adjustment factor was computed:

𝑓𝑐(nr-tsu) =

∑
𝑗∈𝑡𝑠𝑢𝑐,el 𝑑1𝑗∑
𝑗∈𝑡𝑠𝑢𝑐,er 𝑑1𝑗

(2.14)

where 𝑡𝑠𝑢𝑐,el denotes the subset of 𝑡𝑠𝑢𝑐 containing all the eligible TSUs; 𝑡𝑠𝑢𝑐,er
denotes the subset of 𝑡𝑠𝑢𝑐 containing only the responding eligible TSUs; and
𝑑1𝑗 is defined as in Equation 2.13.

Then, based on 𝑓𝑐(nr-tsu) , the nonresponse weight adjustment factor for
each TSU 𝑗 was determined as follows:

𝑎2𝑗 =


𝑓𝑐(nr-tsu) , if 𝑗 ∈ 𝑡𝑠𝑢𝑐,er
1, if 𝑗 ∈ 𝑡𝑠𝑢𝑐,in
0, if 𝑗 ∈ 𝑡𝑠𝑢𝑐,enr ∪ 𝑡𝑠𝑢𝑐,unk

(2.15)

where 𝑡𝑠𝑢𝑐,in denotes the subset of 𝑡𝑠𝑢𝑐 containing the ineligible TSUs; 𝑡𝑠𝑢𝑐,enr
denotes the subset of 𝑡𝑠𝑢𝑐 containing the non-responding eligible TSUs; and
all other symbols are defined as above.

Lastly, the adjustment factor 𝑎2𝑗 was applied to weights 𝑑1𝑗, resulting in
the TSU adjusted base weights:

𝑑2𝑗 = 𝑑1𝑗 × 𝑎2𝑗 (2.16)

Of the 13,078TSUs considered here, only 4,929 received a non-zeroweight.
Twenty-nine of these were discarded as ineligible, leaving us with the 4,900
responding eligible TSUs.

As mentioned at the opening of the current section, the weights assigned
to these units were further adjusted by calibration to obtain the final house-
hold weights. This particular type of weight tuning aims on the one hand at
correcting for coverage errors and, possibly, the residual nonresponse error
from previous adjustments; and on the other hand at increasing the preci-
sion of some survey estimators. Such dual goal is sought by “calibrating” the
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Table 2.1 Population joint frequency distribution of variables Area of residence and
Household size for household weight calibration.

Area of residence

North-West North-East Center South Islands Total

Household size
1 person 2,744,015 1,839,639 1,947,347 1,630,563 912,288 9,073,852
2 persons 2,074,408 1,451,536 1,391,822 1,382,163 703,425 7,003,354
3 persons 1,264,417 912,302 971,821 1,091,094 530,600 4,770,234
4 persons 894,341 670,919 693,731 989,444 436,441 3,684,876
5+ persons 295,843 250,595 243,642 379,018 149,708 1,318,806

Total 7,273,024 5,124,991 5,248,363 5,472,282 2,732,462 25,851,122

Source: Own elaboration of data from the Italian Permanent Census of Population and Housing (2019).

realized sample to the target population with respect to a certain set of vari-
ables X; this means to adjust survey weights so that the distribution of X in
the weighted sample exactly matches the corresponding distribution in the
target population. The achievement of the goals of calibration is more likely
the stronger the correlation of X with nonobservation and the outcomes of
interest (Caughey et al. 2020).

Ideally, the match between the weighted sample and the target population
should be with respect to the full joint distribution of X, as required by the
weight calibration method known as poststratification. When the number
of cells making up the joint distribution of X is relatively large, however,
poststratificationmay become impractical. In this case, a viable option is raking,
which requires that the match between the weighted sample and the target
population bewith respect to a proper set of lower-ordermarginal distributions
of X.1 Raking is based on iterative proportional fitting (Deming and Stephan
1940), a procedure “which involves iteratively adjusting the [base] weights to
match each margin in succession until the weights stabilize” (Caughey et al.
2020, p. 15, f.n. 11).

In this study, the TSU adjusted base weights defined in Equation 2.16 were
calibrated by poststratification with respect to the joint distribution of two
variables: Area of residence and Household size. The target population counts
for such distribution, reported in Table 2.1, come from the Italian Permanent
Census of Population and Housing;2 specifically, the data used herein refer to
December 31, 2019.

1 A lower-order marginal distribution of X is a joint distribution over a subset of X.
2 https://www.istat.it/it/censimenti/popolazione-e-abitazioni/risultati.

https://www.istat.it/it/censimenti/popolazione-e-abitazioni/risultati
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Now, let 𝑠 = 1, . . . , 25 index the poststrata defined by the cross-classification
of the two selected calibration variables. For each poststratum 𝑠, the poststrat-
ification weight adjustment factor was computed as follows:

𝑓𝑠(ps-tsu) =
𝑁𝑠∑

𝑗∈𝑡𝑠𝑢𝑠,er 𝑑2𝑗
(2.17)

where𝑁𝑠 denotes the target population count for poststratum 𝑠; 𝑡𝑠𝑢𝑠,er denotes
the set of responding eligible TSUs belonging to poststratum 𝑠; and 𝑑2𝑗 is
defined as in Equation 2.16.

Then, based on 𝑓𝑠(ps-tsu) , the poststratification weight adjustment factor for
each TSU 𝑗 was determined as follows:

𝑎3𝑗 =

{
𝑓𝑠(ps-tsu) , if 𝑗 ∈ 𝑡𝑠𝑢𝑠,er
0, otherwise

(2.18)

where all symbols are defined as above.
Finally, the adjustment factor 𝑎3𝑗 was applied to weights 𝑑2𝑗 to obtain the

final weight for each responding eligible household 𝑗:

𝑤H𝑗 = 𝑑2𝑗 × 𝑎3𝑗 (2.19)

2.6. Ultimate Sampling Stage

Since the probability of selection of each eligible household member is equal
to one (see Equation 1.6), the final household weights derived in the previous
section correspond to the USUs unconditional base weights. Formally:

𝑑0𝑖 = 𝑤H𝑗 if 𝑖 ∈ 𝑗 (2.20)

As shown in Figure 2.1, these weights were first adjusted for nonresponse and
then calibrated to arrive at the final individual weights.

The nonresponse weight adjustment factor was computed in three steps.
First, a logistic regression model was used to estimate the probability of re-
sponse of the 10,080 eligible household members. Specifically, the probability
of response was modeled as a function of the main effects of six categorical
predictors: Sex, Age group (15 categories), Region of residence (20 categories),
Educational degree (five categories), Occupational status (five categories), and
Citizenship (two categories). Second, the estimated probabilities were sorted
and divided into 10 classes of approximately equal size based on the deciles of
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their distribution. Finally, for each class 𝑐, the nonresponse weight adjustment
factor was computed as follows:

𝑓𝑐(nr-usu) =

∑
𝑖∈𝑢𝑠𝑢𝑐,el 𝑑0𝑖∑
𝑖∈𝑢𝑠𝑢𝑐,er 𝑑0𝑖

(2.21)

where 𝑢𝑠𝑢𝑐,el denotes the eligible USUs belonging to class 𝑐; 𝑢𝑠𝑢𝑐,er denotes
the responding eligible USUs belonging to class 𝑐; and 𝑑0𝑖 is defined as in
Equation 2.20.

Based on 𝑓𝑐(nr-usu) , the nonresponse weight adjustment factor for each USU
𝑖 was determined as follows:

𝑎1𝑖 =


𝑓𝑐(nr-usu) , if 𝑖 ∈ 𝑢𝑠𝑢𝑐,er
1, if 𝑖 ∈ 𝑢𝑠𝑢𝑐,in
0, if 𝑖 ∈ 𝑢𝑠𝑢𝑐,enr

(2.22)

where 𝑢𝑠𝑢𝑐,in denotes the ineligible USUs belonging to class 𝑐; 𝑢𝑠𝑢𝑐,enr denotes
the non-responding eligible USUs belonging to class 𝑐; and all other symbols
are defined as above.

By applying the adjustment factor 𝑎1𝑖 to weights 𝑑0𝑖, the USU adjusted base
weights were obtained:

𝑑1𝑖 = 𝑑0𝑖 × 𝑎1𝑖 (2.23)

As the final step in the process of constructing the ITA.LI survey weights,
the USU adjusted base weights were calibrated so as to generate the final
individual weights. The set of variables X used to this aim is similar to that
employed for nonresponse adjustment: Sex, Birth cohort, Region of residence,
Educational degree,Occupational status, andCitizenship. Since poststratification
with respect to the joint distribution of X was not feasible, calibration was
carried out by raking with respect to a relevant set of second-order marginal
distributions of X: Sex × Birth cohort, Sex × Region of residence, Sex × Educa-
tional degree, Sex × Occupational status, and Sex × Citizenship.

The population counts for calibration, reported in Table 2.2, are from the
Italian Permanent Census of Population and Housing and refer to December
31, 2019. It should be noted that these counts represent not the ITA.LI target
population, but rather the total population residing in private households in
Italy, thus including individuals aged 0-15 years. This is because the population
counts of interest were available only in aggregate form and it was not possible
to separate out individuals not in the ITA.LI target population. Accordingly,
calibration was performed on both the ineligible and the responding eligible
members of the cooperating households – with the sole exception of 26 infants
born in 2020, who were not counted.
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Table 2.2 Populationmarginal frequency distributions for individual weight calibration.

Sex

Male Female Total

Birth cohort
1921-1929 205,596 524,910 730,506
1930-1939 1,411,446 2,125,447 3,536,893
1940-1944 1,165,517 1,437,776 2,603,293
1945-1949 1,543,207 1,756,110 3,299,317
1950-1954 1,639,938 1,805,017 3,444,955
1955-1959 1,865,390 2,012,912 3,878,302
1960-1964 2,201,749 2,318,104 4,519,853
1965-1969 2,391,344 2,467,660 4,859,004
1970-1974 2,344,266 2,388,214 4,732,480
1975-1979 2,073,920 2,093,310 4,167,230
1980-1984 1,779,839 1,775,024 3,554,863
1985-1989 1,640,585 1,620,281 3,260,866
1990-1994 1,587,953 1,519,884 3,107,837
1995-1999 1,545,986 1,406,090 2,952,076
2000-2004 1,482,553 1,384,822 2,867,375
2005-2009 1,457,572 1,373,841 2,831,413
2010-2014 1,349,569 1,274,998 2,624,567
2015-2019 1,165,630 1,122,961 2,288,591

Region
Piemonte 2,075,095 2,194,349 4,269,444
Valle d’Aosta 60,571 63,502 124,073
Lombardia 4,881,615 5,078,854 9,960,469
Trentino-Alto Adige 524,660 540,447 1,065,107
Veneto 2,372,478 2,466,508 4,838,986
Friuli-Venezia Giulia 581,654 614,043 1,195,697
Liguria 722,380 787,160 1,509,540
Emilia-Romagna 2,154,856 2,273,754 4,428,610
Toscana 1,771,133 1,898,552 3,669,685
Umbria 416,954 447,792 864,746
Marche 731,720 773,074 1,504,794
Lazio 2,758,172 2,955,552 5,713,724
Abruzzo 628,310 660,285 1,288,595
Molise 146,388 151,926 298,314
Campania 2,772,704 2,919,958 5,692,662
Puglia 1,916,509 2,024,352 3,940,861
Basilicata 270,075 280,356 550,431
Calabria 922,405 964,101 1,886,506
Sicilia 2,356,925 2,495,981 4,852,906
Sardegna 787,456 816,815 1,604,271

(Continued on next page)
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Table 2.2 (Continued).

Sex

Male Female Total

Educational degree
Age 0-8 2,225,496 2,107,263 4,332,759
No degree 1,035,614 1,473,779 2,509,393
Elementary school 3,651,852 5,122,712 8,774,564
Middle school 8,633,787 7,583,211 16,216,998
High school 9,841,286 9,735,915 19,577,201
Tertiary degree 3,464,025 4,384,481 7,848,506

Occupational status
Age 0-14 3,968,042 3,749,562 7,717,604
Employed 13,534,829 10,003,542 23,538,371
Job seeker 1,777,939 1,781,571 3,559,510
Student 1,937,400 2,138,937 4,076,337
Retired 5,622,292 5,792,930 11,415,222
Homemaker/Other 2,011,558 6,940,819 8,952,377

Citizenship
Italian 26,435,456 27,806,344 54,241,800
Foreigner 2,416,604 2,601,017 5,017,621

Total 28,852,060 30,407,361 59,259,421

Source: Own elaboration of data from the Italian Permanent Census of Population and Housing (2019).

If we denote by 𝑎2𝑖 the weight calibration factor computed for individual 𝑖,
the final individual weights 𝑤I𝑖 were obtained as follows:

𝑤I𝑖 = 𝑑1𝑖 × 𝑎2𝑖 (2.24)

where 𝑑1𝑖 is defined as in Equation 2.23.

2.7. Weighted Sample Representativeness

As mentioned at the beginning of this chapter, the main goal of survey weights
is to help obtain (approximately) unbiased estimators for the quantities of
interest in the target population. In practice, this amounts to improving the
extent to which the survey sample is representative of the target population.
The aim of this section is to assess whether the survey weights we constructed
go in this direction, i.e., increase the representativeness of the ITA.LI realized
sample.
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To make our assessment, we might be tempted to determine whether the
lack of representativeness found in the unweighted sample with respect to
a basic set of variables (see Section 1.8) is remedied – at least partially – in
the weighted sample. This approach, however, would be tautological, since
almost all the variables used to assess the representativeness of the ITA.LI
unweighted sample were also employed to calibrate the survey weights.

Expressly, survey weight calibration ensures that a weighted sample is
perfectly representative of the target population with respect to the variable
distributions used for calibration. As far as we are concerned, this means
that the ITA.LI weighted realized sample is perfectly representative of the
target population with respect to (a) the joint distribution of variables Area
of residence and Household size at the household level (see Table 2.1); and (b) a
select subset of second-order marginal distributions of X = {Sex, Birth cohort,
Region of residence, Educational degree, Occupational status, Citizenship} at the
individual level (see Table 2.2). Therefore, using any of these variables – either
individually or combined as indicated above – to assess the representativeness
of the ITA.LI weighted realized sample would be pointless, as the fit between
the sample and the target population would be perfect by design.

All this considered – and given the information available about the target
population – we will base our assessment on just a limited set of elements: (a)
the univariate distribution of variableMarital status; and (b) a set of second-
order marginal distributions of X not already employed for survey weight
calibration.3

Figure 2.2 reports the results of our assessment. The graph displays two
versions of the index of dissimilarity (𝐷) between the sample and population
variable distributions: one for the unweighted sample (blue empty bar) and the
other for the weighted sample (orange filled bar).4 As we can see, weighting
improves the representativeness of the ITA.LI realized sample in all cases
considered. The reduction in dissimilarity between the sample and the target
population that is gained by switching from the unweighted to the weighted

3 Because of the limited data available to the purpose, the assessment of the representativeness
of the ITA.LI weighted realized sample is carried out only at the individual level.

4 The index of dissimilarity𝐷was computed using the user-written Stata command reldist
(Jann 2021). All variables are defined as in Section 1.8 except for variable Birth cohort, whose
definition varies according to the variable with which it is cross-tabulated. Specifically,
when combined with variable Region of residence, variable Birth cohort is divided in eight
categories as follows: Up to 1939, 1940-49, 1950-59, 1960-69, 1970-79, 1980-89, 1990-99,
2000-03; when combined with variables Educational degree and Occupational status, it is
divided in three categories: Up to 1954, 1955-69, 1970-94; and when combined with variable
Citizenship, it is divided in seven categories: Up to 1939, 1940-49, 1950-59, 1960-69, 1970-79,
1980-89, 1990-99.



38 chapter 2

Region of residence × Citizenship

Region of residence × Occupational status

Region of residence × Educational degree

Birth cohort × Citizenship

Birth cohort × Occupational status

Birth cohort × Educational degree
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Figure 2.2 Individual-level representativeness of the ITA.LI realized sample with respect
to a select set of variable distributions. The graph displays two versions of the index of
dissimilarity (𝐷) between the sample and population variable distributions: one for the
unweighted sample (blue empty bar) and the other for the weighted sample (orange
filled bar).

sample is smallest for the univariate distribution of variable Marital status
(−7% in relative terms), while it takes its maximum value for the joint distribu-
tion of variables Birth cohort and Citizenship (−79%). On average, the relative
reduction in the index of dissimilarity 𝐷 due to survey weighting is about
−40%. Given that the remaining dissimilarity could largely fall within the
margins of random estimation error (see Chapter 3), this is a good result.

2.8. Cohort Survival Rates

One of the defining goals of a longitudinal study such as ITA.LI is to analyze
the ways and extent to which several phenomena of interest vary across birth
cohorts. This comparative analysis, however, typically suffers from the fact
that, at the time the study is carried out, the members of the various cohorts
eligible to participate in the study are only a subset of all people born in those
cohorts, as some have since emigrated and others have died. Now, since the



survey weighting 39

≈ 5%

≈ 25%

≈ 50%

≈ 60%

≈ 70%

≈ 75%

≈ 80%

≈ 85%

≈ 90%

≈ 90%

≈ 100%

≈ 100%

≈ 100%

≈ 100%

≈ 100%

≈ 10%

≈ 40%

≈ 60%

≈ 70%

≈ 80%

≈ 85%

≈ 90%

≈ 90%

≈ 95%

≈ 95%

≈ 100%

≈ 100%

≈ 100%

≈ 100%

≈ 100%

1921-1929

1930-1939

1940-1944

1945-1949

1950-1954

1955-1959

1960-1964

1965-1969

1970-1974

1975-1979

1980-1984

1985-1989

1990-1994

1995-1999

2000-2004

0 1 2 3 4 5 6 0 1 2 3 4 5 6

Male Female

Figure 2.3 Registered number of births in Italy (in millions, orange filled bar), number
of Italy-born individuals residing in Italy at study time estimated by the ITA.LI weighted
realized sample (in millions, blue empty bar), and approximate cohort survival rate, by
birth cohort and sex.

propensity to emigrate and life expectancy are socially differentiated, it is
reasonable to expect that the “surviving” members of the various cohorts
at study time will not be socially representative of all individuals born in
the respective cohorts. This representativeness deficit will be substantially
irrelevant when the cohort survival rate is high, but will become increasingly
critical as the survival rate decreases. Therefore, to properly assess the poten-
tial and limitations of a cohort analysis, it may be useful to have an estimate
of the survival rate of each cohort under examination.

Figure 2.3 displays the approximate cohort survival rates estimated for
present-day Italy using the ITA.LI weighted realized sample.5 As can be seen,

5 The registered numbers of birthswere taken from theHumanMortality Database, University
of California at Berkeley and Max Planck Institute for Demographic Research (https:
//www.mortality.org). The numbers of Italy-born individuals residing in Italy at study
time were estimated using the ITA.LI weighted realized sample and auxiliary information
on place of birth taken from the 2011 Italian Census of Population (http://dati-censime
ntopopolazione.istat.it/Index.aspx).

https://www.mortality.org
https://www.mortality.org
http://dati-censimentopopolazione.istat.it/Index.aspx
http://dati-censimentopopolazione.istat.it/Index.aspx
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themale cohorts since 1960 and the female cohorts since 1950 are characterized
by fairly high survival rates (≥ 80%). On the other hand, men and women
born in the 1920s and 1930s are decidedly underrepresented in today’s Italy.
The remaining birth cohorts (1940-59 for men, 1940-49 for women) are in an
intermediate situation. Overall, these data suggest that any cohort analysis
covering the period between the immediate post-World War II era and the
early 2000s is unlikely to be affected by any severe selection bias. Conversely,
birth cohorts from before the end of World War II should be omitted from
the analysis or, if included, treated with great caution.
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variance estimation

3.1. Introduction

As noted in the first chapter, the basic purpose of survey research is to learn
about a given population of interest through the study of a subset of it, called
a sample. By definition, generalization from a part (here, the sample) to the
whole (here, the target population) is an imperfect process, as it relies on
incomplete data about the object of study (Copi et al. 2019). This implies that
all results of sample survey research will always be affected by some degree
of uncertainty, whose magnitude must be estimated if such results are to be
interpretable (King et al. 1994). This is the task of statistical inference.

In survey research, the inferential problem – i.e., gauging the uncertainty
that surrounds sample results – is usually approached from one of two main
perspectives: the design-based theory of inference and themodel-based theory
of inference (Särndal 1978, 1985). Briefly, in the design-based approach, the
objects of inference are the true values of the quantities of interest (means,
proportions, regressions coefficients, and so on) in a finite target population.
In the model-based approach, on the other hand, the objects of inference are
the properties of a random process – or, equivalently, the parameters of a
stochastic model – that is assumed to have generated the target population.
Here we will only consider the design-based approach.

The starting point of design-based inference1 is a finite population U, de-
fined as a set of 𝑁 units of analysis circumscribed in time and space. Within
U, a given quantity of interest 𝑄 takes a fixed value 𝜃. Suppose we are in-
terested in knowing 𝜃. To this end, first, using a certain sample design, we
select a subset of 𝑛 units from U, which we denote by S. Then, we collect the
relevant data on the sampled units. Third, we define an estimator of 𝑄, that
is, a procedure – which we denote by Θ̂ – to calculate 𝑄 from the available

1 The following discussion is largely based on Lohr (2022, pp. 34-49).
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data. Finally, we apply the chosen estimator to the collected sample data, thus
obtaining a sample estimate of 𝑄, which we denote by 𝜃S.

The problem with 𝜃S is that, in general, it deviates to some extent from
the true value of 𝑄 in the target population. Formally:

𝜃S = 𝜃 + 𝜖S (3.1)

where 𝜖S denotes the estimation error, i.e., the difference between the sample
estimate of 𝑄 and its true population value.

The estimation error 𝜖S summarizes the action of a number of factors
that affect the life cycle of any sample survey – first of all the fact that the
data used to calculate 𝜃S are incomplete, as they pertain only to a subset of
the target population (Groves 1989; Groves et al. 2009). If it were possible to
quantify exactly the impact of all these factors on the sample estimate of 𝑄,
then statistical inference would be a deterministic process, for in this case the
value of 𝜖Swould be known and, therefore, we could tell the true population
value of 𝑄 by simply subtracting from its sample estimate 𝜃S the estimation
error 𝜖S. The value of 𝜖S, however, can never be determined with certainty,
so that exact knowledge of 𝜃 is precluded to sample survey research.

While finding the exact value of 𝜖S in a given sample S is unfeasible, ac-
cording to the design-based approach to statistical inference it is nonetheless
possible to estimate the probabilities of occurrence of the different values of 𝜖S –
and, therefore, of 𝜃S – over hypothetical repeated sampling. Knowledge of such
probabilities would allow one to quantify how likely it is that a given sample
is a “good” one, that is, a sample whose estimate of the quantity of interest 𝑄
is relatively close to the true population value of 𝑄. For this possibility to be
realized, however, a basic condition must be met: samples must be selected by
a well-defined random mechanism, that is, a probability sample design whereby
each sample has a known, nonzero probability of being selected.

To illustrate the concept of “repeated sampling” and its implications for
design-based statistical inference, let us go back to the previous example and
suppose that our research goal is still to learn about 𝜃 – that is, the true value
of the quantity of interest 𝑄 in the target population U– using sample data
and a given estimator Θ̂. To this purpose, we opt for a sample of size 𝑛 selected
from Uusing a probability sample design 𝔻.

Any given probability sample design 𝔻 can generate a finite number of
samples of size 𝑛 from U. Let Ω𝔻(𝑛) denote the finite set of all samples of size
𝑛 permissible under 𝔻, and let 𝑆 denote the cardinality of the set.

Now, suppose that we (a) select sample S = 1 from Ω𝔻(𝑛) ; (b) collect the
relevant data on the responding subset of S = 1, which we denote by R1;
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(c) apply the estimator Θ̂ to the collected data; and (d) obtain a sample estimate
of 𝑄 defined as in Equation 3.1, that is: 𝜃1 = 𝜃 + 𝜖1. Let us repeat steps (a)-(d)
for all the remaining 𝑆 − 1 samples inΩ𝔻(𝑛) . In the end, we will have 𝑆 sample
estimates 𝜃S, one for each sample of size 𝑛 permissible under 𝔻.

Since the action of the factors determining 𝜖S tends to fluctuate stochasti-
cally with each sampleS, the value of the sample estimate 𝜃S generated by the
estimator Θ̂ will vary accordingly across the 𝑆 samples. The set of all possible
values of 𝜃S obtained from our hypothetical repeated-sampling procedure, to-
gether with their probabilities of occurrence, form the probability distribution
of the estimator Θ̂, also known as its sampling distribution.

For inferential purposes, the essential characteristics of the sampling dis-
tribution of an estimator Θ̂ are three: expected value, variance and shape. The
expected value is defined as follows:

𝐸(Θ̂) =

𝑆∑
S=1

𝜃S

𝑆
(3.2)

where all symbols are defined as above. Basically, the expected value represents
the average of all sample estimates 𝜃S.

A key property of the estimator of any quantity of interest 𝑄 is its ability
to generate sample estimates of 𝑄 that, on average, match the true population
value of 𝑄. The extent to which the estimator deviates from this optimal
performance amounts to its bias, formally defined as follows:

𝐵(Θ̂) = 𝐸(Θ̂) − 𝜃 (3.3)

If 𝐸(Θ̂) = 𝜃, then the bias is zero and we say that the estimator is unbiased –
i.e., hits the estimation target on average. Conversely, if 𝐸(Θ̂) ≠ 𝜃, then we
say that the estimator is biased – i.e., off the estimation target on average – by
an amount equal to 𝐵(Θ̂).

The ability of an estimator to be “correct” on average – that is, unbiased –
is certainly important, but it is not sufficient to determine its quality. There
may in fact be estimators that are unbiased but, at the same time, poorly
informative because they generate highly variable sample estimates. Along
with unbiasedness, then, the secondmajor property of an estimator is precision,
that is, its ability to generate sample estimates that, on average, are close to each
other. This property is represented by the variance of the estimator, defined
as follows:

𝑉 (Θ̂) =

𝑆∑
S=1

(
𝜃S− 𝐸(Θ̂)

)2
𝑆

(3.4)
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where all symbols are defined as above. As we can see, the variance equals the
average (squared) deviation of sample estimates from their expected value.
The smaller such deviation, the higher the precision of the estimator.

Combined together, unbiasedness and precision express the accuracy of
an estimator, which, in mathematical terms, corresponds to its mean squared
error. Formally:

MSE(Θ̂) =

𝑆∑
S=1

(𝜃S− 𝜃)2

𝑆

= 𝑉 (Θ̂) + 𝐵(Θ̂)2
(3.5)

where all symbols are defined as above. This expression shows that the mean
squared error equals the average (squared) deviation of sample estimates
from the true population value of the quantity of interest. The smaller such
deviation, the higher the accuracy of the estimator and, ultimately, the lower
the overall uncertainty that surrounds sample estimates.

If we assume that an estimator is asymptotically unbiased, then its mean
squared error will correspond to the sampling variance which, consequently,
will account for all of the uncertainty of survey results. In this case, uncertainty
will be best represented by confidence intervals. A confidence interval is a
range of contiguous values built around a sample estimate of the quantity of
interest 𝑄, in which the true population value of 𝑄 is expected to lie with a
certain probability. The length of this range is a function of the variance of the
estimator of 𝑄: the smaller the variance, the shorter the confidence interval,
and the lower the uncertainty surrounding the estimate of 𝑄.

To build an appropriate confidence interval, it is necessary to know the
shape of the sampling distribution of the estimator of 𝑄. Statistical theory
shows that if the sample size is sufficiently large and Θ̂ is an asymptotically
unbiased estimator of𝑄, the sampling distribution of Θ̂will be asymptotically
normal, with mean (approximately) equal to the true population value of 𝑄
and variance as defined in Equation 3.4 (Heeringa et al. 2017). Formally:

Θ̂
𝑎∼ N

(
𝜃, 𝑉 (Θ̂)

)
(3.6)

where N denotes the normal probability distribution; and all other symbols
are defined as above.

When (3.6) holds, an approximate 100(1 − 𝛼)%Wald confidence interval
for the true population value of 𝑄 may be constructed as follows:

𝜃S± 𝑧1−𝛼/2
√︃
𝑉 (Θ̂) (3.7)
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where 100(1 − 𝛼)% denotes the confidence level; 𝑧1−𝛼/2 denotes the 100(1 −
𝛼/2)th percentile of the standard normal distribution; and all other symbols
are defined as above. Sometimes, 𝑧1−𝛼/2 is replaced with 𝑡1−𝛼/2,𝑑𝑓 , that is, the
100(1 − 𝛼/2)th percentile of the 𝑡 distribution with 𝑑𝑓 degrees of freedom.
When 𝑑𝑓 is sufficiently large, the two percentiles are approximately equal;
in smaller samples, 𝑡1−𝛼/2,𝑑𝑓 > 𝑧1−𝛼/2, so that the use of the 𝑡-distribution
percentile will yield a wider (more conservative) confidence interval.

From a design-based perspective, the confidence interval (3.7) can be given
the following interpretation: if such a confidence interval were constructed
for each of the 𝑆 samples inΩ𝔻(𝑛) , approximately 100(1− 𝛼)% of the resulting
intervals would include the true population value of 𝑄.

The problem with Equation 3.7 is that the repeated-sampling procedure
described above is just hypothetical. In real-world survey research, only one
sample is selected, which gives no chance to calculate the full sampling distri-
bution of Θ̂ and its variance. In a real research setting, therefore, the variance
of estimators must itself be estimated using the single-sample data at hand
(Wolter 2007). When – as in the case of ITA.LI – data come from a complex
sample survey, variance estimation is far from straightforward, for in principle
it should fully account for all sample design elements (like stratification and
clustering) and survey weighting (Valliant and Dever 2018).

There exist several alternative methods of variance estimation to deal with
complex survey data under the design-based inferential framework, the most
popular ones being linearization and replication (Wolter 2007). The latter, in
turn, includes three main approaches: the jackknife, balanced repeated replica-
tion, and the bootstrap. In large samples, all these methods are asymptotically
equivalent and, therefore, equally suitable (see, inter alia, Heeringa et al. 2017;
Kolenikov 2010; Lohr 2022; Pedlow 2008; Rust 1985; Rust and Rao 1996; Wolter
2007). However, some practical differences between methods may affect the
choice of the one best suited for a specific study.

Compared with linearization, replication methods offer two main advan-
tages (Valliant and Dever 2018). On the one hand, they allow to account for all
steps in the procedure of weight construction and, therefore, to fully capture
its impact on the variance of the estimators of interest. On the other hand,
since they do not require the explicit use of stratum and sampling unit identi-
fiers for the correct estimation of the variance of the estimators of interest,
they help protect the anonymity of respondents.

Within replication methods, balanced repeated replication and the boot-
strap are more versatile than the jackknife since, unlike the latter, they can be
used also for nonsmooth estimators, such as the median and other percentiles
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(Rust and Rao 1996). Balanced repeated replication and the bootstrap are simi-
lar under several respects (Kolenikov 2010; Rust and Rao 1996), but balanced
repeated replication may be less computationally demanding (Shao 1996).

For all these reasons, balanced repeated replication was chosen as the
variance estimation method for ITA.LI. The next section is devoted to an
overview of the basic features of this method. The third section illustrates
how the method was implemented in ITA.LI. The chapter ends with a brief
assessment of the quality of ITA.LI variance estimates.

3.2. Balanced Repeated Replication

The balanced repeated replication (BRR) method of variance estimation was
proposed by McCarthy (1966, 1969) to deal with sample designs in which
exactly two PSUs are selected from each of 𝐻 strata – or designs that can be
reformulated into two PSUs per stratum (Lohr 2022).

The basic idea behind this method is to treat the original sample of the
survey of interest – which we will refer to as the full sample and denote by
S– as if it were a population from which 𝑅 subsamples, called replicates, are
systematically drawn. Each replicate is then used to calculate an estimate of
the quantity of interest 𝑄. The variance of the resulting 𝑅 estimates is taken
as an estimator of the variance of the estimator of 𝑄 (Wolter 2007).

Let us take a closer look at the whole procedure, starting with the gener-
ation of replicates. The BRR method requires that each replicate be a half-
sample formed by simply selecting one PSU from each stratum. In a design
with 𝐻 strata and two PSUs per stratum, it is possible to generate 2𝐻 different
replicates of this kind. In principle, all of them should be used to compute
the BRR estimate of the variance of interest without loss of information
(Wolter 2007). When 𝐻 is large, however, the generation of the complete set
of half-sample replicates becomes unfeasible. McCarthy (1966, 1969) showed
that, when facing this case, it is still possible to obtain a maximally efficient
estimator of the variance of interest by analyzing a relatively small subset of
the complete set of half-sample replicates. Such a subset, called the balanced
set, must include 𝑅 half-sample replicates, where 𝑅 is the smallest multiple of
4 that is greater than or equal to 𝐻 .

The 𝑅 half-sample replicates that form the balanced set are identified by
means of a Hadamard matrix of order 𝑅, that we will denote by B. The latter
is a square matrix of order 𝑅 whose elements are either +1 or −1, and whose
rows and columns are pairwise orthogonal. In the context of BRR, the rows
of B represent replicates, while columns represent strata. Whenever 𝑅 > 𝐻 ,
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only 𝐻 columns are retained, so that B reduces to an 𝑅 × 𝐻 matrix (Wolter
2007).

The elements of matrix B specify which PSU should be selected from each
stratum to form each half-sample replicate. If matrix element 𝑏𝑟ℎ = +1, then
the first PSU of stratum ℎ should be selected for replicate 𝑟. Conversely, if
matrix element 𝑏𝑟ℎ = −1, then the second PSU of stratum ℎ should be selected
for replicate 𝑟.

Once the balanced set of half-sample replicates has been defined, the next
move is to use such replicates to calculate 𝑅 estimates of the quantity of
interest 𝑄. To this aim, for each replicate 𝑟, a three-step procedure is used.
First, to compensate for the fact that only half of the original PSUs are retained,
the base weights of the selected PSUs are multiplied by two. These inflated
weights are then adjusted and, possibly, calibrated using exactly the same
procedure used for the full sample. Finally, the resulting weights – called the
replicate weights – are used to compute an estimate of 𝑄, which we will call
the replicate estimate and denote by 𝜃𝑟(BRR) (Valliant and Dever 2018).

In the end, 𝑅 replicate estimates are obtained. Their variance can be taken
as a consistent estimator of the variance of the estimator of 𝑄 (Wolter 2007).
Formally:

𝑉 (Θ̂)BRR =

𝑅∑
𝑟=1

(𝜃𝑟(BRR) − 𝜃∗)2

𝑅
(3.8)

where 𝜃∗ can be either the full-sample estimate of 𝑄 or the average of the 𝑅
replicate estimates.

Equation 3.8 can be used to express the inferential uncertainty that sur-
rounds the full-sample estimate of𝑄 by computing an appropriate confidence
interval. Specifically, an approximate 100(1 − 𝛼)%Wald confidence interval
for 𝜃 may be constructed as follows:

𝜃S± 𝑡1−𝛼/2,𝑑𝑓
√︃
𝑉 (Θ̂)BRR (3.9)

where 𝜃Sdenotes the full-sample estimate of𝑄; 𝑑𝑓 = 𝐻; and all other symbols
are defined as above.

The standard BRR method of variance estimation suffers one major draw-
back: removing half of the PSUs from each replicate halves the information
available to calculate each replicate estimate, making it less precise or, in some
cases, even unfeasible (Judkins 1990; Valliant and Dever 2018). A solution to
this problem was devised by Fay (Dippo et al. 1984; Fay 1989), who proposed
forming the replicates not by completely dropping one PSU from each stra-
tum, but rather by retaining both PSUs and multiplying their base weights by
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different adjustment factors. The latter are defined as follows (Judkins 1990;
Valliant and Dever 2018):

𝑓1ℎ𝑟(Fay) = 1 + 𝑏𝑟ℎ(1 − 𝜌)
𝑓2ℎ𝑟(Fay) = 1 − 𝑏𝑟ℎ(1 − 𝜌)

(3.10)

where 𝑓1ℎ𝑟(Fay) denotes the base weight adjustment factor for the first PSU of
stratum ℎ in replicate 𝑟; 𝑓2ℎ𝑟(Fay) denotes the base weight adjustment factor
for the second PSU of stratum ℎ in replicate 𝑟; 1 − 𝜌 is the perturbation factor
(0 ≤ 𝜌 < 1); and 𝑏𝑟ℎ is defined as above. It should be noted that when 𝜌 = 0,
Equation 3.10 describes the standard BRR.

Once the PSU base weights have been adjusted by factors 𝑓1ℎ𝑟(Fay) and
𝑓2ℎ𝑟(Fay), the procedure for calculating the 𝑅 replicate estimates of the quantity
of interest 𝑄 runs as indicated above for the standard BRR. In the end, such
estimates – that we will denote by 𝜃𝑟(Fay) – are plugged into the formula for
the Fay variance estimator, defined as follows:

𝑉 (Θ̂)Fay =

𝑅∑
𝑟=1

(𝜃𝑟(Fay) − 𝜃∗)2

𝑅(1 − 𝜌)2 (3.11)

where all symbols are defined as above.
An approximate 100(1 − 𝛼)%Wald confidence interval for 𝜃 can then be

computed by replacing 𝑉 (Θ̂)BRR with 𝑉 (Θ̂)Fay in Equation 3.9:

𝜃S± 𝑡1−𝛼/2,𝑑𝑓
√︃
𝑉 (Θ̂)Fay (3.12)

where all symbols are defined as above.

3.3. Implementation of BRR

As mentioned above, balanced repeated replication was chosen as the variance
estimation method for ITA.LI. Specifically, we opted for Fay’s variant of BRR.2

This section illustrates how the method was implemented in ITA.LI.

2 Fay’s variant of the BRR variance estimation method is used in many large-scale surveys,
such as the American Community Survey (U.S. Census Bureau), the Current Population
Survey’s Annual Social and Economic Supplement (U.S. Census Bureau and Bureau of Labor
Statistics), the Current Population Survey’s Tobacco Use Supplement (U.S. Census Bureau and
National Cancer Institute), theMedical Expenditure Panel Survey (U.S. Agency forHealthcare
Research and Quality), theNational Agricultural Workers Survey (U.S. Department of Labor),
the Programme for International Student Assessment (OECD), the Survey of Income and
Program Participation (U.S. Census Bureau), and the Teaching and Learning International
Survey (OECD).
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First, it was necessary to rearrange PSUs. As described in Chapter 1, the
ITA.LI sample consists of 280 PSUs drawn from 150 strata. From 130 of these
strata, exactly two PSUs per stratum were selected. The remaining 20 strata
contain a single self-representing PSU each. While the strata of the former
type fit BRR perfectly, the latter do not and, therefore, had to be rearranged
to mimic the two-PSU-per-stratum logic. The rearrangement consisted in
randomly partitioning the SSUs belonging to each self-representative PSU
into two equal-sized groups, which were then treated – for the purposes of
BRR – as the two (pseudo) PSUs of the corresponding stratum (Chen and
Parker 2016; Korn and Graubard 1999; Potter et al. 2003). As a result, all 150
strata ended up containing exactly two (actual or pseudo) PSUs each.

Given 𝐻 = 150, the balanced set of half-sample replicates was identified by
means of a Hadamard matrix of order 𝑅 = 152 – the latter being the smallest
multiple of 4 greater than or equal to 150.3 Since 𝑅 exceeds 𝐻 by two units,
the first two columns of the Hadamard matrix were dropped, so as to obtain
the desired 152 × 150matrix B of ones and minus ones.

Finally, the two variable elements of Equation 3.11 were defined as follows:
(a) the value of the perturbation factor was set to 0.5 (equivalently, 𝜌 = 0.5), as
suggested by Judkins (1990, see also Rao and Shao 1999); and (b) 𝜃∗ was defined
to be 𝜃S, that is, the full-sample estimate of 𝑄.

The above setup was used to generate 𝑅 = 152 sets of household-level
replicate weights 𝑤𝑟

𝐻 𝑗
(𝑟 = 1, . . . , 𝑅) and an equal number of sets of individual-

level replicate weights 𝑤𝑟
𝐼 𝑖
(𝑟 = 1, . . . , 𝑅). These weights (either household-level

or individual-level) will be used to calculate 𝑅 = 152 replicate estimates of
the quantity of interest 𝑄, which, in turn, will form the basis for estimating
the variance of the estimator of 𝑄 as per Equation 3.11.

3.4. Quality of Variance Estimates

As noted in the opening of this chapter, the variance of survey estimators
plays a major role in survey data analysis, since – assuming no or negligible
bias – it conveys the precision of the sample estimates of the quantities of
interest and, therefore, the degree of inferential uncertainty surrounding them.
In any sample survey, then, it is important to obtain variance estimates that
are as accurate as possible, so as to properly gauge the ability of the sample
estimates of the quantities of interest to provide a reliable – i.e., close to reality
– description of the phenomenon under study in the target population.

3 The Hadamard matrix was taken from http://neilsloane.com/hadamard/had.152.pal.

txt.

http://neilsloane.com/hadamard/had.152.pal.txt
http://neilsloane.com/hadamard/had.152.pal.txt
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This section provides a brief assessment of the quality of ITA.LI variance
estimates. In the first part of the procedure, a small set of simple quantities
of interest – means and proportions – was selected and, for each of them, an
estimate of the variance of the corresponding estimator was computed on the
ITA.LI weighted realized sample using the Fay’s variant of BRR (see Section
3.3). The variance estimates, which we denote by �̂�(Θ̂)Fay, were then converted
into the corresponding standard errors by taking their square root. Formally:

𝑠𝑒(Θ̂)Fay =
√︃
�̂�(Θ̂)Fay (3.13)

Finally, such standard error estimates were evaluated using three measures:
the estimation method effect, the design effect, and the coefficient of variation.
In the second part of the procedure, the same type of evaluation was applied
to somewhat more elaborate quantities of interest: the regression coefficients
of a linear model. In this case, however, the assessment was based on only two
measures: the estimation method effect and the design effect.

The three measures used in our evaluation tap different dimensions of the
quality of variance estimates. The first has to do with the quality of themethod
used to estimate variances. As explained in detail in the previous sections, the
Fay’s variant of BRR was chosen as the variance estimation method for ITA.LI.
According to the relevant literature, this method has the same asymptotic
properties as all other available variance estimation methods (Wolter 2007).
In finite samples, however, this uniformity may not hold and, therefore, it is
useful to subject Fay’s variance estimationmethod to a comparative evaluation.
To this aim, we confronted Fay’s method with Taylor series linearization, the
standard variance estimationmethod for complex sample survey data which is
generally regarded as fully efficient (Kim andWu 2013; Lohr 2022). Specifically,
we computed the estimation method effect, here defined as follows:

𝑒𝑠𝑡𝑒𝑓 𝑓 =
𝑠𝑒(Θ̂)Fay
𝑠𝑒(Θ̂)TSL

(3.14)

where 𝑠𝑒(Θ̂)Fay denotes the sample estimate of the standard error of the es-
timator of a given quantity of interest computed on the ITA.LI weighted
realized sample using the Fay’s variant of BRR; and 𝑠𝑒(Θ̂)TSL denotes the
sample estimate of the same standard error computed on the ITA.LI weighted
realized sample using Taylor series linearization. On average, 𝑒𝑠𝑡𝑒𝑓 𝑓 should
approach unity, attesting to the validity of Fay’s method (Rao and Shao 1999).

The second measure we used in our evaluation has to do with the effi-
ciency of the ITA.LI sample design. As explained in the previous chapters,
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ITA.LI adopted a complex multistage sample design, and its base weights
went through an elaborate process of adjustment and calibration resulting
in a highly variable set of final weights. Compared with a simpler sample
design, a complex design like this tends to be significantly less efficient – i.e.,
to yield larger variance estimates (Heeringa et al. 2017). To quantify this loss of
efficiency, we computed the design effect, here defined as follows (Kish 1995):

𝑑𝑒𝑓 𝑡 =
𝑠𝑒(Θ̂)Fay
𝑠𝑒(Θ̂)SRSWR

(3.15)

where 𝑠𝑒(Θ̂)Fay denotes again the sample estimate of the standard error of the
estimator of a given quantity of interest computed on the ITA.LI weighted
realized sample using the Fay’s variant of BRR; and 𝑠𝑒(Θ̂)SRSWR denotes the
estimate of the same standard error that would be obtained if the same data
had been collected using the most basic sample design possible: simple random
sampling with replacement (SRSWR). As such, deft expresses the effect of the
ITA.LI sample design, in combination with weight adjustment and calibration,
on the precision of the estimators of the quantities of interest. If 𝑑𝑒𝑓 𝑡 > 1,
then we can conclude that the ITA.LI sample design, combined with weight
adjustment and calibration, inflate the standard error of the estimator of
interest by 100(𝑑𝑒𝑓 𝑡 − 1)% compared to a hypothetical SRSWR sample design.

The third measure we used in our evaluation – limited to means and
proportions – has to do with the relative precision of the sample estimates of
the quantities of interest and corresponds to the coefficient of variation, here
defined as follows:

CV =
𝑠𝑒(Θ̂)Fay
𝜃S

× 100 (3.16)

where 𝑠𝑒(Θ̂)Fay is defined as above; and 𝜃S denotes the full-sample estimate
of the quantity of interest 𝑄. The coefficient of variation can be regarded
as an indicator of the reliability of a sample estimate 𝜃S (Shapiro 2008b;
Valliant et al. 2018). In general, the smaller the value of a CV, the higher is the
level of relative precision of the corresponding estimate and, therefore, the
closer is that estimate to the true population value of 𝑄. Currently, there is
no agreement on what the minimum acceptable level of estimates’ relative
precision should be. Based on the evaluation of a number of U.S. Census
Bureau publications, the U.S. Office of Financial Management (Gardner et al.
2015) recommends the following classification of estimates’ reliability: good
(CV ≤ 15%), fair (15% < CV ≤ 30%), and poor (CV > 30%). Statistics
Canada (2020), in turn, uses the following reliability categories: if CV ≤ 16.5%,
estimates are regarded as sufficiently reliable; if 16.5% < CV ≤ 33.3%, it is
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Table 3.1 Evaluation of the quality of ITA.LI variance estimates for means and pro-
portions: Number of valid cases used in the analysis, by quantity of interest and target
subpopulation. Table rows denote the quantities of interest considered in the analysis,
while table columns denote the subpopulations within which the quantities of interest
have been computed.

Sex Level of education

Male Female Low Medium High Total

Age
Mean 4,010 4,768 4,382 3,382 1,014 8,778

Life satisfaction
Mean 3,995 4,752 4,366 3,375 1,006 8,747

Weight
Mean 3,436 3,930 3,620 2,907 839 7,366

Height
Mean 3,731 4,342 4,003 3,142 928 8,073

Has children
% Yes 2,262 3,052 2,993 1,821 500 5,314
% No 1,685 1,642 1,304 1,521 502 3,327

Self-reported health
% Excellent 705 601 457 628 221 1,306
% Good 2,260 2,704 2,126 2,192 646 4,964
% Satisfactory 815 1,099 1,329 467 118 1,914
% Poor 159 271 351 64 15 430
% Bad 56 62 95 16 7 118

Home internet access
% Yes 2,770 3,087 2,223 2,743 891 5,857
% No, can’t afford 156 195 281 64 6 351
% No, other 1,084 1,486 1,878 575 117 2,570

recommended that estimates be considered with caution; if CV > 33.3%,
estimates are deemed unreliable. Finally, according to the U.S. Census Bureau
Statistical Quality Standards (U.S. Census Bureau 2022), in most cases CV
should not exceed 30%.

Table 3.1 lists the means and proportions used in the first part of the eval-
uation procedure. As can be seen, the means of four quantitative variables
(Age, Life satisfaction,Weight, andHeight) and the percent distributions of three
categorical variables (Has children, Self-reported health, and Home internet ac-
cess) were considered. These quantities were calculated both within the entire
target population and within subpopulations defined either by sex or by level
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Table 3.2 Evaluation of the quality of ITA.LI variance estimates for means and propor-
tions: Estimation method effect, by quantity of interest and target subpopulation. Table
rows denote the quantities of interest considered in the analysis, while table columns
denote the subpopulations within which the quantities of interest have been computed.
For the definition of estimation method effect, see Equation 3.14.

Sex Level of education

Male Female Low Medium High Total

Age
Mean 1.01 1.01 1.03 1.08 1.05 1.03

Life satisfaction
Mean 1.05 1.04 1.03 1.04 1.05 1.05

Weight
Mean 1.00 1.00 1.05 1.06 0.95 1.00

Height
Mean 0.98 1.04 1.00 1.02 1.05 1.04

Has children
% Yes 0.88 0.85 0.98 0.94 1.07 0.79
% No 0.88 0.85 0.98 0.94 1.07 0.79

Self-reported health
% Excellent 1.01 1.03 1.07 1.06 0.99 1.01
% Good 1.06 1.09 1.03 1.03 1.00 1.03
% Satisfactory 1.01 1.02 1.02 0.98 0.86 1.00
% Poor 1.01 0.96 0.99 1.11 1.03 1.00
% Bad 0.97 0.93 0.93 0.96 1.01 0.96

Home internet access
% Yes 1.00 1.03 1.00 1.03 0.93 1.02
% No, can’t afford 1.00 1.02 1.00 1.33 1.07 1.03
% No, other 0.99 1.01 0.99 0.98 1.02 1.01

of education. The table reports the number of valid cases for each combination
of quantity and subpopulation. The range of situations is very wide: it varies
from proportions calculated on fewer than 10 cases, to means obtained from
thousands of observations, allowing us a comprehensive evaluation of the
ITA.LI variance estimates.

The estimation method effects reported in Table 3.2 confirm our expecta-
tions: Fay’s variant of BRR and Taylor series linearization tend to yield very
similar variance estimates. Indeed, there is little variation in the distribution
of the estimation method effects considered in the analysis, most of which
have values between 0.9 and 1.1, and whose geometric mean is exactly 1.
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Table 3.3 Evaluation of the quality of ITA.LI variance estimates for means and pro-
portions: Design effect, by quantity of interest and target subpopulation. Table rows
denote the quantities of interest considered in the analysis, while table columns denote
the subpopulations within which the quantities of interest have been computed. For the
definition of design effect, see Equation 3.15.

Sex Level of education

Male Female Low Medium High Total

Age
Mean 0.31 0.28 0.77 1.09 1.35 0.31

Life satisfaction
Mean 1.98 1.73 1.96 1.73 1.67 2.37

Weight
Mean 1.57 1.40 1.43 1.14 1.04 1.30

Height
Mean 1.32 1.42 1.05 1.07 1.06 1.17

Has children
% Yes 1.06 0.95 1.41 1.10 1.58 1.11
% No 1.06 0.95 1.41 1.10 1.58 1.11

Self-reported health
% Excellent 1.47 1.41 1.66 1.56 1.55 1.74
% Good 1.49 1.41 1.47 1.49 1.59 1.65
% Satisfactory 1.25 1.16 1.40 1.31 1.11 1.28
% Poor 1.65 1.08 1.55 1.27 1.42 1.50
% Bad 1.88 1.09 1.67 1.19 1.23 1.66

Home internet access
% Yes 1.41 1.24 1.50 1.61 1.39 1.63
% No, can’t afford 1.64 1.40 1.77 1.73 2.13 1.84
% No, other 1.48 1.27 1.53 1.57 1.50 1.71

Table 3.3 shows the value taken by the design effect on each combination of
quantity of interest and subpopulation. Just as we would expect (Heeringa et al.
2017), the efficiency of the ITA.LI sample design tends to be better than that of
the benchmark sample design for those combinations involving only variables
used for weight calibration (Age, Sex, and Level of education). In most cases,
however, the design effect is greater than 1, thus confirming that clustering and
(unequal) weighting push the variance estimates upward. The geometric mean
of all design effects is 1.32, suggesting that, on average, the ITA.LI sample
design inflates the standard errors of the corresponding estimators by slightly
more than 30% compared to a hypothetical SRSWR sample design.
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Table 3.4 Evaluation of the quality of ITA.LI variance estimates for means and propor-
tions: Coefficient of variation, by quantity of interest and target subpopulation. Table
rows denote the quantities of interest considered in the analysis, while table columns
denote the subpopulations within which the quantities of interest have been computed.
For the definition of coefficient of variation, see Equation 3.16.

Sex Level of education

Male Female Low Medium High Total

Age
Mean 0.18 0.16 0.40 0.71 1.24 0.12

Life satisfaction
Mean 0.67 0.56 0.74 0.56 0.79 0.55

Weight
Mean 0.41 0.40 0.45 0.44 0.59 0.29

Height
Mean 0.09 0.08 0.09 0.10 0.15 0.07

Has children
% Yes 1.44 1.04 1.43 1.86 4.31 0.96
% No 1.86 1.96 3.19 2.20 4.33 1.50

Self-reported health
% Excellent 4.92 5.34 7.42 5.84 7.68 4.38
% Good 2.10 1.89 2.39 2.05 3.29 1.61
% Satisfactory 3.84 3.10 3.17 6.05 8.42 2.58
% Poor 11.07 6.17 7.19 16.26 32.55 6.51
% Bad 16.59 13.95 13.05 28.68 41.52 12.06

Home internet access
% Yes 1.55 1.44 2.40 1.47 1.54 1.30
% No, can’t afford 10.39 9.43 8.95 20.77 52.86 8.49
% No, other 3.63 2.67 2.52 6.26 10.51 2.73

Table 3.4 reports the coefficient of variation for each combination of quan-
tity of interest and subpopulation. These values are definitely reassuring, as
they testify that, in almost all cases considered here, the relative precision
of sample estimates is fully satisfactory. Specifically, out of 84 estimates con-
sidered, 77 have a coefficient of variation less than 15%, four assume a value
between 15% and 30%, and only three exhibit a coefficient of variation exceed-
ing the critical threshold of 30%. It should be noted that the three estimates
found to be unreliable refer to proportions calculated on a very low number of
cases, equal to or less than 15. Our analysis, therefore, provides good grounds
for concluding that, within ITA.LI, Fay’s method of variance estimation is able
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Table 3.5 Evaluation of the quality of ITA.LI variance estimates for the regression
coefficients of a linear model: Estimation method effects (esteff ) and design effects (deft).
The model regresses variable Life satisfaction on one quantitative variable (Age) and five
categorical variables (Sex, Level of education, Has children, Self-reported health, and Home
internet access). Number of valid cases used in the analysis: 𝑛 = 8,575. For the definition of
estimation method effect and design effect, see respectively Equation 3.14 and Equation
3.15.

esteff deft

Age 0.98 1.34

Sex
Male – a – a

Female 0.99 1.06

Level of education
Low – a – a

Medium 1.08 1.27
High 1.07 1.52

Has children
Yes – a – a

No 0.98 1.52

Self-reported health
Excellent – a – a

Good 0.96 1.42
Satisfactory 1.00 1.39
Poor 1.03 1.34
Bad 0.99 1.82

Home internet access
Yes – a – a

No, can’t afford 1.03 1.74
No, other 1.03 1.52

Constant 1.01 1.53

a Reference category.

to generate sufficiently small variance estimates even when the number of
cases is as low as 𝑛 = 20.

Finally, Table 3.5 displays the estimation method effects and the design
effects associated with the regression coefficients of a linear model. These
values fully confirm our previous observations: on one hand, Fay’s variance
estimation method and Taylor series linearization tend to yield very similar
variance estimates (geometric mean of estimation method effects = 1.01); on
the other hand, the ITA.LI sample design is significantly less efficient than a
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comparable SRSWR sample design (geometric mean of design effects = 1.44).
In summary, our assessment of the quality of ITA.LI variance estimates

highlighted two main points. First, Fay’s method of variance estimation yields
variance estimates quite similar to those produced by Taylor series lineariza-
tion, i.e., the standard variance estimation method for complex sample survey
data, generally regarded as fully efficient. Second, although the ITA.LI sample
design, due to clustering and (unequal) weighting, is significantly less efficient
than an equivalent SRSWR sample design, its survey estimates still tend to be
sufficiently reliable – i.e., close to the corresponding population values – even
when based on a relatively small number of cases.
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the analysis of ita .l i data: a brief guide
for stata users

4.1. Introduction

To generate accurate estimates of the quantities of interest and proper mea-
sures of the uncertainty surrounding them, the analysis of complex survey
data must be carried out so as to give due consideration to all relevant features
of the sample design, most notably stratification, clustering and weighting.
Failure to do so may lead to substantially biased estimation and inference,
thus making survey results unreliable (Lohr 2022). Specifically, a “failure to
account for sampling weights in estimation can substantially bias population
estimates of key descriptive parameters, and a failure to account for complex
sampling features when estimating the variances of estimates can lead to in-
correct statements regarding sampling variability” (West et al. 2016). It is very
important, then, that complex survey data users receive all the instruction
they need to perform the analyses of interest correctly.

The purpose of this chapter is to provide guidance for proper design-
based analysis of ITA.LI data using the Stata statistical software (StataCorp
2021c), adopted by the ITA.LI research team as the package of choice for
data management and analysis.1 The next section illustrates the structure
and contents of the public-use version of the ITA.LI database, as well as the
procedure for setting it up for analysis. The following five sections present
– for illustrative purposes only – several example analyses of ITA.LI data:
univariate analysis, bivariate analysis, multiple regression analysis, treatment
effect estimation, and event history analysis.

1 For a recent comparative review of Stata’s capabilities for survey data analysis, see West
et al. (2018).
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Table 4.1 Stata data files comprising the public-use version of the ITA.LI database:
Structure.

File name Record type No. of records Subsample No. of units

household_grid.dta Individuals 11,389 All members of responding
eligible households

11,389

personal_data.dta Individuals 8,778 All self-respondents 8,778

residential_mobility.dta Episodes 22,779 All self-respondents 8,778

education.dta Episodes 23,959 Self-respondents who ever
enrolled in school

8,731

job_history.dta Episodes 23,764 All self-respondents 8,778

partnership_history.dta Episodes 6,523 Self-respondents who ever
married or cohabited

6,149

caring.dta Episodes 1,118 Self-respondents who ever
cared for a relative

896

financial_resources.dta Households 4,789a All responding eligible
households

4,789a

proxy.dta Individuals 189 All proxy respondents 189

brr-weights-hh.dta Households 4,900 All responding eligible
households

4,900

brr-weights-ind.dta Individuals 10,250 Self-respondent,
proxy-respondent and
ineligible members of
responding eligible
households

10,250

a One hundred eleven responding eligible households were excluded for providing insufficient data.

The discussion in this chapter assumes that the reader has a good working
knowledge of statistics, at the level of Agresti (2018) or Knoke et al. (2002), and
at least a basic familiarity with Stata, as provided for example by Kohler and
Kreuter (2012) or Mehmetoglu and Jakobsen (2022).

4.2. Setting Up Data for Analysis

The public-use version of the ITA.LI database consists of 11 Stata data files,
briefly described in Tables 4.1 and 4.2.2 The files are of two types – rectangular
and hierarchical – and are linked together by two common ID variables (keys):
W19HID (Household ID) and W19CID (Individual ID).

To set up the data for analysis, the following four-step procedure is recom-
mended. First, the variables of interest should be extracted from the existing

2 For details on the data collected by ITA.LI, see Lucchini et al. (2023).
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Table 4.2 Stata data files comprising the public-use version of the ITA.LI database:
Contents.

File name Contents

household_grid.dta Household composition, socio-demographic characteristics of household
members

personal_data.dta Pre-school education, military/civil service, family background, reproductive
history, quality of life, Internet access and use, personality traits, health status,
political preferences

residential_mobility.dta Residential history

education.dta Education history

job_history.dta Labor force participation history

partnership_history.dta Marriage and cohabitation history

caring.dta Experience of caring for relatives

financial_resources.dta Household financial status, household material resources, subsidies

proxy.dta Proxy-respondent questionnaire

brr-weights-hh.dta Household-level full-sample and replicate weights

brr-weights-ind.dta Individual-level full-sample and replicate weights

data files and stored in one or more temporary data files. Note that this se-
lection should always include the appropriate key variable: W19HID, if the
analysis is at the household level; or W19CID, if the analysis is at the individual
level. Second, the newly created data files should be merged with the file
containing the appropriate weights: brr-weights-hh.dta, if the analysis is at
the household level; or brr-weights-ind.dta, if the analysis is at the individ-
ual level. Third, the Stata command svyset should be used to specify all the
information required for design-based estimation and inference. Finally, the
resulting data file should be saved for subsequent use.

To see this procedure in action, let us create the individual-level data file
that we will use for most of the examples presented in the next sections.
First, we extract the variables of interest from two of the data files that com-
prise the public-use version of the ITA.LI database: household_grid.dta and
personal_data.dta. Here is the relevant Stata code, followed by the corre-
sponding output:

/* Select variables of interest from file "household_grid.dta" */
use "household_grid.dta", clear
keep W19CID W19AREA W19SEX W19BIRTH_Y W19INTSTR_Y W19OCC W19EDU
save "tempfile1.dta", replace
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/* Select variables of interest from file "personal_data.dta" */
use "personal_data.dta", clear
keep W19CID W19PD101 W19PD501 W19PD800 W19PD810 W19PD811 W19PD812
save "tempfile2.dta", replace

. /* Select variables of interest from file "household_grid.dta" */

. use "household_grid.dta", clear

. keep W19CID W19AREA W19SEX W19BIRTH_Y W19INTSTR_Y W19OCC W19EDU

. save "tempfile1.dta", replace
(file tempfile1.dta not found)
file tempfile1.dta saved

.

. /* Select variables of interest from file "personal_data.dta" */

. use "personal_data.dta", clear

. keep W19CID W19PD101 W19PD501 W19PD800 W19PD810 W19PD811 W19PD812

. save "tempfile2.dta", replace
(file tempfile2.dta not found)
file tempfile2.dta saved

Second, using variable W19CID as the key, we merge the newly created data
files tempfile1.dta and tempfile2.dtawith the file containing the individual
weights:

/* Open individual weights file and select relevant variables */
use "brr-weights-ind.dta", clear
keep W19CID subsample fiw brr_iw_*

/* Merge information from temporary files */
merge 1:1 W19CID using "tempfile1.dta"
drop _merge
erase "tempfile1.dta"
merge 1:1 W19CID using "tempfile2.dta"
drop _merge
erase "tempfile2.dta"

. /* Open individual weights file and select relevant variables */

. use "brr-weights-ind.dta", clear

. keep W19CID subsample fiw brr_iw_*

.

. /* Merge information from temporary files */

. merge 1:1 W19CID using "tempfile1.dta"

Result Number of obs

Not matched 1,139
from master 0 (_merge==1)
from using 1,139 (_merge==2)

Matched 10,250 (_merge==3)
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. drop _merge

. erase "tempfile1.dta"

. merge 1:1 W19CID using "tempfile2.dta"

Result Number of obs

Not matched 2,611
from master 2,611 (_merge==1)
from using 0 (_merge==2)

Matched 8,778 (_merge==3)

. drop _merge

. erase "tempfile2.dta"

The resulting dataset contains 11,389 records, one for each member of the
4,900 eligible households included in the ITA.LI realized sample (see Figure
1.5). Here is their distribution by status:

/* Display raw and weighted counts of individuals */
generate raw = 1
label variable raw "Raw counts"

generate weighted = fiw
label variable weighted "Weighted counts"

table subsample, statistic(sum raw) statistic(sum weighted) missing

. /* Display raw and weighted counts of individuals */

. generate raw = 1

. label variable raw "Raw counts"

.

. generate weighted = fiw
(1,139 missing values generated)

. label variable weighted "Weighted counts"

.

. table subsample, statistic(sum raw) statistic(sum weighted) missing

Raw counts Weighted counts

Subsample
Ineligibles 1,283 8,120,488
Proxy respondents 189 946,337
Self-respondents 8,778 50,192,596
. 1,139 0
Total 11,389 59,259,421

The 1,139missing cases are those without a weight, amounting to the 1,113
non-responding eligible household members, plus the 26 infants born in 2020
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who were excluded from weight construction (see Section 2.6). The remaining
10,250 cases represent the 59,259,421 individuals reported to be residing in
private households in Italy as of December 31, 2019 (see Table 2.2). Of these,
1,283 – corresponding to a population of 8,120,488 individuals – are ineligible
because they were under age 16 at the time of interview. We are left with the
8,967 responding eligible individuals, representing the 51,138,933members
of the target population. Since proxy respondents were administered a very
short questionnaire, these individuals provide very little information and,
therefore, will be excluded from the working sample. The analyses, then, will
focus on the 8,778 self-respondent individuals, representing around 98% of
the target population:3

/* Select self-respondents */
keep if (subsample == 3)

. /* Select self-respondents */

. keep if (subsample == 3)
(2,611 observations deleted)

Now, we can svyset the dataset in memory:

/* svyset data in memory */
svyset [pw = fiw], vce(brr) brrweight(brr_iw_*) fay(0.5) dof(150) mse

. /* svyset data in memory */

. svyset [pw = fiw], vce(brr) brrweight(brr_iw_*) fay(0.5) dof(150) mse

Sampling weights: fiw
VCE: brr
MSE: on

BRR weights: brr_iw_1 .. brr_iw_152
Fay´s adjustment: .5

Design df: 150
Single unit: missing

Strata 1: <one>
Sampling unit 1: <observations>

FPC 1: <zero>

The instruction [pw = fiw] specifies the name of the variable containing
the full-sample weights, used by Stata to compute the point estimates of the
quantities of interest. Option vce(brr) sets the variance estimation method to
balanced repeated replication (BRR). Option brrweight(brr_iw_*) specifies

3 Overall, the removal of proxy respondents does not substantially affect the relative compo-
sition of the ITA.LI realized sample, since on the one hand the removed individuals make
up a very small share of the total (less than 2%), and on the other hand proxy respondents
are a near-random subset of the total – they are significantly overrepresented only among
individuals over 80 and those unable to work.
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the names of the variables containing the 𝑅 = 152 sets of replicate weights.
Option fay(0.5) requests that Fay’s variant of BRR be adopted, with 𝜌 = 0.5.
Option dof(150) sets to 𝐻 = 150 the design degrees of freedom for confidence
intervals and null hypothesis significance testing, where 𝐻 denotes the number
of sampling strata. Finally, option mse requests that the reference value of the
Fay variance estimator be set to the full-sample estimate of the quantity of
interest. For complete details on BRR and its implementation in ITA.LI, see
Section 3.3.

As the final step, we save the dataset in memory for subsequent use:

/* Save data file */
drop subsample raw weighted
save "itali.dta", replace

. /* Save data file */

. drop subsample raw weighted

. save "itali.dta", replace
file itali.dta saved

Here are the contents of the newly created data file:

/* Open and describe data file contents */
use "itali.dta", clear
describe

. /* Open and describe data file contents */

. use "itali.dta", clear

. describe

Contains data from itali.dta
Observations: 8,778

Variables: 166 10 Jan 2023 20:01

Variable Storage Display Value
name type format label Variable label

W19CID str7 %9s Individual ID
fiw double %10.0g Full-sample individual weight
brr_iw_1 double %10.0g Individual replicate weight #1
brr_iw_2 double %10.0g Individual replicate weight #2
brr_iw_3 double %10.0g Individual replicate weight #3
brr_iw_4 double %10.0g Individual replicate weight #4
brr_iw_5 double %10.0g Individual replicate weight #5
brr_iw_6 double %10.0g Individual replicate weight #6
brr_iw_7 double %10.0g Individual replicate weight #7
brr_iw_8 double %10.0g Individual replicate weight #8
brr_iw_9 double %10.0g Individual replicate weight #9
brr_iw_10 double %10.0g Individual replicate weight #10
brr_iw_11 double %10.0g Individual replicate weight #11
brr_iw_12 double %10.0g Individual replicate weight #12
brr_iw_13 double %10.0g Individual replicate weight #13
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brr_iw_14 double %10.0g Individual replicate weight #14
brr_iw_15 double %10.0g Individual replicate weight #15
brr_iw_16 double %10.0g Individual replicate weight #16
brr_iw_17 double %10.0g Individual replicate weight #17
brr_iw_18 double %10.0g Individual replicate weight #18
brr_iw_19 double %10.0g Individual replicate weight #19
brr_iw_20 double %10.0g Individual replicate weight #20
brr_iw_21 double %10.0g Individual replicate weight #21
brr_iw_22 double %10.0g Individual replicate weight #22
brr_iw_23 double %10.0g Individual replicate weight #23
brr_iw_24 double %10.0g Individual replicate weight #24
brr_iw_25 double %10.0g Individual replicate weight #25
brr_iw_26 double %10.0g Individual replicate weight #26
brr_iw_27 double %10.0g Individual replicate weight #27
brr_iw_28 double %10.0g Individual replicate weight #28
brr_iw_29 double %10.0g Individual replicate weight #29
brr_iw_30 double %10.0g Individual replicate weight #30
brr_iw_31 double %10.0g Individual replicate weight #31
brr_iw_32 double %10.0g Individual replicate weight #32
brr_iw_33 double %10.0g Individual replicate weight #33
brr_iw_34 double %10.0g Individual replicate weight #34
brr_iw_35 double %10.0g Individual replicate weight #35
brr_iw_36 double %10.0g Individual replicate weight #36
brr_iw_37 double %10.0g Individual replicate weight #37
brr_iw_38 double %10.0g Individual replicate weight #38
brr_iw_39 double %10.0g Individual replicate weight #39
brr_iw_40 double %10.0g Individual replicate weight #40
brr_iw_41 double %10.0g Individual replicate weight #41
brr_iw_42 double %10.0g Individual replicate weight #42
brr_iw_43 double %10.0g Individual replicate weight #43
brr_iw_44 double %10.0g Individual replicate weight #44
brr_iw_45 double %10.0g Individual replicate weight #45
brr_iw_46 double %10.0g Individual replicate weight #46
brr_iw_47 double %10.0g Individual replicate weight #47
brr_iw_48 double %10.0g Individual replicate weight #48
brr_iw_49 double %10.0g Individual replicate weight #49
brr_iw_50 double %10.0g Individual replicate weight #50
brr_iw_51 double %10.0g Individual replicate weight #51
brr_iw_52 double %10.0g Individual replicate weight #52
brr_iw_53 double %10.0g Individual replicate weight #53
brr_iw_54 double %10.0g Individual replicate weight #54
brr_iw_55 double %10.0g Individual replicate weight #55
brr_iw_56 double %10.0g Individual replicate weight #56
brr_iw_57 double %10.0g Individual replicate weight #57
brr_iw_58 double %10.0g Individual replicate weight #58
brr_iw_59 double %10.0g Individual replicate weight #59
brr_iw_60 double %10.0g Individual replicate weight #60
brr_iw_61 double %10.0g Individual replicate weight #61
brr_iw_62 double %10.0g Individual replicate weight #62
brr_iw_63 double %10.0g Individual replicate weight #63
brr_iw_64 double %10.0g Individual replicate weight #64
brr_iw_65 double %10.0g Individual replicate weight #65
brr_iw_66 double %10.0g Individual replicate weight #66
brr_iw_67 double %10.0g Individual replicate weight #67
brr_iw_68 double %10.0g Individual replicate weight #68
brr_iw_69 double %10.0g Individual replicate weight #69
brr_iw_70 double %10.0g Individual replicate weight #70
brr_iw_71 double %10.0g Individual replicate weight #71
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brr_iw_72 double %10.0g Individual replicate weight #72
brr_iw_73 double %10.0g Individual replicate weight #73
brr_iw_74 double %10.0g Individual replicate weight #74
brr_iw_75 double %10.0g Individual replicate weight #75
brr_iw_76 double %10.0g Individual replicate weight #76
brr_iw_77 double %10.0g Individual replicate weight #77
brr_iw_78 double %10.0g Individual replicate weight #78
brr_iw_79 double %10.0g Individual replicate weight #79
brr_iw_80 double %10.0g Individual replicate weight #80
brr_iw_81 double %10.0g Individual replicate weight #81
brr_iw_82 double %10.0g Individual replicate weight #82
brr_iw_83 double %10.0g Individual replicate weight #83
brr_iw_84 double %10.0g Individual replicate weight #84
brr_iw_85 double %10.0g Individual replicate weight #85
brr_iw_86 double %10.0g Individual replicate weight #86
brr_iw_87 double %10.0g Individual replicate weight #87
brr_iw_88 double %10.0g Individual replicate weight #88
brr_iw_89 double %10.0g Individual replicate weight #89
brr_iw_90 double %10.0g Individual replicate weight #90
brr_iw_91 double %10.0g Individual replicate weight #91
brr_iw_92 double %10.0g Individual replicate weight #92
brr_iw_93 double %10.0g Individual replicate weight #93
brr_iw_94 double %10.0g Individual replicate weight #94
brr_iw_95 double %10.0g Individual replicate weight #95
brr_iw_96 double %10.0g Individual replicate weight #96
brr_iw_97 double %10.0g Individual replicate weight #97
brr_iw_98 double %10.0g Individual replicate weight #98
brr_iw_99 double %10.0g Individual replicate weight #99
brr_iw_100 double %10.0g Individual replicate weight #100
brr_iw_101 double %10.0g Individual replicate weight #101
brr_iw_102 double %10.0g Individual replicate weight #102
brr_iw_103 double %10.0g Individual replicate weight #103
brr_iw_104 double %10.0g Individual replicate weight #104
brr_iw_105 double %10.0g Individual replicate weight #105
brr_iw_106 double %10.0g Individual replicate weight #106
brr_iw_107 double %10.0g Individual replicate weight #107
brr_iw_108 double %10.0g Individual replicate weight #108
brr_iw_109 double %10.0g Individual replicate weight #109
brr_iw_110 double %10.0g Individual replicate weight #110
brr_iw_111 double %10.0g Individual replicate weight #111
brr_iw_112 double %10.0g Individual replicate weight #112
brr_iw_113 double %10.0g Individual replicate weight #113
brr_iw_114 double %10.0g Individual replicate weight #114
brr_iw_115 double %10.0g Individual replicate weight #115
brr_iw_116 double %10.0g Individual replicate weight #116
brr_iw_117 double %10.0g Individual replicate weight #117
brr_iw_118 double %10.0g Individual replicate weight #118
brr_iw_119 double %10.0g Individual replicate weight #119
brr_iw_120 double %10.0g Individual replicate weight #120
brr_iw_121 double %10.0g Individual replicate weight #121
brr_iw_122 double %10.0g Individual replicate weight #122
brr_iw_123 double %10.0g Individual replicate weight #123
brr_iw_124 double %10.0g Individual replicate weight #124
brr_iw_125 double %10.0g Individual replicate weight #125
brr_iw_126 double %10.0g Individual replicate weight #126
brr_iw_127 double %10.0g Individual replicate weight #127
brr_iw_128 double %10.0g Individual replicate weight #128
brr_iw_129 double %10.0g Individual replicate weight #129
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brr_iw_130 double %10.0g Individual replicate weight #130
brr_iw_131 double %10.0g Individual replicate weight #131
brr_iw_132 double %10.0g Individual replicate weight #132
brr_iw_133 double %10.0g Individual replicate weight #133
brr_iw_134 double %10.0g Individual replicate weight #134
brr_iw_135 double %10.0g Individual replicate weight #135
brr_iw_136 double %10.0g Individual replicate weight #136
brr_iw_137 double %10.0g Individual replicate weight #137
brr_iw_138 double %10.0g Individual replicate weight #138
brr_iw_139 double %10.0g Individual replicate weight #139
brr_iw_140 double %10.0g Individual replicate weight #140
brr_iw_141 double %10.0g Individual replicate weight #141
brr_iw_142 double %10.0g Individual replicate weight #142
brr_iw_143 double %10.0g Individual replicate weight #143
brr_iw_144 double %10.0g Individual replicate weight #144
brr_iw_145 double %10.0g Individual replicate weight #145
brr_iw_146 double %10.0g Individual replicate weight #146
brr_iw_147 double %10.0g Individual replicate weight #147
brr_iw_148 double %10.0g Individual replicate weight #148
brr_iw_149 double %10.0g Individual replicate weight #149
brr_iw_150 double %10.0g Individual replicate weight #150
brr_iw_151 double %10.0g Individual replicate weight #151
brr_iw_152 double %10.0g Individual replicate weight #152
W19AREA byte %13.0g W19AREA_en

Area
W19SEX byte %27.0g W19SEX_en

Sex
W19BIRTH_Y int %9.0g Date of birth: year
W19OCC byte %32.0g W19OCC_en

Current job situation
W19EDU byte %347.0g W19EDU_en

Highest educational degree obtained
W19INTSTR_Y int %9.0g W19INTSTR_Y_en

Interview start date: year
W19PD101 byte %59.0g W19PD101_en

[Education] Pre-primary
W19PD501 byte %29.0g W19PD501_en

[Quality of life] Satisfaction: general
W19PD800 byte %29.0g W19PD800_en

[Health] Self-reported health (SF12)
W19PD810 int %29.0g W19PD810_en

[Health] Weight
W19PD811 int %29.0g W19PD811_en

[Health] Height
W19PD812 byte %29.0g W19PD812_en

[Health] Insomnia

Sorted by: W19CID

As can be seen, the data file includes the individual ID (W19CID), one variable
containing the full-sample individual weights (fiw), 152 variables containing
as many sets of replicate weights (brr_iw_1 to brr_iw_152), and 12 variables
representing various properties of the respondents. Weight variables – as
specified by svyset – are required for design-based analysis of any kind, so
they should always be included in any working data file. All other variables,
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on the other hand, will be added according to the objectives of the analysis.
Before moving on to the next sections, let us create some new variables

from the existing ones, and save the resulting data file:

/* Open data file */
use "itali.dta", clear

/* Create variable "region" */
generate region = W19AREA
label variable region "Region of residence"
label define l_region 1 "North-West", modify
label define l_region 2 "North-East", modify
label define l_region 3 "Center", modify
label define l_region 4 "South", modify
label define l_region 5 "Islands", modify
label values region l_region

/* Create variable "sex" */
generate sex = W19SEX - 1
label variable sex "Sex"
label define l_sex 0 "Male", modify
label define l_sex 1 "Female", modify
label values sex l_sex

/* Create variable "age" */
generate age = W19INTSTR_Y - W19BIRTH_Y
label variable age "Age"

/* Create variable "agegroup" */
generate agegroup = irecode(age,24,34,44,54,64,74) + 1
label variable agegroup "Age group"
label define l_agegroup 1 "16-24 years", modify
label define l_agegroup 2 "25-34 years", modify
label define l_agegroup 3 "35-44 years", modify
label define l_agegroup 4 "45-54 years", modify
label define l_agegroup 5 "55-64 years", modify
label define l_agegroup 6 "65-74 years", modify
label define l_agegroup 7 "75 years and over", modify
label values agegroup l_agegroup

/* Create variable "educ" */
generate educ = W19EDU
recode educ (1/3 = 1) (4 = 2) (5/6 = 3) (7/11 = 4)
label variable educ "Educational degree"
label define l_educ 1 "None/Elementary school", modify
label define l_educ 2 "Middle school", modify
label define l_educ 3 "High school", modify
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label define l_educ 4 "Tertiary degree", modify
label values educ l_educ

/* Create variable "empstat" */
generate empstat = W19OCC
recode empstat (1 = 1) (2/3 = 2) (5 = 3) (7 = 4) (4 6 = 5)
label variable empstat "Employment status"
label define l_empstat 1 "Employed", modify
label define l_empstat 2 "Job seeker", modify
label define l_empstat 3 "Student", modify
label define l_empstat 4 "Retired", modify
label define l_empstat 5 "Homemaker/Other", modify
label values empstat l_empstat

/* Create variable "preschool" */
generate preschool = (W19PD101 == 1) if !missing(W19PD101)
label variable preschool "Attended pre-primary school 1+ years"
label define l_preschool 0 "No", modify
label define l_preschool 1 "Yes", modify
label values preschool l_preschool

/* Create variable "lifesat" */
generate lifesat = W19PD501 if !missing(W19PD501)
label variable lifesat "Overall life satistaction"

/* Create variable "srh" */
generate srh = 6 - W19PD800
label variable srh "Self-reported health"
label define l_srh 1 "Bad", modify
label define l_srh 2 "Poor", modify
label define l_srh 3 "Satisfactory", modify
label define l_srh 4 "Good", modify
label define l_srh 5 "Excellent", modify
label values srh l_srh

/* Create variable "insomnia" */
generate insomnia = W19PD812>1 if !missing(W19PD812)
label variable insomnia "Suffered from insomnia in past 4 weeks"
label define l_insomnia 0 "No", modify
label define l_insomnia 1 "Yes", modify
label values insomnia l_insomnia

/* Create variable "weight" */
generate weight = W19PD810 if !missing(W19PD810)
label variable weight "Self-reported weight (kilos)"
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/* Create variable "height" */
generate height = W19PD811 if !missing(W19PD811)
label variable height "Self-reported height (cm)"

/* Create variable "bmi" */
replace weight = . if (weight < 40)
replace height = . if (height < 140)
generate bmi = weight / (height / 100)^2
replace bmi = . if (bmi > 50)
label variable bmi "Body mass index"

/* Select relevant variables */
keep W19CID fiw brr_iw_* region-bmi

/* Save data file */
compress
save "itali.dta", replace

. /* Open data file */

. use "itali.dta", clear

.

. /* Create variable "region" */

. generate region = W19AREA

. label variable region "Region of residence"

. label define l_region 1 "North-West", modify

. label define l_region 2 "North-East", modify

. label define l_region 3 "Center", modify

. label define l_region 4 "South", modify

. label define l_region 5 "Islands", modify

. label values region l_region

.

. /* Create variable "sex" */

. generate sex = W19SEX - 1

. label variable sex "Sex"

. label define l_sex 0 "Male", modify

. label define l_sex 1 "Female", modify

. label values sex l_sex

.

. /* Create variable "age" */

. generate age = W19INTSTR_Y - W19BIRTH_Y

. label variable age "Age"

.

. /* Create variable "agegroup" */

. generate agegroup = irecode(age,24,34,44,54,64,74) + 1

. label variable agegroup "Age group"

. label define l_agegroup 1 "16-24 years", modify
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. label define l_agegroup 2 "25-34 years", modify

. label define l_agegroup 3 "35-44 years", modify

. label define l_agegroup 4 "45-54 years", modify

. label define l_agegroup 5 "55-64 years", modify

. label define l_agegroup 6 "65-74 years", modify

. label define l_agegroup 7 "75 years and over", modify

. label values agegroup l_agegroup

.

. /* Create variable "educ" */

. generate educ = W19EDU

. recode educ (1/3 = 1) (4 = 2) (5/6 = 3) (7/11 = 4)
(8746 changes made to educ)

. label variable educ "Educational degree"

. label define l_educ 1 "None/Elementary school", modify

. label define l_educ 2 "Middle school", modify

. label define l_educ 3 "High school", modify

. label define l_educ 4 "Tertiary degree", modify

. label values educ l_educ

.

. /* Create variable "empstat" */

. generate empstat = W19OCC

. recode empstat (1 = 1) (2/3 = 2) (5 = 3) (7 = 4) (4 6 = 5)
(4514 changes made to empstat)

. label variable empstat "Employment status"

. label define l_empstat 1 "Employed", modify

. label define l_empstat 2 "Job seeker", modify

. label define l_empstat 3 "Student", modify

. label define l_empstat 4 "Retired", modify

. label define l_empstat 5 "Homemaker/Other", modify

. label values empstat l_empstat

.

. /* Create variable "preschool" */

. generate preschool = (W19PD101 == 1) if !missing(W19PD101)
(76 missing values generated)

. label variable preschool "Attended pre-primary school 1+ years"

. label define l_preschool 0 "No", modify

. label define l_preschool 1 "Yes", modify

. label values preschool l_preschool

.

. /* Create variable "lifesat" */

. generate lifesat = W19PD501 if !missing(W19PD501)
(31 missing values generated)

. label variable lifesat "Overall life satistaction"

.

. /* Create variable "srh" */
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. generate srh = 6 - W19PD800
(46 missing values generated)

. label variable srh "Self-reported health"

. label define l_srh 1 "Bad", modify

. label define l_srh 2 "Poor", modify

. label define l_srh 3 "Satisfactory", modify

. label define l_srh 4 "Good", modify

. label define l_srh 5 "Excellent", modify

. label values srh l_srh

.

. /* Create variable "insomnia" */

. generate insomnia = W19PD812>1 if !missing(W19PD812)
(103 missing values generated)

. label variable insomnia "Suffered from insomnia in past 4 weeks"

. label define l_insomnia 0 "No", modify

. label define l_insomnia 1 "Yes", modify

. label values insomnia l_insomnia

.

. /* Create variable "weight" */

. generate weight = W19PD810 if !missing(W19PD810)
(1,412 missing values generated)

. label variable weight "Self-reported weight (kilos)"

.

.

. /* Create variable "height" */

. generate height = W19PD811 if !missing(W19PD811)
(705 missing values generated)

. label variable height "Self-reported height (cm)"

.

. /* Create variable "bmi" */

. replace weight = . if (weight < 40)
(3 real changes made, 3 to missing)

. replace height = . if (height < 140)
(10 real changes made, 10 to missing)

. generate bmi = weight / (height / 100)^2
(1,458 missing values generated)

. replace bmi = . if (bmi > 50)
(9 real changes made, 9 to missing)

. label variable bmi "Body mass index"

.

. /* Select relevant variables */

. keep W19CID fiw brr_iw_* region-bmi

.

. /* Save data file */

. compress
variable region was float now byte
variable sex was float now byte
variable age was float now byte
variable agegroup was float now byte
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variable educ was float now byte
variable empstat was float now byte
variable preschool was float now byte
variable lifesat was float now byte
variable srh was float now byte
variable insomnia was float now byte
variable weight was float now int
variable height was float now int
variable W19CID was str7 now str6
(307,230 bytes saved)

. save "itali.dta", replace
file itali.dta saved

Now we are ready for data analysis, starting with the distribution of single
variables. For the purpose of our discussion, in the following we will distin-
guish between two types of variables: qualitative, whose values represent an
exhaustive and mutually exclusive set of ordered or unordered categories, and
quantitative, whose values represent numerical measurements or counts.

4.3. Univariate Analysis

The purpose of univariate analysis is to describe the distribution of variables
taken one at a time. Let us begin with srh, a qualitative variable representing
respondents’ self-reported health status. This information was collected using
a single question asking respondents to rate their overall health at the time
of interview on a five-point ordinal scale, ranging from “Excellent” to “Poor”.
Forty-six subjects did not answer, so that the number of valid cases for the
analysis is 8,732.

The standard Stata command for calculating and reporting the percent
distribution of a variable is tabulate. By prefixing this command with svy,
all quantities of interest (point estimates, standard errors, and confidence
intervals) are calculated according to the rules of design-based estimation and
inference:

/* Open data file */
use "itali.dta", clear

/* Percent distribution of variable "srh" */
svy : tabulate srh, percent se ci format(%5.1f)

. /* Open data file */

. use "itali.dta", clear

.

. /* Percent distribution of variable "srh" */

. svy : tabulate srh, percent se ci format(%5.1f)
(running tabulate on estimation sample)
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Number of obs = 8,732
Population size = 49,983,951
Replications = 152
Design df = 150

Self-repo
rted
health percentage se lb ub

Bad 2.1 0.3 1.7 2.7
Poor 5.7 0.4 5.0 6.5

Satisfac 21.9 0.6 20.8 23.1
Good 54.9 0.9 53.1 56.6

Excellen 15.4 0.7 14.1 16.7

Total 100.0

Key: percentage = Cell percentage
se = Brr standard error of cell percentage
lb = Lower 95% confidence bound for cell percentage
ub = Upper 95% confidence bound for cell percentage

It should be noted that the confidence intervals reported by tabulate are not
of the Wald type described in Chapter 3 (see Equation 3.12); rather, they are
calculated using a logit transform so that the endpoints always lie between
zero and one (StataCorp 2021b).

As an alternative to tabulate, we can use the command proportion:

/* Percent distribution of variable "srh" */
svy, dots(10) : proportion srh, percent cformat(%5.1f)

. /* Percent distribution of variable "srh" */

. svy, dots(10) : proportion srh, percent cformat(%5.1f)
(running proportion on estimation sample)

BRR replications (152)
1 2 3 4 5

...............

Survey: Percent estimation Number of obs = 8,732
Population size = 49,983,951
Replications = 152
Design df = 150

BRR * Logit
Percent std. err. [95% conf. interval]

srh
Bad 2.1 0.3 1.7 2.7
Poor 5.7 0.4 5.0 6.5

Satisfactory 21.9 0.6 20.8 23.1
Good 54.9 0.9 53.1 56.6

Excellent 15.4 0.7 14.1 16.7
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The use of proportion has two main benefits over tabulate. First, it en-
ables access to several postestimation statistics, such as the design effect (Equa-
tion 3.15), the coefficient of variation (Equation 3.16), and the misspecification
effect. The latter, in particular, measures the extent to which we would under-
estimate the standard error of the estimator of interest if we did not account
for stratification, clustering and weighting – in practice, if we omitted the
svy prefix. To obtain misspecification effects, after running the estimation
command we type the following:

/* Misspecification effects after -svy : proportion- */
estat effects, meft

. /* Misspecification effects after -svy : proportion- */

. estat effects, meft

BRR *
Proportion std. err. MEFT

srh
Bad .0211589 .0025518 2.06515
Poor .0573518 .0037348 1.61284

Satisfact~y .219319 .0056667 1.2799
Good .5485315 .0088138 1.66278

Excellent .1536388 .006731 1.76351

For illustration, consider the proportion of those who feel they are in bad
health. For this quantity, themisspecification effect is equal to 2.07. This means
that had we calculated the standard error of the proportion without consider-
ing the survey design features, its value would have been underestimated by
100(1 − (1/2.06515)) = 51.6%, with similar consequences for the width of
the corresponding confidence interval.

A second benefit of using proportion is that it allows different types of
confidence intervals to be calculated. The standard Wald interval described in
Chapter 3 assumes that the sampling distribution of the proportion of interest
is asymptotically normal (see discussion in Section 3.1). Normality, however,
is hardly achieved when the proportion is based on a small number of cases
and/or takes values close to zero or one (Dean and Pagano 2015; Korn and
Graubard 1999). To overcome this problem, proportion by default calculates
confidence intervals using the logit transform mentioned above. Alternatively,
the user can request that the intervals of interest be calculated using other
methods, including the Agresti-Coull, Clopper-Pearson, Jeffreys, and Wilson
methods (Dean and Pagano 2015; Franco et al. 2019). For example:
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/* Percent distribution of variable "srh" with Jeffreys CIs */
svy, dots(10) : proportion srh, percent cformat(%5.1f) citype(jeffreys)

. /* Percent distribution of variable "srh" with Jeffreys CIs */

. svy, dots(10) : proportion srh, percent cformat(%5.1f) citype(jeffreys)
(running proportion on estimation sample)

BRR replications (152)
1 2 3 4 5

...............

Survey: Percent estimation Number of obs = 8,732
Population size = 49,983,951
Replications = 152
Design df = 150

BRR * Jeffreys
Percent std. err. [95% conf. interval]

srh
Bad 2.1 0.3 1.7 2.7
Poor 5.7 0.4 5.0 6.5

Satisfactory 21.9 0.6 20.8 23.1
Good 54.9 0.9 53.1 56.6

Excellent 15.4 0.7 14.1 16.7

As can be seen, in this case there is no noticeable difference between the logit
interval and the Jeffreys interval.

Yet another tool for depicting the percent distribution of qualitative vari-
ables is the excellent user-written command dstat (Jann 2020). In addition to
doing all that proportion does, dstat – among other things – provides the
ability to graphically represent the distribution of interest. Here is an example:

/* Percent distribution of variable "srh" : Table + Graph */
dstat proportion srh, percent cformat(%5.1f) table ///

vce(svy, dots(10)) graph( p1(color("55 101 168")) ///
ciopts(color("234 151 65") lwidth(*5)) )

. /* Percent distribution of variable "srh" : Table + Graph */

. dstat proportion srh, percent cformat(%5.1f) table ///
> vce(svy, dots(10)) graph( p1(color("55 101 168")) ///
> ciopts(color("234 151 65") lwidth(*5)) )
(running dstat_svyr to obtain evaluation grid)
(running dstat_svyr on estimation sample)

BRR replications (152)
1 2 3 4 5

...............

Survey: Percent Number of obs = 8,732
Population size = 49,983,951
Replications = 152
Design df = 150
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BRR * logit transformed
srh Coefficient std. err. [95% conf. interval]

srh
Bad 2.1 0.3 1.7 2.7
Poor 5.7 0.4 5.0 6.5

Satisfactory 21.9 0.6 20.8 23.1
Good 54.9 0.9 53.1 56.6

Excellent 15.4 0.7 14.1 16.7

Bad

Poor

Satisfactory

Good

Excellent

0 20 40 60

Although it is mainly considered in the analysis of quantitative variables,
the degree of variability, or dispersion, of a distribution is also relevant to
qualitative variables. The user-written command dstat allows design-based
estimation and inference for several measures of qualitative variability, includ-
ing the Gini mutability index (natural and normalized) and Shannon entropy
(Budescu and Budescu 2012). Here is the Stata code to compute these measures
for variable srh, followed by the associated output:

/* Measures of variability for variable "srh" */
dstat (gimp gimpn entropy) srh, vce(svy, dots(10))

. /* Measures of variability for variable "srh" */

. dstat (gimp gimpn entropy) srh, vce(svy, dots(10))
(running dstat_svyr on estimation sample)

BRR replications (152)
1 2 3 4 5

...............

Survey: Summary statistics Number of obs = 8,732
Population size = 49,983,951
Replications = 152
Design df = 150
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BRR *
srh Coefficient std. err. [95% conf. interval]

gimp .6236705 .0068981 .6100405 .6373005
gimpn .7795882 .0086226 .7625507 .7966257

entropy 1.19547 .0127888 1.1702 1.220739

where gimp and gimpn denote, respectively, the natural and normalized forms
of the Gini mutability index, while entropy denotes Shannon entropy.

The Gini mutability index and Shannon entropy apply to the analysis of
all qualitative variables alike. When dealing specifically with ordinal variables
like srh, however, it may be preferable to use more specialized indices. The
user-written command ineqord (Jenkins 2020) allows many such indices
to be calculated. Although ineqord does not directly support design-based
inference, it can still be used for this purpose by taking advantage of the
flexibility of the svy prefix. If, for example, we are interested in estimating the
1− 𝑙2 index of Blair and Lacy (2000) and Jenkins’s inequality indices 𝐽𝑑 and 𝐽𝑢
(Jenkins 2021), we can run the following Stata code:

/* Indices of ordinal variation for variable "srh" */
svy brr Blair_Lacy=r(blairlacy) Jd=r(Jd) Ju=r(Ju), dots(10) : ///

ineqord srh if (srh < .)

. /* Indices of ordinal variation for variable "srh" */

. svy brr Blair_Lacy=r(blairlacy) Jd=r(Jd) Ju=r(Ju), dots(10) : ///
> ineqord srh if (srh < .)
(running ineqord on estimation sample)

BRR replications (152)
1 2 3 4 5

...............

BRR results Number of obs = 8,732
Population size = 49,983,951
Replications = 152
Design df = 150

Command: ineqord srh if (srh < .)
Blair_Lacy: r(blairlacy)

Jd: r(Jd)
Ju: r(Ju)

BRR *
Coefficient std. err. t P>|t| [95% conf. interval]

Blair_Lacy .4322191 .007348 58.82 0.000 .4177002 .446738
Jd .4635812 .0041745 111.05 0.000 .4553327 .4718297
Ju .433616 .0052219 83.04 0.000 .4232981 .443934
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Let us now examine Body mass index (BMI), a quantitative variable defined
as body weight (in kilograms) divided by height squared (in meters). One
thousand four hundred sixty-seven subjects did not report their weight or
height, so that the number of valid cases for the analysis is 7,311.

Although Stata provides some official commands for design-based analysis
of quantitative distributions, this type of analysis can be done most easily
using a third-party tool, the user-written command dstatmentioned above.
Specifically, dstat supports design-based estimation and inference for a wide
array of distribution functions – including the probability density, cumulative
distribution, and quantile functions – and summary statistics.

To explore the analytical capabilities of dstat, let us begin with a standard
histogram, for which the command can provide both a tabular and a graphical
representation:

/* Histogram of variable "bmi" */
dstat histogram bmi, at(14(1)50) percent cformat(%5.2f) ///

vce(svy, dots(10)) table graph(p1(color("55 101 168")) ///
ciopts(color("234 151 65") lwidth(*2)) ///
ylabel(0 "0%" 5 "5%" 10 "10%" 15 "15%") ///
xlabel(10(5)50) ///

)

. /* Histogram of variable "bmi" */

. dstat histogram bmi, at(14(1)50) percent cformat(%5.2f) ///
> vce(svy, dots(10)) table graph(p1(color("55 101 168")) ///
> ciopts(color("234 151 65") lwidth(*2)) ///
> ylabel(0 "0%" 5 "5%" 10 "10%" 15 "15%") ///
> xlabel(10(5)50) ///
> )
(running dstat_svyr on estimation sample)

BRR replications (152)
1 2 3 4 5

...............

Survey: Histogram (percent) Number of obs = 7,311
Population size = 41,317,101
Replications = 152
Design df = 150

BRR * logit transformed
bmi Coefficient std. err. [95% conf. interval]

14 0.09 0.04 0.04 0.21
15 0.17 0.06 0.08 0.33
16 0.34 0.09 0.20 0.56
17 1.32 0.16 1.04 1.67
18 2.30 0.21 1.92 2.74
19 4.29 0.38 3.61 5.10
20 6.85 0.38 6.14 7.63
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21 7.23 0.33 6.60 7.91
22 10.98 0.48 10.08 11.96
23 12.01 0.41 11.22 12.85
24 12.69 0.46 11.81 13.63
25 10.40 0.46 9.53 11.34
26 8.65 0.41 7.88 9.49
27 6.60 0.33 5.98 7.29
28 4.03 0.29 3.50 4.64
29 4.32 0.31 3.74 4.97
30 1.93 0.22 1.54 2.40
31 2.00 0.20 1.64 2.44
32 1.10 0.19 0.78 1.53
33 0.78 0.13 0.57 1.07
34 0.50 0.09 0.34 0.72
35 0.57 0.11 0.39 0.84
36 0.25 0.06 0.15 0.41
37 0.16 0.06 0.08 0.32
38 0.09 0.04 0.04 0.20
39 0.06 0.04 0.02 0.19
40 0.03 0.02 0.01 0.10
41 0.10 0.04 0.05 0.23
42 0.05 0.04 0.02 0.20
43 0.04 0.03 0.01 0.20
44 0.02 0.01 0.01 0.07
45 0.01 0.01 0.00 0.09
46 0.04 0.03 0.01 0.15
47 0.00 (omitted)
48 0.00 (omitted)
49 0.02 0.02 0.00 0.11
50 0.02 0.02 0.00 0.11
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Another useful representation of the entire distribution of a quantitative
variable is provided by the cumulative distribution function, which, in this case,
also gives us a clear picture of the prevalence of the standard BMI categories
(Flegal et al. 2014):

/* Cumulative distribution function of variable "bmi" */
dstat cdf bmi, at(14(1)50) percent vce(svy, dots(10)) table ///

cformat(%5.2f) graph( ///
p1(color("55 101 168") lwidth(*2)) ///
ylabel(0 "0%" 20 "20%" 40 "40%" 60 "60%" 80 "80%" ///

100 "100%") ///
xlabel(10(5)50) ///
xline(18.5 25 30, lpattern(shortdash) lcolor(gs7)) ///
text(100 15.6 "Underweight", size(*0.9) color(gs5)) ///
text(100 21.75 "Normal weight", size(*0.9) color(gs5)) ///
text(100 27.5 "Overweight", size(*0.9) color(gs5)) ///
text(100 31.8 "Obesity", size(*0.9) color(gs5)) ///

)

. /* Cumulative distribution function of variable "bmi" */

. dstat cdf bmi, at(14(1)50) percent vce(svy, dots(10)) table ///
> cformat(%5.2f) graph( ///
> p1(color("55 101 168") lwidth(*2)) ///
> ylabel(0 "0%" 20 "20%" 40 "40%" 60 "60%" 80 "80%" ///
> 100 "100%") ///
> xlabel(10(5)50) ///
> xline(18.5 25 30, lpattern(shortdash) lcolor(gs7)) ///
> text(100 15.6 "Underweight", size(*0.9) color(gs5)) ///
> text(100 21.75 "Normal weight", size(*0.9) color(gs5)) ///
> text(100 27.5 "Overweight", size(*0.9) color(gs5)) ///
> text(100 31.8 "Obesity", size(*0.9) color(gs5)) ///
> )
(running dstat_svyr on estimation sample)

BRR replications (152)
1 2 3 4 5

...............

Survey: CDF in percent Number of obs = 7,311
Population size = 41,317,101
Replications = 152
Design df = 150

BRR * logit transformed
bmi Coefficient std. err. [95% conf. interval]

14 0.00 (omitted)
15 0.09 0.04 0.04 0.21
16 0.26 0.07 0.14 0.45
17 0.59 0.12 0.40 0.88
18 1.91 0.23 1.50 2.43
19 4.21 0.29 3.67 4.81
20 8.50 0.51 7.55 9.56
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21 15.35 0.62 14.15 16.62
22 22.57 0.69 21.25 23.96
23 33.56 0.70 32.18 34.96
24 45.57 0.78 44.04 47.11
25 58.26 0.80 56.68 59.82
26 68.66 0.77 67.13 70.16
27 77.31 0.70 75.90 78.66
28 83.92 0.64 82.62 85.14
29 87.95 0.58 86.75 89.05
30 92.26 0.49 91.24 93.18
31 94.19 0.40 93.35 94.93
32 96.19 0.31 95.52 96.76
33 97.28 0.23 96.79 97.71
34 98.06 0.20 97.62 98.42
35 98.56 0.18 98.16 98.87
36 99.13 0.14 98.81 99.36
37 99.38 0.11 99.11 99.56
38 99.54 0.10 99.30 99.69
39 99.63 0.09 99.41 99.76
40 99.69 0.08 99.48 99.81
41 99.72 0.08 99.52 99.84
42 99.82 0.06 99.65 99.91
43 99.88 0.05 99.73 99.95
44 99.91 0.04 99.80 99.96
45 99.94 0.03 99.83 99.98
46 99.95 0.03 99.84 99.98
47 99.98 0.02 99.89 100.00
48 99.98 0.02 99.89 100.00
49 99.98 0.02 99.89 100.00
50 100.00 . 100.00 100.00

Underweight Normal weight Overweight Obesity
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In terms of summary statistics, dstat enables design-based estimation and
inference of several measures of location, variability, skewness, and kurtosis.
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For illustration, let us use dstat to estimate only a selection of these quantities:
the arithmetic mean (mean); the 10th, 25th, 50th, 75th, and 90th percentiles
(p10 p25 p50 p75 p90); the standard deviation (sd); the interquartile range
(iqr); the coefficient of skewness (skewness); and the coefficient of kurtosis
(kurtosis). Here is the relevant Stata code, followed by the corresponding
output:

/* Summary statistics for variable "bmi" */
dstat summarize (mean p10 p25 p50 p75 p90 sd iqr skewness ///

kurtosis) bmi, vce(svy, dots(10)) cformat(%5.2f)

. /* Summary statistics for variable "bmi" */

. dstat summarize (mean p10 p25 p50 p75 p90 sd iqr skewness ///
> kurtosis) bmi, vce(svy, dots(10)) cformat(%5.2f)
(running dstat_svyr on estimation sample)

BRR replications (152)
1 2 3 4 5

...............

Survey: Summary statistics Number of obs = 7,311
Population size = 41,317,101
Replications = 152
Design df = 150

BRR *
bmi Coefficient std. err. [95% conf. interval]

mean 24.67 0.07 24.54 24.80
p10 20.24 0.09 20.06 20.43
p25 22.20 0.08 22.05 22.36
p50 24.34 0.10 24.14 24.53
p75 26.67 0.13 26.42 26.92
p90 29.39 0.01 29.37 29.41
sd 3.76 0.07 3.63 3.89
iqr 4.47 0.13 4.22 4.72

skewness 0.85 0.08 0.69 1.00
kurtosis 5.16 0.39 4.40 5.93

All the analyses illustrated so far have focused on the entire target popula-
tion and, therefore, have been carried out – net of missing values – on the full
sample. Researchers, however, are often interested in focusing their analysis
on subsets of the target population, variously referred to as subpopulations,
subclasses, or domains (West et al. 2008). In these cases the overall analytical
approach does not change, but the number of degrees of freedom used to
build confidence intervals or to perform null hypothesis significance testing
must be adjusted.

The standard formula for calculating the (approximate) number of design
degrees of freedom in the analysis of complex survey data is (𝑛PSU−𝐻), where
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𝑛PSU denotes the number of PSUs used for variance estimation and 𝐻 denotes
the number of sampling strata (West et al. 2008). In our case, since 𝑛PSU = 300
and 𝐻 = 150, the number of design degrees of freedom is 300 − 150 = 150.
This is exactly the value we specified with option dof(150) when we svyset
the working dataset (see Section 4.2). In subpopulation analysis, however, the
standard formula can lead to a substantial overestimation of the true number
of degrees of freedom, when the members of the subpopulation of interest
are not uniformly distributed among all sampling strata and PSUs (Rust and
Rao 1996). In this situation, “one rule of thumb is that the number of degrees
of freedom for a [subpopulation] is unlikely to exceed (𝑛′ − 𝐻′), where 𝐻′

is the number of strata that contain at least one sample member from the
[subpopulation], and 𝑛′ is the total number of PSUs selected that contain
at least one sample member from the [subpopulation].” (Rust and Rao 1996,
p. 303).

The (𝑛′ − 𝐻′) formula, however, cannot be implemented by users of the
public-use version of the ITA.LI database, which, for preserving the privacy
of respondents, does not include PSU and stratum identifiers. As a partial
remedy to this limitation, Tables 4.3 and 4.4 report the (approximate) design
degrees of freedom for a number of subpopulations of potential interest,
obtained by applying the (𝑛′ − 𝐻′) formula to the full ITA.LI database. Table
4.3, for example, suggests that if we wanted to focus our analysis on men
aged 80 and older, the number of design degrees of freedom should be set at
46. Likewise, according to Table 4.4, the (approximately) correct number of
degrees of freedom for the subpopulation of 16-24 year olds residing in the
North West regions is 29.

To conduct a subpopulation analysis in Stata, one must supplement the
usual estimation commands with (a) the specification of the subpopulation of
interest, and (b) the appropriate number of design degrees of freedom for that
subpopulation. For illustration, suppose we want to replicate the previous
analysis of the distribution of variable Self-reported health, but considering
only women aged 80 and older. According to Table 4.3, the number of design
degrees of freedom for this subpopulation should be set at 51. Here, then, is
the Stata code to be run, followed by the corresponding output:

/* Subpopulation analysis of variable "srh" */
svy, dots(10) subpop(if sex==1 & age>=80) dof(51) : ///

proportion srh, percent cformat(%5.1f)
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Table 4.3 Approximate design degrees of freedom for select subpopulations defined by
combinations of Age group, Area of residence, and Sex.

Sex

Male Female Total

Age group
16-19 years 29 27 58
16-24 years 73 65 103
16-49 years 140 144 146
16-64 years 145 145 146
20-24 years 39 42 78
25-29 years 40 43 73
25-54 years 138 144 145
25-64 years 143 145 146
25-74 years 144 147 147
25 years and over 145 147 147
30-34 years 53 46 80
35-39 years 51 50 85
40-44 years 48 68 95
40 years and over 143 145 146
45-49 years 59 77 104
50-54 years 62 74 102
50 years and over 140 143 144
55-59 years 64 78 109
55-64 years 99 113 127
60-64 years 60 70 101
60 years and over 134 136 140
65-69 years 55 72 98
65-74 years 99 102 123
65 years and over 126 128 139
70-74 years 55 67 91
70 years and over 110 118 134
75-79 years 26 50 76
80 years and over 46 51 80

Area of residence
North-West 35 35 35
North-East 34 34 34
Center 27 27 27
South 34 34 34
Islands 16 17 17
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Table 4.4 Approximate design degrees of freedom for select subpopulations defined by
combinations of Age group and Area of residence.

Area of residence

North North Center South Islands
West East

Age group
16-19 years 17 19 9 10 3
16-24 years 29 25 15 24 10
16-49 years 35 34 27 34 16
16-64 years 35 34 27 34 16
20-24 years 20 19 12 20 7
25-29 years 15 20 14 19 5
25-54 years 35 34 26 34 16
25-64 years 35 34 27 34 16
25-74 years 35 34 27 34 17
25 years and over 35 34 27 34 17
30-34 years 23 19 13 22 3
35-39 years 18 22 16 22 7
40-44 years 25 20 19 23 8
40 years and over 35 33 27 34 17
45-49 years 23 24 20 26 11
50-54 years 23 28 16 24 11
50 years and over 34 32 27 34 17
55-59 years 29 21 21 29 9
55-64 years 31 30 23 31 12
60-64 years 24 25 15 27 10
60 years and over 33 31 27 33 16
65-69 years 30 18 13 27 10
65-74 years 31 26 24 29 13
65 years and over 33 31 27 32 16
70-74 years 25 18 19 22 7
70 years and over 33 29 26 31 15
75-79 years 24 15 13 14 10
80 years and over 20 15 15 20 10
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. /* Subpopulation analysis of variable "srh" */

. svy, dots(10) subpop(if sex==1 & age>=80) dof(51) : ///
> proportion srh, percent cformat(%5.1f)
(running proportion on estimation sample)

BRR replications (152)
1 2 3 4 5

...............

Survey: Percent estimation Number of obs = 8,774
Population size = 50,168,637
Subpop. no. obs = 345
Subpop. size = 2,606,152
Replications = 152
Design df = 51

BRR * Logit
Percent std. err. [95% conf. interval]

srh
Bad 7.8 1.6 5.2 11.6
Poor 26.7 2.7 21.7 32.4

Satisfactory 49.7 3.5 42.8 56.6
Good 14.4 2.6 10.0 20.4

Excellent 1.4 0.9 0.4 5.0

Clearly, the subpopulations considered in Tables 4.3 and 4.4 are only a sub-
set of all possible ones. In case the user needs to analyze other subpopulations,
we suggest that the approximate number of design degrees of freedom for
each subpopulation of interest be determined by applying the following rules
of thumb, derived from the available data:
• When the subpopulation spans the whole of Italy:

𝑑𝑓 =


⌊𝑛 × (0.12)⌉ , if 𝑛 < 1,000
120, if 1,000 ≤ 𝑛 < 1,500
130, if 1,500 ≤ 𝑛 < 2,000
140, if 𝑛 ≥ 2,000

• When the subpopulation is limited to the North West, the North East, or
the South:

𝑑𝑓 =

{⌊𝑛 × (0.15)⌉ , if 𝑛 < 200
30, if 𝑛 ≥ 200

• When the subpopulation is limited to the Center:

𝑑𝑓 =

{⌊𝑛 × (0.125)⌉ , if 𝑛 < 200
25, if 𝑛 ≥ 200
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• When the subpopulation is limited to the Islands:

𝑑𝑓 =

{⌊𝑛 × (0.075)⌉ , if 𝑛 < 200
15, if 𝑛 ≥ 200

where ⌊·⌉ denotes the nearest integer function; and 𝑛 denotes the size of the
subpopulation of interest.

4.4. Bivariate Analysis

The purpose of bivariate analysis is to describe the relationship between a
variable of interest 𝑌 and a covariate 𝑋 , so as to assess whether and how the
distribution of 𝑌 , or a summary measure of it, varies with the values of 𝑋 –
that is, whether and how there is an association between the two variables.

Let us begin with the simplest case, that of the relationship between two
dichotomous variables. Specifically, let us investigate whether, and to what
extent, the probability of suffering from insomnia varies between men and
women. One hundred and three respondents did not answer the question on
insomnia, so that the number of valid cases for the analysis is 8,675.

The standard Stata command for design-based analysis of relationships
between pairs of qualitative variables is tabulate, prefixed by svy:

/* Cross-tabulation of variables "sex" and "insomnia" */
svy : tabulate sex insomnia, row percent ci format(%5.1f)

. /* Cross-tabulation of variables "sex" and "insomnia" */

. svy : tabulate sex insomnia, row percent ci format(%5.1f)
(running tabulate on estimation sample)

BRR *: for rows

Number of obs = 8,675
Population size = 49,662,295
Replications = 152
Design df = 150

Suffered from insomnia in past 4 weeks
Sex No Yes Total

Male 66.2 33.8 100.0
[63.7,68.5] [31.5,36.3]

Female 55.0 45.0 100.0
[52.8,57.2] [42.8,47.2]

Total 60.4 39.6 100.0
[58.4,62.3] [37.7,41.6]

Key: Row percentage
[95% confidence interval for row percentage]
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Pearson:
Uncorrected chi2(1) = 112.4968
Design-based F(1, 150) = 87.8666 P = 0.0000

Data clearly show that women are more likely to suffer from sleep disorders
than men. The results of two tests of independence based on Pearson’s statistic
for two-way tables are also reported. The Uncorrected test uses the ordinary
𝜒2 statistic, while the Design-based test uses the statistic adjusted for survey
design with the second-order correction of Rao and Scott (1984). Both tests
reject the null hypothesis of independence between insomnia and sex.

The two conditional percent distributions of variable insomnia by cate-
gories of variable sex can also be obtained using command proportion:

/* Conditional distribution of "insomnia" by "sex" */
svy, dots(10) : proportion insomnia, over(sex) percent cformat(%5.1f)

. /* Conditional distribution of "insomnia" by "sex" */

. svy, dots(10) : proportion insomnia, over(sex) percent cformat(%5.1f)
(running proportion on estimation sample)

BRR replications (152)
1 2 3 4 5

...............

Survey: Percent estimation Number of obs = 8,675
Population size = 49,662,295
Replications = 152
Design df = 150

BRR * Logit
Percent std. err. [95% conf. interval]

insomnia@sex
No Male 66.2 1.2 63.7 68.5

No Female 55.0 1.1 52.8 57.2
Yes Male 33.8 1.2 31.5 36.3

Yes Female 45.0 1.1 42.8 47.2

Once again, however, the best single tool for design-based bivariate analysis
is arguably the user-written command dstat, which offers many options for
analysis, including graphical ones. For example, here is how the conditional
distribution of insomnia by sex can be represented graphically with dstat:

/* Conditional distribution of "insomnia" by "sex" */
dstat proportion insomnia, over(sex) percent ///

vce(svy, dots(10)) graph(merge ///
p1(color("55 101 168") ///

ciopts(color("234 151 65") lwidth(*4)) ///
) ///
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p2(color("234 151 65") ///
ciopts(color("55 101 168") lwidth(*4)) ///

) ///
xlabel( 0 "0%" 10 "10%" 20 "20%" 30 "30%" ///

40 "40%" 50 "50%" 60 "60%" 70 "70%" ///
) ///

)

. /* Conditional distribution of "insomnia" by "sex" */

. dstat proportion insomnia, over(sex) percent ///
> vce(svy, dots(10)) graph(merge ///
> p1(color("55 101 168") ///
> ciopts(color("234 151 65") lwidth(*4)) ///
> ) ///
> p2(color("234 151 65") ///
> ciopts(color("55 101 168") lwidth(*4)) ///
> ) ///
> xlabel( 0 "0%" 10 "10%" 20 "20%" 30 "30%" ///
> 40 "40%" 50 "50%" 60 "60%" 70 "70%" ///
> ) ///
> )
(running dstat_svyr to obtain evaluation grid)
(running dstat_svyr on estimation sample)

BRR replications (152)
1 2 3 4 5

...............

Survey: Percent Number of obs = 8,675
Population size = 49,662,295
Replications = 152
Design df = 150

(coefficients table suppressed)
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The following lines of code, in turn, show how to use dstat to estimate the
strength of the association between insomnia and sex through five summary
measures suitable for the case when both variables 𝑋 and 𝑌 are dichotomous:
the difference between the probability of suffering from insomnia for females
and the equivalent probability for males, the ratio between these two probabil-
ities, the odds ratio, Cramér’s 𝑉 (Cramér 1946), and the uncertainty coefficient
(Agresti 2013):

/* Measures of association between "insomnia" and "sex" */
dstat summarize (b rr or cramersv ucl) insomnia, by(sex) ///

vce(svy, dots(10))

. /* Measures of association between "insomnia" and "sex" */

. dstat summarize (b rr or cramersv ucl) insomnia, by(sex) ///
> vce(svy, dots(10))
(running dstat_svyr on estimation sample)

BRR replications (152)
1 2 3 4 5

...............

Survey: Summary statistics Number of obs = 8,675
Population size = 49,662,295
Replications = 152
Design df = 150
By variable = sex

BRR *
insomnia Coefficient std. err. [95% conf. interval]

b .1114711 .0116785 .0883955 .1345467
rr 1.329346 .0421772 1.246008 1.412684
or 1.598738 .0805319 1.439615 1.757862

cramersv .1138768 .0119676 .0902301 .1375236
ucl .0096931 .0020655 .0056118 .0137743

where b denotes the probability difference; rr denotes the probability ratio;
or denotes the odds ratio; cramersv denotes Cramér’s 𝑉 ; and ucl denotes the
uncertainty coefficient.

With only minor adjustments, the procedure adopted for the analysis of
2 × 2 contingency tables can also be applied to the analysis of 2 × 𝐶, 𝑅 × 2,
and 𝑅 × 𝐶 cross-tabulations. Let us examine, for example, the relationship
between a dichotomous variable 𝑋 (Sex) and an ordinal variable 𝑌 with𝐶 = 5
categories (Self-reported health). First, we calculate the conditional percent
distribution of 𝑌 given 𝑋 using command tabulate:

/* Cross-tabulation of variables "sex" and "srh" */
svy : tabulate sex srh, row percent ci format(%5.1f) nomarginals
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. /* Cross-tabulation of variables "sex" and "srh" */

. svy : tabulate sex srh, row percent ci format(%5.1f) nomarginals
(running tabulate on estimation sample)

BRR *: for rows

Number of obs = 8,732
Population size = 49,983,951
Replications = 152
Design df = 150

Self-reported health
Sex Bad Poor Satisfac Good Excellen

Male 3.0 5.0 20.1 54.4 17.5
[2.1,4.1] [4.0,6.3] [18.6,21.6] [52.1,56.7] [15.9,19.3]

Female 1.3 6.4 23.7 55.3 13.4
[1.0,1.8] [5.6,7.2] [22.2,25.1] [53.2,57.3] [12.0,14.8]

Key: Row percentage
[95% confidence interval for row percentage]

Pearson:
Uncorrected chi2(4) = 71.3560
Design-based F(3.53, 529.91) = 11.7839 P = 0.0000

As can be seen, the design-based Pearson test rejects the null hypothesis of
independence between variables rsh and sex. Comparison of sex-specific
conditional distributions reveals that women and men are broadly similar in
terms of self-reported health, except that the former report both excellent
and bad health somewhat less often than the latter and, at the same time, are
more likely to report a satisfactory health status. This observation suggests
that women’s distribution is slightly less variable than men’s; as evidence of
the above, we can use dstat to estimate the difference between the two distri-
butions in terms of Shannon entropy, finding that it is moderately negative:

/* Variability of "srh" : Sex differences */
dstat summarize (entropy) srh, over(sex, contrast) vce(svy, dots(10))

. /* Variability of "srh" : Sex differences */

. dstat summarize (entropy) srh, over(sex, contrast) vce(svy, dots(10))
(running dstat_svyr on estimation sample)

BRR replications (152)
1 2 3 4 5

...............

Survey: Difference in entropy Number of obs = 8,732
Population size = 49,983,951
Replications = 152
Design df = 150
Contrast = 0.sex
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BRR *
srh Coefficient std. err. t P>|t| [95% conf. interval]

sex
Female -.0424896 .0198941 -2.14 0.034 -.0817985 -.0031807

As in the previous analysis, we can express the overall difference between
women and men in terms of self-reported health by having dstat compute
some summary measures of association applicable to situations – such as
the one at hand – in which variable 𝑋 , variable 𝑌 , or both are polytomous:
Cramér’s 𝑉 and the uncertainty coefficient (see above), the generalized dis-
similarity index (Reardon and Firebaugh 2002), Kendall’s 𝜏𝑎 (Kendall 1938),
Goodman and Kruskal’s 𝛾 (Goodman and Kruskal 1954), and Somers’ 𝑑𝑌𝑋
(Somers 1962). The first three measures are suitable for describing the strength
of the association between pairs of qualitative variables of any type. The other
three, on the other hand, require that both variables be ordinal, or that one
be ordinal and the other dichotomous; as such, these measures also indicate
the sign of the association between the two variables. Here is the relevant Stata
code and output:

/* Measures of association between "srh" and "sex" */
dstat summarize (cramersv ucl dissim taua gamma somersd) srh, ///

by(sex) vce(svy, dots(10))

. /* Measures of association between "srh" and "sex" */

. dstat summarize (cramersv ucl dissim taua gamma somersd) srh, ///
> by(sex) vce(svy, dots(10))
(running dstat_svyr on estimation sample)

BRR replications (152)
1 2 3 4 5

...............

Survey: Summary statistics Number of obs = 8,732
Population size = 49,983,951
Replications = 152
Design df = 150
By variable = sex

BRR *
srh Coefficient std. err. [95% conf. interval]

cramersv .0903979 .0125152 .0656691 .1151267
ucl .0034422 .000979 .0015078 .0053766

dissim .0576096 .0086366 .0405444 .0746747
taua -.026041 .0051109 -.0361397 -.0159423
gamma -.0834563 .0163814 -.1158243 -.0510882

somersd -.0521422 .0102333 -.0723623 -.0319221
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where cramersv denotes Cramér’s 𝑉 ; ucl denotes the uncertainty coefficient;
dissim denotes the generalized dissimilarity index; taua denotes Kendall’s
𝜏𝑎; gamma denotes Goodman and Kruskal’s 𝛾; and somersd denotes Somers’
𝑑𝑌𝑋 . Taken together, these measures indicate that (a) there is an association
between variables srh and sex; and (b) this association is relatively weak and
of negative sign – on average, women tend to report slightly worse health
status than men.

Using results left behind by dstat, design-based estimation and inference
can also be conducted for quantities not directly supported by the command.
For illustration, suppose we want to compute the generalized odds ratio
𝛼 proposed by Agresti (1980) to describe the association between pairs of
variables of ordinal-ordinal or dichotomous-ordinal type. Agresti shows that
𝛼 is a monotonic transformation of Goodman and Kruskal’s 𝛾 , namely 𝛼 =

(1 + 𝛾)/(1 − 𝛾). Now, the previous run of dstat saved the design-based
point estimates and variance-covariance matrix of all requested measures
of association, including 𝛾 . Knowing that the Stata internal name for 𝛾 is
_b[gamma], we can obtain design-based estimates of the generalized odds
ratio 𝛼 and the associated 95% Wald confidence interval using the official
commands nlcom and lincom as follows:

/* Association between "srh" and "sex" : Generalized odds ratio */
nlcom ln_alpha : ln((1 + _b[gamma]) / (1 - _b[gamma])), df(150) post
lincom ln_alpha, eform

. /* Association between "srh" and "sex" : Generalized odds ratio */

. nlcom ln_alpha : ln((1 + _b[gamma]) / (1 - _b[gamma])), df(150) post

ln_alpha: ln((1 + _b[gamma]) / (1 - _b[gamma]))

srh Coefficient Std. err. t P>|t| [95% conf. interval]

ln_alpha -.1673017 .0329925 -5.07 0.000 -.2324918 -.1021115

. lincom ln_alpha, eform

( 1) ln_alpha = 0

srh exp(b) Std. err. t P>|t| [95% conf. interval]

(1) .8459444 .0279099 -5.07 0.000 .7925562 .9029288

Let us now look at the relationship between a dichotomous variable 𝑋 (Sex)
and a quantitative variable 𝑌 (Body mass index), with the aim of finding out
whether and how the distribution of height-normalized body weight varies
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between men and women. We start with a graphical representation of the
sex-specific probability density functions of variable bmi:

/* Probability density function of "bmi" by "sex" */
dstat density bmi, over(sex) vce(svy, dots(10)) graph(merge ///

p1(color("55 101 168") lwidth(*3)) ///
p2(color("234 151 65") lwidth(*3)) ///

)

. /* Probability density function of "bmi" by "sex" */

. dstat density bmi, over(sex) vce(svy, dots(10)) graph(merge ///
> p1(color("55 101 168") lwidth(*3)) ///
> p2(color("234 151 65") lwidth(*3)) ///
> )
(running dstat_svyr to obtain evaluation grid and bandwidth)
(running dstat_svyr on estimation sample)

BRR replications (152)
1 2 3 4 5

...............

Survey: Density Number of obs = 7,311
Population size = 41,317,101
Replications = 152
Design df = 150
Kernel = gaussian
Bandwidth = e(bwidth)

(coefficients table suppressed)
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The graph shows that the distribution of BMI among men is shifted to the
right relative to that of women, although any sex difference disappears at
higher BMI levels. This description is corroborated by the following set of
percentiles, calculated separately for males and females:
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/* Select percentiles of "bmi" distribution by "sex" */
dstat summarize (p5 p10 p25 p50 p75 p90 p95) bmi, over(sex) ///

vce(svy, dots(10)) cformat(%5.2f)

. /* Select percentiles of "bmi" distribution by "sex" */

. dstat summarize (p5 p10 p25 p50 p75 p90 p95) bmi, over(sex) ///
> vce(svy, dots(10)) cformat(%5.2f)
(running dstat_svyr on estimation sample)

BRR replications (152)
1 2 3 4 5

...............

Survey: Summary statistics Number of obs = 7,311
Population size = 41,317,101
Replications = 152
Design df = 150

0: sex = Male
1: sex = Female

BRR *
bmi Coefficient std. err. [95% conf. interval]

0
p5 20.75 0.12 20.52 20.98
p10 21.91 0.15 21.62 22.21
p25 23.32 0.10 23.12 23.53
p50 24.98 0.09 24.80 25.16
p75 27.04 0.13 26.78 27.30
p90 29.40 0.02 29.36 29.44
p95 31.02 0.21 30.60 31.44

1
p5 18.42 0.16 18.11 18.74
p10 19.47 0.16 19.14 19.79
p25 21.09 0.18 20.74 21.45
p50 23.44 0.04 23.37 23.51
p75 26.26 0.20 25.86 26.66
p90 29.30 0.08 29.14 29.45
p95 31.25 0.55 30.16 32.34

By explicitly calculating the percentile differences between women and men,
along with their respective design-based 95%Wald confidence intervals, the
findings become even clearer:

/* Select percentiles of "bmi" distribution : Sex differences */
dstat summarize (p5 p10 p25 p50 p75 p90 p95) bmi, ///

over(sex, contrast) vce(svy, dots(10)) graph( ///
vertical yline(0, lpattern(dash) lcolor(gs11)) ///
p1(msymbol(O) mcolor("55 101 168") msize(*1.5) ///

ciopts(color("55 101 168") lwidth(*4)) ///
) ///

)
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. /* Select percentiles of "bmi" distribution : Sex differences */

. dstat summarize (p5 p10 p25 p50 p75 p90 p95) bmi, ///
> over(sex, contrast) vce(svy, dots(10)) graph( ///
> vertical yline(0, lpattern(dash) lcolor(gs11)) ///
> p1(msymbol(O) mcolor("55 101 168") msize(*1.5) ///
> ciopts(color("55 101 168") lwidth(*4)) ///
> ) ///
> )
(running dstat_svyr on estimation sample)

BRR replications (152)
1 2 3 4 5

...............

Survey: Difference in summary statistics Number of obs = 7,311
Population size = 41,317,101
Replications = 152
Design df = 150
Contrast = 0.sex

(coefficients table suppressed)
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To express the overall difference between women andmen in terms of BMI,
we can ask dstat to compute some summary measures of association applica-
ble to situations – such as the one at hand – inwhich variable 𝑋 is dichotomous
and variable 𝑌 is quantitative: the mean difference; Cohen’s 𝑑 (Cohen 1988);
the point biserial correlation coefficient 𝑟𝑝𝑏, mathematically equivalent to
the Pearson’s product-moment correlation coefficient 𝑟𝑝 (Kraemer 2006);
the rank biserial correlation coefficient 𝑟𝑟𝑏, mathematically equivalent to the
Spearman’s rank correlation coefficient 𝑟𝑠 (Kraemer 2006); and Somers’ 𝑑𝑌𝑋
(Somers 1962). Here is the relevant Stata code and output:
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/* Measures of association between "bmi" and "sex" */
dstat summarize (b cohend corr spearman somersd) bmi, ///

by(sex) vce(svy, dots(10))

. /* Measures of association between "bmi" and "sex" */

. dstat summarize (b cohend corr spearman somersd) bmi, ///
> by(sex) vce(svy, dots(10))
(running dstat_svyr on estimation sample)

BRR replications (152)
1 2 3 4 5

...............

Survey: Summary statistics Number of obs = 7,311
Population size = 41,317,101
Replications = 152
Design df = 150
By variable = sex

BRR *
bmi Coefficient std. err. [95% conf. interval]

b -1.380588 .126866 -1.631264 -1.129913
cohend -.3739251 .0366396 -.4463215 -.3015286
corr -.1837714 .0174118 -.2181755 -.1493672

spearman -.2306121 .0166296 -.2634705 -.1977537
somersd -.2663322 .0192068 -.3042829 -.2283815

where b denotes the mean difference; cohend denotes Cohen’s 𝑑; corr denotes
the Pearson’s product-moment correlation coefficient 𝑟𝑝; spearman denotes
the Spearman’s rank correlation coefficient 𝑟𝑠; and somersd denotes Somers’
𝑑𝑌𝑋 . Overall, these measures support our previous findings: (a) there is a
significant association between variables bmi and sex; and (b) this association
is negative: on average, women’s BMI is lower than men’s.

We now consider the relationship between a pair of variables that are both
quantitative. Specifically, we examine whether and how the distribution of
body mass index (𝑌 ) varies with age (𝑋 ). The typical starting point for such
an analysis is the scatterplot, which, by showing how subjects are distributed
in the two-dimensional space defined by 𝑌 and 𝑋 , provides an easy view of
the shape of the relationship between the two variables. Complex survey data,
however, “have two features that can make a simple scatterplot less useful.
One feature, reflected in the sample weights, is that individuals in the sample
represent differing numbers of individuals in the population. A second feature
is that the sample sizes can be large. Scatterplots that ignore these features
can be misleading or hard to interpret.” (Korn and Graubard 1999).

A variant of the scatterplot better suited for representing complex survey
data is the bubble plot, in which each point on the plot has a size proportional
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to its sample weight (Korn and Graubard 1999). In Stata, this plot can be drawn
as follows:

/* Bubble plot of "bmi" and "age" */
graph twoway scatter bmi age [pw = fiw], msymbol(o) msize(*0.2) ///

mcolor("55 101 168%30") ytitle("BMI")

. /* Bubble plot of "bmi" and "age" */

. graph twoway scatter bmi age [pw = fiw], msymbol(o) msize(*0.2) ///
> mcolor("55 101 168%30") ytitle("BMI")
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The bubble plot suggests that, for individuals up to age 70, as age increases,
BMI also tends to increase. Beyond that age, the association between the two
variables seems to vanish or even change sign. The picture provided by the
graph, however, is far from clear.

To get a more intelligible graphical representation of the association of
interest, we can calculate and plot smoothed trend lines for a selection of
percentiles of the conditional distribution of bmi given age (Lohr 2022). Here
is how to do it in Stata:

/* Smoothed trend lines for percentiles of "bmi", by "age" */
preserve
keep if inrange(age,16,90)
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collapse (p10) pc10=bmi (p25) pc25=bmi (p50) pc50=bmi ///
(p75) pc75=bmi (p90) pc90=bmi [pw = fiw], by(age)

graph twoway ///
(lowess pc10 age, bw(0.4) lcolor("55 101 168") lwidth(*1)) ///
(lowess pc25 age, bw(0.4) lcolor("55 101 168") lwidth(*2)) ///
(lowess pc50 age, bw(0.4) lcolor("55 101 168") lwidth(*3)) ///
(lowess pc75 age, bw(0.4) lcolor("55 101 168") lwidth(*2)) ///
(lowess pc90 age, bw(0.4) lcolor("55 101 168") lwidth(*1)) ///
, ///
ytitle("BMI") ylabel(15(5)35) ///
xtitle("Age") xlabel(20(10)90) ///
text(20.2 90.3 "p10", placement(right) size(*0.8)) ///
text(22.9 90.3 "p25", placement(right) size(*0.8)) ///
text(25.4 90.3 "p50", placement(right) size(*0.8)) ///
text(27.85 90.3 "p75", placement(right) size(*0.8)) ///
text(32.5 90.3 "p90", placement(right) size(*0.8)) ///
legend(off)

restore

. /* Smoothed trend lines for percentiles of "bmi", by "age" */

. preserve

. keep if inrange(age,16,90)
(50 observations deleted)

. collapse (p10) pc10=bmi (p25) pc25=bmi (p50) pc50=bmi ///
> (p75) pc75=bmi (p90) pc90=bmi [pw = fiw], by(age)

. graph twoway ///
> (lowess pc10 age, bw(0.4) lcolor("55 101 168") lwidth(*1)) ///
> (lowess pc25 age, bw(0.4) lcolor("55 101 168") lwidth(*2)) ///
> (lowess pc50 age, bw(0.4) lcolor("55 101 168") lwidth(*3)) ///
> (lowess pc75 age, bw(0.4) lcolor("55 101 168") lwidth(*2)) ///
> (lowess pc90 age, bw(0.4) lcolor("55 101 168") lwidth(*1)) ///
> , ///
> ytitle("BMI") ylabel(15(5)35) ///
> xtitle("Age") xlabel(20(10)90) ///
> text(20.2 90.3 "p10", placement(right) size(*0.8)) ///
> text(22.9 90.3 "p25", placement(right) size(*0.8)) ///
> text(25.4 90.3 "p50", placement(right) size(*0.8)) ///
> text(27.85 90.3 "p75", placement(right) size(*0.8)) ///
> text(32.5 90.3 "p90", placement(right) size(*0.8)) ///
> legend(off)

. restore
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Overall, this graph corroborates our previous observation: the association
between BMI and age follows a nonlinear and non-monotonic trend, being
positive up to age 70 and negative after that age.4

The nonlinear and non-monotonic nature of the association between vari-
ables bmi and age implies that its strength cannot be adequately expressed
by such standard summary measures as the Pearson’s product-moment cor-
relation coefficient 𝑟𝑝 and the Spearman’s rank correlation coefficient 𝑟𝑠. A
viable alternative is to discretize the two quantitative variables of interest
and calculate the uncertainty coefficient, i.e., the share of entropy (variability)
of the distribution of 𝑌 accounted for by 𝑋 . Following Hacine-Gharbi and
Ravier (2018), we bin both bmi and age in 15 categories of approximately equal
size, and then use dstat for design-based estimation and inference of the
uncertainty coefficient. Here is the relevant Stata code and output:

/* Strength of the association between "bmi" and "age" */
tempvar BMI AGE
xtile `BMI' = bmi [pw = fiw], nquantiles(15)
xtile `AGE' = age [pw = fiw], nquantiles(15)
dstat summarize (ucl) `BMI', by(`AGE') vce(svy, dots(10))

. /* Strength of the association between "bmi" and "age" */

. tempvar BMI AGE

4 To ensure an adequate number of observations for each age, the analysis was limited to
respondents up to 90 years old.
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. xtile ˋBMI´ = bmi [pw = fiw], nquantiles(15)

. xtile ˋAGE´ = age [pw = fiw], nquantiles(15)

. dstat summarize (ucl) ˋBMI´, by(ˋAGE´) vce(svy, dots(10))
(running dstat_svyr on estimation sample)

BRR replications (152)
1 2 3 4 5

...............

Survey: Summary statistics Number of obs = 7,311
Population size = 41,317,101
Replications = 152
Design df = 150
By variable = __000002

BRR *
__000001 Coefficient std. err. [95% conf. interval]

ucl .037688 .0040338 .0297175 .0456584

Based on the output, we can conclude that there is a significant association
between (discretized) bodymass index and age. Knowing the value of the latter
variable, in fact, allows us to reduce by 3.8% (95%Wald confidence interval:
3–4.6) the entropy of the distribution of variable bmi.

To conclude our overview of bivariate analysis, it is worth pointing out
that design-based subpopulation analysis can also be conducted when the
quantity of interest is ameasure of association between two variables. Suppose,
for example, that we are interested in investigating whether the difference
between women and men in terms of BMI that we observed earlier varies
across levels of education. To this end, we first determine the number of
design degrees of freedom most appropriate for the analysis. Looking at the
frequency distribution of variable Educational degree in our sample, we can
see that the lowest frequency, associated with category “Tertiary degree”, is
1,014. Applying the rules of thumb specified in Section 4.3, such a frequency
corresponds to 120 degrees of freedom. With this information, we can carry
out the subpopulation analysis of interest using command dstat as follows:

/* Association between "bmi" and "sex", by "educ" */
dstat summarize (b) bmi, by(sex) over(educ) table ///

vce(svy, dots(10) dof(120)) graph(vertical ///
yline(0, lpattern(dash) lcolor(gs11)) ///
p1(msymbol(O) mcolor("55 101 168") msize(*1.5) ///

ciopts(color("55 101 168") lwidth(*4)) ///
) ///

)
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. /* Association between "bmi" and "sex", by "educ" */

. dstat summarize (b) bmi, by(sex) over(educ) table ///
> vce(svy, dots(10) dof(120)) graph(vertical ///
> yline(0, lpattern(dash) lcolor(gs11)) ///
> p1(msymbol(O) mcolor("55 101 168") msize(*1.5) ///
> ciopts(color("55 101 168") lwidth(*4)) ///
> ) ///
> )
(running dstat_svyr on estimation sample)

BRR replications (152)
1 2 3 4 5

...............

Survey: b Number of obs = 7,311
Population size = 41,317,101
Replications = 152
Design df = 120
By variable = sex

BRR *
bmi Coefficient std. err. [95% conf. interval]

educ
None/Elementary school -.6797125 .3187177 -1.310751 -.0486738

Middle school -1.010203 .1995714 -1.40534 -.6150653
High school -1.996131 .1652202 -2.323255 -1.669007

Tertiary degree -1.964464 .2530231 -2.465432 -1.463496
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The analysis clearly shows that the association between BMI and sex varies
significantly by educational degree. Specifically, the mean difference between
women and men in terms of body mass index is substantially smaller among
individuals who have not gone beyond the middle school diploma than among
those who have a high school or university degree.
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4.5. Multiple Regression Analysis

The general purpose of multiple regression analysis is to describe whether
and how the distribution of a given variable of interest 𝑌 , or a summary
measure of it, varies among subpopulations jointly defined by two or more
(i.e., multiple) covariates. As such, multiple regression analysis can be regarded
as an extension of bivariate analysis in which the covariate 𝑋 represents not a
single variable, but the combination of several variables.

To illustrate this point, suppose we are interested in describing whether
and how the mean body mass index varies with sex and age. One possible
way to approach this task is to carry out two separate bivariate analyses: the
first focusing on the relationship between BMI and sex, the other examining
the relationship between BMI and age. This is precisely what we did in the
previous section. Alternatively, one could perform a singlemultiple regression
analysis investigating the relationship between BMI and a “super covariate”
𝑋 formed by the combination of sex and age. To the extent that these two
variables are correlated and/or interact with each other, the two approaches –
repeated bivariate analysis or single multiple regression analysis – will yield
different results.

Multiple regression analysis can be implemented in several ways. In the
simplest one, which we will call the cross-classification approach, the super
covariate 𝑋 amounts to a single qualitative variable formed by fully crossing
the original covariates of interest. The analysis, then, consists of calculating the
distribution of variable 𝑌 (or a summary measure of it) within each category
of 𝑋 .

In terms of our example, the cross-classification approach goes like this.
First, we generate a qualitative variable 𝑋 formed by as many categories as
there are possible combinations of sex and age; if we group age into seven
10-year intervals (leaving the last interval open-ended), 𝑋 will thus comprise
2 × 7 = 14 categories. In Stata:

/* Generate and display super covariate X ("sex" by "agegroup") */
egen X = group(sex agegroup), label
tabulate X

. /* Generate and display super covariate X ("sex" by "agegroup") */

. egen X = group(sex agegroup), label

. tabulate X

group(sex agegroup) Freq. Percent Cum.

Male 16-24 years 442 5.04 5.04
Male 25-34 years 521 5.94 10.97
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Male 35-44 years 594 6.77 17.74
Male 45-54 years 717 8.17 25.91
Male 55-64 years 656 7.47 33.38
Male 65-74 years 628 7.15 40.53

Male 75 years and over 452 5.15 45.68
Female 16-24 years 415 4.73 50.41
Female 25-34 years 598 6.81 57.22
Female 35-44 years 713 8.12 65.35
Female 45-54 years 878 10.00 75.35
Female 55-64 years 802 9.14 84.48
Female 65-74 years 749 8.53 93.02

Female 75 years and over 613 6.98 100.00

Total 8,778 100.00

Next, we use dstat for design-based estimation and inference of the mean
values of BMI within each category of 𝑋 :

/* Mean "bmi", by super covariate X */
preserve
dstat summarize (mean) bmi, over(X) cformat(%5.2f) vce(svy, dots(10))
matrix B = e(b)'
matrix CI = e(ci)'
svmat B
svmat CI
egen g_sex = seq() in 1/14, from(0) to(1) block(7)
egen g_age = seq() in 1/14, from(1) to(7) block(1)
label define l_age 1 "16-24 yrs", modify
label define l_age 2 "25-34 yrs", modify
label define l_age 3 "35-44 yrs", modify
label define l_age 4 "45-54 yrs", modify
label define l_age 5 "55-64 yrs", modify
label define l_age 6 "65-74 yrs", modify
label define l_age 7 "75+ yrs", modify
label values g_age l_age
graph twoway ///

(rspike CI1 CI2 g_age if g_sex==0, lcolor("55 101 168") ///
lwidth(*5) ///
) ///
(scatter B g_age if g_sex==0, msymbol(O) msize(*1.5) ///
mcolor("55 101 168") ///
) ///
(rspike CI1 CI2 g_age if g_sex==1, lcolor("234 151 65") ///
lwidth(*5) ///
) ///
(scatter B g_age if g_sex==1, msymbol(O) msize(*1.5) ///
mcolor("234 151 65") ///
) ///
, ///
ytitle("BMI") xtitle("Age") xlabel(1(1)7, valuelabel) ///



the analysis of ita .l i data: a brief guide for stata users 107

legend(order(1 "Male" 3 "Female"))
restore
drop X

. /* Mean "bmi", by super covariate X */

. preserve

. dstat summarize (mean) bmi, over(X) cformat(%5.2f) vce(svy, dots(10))
(running dstat_svyr on estimation sample)

BRR replications (152)
1 2 3 4 5

...............

Survey: mean Number of obs = 7,311
Population size = 41,317,101
Replications = 152
Design df = 150

BRR *
bmi Coefficient std. err. [95% conf. interval]

X
Male 16-24 years 23.23 0.21 22.81 23.65
Male 25-34 years 24.17 0.15 23.87 24.48
Male 35-44 years 25.00 0.16 24.69 25.31
Male 45-54 years 25.54 0.15 25.25 25.83
Male 55-64 years 26.12 0.23 25.67 26.56
Male 65-74 years 27.06 0.22 26.63 27.50

Male 75 years and over 26.05 0.20 25.64 26.45
Female 16-24 years 20.96 0.19 20.58 21.35
Female 25-34 years 22.08 0.22 21.65 22.51
Female 35-44 years 22.97 0.16 22.65 23.29
Female 45-54 years 23.81 0.17 23.48 24.15
Female 55-64 years 25.05 0.19 24.67 25.42
Female 65-74 years 26.04 0.20 25.65 26.43

Female 75 years and over 25.70 0.26 25.18 26.23

. matrix B = e(b)´

. matrix CI = e(ci)´

. svmat B

. svmat CI

. egen g_sex = seq() in 1/14, from(0) to(1) block(7)
(8,764 missing values generated)

. egen g_age = seq() in 1/14, from(1) to(7) block(1)
(8,764 missing values generated)

. label define l_age 1 "16-24 yrs", modify

. label define l_age 2 "25-34 yrs", modify

. label define l_age 3 "35-44 yrs", modify

. label define l_age 4 "45-54 yrs", modify

. label define l_age 5 "55-64 yrs", modify

. label define l_age 6 "65-74 yrs", modify

. label define l_age 7 "75+ yrs", modify
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. label values g_age l_age

. graph twoway ///
> (rspike CI1 CI2 g_age if g_sex==0, lcolor("55 101 168") ///
> lwidth(*5) ///
> ) ///
> (scatter B g_age if g_sex==0, msymbol(O) msize(*1.5) ///
> mcolor("55 101 168") ///
> ) ///
> (rspike CI1 CI2 g_age if g_sex==1, lcolor("234 151 65") ///
> lwidth(*5) ///
> ) ///
> (scatter B g_age if g_sex==1, msymbol(O) msize(*1.5) ///
> mcolor("234 151 65") ///
> ) ///
> , ///
> ytitle("BMI") xtitle("Age") xlabel(1(1)7, valuelabel) ///
> legend(order(1 "Male" 3 "Female"))

. restore

. drop X

20

22

24

26

28

B
M

I

16-24 yrs 25-34 yrs 35-44 yrs 45-54 yrs 55-64 yrs 65-74 yrs 75+ yrs

Age

Male Female

On the one hand, our multiple regression analysis simply confirms the pre-
vious bivariate results (see Section 4.4): (a) on average, men’s BMI is higher
than women’s; and (b) BMI tends to increase with age, but decreases among
those over 75. On the other hand, however, the analysis reveals a finding that
the two separate bivariate analyses could not capture: the difference between
men and women gradually decreases with increasing age, until it disappears
from age 75 onward.

An alternative method of multiple regression analysis is the modeling ap-
proach, according to which the estimand of interest – i.e., the distribution
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of 𝑌 (or a summary measure of it) given 𝑋 – should be viewed as the sum of
several components: (a) a baseline value; (b) the main effects of the constituent
covariates of 𝑋 ; and (c) the interaction (joint) effects of those covariates.5 The
modeling approach requires that the values of all these components be first
calculated, and then appropriately combined to generate the estimates of the
quantities of interest.

Let us see how this works in our example. First, we can express symbolically
the (conditional) mean values of BMI given 𝑋 as follows:

𝐸(BMI|𝑋) = 𝑏0 + sex + agegroup + sex × agegroup

where 𝐸(BMI|𝑋) denotes the mean values of BMI given 𝑋 ; 𝑏0 denotes the base-
line value; sex denotes the main effect of variable Sex; agegroup denotes the
main effect of variable Age group; and sex × agegroup denotes the interaction
(joint) effect of the two variables. This equation represents a linear regression
model, whose components can be estimated in Stata using command regress

prefixed by svy:

/* Linear regression of "bmi" on "sex" and "agegroup" (full model) */
svy, dots(10) : regress bmi i.sex i.agegroup i.sex#i.agegroup, ///

cformat(%6.3f) noci

. /* Linear regression of "bmi" on "sex" and "agegroup" (full model) */

. svy, dots(10) : regress bmi i.sex i.agegroup i.sex#i.agegroup, ///
> cformat(%6.3f) noci
(running regress on estimation sample)

BRR replications (152)
1 2 3 4 5

...............

Survey: Linear regression Number of obs = 7,311
Population size = 41,317,101
Replications = 152
Design df = 150
F(13, 138) = 75.53
Prob > F = 0.0000
R-squared = 0.1725

BRR *
bmi Coefficient std. err. t P>|t|

sex
Female -2.264 0.295 -7.67 0.000

agegroup
25-34 years 0.946 0.214 4.42 0.000

5 It is important to stress that the term “effect” is used here in a strictly mathematical sense,
without any causal implication whatsoever.
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35-44 years 1.774 0.223 7.96 0.000
45-54 years 2.317 0.227 10.22 0.000
55-64 years 2.893 0.324 8.93 0.000
65-74 years 3.837 0.278 13.78 0.000

75 years and over 2.819 0.317 8.90 0.000

sex#agegroup
Female#25-34 years 0.171 0.362 0.47 0.637
Female#35-44 years 0.231 0.340 0.68 0.498
Female#45-54 years 0.535 0.296 1.81 0.072
Female#55-64 years 1.190 0.398 2.99 0.003
Female#65-74 years 1.242 0.424 2.93 0.004

Female#75 years and over 1.922 0.451 4.27 0.000

_cons 23.226 0.213 109.08 0.000

In the output generated by Stata, _cons represents the baseline value; the
coefficient under the heading sex represents themain effect of variable Sex; the
coefficients under the heading agegroup represent the main effect of variable
Age group; and the coefficients under the heading sex#agegroup represent the
interaction effect of the two variables.

By appropriately combining the values reported in the table above, it is
possible to obtain the design-based estimates of the quantities of interest, i.e.,
the 14 mean values of BMI given 𝑋 and the associated confidence intervals.
For this purpose, we can use the Stata command predictnl as follows:

/* Predicted mean values of "bmi", by "sex" and "agegroup" */
tempvar MU LB UB
predictnl `MU' = predict() if e(sample), ci(`LB' `UB') df(150)
label variable `LB' "95% lower bound"
label variable `UB' "95% upper bound"
table (agegroup) () (sex), stat(mean `MU' `LB' `UB') nototal ///

nformat(%5.2f)

. /* Predicted mean values of "bmi", by "sex" and "agegroup" */

. tempvar MU LB UB

. predictnl ˋMU´ = predict() if e(sample), ci(ˋLB´ ˋUB´) df(150)
(1,467 missing values generated)
note: confidence intervals calculated using t(150) critical values.

. label variable ˋLB´ "95% lower bound"

. label variable ˋUB´ "95% upper bound"

. table (agegroup) () (sex), stat(mean ˋMU´ ˋLB´ ˋUB´) nototal ///
> nformat(%5.2f)

Sex = Male

Prediction 95% lower bound 95% upper bound

Age group
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16-24 years 23.23 22.81 23.65
25-34 years 24.17 23.87 24.48
35-44 years 25.00 24.69 25.31
45-54 years 25.54 25.25 25.83
55-64 years 26.12 25.67 26.56
65-74 years 27.06 26.63 27.50
75 years and over 26.05 25.64 26.45

Sex = Female

Prediction 95% lower bound 95% upper bound

Age group
16-24 years 20.96 20.58 21.35
25-34 years 22.08 21.65 22.51
35-44 years 22.97 22.65 23.29
45-54 years 23.81 23.48 24.15
55-64 years 25.05 24.67 25.42
65-74 years 26.04 25.65 26.43
75 years and over 25.70 25.18 26.23

It is worth noting that, in this example, the design-based estimates of the
quantities of interest obtained by the modeling approach exactly match those
generated by the cross-classification approach. This is because, in general, the
cross-classification approach is implicitly equivalent to a saturated regression
model, i.e., a regression model that, in addition to the indispensable baseline
value andmain effects of the chosen covariates, includes all possible interaction
effects among such covariates. Now, the linear regression model used in our
example is precisely a saturated model because, apart from the baseline value
and the main effects of sex and age group, it includes the interaction effect
between these two variables – the only one possible given the scope of the
analysis.6

Its equivalence to the saturated model, together with the practical difficul-
ties that arise as the number of covariates included in the analysis increases,
makes the cross-classification approach unsuitable for most situations. Mod-
eling, on the other hand, is very flexible and can be applied to any regression
analysis. The strengths of this approach are particularly evident in analyses
involving many covariates, where most interaction effects (especially those of
a higher order) make a negligible contribution to determining the estimands

6 Different definitions of a saturated model exist in the literature (cf. Bellocco and Algeri
2013). According to the one adopted here, we call saturated any regression model that
includes as many parameters as there are distinct covariate patterns. In our example, the
analysis involves 14 distinct covariate patterns, which is exactly the number of parameters
in the chosen linear regression model: one for the baseline value; one for the main effect of
sex; six for the main effect of age group; and six for the interaction effect between the two
variables.
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of interest. In these cases, the modeling approach allows the analyst to specify
a regression model that omits the irrelevant interaction effects, thereby ob-
taining more efficient (and, possibly, less biased) estimates of the quantities of
interest. Thus, modeling can easily be considered as the preferred method for
multiple regression analysis.

When using the modeling approach, however, care should be taken to
specify a regression model that fits the observed data well, i.e., that generates
estimates of the quantities of interest consistent with the corresponding ob-
served values. In general, a regression model fits the observed data well when
three conditions are met: (a) the main effects of quantitative covariates are
specified with the correct functional form; (b) all relevant interaction effects
are included in the model; and (c) all irrelevant interaction effects are excluded
from the model.

Currently, there are not many tools for assessing the goodness of fit of
regression models in the analysis of complex survey data. In Stata it is possible
to use the linktest command, in combination with one or more adjusted
Wald tests. The former implements a test “that, conditional on the [model]
specification, the independent variables are specified incorrectly” (StataCorp
2021a, p. 1286). In this test, variable𝑌 is regressed on the linear prediction of the
model and its square: if the model is specified correctly – i.e., fits the observed
data well – then the squared linear prediction will have no explanatory power.

To see how this works in practice, let us resume our example. The re-
gression model we estimated is, as we have noted, a saturated model, so it
fits the observed data perfectly by definition. We can ask, however, whether
the interaction effect of sex and age group is actually relevant or can instead
be excluded from the model as insignificant. To answer this question, we
re-estimate the model without interaction and run command linktest im-
mediately afterwards:

/* Linear regression of "bmi" on "sex" and "agegroup" (main effects) */
svy, dots(10) : regress bmi i.sex i.agegroup, cformat(%6.3f) noci
linktest

. /* Linear regression of "bmi" on "sex" and "agegroup" (main effects) */

. svy, dots(10) : regress bmi i.sex i.agegroup, cformat(%6.3f) noci
(running regress on estimation sample)

BRR replications (152)
1 2 3 4 5

...............

Survey: Linear regression Number of obs = 7,311
Population size = 41,317,101
Replications = 152
Design df = 150
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F(7, 144) = 128.14
Prob > F = 0.0000
R-squared = 0.1658

BRR *
bmi Coefficient std. err. t P>|t|

sex
Female -1.502 0.122 -12.27 0.000

agegroup
25-34 years 1.031 0.180 5.71 0.000
35-44 years 1.884 0.170 11.08 0.000
45-54 years 2.571 0.176 14.62 0.000
55-64 years 3.475 0.210 16.51 0.000
65-74 years 4.455 0.196 22.74 0.000

75 years and over 3.881 0.256 15.18 0.000

_cons 22.858 0.159 143.52 0.000

. linktest
(running regress on estimation sample)

BRR replications (152)
1 2 3 4 5

.................................................. 50

.................................................. 100

.................................................. 150

..

Survey: Linear regression Number of obs = 7,311
Population size = 41,317,101
Replications = 152
Design df = 150
F(2, 149) = 432.10
Prob > F = 0.0000
R-squared = 0.1687

BRR *
bmi Coefficient std. err. t P>|t| [95% conf. interval]

_hat 4.629035 .9058621 5.11 0.000 2.839138 6.418933
_hatsq -.074157 .018528 -4.00 0.000 -.1107666 -.0375474
_cons -44.22219 11.0385 -4.01 0.000 -66.03322 -22.41115

As we can see, the squared linear prediction (referred to as _hatsq in the
output) is statistically significant, so we can conclude that the model without
interaction does not fit the observed data well.

The relevance of the interaction between sex and age group can be corrob-
orated by re-estimating the full (saturated) model and performing an adjusted
Wald test (Korn and Graubard 1999) on the interaction itself:
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/* Linear regression of "bmi" on "sex" and "agegroup" (full model) */
svy, dots(10) : regress bmi i.sex i.agegroup i.sex#i.agegroup, ///

cformat(%6.3f) noci
testparm i.sex#i.agegroup

. /* Linear regression of "bmi" on "sex" and "agegroup" (full model) */

. svy, dots(10) : regress bmi i.sex i.agegroup i.sex#i.agegroup, ///
> cformat(%6.3f) noci
(running regress on estimation sample)

BRR replications (152)
1 2 3 4 5

...............

Survey: Linear regression Number of obs = 7,311
Population size = 41,317,101
Replications = 152
Design df = 150
F(13, 138) = 75.53
Prob > F = 0.0000
R-squared = 0.1725

BRR *
bmi Coefficient std. err. t P>|t|

sex
Female -2.264 0.295 -7.67 0.000

agegroup
25-34 years 0.946 0.214 4.42 0.000
35-44 years 1.774 0.223 7.96 0.000
45-54 years 2.317 0.227 10.22 0.000
55-64 years 2.893 0.324 8.93 0.000
65-74 years 3.837 0.278 13.78 0.000

75 years and over 2.819 0.317 8.90 0.000

sex#agegroup
Female#25-34 years 0.171 0.362 0.47 0.637
Female#35-44 years 0.231 0.340 0.68 0.498
Female#45-54 years 0.535 0.296 1.81 0.072
Female#55-64 years 1.190 0.398 2.99 0.003
Female#65-74 years 1.242 0.424 2.93 0.004

Female#75 years and over 1.922 0.451 4.27 0.000

_cons 23.226 0.213 109.08 0.000

. testparm i.sex#i.agegroup

Adjusted Wald test

( 1) 1.sex#2.agegroup = 0
( 2) 1.sex#3.agegroup = 0
( 3) 1.sex#4.agegroup = 0
( 4) 1.sex#5.agegroup = 0
( 5) 1.sex#6.agegroup = 0
( 6) 1.sex#7.agegroup = 0

F( 6, 145) = 4.83
Prob > F = 0.0002



the analysis of ita .l i data: a brief guide for stata users 115

The test clearly confirms the significance of the interaction effect of sex and
age group, thereby supporting the choice of the saturated model.

If the chosen regressionmodel fits the observed data well, one can correctly
estimate its predictive power, i.e., the extent to which the main and interaction
effects included in the model “explain” the observed variation in variable 𝑌 .
For the linear regression model, a popular measure of predictive power is
the coefficient of determination 𝑅2, for which exists a design-based version
(Korn and Graubard 1999). As we can see from the most recent output, for our
saturated model the design-based 𝑅2 (referred to as R-squared in the output)
equals 0.1725, meaning that the main effects of sex and age group, along
with their interaction, account for just over 17% of the observed variation in
variable bmi. To quantify the uncertainty around this value, we can estimate
the corresponding design-based 95%Wald confidence interval as follows:

/* Predictive power of the full model (point estimate and 95% CI) */
svy brr R2 = e(r2), dots(10) cformat(%6.4f) : regress bmi i.sex ///

i.agegroup i.sex#i.agegroup if (bmi < .)

. /* Predictive power of the full model (point estimate and 95% CI) */

. svy brr R2 = e(r2), dots(10) cformat(%6.4f) : regress bmi i.sex ///
> i.agegroup i.sex#i.agegroup if (bmi < .)
(running regress on estimation sample)

BRR replications (152)
1 2 3 4 5

...............

Linear regression Number of obs = 7,311
Population size = 41,317,101
Replications = 152
Design df = 150

Command: regress bmi i.sex i.agegroup i.sex#i.agegroup if (bmi < .)
R2: e(r2)

BRR *
Coefficient std. err. t P>|t| [95% conf. interval]

R2 0.1725 0.0118 14.66 0.000 0.1493 0.1958

According to the estimated confidence interval, the predictive power of the
chosen regressionmodel – asmeasured by 𝑅2 – is likely to take a value between
14.9% and 19.6% in the target population.

It may sometimes be of interest to estimate the relative contribution of each
effect to the predictive power of a given regression model. One of the most
popular methods in this respect is dominance analysis, which uses an iterative
procedure to decompose the value of the chosen measure of predictive power
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into a set of additive components, one for each effect in the model of interest
(Budescu 1993).

In Stata, design-based dominance analysis can be performed using the
user-written command domin (Luchman 2021). In the absence of interaction
effects, the use of domin is simple and straightforward. On the other hand, if
the regression model of interest includes interactions, as in our example, a
more elaborate procedure must be followed. Specifically, we first use domin
to calculate the contribution of the main effects of sex and age group to the
predictive power of a model from which the interaction between the two vari-
ables has been excluded. We then calculate the contribution of the interaction
effect as the difference between the predictive power of the full (saturated)
model and the predictive power of the model without the interaction. Here is
the relevant Stata code:

/* Dominance analysis of the full linear regression model */
capture program drop dominance

program dominance, rclass
version 17.0
syntax anything [if] [iw pw]
if "`weight'" != "" {

local wgtexp "[`weight' `exp']"
}
tempname R2TOT R2SEX R2AGE R2INT
quietly {

regress bmi i.sex i.agegroup i.sex#i.agegroup `wgtexp'
scalar `R2TOT' = e(r2)
domin bmi `wgtexp', reg(regress) fitstat(e(r2)) ///

sets( (i.sex) (i.agegroup) )
scalar `R2SEX' = el(e(b),1,1)
scalar `R2AGE' = el(e(b),1,2)
scalar `R2INT' = `R2TOT' - `R2SEX' - `R2AGE'

}
return scalar r2tot = `R2TOT'
return scalar r2sex = `R2SEX'
return scalar r2age = `R2AGE'
return scalar r2int = `R2INT'
end

svy brr (Effects : sex = r(r2sex) agegroup = r(r2age) ///
sex_by_agegroup = r(r2int)) ///
(Total : Model = r(r2tot)) ///
, dots(10) cformat(%6.4f) : ///
dominance analysis if (bmi < .)
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. /* Dominance analysis of the full linear regression model */

. capture program drop dominance

.

. program dominance, rclass
1. version 17.0
2. syntax anything [if] [iw pw]
3. if "ˋweight´" != "" {
4. local wgtexp "[ˋweight´ ˋexp´]"
5. }
6. tempname R2TOT R2SEX R2AGE R2INT
7. quietly {
8. regress bmi i.sex i.agegroup i.sex#i.agegroup ˋwgtexp´
9. scalar ˋR2TOT´ = e(r2)
10. domin bmi ˋwgtexp´, reg(regress) fitstat(e(r2)) ///

> sets( (i.sex) (i.agegroup) )
11. scalar ˋR2SEX´ = el(e(b),1,1)
12. scalar ˋR2AGE´ = el(e(b),1,2)
13. scalar ˋR2INT´ = ˋR2TOT´ - ˋR2SEX´ - ˋR2AGE´
14. }
15. return scalar r2tot = ˋR2TOT´
16. return scalar r2sex = ˋR2SEX´
17. return scalar r2age = ˋR2AGE´
18. return scalar r2int = ˋR2INT´
19. end

.

. svy brr (Effects : sex = r(r2sex) agegroup = r(r2age) ///
> sex_by_agegroup = r(r2int)) ///
> (Total : Model = r(r2tot)) ///
> , dots(10) cformat(%6.4f) : ///
> dominance analysis if (bmi < .)
(running dominance on estimation sample)

BRR replications (152)
1 2 3 4 5

...............

BRR results Number of obs = 7,311
Population size = 41,317,101
Replications = 152
Design df = 150

Command: dominance analysis if (bmi < .)
[Effects]sex: r(r2sex)

[Effects]agegroup: r(r2age)
[Effects]sex_by_ageg~p: r(r2int)

[Total]Model: r(r2tot)

BRR *
Coefficient std. err. t P>|t| [95% conf. interval]

Effects
sex 0.0368 0.0065 5.65 0.000 0.0239 0.0496

agegroup 0.1291 0.0101 12.73 0.000 0.1090 0.1491
sex_by_agegroup 0.0067 0.0025 2.63 0.009 0.0017 0.0117

Total
Model 0.1725 0.0118 14.66 0.000 0.1493 0.1958
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As can be seen, the dominance analysis shows that most of the predictive
power of the regression model under consideration can be attributed to the
main effect of age group: out of a total 𝑅2 of 0.1725, the contribution of this
effect is 0.1291 (75% in relative terms). This is followed at some distance by
the contribution of the main effect of sex, which amounts to 0.0368 (21% in
relative terms), and the contribution of the interaction effect of sex and age
group, equal to 0.0067 (4%).

Multiple regression analysis can be performed on any type of 𝑌 variable.
For illustration, let us now consider the case of a dichotomous 𝑌 . Specifically,
suppose we are interested in describing whether and how, among individuals
aged 25-64, the probability of reporting low levels of overall life satisfaction
varies with three covariates: region of residence, educational degree and
employment status. Thirty-one respondents did not answer the question on
life satisfaction, so the number of valid cases for analysis in the age group of
interest is 5,459.

In Stata, we first create the new 𝑌 variable unsatisfied:

/* Create variable "unsatisfied" */
generate unsatisfied = (lifesat < 6) if (lifesat < .)
label variable unsatisfied "Overall life satisfaction < 6"
label define l_unsatisfied 0 "No", modify
label define l_unsatisfied 1 "Yes", modify
label values unsatisfied l_unsatisfied

. /* Create variable "unsatisfied" */

. generate unsatisfied = (lifesat < 6) if (lifesat < .)
(31 missing values generated)

. label variable unsatisfied "Overall life satisfaction < 6"

. label define l_unsatisfied 0 "No", modify

. label define l_unsatisfied 1 "Yes", modify

. label values unsatisfied l_unsatisfied

Here is the percent frequency distribution of the new variable in the age group
of interest:

/* Percent distribution of variable "unsatisfied" */
svy, subpop(if inrange(age,25,64)) dof(146) : ///

tabulate unsatisfied, percent se ci format(%5.1f)

. /* Percent distribution of variable "unsatisfied" */

. svy, subpop(if inrange(age,25,64)) dof(146) : ///
> tabulate unsatisfied, percent se ci format(%5.1f)
(running tabulate on estimation sample)
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Number of obs = 8,758
Population size = 50,032,626
Subpop. no. obs = 5,459
Subpop. size = 31,585,318
Replications = 152
Design df = 146

Overall
life
satisfact
ion < 6 percentage se lb ub

No 91.0 0.7 89.5 92.4
Yes 9.0 0.7 7.6 10.5

Total 100.0

Key: percentage = Cell percentage
se = Brr standard error of cell percentage
lb = Lower 95% confidence bound for cell percentage
ub = Upper 95% confidence bound for cell percentage

The quantities of interest in our analysis are the (conditional) probabilities
of reporting low levels of overall life satisfaction given the region of resi-
dence, the educational degree and the employment status. To estimate these
quantities, we use a binomial logistic regression model that expresses the target
probabilities as a function of the effects of the three selected covariates. We
start with an extensive specification that includes the baseline value, the main
effects of the covariates, and all possible two-way interaction effects. In Stata:

/* Binomial logistic regression model : Initial specification */
svy, subpop(if inrange(age,25,64)) dof(146) dots(10) : ///

logit unsatisfied i.region i.educ i.empstat ///
i.region#i.educ i.region#i.empstat i.educ#i.empstat, ///
cformat(%6.3f) noci

. /* Binomial logistic regression model : Initial specification */

. svy, subpop(if inrange(age,25,64)) dof(146) dots(10) : ///
> logit unsatisfied i.region i.educ i.empstat ///
> i.region#i.educ i.region#i.empstat i.educ#i.empstat, ///
> cformat(%6.3f) noci
(running logit on estimation sample)

BRR replications (152)
1 2 3 4 5

...............

note: 1b.region#3.empstat != 0 predicts failure perfectly;
1b.region#3.empstat omitted and 20 obs not used.

note: 3.region#3.empstat != 0 predicts failure perfectly;
3.region#3.empstat omitted and 22 obs not used.

note: 5.region#3.empstat != 0 predicts failure perfectly;
5.region#3.empstat omitted and 5 obs not used.

note: 2.educ#3.empstat != 0 predicts failure perfectly;
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2.educ#3.empstat omitted and 1 obs not used.
note: 4.region#3.empstat omitted because of collinearity.
note: 1b.educ#3.empstat != 0 predicts failure perfectly;

1b.educ#3.empstat omitted and 0 obs not used.
note: 4.educ#3.empstat omitted because of collinearity.

Survey: Logistic regression Number of obs = 8,710
Population size = 49,693,185
Subpop. no. obs = 5,411
Subpop. size = 31,245,877
Replications = 152
Design df = 146
F(46, 101) = 4.86
Prob > F = 0.0000

BRR *
unsatisfied Coefficient std. err. t P>|t|

region
North-East -0.774 0.947 -0.82 0.415

Center 0.227 1.094 0.21 0.836
South 0.362 0.777 0.47 0.642

Islands -2.392 1.012 -2.36 0.019

educ
Middle school 0.786 0.899 0.87 0.383

High school -0.050 0.923 -0.05 0.957
Tertiary degree -0.871 1.132 -0.77 0.443

empstat
Job seeker 2.956 0.829 3.56 0.000

Student 1.940 1.235 1.57 0.118
Retired 0.361 1.215 0.30 0.767

Homemaker/Other 1.314 0.919 1.43 0.155

region#educ
North-East#Middle school -0.255 0.973 -0.26 0.794
North-East#High school -0.222 1.022 -0.22 0.828

North-East#Tertiary degree -0.064 1.430 -0.04 0.964
Center#Middle school -0.571 1.170 -0.49 0.626
Center#High school -1.044 1.238 -0.84 0.400

Center#Tertiary degree 0.253 1.539 0.16 0.870
South#Middle school -0.031 0.661 -0.05 0.963
South#High school -0.096 0.738 -0.13 0.896

South#Tertiary degree 0.250 1.033 0.24 0.809
Islands#Middle school 1.141 0.867 1.32 0.190
Islands#High school 0.999 1.069 0.93 0.352

Islands#Tertiary degree 1.299 1.656 0.78 0.434

region#empstat
North-West#Student 0.000 (empty)

North-East#Job seeker 0.779 0.729 1.07 0.287
North-East#Student 0.447 1.883 0.24 0.813
North-East#Retired 2.868 1.227 2.34 0.021

North-East#Homemaker/Other 0.855 0.828 1.03 0.303
Center#Job seeker -1.264 0.520 -2.43 0.016

Center#Student 0.000 (empty)
Center#Retired 1.216 1.689 0.72 0.473

Center#Homemaker/Other 0.380 0.838 0.45 0.651
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South#Job seeker -0.635 0.357 -1.78 0.078
South#Student 0.000 (omitted)
South#Retired 1.256 1.230 1.02 0.309

South#Homemaker/Other 0.433 0.608 0.71 0.478
Islands#Job seeker 0.452 0.793 0.57 0.569

Islands#Student 0.000 (empty)
Islands#Retired 2.533 1.587 1.60 0.113

Islands#Homemaker/Other 1.061 0.854 1.24 0.216

educ#empstat
None/Elementary school#Student 0.000 (empty)

Middle school#Job seeker -1.384 0.792 -1.75 0.083
Middle school#Student 0.000 (empty)
Middle school#Retired -1.604 0.979 -1.64 0.103

Middle school#Homemaker/Other -1.301 0.771 -1.69 0.094
High school#Job seeker -1.133 0.772 -1.47 0.144

High school#Student -2.200 1.591 -1.38 0.169
High school#Retired -2.287 1.339 -1.71 0.090

High school#Homemaker/Other -1.579 0.812 -1.95 0.054
Tertiary degree#Job seeker -1.420 1.022 -1.39 0.167

Tertiary degree#Student 0.000 (omitted)
Tertiary degree#Retired 0.284 1.779 0.16 0.873

Tertiary degree#Homemaker/Other -1.341 1.012 -1.32 0.188

_cons -2.634 0.935 -2.82 0.006

The overall specification test (see above) suggests that this preliminary
model fits the observed data well:

/* Intial model specification test */
linktest

. /* Intial model specification test */

. linktest
(running logit on estimation sample)

BRR replications (152)
1 2 3 4 5

.................................................. 50

.................................................. 100

.................................................. 150

..

Survey: Logistic regression Number of obs = 8,710
Population size = 49,693,185
Subpop. no. obs = 5,411
Subpop. size = 31,245,877
Replications = 152
Design df = 150
F(2, 149) = 69.48
Prob > F = 0.0000

BRR *
unsatisfied Coefficient std. err. t P>|t| [95% conf. interval]

_hat 1.156245 .2515863 4.60 0.000 .6591342 1.653356
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_hatsq .0384447 .0599678 0.64 0.522 -.0800461 .1569354
_cons .1234104 .2670881 0.46 0.645 -.4043304 .6511511

However, the model may be overspecified, i.e., it may include one or more
irrelevant interaction effects. Therefore, we perform an adjusted Wald test on
each of the three interactions included in the model:

/* Adjusted Wald tests of interaction effects */
testparm i.region#i.educ
testparm i.region#i.empstat
testparm i.educ#i.empstat

. /* Adjusted Wald tests of interaction effects */

. testparm i.region#i.educ

Adjusted Wald test

( 1) [unsatisfied]2.region#2.educ = 0
( 2) [unsatisfied]2.region#3.educ = 0
( 3) [unsatisfied]2.region#4.educ = 0
( 4) [unsatisfied]3.region#2.educ = 0
( 5) [unsatisfied]3.region#3.educ = 0
( 6) [unsatisfied]3.region#4.educ = 0
( 7) [unsatisfied]4.region#2.educ = 0
( 8) [unsatisfied]4.region#3.educ = 0
( 9) [unsatisfied]4.region#4.educ = 0
(10) [unsatisfied]5.region#2.educ = 0
(11) [unsatisfied]5.region#3.educ = 0
(12) [unsatisfied]5.region#4.educ = 0

F( 12, 135) = 0.64
Prob > F = 0.8033

. testparm i.region#i.empstat

Adjusted Wald test

( 1) [unsatisfied]2.region#2.empstat = 0
( 2) [unsatisfied]2.region#3.empstat = 0
( 3) [unsatisfied]2.region#4.empstat = 0
( 4) [unsatisfied]2.region#5.empstat = 0
( 5) [unsatisfied]3.region#2.empstat = 0
( 6) [unsatisfied]3.region#4.empstat = 0
( 7) [unsatisfied]3.region#5.empstat = 0
( 8) [unsatisfied]4.region#2.empstat = 0
( 9) [unsatisfied]4.region#4.empstat = 0
(10) [unsatisfied]4.region#5.empstat = 0
(11) [unsatisfied]5.region#2.empstat = 0
(12) [unsatisfied]5.region#4.empstat = 0
(13) [unsatisfied]5.region#5.empstat = 0

F( 13, 134) = 1.71
Prob > F = 0.0648

. testparm i.educ#i.empstat

Adjusted Wald test

( 1) [unsatisfied]2.educ#2.empstat = 0
( 2) [unsatisfied]2.educ#4.empstat = 0
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( 3) [unsatisfied]2.educ#5.empstat = 0
( 4) [unsatisfied]3.educ#2.empstat = 0
( 5) [unsatisfied]3.educ#3.empstat = 0
( 6) [unsatisfied]3.educ#4.empstat = 0
( 7) [unsatisfied]3.educ#5.empstat = 0
( 8) [unsatisfied]4.educ#2.empstat = 0
( 9) [unsatisfied]4.educ#4.empstat = 0
(10) [unsatisfied]4.educ#5.empstat = 0

F( 10, 137) = 0.87
Prob > F = 0.5661

As can be seen, all three interaction effects are not significant and can therefore
be omitted from the regression model:

/* Binomial logistic regression model : Final specification */
svy, subpop(if inrange(age,25,64)) dof(146) dots(10) : ///

logit unsatisfied i.region i.educ i.empstat, ///
cformat(%6.3f) noci baselevels

linktest

. /* Binomial logistic regression model : Final specification */

. svy, subpop(if inrange(age,25,64)) dof(146) dots(10) : ///
> logit unsatisfied i.region i.educ i.empstat, ///
> cformat(%6.3f) noci baselevels
(running logit on estimation sample)

BRR replications (152)
1 2 3 4 5

...............

Survey: Logistic regression Number of obs = 8,758
Population size = 50,032,626
Subpop. no. obs = 5,459
Subpop. size = 31,585,318
Replications = 152
Design df = 146
F(11, 136) = 14.37
Prob > F = 0.0000

BRR *
unsatisfied Coefficient std. err. t P>|t|

region
North-West 0.000 (base)
North-East -0.547 0.300 -1.83 0.070

Center -0.438 0.274 -1.60 0.113
South 0.326 0.245 1.33 0.186

Islands -0.810 0.398 -2.04 0.043

educ
None/Elementary school 0.000 (base)

Middle school -0.282 0.290 -0.97 0.334
High school -1.225 0.296 -4.14 0.000

Tertiary degree -1.556 0.390 -3.99 0.000

empstat
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Employed 0.000 (base)
Job seeker 1.378 0.167 8.23 0.000

Student -0.014 0.750 -0.02 0.985
Retired 0.391 0.336 1.16 0.247

Homemaker/Other 0.476 0.196 2.43 0.016

_cons -1.664 0.328 -5.07 0.000

. linktest
(running logit on estimation sample)

BRR replications (152)
1 2 3 4 5

.................................................. 50

.................................................. 100

.................................................. 150

..

Survey: Logistic regression Number of obs = 8,758
Population size = 50,032,626
Subpop. no. obs = 5,459
Subpop. size = 31,585,318
Replications = 152
Design df = 150
F(2, 149) = 56.10
Prob > F = 0.0000

BRR *
unsatisfied Coefficient std. err. t P>|t| [95% conf. interval]

_hat .8114992 .2724867 2.98 0.003 .2730912 1.349907
_hatsq -.0471518 .07092 -0.66 0.507 -.187283 .0929793
_cons -.1512053 .287558 -0.53 0.600 -.7193926 .416982

We can now use the results of the final regression model to estimate the
conditional probabilities of interest, one for each possible covariate pattern.
To do this, we first use the command collapse to create a dataset with all
possible covariate patterns:

/* Create covariate pattern dataset */
collapse unsatisfied, by(region educ empstat)
summarize

. /* Create covariate pattern dataset */

. collapse unsatisfied, by(region educ empstat)

. summarize

Variable Obs Mean Std. dev. Min Max

region 97 2.989691 1.425182 1 5
educ 97 2.546392 1.108872 1 4

empstat 97 3 1.443376 1 5
unsatisfied 97 .0991172 .1403503 0 1
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Although there are 100 possible covariate patterns (five regions times four
educational degrees times five employment conditions), the resulting dataset
contains only 97 of them – three of the possible covariate patterns are not
represented in the working sample. We generate the three missing covariate
patterns using the command fillin:

/* Complete covariate pattern dataset */
fillin region educ empstat
drop _fillin
summarize

. /* Complete covariate pattern dataset */

. fillin region educ empstat

. drop _fillin

. summarize

Variable Obs Mean Std. dev. Min Max

region 100 3 1.421338 1 5
educ 100 2.5 1.123666 1 4

empstat 100 3 1.421338 1 5
unsatisfied 97 .0991172 .1403503 0 1

Finally, we use the command predict to estimate the conditional probabilities
of interest and the associated design-based 95% logit-transformed confidence
intervals:

/* Estimate conditional probabilities and 95% CIs */
egen CP = group(region educ empstat), label
predict PI
predict XB, xb
predict SE, stdp
generate LB = XB - invt(146,0.975) * SE
replace LB = invlogit(LB)
generate UB = XB + invt(146,0.975) * SE
replace UB = invlogit(UB)
keep CP PI LB UB
label variable CP "Covariate pattern"
label variable PI "Probability"
label variable LB "95% lower bound"
label variable UB "95% upper bound"
format PI LB UB %5.3f
gsort -PI
describe

. /* Estimate conditional probabilities and 95% CIs */

. egen CP = group(region educ empstat), label

. predict PI
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(option pr assumed; Pr(unsatisfied))

. predict XB, xb

. predict SE, stdp

. generate LB = XB - invt(146,0.975) * SE

. replace LB = invlogit(LB)
(100 real changes made)

. generate UB = XB + invt(146,0.975) * SE

. replace UB = invlogit(UB)
(100 real changes made)

. keep CP PI LB UB

. label variable CP "Covariate pattern"

. label variable PI "Probability"

. label variable LB "95% lower bound"

. label variable UB "95% upper bound"

. format PI LB UB %5.3f

. gsort -PI

. describe

Contains data
Observations: 100

Variables: 4

Variable Storage Display Value
name type format label Variable label

CP float %49.0g CP Covariate pattern
PI float %5.3f Probability
LB float %5.3f 95% lower bound
UB float %5.3f 95% upper bound

Sorted by:
Note: Dataset has changed since last saved.

The resulting dataset contains the design-based estimates of all quantities
of interest. For example, here are the estimates for the covariate patterns
characterized by the ten highest and ten lowest probabilities of reporting low
levels of overall life satisfaction:

/* Display select estimates */
clist CP PI LB UB in 1/10, noobs
clist CP PI LB UB in -10/l, noobs

. /* Display select estimates */

. clist CP PI LB UB in 1/10, noobs

CP PI LB UB
South None/Elementary school Job seeker 0.510 0.328 0.689

South Middle school Job seeker 0.440 0.332 0.554
North-West None/Elementary school Job seeker 0.429 0.264 0.611

North-West Middle school Job seeker 0.362 0.267 0.469
Center None/Elementary school Job seeker 0.327 0.194 0.494
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North-East None/Elementary school Job seeker 0.303 0.157 0.502
South None/Elementary school Homemaker/Other 0.297 0.177 0.454

South None/Elementary school Retired 0.279 0.159 0.443
Center Middle school Job seeker 0.268 0.188 0.366

Islands None/Elementary school Job seeker 0.250 0.119 0.452

. clist CP PI LB UB in -10/l, noobs

CP PI LB UB
Islands Tertiary degree Homemaker/Other 0.028 0.011 0.067

Islands Tertiary degree Retired 0.026 0.009 0.073
Center Tertiary degree Employed 0.025 0.012 0.051
Center Tertiary degree Student 0.025 0.005 0.108
Islands High school Employed 0.024 0.012 0.050
Islands High school Student 0.024 0.005 0.112

North-East Tertiary degree Employed 0.023 0.011 0.044
North-East Tertiary degree Student 0.022 0.005 0.101
Islands Tertiary degree Employed 0.017 0.008 0.040
Islands Tertiary degree Student 0.017 0.003 0.088

As can be seen, at one end of the range we have those living in the mainland
regions of the South, poorly educated and unemployed, with an estimated
probability of being unsatisfied at 51% (95% confidence interval: 32.8-68.9).
At the other end we find people residing in Sicily or Sardinia who have a
university degree and are still studying, with an estimated probability of
discontent equal to 1.7% (95% confidence interval: 0.3-8.8).

To conclude the example, we use dominance analysis to estimate the relative
contribution of each covariate to the predictive power of the chosen regression
model, as measured by McFadden’s (1974) pseudo 𝑅2:

/* Dominance analysis of the regression model */
use "itali.dta", clear
generate unsatisfied = (lifesat < 6) if (lifesat < .)
svy brr _b, subpop(if inrange(age,25,64)) dof(146) ///

dots(10) cformat(%6.4f) : domin unsatisfied ///
if (unsatisfied < .), reg(logit) fitstat(e(r2_p)) ///
sets( (i.region) (i.educ) (i.empstat) )

nlcom _b[set1] + _b[set2] + _b[set3], cformat(%6.4f)

. /* Dominance analysis of the regression model */

. use "itali.dta", clear

. generate unsatisfied = (lifesat < 6) if (lifesat < .)
(31 missing values generated)

. svy brr _b, subpop(if inrange(age,25,64)) dof(146) ///
> dots(10) cformat(%6.4f) : domin unsatisfied ///
> if (unsatisfied < .), reg(logit) fitstat(e(r2_p)) ///
> sets( (i.region) (i.educ) (i.empstat) )
(running domin on estimation sample)

BRR replications (152)
1 2 3 4 5

...............
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Dominance analysis Number of obs = 8,747
Population size = 49,964,026
Subpop. no. obs = 5,459
Subpop. size = 31,585,318
Replications = 152
Design df = 146

BRR *
unsatisfied Coefficient std. err. t P>|t| [95% conf. interval]

set1 0.0246 0.0106 2.33 0.021 0.0037 0.0456
set2 0.0437 0.0102 4.30 0.000 0.0236 0.0637
set3 0.0377 0.0084 4.49 0.000 0.0211 0.0543

. nlcom _b[set1] + _b[set2] + _b[set3], cformat(%6.4f)

_nl_1: _b[set1] + _b[set2] + _b[set3]

unsatisfied Coefficient Std. err. z P>|z| [95% conf. interval]

_nl_1 0.1060 0.0187 5.65 0.000 0.0693 0.1427

The Stata output shows that the predictive power of the model is 0.1060. The
largest contribution to this value comes from the main effect of educational
degree, and amounts to 0.0437 (41% in relative terms). This is closely followed
by the contribution of the main effect of employment status at 0.0377 (36%
of the total) and the contribution of the main effect of region of residence at
0.0246 (23%). It should be noted that the contributions of the three covariates
to the predictive power of the model appear to be essentially equivalent when
estimation uncertainty is taken into account. This equality is confirmed by
the following adjusted Wald test:

/* Dominance analysis : Test of equality of contributions */
test _b[set1] = _b[set2] = _b[set3]

. /* Dominance analysis : Test of equality of contributions */

. test _b[set1] = _b[set2] = _b[set3]

Adjusted Wald test

( 1) set1 - set2 = 0
( 2) set1 - set3 = 0

F( 2, 145) = 1.02
Prob > F = 0.3644



the analysis of ita .l i data: a brief guide for stata users 129

4.6. Treatment Effect Estimation

The purpose of treatment effect estimation is to evaluate the impact of a given
treatment or intervention or exposure on an outcome of interest. In practice,
this amounts to estimating the extent to which a change in a treatment variable
𝑇 causes a change in an outcome variable 𝑌 .7

Many studies estimate the treatment effects of interest using observational
data collected in complex surveys. Often, however, they do so without due
consideration of all the elements of the survey design, resulting in biased
estimates of both the quantities of interest and the uncertainty surrounding
them (Lenis et al. 2019; Levin and Sinclair 2018). The implication should be
clear: for sample estimates of treatment effects to be generalizable to the entire
target population, these estimates must be obtained by applying the rules of
design-based estimation and inference.

Although Stata has several commands for treatment effect estimation, most
are not tailored to the design-based analysis of complex survey data. A notable
exception is the user-written command kmatch (Jann 2017), which allows
for all elements of complex survey designs and provides many treatment
effect estimators, including multivariate-distance matching, propensity-score
matching, coarsened exact matching, entropy balance, inverse probability
weighting, and regression adjustment (Hainmueller 2012; Iacus et al. 2012;
Imbens and Rubin 2015; Rosenbaum 2020; Stuart 2010).

In the following, we illustrate the main features of kmatch using a toy
example, which consists in estimating the effect of pre-school attendance on
future chances of obtaining a university degree. Since college studies in Italy
take place, on average, between the ages of 19 and 24, we will only look at
individuals who are 25 years old or older. Seventy-three respondents in the
age group of interest did not answer the question on pre-school attendance,
so the number of valid cases for analysis is 7,848.

In our working dataset, the treatment is represented by variable preschool:

/* Percent distribution of treatment variable "preschool" */
svy, subpop(if age >= 25) dof(147) : ///

tabulate preschool, percent se ///
ci format(%5.1f)

. /* Percent distribution of treatment variable "preschool" */

. svy, subpop(if age >= 25) dof(147) : ///

7 In the following discussion, the expression “treatment variable” is used as a general term
to refer to any variable that represents two or more alternative treatments, interventions,
or exposures being compared.
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> tabulate preschool, percent se ///
> ci format(%5.1f)
(running tabulate on estimation sample)

Number of obs = 8,705
Population size = 49,769,079
Subpop. no. obs = 7,848
Subpop. size = 44,839,255
Replications = 152
Design df = 147

Attended
pre-prima
ry school
1+ years percentage se lb ub

No 38.7 1.4 35.9 41.6
Yes 61.3 1.4 58.4 64.1

Total 100.0

Key: percentage = Cell percentage
se = Brr standard error of cell percentage
lb = Lower 95% confidence bound for cell percentage
ub = Upper 95% confidence bound for cell percentage

The outcome variable 𝑌 , on the other hand, is generated as follows:

/* Generate outcome variable Y */
generate Y = (educ == 4)
label variable Y "University degree"
label define l_Y 0 "No", modify
label define l_Y 1 "Yes", modify
label values Y l_Y

/* Percent distribution of outcome variable Y */
svy, subpop(if age >= 25) dof(147) : ///

tabulate Y if (preschool < .), ///
percent se ci format(%5.1f)

. /* Generate outcome variable Y */

. generate Y = (educ == 4)

. label variable Y "University degree"

. label define l_Y 0 "No", modify

. label define l_Y 1 "Yes", modify

. label values Y l_Y

.

. /* Percent distribution of outcome variable Y */

. svy, subpop(if age >= 25) dof(147) : ///
> tabulate Y if (preschool < .), ///
> percent se ci format(%5.1f)
(running tabulate on estimation sample)

Number of obs = 8,702
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Population size = 49,747,623
Subpop. no. obs = 7,848
Subpop. size = 44,839,255
Replications = 152
Design df = 147

Universit
y degree percentage se lb ub

No 83.5 0.2 83.2 83.8
Yes 16.5 0.2 16.2 16.8

Total 100.0

Key: percentage = Cell percentage
se = Brr standard error of cell percentage
lb = Lower 95% confidence bound for cell percentage
ub = Upper 95% confidence bound for cell percentage

Finally, we select three control variables: sex, age, and current region of resi-
dence – the latter used as a proxy for region of residence during pre-school
age. Based on the results of preliminary data inspection, both age and age
squared will be included in the analysis.

Since kmatch does not support the svy prefix, prior to starting the analysis
wemust globally change the survey design settings by entering the appropriate
number of design degrees of freedom for the subpopulation of interest (see
Table 4.3):

/* Adjust number of design degrees of freedom */
svyset, dof(147) noclear

. /* Adjust number of design degrees of freedom */

. svyset, dof(147) noclear

Sampling weights: fiw
VCE: brr
MSE: on

BRR weights: brr_iw_1 .. brr_iw_152
Fay´s adjustment: .5

Design df: 147
Single unit: missing

Strata 1: <one>
Sampling unit 1: <observations>

FPC 1: <zero>

Now we are ready for the analysis. First, we estimate the naive average
treatment effect, which is the simple bivariate association between treatment
and outcome:
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/* Estimate the naive average treatment effect */
kmatch ra preschool (Y) if (preschool < .), svy ///

subpop(if age >= 25) po nomtable cformat(%6.4f)

. /* Estimate the naive average treatment effect */

. kmatch ra preschool (Y) if (preschool < .), svy ///
> subpop(if age >= 25) po nomtable cformat(%6.4f)
(running kmatch on estimation sample)

BRR replications (152)
1 2 3 4 5

.................................................. 50

.................................................. 100

.................................................. 150

..

Regression adjustment Number of obs = 8,702
Population size = 49,747,623
Subpop. no. obs = 7,848
Subpop. size = 44,839,255
Replications = 152
Design df = 147

Treatment : preschool = 1

Treatment-effects estimation

BRR *
Y Coefficient std. err. t P>|t| [95% conf. interval]

ATE 0.0952 0.0132 7.19 0.000 0.0690 0.1214
Y1 0.2019 0.0054 37.63 0.000 0.1913 0.2125
Y0 0.1067 0.0084 12.67 0.000 0.0900 0.1233

The output returns three relevant pieces of information: (a) the proportion of
individuals with pre-school experience who have earned a university degree
(referred to as Y1 in the output); (b) the proportion of individuals without
pre-school experience who have earned a university degree (referred to as Y0
in the output); and (c) the difference between the two proportions (referred to
as ATE in the output). The latter is the estimate of the naive average treatment
effect. As can be seen, at the bivariate level, pre-school attendance appears to
have a large effect on the probability of obtaining a university degree, almost
doubling it.

The naive average treatment effect is not a plausible estimator of the true
treatment effect of interest because there is good reason to believe that the
association between treatment and outcome is confounded by one or more
covariates. As anticipated, in this toy analysis we will consider only three
potential confounders: sex, age (in quadratic form), and region of residence.
Let us see what happens when we introduce these covariates into the analysis
and estimate the treatment effect of interest by simple regression adjustment:
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/* ATE, ATT, ATC estimation : Regression adjustment */
kmatch ra preschool (Y = i.sex c.age##c.age i.region) ///

if (preschool < .), svy subpop(if age >= 25) ///
ate att atc nomtable cformat(%6.4f)

. /* ATE, ATT, ATC estimation : Regression adjustment */

. kmatch ra preschool (Y = i.sex c.age##c.age i.region) ///
> if (preschool < .), svy subpop(if age >= 25) ///
> ate att atc nomtable cformat(%6.4f)
(running kmatch on estimation sample)

BRR replications (152)
1 2 3 4 5

.................................................. 50

.................................................. 100

.................................................. 150

..

Regression adjustment Number of obs = 8,702
Population size = 49,747,623
Subpop. no. obs = 7,848
Subpop. size = 44,839,255
Replications = 152
Design df = 147

Treatment : preschool = 1
RA equations: Y = i.sex age c.age#c.age i.region _cons

Treatment-effects estimation

BRR *
Y Coefficient std. err. t P>|t| [95% conf. interval]

ATE 0.0527 0.0145 3.63 0.000 0.0240 0.0813
ATT 0.0632 0.0168 3.77 0.000 0.0301 0.0963
ATC 0.0359 0.0121 2.97 0.003 0.0121 0.0598

The results of the analysis suggest two main conclusions. First, after adjusting
for the selected confounders, the average treatment effect (ATE) is significantly
lower than that estimated with the naive approach (0.0527 vs 0.0952). Second,
the average treatment effect is larger in treated individuals (ATT = 0.0632)
than in untreated individuals (ATC = 0.0359). In essence, this means that
the benefit of pre-school for those who did attend is greater than it would
have been for those who did not attend, had they actually attended. Such a
difference suggests the presence of some residual confounding not controlled
for in the analysis.

We now estimate the three variants of the treatment effect of interest using
multivariate-distance matching:

/* ATE, ATT, ATC estimation : Multivariate-distance matching */
kmatch md preschool i.sex c.age##c.age i.region (Y) ///
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if (preschool < .), svy subpop(if age >= 25) ///
ate att atc cformat(%6.4f)

. /* ATE, ATT, ATC estimation : Multivariate-distance matching */
. kmatch md preschool i.sex c.age##c.age i.region (Y) ///
> if (preschool < .), svy subpop(if age >= 25) ///
> ate att atc cformat(%6.4f)
(running kmatch on estimation sample)

BRR replications (152)
1 2 3 4 5

.................................................. 50

.................................................. 100

.................................................. 150

..

Multivariate-distance kernel matching Number of obs = 8,702
Population size = 49,747,623
Subpop. no. obs = 7,848
Subpop. size = 44,839,255
Replications = 152
Design df = 147

Kernel = epan
Treatment : preschool = 1
Metric : mahalanobis
Covariates : i.sex age c.age#c.age i.region

Matching statistics

Matched Controls Bandwidth
Yes No Total Used Unused Total

Treated 5008 11 5019 2805 24 2829 .5427061
Untreated 2825 4 2829 5018 1 5019 .9843852
Combined 7833 15 7848 7823 25 7848

Treatment-effects estimation

BRR *
Y Coefficient std. err. t P>|t| [95% conf. interval]

ATE 0.0556 0.0139 4.01 0.000 0.0282 0.0830
ATT 0.0623 0.0158 3.94 0.000 0.0311 0.0936
ATC 0.0451 0.0124 3.63 0.000 0.0205 0.0696

As can be seen, the estimates of all three effects are very similar to those
obtained by regression adjustment. However, the difference between ATT and
ATC now appears smaller.

In treatment effect estimation, the aim of matching is to achieve adequate
covariate balance, i.e., a high degree of similarity in the distribution of co-
variates across levels of the treatment variable. To assess covariate balance,
kmatch provides several postestimation commands. In particular, the com-
mand kmatch summarize calculates and displays standardized mean differ-
ences and variance ratios between treatment groups, before and aftermatching.
For example, here is the Stata code for checking covariate balance after ATE
estimation by multivariate-distance matching:
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/* Covariate balance check after MDM */
kmatch summarize, ate

. /* Covariate balance check after MDM */

. kmatch summarize, ate
(refitting the model using the generate() option)

Raw Matched(ATE)
Means Treated Untreated StdDif Treated Untreated StdDif

1.sex .5137917 .5365504 -.0455807 .523994 .5241263 -.000265
age 49.99612 61.95894 -.7454937 54.24867 54.69422 -.0277655

c.age#c.age 2739.692 4113.688 -.7420199 3220.006 3270.79 -.0274252
2.region .2039267 .1805181 .0594237 .1954115 .1960005 -.0014953
3.region .182249 .2181354 -.0897614 .1966968 .1963756 .0008033
4.region .2335238 .237381 -.00909 .2355975 .2358194 -.0005229
5.region .0991162 .1235522 -.0777342 .1063978 .1052945 .0035096

Raw Matched(ATE)
Variances Treated Untreated Ratio Treated Untreated Ratio

1.sex .2498596 .248752 1.004453 .249474 .2495069 .9998683
age 240.1283 274.8744 .8735927 277.1438 279.432 .9918114

c.age#c.age 2775171 4082389 .6797909 3571589 3601418 .9917173
2.region .162373 .1479836 1.097236 .1572572 .1576405 .9975683
3.region .149064 .1706127 .8736984 .1580387 .1578685 1.001078
4.region .1790261 .1810953 .9885741 .1801272 .1802729 .999192
5.region .08931 .1083254 .8244608 .0950962 .0942412 1.009073

As can be seen, matching performed very well in this case, almost completely
eliminating the differences between treatment groups in terms of the distri-
bution (mean and variance) of the covariates.

Finally, we repeat the estimation exercise using inverse probability weight-
ing by the propensity score:

/* ATE, ATT, ATC estimation : Inverse probability weighting */
kmatch ipw preschool i.sex c.age##c.age i.region (Y) ///

if (preschool < .), svy subpop(if age >= 25) ///
ate att atc cformat(%6.4f) nomtable

. /* ATE, ATT, ATC estimation : Inverse probability weighting */

. kmatch ipw preschool i.sex c.age##c.age i.region (Y) ///
> if (preschool < .), svy subpop(if age >= 25) ///
> ate att atc cformat(%6.4f) nomtable
(running kmatch on estimation sample)

BRR replications (152)
1 2 3 4 5

.................................................. 50

.................................................. 100

.................................................. 150

..
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Inverse probability weighting Number of obs = 8,702
Population size = 49,747,623
Subpop. no. obs = 7,848
Subpop. size = 44,839,255
Replications = 152
Design df = 147

Treatment : preschool = 1
Covariates : i.sex age c.age#c.age i.region
PS model : logit (pr)

Treatment-effects estimation

BRR *
Y Coefficient std. err. t P>|t| [95% conf. interval]

ATE 0.0523 0.0150 3.50 0.001 0.0227 0.0819
ATT 0.0620 0.0172 3.60 0.000 0.0279 0.0960
ATC 0.0370 0.0127 2.90 0.004 0.0118 0.0622

Again, the estimates of the treatment effect of interest and the overall conclu-
sions remain essentially unchanged. To assess covariate balance, in this case
– in addition to kmatch summarize – one can use postestimation plots that
show the degree of similarity in the distribution of propensity scores across
treatment groups, before and after weighting. For example:

/* Propensity score balance check after IPW */
kmatch density, ate lwidth(*4 *4) lcolor("55 101 168" "234 151 65")

. /* Propensity score balance check after IPW */

. kmatch density, ate lwidth(*4 *4) lcolor("55 101 168" "234 151 65")
(refitting the model using the generate() option)
(applying 0-1 boundary correction to density estimation of propensity score)
(bandwidth for propensity score = .05704863)
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The plots clearly show that the distribution of propensity scores after weight-
ing is essentially the same between the two treatment groups being compared.

4.7. Event History Analysis

The purpose of event history analysis – also known as survival analysis, duration
analysis, or transition analysis – is to describe the occurrence and timing of
various kinds of life course events. For simplicity, here we will just consider
single non-repeatable events, that is, events of a single type (or treated alike)
that can occur only once, such as entry into the first job, entry into the first
marriage, or birth of the first child (Vermunt and Moors 2005).

When studying such events, each unit in the sample is observed for a
fixed period of time [𝑡start, 𝑡end] , called the observation window. At start time
𝑡start, all units are in the same state, which we call the origin state. From this
moment on, the units are observed over a period – ending at time 𝑡end – during
which they are susceptible (at “risk”) of transitioning to another predefined
state, which we call the destination state. If such a transition occurs at some
time 𝑡obs within the observation window, then we say that the corresponding
sample unit has experienced the event of interest at time 𝑡obs. On the other
hand, if the transition does not occur during the observation period, the
corresponding unit is said to be right-censored at time 𝑡end; in this case, all we
can conclude is that the event of interest has not yet occurred by the end of
the observation window, and we do not know if and when it will occur in
the future. Determining whether the event of interest has occurred during
the observation period – and, if so, when – makes it possible to estimate the
distribution of the time of occurrence of the event itself, the variation in the
rate or risk of event occurrence over the observation period, and how these
phenomena vary according to the values of one or more covariates (Blossfeld
et al. 2019; Cleves et al. 2016).

Although event history analysis is a well-developed branch of statistics,
its application to complex survey data still lacks theoretical and software
development. Stata is no exception, with limited direct support for design-
based analysis of event history data. Still, with some tinkering, it is possible
to get Stata to perform a wide range of analyses of event history data that
properly account for survey design. In this section, we will explore what Stata
has to offer in this area.

For illustration, we will use as a running example the analysis of the entry
into the first job of women and men born between 1946 and 1995. In the
example, age is used as the time scale, so that 𝑡start corresponds to the year of
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birth, 𝑡end is the year of the interview, and 𝑡obs is the year in which respondents
with work experience entered their first job – that is, they transitioned from
the origin state “Never worked” to the destination state “Currently working”.
To limit the analysis to a reasonable age range for the event of interest, only
individuals who started working after age 10 are considered. For the same
reason, the maximum follow-up age is set at 50.

To begin, we create a newworking data file that contains all the information
needed to perform the analyses of interest:

/* Extract data of interest from file "household_grid.dta" */
use "household_grid.dta", clear
keep if (W19QUEST == 1)
keep W19CID W19BIRTH_Y W19INTSTR_Y
tempfile JOB
save `JOB', replace

/* Extract data of interest from file "job_history.dta" */
use "job_history.dta", clear
keep if (W19JH001 == 1)
keep if inlist(W19JHEMST,1,2)
tempvar MARK
sort W19CID W19JHSPL
by W19CID : generate `MARK' = (_n == 1)
keep if `MARK'
keep W19CID W19JHSTR_Y
generate status = 1
label variable status "Event occurred during observation period"
label define l_status 0 "No", modify
label define l_status 1 "Yes", modify
label values status l_status

/* Merge files */
merge n:1 W19CID using `JOB'
drop _merge
recode status (. = 0)

/* Generate time variables */
generate y_birth = W19BIRTH_Y
label variable y_birth "Year of birth"
generate y_job1entry = W19JHSTR_Y
label variable y_job1entry "Year of entry into the first job"
generate y_interview = W19INTSTR_Y
label variable y_interview "Year of interview"
generate y_lastobs = cond(status == 1, y_job1entry, y_interview)
label variable y_lastobs "Year of last obs. (event or censoring)"
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/* Adjust status variable */
replace status = 0 if (y_job1entry - y_birth) > 50

/* Generate variable "Birth cohort" */
generate bcohort = W19BIRTH_Y
recode bcohort (1921/1945 = 1) (1946/1955 = 2) (1956/1965 = 3) ///

(1966/1980 = 4) (1981/1995 = 5) (1996/2004 = 6)
label variable bcohort "Birth cohort"
label define l_bcohort 1 "1921-1945", modify
label define l_bcohort 2 "1946-1955", modify
label define l_bcohort 3 "1956-1965", modify
label define l_bcohort 4 "1966-1980", modify
label define l_bcohort 5 "1981-1995", modify
label define l_bcohort 6 "1996-2004", modify
label values bcohort l_bcohort

/* Create working data file */
keep W19CID bcohort status y_*
compress
save `JOB', replace
use "itali.dta", clear
merge 1:1 W19CID using `JOB'
drop _merge
drop agegroup empstat-bmi
move bcohort educ

/* svyset data file (with respondent's id) */
svyset W19CID [pw = fiw], vce(brr) brrweight(brr_iw_*) ///

fay(0.5) dof(150) mse

/* Save working data file */
compress
save "itali-eha.dta", replace

. /* Extract data of interest from file "household_grid.dta" */

. use "household_grid.dta", clear

. keep if (W19QUEST == 1)
(2,611 observations deleted)

. keep W19CID W19BIRTH_Y W19INTSTR_Y

. tempfile JOB

. save ˋJOB´, replace
(file /var/folders/ww/06m0tz_s5_q9_d1hm0cy2_gr0000gn/T//S_08839.000001 not found)
file /var/folders/ww/06m0tz_s5_q9_d1hm0cy2_gr0000gn/T//S_08839.000001 saved as .dta

format

.

. /* Extract data of interest from file "job_history.dta" */

. use "job_history.dta", clear

. keep if (W19JH001 == 1)
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(2,038 observations deleted)

. keep if inlist(W19JHEMST,1,2)
(9,096 observations deleted)

. tempvar MARK

. sort W19CID W19JHSPL

. by W19CID : generate ˋMARK´ = (_n == 1)

. keep if ˋMARK´
(5,778 observations deleted)

. keep W19CID W19JHSTR_Y

. generate status = 1

. label variable status "Event occurred during observation period"

. label define l_status 0 "No", modify

. label define l_status 1 "Yes", modify

. label values status l_status

.

. /* Merge files */

. merge n:1 W19CID using ˋJOB´
(variable W19CID was str6, now str7 to accommodate using data´s values)

Result Number of obs

Not matched 1,926
from master 0 (_merge==1)
from using 1,926 (_merge==2)

Matched 6,852 (_merge==3)

. drop _merge

. recode status (. = 0)
(1926 changes made to status)

.

. /* Generate time variables */

. generate y_birth = W19BIRTH_Y

. label variable y_birth "Year of birth"

. generate y_job1entry = W19JHSTR_Y
(1,926 missing values generated)

. label variable y_job1entry "Year of entry into the first job"

. generate y_interview = W19INTSTR_Y

. label variable y_interview "Year of interview"

. generate y_lastobs = cond(status == 1, y_job1entry, y_interview)

. label variable y_lastobs "Year of last obs. (event or censoring)"

.

. /* Generate variable "Birth cohort" */

. generate bcohort = W19BIRTH_Y

. recode bcohort (1921/1945 = 1) (1946/1955 = 2) (1956/1965 = 3) ///
> (1966/1980 = 4) (1981/1995 = 5) (1996/2004 = 6)
(8778 changes made to bcohort)

. label variable bcohort "Birth cohort"
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. label define l_bcohort 1 "1921-1945", modify

. label define l_bcohort 2 "1946-1955", modify

. label define l_bcohort 3 "1956-1965", modify

. label define l_bcohort 4 "1966-1980", modify

. label define l_bcohort 5 "1981-1995", modify

. label define l_bcohort 6 "1996-2004", modify

. label values bcohort l_bcohort

.

. /* Create working data file */

. keep W19CID bcohort status y_*

. compress
variable status was float now byte
variable y_birth was float now int
variable y_job1entry was float now int
variable y_interview was float now int
variable y_lastobs was float now int
variable bcohort was float now byte
variable W19CID was str7 now str6
(131,670 bytes saved)

. save ˋJOB´, replace
file /var/folders/ww/06m0tz_s5_q9_d1hm0cy2_gr0000gn/T//S_08839.000001 saved as .dta

format

. use "itali.dta", clear

. merge 1:1 W19CID using ˋJOB´

Result Number of obs

Not matched 0
Matched 8,778 (_merge==3)

. drop _merge

. drop agegroup empstat-bmi

. move bcohort educ

.

. /* svyset data file (with respondent´s id) */

. svyset W19CID [pw = fiw], vce(brr) brrweight(brr_iw_*) ///
> fay(0.5) dof(150) mse

Sampling weights: fiw
VCE: brr
MSE: on

BRR weights: brr_iw_1 .. brr_iw_152
Fay´s adjustment: .5

Design df: 150
Single unit: missing

Strata 1: <one>
Sampling unit 1: W19CID

FPC 1: <zero>

.

. /* Save working data file */

. compress
(0 bytes saved)
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. save "itali-eha.dta", replace
file itali-eha.dta saved

In principle, entry into the first job can occur on any day of the year, so
the time of occurrence of this event can be regarded as continuous. In our
working data file, however, all dates are interval-censored, that is, they are
grouped into discrete-time intervals – in this case, all of the same length (one
year). This means, for example, that if an event is recorded as occurring in
2016, all we know is that the event took place on some day between January 1
and December 31, 2016, but we do not know exactly which day (Cleves et al.
2016). Interval-censored event history data can be analyzed in three different
ways (Canette 2016): using continuous-time methods, using discrete-time
methods, or using dedicated methods. In the following, we will focus on
continuous-time methods.

To use continuous-timemethods, it is necessary that the dataset in memory
be stset, so that Stata knows, for each unit in the sample, whether and when
the event of interest occurred during the observation period (Cleves et al.
2016). In our example:

/* Open working dataset */
use "itali-eha.dta", clear

/* stset data in memory */
stset y_lastobs if inrange(y_birth,1946,1995) [pw = fiw], ///

id(W19CID) failure(status) origin(time y_birth) ///
enter(time y_birth + 10) exit(time y_birth + 50)

. /* Open working dataset */

. use "itali-eha.dta", clear

.

. /* stset data in memory */

. stset y_lastobs if inrange(y_birth,1946,1995) [pw = fiw], ///
> id(W19CID) failure(status) origin(time y_birth) ///
> enter(time y_birth + 10) exit(time y_birth + 50)

Survival-time data settings

ID variable: W19CID
Failure event: status!=0 & status<.

Observed time interval: (y_lastobs[_n-1], y_lastobs]
Enter on or after: time y_birth + 10
Exit on or before: time y_birth + 50
Time for analysis: (time-origin)

Origin: time y_birth
Weight: [pweight=fiw]

Keep observations
if exp: inrange(y_birth,1946,1995)

8,778 total observations
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1,929 ignored at outset because of if exp
45 observations end on or before enter()

6,804 observations remaining, representing
6,804 subjects
5,789 failures in single-failure-per-subject data
98,781 total analysis time at risk and under observation

At risk from t = 0
Earliest observed entry t = 10

Last observed exit t = 50

The Stata output informs us that 1,929 individuals were ignored because they
were born before or after the time period considered for the analysis (1946-
1995), while another 45 respondents were excluded because they reported
having started working before the lower age limit we set (11 years). Therefore,
the valid cases for analysis are 6,804. Of these, 5,789 (referred to as failures
in the output) started their first job during the follow-up period (ages 11 to 50),
whereas the remaining 1,015 are right-censored.

It is also worth noting that the command stset created five new variables.
Variable _t represents the analysis time, defined as the difference between
the year of entry into the first job and the year of birth for respondents with
work experience, and as the difference between the year of the interview
and the year of birth for respondents without work experience; values of _t
greater than the maximum follow-up age (50) were truncated at 50. Variable
_d represents the observation status and takes value 1 if the event of interest
occurred during the observation period, value 0 if the observation is right-
censored. Variable _origin represents the origin time and, in our example,
is just a copy of variable y_birth (year of birth). Variable _t0 represents the
entry time, which in our example is age 10. Finally, _st is a binary variable
that indicates which respondents are included in (value 1) or excluded from
(value 0) the analysis.

The key variable in event history analysis is the so-called survival time, that
is, the time spent by each individual in the origin state before transitioning to
the destination state. Formally, we can represent survival time as a positive
random variable 𝑇 with a given probability distribution. This distribution
can be described in various ways, but there are two functions most commonly
used for this purpose: the hazard function and the survival function (Blossfeld
et al. 2019; Cleves et al. 2016).

In our example, the hazard function ℎ(𝑡) can be properly interpreted as
the conditional probability that the event of interest will occur at age 𝑡, given
that it has not occurred at earlier ages. In turn, the survival function 𝑆(𝑡)
expresses the probability that the event of interest will occur after age 𝑡. The
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two functions are related as follows (Allison 1982):

𝑆(𝑡) =
𝑡∏

𝑗=11

(
1 − ℎ( 𝑗)

)
(4.1)

Note that the counter 𝑗 starts at 11, since in our example the observation period
is between ages 11 and 50 (see above).

In general, the starting point for any analysis of time-to-event data is what
we might call univariate event history analysis, which consists of estimating
the hazard function and the survival function for the entire target popula-
tion. In Stata, you can use the command sts graph to get a quick graphical
representation of the two functions:

/* Graphical representation of the (smoothed) hazard function */
sts graph, hazard noboundary ylabel(0(0.02)0.1, format(%4.2f)) ///

xtitle("Age") plotopts(lwidth(*4) lcolor("55 101 168")) ///
noshow

. /* Graphical representation of the (smoothed) hazard function */

. sts graph, hazard noboundary ylabel(0(0.02)0.1, format(%4.2f)) ///
> xtitle("Age") plotopts(lwidth(*4) lcolor("55 101 168")) ///
> noshow
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/* Graphical representation of the survival function */
sts graph, survival tmin(10) ylabel(0(0.2)1, format(%4.1f)) ///

xtitle("Age") plotopts(lwidth(*4) lcolor("55 101 168") ///
connect(direct)) noshow
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. /* Graphical representation of the survival function */

. sts graph, survival tmin(10) ylabel(0(0.2)1, format(%4.1f)) ///
> xtitle("Age") plotopts(lwidth(*4) lcolor("55 101 168") ///
> connect(direct)) noshow
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Alternatively, one can use the command sts generate to create two new
variables containing the estimates of ℎ(𝑡) and 𝑆(𝑡), and then use these variables
to graph the two functions:

/* Calculation and graphical representation of the hazard function */
sts generate h_t = h

graph twoway line h_t _t, sort title("Hazard function") ///
ytitle("") ylabel(0(0.05)0.15, format(%4.2f)) ///
xtitle("Age") lwidth(*4) lcolor("55 101 168")

. /* Calculation and graphical representation of the hazard function */

. sts generate h_t = h

.

. graph twoway line h_t _t, sort title("Hazard function") ///
> ytitle("") ylabel(0(0.05)0.15, format(%4.2f)) ///
> xtitle("Age") lwidth(*4) lcolor("55 101 168")
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/* Calculation and graphical representation of the survival function */
sts generate S_t = s

graph twoway line S_t _t, sort title("Survival function") ///
ytitle("") ylabel(0(0.2)1, format(%4.1f)) ///
xtitle("Age") lwidth(*4) lcolor("55 101 168")

. /* Calculation and graphical representation of the survival function */

. sts generate S_t = s

.

. graph twoway line S_t _t, sort title("Survival function") ///
> ytitle("") ylabel(0(0.2)1, format(%4.1f)) ///
> xtitle("Age") lwidth(*4) lcolor("55 101 168")
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From a design-based perspective, the approach just outlined provides
correct point estimates of ℎ(𝑡) and 𝑆(𝑡), but it does not allow for a correct
estimate of the uncertainty around the point estimates. To obtain such an
estimate, we must convert the data in memory into a person-time dataset, fit
an appropriate regression model to the latter, and use the resulting parameter
estimates to compute the quantities of interest. Here is one way to implement
this procedure in Stata:

/* Preserve data in memory */
preserve

/* Generate person-year dataset */
stsplit pyear, every(1)
replace pyear = pyear + 1

/* Design-based estimation of piecewise exponential regression model */
svy, dots(10) : streg ibn.pyear, distribution(exponential) nocons

/* Create dataset for estimation of quantities of interest */
collapse _st if _st, by(pyear _t)

/* Compute design-based point estimates (h_t_est) and corresponding
standard errors (h_t_se) of hazard function */

predictnl h_t_est = predict(hazard), se(h_t_se)

/* Compute lower (h_t_lb) and upper (h_t_ub) limits of design-based
95% confidence intervals around point estimates of hazard function
using logit transformation */

generate h_t_lb = logit(h_t_est) - ///
invt(140,0.975) * h_t_se / (h_t_est * (1 - h_t_est))

replace h_t_lb = invlogit(h_t_lb)
generate h_t_ub = logit(h_t_est) + ///

invt(140,0.975) * h_t_se / (h_t_est * (1 - h_t_est))
replace h_t_ub = invlogit(h_t_ub)

/* Compute design-based point estimates (S_t_est) and corresponding
variances (S_t_var) of survival function */

predictnl S_t_est = exp(sum(ln((1 - predict(hazard))))), ///
variance(S_t_var)

/* Compute lower (S_t_lb) and upper (S_t_ub) limits of design-based
95% confidence intervals around point estimates of survival function
using log-log transformation as per Heeringa et al. (2017) */

generate S_t_lb = ln(-ln(S_t_est)) + ///
invt(140,0.975) * sqrt(S_t_var / (S_t_est * ln(S_t_est))^2)

replace S_t_lb = exp(-exp(S_t_lb))
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generate S_t_ub = ln(-ln(S_t_est)) - ///
invt(140,0.975) * sqrt(S_t_var / (S_t_est * ln(S_t_est))^2)

replace S_t_ub = exp(-exp(S_t_ub))

/* Graphical representation of hazard function with 95% CI */
graph twoway ///

(rcap h_t_lb h_t_ub _t, color("55 101 168")) ///
(connected h_t_est _t, lwidth(*3) lcolor("55 101 168") ///
msize(*0.5) mlcolor("55 101 168") mfcolor(white)) ///
, ///
title("Hazard function") ///
subtitle("Design-based point estimates and" ///

"95% confidence intervals") ///
ytitle("") ylabel(0(0.05)0.20, format(%4.2f)) ///
xtitle("Age") xlabel(10(5)50) legend(off) ///
name(h_t, replace)

/* Graphical representation of survival function with 95% CI */
graph twoway ///

(rcap S_t_lb S_t_ub _t, color("55 101 168")) ///
(connected S_t_est _t, lwidth(*3) lcolor("55 101 168") ///
msize(*0.5) mlcolor("55 101 168") mfcolor(white)) ///
, ///
title("Survival function") ///
subtitle("Design-based point estimates and" ///

"95% confidence intervals") ///
ytitle("") ylabel(0(0.2)1, format(%4.1f)) ///
xtitle("Age") xlabel(10(5)50) legend(off) ///
name(S_t, replace)

/* Restore initial data */
restore

. /* Preserve data in memory */

. preserve

.

. /* Generate person-year dataset */

. stsplit pyear, every(1)
(91,977 observations (episodes) created)

. replace pyear = pyear + 1
(98,781 real changes made)

.

. /* Design-based estimation of piecewise exponential regression model */

. svy, dots(10) : streg ibn.pyear, distribution(exponential) nocons
(running streg on estimation sample)

BRR replications (152)
1 2 3 4 5

...............
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Survey: Exponential PH regression Number of obs = 100,755
Population size = 593,701,831
Replications = 152
Design df = 150
F(40, 111) = 507.45
Prob > F = 0.0000

BRR *
_t Haz. ratio std. err. t P>|t| [95% conf. interval]

pyear
11 .0056065 .0011741 -24.75 0.000 .0037068 .00848
12 .0032395 .0007124 -26.07 0.000 .0020978 .0050026
13 .0064593 .0009758 -33.38 0.000 .0047924 .008706
14 .0530156 .0039905 -39.02 0.000 .045689 .061517
15 .0472496 .0037119 -38.85 0.000 .0404561 .0551839
16 .0369719 .0032437 -37.59 0.000 .0310875 .0439701
17 .0423278 .0034216 -39.12 0.000 .0360793 .0496585
18 .0472997 .0032822 -43.97 0.000 .0412394 .0542505
19 .1302792 .0071732 -37.02 0.000 .1168494 .1452526
20 .1519202 .0070272 -40.74 0.000 .1386507 .1664596
21 .1178315 .0069758 -36.12 0.000 .1048235 .1324536
22 .1033709 .007537 -31.13 0.000 .0895016 .1193894
23 .0818448 .0055631 -36.82 0.000 .0715589 .0936092
24 .0964806 .0080258 -28.11 0.000 .081857 .1137166
25 .1087201 .0077208 -31.25 0.000 .0944866 .1250978
26 .1128701 .0082906 -29.70 0.000 .097622 .1304999
27 .0993032 .0071365 -32.14 0.000 .0861575 .1144547
28 .0795818 .0086754 -23.22 0.000 .0641605 .0987097
29 .0559872 .007698 -20.97 0.000 .0426677 .0734646
30 .068916 .010285 -17.92 0.000 .0513162 .0925521
31 .0534194 .0082423 -18.99 0.000 .0393818 .0724607
32 .0402557 .0081833 -15.80 0.000 .0269393 .0601548
33 .0412529 .0063362 -20.76 0.000 .0304545 .0558801
34 .0264036 .0070414 -13.63 0.000 .015589 .0447209
35 .0341247 .0066976 -17.21 0.000 .023155 .0502912
36 .0310608 .0072943 -14.78 0.000 .0195295 .0494008
37 .0165351 .0051482 -13.18 0.000 .0089378 .0305904
38 .014563 .0054239 -11.36 0.000 .0069767 .0303987
39 .0172591 .0050655 -13.83 0.000 .0096641 .0308231
40 .0222293 .0068856 -12.29 0.000 .0120537 .040995
41 .0172033 .0068508 -10.20 0.000 .0078322 .0377869
42 .0162665 .0055074 -12.16 0.000 .0083321 .0317565
43 .012999 .0052246 -10.81 0.000 .005875 .0287616
44 .0104696 .0043712 -10.92 0.000 .0045882 .0238898
45 .0225177 .0089398 -9.56 0.000 .0102764 .0493411
46 .0113316 .0060093 -8.45 0.000 .0039739 .0323122
47 .0162893 .0068114 -9.85 0.000 .0071298 .0372159
48 .0087496 .0050155 -8.27 0.000 .0028189 .0271574
49 .0081819 .0039056 -10.07 0.000 .0031859 .0210125
50 .0035235 .0027257 -7.30 0.000 .0007641 .0162483

.

. /* Create dataset for estimation of quantities of interest */

. collapse _st if _st, by(pyear _t)

.

. /* Compute design-based point estimates (h_t_est) and corresponding
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> standard errors (h_t_se) of hazard function */
. predictnl h_t_est = predict(hazard), se(h_t_se)

.

. /* Compute lower (h_t_lb) and upper (h_t_ub) limits of design-based
> 95% confidence intervals around point estimates of hazard function
> using logit transformation */
. generate h_t_lb = logit(h_t_est) - ///
> invt(140,0.975) * h_t_se / (h_t_est * (1 - h_t_est))

. replace h_t_lb = invlogit(h_t_lb)
(40 real changes made)

. generate h_t_ub = logit(h_t_est) + ///
> invt(140,0.975) * h_t_se / (h_t_est * (1 - h_t_est))

. replace h_t_ub = invlogit(h_t_ub)
(40 real changes made)

.

. /* Compute design-based point estimates (S_t_est) and corresponding
> variances (S_t_var) of survival function */
. predictnl S_t_est = exp(sum(ln((1 - predict(hazard))))), ///
> variance(S_t_var)

.

. /* Compute lower (S_t_lb) and upper (S_t_ub) limits of design-based
> 95% confidence intervals around point estimates of survival function
> using log-log transformation as per Heeringa et al. (2017) */
. generate S_t_lb = ln(-ln(S_t_est)) + ///
> invt(140,0.975) * sqrt(S_t_var / (S_t_est * ln(S_t_est))^2)

. replace S_t_lb = exp(-exp(S_t_lb))
(40 real changes made)

. generate S_t_ub = ln(-ln(S_t_est)) - ///
> invt(140,0.975) * sqrt(S_t_var / (S_t_est * ln(S_t_est))^2)

. replace S_t_ub = exp(-exp(S_t_ub))
(40 real changes made)

.

. /* Graphical representation of hazard function with 95% CI */

. graph twoway ///
> (rcap h_t_lb h_t_ub _t, color("55 101 168")) ///
> (connected h_t_est _t, lwidth(*3) lcolor("55 101 168") ///
> msize(*0.5) mlcolor("55 101 168") mfcolor(white)) ///
> , ///
> title("Hazard function") ///
> subtitle("Design-based point estimates and" ///
> "95% confidence intervals") ///
> ytitle("") ylabel(0(0.05)0.20, format(%4.2f)) ///
> xtitle("Age") xlabel(10(5)50) legend(off) ///
> name(h_t, replace)

.

. /* Graphical representation of survival function with 95% CI */

. graph twoway ///
> (rcap S_t_lb S_t_ub _t, color("55 101 168")) ///
> (connected S_t_est _t, lwidth(*3) lcolor("55 101 168") ///
> msize(*0.5) mlcolor("55 101 168") mfcolor(white)) ///
> , ///
> title("Survival function") ///
> subtitle("Design-based point estimates and" ///
> "95% confidence intervals") ///
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> ytitle("") ylabel(0(0.2)1, format(%4.1f)) ///
> xtitle("Age") xlabel(10(5)50) legend(off) ///
> name(S_t, replace)

.

. /* Restore initial data */

. restore
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Because it has been estimated using a separate parameter for each year, the
hazard function shown above appears rather noisy, with frequent changes in
direction that are implausible on a substantive level and can easily be attributed
to random variation. A smoother representation of the hazard function can
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be obtained by modeling time with an appropriate number of restricted cubic
splines (Royston and Lambert 2011). For example:

/* Preserve data in memory */
preserve

/* Generate person-semester dataset */
stsplit semester, every(0.5)
replace semester = semester + 0.5

/* Generate restricted cubic splines */
rcsgen semester, df(5) orthog gen(age_rcs)

/* Design-based estimation of exponential regression model */
svy, dots(10) : streg age_rcs*, distribution(exponential)

/* Create dataset for estimation of quantities of interest */
collapse _st if _st, by(_t age_rcs*)

/* Compute design-based point estimates (h_t_est) and corresponding
standard errors (h_t_se) of hazard function */

predictnl h_t_est = predict(hazard), se(h_t_se)

/* Compute lower (h_t_lb) and upper (h_t_ub) limits of design-based
95% confidence intervals around point estimates of hazard function
using logit transformation */

generate h_t_lb = logit(h_t_est) - ///
invt(140,0.975) * h_t_se / (h_t_est * (1 - h_t_est))

replace h_t_lb = invlogit(h_t_lb)
generate h_t_ub = logit(h_t_est) + ///

invt(140,0.975) * h_t_se / (h_t_est * (1 - h_t_est))
replace h_t_ub = invlogit(h_t_ub)

/* Compute design-based point estimates (S_t_est) and corresponding
variances (S_t_var) of survival function */

predictnl S_t_est = exp(sum(ln((1 - predict(hazard))))), ///
variance(S_t_var)

/* Compute lower (S_t_lb) and upper (S_t_ub) limits of design-based
95% confidence intervals around point estimates of survival function
using log-log transformation as per Heeringa et al. (2017) */

generate S_t_lb = ln(-ln(S_t_est)) + ///
invt(140,0.975) * sqrt(S_t_var / (S_t_est * ln(S_t_est))^2)

replace S_t_lb = exp(-exp(S_t_lb))
generate S_t_ub = ln(-ln(S_t_est)) - ///

invt(140,0.975) * sqrt(S_t_var / (S_t_est * ln(S_t_est))^2)
replace S_t_ub = exp(-exp(S_t_ub))
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/* Graphical representation of hazard function with 95% CI */
graph twoway ///

(rarea h_t_lb h_t_ub _t, color("55 101 168%10")) ///
(line h_t_est _t, lwidth(*2) lcolor("55 101 168")) ///
, ///
title("Hazard function") ///
subtitle("Design-based point estimates and" ///

"95% confidence intervals") ///
ytitle("") ylabel(0(0.05)0.20, format(%4.2f)) ///
xtitle("Age") xlabel(10(5)50) legend(off) ///
name(h_t, replace)

/* Graphical representation of survival function with 95% CI */
graph twoway ///

(rarea S_t_lb S_t_ub _t, color("55 101 168%10")) ///
(line S_t_est _t, lwidth(*2) lcolor("55 101 168")) ///
, ///
title("Survival function") ///
subtitle("Design-based point estimates and" ///

"95% confidence intervals") ///
ytitle("") ylabel(0(0.2)1, format(%4.1f)) ///
xtitle("Age") xlabel(10(5)50) legend(off) ///
name(S_t, replace)

/* Restore initial data */
restore

. /* Preserve data in memory */

. preserve

.

. /* Generate person-semester dataset */

. stsplit semester, every(0.5)
(190,758 observations (episodes) created)

. replace semester = semester + 0.5
(197,562 real changes made)

.

. /* Generate restricted cubic splines */

. rcsgen semester, df(5) orthog gen(age_rcs)
Variables age_rcs1 to age_rcs5 were created

.

. /* Design-based estimation of exponential regression model */

. svy, dots(10) : streg age_rcs*, distribution(exponential)
(running streg on estimation sample)

BRR replications (152)
1 2 3 4 5

...............

Survey: Exponential PH regression Number of obs = 199,536
Population size = 1,175,495,316
Replications = 152
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Design df = 150
F(5, 146) = 291.52
Prob > F = 0.0000

BRR *
_t Haz. ratio std. err. t P>|t| [95% conf. interval]

age_rcs1 1.288529 .057419 5.69 0.000 1.179926 1.407128
age_rcs2 2.958742 .1558475 20.59 0.000 2.666285 3.283277
age_rcs3 .5877044 .0401207 -7.79 0.000 .5135437 .6725745
age_rcs4 .9391254 .0250994 -2.35 0.020 .8908181 .9900522
age_rcs5 .8171342 .0139957 -11.79 0.000 .7899427 .8452616

_cons .032945 .0013717 -81.97 0.000 .0303433 .0357699

Note: _cons estimates baseline hazard.

.

. /* Create dataset for estimation of quantities of interest */

. collapse _st if _st, by(_t age_rcs*)

.

. /* Compute design-based point estimates (h_t_est) and corresponding
> standard errors (h_t_se) of hazard function */
. predictnl h_t_est = predict(hazard), se(h_t_se)

.

. /* Compute lower (h_t_lb) and upper (h_t_ub) limits of design-based
> 95% confidence intervals around point estimates of hazard function
> using logit transformation */
. generate h_t_lb = logit(h_t_est) - ///
> invt(140,0.975) * h_t_se / (h_t_est * (1 - h_t_est))

. replace h_t_lb = invlogit(h_t_lb)
(80 real changes made)

. generate h_t_ub = logit(h_t_est) + ///
> invt(140,0.975) * h_t_se / (h_t_est * (1 - h_t_est))

. replace h_t_ub = invlogit(h_t_ub)
(80 real changes made)

.

. /* Compute design-based point estimates (S_t_est) and corresponding
> variances (S_t_var) of survival function */
. predictnl S_t_est = exp(sum(ln((1 - predict(hazard))))), ///
> variance(S_t_var)

.

. /* Compute lower (S_t_lb) and upper (S_t_ub) limits of design-based
> 95% confidence intervals around point estimates of survival function
> using log-log transformation as per Heeringa et al. (2017) */
. generate S_t_lb = ln(-ln(S_t_est)) + ///
> invt(140,0.975) * sqrt(S_t_var / (S_t_est * ln(S_t_est))^2)

. replace S_t_lb = exp(-exp(S_t_lb))
(80 real changes made)

. generate S_t_ub = ln(-ln(S_t_est)) - ///
> invt(140,0.975) * sqrt(S_t_var / (S_t_est * ln(S_t_est))^2)

. replace S_t_ub = exp(-exp(S_t_ub))
(80 real changes made)

.

. /* Graphical representation of hazard function with 95% CI */
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. graph twoway ///
> (rarea h_t_lb h_t_ub _t, color("55 101 168%10")) ///
> (line h_t_est _t, lwidth(*2) lcolor("55 101 168")) ///
> , ///
> title("Hazard function") ///
> subtitle("Design-based point estimates and" ///
> "95% confidence intervals") ///
> ytitle("") ylabel(0(0.05)0.20, format(%4.2f)) ///
> xtitle("Age") xlabel(10(5)50) legend(off) ///
> name(h_t, replace)

.

. /* Graphical representation of survival function with 95% CI */

. graph twoway ///
> (rarea S_t_lb S_t_ub _t, color("55 101 168%10")) ///
> (line S_t_est _t, lwidth(*2) lcolor("55 101 168")) ///
> , ///
> title("Survival function") ///
> subtitle("Design-based point estimates and" ///
> "95% confidence intervals") ///
> ytitle("") ylabel(0(0.2)1, format(%4.1f)) ///
> xtitle("Age") xlabel(10(5)50) legend(off) ///
> name(S_t, replace)

.

. /* Restore initial data */

. restore
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Sometimes it is useful to estimate percentiles of survival time. In Stata, the
command stsum provides correct design-based point estimates of the three
quartiles of survival time:

/* Compute quartiles of survival time (point estimates) */
stsum, noshow

. /* Compute quartiles of survival time (point estimates) */
. stsum, noshow

Incidence Number of Survival time
Time at risk rate subjects 25% 50% 75%

Total 581793484.9 .0552336 3.83e+07 19 22 28

Although stsum does not directly support design-based inference, it can still
be used for this purpose with a little bit of coding:

/* Quartiles of survival time (design-based inference) */
capture program drop survperc

program survperc, rclass
version 17.0
syntax anything [if] [iw pw]
if "`weight'" != "" {

local wgtexp "[`weight' `exp']"
}
quietly {

streset `wgtexp'
stsum
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}
return scalar Q1 = r(p25)
return scalar Q2 = r(p50)
return scalar Q3 = r(p75)
quietly {

streset [pw = fiw]
}
end

svy brr Q1=r(Q1) Median=r(Q2) Q3=r(Q3), dots(10) : ///
survperc estimate if _st

. /* Quartiles of survival time (design-based inference) */
. capture program drop survperc

.

. program survperc, rclass
1. version 17.0
2. syntax anything [if] [iw pw]
3. if "ˋweight´" != "" {
4. local wgtexp "[ˋweight´ ˋexp´]"
5. }
6. quietly {
7. streset ˋwgtexp´
8. stsum
9. }
10. return scalar Q1 = r(p25)
11. return scalar Q2 = r(p50)
12. return scalar Q3 = r(p75)
13. quietly {
14. streset [pw = fiw]
15. }
16. end

.

. svy brr Q1=r(Q1) Median=r(Q2) Q3=r(Q3), dots(10) : ///
> survperc estimate if _st
(running survperc on estimation sample)

BRR replications (152)
1 2 3 4 5

...............

BRR results Number of obs = 6,804
Population size = 38,284,250
Replications = 152
Design df = 150

Command: survperc estimate if _st
Q1: r(Q1)

Median: r(Q2)
Q3: r(Q3)

BRR *
Coefficient std. err. t P>|t| [95% conf. interval]

Q1 19 . . . . .
Median 22 .2809757 78.30 0.000 21.44482 22.55518

Q3 28 1.051315 26.63 0.000 25.9227 30.0773
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As can be seen, it was not possible to calculate the design-based confidence
interval around the first quartile. This is because there is not enough sampling
variation in the data to calculate the standard error of the corresponding
estimator.

Typically, the description of the hazard and survival functions for the entire
target population is followed bymore extensive analyses aimed at determining,
either from a predictive or from a causal perspective, whether and how the
risk and time of occurrence of the event of interest vary with the values of
one or more covariates. Here we present only a simple example of this type of
analysis, namely one that aims at investigating whether and how the risk and
time of entry into the first job vary by sex. The analysis can have three possible
outcomes: (a) there is no significant difference between men and women;
(b) there is a difference between men and women in terms of the hazard
function and this difference, as measured by the hazard ratio, is constant
over time (proportional hazards); or (c) there is a difference between men and
women in terms of the hazard function and this difference, as measured by
the hazard ratio, varies over time (nonproportional hazards).

For a first graphical exploration of the association between entry into the
first job and sex, we can use the aforementioned command sts graph:

/* Smoothed hazard function, by sex */
sts graph, by(sex) hazard noboundary noshow ///

ylabel(0(0.02)0.14, format(%4.2f)) xtitle("Age") ///
plot1opts(lwidth(*4) lcolor("55 101 168")) ///
plot2opts(lwidth(*4) lcolor("234 151 65")) ///
legend(order(1 "Male" 2 "Female") ///
cols(1) ring(0) position(2))

. /* Smoothed hazard function, by sex */
. sts graph, by(sex) hazard noboundary noshow ///
> ylabel(0(0.02)0.14, format(%4.2f)) xtitle("Age") ///
> plot1opts(lwidth(*4) lcolor("55 101 168")) ///
> plot2opts(lwidth(*4) lcolor("234 151 65")) ///
> legend(order(1 "Male" 2 "Female") ///
> cols(1) ring(0) position(2))
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This graph suggests two preliminary conclusions: first, the hazard function for
women is lower than that for men at all ages; second, the difference between
women and men, as measured by the female/male hazard ratio, appears to
vary over time.

There are several ways to formally test these tentative conclusions. The
quickest is to estimate a Cox regression model with variable sex as the only
covariate. Then, to determine whether the hazard function is on average lower
for women than for men, we need only examine the regression coefficient
associated with sex, which corresponds to the female/male hazard ratio: if its
estimated value is significantly less than one, we can conclude that the hazard
function of women is indeed on average lower than that of men. Here is the
relevant Stata code and output:

/* Design-based Cox regression analysis */
svy, dots(10) : stcox sex if _st

. /* Design-based Cox regression analysis */
. svy, dots(10) : stcox sex if _st
(running stcox on estimation sample)

BRR replications (152)
1 2 3 4 5

...............

Survey: Cox regression Number of obs = 6,804
Population size = 38,284,250
Replications = 152
Design df = 150
F(1, 150) = 332.81
Prob > F = 0.0000
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BRR *
_t Haz. ratio std. err. t P>|t| [95% conf. interval]

sex .5732749 .0174842 -18.24 0.000 .5397482 .6088841

The output corroborates our first conclusion: on average, the hazard function
of women is between 54% and 61% of that of men. To test whether this ratio
is constant over the entire period under consideration or rather varies with
age, we can use the command stphplot as follows:

/* Test of proportionality of hazard functions by sex */
stphplot, by(sex) noshow ///

plot1opts(lwidth(*4) lcolor("55 101 168") msymbol(i)) ///
plot2opts(lwidth(*4) lcolor("234 151 65") msymbol(i)) ///
legend(order(1 "Male" 2 "Female") cols(1) ring(0) ///
position(2))

. /* Test of proportionality of hazard functions by sex */

. stphplot, by(sex) noshow ///
> plot1opts(lwidth(*4) lcolor("55 101 168") msymbol(i)) ///
> plot2opts(lwidth(*4) lcolor("234 151 65") msymbol(i)) ///
> legend(order(1 "Male" 2 "Female") cols(1) ring(0) ///
> position(2))
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This “log-log” plot is easy to read: the proportional hazards assumption – that
is, the hypothesis of stability of the hazard ratio over time – holds if the two
curves are parallel. Since this is clearly not the case, our second conclusion
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also seems to be supported: the difference between women and men in the
(conditional) risk of entry into the first job varies over time.

Note, however, that the “log-log” plot does not take into account the sam-
pling uncertainty associated with the estimates. To draw more robust conclu-
sions about the proportionality or nonproportionality of the hazard functions
for women and men, appropriate design-based inference is required. For this
purpose, the powerful and versatile command gsem can be used as follows:

/* Preserve data in memory */
preserve

/* Generate person-semester dataset */
stsplit semester, every(0.5)
replace semester = semester + 0.5

/* Generate restricted cubic splines */
rcsgen semester, df(5) orthog gen(age_rcs)

/* Design-based estimation of exponential regression model */
clonevar _tm = _t if (sex == 0)
clonevar _tf = _t if (sex == 1)
svy, dots(10) : gsem (_tm <- age_rcs*) (_tf <- age_rcs*) if _st, ///

family(exponential, failure(_d) ltruncated(_t0) ph)

/* Compute design-based point estimates (hr_t_est) and corresponding
standard errors (hr_t_se) of log-hazard ratio */

predictnl hr_t_est = predict(expression(eta(_tf) - eta(_tm))), ///
se(hr_t_se)

/* Simplify dataset */
collapse hr_t_est hr_t_se if _st, by(_t)

/* Compute lower (hr_t_lb) and upper (hr_t_ub) limits of design-based
95% confidence intervals around point estimates of hazard ratio */

generate hr_t_lb = hr_t_est - invt(140,0.975) * hr_t_se
replace hr_t_lb = exp(hr_t_lb)
generate hr_t_ub = hr_t_est + invt(140,0.975) * hr_t_se
replace hr_t_ub = exp(hr_t_ub)

/* Compute hazard ratio */
replace hr_t_est = exp(hr_t_est)

/* Graphical representation of hazard ratio with 95% CI */
graph twoway ///

(rarea hr_t_lb hr_t_ub _t, color("55 101 168%10")) ///
(line hr_t_est _t, lwidth(*2) lcolor("55 101 168")) ///
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, ///
title("Female/Male Hazard ratio") ///
subtitle("Design-based point estimates and" ///

"95% confidence intervals") ///
yscale(log) ytitle("") ylabel(0 0.5 1 2 4 6, format(%3.1f)) ///
yline(1, lpattern(dash) lcolor(gs11)) ///
xtitle("Age") xlabel(10(5)50) legend(off)

/* Restore initial data */
restore

. /* Preserve data in memory */

. preserve

.

. /* Generate person-semester dataset */

. stsplit semester, every(0.5)
(190,758 observations (episodes) created)

. replace semester = semester + 0.5
(197,562 real changes made)

.

. /* Generate restricted cubic splines */

. rcsgen semester, df(5) orthog gen(age_rcs)
Variables age_rcs1 to age_rcs5 were created

.

. /* Design-based estimation of exponential regression model */

. clonevar _tm = _t if (sex == 0)
(127,840 missing values generated)

. clonevar _tf = _t if (sex == 1)
(73,670 missing values generated)

. svy, dots(10) : gsem (_tm <- age_rcs*) (_tf <- age_rcs*) if _st, ///
> family(exponential, failure(_d) ltruncated(_t0) ph)
(running gsem on estimation sample)

BRR replications (152)
1 2 3 4 5

...............

Survey: Generalized structural equation model

Number of obs = 197,562
Population size = 1,163,586,970
Replications = 152
Design df = 150

Response: _tm Number of obs = 71,696
Family: Exponential No. of failures = 2,951
Form: Proportional hazards Time at risk = 35,848.00
Link: Log

Response: _tf Number of obs = 125,866
Family: Exponential No. of failures = 2,838
Form: Proportional hazards Time at risk = 62,933.00
Link: Log

BRR *
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Coefficient std. err. t P>|t| [95% conf. interval]

_tm
age_rcs1 .4200158 .0783285 5.36 0.000 .265246 .5747855
age_rcs2 1.162526 .0727868 15.97 0.000 1.018706 1.306345
age_rcs3 -.53068 .0921493 -5.76 0.000 -.7127583 -.3486016
age_rcs4 .0189924 .0348268 0.55 0.586 -.0498221 .087807
age_rcs5 -.2115933 .0261563 -8.09 0.000 -.2632757 -.1599109

_cons -3.15592 .0581316 -54.29 0.000 -3.270782 -3.041057

_tf
age_rcs1 .2104843 .057831 3.64 0.000 .0962157 .324753
age_rcs2 .993498 .0722012 13.76 0.000 .8508353 1.136161
age_rcs3 -.4998676 .0956456 -5.23 0.000 -.6888542 -.310881
age_rcs4 -.1214244 .0344602 -3.52 0.001 -.1895145 -.0533343
age_rcs5 -.147755 .0230763 -6.40 0.000 -.1933516 -.1021584

_cons -3.602534 .0578516 -62.27 0.000 -3.716843 -3.488224

.

. /* Compute design-based point estimates (hr_t_est) and corresponding
> standard errors (hr_t_se) of log-hazard ratio */
. predictnl hr_t_est = predict(expression(eta(_tf) - eta(_tm))), ///
> se(hr_t_se)
(1,974 missing values generated)

.

. /* Simplify dataset */

. collapse hr_t_est hr_t_se if _st, by(_t)

.

. /* Compute lower (hr_t_lb) and upper (hr_t_ub) limits of design-based
> 95% confidence intervals around point estimates of hazard ratio */
. generate hr_t_lb = hr_t_est - invt(140,0.975) * hr_t_se

. replace hr_t_lb = exp(hr_t_lb)
(80 real changes made)

. generate hr_t_ub = hr_t_est + invt(140,0.975) * hr_t_se

. replace hr_t_ub = exp(hr_t_ub)
(80 real changes made)

.

. /* Compute hazard ratio */

. replace hr_t_est = exp(hr_t_est)
(80 real changes made)

.

. /* Graphical representation of hazard ratio with 95% CI */

. graph twoway ///
> (rarea hr_t_lb hr_t_ub _t, color("55 101 168%10")) ///
> (line hr_t_est _t, lwidth(*2) lcolor("55 101 168")) ///
> , ///
> title("Female/Male Hazard ratio") ///
> subtitle("Design-based point estimates and" ///
> "95% confidence intervals") ///
> yscale(log) ytitle("") ylabel(0 0.5 1 2 4 6, format(%3.1f)) ///
> yline(1, lpattern(dash) lcolor(gs11)) ///
> xtitle("Age") xlabel(10(5)50) legend(off)

.

. /* Restore initial data */

. restore
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Our design-based analysis supports the conclusion of nonproportionality:
the female/male hazard ratio is not constant, but varies with age. However,
the variation is only observed up to the age of 25, after which the hazard ratio
appears to be rather stable.
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