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1 Introduction

One of the important offshoots of the second superstring revolution is the brane construction
of gauge theories. Hanany-Witten brane setups [1] engineer 3d N = 4 linear quiver gauge
theories. An immediate but extremely profound consequence of this construction is the
observation that mirror dualities relating 3d N = 4 theories [2] are inherited from S-duality
in Type IIB string theory, which swaps NS and D5 branes.

In the abelian case, it is possible to prove 3d mirror symmetry using purely field theory
arguments. Ref. [3] showed how to piecewise dualize a general N = 2, 3, 4 abelian QFT.
The proof uses as basic ingredient only the duality between U(1) with 1 flavor and a free
hypermultiplet.1 Let us mention that the abelian 3d mirror symmetry is related to 3d abelian
non supersymmetric bosonization [5, 6].

3d mirror symmetry led to many advances in our understanding of the quantum dynamics
of gauge theories. Theories with 8 supercharges in d = 4, 5, 6, whose Higgs branches are not
corrected upon circle reduction [7], admit a 3d mirror also known as magnetic quiver (see
for instance [8–18]), which is often crucial in uncovering the quantum dynamics of QFT’s
which do not admit a Lagrangian description.

In light of the above, it would clearly be desirable to extend our understanding of non-
abelian 3d mirror symmetry to theories with less than 8 supercharges. A recent advance comes
to our help in this direction. A couple of years ago [19, 20] was able to prove non-abelian
3d N = 4 mirror symmetry via the dualization algorithm.

The idea of the algorithm originates from the observation [21–23] that on linear or circular
brane setups, we can think of S-duality as acting locally on each 5-brane, creating an S-duality
wall on its left and an S−1-duality wall on its right: D5 = S·NS ·S−1 and ĚNS = S·D5·S−1.

The intersection of the S-duality wall with the N D3 branes was argued to be captured
by the 3d N = 4 S-duality wall FT [SU(N)] theory introduced in [21], represented by the
quiver below.2

1 2 N-1 N· · · = N N

SU(N)× SU(N) (1.1)
1There is compelling evidence for the validity of this duality: one can prove that in the gauge theory there

is a free sector using the monopole R-charges and the unitarity bounds [4]. The matching of the S3
b partition

function of the gauge theory with the one of the free hyper implies that there is nothing on top of the free
sector.

2The F T [SU(N)] theory we use here differs from the T [SU(N)] introduced in [21] only by the adjoint
singlet flipping the meson operator.
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The S-wall theory has IR SU(N)× SU(N) symmetry, where one of the two SU(N) factors
arises from the IR enhancement of the U(1)N−1 topological symmetry, we denote it in compact
form by a dashed line connecting two square blocks to indicate its non-abelian IR symmetries.
The chiral ring of the FT [SU(N)] theory is generated by the moment map operators in the
adjoint of the two SU(N) symmetries. In [24] the S-wall theory was shown to satisfy the
SL(2,Z) relations and in particular the fusion to identity property S ·S−1 = 1, a relation
which is going to play an important role:

NN N ⇐⇒ I-wall
(1.2)

On the r.h.s. we have the Identity wall theory I-wall, whose partition function is a delta
function identifying the Cartans of the two U(N) global symmetry groups.

The dualization algorithm (similar in spirit to [3]) basically implements in field theory
the local action S-duality. Roughly speaking, the N = 4 algorithm consists in ungauging a
linear quiver in two types of basic matter blocks: the bifundamental matter and the flavor
matter. At the level of brane setups the bifundamental is associated to a NS brane, the
flavor to a D5 brane. Each block is then locally dualized by a basic duality move which
implements at the field theory level the local action of the S-dualization of each 5-brane.
The basic duality moves are in turn genuine IR dualities which can be proven assuming
only the basic Seiberg-like Aharony duality [25].

In this paper we generalize this strategy to the mirror dualities with four supercharges
which can be realized in setups with NS and D5′ branes. The salient feature of our proposal
is that in such setups the bifundamentals in the quiver, associated to the presence of a NS

brane over which D3− D3 strings stretch, is not a standard bifundamental, but an improved
bifundamental. The improved bifundamental is a strongly coupled 3d N = 2 CFT, the
FM [U(N)] theory introduced in [26], with the UV completion given by the quiver below:

1 2 N-1 N

1 1 1

· · ·× × × = N N

S[U(N)×U(N)]×U(1)2
(1.3)

The superpotential of the FM [U(N)] quiver includes a term linear in the fundamental
monopoles at each node. This term breaks all the topological symmetries and the manifest
global symmetry is U(N)×U(1)N ×U(1)2. In the IR the U(1)N UV global symmetry acting
on the fields of the saw enhances to U(N). The IR spectrum of the improved bifundamental
includes two adjoint operators and two bifundamental (N, N̄), (N̄ , N) operators Π, Π̃ of the
two U(N) symmetries. We use the compact notation on the right with two wiggle lines
connecting the two square nodes to visualize the two non-abelian symmetries. In addition to
them, the improved bifundamental has two U(1) global symmetries, so one extra symmetry
with respect to the standard bifundamental. As we will see, improved quiver theories built
with improved bifundamentals have an interesting pattern of symmetry enhancement and we
can introduce a notion of balanced nodes leading to non-abelian symmetry enhancement. For
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example, in a string of k consecutive improved bifundamentals linking k−1 U(N) gauge nodes,
k U(1) symmetries rotating each improved bifundamental and the (k − 1) U(1) topological
symmetries will enhance to U(k)2/U(1).

The local dualization of improved quivers requires a new set of N = 2 basic duality moves
implementing the S-dualization of generalized flavors into generalized bifundamentals and
viceversa. The 3d basic move corresponding to the dualization S·D5·S−1 = ĚNS is given by:

NN N

1

⇐⇒ N N

(1.4)

This move is a genuine IR duality which can be obtained via compactification and real
mass deformation from the 4d N = 1 star-triangle or braid duality, which can be proven
by induction in N using only the basic Seiberg-like Intriligator-Pouliot duality as shown
in [27]. In the move (1.4), on the l.h.s., the adjoint chiral couples to the moment maps
of the S-walls to its left and to its right while the flavor is not coupled to the adjoint (as
it would be in the N = 4 case).

The opposite transformation, the dualization of an improved bifundantal into a gen-
eralized flavor, corresponding to the dualization S ·NS ·S−1 = D5 can be easily obtained
by combining (1.4) and (1.2) and is given by:

N

1

⇐⇒ N N N N

I-wall (1.5)

So the Braid duality is the fundamental move and since it can be demonstrated by induction
by assuming only the elementary Seiberg-like dualities, it follows that all the N = 2 mirror
dualities following from the algorithm are demonstrated to be consequence of Seiberg-like
dualities only.

The N = 2 dualization algorithm based on the above basic duality moves allows us
to work out the 3d mirror dual of linear quivers corresponding to Hanany-Witten brane
setups with four supercharges formed by a sequence of NS and D5′ branes. In doing so
we propose how to read the associated gauge theories. More precisely we focus on N = 2
brane setup made of an arbitrary sequence of NS and D5′ branes in the case that the
number of D3 branes is constant along the brane setup. The D3/NS/D5′ branes extend
along 0126/012345/012457, respectively. We propose that the IR QFT associated to such
setups is given by an improved linear quiver with U(N) adjoint nodes, joined by improved
bifundamentals links with flavors distributed among the nodes, according to the position of
the D5′ branes. The superpotential couples the adjoint of each U(N) nodes to the adjoint
operators of the nearby improved bifundamentals. The flavors do not enter the superpotential.
Crucially, we will show that this proposal is consistent with S-duality, that is two improved
quivers corresponding to S-dual brane setups are mirror dual as 3d N = 2 QFT’s.
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Basically, our proposal differs from the naive reading of the brane setup (see for in-
stance [28–32]) in that instead of a standard bifundamental hypermultiplet, we use the FM

theory, which carries an additional U(1) global symmetry.3 The naive quiver indeed has the
problem that the UV theory sees a global symmetry with rank strictly smaller than the rank of
the IR global symmetry, hence it is impossible to use the naive quiver to compute observables
in the IR SCFT, even supersymmetric localized partition functions and chiral rings are
not accessible. One interesting comment is that it is possible to turn on an holomorphic
deformation that turns the improved bifundamental theory into a standard bifundamental,
but these operators are generically trivial in the chiral ring of the quiver, hence chiral ring
stability of [33] imples that these deformations do not lead to a new IR SCFT. In other words,
for each brane setup there is only one IR SCFT, whose properties can be explored using the
UV quiver with improved bifundamental, but not using the naive UV quiver.

Let us provide a concrete example of how to associate a quiver and how to prove the
mirror duality. Consider the sequence NS −D5′ −NS − (D5′)3 −NS, part of a longer brane
setup, together with its S-dual setup depicted below.4

· · · · · ·
S-duality

⇐⇒

Mirror
symmetry

⇐⇒

· · · · · ·

· · · N N N N · · ·

1 1 3 3

· · · N N N N N · · ·

1 1 1 1 1 1

(1.6)

According to our proposal the part of the quiver associated to this sequence, given in the
bottom left corner, contains three improved bifundamentals and four flavors which don’t enter
the superpotential. The quiver corresponding to the S-dual section of the brane setup, given
in the bottom right corner, contains instead four improved bifundamentals and three flavors.
Notice that in the left quiver, the global symmetry will include a non-abelian U(3)2/U(1)
factor associated to the 3 consecutive D5′ branes. In the right quiver this symmetry appears
in the IR via the enhancement mentioned above of the string of 3 improved bifundamentals
associated to the 3 consecutive NS branes.

We can then prove that the two improved quivers associated to the S-dual brane setups
in (1.6) are mirror dual, by running the N = 2 algorithm. Let us start from the quiver
on the l.h.s., we freeze the gauge interactions, breaking up the theory into the two types
of generalized matter blocks:

· · · N N N

1 1

I-wall N N N

1 1

I-wall N

1 1

I-wall N

1 1

I-wall N N · · · (1.7)
3Let us remind that in the abelian case the improved and standard bifundamentals coincide, hence our

proposed quivers and the naive quivers are the same.
4For convenience in the picture we present the action of S-duality combined with the rotation acting by

NS′ → NS and D5 → D5′.
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Now we dualize each block, using (1.4) and (1.5), transforming generalized flavors into
improved bifundamentals and viceversa and glue back:

· · · N N

1 1

N N N N N

1 1

N N N N N N N N N N · · ·

1 1

(1.8)

Now we implement the fusion to Identity property of the S-walls (1.2), with the effect of
removing all the S-wall theories from the improved quiver, to obtain:

· · · N N N N N · · ·

1 1 1 1 1 1

(1.9)

which is precisely the quiver associated to the S-dual brane setup in figure (1.6).
There are various natural generalization of this result. We can easily describe (p, q)-webs

of rectangular shape formed by an arbitrary number of D5′ branes and one NS. Using
the algorithm we can obtain the QFT description of the S-dual (p, q)-web containing many
NS’s sitting on top of a single D5′.

We can turn on real mass deformations in our quivers to generate Chern-Simons in-
teractions and/or theories with chiral matter (different number of fundamentals vs anti-
fundamentals). The corresponding brane setup might include (p, q) 5-branes and non-
rectangular (p, q)-webs. We will discuss these theories in [34], using the chiral improved
bifundamental introduced in [27].

We still don’t know how to describe more generic 3d N = 2 setups involving all four types
of 5-branes (NS, NS′, D5, D5′) and a non-constant number of D3 branes along the brane
setup. For such setups we need a new object: an asymmetric improved bifundamental with
non-abelian global symmetry S[U(N1)×U(N2)]. We plan to investigate this in the future.

Our results can play a role also in the study of non-perturbative properties of 4d N = 1
QFT’s. For instance in some cases the 3d mirror of a 4d SCFT, defined through a stringy or
higher dimensional construction, might be a quiver containing improved bifundamentals. As
illustrative examples, we show that 4d SU(N) adjoint SQCD with F flavors possesses a 3d

mirror which is a linear quiver with F − 1 U(N), one U(1) gauge nodes and F − 2 improved
bifundamentals, and we work out the 3d mirror of 4d N = 1 SU(N) quivers associated to
linear Type IIA brane setups.

We also present a family of 4d N = 1 improved quivers related by mirror-like dualities.
The 4d improved quivers contain 4d improved bifundamental links which we identify with
the FE[USp(2N)] theory introduced in [35]. 4d mirror dualities can be demonstrated via
a 4d dualization algorithm. The basic move, dualizing an improved bifundamental block
into a generalized flavor block is given by the 4d N = 1 star-triangle or braid duality. As a
simple example, we present the mirror dual of the 4d N = 1 antisymmetric USp(2N) SQCD
with 2F + 4 flavors which reduces to the 3d N = 2 mirror pair for the U(N) adjoint SQCD,
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N

F F

⇐⇒
Q Q̃

A

W = 0

N N N N

1 1

Π2 ΠF−1
V1 V2

· · ·

A1 A2 AF−2 AF−1

W =∑N−1
j=0 (Flip[V1Aj

1Ṽ1] + Flip[V2Aj
F−1Ṽ2]) +Wgluing

Figure 1. Mirror duality for the N = 2 adjoint SQCD. Each node, round or square, denotes a
U(N) group, gauge or flavor respectively. Lines with an ingoing or outgoing arrow are fields in the
fundamental or antifundamental representation of the group to whom is linked. Arches denotes field
in the traceless adjoint representation. In the mirror theory there are also double wiggly-lines that
represent a FM [U(N)] theory and crosses denoting flipping fields. In the pictures we also give the
name of the fields beside the line that represent it, the names of flipping fields are omitted in the
picture but their presence can be read from the superpotential given below the theory. To avoid
cluttering, whenever we have a double line, straight or wiggly, we just give the name of one field, it is
implied the presence of a second field, distinguished by a tilde, that is in the conjugate representation.

upon a suitable dimensional reduction limit. The proposed duality generalizes the self-dual
case with eight flavors, called CSST duality [36].

The paper is organized as follows. In section 2 we present the mirror of the adjoint
N = 2 SQCD, we work out the operator map, study various deformations and perform
several consistency checks. In section 3 we introduce the N = 2 dualization algorithm and we
apply it to the derivation of the SQCD mirror dual. In section 4 we formulate our proposal
to associate improved quivers to brane setups with four supercharges and discuss various
examples. In section 5 we study (p, q)-webs, while section 6 studies 3d mirrors of 4d SU(N)
quivers. Finally in section 7 we discuss 4d N = 1 mirror dualities.

2 3d N = 2 adjoint U(N) SQCD and its mirror

In this section we present the mirror duality for the N = 2 adjoint SQCD, which is depicted
in figure 1. The electric theory is an N = 2 U(N) gauge theory with a chiral field A in the
traceless adjoint representation and F fundamental chirals Q and antifundamental chirals Q̃,
with zero superpotential. The global symmetry group of the theory is:

SU(F )U × SU(F )W ×U(1)m ×U(1)τ ×U(1)Y , (2.1)

where we denote by Uj with ∑Nf

j=1 Uj = 0, Wj with ∑Nf

j=1 Wj = 0, m the real masses for the
fundamental chirals, τ is the real mass for the adjoint chiral and Y is the FI parameter. The
charges and representations for all the fields is given in table 1.5

It will also be useful to parameterize the SQCD theory so that its manifest symmetry
matches that of the mirror theory by combining pairs of fundamental/anti-fundamental

5We recall that in N = 2 theories the R-symmetry group is abelian and can mix with other abelian symme-
tries along the RG-flow and the value of the superconformal R-charge can be fixed via F -extremization [37].
In the table we give trial U(1)R0 -charges.
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U(1)R0 U(1)τ U(1)m SU(F )U × SU(F )W

Q 1 0 −1 F̄ × 1
Q̃ 1 0 −1 1 × F
A 0 1 0 1 × 1

Table 1. List of the charges and representation of the fields in the electric theory.

N

F F

=
Q Q̃

A

N

1 1

Q1 QF

A

· · · U(1)R0 U(1)τ U(1)Bj U(1)Xj

Qk 1 0 −δjk −δjk

Q̃k 1 0 −δjk δjk

A 0 1 0 0

Figure 2. Reparameterization of the electric theory. On the right of the picture we also listed the
abelian charges of all the fields of the reparameterized theory. The convention is to take the fields Qj

in the fundamental and Q̃j antifundamental representation of the gauge group.

chirals into flavors with axial-like mass Bj and vector-like mass Xj . The reparameterized
theory is depicted in figure 2, along with a table with all the representation and charges
of the fields after the reparameterization.

The set of real masses for the vector-like symmetries can be taken such that: ∑F
j=1 Xj = 0,

since the gauge group is U(N). The U(1)m symmetry of the theory before the reparame-
terization is related to the axial masses as:

m = 1
F

F∑
j=1

Bj . (2.2)

We can also define a new set of axial masses as: B̃j = Bj − m, so that ∑F
j=1 B̃j = 0. The

real masses of the two parameterization are related as:

Uj = Xj − B̃j

Wj = Xj + B̃j , (2.3)

while the symmetries recombine as:

F∏
j=1

U(1)Bj × S

 F∏
j=1

U(1)Xj

 = S

 F∏
j=1

U(1)B̃j

× S

 F∏
j=1

U(1)Xj

×U(1)m

→ SU(N)U × SU(N)W ×U(1)m . (2.4)

Dual quiver. Let’s now discuss the mirror theory. The main ingredient is the improved
bifundamental which is identified with the FM [U(N)] theory, a 3d N = 2 SCFT introduced
in [26] which we describe in appendix B.2. We denote this theory compactly by two wiggle
lines connecting the two U(N) nodes to visualize the two non-abelian U(N) IR symmetries.
In addition to them, the improved bifundamental has a U(1)τ × U(1)∆ abelian symmetry.
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U(1)R0 U(1)τ U(1)Bj U(1)Y

V1, Ṽ1 0 1−N
2 δj1 ∓1

V2, Ṽ2 0 1−N
2 δjF 0

Πk, Π̃k 0 0 δjk 0
Ak 0 1 0 0

Table 2. List of charges and representations. The Πj operators are in the fundamental representation
of the (j−1)-th and antifundamental of the j-th gauge groups. The fields V1 and V2 are in fundamental
representation of the first and last gauge group, respectively.

The IR spectrum of the improved bifundamental includes two traceless adjoint operators
and two bifundamental (N, N̄), (N̄ , N) operators Π, Π̃ of the two U(N) symmetries and a
matrix of singlets Bn,m, with charges given in 8. In particular the bifundamental operators
carry charge one under the axial U(1)∆ symmetry.

Our adjoint SQCD mirror dual is given by a linear quiver with F − 2 improved bifunda-
mental links and at each end of the quiver we have the flavors V1, Ṽ1 and V2, Ṽ2:

N N N N

1 1

Π2 ΠF−1
V1 V2

· · ·

A1 A2 AF−2 AF−1

W =∑N−1
j=0 (Flip[V1Aj

1Ṽ1] + Flip[V2Aj
F−1Ṽ2]) +Wgluing (2.5)

The list of charges and representations for all the fields and bifundamental operators is
given in table 2.

The manifest UV global symmetry is:

F∏
j=1

U(1)Bj ×
F−1∏
j=1

U(1)Xj−Xj−1 ×U(1)τ ×U(1)Y , (2.6)

Where Xj+1 − Xj is the FI parameter related to the U(1) topological symmetry of the j-th
gauge node. The parameters Bj for j = 2, · · ·F − 1 are the real axial mass associated to
the U(1)Bj symmetries of each improved bifundamental, while B1 and BF are the axial
symmetries for the left and right vertical flavors, respectively. Notice that we can re-absorbe
a U(1) vector-like symmetry by a gauge transformation since all nodes are U(N). We have
the following symmetry enhancement in the IR

F∏
j=1

U(1)Bj ×
F−1∏
j=1

U(1)Xj+1−Xj → SU(N)U × SU(N)V ×U(1)m , (2.7)

so that in the IR, the mirror dual theory has exactly the same global symmetry group of
the electric theory.
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The theory also contains singlets. To avoid introducing too many names for the singlet
fields, we will adopt the following notation. Given an operator X and a gauge singlet
elementary field OX we denote a superpotential term of the form W = OXX as Flip[X].
In addition we will refer to the flipper singlet OX as F [X]. In our mirror theory we have
singlets F [V1Aj Ṽ1] and F [V2Aj Ṽ2], which flip the dressed mesons constructed with the left
and right flavors, they are represented as crosses in the picture 1.

In the mirror theory we have a string of consecutive improved bifundamentals which
are glued by gauging a diagonal combination of the two U(N) symmetries with the addition
of an adjoint field A. More precisely we couple the adjoint operator AL of the improved
bifundamental on the left and the adjoint operator AR of the improved bifundamental on
the right to the extra adjoint field A as: W = A(AL − AR). We will also use the short-
hand notation Wgluing to collect all the superpotential terms coming from this procedure6.
Notice that when we glue a string of improved bifundamentals, all the U(1)τ symmetries are
identified while the U(1)Bj symmetries are all preserved. These symmetries then recombine
with the topological symmetries and enhance to match the global symmetry group of the
electric theory as in (2.7).

At the level of S3
b partition functions, the duality in figure 1 implies the identity:7

ZSQCD
(
τ, B⃗, X⃗, Y

)
= Z

­SQCD

(
τ, B⃗, X⃗, Y

)
. (2.8)

On the l.h.s. we have the partition function of the U(N) adjoint SQCD parameterized as
in figure 2, which is given as:

ZSQCD
(
τ, B⃗, X⃗, Y

)
=
∫

dZ⃗N∆N (Z⃗, τ)e2πiY
∑N

j=1 Zj

N∏
j=1

F∏
a=1

sb (Ba ± (Zj − Xa)) . (2.9)

The partition function of the mirror dual theory, given on the r.h.s. of figure 1, is instead
given as:

Z
­SQCD

(
τ, B⃗, X⃗,Y

)
= e2πiNY X1

∫ F−1∏
a=1

dZ⃗
(a)
N ∆N (Z⃗(a), τ)e2πi(Xa+1−Xa)

∑N

j=1 Zj

×
N∏

j=1

[
sb

(
iQ

2 − 1−N

2 τ −B1±(Z(1)
j −Y )

)
sb

(
− iQ

2 +(j−N)τ +2B1

)

×sb

(
iQ

2 − 1−N

2 τ −BF ±Z
(F−1)
j

)
sb

(
− iQ

2 +(j−N)τ +2BF

)]

×
F−2∏
a=1

Z
(N)
F M

(
Z⃗(a), Z⃗(a+1), τ,Ba+1

)
. (2.10)

The S3
b partition function of the FM [U(N)] theory is defined in appendix B.2.

6Notice that here we glue improved bifundamentals by turning on only Wgluing. If one adds also a monopole
superpotential of the type W = M+ + M−, then two improved bifundamental theories fuse to an I-wall as
explained in appendix B.2.

7We follow the conventions summarized in appendix A.
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U(1)R0 U(1)τ U(1)B1 U(1)B2 U(1)X U(1)Y

Q1, Q̃1 1 0 −1 0 ±1/2 0
Q2, Q̃2 1 0 0 −1 ∓1/2 0
P1, P̃1 0 1−N

2 1 0 0 ∓1/2
P2, P̃2 0 1−N

2 0 1 0 ±1/2
A, C 0 1 0 0 0 0

Table 3. Charges for the fields in the mirror F = 2 self-duality. In the electric theory the FI
parameter for the topological symmetry is Y , while in the dual it is X.

2.1 Comments on the F = 1 and F = 2 cases

The cases F = 1, 2 were already discussed in literature, in this section we wish to comment
on how our result reconciles with these known results.

Let us start with the F = 2 case. In this case our mirror pair in figure 1 has no improved
bifundamental links and it reduces to a self-duality modulo flips:

N

1 1

⇔
Q1 Q2

A

W = 0

N

1 1

P1 P2××

C

W =∑N−1
j=0

(
Flip[P1CjP̃1]+

+Flip[P2CjP̃2]
)

(2.11)

The duality (2.11) was interpreted as a mirror symmetry in [31], which obtained it
reducing the CSST self-duality modulo flips of 4d N = 1 Usp(2N) with antisymmetric
and 8 fundamentals [36].8

The F = 1 case can not be directly read from the mirror pair proposed in figure 1,
which is defined only for F ≥ 2. However our dualization algorithm, which as we will see
in section 3 allows us to prove the F ≥ 2 duality, can be run also in the F = 1 case and
the result produced is consistent with the earlier duality shown in figure (2.12) which was
discussed in [31] and derived via sequential deconfinement in [39, 40].

N

1

⇔Q

A

W =∑N
j=2 Flip[Aj ]

3N chirals: Rj , Sj , Tj with:
W =∑N

j,k,l=1 δj+k+l,N+2RjSlTk

(2.12)
8A similar self-duality with 6N instead of 2N flipping fields on the r.h.s. can be obtained via sequential

deconfinement, [38]. As shown in [31], (2.11) is the 3d reduction of the CSST self-duality of Usp(2N) with
antisymmetric and 8 fundamentals, while the sequential deconfinement method [38, 39] proves the IP-like
self-duality of Usp(2N) with antisymmetric and 8 fundamentals and its 3d reductions.
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This duality relates the SQCD with one flavor where we flipped the tower of powers of
the adjoint (which would all be below the unitarity bound), to a Wess-Zumino model.
Notice that the superpotential on the Wess-Zumino side contains a number of terms growing
quadratically with N . This superpotential was proposed in [31] and tested using sequential
deconfinement in [39].

Starting from the SQCD on the l.h.s. of figure (2.12), the algorithm yields on the dual
side a collection of 3N chiral fields with a charge assignment which is indeed compatible
with the superpotential given (2.12).

It will be also useful to consider a flipped version of this duality where on the electric
side we flip the tower of dressed mesons:

N

1

⇔Q

A

W =∑N−1
j=0 Flip[QAjQ̃]+

+∑N
j=2 Flip[Aj ]

(Free Hyper)N

(2.13)

In this case on the dual side we have N free hypers mapping to the tower of dressed
monopoles M±

Aj in the electric SQCD side.

2.2 Operator Map

We now show how the gauge invariant operators of the SQCD theory are mapped into
the mirror dual.

• In the electric theory we have the meson operator QQ̃ in the F̄ × F representation of
SU(F )U × SU(F )W , with R-charge 2, m-charge -2 and zero τ -charge. This operator is
mapped into the following collection of operators of the mirror theory:

– Singlets B
(k)
1,1 of the (k)-th improved bifundamental theory, with k = 2, · · ·F − 1,

and singlets F [V1AN−1
1 Ṽ1] and F [V2AN−1

F−1 Ṽ2]. These are F operators, each with
R-charge 2 and m-charge -2.

– F (F −1) monopole operators with topological charge given by strings of contiguous
+1 (or −1) under the topological symmetries U(1)Xj+1−Xj . As discussed in the
appendix E, it is possible to prove that they carry R-charge 2 and m-charge -2.

We can arrange all these operator into a matrix transforming in the F×F̄ representation
of SU(F )U × SU(F )W which is naturally mapped to the electric meson. For example,
for a theory with F = 4, meaning that the mirror theory has 3 gauge nodes, this matrix
is given as: 

F [V1AN−1
1 Ṽ1] M(+,0,0) M(+,+,0) M(+,+,+)

M(−,0,0) B(2)
1,1 M(0,+,0) M0,+,+)

M(−,−,0) M(0,−,0) B(3)
1,1 M(0,0,+)

M(−,−,−) M(0,−,−) M(0,0,−) F [V2AN−1
3 Ṽ2]

 (2.14)
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Where we denote with M(i,j,k) a monopole with topological charges i, j, k under the
three topological symmetries.
We can also consider dressed mesons with powers of the adjoint in the electric theory.
If we parameterize the SQCD as in figure 2 the map works very intuitively as:

SQCD Mirror
Q1AlQ̃1 F [V1AN−1−l

1 Ṽ1]
QF AlQ̃F F [V2AN−1−l

F−1 Ṽ2]
QjAlQ̃j for j = 2, . . . , F − 1 B(j)

1,1+l

QjAlQ̃k for j ̸= k M
(0,...,0,+,...,+,0,...,0)
Al non-null entries: j to k − 1

(2.15)

• In the electric theory we then have the traces of powers of the adjoint field Aj , for
j = 2, . . . , N , that are only charged under the U(1)τ symmetry with a charge of j.
These operators are mapped into similar operators that can be built in the mirror
theory. In the mirror we have an adjoint field for each gauge node, all with a charge 1
under the U(1)τ symmetry. However, quantum effects relate the traces of powers of all
these operators such that they are all identified, leaving only one independent set of
operators with charges j under the U(1)τ symmetry for j = 2, . . . , N .

• Lastly, we also have monopoles in the SQCD theory. The lowest charged monopoles,
with ±1 charge under U(1)Y , have m-charge F , τ -charge 1− N and are singlets under
all the other symmetries. These are mapped into long mesons Ṽ1Π2 . . .ΠF−1V2 and
V1Π̃2 . . . Π̃F−1Ṽ2 in the mirror theory. These have τ -charge N − 1 and charge +1 under
all the U(1)Bj symmetries, which implies that under the U(1)m symmetry it has charge
F . Also, they have charges ±1 under U(1)Y , which we recall is mapped into the
topological symmetry of the SQCD theory.
Dressed monopoles of the SQCD theory will be mapped similarly into dressed long
mesons with the same level of dressing.

To conclude, let us mention that not all the holomorphic gauge invariant operators in
the quiver side are mapped to the electric theory. Notable absent from the list of mapped
operators are the gauge singlets B(j)

n,m for n ̸= 1. We claim that the holomorphic operators
B(j)

n ̸=1,m are trivial in the chiral ring of the magnetic theory, since there is no operator in the
electric theory chiral ring with the correct global symmetries.

In particular, the triviality of the B(j)
2,1’s has interesting consequences. The B(j)

2,1’s, if
turned on in the superpotential, would iron an improved bifundamental into a standard one
(see (B.40)), providing an RG flow to the putative IR SCFT associated to the naive reading
of the magnetic brane setup. Chiral ring stability tells us that adding to the superpotential
chiral-ring-trivial operators has trivial consequences to the IR SCFT. Hence chiral ring
stability tells us that our mirror and the naive mirror flow in the IR to the same SCFT.
See section 4.3 for more comments about the relation between our and the old proposals
of 3d mirror symmetry with 4 supercharges.
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2.3 Deformations and consistency checks

In this section we study the effect of some interesting deformations of our dual pair, providing
non-trivial consistency checks of our duality.

Before discussing deformations we notice that in the magnetic theory, thanks to two
swapping dualities, we are allowed to shuffle and reorder all the improved bifundamentals
and the two vertical flavors.

The first duality in figure (D.5) allows us to swap two consecutive improved bifunda-
mentals, that is under the duality the two U(1) symmetries rotating the bifundamentals
are exchanged. Using this duality we get:9

N N N ⇐⇒
Πj Πj+1

Πj Bj

Πj+1 Bj+1

N N N
Π′

j Π′
j+1

Π′
j Bj+1

Π′
j+1 Bj (2.16)

Notice that under this duality, the matrix B(j)
n,m is mapped to B

′(j+1)
n,m while B(j+1)

n,m is mapped
to B

′(j)
n,m. For more details see (D.5).
A specialisation of the previous duality, given in figure (D.7), allows us to exchange

an improved bifundamental with a flavor. For example, we can exchange the left vertical
flavor with the first improved bifundamental:

N N

1

⇐⇒

V1
Π2

V1
1−N

2 τ + B1

Π2 B2

N N

1

V ′
1 Π′

2

V ′
1

1−N
2 τ + B2

Π′
2 B1 (2.17)

Notice that under this duality the tower of flipping singlets F [V1Ak
1Ṽ1] is mapped into part

of the matrix of singlets of the improved bifundamental theory B(2)
1,k, and vice-versa. Instead,

the rest of the singlet matrix is not mapped under this duality, this is consistent with our
claim that the singlets that are not mapped are not in the chiral ring.

One can combine the two moves (2.16) and (2.17) to rearrange all the bifundamentals
in any desired way. This property will be important to discuss the deformations, as we
will show in detail below.

9We list operators and their R-charge in a table beside the quiver representation of a theory. The R-charge
is expressed as R0 +

∑
E

qEE, where R0 is the trial R-charge. Also, the sum runs over all the U(1)E global
symmetries and we denote by E the mixing coefficient for U(1)E and by qE the charge of the operator under
the group. So with a slight abuse of notation we denote by E both the real mass and the mixing coefficient
for U(1)E .
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2.3.1 Shortening

The first deformation that we consider is given by complex mass terms in the electric theory.
This means that we turn on a superpotential term as: δW = QjQ̃j for any j = 1, . . . , F . For
j = 1, F this deformation is mapped respectively into F [V1AN−1

1 Ṽ1] and F [V2AN−1
F−1 Ṽ2] while

for j = 2, · · ·F − 1 it is mapped into B(j)
1,1, as it can be read from table 2.15.

By means of the freedom of rearranging the improved bifundamentals, using the dual-
ity (2.16) we see that all the deformations for j = 2, . . . , F − 1 are on the same footing. Also
using the duality (2.17) the case j = 1 is equivalent to j = 2 and, analogously, j = F is
equal to j = F − 1. Therefore we conclude that this deformation can be implemented on
any improved bifundamental without any loss of generality. Let us then consider j = 3 for
simplicity, the superpotential term δW = Q3Q̃3 is mapped to δW = B(3)

1,1. This deformation
has the effect of transforming the improved bifundamental in an I − wall, as explained in
appendix B.2 (eq. (B.36)) which identifies the two U(N) symmetry groups which is connecting:

N N =⇒
Π3

W = Wgluing + B(3)
1,1

N

W = Wgluing
(2.18)

Intuitively, one can think that the linear superpotential term δW = B(3)
1,1 has the effect of

giving a VEV to the Π3 and Π̃3 operators. The effect of this VEV is to Higgs the U(N)×U(N)
gauge symemtry under which is charged down to the diagonal U(N). This is supported from
the fact that imposing the B(3)

1,1 operator to have R-charge 2 implies that the Π3 operator
has R-charge 0, as one would expect from an operator acquiring a VEV. The net effect of
this deformation is then to shorten the sequence of improved bifundamentals by one unit.
This is consistent with our duality, indeed the electric SQCD after the mass deformation has
F − 1 flavors and its mirror has one less improved bifundamental links.

In the electric theory we can also turn on a non-diagonal mass term of the type: δW =
QjQ̃k, with j ̸= k which has also the effect of just removing one flavor. From the operator
map 2.15, we see that this deformation is mapped into monopole superpotentials in the
magnetic theory. Let us consider the case δW = Q2Q̃3 without any loss of generality. This
superpotential term is mapped to δW = M(0,+,0,...,0) in the magnetic theory. We can now use
the duality (C.6) where two improved bifundamentals glued with a monopole superpotential
W = Wgluing + M+ (and equivalently for W = M−) are shown to be dual to a single
improved bifundamental.

N N N

1

=⇒
Π2 Π3

W = Wgluing +M(0,+,0...,0)

N N

1

Π′
2

W = Wgluing (2.19)
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We can then conclude that this deformation has the effect of shortening the sequence of
improved bifundamentals by one unit. So our duality passes also this consistency check.

Notice that instead the deformation δW = Q2Q̃3+Q̃2Q3 which corresponds to integrating
out two flavors in the electric theory, maps to δW = M(0,+,0,...,0)+M(0,−,0,...,0) in the magnetic
theory. We can now use the fact that two improved bifundamentals glued with a monopole
superpotential W = Wgluing +M+ +M− fuse to an I− wall (see (B.34)), to conclude that
this deformation has the effect of shortening the sequence of improved bifundamentals by
two units, as expected.

2.3.2 Ironing

The second set of deformations that we consider are cubic terms for the flavors in the SQCD:
δW = QjAQ̃j . Following the operator map 2.15 we see that those are mapped in either
F [V1AN−2

1 Ṽ1], F [V2AN−2
F−1 Ṽ2] for j = 1, F and into B(j)

1,2 for j = 2, . . . F − 1. As before, using
the swapping dualities (2.16) and (2.17) to rearrange improved bifundamentals and flavors, we
can focus on the case j = 3 for simplicity without any loss of generality where the deformation
δW = Q3AQ̃3 is mapped to δW = B(3)

1,2. As shown in figure (B.37), this deformation has the
effect of ironing an improved bifundamental into an ordinary bifundamental of charge τ/2
coupled to two extra adjoint fields. These extra adjoint fields give mass to the adjoint fields
in Wgluing to its left and right and the bifundamental is then coupled to adjoint operators
inside the improved bifundamentals. We summarise graphically this picture below:

N N =⇒
Π3

W = Wgluing + B
(3)
1,2

N N
Π′

3

W = Π′
3(AL + AR)Π̃′

3+
+Flip[Π′

3Π̃′
3] (2.20)

One can consider also a non diagonal superpotential term: δW = QjAQ̃k which is mapped
to a superpotential term for the magnetic theory given by dressed monopole operators. Again
by consistency this deformation should result into the ironing of an improved bifundamental
link. Indeed using the swapping dualities (2.16) and (2.17), without any loss of generality, we
can consider the case δW = Q2AQ̃3. This superpotential term is mapped to the superpotential
δW = M

(0,+,0,...,0)
A2

involving a dressed monopole. In this case we can use the duality (D.9)
under which two improved bifundamentals glued with W = Wgluing +M+

A (and analogously
for W = M−

A) are dual to an improved bifundamental glued to an ordinary bifundamental
coupled to the adjoint operators of the improved bifundamental theories. We summarise
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graphically this picture below.

N N N

1

=⇒
Π2 Π3

V1

A1 A2 A3

W = Wgluing +M
(0,+,0...,0)
A2

N N N

1

Π′
2 Π′

3
V1

A1

W = Π′
3(AL + AR)Π̃′

3

+Flip[Π′
3Π̃′

3] (2.21)

We can then conclude that any generic cubic superpotential term δW = QjAQ̃k in the
electric theory leads to the ironing of a single improved bifundamental link.

2.3.3 Flow to the N = 4 mirror symmetry

If we turn on the superpotential δW = ∑F
j=1 QjAQ̃j , that is we couple all flavors to the

adjoint chiral, we reach the N = 4 U(N) SQCD. It is then an interesting consistency check
to show how our mirror dual reduces to the known N = 4 of the SQCD for F ≥ 2N .10 The
effect of the deformation on the mirror theory is to iron all the improved bifundamentals.
Keeping track of extra adjoints appearing in the ironing duality (B.37), we observe that each
node has an adjoint of charge 2 − τ which couples to the bifundamentals to its right and
its left and also all the bifundamentals are flipped. We denote these couplings as Wpartial

N=4 .
On the first and last node the adjoint has become massive and now the vertical flavors are
coupled to an adjoint operator built from the square of the bifundamentals. On the mirror
side we also turn on linear superpotentials for the flipping fields F [V1(Π2Π̃2)N−2Ṽ1] and
F [V2(ΠF−1Π̃F−1)N−2Ṽ2]. The resulting duality is depicted below.

N

F

⇐⇒
Q

A

W = QAQ̃

N N N N

1 1

Π3 ΠF−1
V1 V2

· · ·

A2 AF−2

W =∑N−1
j=0 (Flip[V1(Π2Π̃2)j Ṽ1] + Flip[V2(ΠF−1Π̃F−1)j Ṽ2])

+F [V1(Π2Π̃2)N−2Ṽ1] + F [V2(ΠF−1Π̃F−1)N−2Ṽ2] +Wpartial
N=4 (2.22)

The EOMs for the two singlets F [V1(Π2Π̃2)N−2Ṽ1] and F [V2(ΠF−1Π̃F−1)N−2Ṽ2] yield VEVs
for the dressed mesons. By carefully studying the effect of sequential Higgsing triggered by
these VEVs (see for example [20]), one can show that on each side of the quiver a tail of
gauge nodes with increasing ranks from 1 to N is reconstructed. We also have a plateau of
F − 2N − 1 gauge nodes of rank N with two flavors on the two ends. The result is depicted

10It is possible to show that for F < 2N our dual reproduces also the results for the bad SQCD found
in [41]. However, this analysis is beyond the scope of this work.
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below and indeed coincides with the known mirror dual of the N = 4 U(N) SQCD [1]:

N

F

⇐⇒

W = WN=4

1 N-1 N N N-1 1

1 1

· · · · · · · · ·

W = WN=4 (2.23)

Notice that in the picture above we have rearranged the singlets flipping the bifundamentals
so that all the adjoint chirals are tracefull.

2.3.4 Higgsing ↔ massive flavor and sequential confinement

We now consider another deformation which consists in giving a mass to any of the two
vertical flavors in the mirror theory (3.19).

Actually if we want to turn on a mass term we first need to move the flippers,11 meaning
that we consider a modified version of the mirror pair where on the electric side we have
the superpotential W = Flip[Q1Aj

1Q̃1] and on the mirror side the first vertical flavor has no
flippers. It is also convenient to introduce N − 1 singlets that on the l.h.s. flip the traces of
powers of the adjoint chiral. On the r.h.s. we recall that the traces of powers of all the adjoint
chirals are identified via quantum relations, therefore we can pick any adjoint, say the last one
AF−1, and flip its traces with the effect of flipping all the traces of powers of the adjoint chirals.

N

1 1 1

⇐⇒
×P1
P2

· · ·

P3

A

W =∑N−1
j=0 Flip[P1AjP̃1]+
+∑N

j=2 Flip[Tr Aj ]

N N N N

1 1

Π2 ΠF−1
V1 V2

· · ·

A1 A2 AF−2 AF−1

W = Wgluing +
∑N−1

j=0 (Flip[V2Aj
F−1Ṽ2])+

+∑N
j=2 Flip[Tr Aj

F−1] (2.24)

11The operation of moving the flippers, simply means that on the magnetic side where we have flipping
terms of the type W = F lip[X] = OXX we add a mass deformation for the flipper δW = OXÕX which
removes the flipping terms. The effect of this mass deformation on the electric side is then worked out using
the operator map.
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We can now can turn on the mass term δW = V1Ṽ1 on the r.h.s. of (2.24). After this
deformation we are left with the following theory:

N N N N

1

Π2 ΠF−1
V2

· · ·

A1 A2 AF−2 AF−1

W = Wgluing +
∑N−1

j=0 Flip[V2Aj
F−1Ṽ2]

+∑N
j=2 Flip[Tr Aj

F−1] (2.25)

Now we use the fact that an improved bifundamental gauged on one side confines to N

free hypers (see (C.9)):

N N ⇐⇒

W = Wgluing

(Free Hyper)N

(2.26)

Using this fact we can sequentially confine all the improved bifundamentals in (2.25) into
a total of (F − 2)× N hypers. We are then left just with a U(N) adjoint SQCD with one
flipped flavor (W = ∑N−1

j=0 Flip[V2Aj
F−1Ṽ2]) and (F − 2) × N free hypers.

Using the duality (2.13) we claim that the U(N) adjoint SQCD with one flipped flavor
is dual to N free hypers. So in conclusion on the mirror side of the duality in (2.24), after
the mass deformation for the first flavor we have just (F − 1) × N free hypers.

Now let’s go back to the electric theory in (2.24). Using the operator map we see that
in the electric theory the mass term W = V1Ṽ1 maps to F [Q1AN−1Q̃1] inducing a VEV for
Q1AN−1Q̃1. This is a VEV for a meson dressed N − 1 times which Higgses completely the
theory leaving (F − 1) × N free hypers. So also this consistency check is passed.

2.4 Flowing to U(N) SQCD without adjoint

The last deformation we consider is turning on a mass term for the adjoint A in the electric
U(N) SQCD. As discussed in section 2.2, Tr(Aj) maps to Tr(Aj

I) in the mirror quiver. In
the mirror quiver, for each j, there are F − 1 holomorphic operators Tr(Aj

I), one for each
node. However only one combination is non-zero in the chiral ring.12 Hence, we turn on
masses for all the adjoints

δW = Tr(A2) ⇐⇒ δW =
F−1∑
I=1

Tr(A2
I) (2.27)

This deformation breaks the U(1)τ symmetry and triggers an RG flow to a new dual pair.
12This follows from the superpotential Wgluing and of the chiral ring relation Tr(Ak

L) = Tr(Ak
R), k = 2, . . . , N

in the F M [U(N)] theory, see [27].
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U(1)R0 U(1)Bj U(1)Xj U(1)Y

Qk, Q̃k 1 −δj,k ∓δj,k 0
V1, Ṽ1

1−N
2 δ1,j 0 ∓1

V2, Ṽ2
1−N

2 δF,j 0 0
Πk, Π̃k 0 δj,k 0 0

Table 4. Charges of the fields in the mirror duality for the U(N) SQCD in (2.28). In the first block
are listed the fields in the SQCD, while in the second block are listed those of the mirror description.

On the left hand side the effect is to simply remove the adjoint. On the right hand side
we remove the F − 1 adjoints AI , and the superpotential now includes the adjoint operators
of the improved bifundamentals A

(I)
R/L.

N

1 1

Q1 QF

· · ·

W = 0

⇐⇒
N N . . . N N

1 1

Π2 ΠF−1
V1 V2

W =
∑N−1

j=0 (Flip[V1(A(2)
L )j Ṽ1] + Flip[V2(A(F−1)

R )j Ṽ2])+

+
∑F−2

I=2 A(I)
R A(I+1)

L (2.28)

The list of charges is given in table 4. The global symmetry on the l.h.s. inf (2.28) is given by:

SU(F )U × SU(F )W ×U(1)m ×U(1)Y , (2.29)

where the two SU(F ) and the U(1)m global symmetries are obtained from the U(1)Bj ×U(1)Xj

as usual with the redefinitions in eqs. (2.2), (2.3).
In the mirror theory, on the r.h.s. in (2.28), the UV global symmetry is:

F∏
j=1

U(1)Bj ×
F−1∏
j=1

U(1)Xj+1−Xj ×U(1)Y , (2.30)

where U(1)Xj+1−Xj are the topological symmetries of the F − 1 gauge nodes. In the IR the
global symmetry enhances to the group in (2.29).

The chiral ring generators in the SQCD side are the F 2 mesons QQ̃, with R-charge
2− 2m and the 2 monopoles M±, with R-charge Fm − N + 1. The mapping of the mesons
is very similar to (2.14), for instance if F = 4:

Tr(QQ̃) ⇐⇒


F [V1(A(2)

L )N−1Ṽ1] M(+,0,0) M(+,+,0) M(+,+,+)

M(−,0,0) B(2)
1,1 M(0,+,0) M0,+,+)

M(−,−,0) M(0,−,0) B(3)
1,1 M(0,0,+)

M(−,−,−) M(0,−,−) M(0,0,−) F [V2(A(3)
R )N−1Ṽ2]

 , (2.31)
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The SQCD monopoles M± map to long mesons V1Π2 . . .ΠF−1Ṽ2 and V2Π̃F−1 . . . Π̃2Ṽ1. It is
easy to check that the charge assignements given in table 4 are consistent with the mapping.

We now comment about the fate of the operators on the quiver side that were mapping
to dressed mesons in the duality with adjoint. These operators are the F [V1(A(2)

L )j Ṽ1], B(a)
1,n

F [V2(A(F−1)
R )j Ṽ2] and the dressed monopoles and dressed long mesons (monopoles and long

mesons, in the quiver side, cannot be dressed by the explicit adjoint fields, since they are
massive, but we can consider dressing with the adjoints inside the improved bifundamental
theories that is the A’s). Such operators do not exist in the SQCD side of (2.28), while
candidate dressed operators appear in the quiver side, so the duality implies that the dressed
operators in the quiver are holomorphic operators set to zero in the chiral ring. We would
like to understand this feature directly in the quiver side without invoking the duality.

We can explain why the quiver operators along the diagonal in (2.31) are set to zero
in the quiver chiral ring using the logic of [33], where it is shown that when a flipper field
is flipping an operator below the unitarity bound (hence the flipper has R > 3

2), it is zero
on the chiral ring as a consequence of quantum effects, e.g. giving a VEV to such a flipper
leads to a theory with no supersymmetric vacuum.

On the electric side, we know that the superconformal R-charge is such that13

1
2 < R[QQ̃] < 1 . (2.32)

The left inequality is the unitarity bound, the right inequality follows from the fact in absence
of superpotential the interactions decrease the R-charge with respect to the free theory, where
R[Q] = 1

2 . The inequality (2.32) implies that on the quiver side, 1
2 < R[F [AN−1Ṽ ] < 1,

while all the operators F [V AhṼ ], h = 0, 1, . . . , N − 2, have R-charge greater than 3
2 (recall

R[A] = 1). Following the logic of [33], we learn such flippers are holomorphic operators which
are zero in the chiral ring of the quiver theory.

The same argument works for the B1,k operators with k = 2, . . . , N − 1, which were
mapping to dressed mesons in the duality with the adjoint. Such operators, when viewed in
the Lagragian UV completion of the improved bifundamental 20, are flippers, see table 8,
hence they are flippers with R > 3

2 , so they must be zero in the chiral ring.

3 Derivation via the N = 2 algorithm

In this section we generalize the dualization algorithm introduced in [19, 20] for N = 4 linear
quivers to the N = 2 case and show how to construct the mirror dual of a generic N = 2
linear quiver with U(N) gauge nodes, improved bifundamentals and generalized flavors.

The idea of the algorithm builds on the observation [21–23] that on linear or circular
brane setups, S-duality can act locally on each 5-brane creating an S-duality wall on its right
and an S−1-duality wall on its left: D5 = S·NS ·S−1 and ĚNS = S·D5·S−1. The dualization
algorithm implements in field theory this local action of S-duality.

We first define the basic N = 2 QFT blocks and the basic N = 2 duality moves. We then
explain the steps of the algorithm and apply them to the example of the N = 2 adjoint SQCD.

13We are considering the region F ≥ N .
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Generalized flavor:

N

1
D5

N − D31−∆

V

X⃗IY⃗ (τ )

Improved bifundamental: N N

NS

N − D3
∆X⃗

(V )

Y⃗

(−V )

Figure 3. Definition of the generalized blocks. In the picture we write in blue the parameterization
of the two theories. To the generalized flavor block we assign trial R-charge 1 and charge −1 under
the axial symmetry U(1)∆, while V denotes the real mass parameter for its vector-like symmetry.
X⃗, Y⃗ denote the Cartans of two U(N) flavor groups. The improved bifundamental block, with trial
R-charge 0 and ∆-charge 1, is defined with background FI couplings for the two U(N) groups. The FI
parameters are denoted by the (±V ).

3.1 Generalized QFT blocks and basic moves

The generalized QFT blocks. The generalized matter blocks are depicted in figure 3. To a
D5 brane with N D3 branes stretching on the left and right we associate a generalized flavor
block, which consist in a flavor with U(1)∆ × U(1)V symmetry together with the identity
operator X⃗IY⃗ (τ) which identifies the Cartans X⃗ and Y⃗ of two U(N) symmetries.

To a NS brane with N D3 branes stretching on the left and right we associate an
improved bifundamental block given by an FM [U(N)] theory with background FI couplings
for the two U(N) global symmetries.

The S3
b partition functions of the QFT blocks are given by:

Z
(N)
D5 (X⃗, Y⃗ , τ,∆, V ) =

N∏
j=1

sb(∆± (Xj − V ))X⃗IY⃗ (τ) ,

Z
(N)
NS (X⃗, Y⃗ , τ,∆, V ) = e

2πiV
∑N

j=1(Xj−Yj)
Z

(N)
F M (X⃗, Y⃗ , τ,∆) , (3.1)

where Z
(N)
F M is defined in appendix B.2, equation (B.25). The identity operator instead is

defined as follows:

X⃗IY⃗ (τ) =
1

∆N (X⃗, τ)
∑

σ∈SN

N∏
j=1

δ(Xj − Yσ(j)) . (3.2)

The convention used for the S3
b partition function is given in appendix A.

The S-wall. The 3d S-wall theory is realized in field theory as the FT [U(N)] theory
(see B.3) as explained in [21]. The FT [SU(N)] theory we use here differs from the T [SU(N)]
introduced in [21] by the adjoint singlet flipping the meson operator. In addition here
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we work in the N = 2∗ parameterization. Together with the T generator it satisfies the
SL(2,Z) relations (ST )3, S2 = −1 and SS−1 = 1 [20, 24]. The partition functions of S
and S−1 differ only by a sign:

Z
(N)
S± (X⃗, Y⃗ , τ) = Z

(N)
F T (X⃗,∓Y⃗ , τ) = Z

(N)
F T (∓X⃗, Y⃗ , τ) . (3.3)

Graphically we represent an S-wall by a dashed line connecting two U(N) flavor symmetries,
the S and S−1 walls are then distinguished by the ± sign over the dashed line. The
SS± = ∓1 relations

N N N
+ ±

τ

X⃗ Y⃗

= X⃗I∓Y⃗ (τ)

W = Wgluing (3.4)

correspond to the following partition function identity:∫
dZ⃗N∆N (Z⃗, τ)Z(N)

S (X⃗, Z⃗, τ)ZS±(Z⃗, Y⃗ , τ) = X⃗I∓Y⃗ (τ) , (3.5)

where the identity operator is defined as in (3.2) . It was shown in [24] that these relations
can be proved by iterating Seiberg-like dualities.

Basic duality moves. The last ingredient necessary for the definition of the algorithm is
given by the basic duality moves. They realize at the field theory level the local action of
S-duality on each 5-brane. The two basic moves are given in figure 4.

In the duality move in the first line of figure 4, we see how by acting with an S-wall on
the left and S−1-wall on the right of a generalized fundamental block we obtain an improved
bifundamental block. The superpotential Wgluing couples the adjoint chiral to the two adjoint
moment map present in the two S-wall theories, AL, AR, as Wgluing = a(AL +AR). The flavor
does not enter the superpotential and indeed is rotated by a U(1)V ×U(1)∆ symmetry.

One can recover the N = 4 basic moves of [19, 20], by adding on the r.h.s. a cubic
superpotential coupling the flavor f to the moment maps as δW = f(AL − AR)f̃ , therefore
making the theory N = 4. This deformation is mapped on the l.h.s. to the B2,1 singlet of
the improved bifundamental theory which has the effect of ironing it to a U(N) × U(N)
bifundamental hypermultiplet, as shown (B.40).

In the duality move in the second line of figure 4, instead the S-dualization of an
improved bifundamental block gives the generalized fundamental block. The superpotential
Wgluing couples the two adjoint chirals to the adjoint operators inside the S-walls and of
improved bifundamentals.

The first N = 2 duality move can be derived by taking suitable real mass deformations of
the 3d braid duality (C.4) as shown in (C.11). The second N = 2 duality move can actually
be obtained by acting on the left and right hand side of the first duality move with S and
S−1 and using the fusion to identity property SS−1 = 1 (3.4), hence the braid duality is
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N N ⇐⇒ N N N

1

ĚNS = S·D5·S−1 :
∆

(−V ) (V )

X⃗
Y⃗

+ −
1−∆

V

τ

X⃗ Y⃗

W = 0 W = Wgluing

N

1

⇐⇒ N N N ND5 = S·NS ·S−1 :

1−∆

V

X⃗IY⃗ (τ ) + ∆ −
τ τ

X⃗ Y⃗

(V ) (−V )

W = 0 W = Wgluing

Figure 4. Basic S-duality moves for the N = 2 QFT blocks. In the first line a flavor block acted
by an S-wall on the left and by an S−1-wall on the right is dualized to an improved bifundamental.
On the r.h.s. Wgluing couples the adjoint chiral to the adjoint operators of the two S-walll theories.
Similarly in the second line we have the S-dualization of the improved bifundamental into a flavor
block. On the r.h.s. Wgluing couples the adjoint chirals to the adjoint operators of the improved
bifundamental and of the S-wall theories.

the fundamental duality move.14 Moreover it has been shown in [27] that the braid duality
can be demonstrated by induction by assuming only the elementary Seiberg-like dualities.
Hence all the N = 2 mirror dualities following from the algorithm are demonstrated to be
consequence Seiberg-like dualities only.

As partition function identities the basic moves are:15

Z
(N)
NS (X⃗, Y⃗ , τ,∆,−V ) =

∫ 2∏
a=1

(
dZ⃗

(a)
N ∆N (Z⃗(a), τ)

)
Z

(N)
S (X⃗, Z⃗(1), τ)

× Z
(N)
D5 (Z⃗(1), Z⃗(2), τ,∆, V )Z(N)

S−1(Z⃗(2), Y⃗ , τ) , (3.6)

Z
(N)
D5 (X⃗, Y⃗ , τ,∆, V ) =

2∏
a=1

(
dZ⃗

(a)
N ∆N (Z⃗(a), τ)

)
Z

(N)
S (X⃗, Z⃗(1), τ)

× Z
(N)
NS (Z⃗(1), Z⃗(2), τ,∆, V )Z(N)

S−1(Z⃗(2), Y⃗ , τ) . (3.7)
14Notice that also the fusion to identity property (3.4) follows from the first move which can be regarded

as an S-confining duality, similar to 4d N = 1 SU(N) SQCD with N + 1 flavors. Turning on a mass for a
flavor one flow to SU(N) SQCD with N flavors whose low energy dynamics is well known to be governed
by a quantum deformed moduli space, over which a part of the global symmetry is spontaneously broken.
In the same way we can obtain (3.4) by giving a mass to the flavor in the first duality move to go from a
confining duality to a quantum deformed moduli space where the U(N) × U(N) global symmetry is broken to
the diagonal.

15As discussed in [20] the partition function of the ĚNS block differs from the one of the NS block only for
the flip of the sign of the parameter V .
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0 N ⇐⇒
X⃗

(−V )
0 0 N

1

+ −

V

X⃗

× singlets

Figure 5. Asymmetric basic duality move relating a trivial U(N)×U(0) bifundamental to trivial
flavor block.

It is useful to regard the matter blocks and the S generator as matrices with two indexes X⃗

and Y⃗ for their two U(N) symmetries. Multiplying these matrices corresponds to gauging
U(N) symmetries using the integration measure ∆N (Z⃗, τ), defined in equation (A.5) of
appendix A, containing both the contribution of a N = 2 vector multiplet and an extra
adjoint chiral with +1 charge under a U(1)τ symmetry. Notice that the U(1)τ symmetries
in the matter blocks and in the S-duality walls are all identified, this is because when we
gauge U(N) nodes we always turn on Wgluing.

Focusing on the first duality only, notice that on the r.h.s. the U(1)V symmetry can be
reabsorbed by a U(1) gauge transformation and therefore it acts trivially on the theory. In
fact, on the l.h.s. the V parameter appears just as a background FI term and therefore it is
not associated to any symmetry acting on the theory. This feature will recur many times, we
find useful to give the dualities writing explicitly also the redundant parameters because they
become physical when the duality is used as a local dualization inside a bigger theory.

So far we have only considered improved bifundamentals with U(N)×U(N) non-abelian
symmetry. To describe more general theories, corresponding to brane setups with non-constant
number of D3 branes, we would need an improved bifundamentals with U(N)×U(M) non-
abelian symmetry and its S-dual which we do not have at the moment. We plan to focus
on this generalization in future works.

In this work we will only need the M = 0 case. The U(N) × U(0) bifundamental is
a trivial theory consisting only of a background FI term for a U(N) global symmetry, its
S-dualization to a trivial flavor block acted by a trivial S-wall on its left and an asymmetric
S−1-wall on its right is shown in figure 5. The definition of the asymmetric S-wall is given
in appendix B.3. This duality move corresponds to the dualization of a D5 brane into an
NS brane, with 0 D3 branes on the left and N on the right. The partition function identity
associated to this duality is given by:

e
−2πiV

∑N

j=1 Xj = Z
(N)
S−1

(
X⃗,

{
N − 1

2 τ + V, . . . ,
1− N

2 τ + V

}
, τ

) N∏
j=2

sb

(
iQ

2 − jτ

)
. (3.8)

Where the partition function of the trivial S-wall and of the trivial matter is equal to one.

Useful combined moves. It is convenient to also define some combined duality moves that
are not fundamental and are obtained by composing several basic moves. This corresponds to
the idea of acting on a set of many 5-branes at the same time, instead of acting on a single one.
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N

F F

=
X⃗IY⃗ (τ) N

1 1

=
1 − B1

V1

1 − BF

VF

· · ·

X⃗IY⃗ (τ) N

1

1 − B1

V1

X⃗IZ⃗2
(τ) N

1

1 − B2

V2

Z⃗2
IZ⃗3

(τ) · · · N

1

1 − BF

VF

Z⃗F
IY⃗ (τ) =

N N N N N N N N N= =
+

τ

B1

τ

−
τ

+
τ

B2

τ

· · ·

τ

BF

τ

−X⃗ Y⃗

(V1) (−V1) (V2) (−V2) (VF ) (−VF )

N N N N N N N=
+

τ

B1

τ

B2

τ

· · ·

τ

BF

τ

−X⃗ Y⃗

(V1) (V2 − V1) (V3 − V2) (VF − VF−1) (−VF )

Figure 6. S-dualization of a block of F N = 2 flavors. In the first step we reparameterize the
U(F )×U(F ) flavors as a set of F fundamental anti-fundamental pairs of flavors. In the second step
we cut the block of F flavours into F generalized flavor blocks. We then dualize each block to an
improved bifundamental block and glue together the results to reach the theory in the second line.
Implementing the fusion to identity SS−1 = 1 we reach the final frame which is given by a string of F

improved bifundamentals with an S-wall on the left and an S−1-wall on the right.

N N . . . N N
B1 BF

τ τ

X⃗ Y⃗

(−V1) (V1 − V2) (VF−1 − VF ) (VF )

= N N N

1 1

+ −

1 − B1

V1

1 − BF

VF

X⃗ Y⃗

· · ·

τ

Figure 7. S-dualization of a block of F improved bifundamentals.

For example, it can be useful to consider the S-dualization of a block of F N = 2 flavors
as schematically shown in figure 6. Similarly it can be useful to dualize a string of consecutive
improved bifundamentals 7. This second move can be obtained starting from the duality 6
by acting on the left and right with a S and S−1 operators and using the fact that SS−1 = 1.
As partition function identities, the two combined duality moves corresponds to:

Z
(N)
F−D5(X⃗, Y⃗ , τ, B⃗, V⃗ ) =

∫ F +1∏
a=1

(
dZ⃗

(a)
N ∆N (Z⃗(a), τ)

)
Z

(N)
S (X⃗, Z⃗(1), τ)

×
F∏

a=1
Z

(N)
NS (Z⃗(a), Z⃗(a+1), τ, Ba, Va)Z(N)

S−1(Z⃗(F +1), Y⃗ , τ) , (3.9)
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∫ F−1∏
a=1

(
dZ⃗

(a)
N ∆N (Z⃗(a), τ)

)
Z

(N)
NS (X⃗, Z⃗(1), τ, B1,−V1)

×
F−1∏
a=2

Z
(N)
NS (Z⃗(a−1), Z⃗(a), τ, Ba,−Va)ZNS(Z⃗(F−1), Y⃗ , τ, BF ,−VF ) = (3.10)

=
∫ 2∏

a=1

(
dZ⃗

(a)
N ∆N (Z⃗(a), τ)

)
Z

(N)
S (X⃗, Z⃗(1), τ)Z(N)

F−D5(Z⃗
(1), Z⃗(2), τ, B⃗, V⃗ )Z(N)

S−1(Z⃗(2), Y⃗ , τ) ,

with

Z
(N)
F−D5(X⃗, Y⃗ , τ, B⃗, V⃗ ) =

N∏
j=1

F∏
a=1

sb(Ba ± (Xj − Va))X⃗IY⃗ (τ) . (3.11)

3.2 N = 2 dualization algorithm

Now that we have introduced all the necessary ingredients we are ready to present the
dualization algorithm. This consists in the following steps:

• Ungauge the gauge nodes to cut the quiver theory into QFT matter blocks that can be
either improved bifundamental or generalized flavor blocks.

• Dualize each block using the two basic duality moves.

• Glue back all the dualized blocks implementing the fusion to identity SS−1 = 1.

• If some operator has acquired a VEV, follow the RG flow triggered by this VEV.

To illustrate this procedure we will now implement the algorithm to derive the mirror dual
of the adjoint SQCD. Another example is given in appendix F.

3.3 Dualization of the U(N) adjoint SQCD

We start by taking the SCQD parameterized as in figure 2, we ungauge the U(N) gauge
group and chop the theory into a block of F generalized flavors and two (trivial) bifun-
damental blocks:

N

1 1

=

1 − B1

X1

1 − BF

XF

. . .

τ

(Y1 − Y2)
0 N N

1 1

N 0
Z⃗

(Y1)

1 − B1

X1

1 − BF

X1

. . .

Z⃗IW⃗ (τ)
W⃗

(−Y2) (3.12)

For later convenience we have redefined the FI parameter of 2 as Y → Y1 − Y2. At the level
of the partition function this first step consist in the following rewriting:

ZSQCD =
∫

dZ⃗N∆N (Z⃗, τ)e2πi(Y1−Y2)
∑N

j=1 Zj

N∏
j=1

F∏
a=1

sb(Ba ± (Zj − Xa)) =

=
∫

dZ⃗N∆N (Z⃗, τ)dW⃗N∆N (W⃗ , τ)e2πiY1
∑N

j=1 Zj

× Z
(N)
F−D5(Z⃗, W⃗ , τ, B⃗, V⃗ )e−2πiY2

∑N

j=1 Wj = Zstep 1 , (3.13)
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where we have isolated the contributions of the two trivial bifundamental blocks corresponding
to the FI couplings and the F -flavors block. The identity between the first and second line
follows from the fact that the identity operator Z⃗IW⃗ (τ), contained in the definition of the
F -flavor block (3.11), behaves as a delta function identifying the Z⃗ and W⃗ parameters and
is normalized as: ∫

dW⃗N∆N (W⃗ , τ)Z⃗IW⃗ (τ) = 1 . (3.14)

We use the combined duality move in 6 to dualize the generalized QFT blocks. We
also use the asymmetric duality 5 to dualize the trivial bifundamental blocks. Then we
glue back all the dualized blocks:

0 0

1

N N N N N N 0

1

0
+

Y1

− +
B1

· · ·
BF

− +

Y2

+

τ τ τ τ τ τ

(X1) (X2 − X1) (XF -XF−1) (−XF ) (3.15)

To avoid cluttering, in the picture we have not included the singlets coming from the
dualization of the trivial bifundamentals. This procedure corresponds to using the set of
partition function identities (3.9) and (3.8) in the partition function (3.13) to obtain:16

ZSQCD = Zstep 1 =
N∏

j=2
sb

(
iQ

2 − jτ

)2 ∫ F +3∏
a=1

(
dZ⃗

(a)
N ∆N (Z⃗(a), τ)

)
× Z

(N)
S−1

({
N − 1

2 τ + Y1, . . . ,
1− N

2 τ + Y1

}
, Z⃗(1), τ

)
Z

(N)
S (Z⃗(1), Z⃗(2), τ)

×
F∏

a=1
Z

(N)
NS (Z⃗(a+1), Z⃗(a+2), τ, Ba, Xa)Z(N)

S−1(Z⃗(F +2), Z⃗(F +3), τ)

× Z
(N)
S

(
Z⃗(F +3),

{
N − 1

2 τ + Y2, . . . ,
1− N

2 τ + Y2

}
, τ

)
= Zstep 2 . (3.16)

Where we named as Z⃗(a) the Cartans of the a-th U(N) gauge group. On the l.h.s. and on
the r.h.s. of the quiver, the integration over the first and the last U(N) node (over Z⃗(a)

and Z⃗(F +3)) fuse a symmetric and an asymmetric S-wall to an asymmetric I− wall (B.51).
The effect of these asymmetric I-walls is in turn to deform the first and last improved
bifundamentals into asymmetric improved bifundamentals defined in (B.42), by breaking
the U(N) symmetries to U(1):

1

0 N N N N 0

1
Y1

B1 B2
· · ·

BF−1 BF

Y2

τ τ τ τ

(X2 − X1) (X3 − X2) (XF−1-XF−2) (XF -XF−1) (3.17)
16Notice that the trivial S-walls on the l.h.s. and on the r.h.s. have trivial partition functions and we will

drop them in the next pictures.
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At the level of partition functions the integral over Z⃗(1) and Z⃗(F +3) in (3.16) generating
the asymmetric Identity-walls produces a set of delta functions as explained in (B.48).
Implementing these delta functions freezes the Z⃗(2) and Z⃗(F +2) Carans in terms of τ, Y1, Y2
and we find:

ZSQCD = Zstep 1 = Zstep 2 =
N∏

j=2
sb

(
iQ

2 − jτ

)2 ∫ F +1∏
a=3

(
dZ⃗

(a)
N ∆N (Z⃗(a), τ)

)
× Z

(N)
NS

({
N − 1

2 τ + Y1, . . . ,
1− N

2 τ + Y1

}
, Z⃗(3), τ, B1, X1

)

×
F−1∏
a=2

Z
(N)
NS (Z⃗(a+1), Z⃗(a+2), τ, Ba, Xa)

× Z
(N)
NS

(
Z⃗(F +2),

{
N − 1

2 τ + Y2, . . . ,
1− N

2 τ + Y2

}
, τ, BF , XF

)
= Zstep 3 . (3.18)

Finally we can exploit the duality relating a U(N) × U(1) asymmetric improved bi-
fundamental to a flipped flavor discussed in (B.43) to replace the asymmetric improved
bifundamentals on the l.h.s. and on the r.h.s. to land on the mirror dual theory:

N N N N

1 1

B2 BF−1

1−N
2 τ + B1

Y1

1−N
2 τ + BF

Y2

· · ·τ

τ τ

τ

(X2 − X1) (X3 − X2) (XF−1-XF−2) (XF -XF−1) (3.19)

Which corresponds to the final partition function:17

ZSQCD = Zstep 1 = Zstep 2 = Zstep 3 = e2πiN(Y1X1−Y2XF )
∫ F−1∏

a=1

(
dZ⃗

(a)
N ∆N (Z⃗(a), τ)

)
×

N∏
j=1

[
sb

(
iQ

2 − 1− N

2 τ − B1 ± (Z(1)
j − Y1)

)
sb

(
− iQ

2 + (j − N)τ + 2B1

)

× sb

(
iQ

2 − 1− N

2 τ − BF ± (Z(F−1)
j − Y2)

)
sb

(
− iQ

2 + (j − N)τ + 2BF

)]

×
F−1∏
a=2

Z
(N)
NS

(
Z⃗(a−1), Z⃗(a), τ, Ba, Xa

)
= Z

­SQCD . (3.20)

Comments on the F = 1 case. We now discuss the case F = 1 which leads to the duality
presented in figure (2.12). In this case we need to dualize two trivial bifundamental blocks

17The Identity in (2.10) is recovered by redefining Y1 = Y + Y2 and then shifting all the gauge parameters
as Z(a) → Z(a) + Y2
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and a single generalized flavor block to get:

0

1

N N N N 0

1

−

Y1

+
B

− +

Y2

τ τ τ τ

(X) (−X) (3.21)

Where we have already remove all the trivial blocks from the picture. We can now implement
the asymmetric I-wall on the left with the effect of Higgsing the second U(N) node down to
U(1) rendering improved bifundamental asymmetric. We then use the duality (B.43) relating
the asymmetric improved bifundamental to a flipped flavor to land on:

1

N N 0

1
1−N

2 τ + B

Y1

− +

Y2

τ

τ

(−X) (3.22)

Where we are not depicting all the singlets produced by the procedure to avoid cluttering.
To this step is associated the following partition function:

ZF =1
SQCD =Zstep 3′ =

N∏
j=2

sb

(
iQ

2 −jτ

)∫ 2∏
a=1

(
dZ⃗

(a)
N ∆N (Z⃗(a), τ)

)
e

2πiX(NY1−
∑N

j=1 Z
(1)
j ) (3.23)

×
N∏

j=1
sb

(
iQ

2 − 1−N

2 τ +B±(Z(1)
j −Y1)

) N∏
j=1

sb

(
− iQ

2 +(j−N)τ −2B

)

×Z
(N)
S−1(Z⃗(1), Z⃗(2), τ)Z(N)

S

(
Z⃗(2),

{
N −1
2 τ +Y2, . . . ,

1−N

2 τ −Y2

}
, τ

)
.

Now we implement the second asymmetric I-wall, which Higgses the first U(N) gauge group
transforming the U(N) flavor into a collection of 2N chirals. At the level of the partition
function the Higgsing corresponds to specializing the Cartan Z⃗(1) in terms of the τ and Y2
parameters. Taking into account all the singlets the partition function of the final theory is:

ZF =1
SQCD = Zstep 3′ = e2πiXN(Y1−Y2)

N∏
j=2

sb

(
iQ

2 − jτ

) N∏
j=1

sb

(
iQ

2 − (1− j)τ − B ± (Y2 − Y1)
)

×
N∏

j=1
sb

(
− iQ

2 + (j − N)τ + 2B

)
= ZF =1

­SQCD = ZWZ . (3.24)

The last set of singlets maps to the traces of the adjoint chiral of the SQCD. Therefore, if
we flip them we land precisely on the duality (2.12). In particular the charges of the chiral
fields are compatible with the cubic superpotential in (2.12).
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4 3d N = 2 linear brane setups and improved bifundamentals

The N = 2 algorithm discussed in the previous sections, allows us to advance our under-
standing of Hanany-Witten brane setup with 4 supercharges. In this section we make a
proposal for the 3d N = 2 gauge theory living on brane setups composed of D3, NS and
D5′ branes. As we will see, our proposal differs from the naive quiver gauge theory in that
the bifundamentals are improved instead of standard.

Let us start by defining the Hanany-Witten brane setup we are interested in. There are
D3 branes, filling the 0126 directions, stretching along the 6 direction between NS branes
(filling the 012345 directions) or NS′ branes (filling the 012389 directions). Flavors are added
inserting D5 (012789) or so called D5′ (012457) branes.

0 1 2 3 4 5 6 7 8 9
D3 x x x x
NS x x x x x x
D5 x x x x x x
NS′ x x x x x x
D5′ x x x x x x

(4.1)

If all the branes are present the system preseves 3d N = 2 supersymmetry. The U(1)2

symmetry rotating the 45 and 89 directions becomes the

U(1)R ×U(1)τ (4.2)

symmetry in the IR QFT. U(1)R is the N = 2 R-symmetry while U(1)τ is an additional
global symmetry always present in the QFT’s associated to brane setups with the branes
of 4.1.18 If only D3, NS and D5 (or D3, NS′ and D5′) are present, the system preserves 8
supercharges and the low energy theory living on it is well known to be a N = 4 quiver with
standard bifundamental matter. For instance the 3d N = 4 U(N) theory with no flavors is
associated to a Type IIB brane setup with N D3 branes stretching between 2 NS branes. We
can add F flavors, adding D5 or D5′ branes. The D5 branes preserve the 8 supersymmetries,
while the D5′ break half of the superymmetry, from N = 4 to N = 2.

In N = 2 language, N D3 branes stretching between 2 NS branes with F D5 branes in
the middle provide adjoint U(N) with F flavors and a cubic superpotential coupling the flavor
to the adjoint (equivalently, we could use N D3 branes stretching between 2 NS′ branes with
F D5′ branes in the middle). On the other hand, N D3 branes stretching between 2 NS

branes with F D5′ branes in the middle,19 as in the left of the setup in figure (4.3), give rise
to U(N) with an adjoint and F flavors and a vanishing superpotential, W = 0 [29, 42, 43].
We can exclude a superpotential counting the motion of the D3 brane segments as follows. In
the F flavors case there are N(F − 1) D5′ − D5′ segments (providing N(F − 1) quaternionic

18One can break this U(1)τ symmetry rotating some 5-branes to generic angles along the 45 and 89 directions,
without breaking the N = 2 supersymmetry. In this paper we do not study such configurations, but they
should be obtained turning on superpotential deformations from the setups we study.

19Equivalently, we could use N D3 branes stretching between 2 NS′ branes with F D5 branes in the middle.
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directions) and 2N D5′ − NS segments (providing 2N complex directions), so there must
be a branch in the moduli space of vacua of the theory of complex dimension 2NF . Such
a branch exists if W = 0, parameterized by NF Q’s, NF Q̃’s, N2 A’s minus N2 gauge
symmetries, but a non zero superpotential, e.g. of the form (QQ̃)2, would lift part of these
2NF complex directions.20

The U(N) adjoint SQCD with F flavors, W = 0, is precisely the theory we studied in
the previous sections, for which we found the mirror dual with F − 1 gauge groups linked by
improved bifundamentals. Now, as shown in picture (4.3) we apply Type IIB S-duality to
its associated brane setup. Modulo rotating the branes, 21 the S-dual setup is N D3 branes
stretching between 2 D5′ branes with F NS branes in the middle.

. . .

N

F

S-duality
⇐⇒

. . .

N

F

N

F F

W = 0

Mirror
symmetry

⇐⇒
N N . . . N N

1 1

V1 V2

A1 A2 AF−2 AF−1

W =
∑N−1

j=0 (Flip[V1Aj
1Ṽ1] + Flip[V2Aj

F−1Ṽ2]) +Wgluing (4.3)

Looking at the web of dualities in figure (4.3) it is natural to propose that the IR QFT
associated to the brane setup on the right hand side is our mirror SQCD quiver obtained via
the dualization algorithm, with improved, instead of standard bifundamentals (in section 4.3
we will comment on the relation between our proposal and previous ones). Building on
this observation and on the N = 2 algorithm perspective, for an N = 2 brane setup made
of a constant number of D3 branes stretching between an arbitrary sequence of NS and
D5′ branes, we formulate the following

Proposal The IR QFT associated to N D3 branes stretching along an arbitrary ordered
sequence of g+1 NS branes and F D5′ branes consists of a linear quiver with g U(N) adjoint
nodes, g − 1 improved bifundamentals and a total of F flavors distributed among the g nodes,
according to the position of the D5′ branes. The superpotential is Wgluing, which couples the
adjoint of each U(N) node to the adjoint operators of the nearby improved bifundamentals.

20One can also argue for the absence of a cubic superpotential of the type AQQ̃ noticing that the D3 branes,
when moving along the 45 directions (which corresponds to a vev for the adjoint A), remain in contact with
the D5′ branes, hence the D3 − D5 strings (which correspond to the flavor fields) remain at zero length, so
the flavors remain massless.

21For convenience in the pictures we will always present the action of S-duality combined with the rotation
acting by NS′ → NS and D5 → D5′. Clearly the QFT description is invariant under this rotation.
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The flavors do not enter the superpotential, the only exception is if at the beginning (or at the
end) of the sequence of 5-branes there is a single D5′ brane, then the dressed mesons made
with the associated flavor are flipped.

We claim that this proposal is consistent with S-duality, that is two improved quivers
corresponding to S-dual brane setups are mirror dual, and one can construct the dual using
the N = 2 algorithm. We provide a few examples in section 4.1. The improved quiver theories
associated to these brane setups have interesting patterns of symmetry enhancement and,
as we discuss in 4.2, we have a notion of balanced nodes leading to symmetry enhancement,
in analogy with the N = 4 case [21].

Let us discuss some special sequences of 5-branes.
If at the beginning of the sequence of 5-branes there are h > 1 NS branes, as we show in

section 4.2, the associated theory is ugly and we can sequentially confine a string of h − 1
improved bifundamentals generating (h − 1)N free hypers. So the interacting part of the
theory is associated to the set up where the first h − 1 NS branes have been removed. In
particular, our proposal for the theory associated to a sequence of h NS branes, a U(N)h−1

improved quiver with no flavors flows in the IR to hN free hypers, exactly as the bad N = 4
U(N)h−1 quiver theory with standard bifundamentals.

Analogously, by S-duality, if at the beginning of the sequence of 5-branes there are h > 1
D5′ branes, the QFT is given by (h − 1)N free hypers plus the QFT associated the brane
setup where the first h − 1 D5′ have been removed.

The last example is the short sequence D5′ − NS − D5′, this sequence is not associated
to an improved bifundamental (which in our prescription always connects gauge nodes) but
to an improved bifundamental where both the U(N) symmetries are broken to U(1)s. This
deformation reduces the improved bifundamental to the Wess-Zumino model on the r.h.s.
of (2.12) (as shown in section 3.3) which is indeed mirror dual to the SQCD with one flavor
associated to the S-dual brane setup NS − D5′ − NS.

Let us also mention that we actually understand some instances of more general situations.
We can describe brane systems where an arbitrary number of D5′s sit on top of an NS,

that is the NS and the D5′ form a (p, q)-web of rectangular shape. In 5 by extending the
logic of [44] from the abelian to the non abelian case, we propose the QFT corresponding to
the S-dual (p, q)-web, that is many NS’s sitting on top of a D5′.

We can turn real mass deformations in our quivers to generate Chern-Simons interactions
and/or theories with chiral matter (different number of fundamentals vs anti-fundamentals).
The corresponding brane setup might include (p, q) 5-branes and non-rectangular (p, q)-
webs. We will discuss these theories in [34], using the chiral improved bifundamental
introduced in [27].

Let us conclude saying that the most general 3d N = 2 setup would involve all four
types of 5-branes (NS, NS′, D5, D5′) and a non-constant number of D3 branes along the
brane setup. To describe such setups we need a new object, an improved bifundamental, with
non-abelian global symmetry S[U(N1)×U(N2)]. We plan to investigate it in the future.
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. . . . . .

#F1 #F2

S duality
⇐⇒

. . . . . .

#F1 #F2

N N

F1F1 F2 F2

W = Wgluing

Mirror
symmetry

⇐⇒
N . . . N . . . N

1 1 1 1

V1 V3

A1 AF1+F2−1

W = Wgluing +
∑N−1

j=0
(
Flip[V1Aj

1Ṽ1] + Flip[V3Aj
F1+F2−1Ṽ3]

)
Figure 8. In the top left corner we have the electric brane set up with three NS branes, F1 D5′
branes in the first interval and F2 in the second and a N D3 branes stretching from the first NS to
the third. The associated quiver theory in the bottom left corner has two gauge nodes linked by an
improved bifundamental, F1 flavor on the first node and F2 on the second. On the top right corner
we have the S-dual brane setup and on the bottom right corner its associated quiver description. The
leftmost and rightmost flavors are associated to the D5’ located outside the SN branes hence the
corresponding dressed mesons are flipped. We denoted by Va, with a = 1, 2, 3 the flavors from left to
right and by An the adjoint of the n-th gauge node. The two quiver theories are mirorr dual.

4.1 More examples of N = 2 mirror quivers

In this subsection we consider brane setups with N D3 branes stretched along the sequence
NS− (D5′)F1 −NSK − (D5′)F2 −NS, which is mirror to D5′−NSF1 − (D5′)K −NSF2 −D5.
We write down the associated QFT’s, discuss the chiral rings and global symmetries, and
prove the IR duality between them.

4.1.1 Electric theory with 2 nodes

Let us start from the simplest example, K = 1, corresponding to the brane setup in the top
left corner of figure 8. According to our proposal 4 the associated theory is the two nodes
improved quiver on the bottom left corner. As in the case of the SQCD, it is convenient
to reparameterize the electric theory as:

N N

11 1 1

D

1 − B1

X1

1 − BF1

XF1

· · ·

(W1 − W2)

1 − C1

Y1

1 − CF2

YF2

· · ·

(W2 − W3)

τ τ

(4.4)
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The global symmetry group of this theory is given by:22

S[U(F1)2 ×U(F2)2]×U(1)D ×U(1)W1−W2 ×U(1)W2−W3 ×U(1)τ , (4.5)

Where the parameterization of (4.4) recombines as:

F1∏
j=1

(
U(1)Bj ×U(1)Xj

)
= U(F1)2 ,

F2∏
j=1

(
U(1)Cj ×U(1)Yj

)
= U(F2)2 . (4.6)

At this point we run the dualization algorithm, as shown in appendix F, and find the mirror
dual quiver theory:

N N . . . N N N . . . N N

1 1 1

B2 BF1 C1 CF−1

1−N
2 τ + B1

W1

1 − D

W2

1−N
2 τ + CF

W3

(X2 − X1) (X3 − X2) (XF1 -XF1−1) (-XF1 +Y1) (Y2 − Y1) (YF−1-YF−2) (YF - YF−1)

τ

τ τ
τ

τ τ

τ

(4.7)

Where F = F1 + F2. As expected, the mirror dual quiver (4.7), obtained via the algorithm,
coincides with the quiver in bottom right corner of figure 8 (with a different parameterization
of the central flavor) which we wrote down starting from the S-dual brane configuration and
applying our proposal. The manifest global symmetry group is given by:

S

 3∏
j=1

U(1)Wj

×U(1)D ×
F1∏

j=1
U(1)Bj ×

F2∏
j=1

U(1)Cj×

×
F1−1∏
j=1

U(1)Xj+1−Xj

F2−1∏
j=1

U(1)Yj+1−Yj ×U(1)Y1−XF1
×U(1)τ . (4.8)

The pattern of symmetry enhancement is similar to the SQCD case, in particular we observe
that the topological and axial symmetries enhance as:

F1∏
j=1

U(1)Bj ×
F1−1∏
j=1

U(1)Xj+1−Xj → S[U(F1)2] ,

F2∏
j=1

U(1)Cj ×
F2−1∏
j=1

U(1)Yj+1−Yj → S[U(F2)2] . (4.9)

The complete IR global symmetry of the mirror theory is then:

S[U(F1)2]× S[U(F2)2]×U(1)Y1−XF1
×U(1)D × S

 3∏
j=1

U(1)Wj

×U(1)τ , (4.10)

22We can factorise a U(1) vector-like factor from U(F1)2 × U(F2)2 by a gauge transformation. This consists
in imposing the constraint:

∑F1
j=1 Xj +

∑F2
j=1 Yj = 0.
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which upon a redefinition of some U(1) factors, matches precisely with the IR global symmetry
of the original theory in (4.5).

Notice that the pattern of symmetry enhancement in the mirror theory is quite non-trivial
but thanks to the parameterization obtained from the dualization algorithm, it is easier to
collect together operator with the same R-charge and therefore construct representations
of the emergent symmetries.

Operator map. The operator map works as follows:

• In the electric theory we can build mesonic operators in the F̄1 × F1 bifundamen-
tal. In the magnetic theory these are mapped into a collection of monopoles and
singlets. In particular, using the results of appendix E we can check that monopoles
M±(0,...,0,1,...,1,0,...,0|0|0,...,0), with topological charge given by strings of contiguous 1 (or
−1) under the topological symmetries UXj+1−Xj of the F1 − 1 nodes on the l.h.s. of the
central node, they all have the same R-charge. We can then collect these F1(F1 − 1)
monopoles with the B(j)

1,1 singlet in the F1 −1 improved bifundamentals on the left of the
central flavor plus the flipper of the left flavor F [V1AN−1

1 Ṽ1] in a matrix transforming
in the F̄1 × F1 bifundamental of the emergent U(F1)2 symmetry.

• Similarly have an electric mesonic operators in the F̄2 ×F2 bifundamental to F2(F2 − 1).
This is mapped to a collection of monopoles M±(0,...,0|0|0,...,0,1,...,1,0,...,0), with topological
charge given by strings of contiguous 1 (or −1) under the topological symmetries
UYj+1−Yj of the F2 − 1 nodes on the r.h.s. of the central node , and the B(j)

1,1 singlets in
the F2 − 1 improved bifundamentals on the right of the central flavor plus the flipper
of the right flavor F [V3AN−1

F1+F2−1Ṽ3]. Collecting all these operators we can assemble a
matrix transforming in the bifundamental F̄2 × F2 of the emergent U(F2)2 symmetry.

• Electric long mesons in the F1 × F̄2 and F̄1 ×F2, involving the improved bifundamental,
are mapped into magnetic monopole operators M±(0,...,0,1,...,1|1|1,...,1,0,...,0) with topologi-
cal charge given by a string of ±1 extending from the central node, to the left and to
the right. Using the results in E we can check that all these 2F1 × F2 operators have
the same R-charge and can be assembled into two matrices. Collecting all the positively
charged monopoles we assemble a matrix transforming in the F̄1 × F2 which therefore
maps to the corresponding electric mesons. Similarly, the negatively charged monopoles
form a matrix mapping to the F1 × F̄2 mesons.

• We also have electric monopoles charged under the topological symmetry of the left
gauge node M±(1,0). The positively charged one is mapped into the long meson in the
magnetic theory built by joining the chirals Ṽ1 and V2 with the string of improved
bifundamental operators connecting them. The negatively charged monopole is instead
mapped in the conjugate long meson built by similarly joining V1 and Ṽ2.

• Similarly, we have electric monopoles charged under the topological symmetry of the
right gauge node M±(0,1) These are mapped respectively into the long meson in the
magnetic theory built by joining the chirals Ṽ2 and V3 with the string of improved
bifundamentals connecting them and its conjugate.
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• Electric monopoles charged under both the topological symmetries M±(1,1) are respec-
tively mapped into long mesons built by joining Ṽ1 and V3 with the string of improved
bifundamental connecting them and its conjugate.

• The singlets Bn,m (with R-charge 2n − 2D + (m − n)τ) contained in the improved
bifundamental of the electric theory are mapped into magnetic dressed mesons obtained
from the central flavor: V2An−1Am−1Ṽ2. Where A is the adjoint at the central node
while A is the moment map of the improved bifundamental to the right or to the left of
the central node, that are identified due to the F-term relations coming from the field A.
Notice that in the electric quiver all the Bn,m’s are non trivial in the chiral ring, while
in the mirror quiver the Bn ̸=1,m’s of each improved bifundamental are trivial in the
chiral ring.23 This is consistent with the fact that operators of the type VbAn−1

b Am−1
b Ṽb

for n ̸= 1 (with the flavor Vb living at the boundary of an improved quiver) are zero in
the chiral ring, because the moment map operator Ab attached to a boundary node is
set to zero by the F-terms of Ab, the adjoint of the boundary node.

All the presented operators can be also dressed with powers of the adjoint, unlike in the
N = 4 theories where the cubic superpotential sets them to zero. The generalization of the
map to dressed operators is straightforward. For mesonic operators in the electric theory,
their dressed version is mapped into a collection of dressed monopoles plus a set of singlets.
For any electric mesons dressed with j < N powers of an adjoint, we consider singlets in the
magnetic theory that are given by: the B(j)

1,j+1 singlets in the improved bifundamental theories
and the flip of the flavors dressed j times Flip[VaAj Ṽa]. Analogously, dressed monopoles in
the electric theory are mapped into dressed mesons in the magnetic theory.

4.1.2 Electric theory with K + 1 nodes

We now consider the electric brane setup on the top left corner of figure 9 and its associated
quiver theory with K + 1 gauge nodes linked by K improved bifundamental. It is convenient
to consider the following parametrization:

N N . . . N N

1 1 1 1

D1 DK

1 − B1

X1

1 − BF1

XF1

· · ·
1 − C1

Y1

1 − CF2

YF2

· · ·

(WL − W1) (W1 − W2) (WK−1-WK) (WK − WR)

τ

τ τ

τ

(4.11)

The manifest global symmetry group of the theory is given by:

S[U(F1)2 ×U(F2)2]×
K∏

j=1
U(1)Dj ×

K−1∏
j=1

U(1)Wj−Wj+1 ×U(1)WL−W1 ×U(1)WK−WR
×U(1)τ ,

(4.12)
23We will turn on these deformations in section 6.3 in order to find a 3d mirror of a 4d quiver coming from

a linear Hanany-Witten brane setup with 4 supercharges.
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#F1 #K #F2

N . . . N

F1 F1 F2 F2

W = Wgluing

S-duality
⇐⇒

. . . . . . . . .

#F1 #K #F2

Mirror
symmetry

⇐⇒
N . . . N . . . N

1 K K 1

VL VR

A1 AF1+F2−1

W = Wgluing +
∑N−1

j=0
(
Flip[VLAj

1ṼL] + Flip[VRAj
F1+F2−1ṼR]

)
Figure 9. On the top left corned the electric brane set up with K + 2 NS branes, F1 D5′ branes in
the first interval and F2 in the last and N D3 branes. The associated quiver theory, in the bottom
left corner, has K + 1 gauge nodes linked by K improved bifundamental, F1 flavor on the first node
and F2 on the last. On the top right corner the S-dual brane setup and on the right bottom corner
its associated quiver theory. The leftmost and rightmost flavors are associated to the D5′ located
outside the NS branes hence the corresponding dressed mesons are flipped. The two quiver theories
are mirror dual.

where U(F1)2 and U(F2)2 are realised as:
F1∏

j=1

(
U(1)Xj ×U(1)Bj

)
= U(F1)2 ,

F2∏
j=1

(
U(1)Yj ×U(1)Cj

)
= U(F2)2 . (4.13)

In this case also in the electric theory we have a non-trivial symmetry enhancement in the IR
where the K − 1 topological symmetries U(1)Wj−Wj+1 with j = 1, . . . K − 1, together with
the K symmetries U(1)Dj , associated to the improved bifundamentals, enhance as:

K∏
a=1

U(1)Da ×
K−1∏
j=1

U(1)Wj−Wj+1 → S[U(K)2] . (4.14)

Hence the full IR global symmetry of the theory is:

S[U(F1)2 ×U(F2)2]× S[U(K)2]×U(1)WL−W1 ×U(1)WK−WR
×U(1)τ , (4.15)

Now we run the dualization algorithm, as shown in appendix F, and find the mirror
dual quiver theory with the following parameterization:

N N N N N N N

1 1 1 1

B2
· · ·

BF1 C1
· · ·

CF2−1

1−N
2 τ + B1

WL

1 − D1

W1

1 − DK

WK

· · ·
1−N

2 τ + CF2

WR

(X2 − X1) (X3 − X2) (XF1 - XF1−1)

(Y1 - XF1 )

(Y2 − Y1) (YF2−1 - YF2−2) (YF2 - YF2−1)

τ

τ τ

τ

τ τ

τ

(4.16)
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The set of K flavor on the central node can be reparameterized so that they are rotated
by a U(K)2 symmetry obtained as:

K∏
j=1

(
U(1)Dj ×U(1)Wj

)
= U(K)2 , (4.17)

so that the manifest global symmetry of the theory is given by:

S[U(K)2 ×U(1)WL
×U(1)WR

]×
F1∏

j=1
U(1)Bj ×

F2∏
j=1

U(1)Cj×

×
F1−1∏
j=1

U(1)Xj+1−Xj ×
F2−1∏
j=1

U(1)Yj+1−Yj ×U(1)τ . (4.18)

It is trivial to check that, after the reparameterization, the theory in (4.16) coincides with
the quiver in the bottom right corner in the figure 9 which we wrote applying our proposal 4
to the S-dual brane setup.

Similarly to the previous example, the U(1)Bj and U(1)Cj symmetries acting on each
improved bifundamental and the topological symmetries recombine to produce the enhanced
IR symmetry:

F1∏
j=1

U(1)Bj ×
F1−1∏
j=1

U(1)Xj+1−Xj → S[U(F1)2] ,

F2∏
j=1

U(1)Cj ×
F2−1∏
j=1

U(1)Yj+1−Yj → S[U(F2)2] . (4.19)

The complete IR global symmetry of the mirror theory is then:

S[U(F1)2]× S[U(F2)2]×U(1)Y1−XF1
× S[U(K)2 ×U(1)WL

×U(1)WR
]×U(1)τ , (4.20)

that upon a redefinition of some U(1) factors, it matches precisely with the IR global
symmetry of the original theory in (4.15).

4.2 3d N = 2 improved quivers: the good, the bad and the ugly

In this section we extend the N = 4 quivers notion of balanced (NF = 2NC), good (NF ≥
2NC), ugly (NF = 2NC − 1), and bad (NF < 2NC − 1) nodes of [21], to the N = 2 improved
quivers with constant ranks. We expect that a similar story holds for N = 2 improved
quivers with non-constant ranks.

Comments on symmetry enhancement: balancing condition. Looking back at all the
theories presented up to this point, namely the 1, 2 and K node examples together with their
mirror duals, a recurring pattern of global symmetry enhancement can be seen, we now want to
collect all these hints to formulate a general rule to recognize the enhancement of symmetries.

Let us start from the K nodes example which is given in (4.11). Let us isolate from
the theory the sequence of improved bifundamentals:

N N . . . N N· · ·
D1 D2 DK−1 DK

· · ·
(W1 − W2) (W2 − W3) (WK−2-WK−1) (WK−1-WK)

τ τ τ τ

(4.21)
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This structure of K improved bifundamentals gives a global symmetry enhancement obtained
from the K U(1)Da axial symmetries associated to the improved bifundamentals and the K−1
U(1)Wj−Wj+1 topological symmetries. Together these symmetries enhance to a U(K)2/U(1)
non-abelian global symmetry group. Let’s take the Cartan’s of U(K)2 to be M⃗ and N⃗ ,
we have the following relations:

Ma = Wa − Da ,

Na = Wa + Da , (4.22)

from which we notice that the U(1)Da symmetries parameterize the axial-like and the U(1)Wa

the vector-like subgroup of U(K)2.
We then look at the mirror theory given in (4.16), both on the left and on the right of

the quiver we observe a string of improved bifundamental ending with a single flipped flavor.
Let’s focus on the left part only and isolate the following structure:

N N . . . N N

1
1−N

2 τ + B1

B2 BK−1 BK

· · ·
(X2 − X1) (X3 − X2) (XK−1-XK−2) (XK -XK−1)

τ

τ τ τ

(4.23)

We observe that the U(1)Ba and U(1)Xj+1−Xj symmetries enhance to a U(F1)2/U(1), where
the parameterization is given analogously to that in (4.22). The same enhancement happens
also in the mirror of the two node theory in (4.7).

Let us now look finally to the mirror of the SQCD in figure 1, we have a string of
improved bifundamentals ending on both sides with a flipped flavor:

N N . . . N N

1 1
1−N

2 τ + B1

B2 BF−1

1−N
2 τ + BF

(X2 − X1) (X3 − X2) (XF−1-XF−2) (XF -XF−1)

τ

τ τ

τ

(4.24)

As discussed in section 2 we have symmetry enhancement involving all the U(1)Bi and
U(1)Xi symmetries.

Collecting all these observations we can give a definition for a balanced node:

A node is balanced if it joins two improved bifundamentals or if it joins an
improved bifundamental to a flipped flavor.
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Ugly and Bad quivers. We now study the following brane setup and its QFT description:

· · · · · ·

#K #F

⇐⇒

N N N N

F F

· · ·

(4.25)

We focus on the QFT. We have a sequence of K − 1 improved bifundamentals ending with
F flavors on the last node. Using the fact that an improved bifundamental gauged on one
side confines to N free hypers as explained in appendix C.2, we can sequentially confine
all the improved bifundamentals. So the QFT associated to this brane setup is given by
(K − 1) × N free hypers and a U(N) adjoint SQCD with F flavors:

N N N N

F F

· · · = (Free Hyper)N×(K−1) N

F F

(4.26)

We thus call a node attached only to an improved bifundamental an ugly node, in analogy
with N = 4 U(N) with 2N − 1 flavors whose monopole has ∆ = 1

2 and is a free field.
A U(N) node attached to two improved bifundamentals with F ≥ 0 flavors, or a U(N)

node attached to one improved bifundamental with F ≥ 1 flavors is good and does not
provide free decoupled fields.

Let’s now consider the S-dual configuration of (4.25), which is given by:

· · · · · ·

#K #F (4.27)

We can find the QFT description of this setup by applying the dualization algorithm to
the electric theory. After we have dualized each block composing the theory, we find the
following intermediate step:

0 N N N N N

11 K-1 K-1

− + (4.28)
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We now implement the asymmetric I-wall on the left given by the two S-walls glued together,
which, repeating the steps in section 3.2, leads to the following theory:

(Free Hyper)N×(K−1) N N N N

1 1

(4.29)

More precisely, implementing the asymmetric I-wall has the effect of Higgsing completely the
second U(N) gauge node in (4.28) down to a flavor U(1). Let us now analyze separately the
effect of this Higgsing on the first improved bifundamental and on the K − 1 flavors to show
how the result (4.29) is obtained. The first improved bifundamental becomes asymmetric (see
appendix B.2), using the duality (B.43) it is dual to a flipped flavor for the third U(N) gauge
node. By taking this effect into account, we see that we have a string of F − 2 improved
bifundamentals with a flipped flavor on the two sides, which is the theory depicted on the
right side of (4.29). After the Higgsing, the K − 1 flavors for the second U(N) gauge node
in (4.28) become just a set of 2N(K − 1) chirals that do not interact, therefore these are
N(K − 1) free hypermultiplets, as written on the left of (4.29).

We can compare the result for the mirror theory in (4.29) with that of the electric theory
in (4.26) to see that in both frames we have K − 1 set of N free hypers times an interacting
theory. We can notice that the two interacting theories are mirror dual to each other by
means of the duality proposed in 1. This analysis suggest the following recipe: given a N = 2
brane setup (with constant number of N D3 branes) starting with a sequence of K NS or
D5′ branes, the first K − 1 branes will decouple from the theory giving a set of N free hypers.

Let us now consider the following brane setup and its QFT description:

· · ·

#K

=⇒ N N N N· · ·

(4.30)

We notice that this setup preserves eight supercharges and not just four. Therefore, we expect
that our prescription gives the same result as the N = 4 case. As in the previous case we can
sequentailly confine all the improved bifundamentals producing (K − 1)× N free hypers:

N N N N· · · = (Free Hyper)N×(K−1) N

(4.31)

In addition to the free hypers we are left with a N = 4 U(N) pure SYM theory which, as
shown in [41, 45], is a bad theory described by N free hypers. All in all, the theory (4.30)
is just given as K × N free hypers and is a bad theory.
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N

F F

⇐⇒
Q Q̃

A

W = 0

N N N N

1 1

Π2 ΠF−1
V1 V2

· · ·
A1 A2 AF−2 AF−1

W =∑F−2
j=2 Aj(ΠjΠ̃j +Πj+1Π̃j+1) +

∑F−1
j=2 Flip[ΠjΠ̃j ]+∑N−1

j=0 (Flip[V1Aj
1Ṽ1] + Flip[V2Aj

F−1Ṽ2])

Figure 10. Naive proposal for the mirror pair of the N = 2 U(N) adjoint SQCD. The superpotential
WN=4 in the mirror theory contains all the superpotential terms coupling each adjoint field to the
bifundamentals besides it.

4.3 Comments on previous proposals of mirror symmetry with 4 supercharges

Non-abelian 3d mirror symmetry with 4 supercharges has been discussed in [28–32].
In this subsection we focus on the case of U(N) SQCD, and compare our proposal for the

mirror dual with the naive proposal by [31] depicted in figure (10). The naive mirror dual is
a quiver theory with F − 1 U(N) gauge nodes linked by standard flipped bifundamental fields
that come coupled to the adjoint fields via cubic superpotential terms. Moreover we have two
towers of singlets flipping the meson built from the two vertical flavors dressed with the adjoint
fields, exactly as in the theories described in this paper. The proposal in figure (10) was based
on a naive reading on the magnetic brane setup of (4.3), analogous to [28–32]. A very similar
proposal (with standard bifundamentals) for the mirror of 3d N = 2 U(N) SQCD without
adjoint appeared before in [30]. Both for SU(N) and U(N), as was already noticed, the naive
proposals suffer from a mismatch in the number of UV global symmetries, namely the mirror
quiver has much fewer global symmetries than the SQCD, which, having zero superpotential
enjoies a chiral U(F )2/U(1) symmetry. For instance, the naive mirror dual of figure (10) has
UV global symmetry U(1)F−1 × U(1)τ × U(1), only half of the Cartans of the electric theory.

One argument in support of the proposals in [30, 31] was provided in [30, 32] showing that
the naive mirror pairs can be obtained by starting from a well established N = 4 mirror pair by
turning on a superpotential deformations to land on the N = 2 dualities of [30, 31]. Because
of this strategy, the resulting mirror theory inherits from the N = 4 superpotential the cubic
couplings between bifundamentals and the adjoint fields. However this strategy also produces
additional superpotential terms. In the case of U(N) with adjoint there is an additional
W = V1AN

1 Ṽ1 + V2AN
F−1Ṽ2. These terms are zero in the chiral ring of the theory on the right

of figure (10), hence they violate the chiral stability condition [33]. Simply removing these two
terms, if F > 2, breaks the degeneracy between the monopole operators that are supposed to
map to the electric mesons, hence rendering the mapping of the operators problematic.

As already mentioned, our mirror dual can not be deformed to the naive one of figure (10).
In order to do such a deformation, we would need to iron all our improved bifundamentals
to standard ones. To do so we have two options.

The first one corresponds to adding linearly to the superpotential the singlet B(k)
1,2 as we

did in section 2.3.2 when discussing the N = 4 limit. Keeping track of the adjoints appearing
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in the ironing duality (B.37) we would then find that all nodes, apart from the first and the
last one, will have an adjoint of charge 2− τ which couples to the bifundamentals to its right
and to its left. So we reach a theory different from the mirror dual of (10).

To reach a mirror theory where also the first and last gauge node have an adjoint we could
consider the second option to iron the improved bifundamentals by adding linearly to the
superpotential the singlet B(k)

2,1, which have the effect of ironing the improved bifundamentals
to bifundamentals without any extra adjoint field as shown in (B.40). Therefore, if we use
this deformation on all the improved bifundamentals we reach exactly the theory in the r.h.s.
of figure (10). However, as we noticed when discussing the operator map in our SQCD mirror
pair in section 2.2, the B(k)

2,1 singlets (unlike B(k)
1,2 which map to dressed mesons) are trivial in

the chiral ring, they can not map to any operator in the U(N) SQCD chiral ring.
The general lesson is that our mirrors with improved bifundamentals and the naive

mirrors with standard bifundamentals (or the mirrors obtained deforming N = 4 dualities)
differ by turning on or off in the superpotential holomorphic operators which are zero in the
chiral ring, hence they provide different UV completions of the same IR SCFT.

While both the naive and our mirrors are correct, the mirrors with improved bifunda-
mentals discussed in this paper are more useful, since they encode a full rank UV global
symmetry and allow us to study the IR SCFT’s in a transparent way. In particular the
present technology allows us to compute the superconformal index, the S3

b partition functions,
the chiral ring and the moduli space of vacua of the IR SCFT’s using our UV quivers with
improved bifundamentals. Moreover, the N = 2 algorithm proves that the UV improved
quivers associated to S-dual brane setup flow to the same IR SCFT.

5 3d N = 2 brane setups with (p, q)-webs

(p, q)-webs, introduced in [29, 46], are Hanany-Witten brane setups for 5 dimensional N = 1
theories. In our 3d setups, if we move some D5′ branes (012457) on top of some NS branes
(012345), we produce a rectangular (p, q)-web extending along 37, which, if isolated would
provide a 5d QFT living on the 01245 space-time directions.

We are interested in putting such (p, q)-webs in our sequence of NS and D5′ branes, at
fixed x6 position and with N D3 branes stretching along the sequence. We focus on the case
of (p, q)-webs made by K D5′ on top of a single NS (the (1NS , KD5′)-web), or its S-dual
(p, q)-web made by K NS on top of a single D5′ (the (KNS , 1D5′)-web), extending the results
of [44] for a single D3 to the situation with N D3’s.

For definiteness, we study the QFT associated to a brane setup given by the sequence
NS−(1NS , KD5′)−NS, with N constant D3 branes stretching, depicted in the top left corner
of figure 11. We propose that the corresponding QFT is the one in the bottom-left corner of
figure 11. This is a theory of two U(N) gauge nodes linked by an improved bifundamental,
associated to the 3 NS branes. The strings stretching between the N left (right) D3 branes
and the K stacked D5′ branes (which are broken in two halfes by the NS) provide K massless
flavors for the left (right) gauge node. The flavors are coupled in a cubic fashion to the
bifundamental operator in the improved bifundamental.

S-duality sends the NS − (1NS , KD5′)− NS sequence into the D5′ − (KNS , 1D5′)− D5′
sequence, as in the top-right corner of figure 11. We now wish to understand the QFT
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#K

S-duality
⇐⇒

#K

N N

K

K

Π
Q

Q̃

P̃

P

W = Wgluing + PQ̃Π+ QP̃ Π̃

Mirror
symmetry

⇐⇒ N . . . N . . . N

1 1 1 1

V1 V2 V3

A1 AK A2K−1

W = Wgluing +
∑N−1

j=0
(
Flip[V1Aj

1Ṽ1] + Flip[V3Aj
2K−1Ṽ3]

)
+

+M(0,...,0|1|0,...,0) +M(0,...,0,1|1|1,0,...,0) + . . . +M(1,...,1|1|1,...,1)+
+M−(0,...,0|1|0,...,0) +M−(0,...,0,1|1|1,0,...,0) + . . . +M−(1,...,1|1|1,...,1)

Figure 11. S-duality and mirror symmetry for a brane setup containing (1NS , KD5′) ↔ (1D5′ , KNS)
(p, q)-webs. The K D5′ branes in the (p, q)-web on the left provide K + K flavors, coupled through a
cubic superpotential. On the mirror side, the K NS branes in the (p, q)-web provide 2K − 1 gauge
groups, whose topological symmetries are broken by superpotential terms linear in the monopoles.

associated to the S-dual brane setup, and doing this is non trivial. In order to make progress
we follow the strategy of [44]. We first consider an auxiliary sequence, NS − (D5′)K − NS −
(D5′)K − NS, S-dual of D5′ − NSK − D5′ − NSK − D5. This example and the associated
3d mirror QFT’s are studied in section 4.1.1, setting F1 = F2 = K.

Now we deform the duality of section 4.1.1, interpreting the action of stacking the D5′
branes on top of the NS as the introduction of a cubic superpotential coupling the flavors
with the improved bifudamental:

δW =
K∑

i=1
(P iQ̃iΠ+ QiP̃iΠ̃) . (5.1)

This superpotential breaks the U(K)4/U(1) flavor symmetry rotating independently Q, Q̃, P, P̃

down to U(K)2/U(1).
The operator map discussed in section 4.1.1 tells us that the deformation (5.1) is mapped

to a monopole superpotential on the mirror dual:

δW = M(0,...,0|1|0,...,0) +M(0,...,0,1|1|1,0,...,0) + . . . +M(1,...,1|1|1,...,1)+ (5.2)
+M−(0,...,0|1|0,...,0) +M−(0,...,0,1|1|1,0,...,0) + . . . +M−(1,...,1|1|1,...,1) . (5.3)

Hence we propose the QFT for the mirror dual as the U(N)2K−1 QFT with monopole
superpotential appearing in the bottom-right corner of figure 11.

The monopole superpotential breaks 2K U(1) topological symmetries of the UV theory.
We then have an enhanced IR symmetry group given by U(K)2/U(1), matching with that
of the electric theory.
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The operator map for the duality in 11 can be easily inferred from the operator map of
mirror pair in figure 8 discussed in section 4.1.1, by taking into account the extra constraints
provided by the extra superpotential terms.

Let us perform a simple consistency check. If we turn on a mass term for the j-th Q, Q̃

flavor on the l.h.s. of the duality in 11

δW = QjQ̃j (5.4)

and integrate out the two massive Qj , Q̃j fields, we are left with a two node quiver with
superpotential

W = Wgluing +
∑
i ̸=j

(PiQ̃
iΠ+ QiP̃iΠ̃) +✘✘✘✘✘✘✘❳❳❳❳❳❳❳Πa

AΠ̃A
b P j

a P̃ b
j , (5.5)

where chiral ring stability [33] removes the term Πa
AΠ̃A

b P j
a P̃ b

j , because the operator Πa
AΠ̃A

b

is zero in the chiral ring of the improved bifundamental theories, as explained in [27]. In
other words, turning on a mass term for one of the left flavors corresponds to moving a
D5′ brane out of the (p, q)-web, to the right, so that it becomes an ordinary flavor brane
for the right gauge node.

On the dual side, a mass term δW = QjQ̃j is mapped to the B(j)
1,1 singlet in an improved

bifundamental on the left side of the quiver. Such a deformation turns the improved
bifundamental theory to an I-wall, hence the left sequence of U(N) nodes is shortened
by one unit. So this deformation corresponds to moving a single NS brane out of the
(KNS , 1D5′)-web, to the right, as expected.

The trick above, of starting from a sequence with a doubled number of D5′ or NS

branes and then adding a cubic or monopole superpotential, can be easily generalized to any
situation where (1NS , KD5′)-webs or (KNS , 1D5′)-webs appear in a linear sequence together
with NS and D5′ branes.

Let us close this section recalling that understanding the 3d QFT associated to N D3
branes ending on more general (p, q)-webs, with internal faces, remains an open problem,
both for N = 1 and N > 1.

6 3d mirror (a.k.a. magnetic quiver) of 4d N = 1 SU(N) quivers

In this section we show in simple examples how the results of this paper can provide the
3d mirror of 4d theories with 4 supercharges.

In the case of 4d, 5d and 6d theories with 8 supercharges, the 3d mirror, or magnetic
quiver, played in the recent years a very important role in uncovering the strong coupling
properties of many models, see for instance [8–18]. This is especially true for QFT’s defined
by higher dimensional constructions like class S, or from string theory constructions, like
F-theory, string/M theories on Calabi-Yau cones or 5d/6d brane setups, which often lack a
Lagrangian description, and even when some Lagrangian description is available, it typically
does not see the full global symmetry.

In this section we show how our techniques easily allow us to handle the N = 2 3d

mirrors of a simple class of 4d N = 1 Lagrangian theories, namely standard non chiral quivers
with SU(N) gauge nodes, adjoint matter for each node, standard bifundamentals.
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6.1 3d mirror of 4d N = 1 SU(N) adjoint-SQCD

We start from 4d N = 1 adjoint SU(N) SQCD. Reducing this theory to 3d, no monopole
superpotential is generated, so the only difference with respect to the U(N) adjoint SQCD
we already studied is the gauge group, SU(N) vs U(N).

Starting from the duality for the adjoint U(N) SQCD in figure 1, we can obtain the
mirror dual of the SU(N) SQCD with an adjoint field. In order to go from unitary to special
unitary gauge group we can gauge the topological symmetry of the U(N) theory.

At level of the partition function with start with the U(N) SQCD partition function
given in (2.9):

ZSQCD

(
τ, B⃗, X⃗, Y

)
=
∫

dZ⃗n∆n(Z⃗, τ)e2πiY
∑N

j=1 Zj

N∏
j=1

F∏
a=1

sb (Ba ± (Zj − Xa)) . (6.1)

We gauge the topological symmetry U(1)Y obtaining the partition function of the SU(N)
adjoint SQCD as:

ZSU(N)
(
τ, B⃗, X⃗

)
=
∫

dY e−2πiNbY ZSQCD

(
τ, B⃗, X⃗, Y

)
=

=
∫

dY dZ⃗N∆N (Z⃗, τ)sb

(
− iQ

2 + τ

)
e

2πiY (
∑N

j=1 Zj−Nb)

×
N∏

j=1

F∏
a=1

sb (Ba ± (Zj − Xa)) , (6.2)

where we have also added an FI parameter (−Nb) for the topological symmetry associated
to the new U(1) gauge symmetry. We can now redefine the Z⃗ parameters as: Zi → Z̃i + Z,
with the constraint ∑N

j=1 Z̃i = 0. With the new parameterization we get:

ZSU(N)
(
τ, B⃗, X⃗

)
=
∫

dY dZd ⃗̃ZSU(N)∆N ( ⃗̃Z, τ)e2πiY N(Z−b)
N∏

j=1

F∏
a=1

sb

(
Ba ± (Z̃j + Z − Xa)

)
.

(6.3)
Where now we have defined for SU(N) a short notation for the integration measure:

d ⃗̃ZSU(N) = d ⃗̃ZN δ

 N∑
j=1

Z̃j

 . (6.4)

The Y and Z integrals now only involve the exponential term, therefore the Y integration
gives a δ(Z − b) which we implement by performing the Z integration setting Z = b. We
then obtain the following result:

ZSU(N)
(
τ, B⃗, X⃗

)
=
∫

d ⃗̃ZSU(N)∆N ( ⃗̃Z, τ)
N∏

j=1

F∏
a=1

sb

(
Ba ± (Z̃j + b − Xa)

)
, (6.5)

which we recognize to be the partition function of the N = 2 adjoint SU(N) SQCD, with b

the real mass for the baryonic U(1)b symmetry assigning charge ±1 to the fundamental/anti-
fundamental chirals.
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N

F F

⇐⇒
Q Q̃

A

W = 0

N N N N

1 1

Π2 ΠF−1
V1 V2

· · ·

A1 A2 AF−2 AF−1

W =∑N−1
j=0 (Flip[V1Aj

1Ṽ1] + Flip[V2Aj
F−1Ṽ2])+

+Flip[Tr A1] +Wgluing

Figure 12. Mirror duality for the N = 2 adjoint SU(N) SQCD. The double circle node denotes the
SU(N) gauge group.

Now we can perform the same steps in the mirror partition function (2.10) obtaining:

Z
­SU(N)

(
τ, B⃗, X⃗

)
=
∫

dY e2πiN(X1−b)Y
F−1∏
a=1

(
dZ⃗(a)

n ∆n(Z⃗(a), τ)e2πi(Xa+1−Xa)
∑N

j=1 Zj
)

×
N∏

j=1

[
sb

(
iQ

2 − 1−N

2 τ −B1±(Z(1)
j −Y )

)
sb

(
− iQ

2 +(j−N)τ +2B1

)

×sb

(
iQ

2 − 1−N

2 τ −BF ±Z
(F−1)
j

)
sb

(
− iQ

2 +(j−N)τ +2BF

)]

×
F−2∏
a=1

Z
(N)
F M

(
Z⃗(a), Z⃗(a+1), τ,Ba+1

)
. (6.6)

The mirror pair read from the partition function identity is depicted in figure 12. In the
electric theory we have the following global symmetry:

F∏
j=1

U(1)Ba × S

 F∏
j=1

U(1)Xa)

×U(1)τ ×U(1)b = (6.7)

= SU(F )U × SU(F )V ×U(1)m ×U(1)τ ×U(1)b ,

where the two SU(F ) and the U(1)m global symmetries are obtained from the U(1)Bj ×U(1)Xj

as usual with the redefinitions in eqs. (2.2), (2.3).
In the mirror theory the global symmetry enhances in the IR as:

F∏
j=1

U(1)Bj ×
F−1∏
j=1

U(1)Xj+1−Xj ×U(1)N(X1−b) = SU(F )U × SU(F )V ×U(1)b ×U(1)m , (6.8)

where as usual U(1)Bj symmetries are the axial-like symmetries rotating the two vertical
flavors and the improved bifundamentals, while Xj+1 − Xj is the FI parameters for the
topological symmetry associated to the j-th gauge node. Finally N(X1 − b) is the FI
parameter of the new U(1) gauge node, which as expected by mirror duality, is related to
the electric baryonic symmetry U(1)b.

In conclusion, let us mention that the trick of gauging a topological symmetry to
transform a U node into a SU can be played also in more generic theories to make quiver
with U/SU nodes.
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Operator map. Let us now discuss how the operator map works for the case of the adjoint
SU(N) SQCD. There are three gauge invariant operators that we want to map:

• The meson matrix QQ̃ in the F̄ × F of SU(F )U × SU(F )V , with R-charge 2, m-charge
−2 and zero charge under the remaining U(1) symmetries. These operators are mapped
exactly as in the SQCD case, as explained in detail in section 2.2, meaning that we
collect F singlets and F (F − 1) monopoles to form a matrix transforming in the F̄ × F

of the emergent U(F )×U(F ) symmetry.

• The lowest dimensional SU(N) monopole is characterised by the magnetic flux
(1, 0, . . . , 0,−1). This operator is a singlet under all the non-abelian global symmetries,
it has R-charge 0, τ -charge (1 − N), m-charge 2 and b-charge zero. This operator is
mapped to the simplest mesonic operator that we can construct in the mirror theory
obtained as:

Ṽ2Π̃F−1 . . . Π̃2V1Ṽ1Π2 . . .ΠF−1V2 , (6.9)

which indeed is charged only under the abelian global symmetries with the correct
charges in order to be mapped to the SU monopole.

• In the SU(N) SQCD we also have baryons and antibaryons, differently from the U(N)
case. These are constructed by taking the antisymmetrized product of N fundamentals
Q, to obtain baryons, or of N antifundamentals Q̃, to obtain antibaryons. We then
have two sets of

(F
N

)
operators, the baryons are in the conjugate N -antisymmetric

representation of SU(F )U while antibaryons are in the N -antisymmetric of SU(F )V ,
and they have R-charge 2, m-charge −N and baryonic b-charge ±N . Notice that only
if F ≥ N we can have baryons in the theory.

These operators are mapped to a collection of suitably charged monopoles that have
all R-charge 2, m-charge −N and ±N b-charge (see appendix E). Let us focus on the
antibaryons, these are mapped to the collection of all the monopoles with a topological
charge satisfying the following set of rules:24

– It must have charge +1 under the topological symmetry of the U(1) gauge node.

– It must have a topological charge of N or (N − 1) under the topological symmetry
of the first U(N) gauge node.

– The remaining charges are fixed by requiring that the charge under the j-th
topological symmetry is either equal or one unit less than the charge under the
(j − 1)-th topological symmetry.

– The last non-zero charge must be 1.
24We adopt the following notation: by having a topological charge k ≥ 0 we mean that the magnetic flux is

given by k entries equal to 1 while the remaining are zero canonically ordered as (1, . . . , 1, 0, . . . , 0). With
a negative −k charge we take a similar vector with k entries equal to −1 while the remaining are zero as
(0, . . . , 0,−1, . . . ,−1).
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Collecting all the monopoles satisfying this set of rules we can form a N -antisymmetric
representation under one U(F ) emergent global symmetry. For example, for N = 3
and F = 4 we have the following collection of monopoles mapping to the

(4
3
)
= 4

antibaryons:

M(1|2,1,0) , M(1|2,1,1) , M(1|2,2,1) , M(1|3,2,1) . (6.10)

There are also dressed operators. Dressed mesons are mapped to singlets or dressed monopoles,
exactly as in the U(N) case. The dressed SU(N) monopole maps to the long meson with
the same level of dressing. Dressed baryons are less trivial to map, the reason being that
the number of dressed baryons increases rapidly with the level of dressing. Also, in the
mirror theory it is not easy to compute the R-charge of all the monopoles due to the presence
improved bifundamental. However, we suspect that dressed baryons maps either to dressed
monopoles or to the monopoles that are not included in the set of rules presented above
to map undressed baryons.

6.2 3d mirror of 4d SU(N) SQCD without adjoint

We now consider 4d N = 1 SU(N) SQCD with F flavors, no adjoint and W4d = 0. When
compactified to 3d, the theory develops a monopole superpotential W3d = M, where M is
the lowest dimensional SU(N) monopole with magnetic flux (1, 0, . . . , 0,−1) and we obtain
the theory on the l.h.s. of (6.11).

N

F F

W = M(1,0,...,0,−1)

Q̃Q
⇐⇒

N N . . . N N

1 1

Π2 ΠF−1
V1 V2

W =
∑N−1

j=0 (Flip[V1(A(2)
L )j Ṽ1] + Flip[V2(A(F−1)

R )j Ṽ2])+

+
∑F−2

I=2 A(I)
R A(I+1)

L + Ṽ2Π̃F−1 . . . Π̃2V1Ṽ1Π2 . . .ΠF−1V2 (6.11)

The duality in (6.11) can easily be obtained as a deformation of the SU(N) adjoint SQCD
mirror pair in figure 12. On the electric side we turn on a mass term for the adjoint, as in
section 2.4 and then the monopole superpotential which has the effect of breaking the U(1)m

axial symmetry. Therefore there are no U(1) global symmetries that can mix with the trial
R-charge and the R-charge of the fundamental/antifundamental chirals in the electric theory
on the l.h.s. of (6.11) is completely fixed by the superpotential as

R[Q] = R[Q̃] = 1− N

F
(6.12)

and the global symmetry is:

SU(F )U × SU(F )V ×U(1)b . (6.13)

Similarly the theory on the r.h.s. of figure in (6.11), the 3d mirror of 4d N = 1 SU(N) SQCD
and W = 0, is reached from the magnetic theory in 12 by adding a mass term for the adjoint
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and turning on the operator dual to M which has been identified in (6.9) as the long meson
in the quiver, hence we simply need to add this operator to the quiver superpotential.

Again on the mirror side the R-charges are completely fixed to

R[V1,2] = R[Ṽ1,2] =
N

F
− N − 1

2 , R[Πj ] = R[Π̃j ] =
N

F
(6.14)

and the remaining global symmetries are

S[
F∏

j=1
U(1)Bj ]×

F−1∏
j=1

U(1)Xj+1−Xj ×U(1)N(X1−b) , (6.15)

where as usual U(1)Bj are the axial-like symmetries rotating the two vertical flavors and
the improved bifundamentals, while Xj+1 − Xj is the FI parameter associated to the j-th
U(N) and N(X1 − b) the FI parameter of the extra U(1) node and enhance in the IR to
the group in (6.13).

The global symmetries, the chiral ring and the moduli space of vacua of the 3d SQCD
on the l.h.s. of (6.11) and those of the 4d SU(N) SQCD should be exactly the same. In
this sense the 3d mirror of 4d N = 1 SQCD with no adjoint behaves in the same way to
the 3d mirror of theories with 8 supercharges.

The map of the chiral ring generators is similar to the map discussed for adjoint SQCD
in the previous subsection. The difference is that now there are no dressed operators.

Notice that if we simply deform the duality of the previous subsection by the mass term
of the adjoint, we obtain a different result, missing the monopole superpotential and its dual.
The operations of deforming by a superpotential and compactifying to 3d do not commute.

6.3 3d mirror of 4d SU(N) quivers

We start from the duality in figure 9, where on the l.h.s. there is a U(N)K+1 quiver with
improved bifundamentals:

N . . . N

F1 F1 F2 F2

W = Wgluing

Mirror
⇐⇒ N . . . N . . . N

1 K K 1

VL VR

A1 AF1+F2−1

W = Wgluing +
∑N−1

j=0
(
Flip[VLAj

1ṼL]+

+Flip[VRAj
F1+F2−1ṼR]

)
(6.16)

The global symmetry is U(F1)2 ×U(F2)2 ×U(K)2 ×U(1)τ , see section 4.1.2 for more details.
Eq. (6.16) is a 3d N = 2 duality such that neither side can be the circle reduction of

a simple 4d Lagrangian theory.
We modify duality (6.16) as follows:

• on the l.h.s. we gauge all the K +1 topological symmetries, making all the gauge nodes
SU(N) instead of U(N). This maps on the r.h.s. to gauging K U(1) flavor symmetries
associated to the K central flavors and one U(1) symmetry associated to a boundary
flavor.
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• on the l.h.s. we turn on the K operators B(i)
2,1, i = 1, . . . , K in the superpotential, ironing

the K improved bifundamentals into flipped bifundamentals bi, b̃i, without producing
new adjoints. This maps on the r.h.s. to turning on K cubic superpotential terms for
the K flavors in the middle, δW = Tr(AF1

∑K
i=1 ViṼi).

• on the l.h.s. we flip the gauge singlets which are flipping the squares of the bifundamentals
Tr(bib̃i). This maps on the r.h.s. to flipping the K mesons made with the K flavors in
the middle, Tr(ViṼi).

These modifications break the U(K)2 global symmetry to U(1)K .

N . . . N

F1 F1 F2 F2

b1 bK+1

W =
∑K

i=1 bi(ai − ai+1)b̃i

Mirror
⇐⇒ N . . . N . . . N

1 11 · · · 1

VL V1 VK VR

A1 AF1 AF1+F2−1

W = Wgluing + AF1

∑K
i=1 ViṼi +

∑K
i=1 Flip[ViṼi]+

+
∑N−1

j=0
(
Flip[VLAj

1ṼL] + Flip[VRAj
F1+F2−1ṼR]

)
(6.17)

The global symmetry is U(F1)2 × U(F2)2 × U(1)K × U(1)τ .
Now, the SU(N)K+1 quiver on the l.h.s. of (6.17) is precisely the circle reduction of a

4d quiver, with the same matter content and the same superpotential. This is the 4d quiver
associated to a brane setup with N D4 branes stretching along the sequence

NS′ − D6F1 − (NS′)K − D6F2 − NS′ . (6.18)

We claim that the r.h.s. of (6.16) is the 3d mirror of such 4d quiver.
Notice that since no monopole superpotential is generated in the circle reduction, the

global symmetry of the reduced theory contains two additional U(1) factors with respect to the
4d quiver, this is because the two axial U(1)’s inside U(F1)2 and U(F2)2 are anomalous in 4d.

On the r.h.s. of (6.17) there is an SK discrete global symmetry permuting the bouquet
of K U(1) nodes. As found in 6d in [14, 16], it is possible to gauge this symmetry, with the
effect of replacing the K U(1) nodes with a single U(K) node. Such a move corresponds to
taking the K NS′ branes in the setup (6.18) to be coincident, an infinite coupling situation
from the point of view of the electric 4d quiver. Indeed the central piece of the quiver on the
r.h.s. of (6.17) is the 3d mirror of a string of K NS′ branes and is N = 4 supersymmetric
(the gauge singlets F [ViṼi] can be seen as supersymmetric partners of the U(1) gauge nodes),
hence the results of [14, 16], obtained for theories with 8 supercharges, carry over to the
central piece of our 3d mirror.

7 4d mirror dualities

It was shown in [47] that 3d N = 4 mirror dualities can be uplifted to a class of 4d N = 1
theories with symplectic gauge groups, that enjoy mirror-like dualities. This strategy can
be extended also to the 3d N = 2 theories considered in this work.
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2N

2F + 4

Q

A

W = 0

⇐⇒ 2N 2N 2N 2N

2 2 2 2

2 2

Π2 ΠF−1

L1
R1

V1

L2 · · ·
RF−2

LF−1
RF−1

V2

F
(j)
1 F

(j)
2

A1

A2 AF−2

AF−1

W = Wgluing +Wtriangles +
∏N−1

j=0 (V1Aj
1L1F

(j)
1 + V2Aj

F−1RF−1F
(j)
2 )+

+
∑N−1

k=0

{
Flip[V 2

1 Ak
1 ] + Flip[L2

1Ak
1 ] + Flip[V 2

2 Ak
F−1] + Flip[R2

F−1Ak
F−1]

}
Figure 13. Miror pair of the 4d N = 1 USp(2N) antisymmetric SQCD. Throughout this section all
the nodes, square or round, are gauge or flavor USp(2N) groups. Nodes depicted with a double line
are instead SU groups. Lines are fields in the fundamentals of the groups to whom they are linked,
arches are traceless antisymmetric fields. In the mirror theory we have also zig-zag lines representing
improved bifundamentals, that are FE[USp(2N)] theories, and crosses denote flipping singlets. To
avoid cluttering, we will not indicate the name of the flipping singlets, however their presence can
be read from the superpotential given below the theory. By Wgluing we denote all the superpotential
terms coupling the traceless antisymmetric chirals Ai to the traceless antisymmetric operators inside
the improved bifundamentals. Also, in Wtriangles we collect all the terms associated to triangles in the
theory as: W = Πj+1RjLj+1.

In this section we present the mirror-like dual of the 4d N = 1 USp(2N) antisymmetric
SQCD, discussing the operator map and various deformations. This duality exhibits many
similarities with that of 3d N = 2 adjoint SQCD, described in section 2. Indeed the two
mirror pairs are related by a dimensional reduction limit. We then explain how to uplift
all the 3d N = 2 mirror dualities described in section 4. Finally, we also describe how 4d

mirror-like dualities can be proven using the dualization algorithm.

7.1 4d N = 1 antisymmetric USp(2N) SQCD and its mirror pair

In this section we present the mirror dual of the N = 1 USp(2N) SQCD with one an-
tisymmetric and 2F + 4 fundamental chirals, which is depicted in figure 13. The global
symmetry of the electric theory is:

SU(2F + 4)×U(1)τ . (7.1)

We assign a trial R-charge 0 and τ -charge 1 to the antisymmetric field A, then the R-charge
of the fundamentals Q are fixed by requiring the vanishing of the NSVZ β-function. We have:

R[A] = τ ,

R[Q] = rQ = F

2 + F
+ 1− N

2 + F
τ . (7.2)

It will be also convenient to consider the theory in the different parameterization where
we split the fundamental flavor Q into F + 2 flavors as depicted in figure (14), where the
chirals Qj are USp(2N) × USp(2)xj bifundamentals while P1,2 are USp(2N) × USp(2)y1,2
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2N

2F + 4

=

Q

A

2N

2 2

2 2

Q1 QF

P1 P2

A

· · ·x1 xF

y1 y2

R-charge
Qk rQ + Bk

P1 rQ + C

P2 rQ −
∑F

k=1 Bk − C

A τ

Figure 14. Reparameterization of the electric theory along with the list of the R-charges of the fields
in the reparameterized theory. The USp(2) symmetries are labeled in blue.

bifundamentals. Each doublet is then rotated by the U(1) charges reported in table (14)
and the global symmetry recombines as:

F∏
j=1

USp(2)xj × USp(2)y1 × USp(2)y2 ×
F∏

j=1
U(1)Bj ×U(1)C = SU(2F + 4) , (7.3)

with the fundamental decomposing with the branching rule:

2N+4 → (2, 1, . . . , 1)(1,0,...,0) ⊕ . . . (1, . . . , 1, 2, 1)(0,...,0,1) ⊕ (1, . . . , 1, 2)(−1,...,−1) . (7.4)

Dual quiver. Let us now discuss the mirror theory:

2N 2N 2N 2N

2 2 2 2

2 2

Π2 ΠF−1

L1
R1

V1

L2 · · ·
RF−2

LF−1
RF−1

V2

F
(j)
1 F

(j)
2

A1

A2 AF−2

AF−1

y1 y2

x1 x2 xF−1 xF

W = Wgluing +Wtriangles +
∏N−1

j=0 (V1Aj
1L1F

(j)
1 + V2Aj

F−1RF−1F
(j)
2 )+

+
∑N−1

k=0

{
Flip[V 2

1 Ak
1 ] + Flip[L2

1Ak
1 ] + Flip[V 2

2 Ak
F−1] + Flip[R2

F−1Ak
F−1]

}
(7.5)

It is the linear quiver of F −1 USp(2N) gauge nodes linked by F −2 improved bifundamentals
which are identified with the FE[USp(2N)] theories introduced in [35], which we describe
in appendix B.1. We denote this theory in short by a zig-zag line connecting the two non-
abelian USp(2N) IR symmetries. In addition to them the improved bifundamental has a
U(1)τ ×U(1)B global abelian symmetry. The spectrum of this theory includes two traceless
antisymmetric operators, one for each USp(2N) symmetry, a bifundamental Π and a matrix
of singlets under the two USp(2N) symmetries Bn,m. The two antisymmetric operators carry
the same R-charge and are both rotated by the U(1)τ symmetry, while the Π operator is
charged only under the U(1)B symmetry.

On the two sides of the quiver we have flavors V1,2 charged under the USp(2)y1,2 symme-
tries. Each gauge node is attached to two teeth of the saw by the chirals Lj and Rj that are
respectively charged under the USp(2)xj and USp(2)xj+1 symmetries.
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R-charge
V1 1− rQ + 1−N

2 τ − B1

V2 1− rQ + 1−N
2 τ − BF

Lk k(1− rQ) + 1−N
2 τ −

∑k−1
j=1 Bj − C

Rk 2− (k + 2)(1− rQ)− 1−N
2 τ +∑k+1

j=1 Bj + C

Πk 1− rQ − Bk

F
(k)
1 2rQ + (N + k − 2)τ + B1 + C

F
(k)
2 2rQ + (k − 1)τ −

∑F−1
j=1 Bj − C

Aj τ

Table 5. List of the R-charges of the fields and operators in the mirror theory given in figure (7.5). Re-
call that to specify completely the parameterization of the two U(1) symmetries of an improved bifunda-
mental, it is sufficient to specify the R-charge of the anti-symmetric and of the bifundamental operator.

The improved bifundamentals are glued together by gauging a diagonal USp(2N) sym-
metry and adding a traceless antisymmetric chiral Aj at each node, which couples to the
traceless antisymmetric operators inside the improved bifundamentals as: Aj(A(j)

L + A(j+1)
R ),

where A(j)
L is the antisymmetric operator of the improved bifundamental on the left of the

gauge node, while A(j+1)
R is that of the improved bifundamental on the right. We collect all

the gluing superpotentials inside Wgluing. Notice that when we glue a string of improved
bifundamentals, all the U(1)τ symmetries are identified while the U(1)Bj symmetries acting
on each improved bifundamental are all preserved. The Rj and Lj chirals are coupled to the
bifundamental operators Πj as: ΠjRj+1Lj . Each term corresponds to a triangle composing
the saw, we then collect them in Wtriangles. F

(j)
1 enter in the superpotential flipping all the

meson constructed from V1 and L1 in the bifundamental of USp(2)y1 × USp(2)x1 dressed
with powers of the first antisymmetric A1, similarly F

(j)
2 flips the dressed mesons built from

V2 and RF−1. Finally, we flip all the square mesons built from V1, V2, L1, RF−1 dressed
with powers of the antisymmetric.

The manifest global symmetry is

F∏
j=1

USp(2)xj × USp(2)y1 × USp(2)y2 ×
F∏

j=1
U(1)Bj ×U(1)c ×U(1)τ , (7.6)

which enhances in the IR to SU(2F + 4) × U(1)τ , we will provide many evidences of this
enhancement throughout the section.

Anomaly matching. As a first check of the proposed duality we can show how the
anomalies of the two theories match.

In the electric theory we can compute two anomalies for the flavor group SU(2F + 4)
that are:

Tr SU(2F + 4)2U(1)τ = N(1− N)
2 + F

Tr SU(2F + 4)2U(1)R = − 2N

2 + F
. (7.7)
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In the magnetic theory the SU(2F + 4) symmetry is only emergent and we can’t directly
calculate its anomaly. Nevertheless we can calculate the following anomalies involving
USp(2)xi , USp(2)yi , U(1)bi

and U(1)c with either U(1)τ and U(1)R:

Tr USp(2)2
xi,yj

U(1)τ = N(1− N)
2 + F

, Tr USp(2)2
xi,yj

U(1)R = − 2N

2 + F
,

TrU(1)2
bi,cU(1)τ = 8N(1− N)

2 + F
, TrU(1)2

bi,cU(1)R = −8 2N

2 + F
, (7.8)

and check they are compatible with the enhancement. Indeed given a decomposition of a
group G into H, for which we have a branching rule:

r → ⊕K
j=1r̃j , (7.9)

where r is some representation of G and r̃j are representations of H, the embedding index
is defined as:

I(H ↪→ G) =
∑K

j=1 T (r̃j)
T (r) , (7.10)

where we have denoted as T (r) the Dynkin index of a representation r. The result is
independent on the choice of the branching rule. Once we have computed the embedding
index, the anomalies of the manifest symmetries are constrained by the anomalies of the
emergent symmetries to satisfy:

I(H ↪→ G)Tr G2U(1) = Tr H2U(1) . (7.11)

Using the branching rule in (7.4) and the definition in (7.10), we get:

I(USp(2)xj ↪→ SU(2F + 4)) = I(USp(2)yj ↪→ SU(2F + 4)) = 1 ,

I(U(1)bj
↪→ SU(2F + 4)) = I(U(1)c ↪→ SU(2F + 4)) = 8 . (7.12)

The results found are exactly the results expected: all the anomalies for the USp(2)s factors
coincide with the anomalies of the electric theory (since the embedding index is 1); while the
anomalies involving factors of U(1)s differ by a factor 8 (since the embedding index is 8).

As a final remark, we checked that also the anomalies involving only the U(1) groups
match, as for example TrU(1)τ , TrU(1)R, TrU(1)2

τU(1)R, . . .

Superconformal indexes. We now give the superconformal index identity for the SQCD
mirror pair in figure 13. To write the superconformal index we first define the fugacities
related to the U(1) symmetries as:

t = (pq)τ/2 , bj = (pq)Bj/2 , c = (pq)C/2 , (7.13)

and also the vector y⃗ and x⃗ as fugacities for the USp(2)yj and USp(2)xj symmetries respectively.
The duality 13 consist in the following superconformal index identity:

ISQCD(x⃗, y⃗, b⃗, c, t) = I
­SQCD

(x⃗, y⃗, b⃗, c, t) . (7.14)
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Where we define the superconformal index of the SQCD, parameterized as in (14), as:

ISQCD(x⃗, y⃗, b⃗, c, t) =
∮

dz⃗N∆N (z⃗, t)
N∏

j=1

(
F∏

a=1
Γe(pqrQ/2baz±j x±

a )

× Γe(pqrQ/2cz±j y±1 )Γe

(
pqrQ/2

F∏
a=1

b−1
a c−1z±j y±2

))
. (7.15)

The index of the mirror theory is instead given as:

I
­SQCD

(x⃗, y⃗, b⃗, c, t) =
N∏

j=1

[
Γe(pqrQtN+j−2b1cx±

1 y±1 )Γe(pqrQtj−1(b1 . . . bF−1c)−1x±
F y±2 )

× Γe(pqrQtN−1−jb−2
1 )Γe(pqrQtN−1−jb−2

F )Γe(pqrQtN−1−jc2)
× Γe(pq(F−1)(1−rQ)tN−1−j(b1 . . . bF c)−2)

]
×
∮ F−1∏

a=1

(
dz⃗

(a)
N ∆N (z⃗(a), t)

) F−1∏
a=2

I(N)
F E (z⃗(a−1), z⃗(a), τ, ba)

×
N∏

j=1

[
Γe(pq

1−rQ
2 t

1−N
2 b−1

1 z
(1)±
j y±1 )Γe(pq

1−rQ
2 t

1−N
2 b−1

F z
(F−1)±
j y±2 )

]
×

F−1∏
l=1

N∏
j=1

[
Γe(pql

1−rQ
2 t

1−N
2 (b1 . . . bl−1c)−1z

(a)±
j x±

l )

× Γe(pq1−(l+2)
1−rQ

2 t
N−1

2 b1 . . . bl+1cz
(a)±
j x±

l+1)
]
. (7.16)

The convention used to write the superconformal indexes can be found in appendix A.

7.1.1 Comments on F = 1, 2 cases

The cases F = 1, 2 are already discussed in literature, in this section we wish to comment
on how our result reconciles with these known results.

Let us start from the case F = 2. The mirror dual proposed in 13 reduces to a theory
of a single USp(2N) gauge group with no improved bifundamentals. The duality is then
a self-duality modulo flips:

2N

2 2

2 2

=

Q1 Q2

P1 P1

A

x1 x2

y1 y2

W = 0

2N

2 2

2 2

Q′
1 Q′

2

P ′
1 P ′

2

A′

F
(j)
1 F

(j)
2

x1 x2

y1 y2

W =∑2
a=1

∑N
j=1

(
F

(j)
a Q′

aAj−1P ′
a+

+Flip[Q′
a

2Aj−1] + Flip[P ′
a

2Aj−1]
)

R-charge

Q1,2 rQ + B1,2

P1 rQ + C

P2 rQ −
∑F

k=1 Bk − C

Q′
1 1− rQ + 1−N

2 τ − C

Q′
2 −2− 4rQ + N−1

2 τ + B1 + B2 + C

P ′
1,2 1− rQ + 1−N

2 τ − B1,2

A, A′ τ

(7.17)
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This result coincides with the CSST self-duality derived in [36]. A similar self-duality,
with different number of flippers, can be also obtained using the sequential deconfinement
technique, as shown in [39].

For the F = 1 case, which can’t be read directly from the duality in figure 13, we can
run the dualization algorithm, as in the 3d F = 1 case described in section 3.3, the result
produced is consistent with the earlier duality proposed in [48] shown in figure (7.18) which
was discussed in [31] and derived via sequential deconfinement in [39, 49].

2N

2

2 2

=

Q

P1 P2

A

x

y1 y2

W = 0

2 2

2

Rj

SjTj

x

y1 y2

W =
∑N

j,k,l=1 RjSkTlδj+k+l,N+2

R-charge
Q rQ + B

P1 rQ + C

P2 rQ −
∑F

k=1 Bk − C

Rj 1− rQ + (1− j)τ − B

Sj 2rQ + (N + j − 2)τ + B + C

Tj 2rQ + (j − 1)τ − C

A τ

(7.18)

This duality relates the USp(2N) SQCD with one antisymmetric and 6 fundamental chirals
where we flipped the tower of powers of the antisymmetric (which would all be below the
unitarity bound), to a Wess-Zumino model with 15N chirals. The superpotential was proposed
in [31] and tested using sequential deconfinement in [39]. Starting from the SQCD on the
l.h.s. of figure (7.18), the algorithm yields on the dual side a collection of 15N chiral fields
with a charge assignment compatible with the superpotential given (7.18).

7.1.2 Operator map

In this section we discuss how the operator map works in the duality presented in 13.

• In the electric theory we have dressed mesonic operators with R-charge:

R[Q2Ak] = 2rQ + jτ for k = 0, · · · , N − 1 . (7.19)

For each value of the dressing we have an operator in the antisymmetric representation
of SU(2F + 4), of dimension (2F + 4)(2F + 3)/2, which we map to a collection of
(F + 2) singlets and (F + 2)(F + 1)/2× 4 mesonic operators in the bifundamental of a
pair of two USp(2) global symmetries. It is actually easier to write the explicit map
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considering the SQCD in the parameterization (14):

SQCD ­SQCD

Q2
1Aj F [V 2

1 AN−1−j
1 ]

Q2
F Aj F [V 2

2 AN−1−j
F−1 ]

Q2
aAj for a ̸= 1, F B(a)

1,j

P 2
1 Aj F [L2

1AN−1−j
1 ]

P 2
2 Aj F [R2

F−1AN−1−j
F−1 ]

QaAjQb for a ̸= b LaAjΠa+1 . . .Πb−1Rb−1

Q1AjP1 F
(N−j)
1

QaAjP1 for a ̸= 1 V1AjΠ2 . . .Πa−1Ra−1

QF AjP2 F
(N−j)
2

QaAjP2 for a ̸= F LaAjΠa+1 . . .ΠF−1V2

(7.20)

For the magnetic mesonic operators the dressing is performed using any antisymmetric
chiral Ak, which we denote simply by A, all the possible choices of dressing are identified
by quantum relations.

• In the electric theory we then have the traces of the antisymmetric A with charge:

R[Tr Al] = jτ for l = 2, . . . , N . (7.21)

In the magnetic theory they are simply mapped into traces of any antisymmetric chiral
Aj , that are all identified due to quantum relations.

We also point out that under the duality it seems that all the B(a)
n,m operators in the magnetic

theory with n > 1 are not mapped. We suspect that these operators are trivial in the
chiral ring.

7.1.3 Deformations and consistency checks

In this section we study the effect of some interesting deformations, providing also nontrivial
consistency checks of the duality in figure 13.

Before discussing the deformations let us mention that, as in the 3d case, we have a
freedom of rearranging flavors and improved bifundamentals. There are three swapping
dualities that allow us to perform this reshuffling.

The first one is the duality (D.1) that allows us to exchange any pair of consequent
improved bifundamentals. The effect of this duality is to swap the two U(1)Bj symmetries
rotating the improved bifundamentals and also the USp(2)xj symmetries associated to the
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saw structure:

2N 2N 2N

2 2

⇐⇒
Πj Πj+1

xj xj+1

Πj 1− rQ − Bj

Πj+1 1− rQ − Bj+1

2N 2N 2N

2 2

Π′
j Π′

j+1

xj+1 xj

Π′
j 1− rQ − Bj+1

Π′
j+1 1− rQ − Bj (7.22)

Notice that under this duality the matrix B(j)
n,m is mapped to B′(j+1)

n,m and vice-versa. Also the
charges of the chirals composing the saw are non-trivially mapped under the duality above,
for all the details we refer the reader to the discussion in appendix (D.1).

The second duality given in (D.3), allows us to swap the left vertical flavor V1 with
the first improved bifundamental Π2, meaning that we swap the U(1)B1 × USp(2)x1 and
U(1)B2 × USp(2)x2 symmetries.

2N 2N

2 2

2

⇐⇒
Π2

V1

x1 x2

V1 1− rQ − 1−N
2 τ + B1

Π2 1− rQ − B2

2N 2N

2 2

2

Π′
2

V ′
1

x2 x1

V ′
1 1− rQ − 1−N

2 τ + B2

Π′
2 1− rQ − B1 (7.23)

Under this duality the matrix of singlets B(2)
n,m is partially mapped to the tower of singlets

of the vertical flavor as: B(2)
1,m ↔ F [V ′2

1A(N−m)] and viceversa. Notice that the rest of the
matrix of singlets of the improved bifundamental doesn not map under this duality since
these operators are zero in the chiral ring. The same strategy can be used to swap the last
improved bifundamental ΠF−1 with the right vertical flavor V2.

The last swapping move consist in exchanging the left vertical flavor V1 with the first
diagonal leg L1 or, analogously, the right vertical flavor V2 with the last diagonal leg RF−1.
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This is a trivial move since it just amounts to a redefinition of the fields:

2N 2N

2 2

2

⇐⇒

L1

V1

y1

x1

V1 1− rQ − 1−N
2 τ + B1

L1 1− rQ − 1−N
2 τ + C

2N 2N

2 2

2

L′
1

V ′
1

x1

y1

V ′
1 1− rQ − 1−N

2 τ + C

L′
1 1− rQ − 1−N

2 τ + B1 (7.24)

It is clear that those three actions, combined and iterated appropriately, are sufficient to
realize any possible rearranging of improved bifundamentals or flavors.

Let us also mention, in conclusion, that these dualities realize a subgroup of the Weyl
symmetry of the SU(2F +4) global symmetry group. It consists, in fact, in swapping together
pairs of SU(2)xj × U(1)bj

or SU(2)y1 × U(1)c symmetries, which indeed is a symmetry of the
branching rule (7.4) used to decompose the fundamental representation of SU(2F + 4).

Shortening. The first type of deformations that we consider consists in a mass term for
one flavor in the electric theory: δW = Q2

j or δW = P 2
1,2. By means of the swapping

dualities (7.22), (7.23) and (7.24) we can restrict the analysis to the case δW = Q2
j with

j = 2, . . . , F − 1 which maps to the linear superpotential term δW = B(j)
1,1 in the mirror

dual side.
As explained in appendix B.1, the effect of such superpotential is to transform an

improved bifundamental into an Identity-wall, which identifies the two USp(2N) groups which
is connecting, shortening the string of improved bifundamental by one unit, as shown below:

2N 2N 2N 2N

2 2 2

=⇒
Πj−1 Πj Πj+1

Rj−1
Lj

W = Wgluing +Wtriangles + B(j)
1,1

2N 2N 2N

2 2

Πj−1 Πj+1

W = Wgluing +Wtriangles (7.25)

More intuitively, one can think that the linear term δW = B(j)
1,1 has the effect of giving

a VEV to the Πj operator, which after the deformation has R-charge 0. This VEV Higgs
the USp(2N)× USp(2N) down to the diagonal USp(2N). In addition, after Πj acquires a
VEV the triangle superpotential ΠjLjRj−1 becomes a mass term for Lj and Rj−1. Therefore,
under this deformation, we can see that the mirror theory reduces correctly to the mirror
dual of the SQCD with F − 1 flavors.

There is a second type of mass term that we can consider which is δW = QjQi, with
j ̸= i or δW = P1,2Qj or δW = P1P2. These deformations have the effect of giving a mass to
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two flavors in the electric theory. Again by means of the swapping dualities (7.22), (7.23)
and (7.24) we can restrict the analysis to the case δW = QjQj+1. This superpotential term
maps in the magnetic theory to the term δW = LjRj , which is a mass terms for both Lj and
Rj . We are then left with two consecutive improved bifundamental theories glued together
which fuse to an I-wall as in (7.39), having the effect of shortening the sequence of improved
bifundamentals by two unit. After the shortening, it is generated a new superpotential term:
δW = Rj−1Lj+1, which has the effect of giving a mass also to both the Rj−1 and Lj+1 legs.
All in all we have the following schematic situation:

2N 2N 2N

2 2

=⇒
Πj−1 Πj Πj+1 Πj+2

Rj−1
Lj

Rj

Lj+1

W = Wgluing +Wtriangles + RjLj

2N
Πj−1 Πj+2

W = Wgluing +Wtriangles (7.26)

We can see that the net effect of the deformation in the mirror theory is to shorten the
sequence of improved bifundamental by two, leading to the correct mirror dual of the SQCD
with F − 2 flavors.

Ironing. Another type of deformation that we want to consider consist in turning on cubic
superpotential terms for the flavors and the antisymmetric field as: δW = Q2

jA or δW = P 2
1,2A.

Again by means of the swapping dualities (7.22), (7.23) and (7.24) we can restrict the analysis
to the case δW = Q2

jA with j = 2, . . . F − 1 which maps in the mirror dual to δW = B(j)
1,2.

The effect of this deformation in the magnetic theory, is to iron an improved bifundamental
into a standard one along with two antisymmetric fields to which it is coupled, see (B.11).
Graphically this deformation consist in:

2N 2N

2

=⇒
Πj

W = Wgluing +Wtriangles + B(j)
1,2

2N 2N

2

Π′
j

W = Flip[Π′2
j ] + Π′2

j (AL + AR)+
+Wtriangles (7.27)

On the r.h.s. the standard bifundamental Π′
j is coupled to AL and AR, that are the antisym-

metric operators inside the improved bifundamentals on its left and on its right.
It is interesting to study the result when we introduce all the ∑F

j=1 Q2
jA terms since

it leads to the 4d uplift of the 3d N = 4 U(N) SQCD proposed in [47] for F ≥ 2N . The
effect of the deformation is to iron all the improved bifundamentals. Also, keeping track
of all the antisymmetric fields produced from this deformation, we see that each gauge
node except the first and last one have an antisymmetric field coupled to the standard
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bifundamental on its right and left, also all the bifundamentals are flipped. We collect these
terms in a superpotential called Wpartial

N=4-like. On the first and last gauge node we do not
have any antisymmetric fields, however the flavors are now coupled to an antisymmetric
operator obtained from the bifundamental on its side. In addition, on the mirror side we
turn on the linear terms in the flipping singlets F [V 2

1 (Π2
2)N−2] and F [V 2

2 (Π2
F−1)N−2]. All

in all we have the following duality:

2N

2F

2 2

⇐⇒

Q

P1 P2

A

W = Q2A

2N 2N 2N 2N

2 2 2 2

2 2

Π2 ΠF−1

L1
R1

V1

L2 · · ·
RF−2

LF−1
RF−1

V2

F
(j)
1 F

(j)
2

A2 AF−2

W = Wpartial
N=4-like +Wtriangles +

∏N−1
j=0 (V1Aj

1L1F
(j)
1 + V2Aj

F−1RF−1F
(j)
2 )+

+
∑N−1

k=0

{
Flip[V 2

1 (Π2
2)k] + Flip[L2

1(Π2
2)k] + Flip[V 2

2 (Π2
F−1)k]+

+Flip[R2
F−1(Π2

F−1)k]
}
+ F [V 2

1 (Π2
2)N−2] + F [V 2

2 (Π2
F−1)N−2]

(7.28)

Notice that introducing in the superpotential the singlets F [V 2
1 (Π2

2)N−2] and F [V 2
2 (Π2

F−1)N−2]
causes the operators V 2

1 (Π2
2)N−2 and V 2

2 (Π2
F−1)N−2 to acquire a VEV. As shown in [20]

the two VEVs have the effect to propagate reconstructing a tail of increasing ranks from 1
to N . Also we have a plateau of gauge nodes with rank N with a flavor on the two sides.
Taking into account also the singlets, we obtain the known N = 4-like mirror dual for the
4d N = 1 USp(2N) SQCD:

2N

2F

2 2

⇐⇒

W = WN=4-like

2 . . . 2N-2 2N . . . 2N 2N-2 . . . 2

2 2 2 2

2 2

W = WN=4-like (7.29)

Where in the picture above all the antisymmetrics are taken to be tracefull.

7.2 Reduction to 3d and uplifts

It is interesting to observe how the 4d SQCD mirror pair reduces to our 3d result ins section 2.
The first step of the 3d reduction limit consists in compactifying the mirror pair in figure 13
on a circle. This limit can be performed by redefining the set of fugacities appearing in
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the SCI identity in (7.14) as:

xj = e2πirXj , yj = e2πirYj , zj = e2πirZj ,

t = e2πirτ , bj = e2πirBj , c = e2πir∆ ,

p = e−2πrb , q = e−2πrb−1
, (7.30)

where the capital letter variables are real variables taking values in [− 1
2r , 1

2r ], with r being
the radius of the S1 circle of the S3 × S1 space. We then perform the limit r → 0 to
land on a 3d theory. The superconformal index reduces to the S3

b partition function of
the resulting 3d theory and can be obtained using the relation between elliptic-gamma and
double-sine functions:

lim
r→0

Γe(e2πix; p = e−2πrb, q = e−2πrb−1) = e−
iπ
6 ( iQ

2 −x)sb

(
iQ

2 − x

)
, (7.31)

with Q = b + b−1. Performing this limit in the 4d SQCD pair we obtain a N = 2 3d duality
that is identical to the 4d one, the only difference is that a superpotential linear in the KK
monopole W = M is generated, as argued in [50]. This monopole superpotential ensures
that the 3d and 4d theories (where we have the anomaly cancellation condition) have the
same global symmetry. Notice that on the mirror side we have 3d FE[USp(2N)] theories
whose UV description is given as a 3d N = 2 quiver theory identical to (19), where each
node has W = M turned on.

We can now perform some deformations. For example we can proceed as in [51] and
perform a combination of real mass deformation for the non-abelian flavor symmetries and
Coulomb branch VEVs breaking the gauge groups from symplectic to unitary obtaining
the following duality:

N

1 1

1 1

Q1 QF

P1 P2

A

· · ·

W = M+ +M−

⇐⇒ N N N N

1 1 1 1

1 1

Π2 ΠF−1

×L1
R1

V1

L2 · · ·
RF−2

LF−1

×RF−1

V2

F
(j)
1 F

(j)
2

A1

A2 AF−2

AF -1

W = Wgluing +Wtriangles +Wmonopoles +
∏N−1

j=0 (V1Aj
1L1F

(j)
1 + Ṽ1Aj

1L̃1F̃
(j)
1

+V2Aj
F−1RF−1F

(j)
2 + Ṽ2Aj

F−1R̃F−1F̃
(j)
2 ) +

∑N−1
k=0

{
Flip[V1Ak

1 Ṽ1]+
+Flip[L1Ak

1L̃1] + Flip[V2Ak
F−1Ṽ2] + Flip[RF−1Ak

F−1R̃F−1]
}

(7.32)

Notice all the antisymmetric chirals become adjoints. On the electric side this limit yields an
adjoint SCQD with F + 2 flavors. This flow has the effect of generating non-perturbative
contributions due to the USp(2N) → U(N) breaking of the gauge group. These contributions
together with the original KK monopoles combine in a contribution to superpotential consisting
in the sum of the two fundamental monopole W = M+ +M−. Also in the mirror theory at
each node we have W = M++M−, all these terms are collected in short into Wmonopoles. This
RG flow also reduces the 3d FE[USp(2N)] theories to 3d FM [U(N)] theories as shown in
appendix B.2. The charges of the fields are again the same as the 4d ones in given in table 5.
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Finally we turn on a real mass deformation for the U(1)c symmetry. On the electric
side the P1, P̃1 and P2, P̃2 flavors become massive and when integrated out they generate
mixed Chern-Simons couplings and restore the topological symmetry at each node lifting
the monopole superpotential. In this way we obtain the 3d adjoint SQCD with F flavors.
Similarly on the mirror side the flavors Rj , R̃j and Lj , L̃j forming the saw all become massive
and when integrated out they generate mixed Chern-Simons couplings and restore the
topological symmetry at each node lifting the monopole superpotential. At the level of the
partition function this consists in taking the limit ∆ → +∞ and using the limit behavior
of the double-sine function:

lim
x→±∞

sb(x) = e±
iπ
2 . (7.33)

Performing this limit leads to the partition function identity (2.8).

One can generalize the strategy above to construct improved 4d N = 1 quivers which
uplifts the 3d quivers associated to brane setups preserving four supercharges described in
section 4. Where by uplifts we mean that under the 3d reduction described above, any
mirror-like pair of 4d N = 1 improved quivers reduces to a 3d N = 2 mirror pair. Intuitively
the strategy to uplift a 3d N = 2 mirror pair is the following:

• We replace each U(N) gauge node with a USp(2N) gauge node.

• We replace pairs of 3d chirals/antichirals in the fundamental of U(N) with 4d chiral
doublets in the fundamental of USp(2N).

• We replace 3d improved bifundamentals, that are FM [U(N)] theories, by FE[USp(2N)]
theories, the 4d improved bifundamentals.

• We add the saw-like structure.

• Finally, if in the 3d theory there is a single vertical flipped flavor on the leftmost or
rightmost gauge node of the theory, we add flipping fields as in the mirror dual of the
SQCD in 13.

For example, following this strategy, we find that the uplift of the mirror pair discussed

– 65 –



J
H
E
P
1
0
(
2
0
2
4
)
2
3
4

in section 4.1.1 is given by:

N N

F1F1 F2 F2

W = Wgluing

3d Mirror
symmetry

⇐⇒
N . . . N . . . N

1 1 1 1

V1 V2 V3

A1 AF1 AF1+F2−1

W = Wgluing +
∑N−1

j=0
(
Flip[V1Aj

1Ṽ1] + Flip[V3Aj
F1+F2−1Ṽ3]

)

2N 2N

2F1 2F2

2 2 2

W = Wgluing +Wtriangles

4d Mirror
symmetry

⇐⇒ 2N . . . 2N . . . 2N

2 2 2

2 2

V1 V2 V3

L1 RF1+F2−1

F
(j)
1 F

(j)
2

A1

AF1

AF1+F2-1

W = Wgluing +Wtriangles +
∑N−1

j=0
(
Flip[V 2

1 Aj
1]+

+Flip[V 2
3 Aj

F1+F2−1] + Flip[L2
1Aj

1]+
+Flip[R2

F1+F2−1Aj
F1+F2−1] + F

(j+1)
1 V1Aj

1L1+
F

(j+1)
2 V3Aj

F1+F2−1RF1+F2−1
)

(7.34)

As we explain the next sub-section, we can rigorously construct these 4d mirror dualities
by running the 4d dualization algorithm.

7.3 4d local dualization algorithm

We now want to show how the 4d SQCD mirror dual can be obtained using the local
dualization algorithm. The 4d algorithm consists of the same steps as the 3d one: we chop
the theory into basic QFT blocks; we dualize each block using the basic duality moves; we
glue back the dualized blocks. In [19, 20] a 4d mirror dualization algorithm was formulated
to study the special family of 4d N = 1 theories which are uplifts of 3d theories with eight
supercharges constructed in [47]. Here we need a generalized version of the algorithm as
our 4d N = 1 theories are uplifts of 3d theories with four supercharges. We will need new,
generalized, QFT blocks and new basic duality moves.

Generalized QFT blocks. In the first line of in figure (15) we have the flavor block,
parameterized so that it has R-charge 1, U(1)b charge −1 and it is rotated by a USp(2N)x ×
USp(2)v symmetry. The flavor comes together with an identity operator whose action consists
in identifying the set of fugacities associated to two USp(2N) symmetries.

On the second line we have the definition of an improved bifundamental block which
is given by a FE[USp(2N)] theory together with two chirals, USp(2N)x,y × USp(2)v bifun-
damentals. We also introduce a superpotential Wtriangle coupling cubically the improved
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Generalized flavor: 2N

2
√

pqb−1

v

x⃗Iy⃗(t)
W = 0

Improved bifundamental:

2N 2N

2

b

√
pqcb−1 √

pqc−1

x⃗ y⃗

v

W = Wtriangle

Figure 15. Definition of the generalized blocks. In the picture we write in blue the parameterization
of the two theories. To the generalized flavor we assign a trial R-charge 1 and charge −1 under a
U(1)b symmetry. v denotes the fugacity of the SU(2) symmetry while x⃗ and y⃗ are the fugacities of
two USp(2N) symmetries. The improved bifundamental block is given by a FE[USp(2N)] theory, for
which we assign to the bifundamental operator a trial R-charge of 0 and b-charge 1. The improved
bifundamental block is also equipped with a pair of USp(2N) × SU(2)v chirals that are coupled
cubically to the improved bifundamental.

bifundamental and the two chirals. The superconformal index of the generalized block is given:

I(N)
GF (x⃗, y⃗, t, b) =

N∏
j=1

Γe(
√

pqb−1x±
j v±)x⃗Iy⃗(t) ,

I(N)
GB (x⃗, y⃗, t, b, c) = I(N)

F E (x⃗, y⃗, t, b)
N∏

j=1

(
Γe(

√
pqb−1cx±

j v±)Γe(
√

pqc−1y±j v±)
)

. (7.35)

Where the superconformal index I(N)
F E is defined in appendix B.1, equation (B.4). The

identity operator is instead defined as:

x⃗Iy⃗(t) =
∏N

j=1 2πixj

∆N (x⃗, t)
∑

σ∈SN

N∏
j=1

δ(xj − y±σ(j)) . (7.36)

Our convention for the 4d superconformal index can be found in appendix A.

The 4d S-wall theory. It has been argued in [20, 24] that the 4d S-wall theory is given
by the FE[USp(2N)]. It was also shown that this operator satisfies PSL(2,Z) relations:
(ST)3 = 1 and S = S−1. The SCI of the S generator is then defined as:

I(N)
S (x⃗, y⃗, t, c) = I(N)

F E (x⃗, y⃗, t, c) . (7.37)

The S = S−1 identity corresponds to the Identity-wall property of the FE[USp(2N)] theory:∮
dz⃗N∆N (z⃗, t)I(N)

S (x⃗, z⃗, t, c)I(N)
S (z⃗, y⃗, t, c−1) = x⃗Iy⃗(t) , (7.38)
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2N 2N

2

b

√
pqcb−1 √

pqc−1

x⃗ y⃗

v

W = Wtriangle

⇐⇒

2N 2N 2N

2

c bc−1

√
pqb−1

τ

W = Wgluing

2N

2
√

pqb−1

v

x⃗Iy⃗(t)
W = 0

⇐⇒

2N 2N 2N 2N

2

c−1 b cb−1

√
pqcb−1 √

pqc−1

τ τ
x⃗ y⃗

v

W = Wgluing +Wtriangle

Figure 16. Basic S-duality moves for the 4d generalized blocks. On top we have the S-dualization of
the flavor block into an improved bifundamental. On the bottom we have the S-dualization of the
improved bifundamental into a flavor. The S operator is identified with the FE[USp(2N)] theory
that in these dualities plays a double-role. Wgluing encodes the superpotential terms coupling the
antisymmetric chirals to the antisymmetric operators inside the improved bifundamental and S-wall
theories. Also, Wtriangle means that we couple cubically the improved bifundamental and the chirals
in each triangle.

where the identity operator is defined as in (7.36) (see also appendix B.1. Graphically this
property can be depicted as:

2N 2N 2N ⇐⇒
c c−1

x⃗Iy⃗(t)
t

x⃗ y⃗

W = Wgluing (7.39)

In [24] it was shown that this property can be proven by iterating the Intriligator-Pouliot
duality [52]. The FE[USp(2N)] theory therefore plays a double role in improved 4d mirror
dualities, being both the S-wall theory and the improved bifundamental. It is possible to
distinguish the two by the presence of chirals forming a triangular structure in the latter,
as in figure (15).

Basic duality moves. The two basic duality moves encode the mirror dualization of the
two blocks and are depicted in figure (16).

In the first duality move we relate an improved bifundamental block with a generalized
flavor on which are acting two S-walls. On the r.h.s. Wgluing implies that the antisymmetric op-
erator is coupled to the antisymmetric operators inside the two S-walls, the flavor does not enter
in the superpotential and therefore is rotated by an independent USp(2)v × U(1)b symmetry.
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In the second duality we are acting with two S-walls on an improved bifundamental
block to obtain a generalized flavor block. On the r.h.s. we have Wgluing and Wtriangle to
imply that the antisymmetric chirals are coupled to the antisymmetric operators inside the
improved bifundamental and S-wall theories.

The first basic duality move in (16) is also called braid duality, while the second duality
can be obtained starting from the first one and gluing on the left and on the right an FE

theory and using that S2 = 1. In [27], it is shown that braid duality can be proved by
induction assuming only the Intriligator-Pouliot duality, hence also all the dualities obtained
from the 4d dualization algorithm can be seen as consequences of basic Seiberg-like dualities.

As superconformal index identities the basic duality moves can be written as:

I(N)
GB (x⃗, y⃗, t, b, c) =

∮ 2∏
a=1

(
dz⃗

(a)
N ∆N (z⃗(a), t)

) N∏
j=1

I(N)
S (x⃗, z⃗(1), t, c)

× I(N)
GF (z⃗(1), z⃗(2), t, b)I(N)

S (z⃗(2), y⃗, t, b/c) ,

I(N)
GF (x⃗, y⃗, t, b) =

∮ 2∏
a=1

(
dz⃗

(a)
N ∆N (z⃗(a), t)

)
I(N)

S (x⃗, z⃗(1), t, c−1)

× I(N)
GB (z⃗(1), z⃗(2), t, b, c)I(N)

S (z⃗(2), y⃗, t, c/b) . (7.40)

Notice that the superconformal indexes of the S-walls and of the generalized QFT blocks
can be seen as matrices carring two USp(2N) fugacities. Multiplying two of them consist in
identifying two USp(2N) symmetries and gauging its diagonal subgroup with the integration
measure ∆N (z⃗, t), which contains both a N = 1 vector multiplet and an antisymmetric chiral
with charge +1 under a U(1)t symmetry. Notice that the U(1)t symmetries of all the blocks
multiplied are identified, due to the Wgluing superpotentials.

As already discussed in the 3d case, we do not know an “asymmetric” version of the braid
duality, which would relate a generalized USp(2N) × USp(2M) bifundamental to a flavor.
However, in order to run the algorithm we still need the M = 0 case. The USp(2N)×USp(0)
bifundamental is just given by a single bifundamental chiral of USp(2N)x × SU(2)v, its
dualization is given in figure (17). This duality consist in the following partition function
identity:

N∏
j=1

Γe(t
1−N

2 cx±
j v±) =

N∏
j=1

(
Γe(tj)Γe(t1−jc2)

)
I(N)

S (x⃗, {t
N−1

2 v, . . . , t
N−1

2 v}, t, c) . (7.41)

The definition of the asymmetric S-wall theory is given in appendix B.1.

Useful combined moves. It is convenient to consider the dualization of F flavors, which
can be inferred from the dualization of a single flavor block. This is dual to a set of F

improved bifundamental blocks with an S-wall on each side. The corresponding duality is
depicted on the top of figure (18). On the bottom we have the inverse move, relating F

improved bifundamentals to F flavors on which an S-wall acts on each side. We first define
the SCI of a set of F flavors as:

I(N)
F−GF (x⃗, y⃗, t, b⃗, v⃗) =

N∏
j=1

F∏
a=1

Γe(
√

pqb−1
a x±

j v±a )x⃗Iy⃗(t) . (7.42)
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0 2N

2

⇐⇒t
1−N

2 c

x⃗

v 0 0 2N

2

c

v

x⃗
× singlets

Figure 17. Asymmetric basic duality move relating a USp(2N)× USp(0) improved bifundamental
block with an asymmetric generalized flavor with S-walls on the sides.

2N

2 2
√

pqb−1
1

v1

· · ·
√

pqb−1
F

vF

x⃗Iy⃗(t)
⇐⇒

2N 2N 2N . . . 2N 2N 2N

2 2

c−1 b1 bF
c

b1...bF

√
pqc

b1

√
pq

c

√
pqc

b1...bF

√
pqb1...bF−1

c

τ τ τ τ
x⃗ y⃗

v1 vF

2N 2N . . . 2N 2N

2 2

b1 bF

√
pqc

b1

√
pq

c

√
pqc

b1...bF

√
pqb1...bF−1

c

τ τ
x⃗ y⃗

v1 vF

⇐⇒
2N 2N 2N

2 2

c b1...bF
c

√
pqb−1

1

v1

· · ·
√

pqb−1
F

vF

τ

x⃗ y⃗

Figure 18. Duality moves relating a block of F flavors to F improved bifundamental blocks.

The dualities consist in the following SCI identities:

I(N)
F−GF (x⃗, y⃗, t, b⃗, v⃗) =

∮ F +1∏
a=1

(
dz⃗

(a)
N ∆N (z⃗(a), t)

)
I(N)

S (x⃗, z⃗(1), t, c−1)

×
F∏

a=1
I(N)

GB (z⃗(a), z⃗(a+1), t, ba, c(b1 . . . ba−1)−1)I(N)
S (z⃗(F +1), y⃗, t, c(b1 . . . bF )−1) ,

∮ F−1∏
a=1

(
dz⃗

(a)
N ∆N (z⃗(a), t)

)
IGB(x⃗, z⃗(1), t, b1, c)

×
F−1∏
a=2

I(N)
GB (z⃗(a−1), z⃗(a), t, ba, c(b1 . . . ba−1)−1)IGB(z⃗(F−1), y⃗, t, bF , c(b1 . . . bF )−1) =

=
∮ 2∏

a=1

(
dz⃗

(a)
N ∆N (z⃗(a), t)

)
I(N)

S (x⃗, z⃗(1), t, c)I(N)
F−GF (z⃗

(1), z⃗(2), t, b⃗, v⃗)

× I(N)
S (z⃗(2), y⃗, t, b1 . . . bF c−1) . (7.43)

Proving the N = 1 antisymmetric SQCD mirror pair via the dualization algorithm.
We are now ready to derive the SQCD mirror dual via the algorithm.

We start from the antisymmetric SQCD parameterized as in (14), we decompose the
theory into two trivial bifundamental blocks and a block of F flavors in the center. Notice
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that two of the original flavors are used to reconstruct the trivial bifundamental blocks.

2N

2 2

2 2

⇐⇒

pqrQ/2b−1
1

x1 . . .

pqrQ/2b−1
F

xF

pqrQ/2c

y1

pq
rQ/2

cb1...bF

y2

τ 0 2N

2

2N

2 2

2N 0

2

z⃗

pqrQ/2c

y1

pq
rQ/2

cb1...bF

y2

pqrQ/2b−1
1

x1. . . . . .

pqrQ/2b−1
F

xF

z⃗Iw⃗(t)
w⃗

(7.44)

At the level of the superconformal index this step consists in starting from the index of the
SQCD, defined in (7.15), and rewriting it as:

ISQCD(x⃗, y⃗, b⃗, c, t) =
∮

dz⃗N∆N (z⃗, t)
N∏

j=1

(
Γe(pqrQ/2cz±j y±1 )

×
F∏

a=1
Γe(pqrQ/2baz±j x±

a )Γe(pqrQ/2
F∏

a=1
b−1

a c−1z±j y±2 ) =

=
∮

dz⃗N dw⃗N∆N (z⃗, t)∆N (w⃗, t)
N∏

j=1

[
Γe(pqrQ/2cz±j y±1 ) (7.45)

×
F∏

a=1
Γe(pqrQ/2baz±j x±

a )z⃗Iw⃗(t)Γe(pqrQ/2
F∏

a=1
b−1

a c−1w±
j y±2 )

]
= IStep I .

The matching between the first and second expression is trivial after using the fact that the
z⃗Iw⃗(t) operator behaves as a delta-function identifying z⃗ and w⃗, with the normalization:∮

dz⃗N∆N (z⃗, t)z⃗Iw⃗(t) = 1 . (7.46)

In the second step we dualize each block using the basic moves in figure (18) and (17).
Gluing back the dualized blocks we obtain:

0 0 2N 2N 2N 2N 2N 2N 0 0

2 2

2 2

c−1
0

c0
√

pqb̃1
√

pqb̃F c−1
F

cF. . .√
pqc−1

1
√

pqc0
√

pqc−1
F

√
pqc−1

F−1

y1 y1

x1 xF

τ τ τ τ τ τ

(7.47)

To avoid cluttering we will not write all the singlets coming from the dualization in the
figures, we will restore them in the end. For convenience we have also defined the following:

b̃a = pqrQ/2ba , c̃ = pqrQ/2c ,

ca = pq
a
2 t

1−N
2 b̃1 . . . b̃ac̃−1 . (7.48)
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At the level of the superconformal index this step consists in using the identities (7.43)
and (7.41), corresponding to the duality moves, inside the expression (7.45) to obtain:

ISQCD(x⃗, y⃗, b⃗, c, t)= IStep I =
∮ F +3∏

a=1

(
dz⃗

(a)
N ∆N (z⃗(a), t)

) N∏
j=1

(
Γe(pqt−j)2Γe(t1−jc−2

0 )Γe(t1−jc2
F )
)

×I(N)
S ({t

N−1
2 y1, . . . , t

1−N
2 y1}, z⃗(1), t, c−1

0 )I(N)
S (z⃗(1), z⃗(2), t, c0)

×
F∏

a=1
I(N)

GB (z⃗(a+2), z⃗(a+3), t,
√

pqb̃1,
√

pqc−1
a b̃−1

a )I(N)
S (z⃗(F +2), z⃗(F +3), t, c−1

F )

×I(N)
S (z⃗(F +3),{t

N−1
2 y2, . . . , t

1−N
2 y2}, t, cF )= IStep II . (7.49)

We then recognize two asymmetric I-walls given by an asymmetric S-wall theory glued
to a standard one. Using the result (B.20), we see that the effect of the asymmetric I-wall is
to Higgs the second and second last USp(2N) gauge groups down to a flavor USp(2). The
Higgsing also causes the first and last diagonal leg to become N chirals in the bifundamental
of USp(2)x1 × USp(2)y1 and USp(2)xF × USp(2)y2 . All in all we have:

0 2N 2N 2N 2N 0

2 2

2 2 2 2

√
pqb̃1

√
pqb̃2

√
pqb̃F−1

√
pqb̃F

y1 y2

x1 x2 xF−1 xF

. . .
√

pqc0 √
pqc−1

2

√
pqc1

√
pqc−1

F -1

√
pqcF -2

√
pqc−1

F

√
pqt

N+1−2j
2 c−1

1
√

pqt
N+1−2j

2 cF−1

τ τ τ τ

(7.50)

We can now use the duality in (B.16) to replace the two asymmetric improved bifundamentals
with N chirals plus flippers. Using this duality and also collecting together all the singlets
produced at each step, we obtain the final result:

2N 2N 2N 2N

2 2 2 2

2 2

√
pqb̃1

√
pqb̃1

√
pqc0

√
pqc−1

2

√
pqc1 · · ·

√
pqc−1

F -1

√
pqcF -2

√
pqc−1

F

√
pqt

N+1−2j
2 c−1

1
√

pqt
N+1−2j

2 cF−1τ

τ τ

τ

y1 y2

x1 x2 xF−1 xF (7.51)

which is precisely the mirror dual presented in 13.
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At the level of the index, using the identity (B.17) inside (7.49) we obtain:

ISQCD(x⃗,y⃗,⃗b,c,t)=IStep I=IStep II=
N∏

j=1

[
Γe(

√
pqt

N+1−2j
2 c−1

1 x±
1 y±1 )Γe(

√
pqt

N+1−2j
2 cF−1x±

F y±2 )

×Γe(t1−jc−2
0 )Γe(tj−1b̃−2

1 )Γe(t1−jc2
F )Γe(tj−1b̃−2

F )
]

×
∮ F +1∏

a=3

(
dz⃗

(a)
N ∆N (z⃗(a),t)

)F−1∏
a=2

I(N)
GB (z⃗(a+2),z⃗(a+3),t,

√
pqb̃a,

√
pqc−1

a b̃−1
a )

×
N∏

j=1

[
Γe(

√
pqt

1−N
2 b̃1z

(3)±
j y±1 )Γe(

√
pqt

1−N
2 b̃F z

(F +1)±
j y±2 )

]
(7.52)

×
N∏

j=1

[
Γe(

√
pqc0x±

l )Γe(
√

pqc−1
F z

(F +1)±
j x±

F )
]
=I

­SQCD
(x⃗,y⃗,⃗b,c,t).

which reproduces the exactly (7.14).
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A Notations for 4d superconformal index and 3d partition function

4d superconformal index. In this section we introduce the notation for the 4d N = 1
superconformal index [53–55]. Let us consider a 4d N = 1 gauge theory with gauge group G

and matter given by a set of N = 1 chiral multiplets of R-charge r, in the representation
RG of G and RF of some flavor symmetry group F . To write the SCI we turn on a set of
(dimG) fugacities z⃗ for the gauge group G and (dimF ) fugacities x⃗ for the flavor symmetry
F . We then write:

IG(x⃗) =
1

|WG|

∮ dim G∏
j=1

dzj

2πizj

[(p; p)∞(q; q)∞]dim G∏
ρ⃗∈G Γe(z⃗ ρ⃗ )

∏
σG∈RG

∏
σF ∈RF

Γe
(
(pq)r/2z⃗ s⃗G x⃗ s⃗F

)
. (A.1)

Where ρ⃗ are the roots of G, σ⃗G and s⃗F are the weights of the representations RG and RF .
|WG| is the dimension of the Weyl group of G. We adopted the following notation:

z⃗ ρ⃗ =
dim G∏
j=1

z
ρj

j , z⃗ σ⃗G =
dim G∏
j=1

z
σGj

j , x⃗ σ⃗F =
dim F∏
j=1

z
σF j

j . (A.2)

We define a short notation for the integration measure:

dz⃗N = 1
|WG|

N∏
j=1

dzj

2πizj
. (A.3)
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In this work we deal mostly with USp gauge groups for which we define the contribution
of the vector multiplet as:

∆N (z⃗) = [(p; p)∞(q; q)∞]N∏N
j=1 Γe(z±2

j )∏N
j<k Γe(z±j z±k )

. (A.4)

It is convenient to also define the contribution of both a vector and a chiral in the traceless
antisymmetric representation:

∆N (z⃗, t) = ∆N (z⃗)Γe(t)N−1
N∏

j<k

Γe(tz±j z±k ) . (A.5)

For a chiral of R-charge r in the bifundamental of USp(2N) × USp(2M) we have:

Ibif =
N∏

j=1

M∏
a=1

Γe
(
(pq)r/2z±j x±

a

)
. (A.6)

Suppose that a theory also possesses a U(1) symmetry for which we turn on a fugacity c.
Along the RG flow this symmetry can mix with the R-symmetry as r + qcC, where qC is the
U(1) charge and C is the mixing coefficient, which is related to the fugacity as:

c = (pq)C/2 . (A.7)

3d partition function. In this section we introduce the notation for the 3d N = 2 S3
b

partition function [37, 56, 57]. Let us consider a 3d N = 2 gauge theory with gauge group G

and matter given by a set of N = 2 chiral multiplets of R-charge r, in the representation
RG of G and RF of some flavor symmetry group F . To write the S3

b partition function we
turn of a set of (dimG) parameters Z⃗ for the gauge group G and (dimF ) parameters X⃗

for the flavor symmetry F . We then write:

Z(Y, k, X⃗) = 1
|WG|

∫ dim G∏
j=1

dZjZcl(Y, k) 1∏
ρ⃗∈G sb

( iQ
2 − ρ⃗(Z⃗)

)
×

∏
σ⃗G∈RG

∏
σ⃗F ∈RF

sb

(
iQ

2 (1− r)− σ⃗G(Z⃗)− σ⃗F (X⃗)
)

. (A.8)

Where ρ⃗ are the roots of G, σ⃗G and s⃗F are the weights of the representations RG and RF .
|WG| is the dimension of the Weyl group of G. We also adopted the following notation:

ρ⃗(Z⃗) =
dim G∑
j=1

ρjZj , σ⃗G(Z⃗) =
dim G∑
j=1

σGjZj , σ⃗F (X⃗) =
dim F∑
j=1

σF jXj . (A.9)

We also have Zcl(Y, k) that encodes the contribution of the FI parameter Y associated to
a topological symmetry and that of CS term of level k:

Zcl(Y, k) = exp
[
2πiY

dim G∑
j=1

Zj + πik
dim G∑
j=1

Z2
j

]
. (A.10)
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We define a short notation for the integration measure:

dZ⃗N = 1
|WG|

N∏
j=1

dZj . (A.11)

In this work we deal mostly with U gauge groups. In this case we define the contribution
of the vector multiplet as:

∆N (Z⃗) = 1∏N
j<k sb

( iQ
2 ± (Zj − Zk)

) . (A.12)

It is convenient to also define the contribution of both a vector and a chiral in the traceless
adjoint representation:

∆N (Z⃗, τ) = ∆N (Z⃗) sb

(
iQ

2 − τ

)N−1 N∏
j<k

sb

(
iQ

2 − τ ± (Zj − Zk)
)

. (A.13)

For a chiral of R-charge r in the bifundamental N×M̄ of a U(N)×U(M) gauge group we have:

Zbif =
N∏

j=1

M∏
a=1

sb

(
iQ

2 (1− r) + Zj − Xa

)
. (A.14)

B Improved bifundamentals and duality walls

In this appendix we briefly review the three important theories used throughout the work,
that are the FE[USp(2N)], FM [U(N)] and FT [U(N)] theories.

The FE[USp(2N)] theory was first introduced in [35]. Its properties and deformations
were later studied in [20, 24, 27, 47].

The FM [U(N)] theory was first introduced in [26]. Its properties and deformations
were later studied in [24, 27].

The FT [U(N)] theory is simply the T [SU(N)] theory of [21], with the addition of an
extra singlet flipping the moment map of the Higgs branch.

B.1 4d improved bifundamental: the F E[USp(N)] theory

The FE[USp(2N)] theory is a 4d N = 1 SCFT denoted by the following symbol:

2N 2N (B.1)

This theory admits a UV Lagrangian description as a quiver of N − 1 symplectic gauge nodes
as given in figure (19). The FE[USp(2N)] theory has the UV global symmetry group:

USp(2N)× USp(2)N ×U(1)τ ×U(1)C , (B.2)

in addition to the U(1)R symmetry. At the IR fixed point, the SCFT is characterized by
the enhanced global symmetry:

USp(2N)× USp(2N)×U(1)τ ×U(1)C . (B.3)
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2 4 2N-2 2N

2 2 2

b1 bN−1

d1 v1
d2

. . .

vN−1
dN

a2 aN−1 aN

W =∑N−1
j=1 vjbjdj+1 +

∑N
j=2 aj(b2

j−1 − b2
j ) +

∑N−1
j=1 Flip[b2

j ] +
∑N

j=1 Flip[d2
j ]

bi τ/2
ai 2− τ

vi 2 + N−i−2
2 τ − C

di
i−N

2 τ + C

Figure 19. Quiver representation of the UV completion of the FE[USp(2N)] SCFT. Each node,
square or round, labeled with a number 2n, represents respectively a gauge or flavor USp(2n) group.
Each line is a field in the fundamental representation of the nodes to whom is attached, except for
arch lines that are fields in the traceless antisymmetric representation. Crosses denote the presence
of flipping fields. Lastly, all the superpotential terms are written in short by omitting the traces
which also include the antisymmetric of the USp group. Also, on the right, we give the table with the
R-charge of all the fields in the theory. The R-charge is given as a trial value mixed with the other
two abelian symmetries of the theory, U(1)τ and U(1)C , whose mixing values are given by the two
real variables τ and C.

USp(2N) USp(2N) R charge
A N(2N − 1)− 1 1 2− τ

A 1 N(2N − 1)− 1 2− τ

Π N N C

Bn,m 1 1 2n − 2C + (m − n)τ

Table 6. List of all the gauge invariant operator that compose the spectrum of the FE[USp(2N)]
SCFT. The R-charge is given as a trial value mixed with the other two abelian symmetries of the
theory, U(1)τ and U(1)C , whose mixing values are given by the two real variables τ and C. The Bn,m

matrix is a collection of USp(2N)× USp(2N) singlets for n = 1, . . . , N and m = 1, . . . , N + 1− n.

The gauge invariant operators indeed reorganize into representations of the IR symmetry
group. The list of the chiral ring generators of the FE[USp(2N)] SCFT, along with their
charges and representations, is given in table 6. The SCI of the FE[USp(2N)] theory can
be defined recursively as:25

I(N)
F E (x⃗, y⃗, t, c) = Γe(pqc−2)

N∏
a=1

Γe(cy±
N x±

a )Γe(pqt−1)N−1
N∏

a<b

Γe(pqt−1x±
a x±

b )

×
∮

dz⃗N−1∆N−1(z⃗)Γe(pqt−1)
N−1∏
j=1

N∏
a=1

Γe(t
1
2 z±j x±

a )

×
N−1∏
j=1

Γe(pqt−
1
2 c−1y±N z±j )I(N−1)

F E (z⃗, {y1, . . . , yN−1}, t, t−
1
2 c) , (B.4)

25Notice that in this work we take all the antisymmetric fields to be traceless instead of tracefull, differently
from the original definition.
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with the base for the recursion:

I(1)
F E(x, y, t, c) = Γe(pqc−2)Γe(cx±y±) . (B.5)

The fugacities for the U(1) symmetries are related to the R-charge mixing as:

c = (pq)C/2, t = (pq)τ/2 , (B.6)

Also, the vectors x⃗ and y⃗ are the fugacities for the manifest and emergent USp(2N) symmetries
respectively, and z⃗ is the fugacity for the gauge group USp(2N − 2). The notation for the
superconformal index can be found in appendix A.

Self-mirror property. The FE[USp(2N)] theory enjoys an exact self-duality that acts by
exchanging the manifest and emergent USp(2N) symmetries. As a SCI identity we have:

I(N)
F E (x⃗, y⃗, t, c) = I(N)

F E (y⃗, x⃗, t, c) . (B.7)

This property can be thought as the freedom of choosing which of the two USp(2N) symmetries
is the manifest one when we consider the UV completion of the FE theory. The self-mirror
property can be demonstrated inductively using the mirror dualization algorithm.

Interesting deformations. In this section we review two interesting types of deformation
that can be turn on in an FE[USp(2N)] theory: those that are USp(2N)2 preserving and
those that are not. All the details can be found in [20].

Let us start from the former, in this work we will interested just in a small subset
of them. The first possibility that we consider is the linear superpotential deformation
δW = B1,1, which breaks completely the U(1)C symmetry while it preserves U(1)τ . Under
this deformation the FE[USp(2N)] theory behave as an identity operator as:

I(N)
F E (x⃗, y⃗, t, c = 1) = x⃗Iy⃗(t) , (B.8)

where the identity operator is defined as:

x⃗Iy⃗(t) =
∏N

j=1 2πiyi

∆N (y⃗, t)
∑

σ∈SN

N∏
j=1

δ(xj − y±σ(j)) . (B.9)

The second possibility is given by the linear deformation δW = B1,2, which breaks the
U(1)C × U(1)τ symmetry down to a U(1) diagonal subgroup defined by the constraint
C = τ/2, or analogously c = t1/2 in terms of the fugacities. This deformation has the effect of
deforming the FE[USp(2N)] theory to a bifundamental coupled to antisymmetric chirals as:

I(N)
F E (x⃗, y⃗, t, c = t

1
2 ) = Γe(pqt−1)2N−1

N∏
j<k

(
Γe(pqt−1x±

j x±
k )Γe(pqt−1y±j y±k )

)
×

N∏
j,k=1

Γe(t
1
2 x±

j y±k ) . (B.10)
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Graphically this deformation can be depicted as:

2N 2N
Π

W = B1,2

⇐⇒ 2N 2N
b

a a

W = (a + a)b2 + Flip[b2]

Π τ/2
a 2− τ

a 2− τ

b τ/2
(B.11)

One can also iron a FE[USp(2N)] theory to a standard bifundamental by using the defor-
mation δW = B2,1. This has the effect of breaking U(1)C ×U(1)τ down to a U(1) subgroup
defined by the constraint C = 1− τ/2, or analogously c =

√
pq/t in terms of the fugacities.

We have the following property:

I(N)
F E (x⃗, y⃗, t, c =

√
pq/t) = Γe(t)

N∏
j,k=1

Γe(
√

pq/tx±
j y±k ) . (B.12)

Graphically we have:

2N 2N
Π

W = B2,1

⇐⇒ 2N 2N
b

W = Flip[b2]

Π 1− τ/2
b 1− τ/2

(B.13)

The second category of deformations is given by USp(2N) breaking superpotential terms. A
class of such deformations consist in giving VEVs (or masses) to the antisymmetric operators
in the FE theory in the form of Jordan matrices. The VEVs are specified uniquely by a pair
of partitions (ρ, σ). This deformations were studied in depth in [47], where it is described
how to properly follow the RG flow triggered by those deformations. Throughout this paper
we will be only interested in the particular cases where one of the two USp(2N) symmetries
is broken to USp(2M)× USp(2), with M < N . At the level of the SCI this deformation is
implemented as a specialization of the vector of fugacities of the USp(2N) symmetry, let’s call
it x⃗, in terms of the fugacities y⃗ and v of the USp(2M) and USp(2) symmetries respectively:

xi = t
N−M+1−2i

2 v for i = 1, . . . , N − M ,

xi = yi−N+M for i = N − M + 1, . . . , N . (B.14)

When such deformation is implemented in an FE theory we depict it as an “asymmetric”
zig-zag line as:

2N 2M

2

(B.15)
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In the maximal case, M = 0, therefore breaking USp(2N) completely down to USp(2), the
FE[USp(2N)] theory is dual to 2N × 2 fundamental chiral with the addition of extra singlets:

2N 0

2
Π

a

W = aAL

⇐⇒ 2N 2
b

a a τ

Π C

b 1−N
2 τ + C

W =∑N
j=2 Flip[Tr(aj)]+

+∑N−1
j=0 Flip[b2aj ]

(B.16)

As a superconformal index identity we write:

I(N)
F E (x⃗, {t

N−1
2 y, . . . , t

1−N
2 y}, t, c) =

=
N∏

j=1
Γe(t

1−N
2 τc)

N∏
j=2

Γe(pqt−j)
N−1∏
j=0

Γe(pqtN−1−jc−2) . (B.17)

Fusion to identity. An interesting property of the FE[USp(2N)] theory is that gluing
together two of them, meaning that we gauge a diagonal subgroup of a USp(2N) symmetry
of each theory, triggers an RG flow that leads to a singular delta function theory. This means
that the there is a deformed moduli space over which the global USp(2N)2 symmetry is
spontaneously broken to its diagonal subgroup. At the level of the SCI this can be written as:∮

dz⃗N∆N (z⃗, t)I(N)
F E (x⃗, z⃗, t, c)I(N)

F E (z⃗, y⃗, t, c−1) = x⃗Iy⃗(t) . (B.18)

Where the identity operator is defined as in (B.9). This property can be demonstrated by
iterative applications of the IP duality. Graphically the I-wall is depicted as:

2N 2N 2N ⇐⇒
ΠL ΠR

I-wall

a

W = Wgluing

ΠL C

ΠR −C

a τ

(B.19)

On the l.h.s. the superpotential Wgluing contains the coupling a(AL + AR), between the
antisymmetric chiral a and the antisymmetric operators AL and AR inside the left and right
FE[USp(2N)] theories. Notice that assigning the R-charge of A to be τ fixes the R-charge of
AL and AR to be 2− τ , as it is in the “standard” FE[USp(2N)] theory defined in (19).

We can also consider the situation where one of the two glued FE[USp(2N)] theories
is asymmetric:

2M 2N 2N

2

⇐⇒
ΠL ΠR

I-wall

a

W = Wgluing

ΠL C

ΠR −C

a τ

(B.20)
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1 2 N-1 N

1 1 1

b1

· · ·

bN−1
a2 aN−1 aN

×d1
v1 ×d2

vN−1 ×dN

W =∑N−1
j=1

[
bj(aj + aj+1)b̃j + Flip[bj b̃j ]

]
+

+∑N
j=1(M+

j +M−
j ) +

∑N−1
j=1 (ṽjbj d̃j+1 + vj b̃jdj+1)

Figure 20. Quiver representation of the UV completion of the FM [U(N)] SCFT. Each node, square
or round, labeled with a number n, represents a gauge or flavor U(n) group, respectively. Each line is
a N = 2 chiral in the fundamental/antifundamental representation of the nodes to whom is attached,
depending whether the arrow is outgoing or ingoing. Arches denote fields in the traceless adjoint
representation. Crosses denote flipping fields. In the superpotential we also have monopoles, we denote
by M±

i the monopole with charge ±1 under the topological symmetry associated to the i-th gauge node.

In this case we produce an asymmetric I-wall which identifies the Cartans of one USp(2N) with
the Cartans of USp(2M)× USp(2) in the specialization (B.14). At the level of SCI we have:∮

dz⃗N∆N (z⃗, t)I(N)
F E ({x⃗, t

N−1
2 v, . . . , t

1−N
2 v}, z⃗, t, c)I(N)

F E (z⃗, y⃗, t, c−1) =

=
∏N

j=1 2πiyi

∆N (y⃗, t)
∑

σ∈SN

N∏
j=1

δ(xj − y±σ(j))
∣∣
xM+j=t

N−M+1−2j
2 v

. (B.21)

B.2 3d improved bifundamental: the F M [U(N)] theory

The FM [U(N)] theory is a 3d N = 2 SCFT denoted by the following symbol:

N N (B.22)

This theory admits a UV Lagrangian description as a quiver of N − 1 unitary gauge nodes
given in figure 20, see also table 7 for the charges and representation of all the fields. The
FM theory has the UV global symmetry group:

S[U(N)×U(1)N ]×U(1)τ ×U(1)∆ , (B.23)

in addition to the U(1)R symmetry. At the IR fixed point, the SCFT is characterized by
the enhanced global symmetry:

S[U(N)×U(N)]×U(1)τ ×U(1)∆ . (B.24)

The gauge invariant operators indeed reorganize into representations of the IR symmetry
group. The list of the chiral ring generators of the FM [U(N)] SCFT, along with their charges
and representations, is given in table 8. The S3

b partition function of the FM theory can
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U(1)R0 U(1)τ U(1)∆ U(1)yj U(N)
bi, b̃i 0 1/2 0 0 1

bN−1, b̃N−1 0 1/2 0 0 N, N̄
ai 2 −1 0 0 1
aN 2 −1 0 0 N2 − 1

vi, ṽi 2 N−i−2
2 −1 ∓δi,j+1 1

di, d̃i 0 i−N
2 +1 ±δi,j 1

dN , d̃N 0 0 +1 ±δN,j N̄, N

Table 7. List of abelian charges and representation under the global symmetries of all the fields of
the FM [U(N)] theory in figure 20.

U(N) U(N) R charge
A N2 − 1 1 2− τ

A 1 N2 − 1 2− τ

Π N N̄ ∆
Π̃ N̄ N ∆

Bn,m 1 1 2n − 2∆ + (m − n)τ

Table 8. List of all gauge invariant operators that generate the holomorphic spectrum of the
FM [U(N)] SCFT. The R-charge is given as a trial value mixed with the other two abelian symmetries
of the theory, U(1)τ and U(1)∆, whose mixing values are given by the two real variables τ and
∆ (to avoid clutter we denote the real mass and the mixing coefficient by the same letter). The
Bn,m are U(N) × U(N) singlets, for n = 1, . . . , N and m = 1, . . . , N + 1 − n, defined by B1,m =
F [dN+1−md̃N+1−m], Bn>1,m = vN−man−2

N−mṽN−m.

be defined recursively as:26

Z
(N)
F M (X⃗, Y⃗ , τ,∆)= sb

(
− i

Q

2 +2∆
) N∏

j=1
sb

(
i
Q

2 −∆±(YN −Xj)
)

sb

(
− iQ

2 +τ

)

×sb

(
− iQ

2 +τ

)N−1 N∏
j<k

sb

(
− i

Q

2 +τ ±(Xj −Xk)
)∫

dZ⃗N−1∆N−1(Z⃗)

×
N∏

j=1

N−1∏
k=1

sb

(
iQ

2 − τ

2 ±(Xj −Zk)
)N−1∏

j=1
sb

(
− iQ

2 + τ

2 +∆±(Zj −YN )
)

×Z
(N−1)
F M

(
Z⃗,{Y1, . . . ,YN−1}, τ,

τ

2 +∆
)

, (B.25)

with the basis of the recursion given by:

Z
(1)
F M (X, Y, τ,∆) = sb

(
− iQ

2 + 2∆
)

sb

(
iQ

2 −∆± (X − Y )
)

. (B.26)

26Notice that in this work we take all the adjoint fields to be traceless instead of tracefull, differently from
the original definition.
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The vectors X⃗ and Y⃗ are the parameters for the manifest and emergent U(N) symmetries
respectively, and Z⃗ is the set of parameters for the gauge group U(N − 1). The convention
for the 3d partition function is given in appendix A.

F M [U(N)] as 3d limit of F E[USp(2N)]. The FM [U(N)] theory can be obtained
following a 3d limit reduction of the FE[USp(2N)] theory. We start from the SCI of the
FE[USp(2N)] theory in (B.4) and define the 3d parameters from the 4d fugacities as:

xj = e2πirXj , yj = e2πirYj , zj = e2πirZj

t = e2πirτ , c = e2πir∆ ,

p = e−2rb , q = e2rb−1
, (B.27)

then we perform the limit r → 0 and obtain the following relation:

lim
r→0

I
(N)
F E (x⃗, y⃗, t, c) = CN Z

(N)
F E3d(X⃗, Y⃗ , τ,∆) , (B.28)

where CN is a prefactor, which is divergent in the limit r → 0, given as:

CN = exp
[

iπ

12r
(4∆ + (1 + 2N)(−iQ + 2(N − 1)τ))

]
. (B.29)

The FE3d theory is given by the same quiver as in (19) where now lines are 3d N = 2
chiral multiplets and we also introduce linearly in the superpotential the USp monopole of
each gauge group. We then shift the parameters X⃗, Y⃗ , Z⃗ by (+s) and perform a real mass
deformation sending s → +∞. This has the effect of Higgsing the gauge symmetries from
USp(2N) to U(N), landing finally on the FM [U(N)] theory:

lim
s→+∞

Z
(N)
F E3d(X⃗, Y⃗ , τ,∆) = KN e

iπ(iQ−2∆+(N−1)τ)
∑N

j=1(Xj+Yj)
ZF M (X⃗, Y⃗ , τ,∆) , (B.30)

where KN is a divergent prefactor:

KN = exp
[
2isNπ(iQ − 2∆ + (N − 1)τ)

]
. (B.31)

Fusion to identity. Using the 3d limit procedure one can reduce all the identities and
properties of the FE[USp(2N)] theory into similar properties for the FM [U(N)] theory.
For example performing such limit on the identity wall relation in (B.19) we obtain the
following partition function identity:∫

dZ⃗N∆N (Z⃗, τ)Z(N)
F M (X⃗, Z⃗, τ,∆)Z(N)

F M (Z⃗, Y⃗ , τ,−∆) = X⃗IY⃗ (τ) , (B.32)

where the identity operator is defined as:

X⃗IY⃗ (τ) =
1

∆N (X⃗, τ)
∑

σ∈SN

N∏
j=1

δ(Xj − Yσ(j)) . (B.33)
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Which consist in two FM [U(N)] theories glued together with the addition of a monopole
superpotential W = M+ +M− being dual to an identity operator. We depict this relation as:

N N N ⇐⇒
ΠL ΠR

I-wall

a

W = Wgluing +M+ +M−

ΠL ∆
ΠR −∆
a τ

(B.34)

The superpotential Wgluing contains the coupling between the adjoint a and the two adjoint
operators AL and AR of the left and right FM [U(N)] theories.

Mirror self-duality. We can also reduce the mirror self-duality of the FE[USp(2N)] theory
in (B.7) to obtain a mirror sel-duality for the FM [U(N)] theory which is:

Z
(N)
F M (X⃗, Y⃗ , τ,∆) = Z

(N)
F M (Y⃗ , X⃗, τ,∆) . (B.35)

Where the two non-abelian global symmetries are swapped, meaning that we have exchanged
the manifest and emergent U(N) symmetries in the UV representation 20.

Interesting deformations. Along the lines traced for the FE[USp(2N)] theory, we present
two types of deformation also for the FM [U(N)] theory. The first deformation is realized by
adding the linear superpotential term δW = B1,1, which has the effect of breaking completely
U(1)∆ while it preserves U(1)τ . This consist in the specialization ∆ = 0 which reduces the
FM [U(N)] theory to the I-wall theory:

I(N)
F M (x⃗, y⃗, τ,∆ = 0) = X⃗IY⃗ (τ) , (B.36)

Another interesting case is the specialization obtained by the linear superpotential δW = B1,2.
This has the effect of breaking U(1)∆ × U(1)τ down to a U(1) subgroup defined by the
constraint ∆ = 1 − τ/2. The FM [U(N)] theory is deformed into a bifundamental hyper
multiplet coupled to adjoint singlets:

N N
Π

W = B1,2

⇐⇒ N N
b

a a

W = b(a + a)b̃+
+Flip[bb̃]

Π τ/2
a 2− τ

a 2− τ

b τ/2

(B.37)

As a partition function identity this translate into:

Z
(N)
F M

(
X⃗, Y⃗ , τ,∆ = τ

2

)
= sb

(
− iQ

2 + τ

)2N−1 N∏
j<k=1

[
sb

(
− iQ

2 + τ ± (Xj − Xk)
)

× sb

(
− iQ

2 + τ ± (Yj − Yk)
)]

sb

(
iQ

2 − τ

2 ± (Xj − Yk)
)

. (B.38)
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One can also iron a FM theory into a bifundamental hypermultiplet also using the deformation
δW = B2,1. This has the effect of breaking U(1)∆ × U(1)τ down to a U(1) subgroup defined
by the constraint ∆ = iQ−τ

2 . We have the following property:

Z
(N)
F M

(
X⃗, Y⃗ , τ,∆ = iQ − τ

2

)
= sb

(
iQ

2 − τ

) N∏
j,k=1

sb

(
τ ± (Xj − Yk)

)
. (B.39)

Graphically we have:

N N
Π

W = B2,1

⇐⇒ N N
b

W = Flip[bb̃]

Π 1− τ/2
b 1− τ/2

(B.40)

The second category of deformations is given by U(N) breaking superpotential terms. This
can be obtained by giving VEVs to any of the two adjoint operators. We consider the case
of a VEV such that it breaks one of the global U(N) symmetries down to U(M) × U(1).
Suppose that X⃗, Y⃗ are the set of mass parameters respectively for U(N) and U(M) and V

is that of U(1), the specialization is as follows:

Xi =
N − M + 1− 2j

2 τ + V for i = 1, . . . , N − M ,

Xi = Yi−N+M for i = N − M + 1, . . . , N . (B.41)

We depict the resulting theory as an “asymmetric” bifundamental:

N M

1

Π
(B.42)

The case M = 0 enjoys a duality with a flipped fundamental flavor as:

N 0

1
Π

a

W = 0

⇐⇒ N 1
b

a

W =∑N−1
j=0 Flip[baj b̃]+

+∑N
j=2 Flip[Traj ]

a τ

Π ∆
b (1−N)

2 τ +∆

(B.43)

As a identity between partition function we have:

Z
(N)
F M

(
X⃗,

{
N −1
2 τ +V, . . . ,

1−N

2 τ +V

}
, τ,∆

)
= (B.44)

=
N∏

j=2
sb

(
− iQ

2 +jτ

) N∏
j=1

[
sb

(
iQ

2 − 1−N

2 τ −∆±(Xj −V )
)

sb

(
− iQ

2 +(j−N)τ +2∆
)]

.
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B.3 3d S-wall: the F T [U(N)] theory

The FT [U(N)] theory is a 3d N = 4 SCFT denoted by the following symbol:

N N (B.45)

The FT [U(N)] theory has the following quiver description:

1 2 N-1 N
b1

· · ·
bN -1

a1 a2 aN -1 aN

W =∑N−1
i=1 bi(ai + ai+1)b̃i

bi, b̃i τ/2
ai 2− τ

(B.46)

Notice that in the picture above all the adjoint chirals aj , for j = 1, . . . , N − 1, are traceful,
while aN is traceless.

The UV global symmetry is SU(N) × U(1)N−1 × U(1)τ which enhances in the IR to
SU(N) × SU(N) × U(1)τ . However we will work with an “off-shell” parameterization so
that the manifest symmetry is actually U(N) × U(N), this will be useful since we want
to perform U(N) gaugings of these symmetries. Also we work in the N = 2⋆ language,
where U(1)τ is the antidiagonal combination of the U(1)C ×U(1)H subgroup of the N = 4
non-abelian R-symmetry.

The IR spectrum of the theory is given by the two moment maps A and A, that are
adjoint for the two U(N) global symmetries and carry R-charge 2 − τ .

Asymmetric S-wall. Starting from the FT [U(N)] theory is possible to perform a deforma-
tion with the effect of breaking the two U(N) global symmetries. To do this we give a VEV
to the moment maps in form of Jordan-block matrices. This VEVs are uniquely specified
by two partitions (ρ, σ) of N . In this work we are interested only in the case where one of
the two partitions is trivial and the other is such that the U(N) symmetry is broken down
to U(M) × U(1), with M < N . Let us consider X⃗ to be the set of mass parameters for
the unbroken U(N) group and Y⃗ those of U(M) and v for U(1), then this deformation is
implemented at the level of the partition function by the specialization:

Xj = N − M + 1− 2j

2 τ + v for j = 1, . . . , N − M ,

Xj = Yj−N+M for j = N − M + 1, . . . , N . (B.47)

The resulting theory is depicted as an asymmetric FT [U(N)] theory as:

N M

1

(B.48)

Fusion to identity. Gluing together two FT [U(N)] theories with an extra adjoint chiral
that comes couples to the moment maps charged under the gauge group gives an I-wall as:∫

dZ⃗N∆N (Z⃗, τ)Z(N)
F T (X⃗, Z⃗, τ)Z(N)

F T (Z⃗,±Y⃗ , τ) = X⃗I∓Y⃗ (τ) . (B.49)
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Graphically we can write this identity as:

N N N ⇐⇒
− ±

I-wall

W = Wgluing (B.50)

Where the adjoint chiral, with R-charge τ , is coupled to the gauge charged moment maps
of the two FT [U(N)] theories respectively.

We can also construct asymmetric I-walls by breaking one of the two global U(N)
symmetries as in (B.48). The result is the following:

N N M

1

⇐⇒
− ±

I-wall

W = Wgluing (B.51)

Again, the adjoint chiral is coupled to the moment maps of the two FT theories. This identity
corresponds to the partition function identity (B.49) with the specialization:

Yj = N − M + 1− 2j

2 τ + V forj = 1, . . . , N − M ,

Yj = Wj−N+M forj = N − M + 1, . . . , N , (B.52)

where W⃗ is the set of parameters of the U(M) global symmetry, while V is the parameter
of the U(1) symmetry.

C Star-Triangle dualities

This appendix is a collection of the star-triangle dualities used throughout the work. All the
presented identities descend from the 4d braid duality, which was first introduced in [58] and
then studied in [35]. In [27] it was shown that the 4d braid duality can be proved iterating
IP duality. It was also discussed the operator map, deformations and 3d reduction.
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C.1 4d braid duality

The braid duality two FE[USp(2N)] theories, glued with the addition of a flavor, to a single
FE[USp(2N)] theory with singlets. Graphically it can be depicted as:

2N

2N 2N

2

⇐⇒
ΠL ΠR

f
a

W = a(AL + AR)
ΠL πL

ΠR πR

f 1− πL − πR

a τ

2N 2N

2

Π

l r

W = lΠr

Π πL + πR

l 1− πR

r 1− πL

(C.1)

The associated SCI is:

∮
dz⃗N∆N (z⃗, t)

N∏
j=1

Γe(
√

pq(cLcR)−1z±j v±)I(N)
F E (x⃗, z⃗, t, cL)I(N)

F E (z⃗, y⃗, t, cR) =

= I(N)
F E (x⃗, y⃗, t, cLcR)

N∏
j=1

(
Γe(

√
pqc−1

R x±
j v±)Γe(

√
pqc−1

L y±j v±)
)

. (C.2)

Where the fugacity appearing in the above identity are defined from the R-charge mixings
written in (C.1) as:

cL = (pq)πL/2 , cR = (pq)πR/2 , t = (pq)τ/2 . (C.3)

and x⃗, y⃗, z⃗ are the fugacities for the blue,red and gauge symmetries respectively, v is associated
to the USp(2) global symmetry.

C.2 3d braid duality and its deformations

Starting from the 4d braid duality and performing the 3d reduction combined with suitable
real mass deformations we can generate a series of 3d dualities. Below we collect the dualities
relevant for this work.
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The 3d braid duality relates two FM [U(N)] theories glued with the addition of a flavor,
with a single FM [U(N)] theory with singlets:

N

N N

1

⇐⇒
ΠL ΠR

f
a

W = a(AL + AR) +M+ +M−

ΠL, Π̃L ∆L

ΠR, Π̃R ∆R

f, f̃ 1−∆L −∆R ∓ V

a τ

N N

1

Π

l r

W = lΠr̃ + l̃Π̃r

Π, Π̃ ∆R +∆R

l, l̃ 1−∆R ∓ V

r, r̃ 1−∆L ∓ V

(C.4)

The associated partition function identity is:∫
dZ⃗N∆N (Z⃗, τ)Z(N)

F M (X⃗, Z⃗, τ,∆L)Z(N)
F M (Z⃗, Y⃗ , τ,∆R)

N∏
j=1

sb(∆L +∆R ± (Zj − V )) (C.5)

= Z
(N)
F M (X⃗, Y⃗ , τ,∆L +∆R)

N∏
j=1

(
sb(∆R ± (Xj − V ))sb(∆L ± (Yj − V ))

)
.

If we perform a real mass for U(1)V , sending V → +∞, we land on the duality:

NN N ⇐⇒
ΠL ΠR

a

W = a(AL + AR) +M+

ΠL, Π̃L ∆L

ΠR, Π̃R ∆R

a τ

N N
Π

W = 0

Π, Π̃ ∆R +∆R

(C.6)

The corresponding partition function identity is:∫
dZ⃗N∆N (Z⃗, τ)e2πi(∆L+∆R)

∑N

j=1 Zj Z
(N)
F M (X⃗, Z⃗, τ,∆L)Z(N)

F M (Z⃗, Y⃗ , τ,∆R) =

= e
−2πi(∆R

∑N

j=1 Xj+∆L

∑N

j=1 Yj)
Z

(N)
F M (X⃗, Y⃗ , τ,∆L +∆R) . (C.7)

There is another interesting deformation to consider. Starting from (C.4) we first activate
the nilpotent VEV deformation studied in (B.43) which on the star side confines the left
FM [U(N)] theory to a flavor of charge 1−N

2 τ +∆L, plus singlets. Similarly on the triangle
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side the effect of this deformation is to confine the FM [U(N)] theory to a flavor of charge
1−N

2 τ +∆L +∆R, plus singlets. In order to write a consistent duality we add an extra adjoint
singlet charged under the U(N) symmetry which is coupled to AR

N

1 N

1

⇐⇒
×g ΠR

f
a

a

W = aAR + aAR +M+ +M−+
+∑N−1

j=0 Flip[gaj g̃]

g, g̃ 1−N
2 τ +∆L ∓ X

ΠR, Π̃R ∆R

f, f̃ 1−∆L −∆R ∓ V

a, a τ

1 N

1

b

lj r

a

W =∑N
j=1(ljbaj−1r̃ + l̃b̃aj−1r)+

+∑N−1
j=0 Flip[baj b̃]

b, b̃ 1−N
2 τ +∆R +∆R ± X

lj , l̃j 1 + N+1−2j
2 τ −∆R ∓ (V − X)

r, r̃ 1−∆L ∓ V

a τ
(C.8)

Notice on the r.h.s. this deformation has made the original chirals l, l̃ in the fundamen-
tal/antifundamental of U(N) into 2N chirals.

We then perform a real mass deformation for U(1)∆L
, this has the effect of integrating

out the two flavors in the electric theory (no CS level is generated). On the dual theory
this deformation gives mass to the horizontal b, b̃ and the right diagonal r, r̃ flavors. After
flipping some singlets on both sides we are left with:

N N ⇐⇒
Π

a

W = aA

1 1
qj

W = 0

Π ∆
a τ

qj , q̃j 1 + N+1−2j
2 τ −∆± V

(C.9)

On the l.h.s. we have an FM [U(N)] theory with one node gauged while on the r.h.s. we have
N free chirals. At the level of the partition function this reads:∫

dZ⃗N∆N (Z⃗, τ)e2πiV
∑N

j=1 Zj Z
(N)
F M (Z⃗, Y⃗ , τ,∆) =

= e
2πiV

∑N

j=1 Yj

N∏
j=1

sb

(
−N + 1− 2j

2 τ +∆± V

)
. (C.10)

Notice that the chirals appear with “wrong” R-charge and with only few Cartans of the
flavor symmetry visible. In the IR the emergent symmetry rotating the chirals mixes with
the R-charge so that all chirals have the free R = 1/2 and then we have N free hypers.

We can also perform a real mass deformation for the U(1)∆L
and U(1)∆R

symmetries
in (C.4), taking the limit: ∆L → −∞ and ∆R → +∞ such that the sum is kept finite:
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∆L + ∆R = ∆, to land on the duality:

N

N N

1

⇐⇒
+ −

f
a

W = a(AL + AR)

f, f̃ 1−∆
a τ

N N
Π

W = 0

Π, Π̃ ∆
(C.11)

Which we claim to be the 3d N = 2 basic S-duality move. As a partition function identity
we have:

∫
dZ⃗N∆N (Z⃗, τ)Z(N)

F T (X⃗, Z⃗, τ)Z(N)
F T (Z⃗,−Y⃗ , τ)

N∏
j=1

sb(∆L +∆R ± (Zj − V )) =

= e
2πiV

∑N

j=1(Yj−Xj)
Z

(N)
F M (X⃗, Y⃗ , τ,∆L +∆R) . (C.12)

D Star-Star dualities

This appendix is a collection of the star-star dualities used throughout the work. All the
identities descend from the 4d generalized star-star duality which was first introduced in [58]
and later studied in [24] and [27].
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D.1 4d dualities

The 4d generalized star-star duality is a self-duality modulo singlets for two FE[USp(2N)]
theories glued with the addition of two flavors. We have the following duality:

2N 2N 2N

2 2

⇐⇒
ΠL ΠR

p qr s

a

W = a(AL + AR)+
+rΠLp + sΠRq

ΠL πL

ΠR πR

p, q 1− πL+πR
2 ∓ ϕ

r 1− πL−πR
2 + ϕ

s 1 + πL−πR
2 − ϕ

a τ

2N 2N 2N

2 2

Π′
L Π′

R

p′ q′r′ s′

a′

W = a′(A′
L + A′

R)+
+r′Π′

Lp′ + r′Π′
Rq′

Π′
L πR

Π′
R πL

p′, q′ 1− πL+πR
2 ± ϕ

r′ 1 + πL−πR
2 − ϕ

s′ 1− πL−πR
2 + ϕ

a′ τ
(D.1)

This duality consist in the following SCI identity;

∮
dz⃗N∆N (z⃗, t)I(N)

F E (x⃗, z⃗, t, cL)I(N)
F E (y⃗, z⃗, t, cR)

×
N∏

j=1

[
Γe((pq)1/2(cLcR)−1/2f−1z±j v±1 )Γe((pq)1/2(cLcR)−1/2fz±j v±2 )

× Γe((pq)1/2(cL/cR)−1/2fx±
j v±1 )Γe((pq)1/2(πL/πR)1/2f−1y±j v±2 )

]
=

=
∮

dz⃗N∆N (z⃗, t)I(N)
F E (x⃗, z⃗, t, cR)I(N)

F E (y⃗, z⃗, t, cL)

×
N∏

j=1

[
Γe((pq)1/2(cLcR)−1/2fz±j v±2 )Γe((pq)1/2(cLcR)−1/2f−1z±j v±1 )

× Γe((pq)1/2(cL/cR)1/2fx±
j v±2 )Γe((pq)1/2(cL/cR)−1/2f−1y±j v±1 )

]
. (D.2)

Starting from this duality we can consider various deformations. In the following paper we
are only interested in one case of deformations, which is given by nilpotent VEVs for one
of the two USp(2N) symmetries, let us take the blue one for simplicity, with the effect of
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breaking it down to USp(2). Using the identity (B.16), we obtain the new duality:

2N 2N 2

2 2

⇐⇒
ΠL bR

p qr sj

a

W = aAL +∑N
j=0 Flip[b2

Raj ]+
+rΠLp +∑N

j=1 sjbRaj−1q

ΠL πL

bR
1−N

2 τ + πR

p, q 1− πL+πR
2 ∓ ϕ

r 1− πL−πR
2 + ϕ

sj 1 + N−1+2j
2 τ + πL−πR

2 − ϕ

a τ

2N 2N 2

2 2

Π′
L b′R

p′ q′r′ s′j

a′

W = a′A′
L +∑N

j=0 Flip[b′R
2aj ]+

+r′ΠLp′ +∑N
j=1 s′jb′Raj−1q′

Π′
L πR

b′R
1−N

2 τ + πL

p′, q′ 1− πL+πR
2 ± ϕ

r′ 1 + πL−πR
2 − ϕ

s′j 1 + N+1−2j
2 τ − πL−πR

2 + ϕ

a′ τ
(D.3)

The associated SCI identity is:

∮
dz⃗N∆N (z⃗, t)I(N)

F E (x⃗, z⃗, t, cL)
N∏

j=1

[
Γe(t

1−N
2 cRz±j y±)

× Γe((pq)1/2(cLcR)−1/2f−1z±j v±1 )Γe((pq)1/2(cLcR)−1/2fz±j v±2

× Γe((pq)1/2(cL/cR)−1/2fx±
j v±1 )

N∏
k=1

Γe((pq)1/2t
N+1−2k

2 (πL/πR)1/2f−1y±j v±2 )
]
=

=
∮

dz⃗N∆N (z⃗, t)I(N)
F E (x⃗, z⃗, t, cR)

[
Γe(t

1−N
2 cLz±j y±)

× Γe((pq)1/2(cLcR)−1/2fz±j v±2 )Γe((pq)1/2(cLcR)−1/2f−1z±j v±1

× Γe((pq)1/2(cL/cR)1/2f−1x±
j v±2 )

N∏
k=1

Γe((pq)1/2t
N+1−2k

2 (πR/πL)1/2fy±j v±1 )
]

. (D.4)

D.2 3d dualities

Starting from the 4d star-star duality in D.1 we can perform a circle compactification followed
by a series of suitable real mass deformations (along the lines of the discussion in section 7.2)
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to obtain the 3d swapping duality:

N N N ⇐⇒
ΠL ΠR

a

W = a(AL + AR)

ΠL, Π̃L ∆L

ΠR, Π̃R ∆R

a τ

N N N
Π′

L Π′
R

a′

W = a′(A′
L + A′

R)

Π′
L, Π̃′

L ∆R

Π′
R, Π̃′

R ∆L

a τ
(D.5)

The associated identity between partition functions is:

∫
dZ⃗N∆N (Z⃗, τ)e2πiW

∑N

j=1 Zj Z
(N)
F M (X⃗, Z⃗, τ,∆L)Z(N)

F M (Z⃗, Y⃗ , τ,∆R) = (D.6)

= e
2πiW

∑N

j=1(Xj+Yj)
∫

dZ⃗N∆N (Z⃗, τ)e−2πiW
∑N

j=1 Zj Z
(N)
F M (X⃗, Z⃗, τ,∆R)Z(N)

F M (Z⃗, Y⃗ , τ,∆L) .

By breaking one of the two U(N) symmetries down to U(1) in the previous duality we get:

N N 1 ⇐⇒
ΠL bR

a

W = aAL +∑N−1
j=0 Flip[bRaj b̃R]

ΠL, Π̃L ∆L

bR, b̃R
1−N

2 τ +∆R ∓ Y

a τ

N N 1
Π′

L b′R
a′

W = a′A′
L +∑N−1

j=0 Flip[b′Ra′j b̃′R]

Π′
L, Π̃′

L ∆R

b′R, b̃′R
1−N

2 τ +∆L ∓ Y

a′ τ
(D.7)

The associated identity between partition functions is:

∫
dZ⃗N∆N (Z⃗, τ)e2πiW

∑N

j=1 Zj Z
(N)
F M (X⃗, Z⃗, τ,∆L)

N∏
j=1

[
sb

(
iQ

2 − 1− N

2 τ −∆R ± (Zj − Y )
)

sb

(
− iQ

2 + (j − N)τ + 2∆R

)]
=

= e
2πiW (

∑N

j=1 Xj+NYj)
∫

dZ⃗N∆N (Z⃗, τ)e−2πiW
∑N

j=1 Zj Z
(N)
F M (X⃗, Z⃗, τ,∆R)

×
N∏

j=1

[
sb

(
iQ

2 − 1− N

2 τ −∆L ± (Zj − Y )
)

sb

(
− iQ

2 + (j − N)τ + 2∆L

)]
. (D.8)
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It is also possible to prove the following duality:

N N N ⇐⇒
ΠL ΠR

a

W = a(AL + AR) +M+
a

Π, Π̃ ∆L/2 + τ/4 + ϕ

Π, Π̃ ∆R/2 + τ/4− ϕ

a τ

N N N
b′L Π′

R

a′

W = b′L(a′ + AR)b̃′L + Flip[b′Lb̃′L]

b′L, b̃′L τ/2
Π′

R, Π̃′
R ∆

a′ 2− τ
(D.9)

The associated identity between partition functions is:∮
dZ⃗N∆N (Z⃗, τ)e2πi(∆−τ/2)

∑N

j=1 Zj Z
(N)
F E (X⃗, Z⃗, τ,∆/2 + τ/4 + ϕ)

× Z
(N)
F E (Z⃗, Y⃗ , τ,∆/2 + τ/4− ϕ) =

= e
2πi( τ

4 −
∆
2 −ϕ)

∑N

j=1(Xj+Yj)
∮

dZ⃗N∆N (Z⃗, τ)e4πiϕ
∑N

j=1 Zj Z
(N)
F E (Z⃗, Y⃗ , τ,∆)

× sb

(
− iQ

2 + τ

) N∏
j,k=1

sb(
iQ

2 − τ

2 ± (Xj − Zk)) . (D.10)

E Monopole R-charge

In this section we discuss the monopoles in the SQCD mirror.
Let’s first focus on monopoles with unit magnetic flux M±1,0,··· ,0, charged under the

U(1)X2−X1 topological symmetry. In this case we can easily calculate its R-charge by
considering the Lagrangian description of the improved bifundamental assuming that we are
gauging its manifest symmetry. By doing so we find:

R[M(±1,0,··· ,0)] = (N − 1)(1− τ/2) + (1− B2) + (N − 1)(1− 2 + τ)+ (E.1)
+ (1− B1 − (N − 1)τ/2) + (N − 1)(1− τ)− (N − 1) = 2− B1 − B2 ,

in the first line we have the improved bifundamental contribution given by the contribution
(N − 1) flavors with R-charge τ/2, one flavor with charge B2 and one adjoint chiral with
charge 2 − τ . We then have the contribution of the V1Ṽ1 flavor, the adjoint a and the
vector multiplet. As expected this matches the corresponding meson R-charge R[Q1Q̃2] =
R[Q2Q̃1] = 2 − B1 − B2.

We can then consider monopoles with magnetic flux M(0,··· ,±1,0,··· ,0), charged under the
U(1)Xi−Xi−1 topological symmetry. In this case we have to take into account the contribution
of the improved bifundamentals on the left and on the right of the node. Thanks to the
self-mirror property of the improved bifundamentals we can always calculate this contribution
assuming that we are gauging the manifest symmetries of the two improved bifundamentals.
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So we have:

R[M(0,··· ,±1,0,··· ,0)] = (N − 1)(1− τ/2) + (1− Bi) + (N − 1)(1− 2 + τ)+
+ (N − 1)(1− τ/2) + (1− Bi+1) + (N − 1)(1− 2 + τ)+
+ (N − 1)(1− τ)− (N − 1) = 2− Bi − Bi+1 , (E.2)

in the first two lines we have the contributions of the left and right improved bifundamentals
in the last line, the contribution of the gluing adjoing a and of the vector.

As expected this matches the corresponding meson R-charge R[QiQ̃i+1] = R[Qi+1Q̃i] =
2 − Bi − Bi+1.

To calculate the R-charge of the other monopoles with magnetic flux given by strings
of consecutive ±1 we need the contribution of the genearalised bifundamental when we
simultaneously gauge its manifest and emergent symmetry which we can’t directly calculate
from the Lagrangian.

For example, the R-charge of the monopole charged under the second and third gauge
node is given by:

R[M(0,±1,±1,0,··· ,0)] = (N − 1)(1− τ/2) + (1− B1) + (N − 1)(1− 2 + τ)+
+ (N − 1)(1− τ/2) + (1− B4) + (N − 1)(1− 2 + τ)+
+ 2(N − 1)(1− τ)− 2(N − 1) + GB[±1,±1] =

= 2− B2 − B4 , (E.3)

in the first two lines we have the contribution of the first and fourth genearlised bifundamental
which we can calculate using the Lagrangian description. In the third line we have the
contribution of the adjoints and vector mutiplets at the gauged nodes and the contribution
to the third improved bifundamental which we conjecture to be:

GB[±1,±1] = (N − 1)(−τ) , (E.4)

as the contribution of an ordinary bifundamental flavor of charge 1− τ/2. Assuming (E.4)
the charged of the monoples match those of the electric QiQ̃i+k mesons, we have:

R[M(0,...,0,±1,...,±1,0,...,0)] = (N − 1)(1− τ/2) + (1− B1) + (N − 1)(1− 2 + τ)+
+ (N − 1)(1− τ/2) + (1− B4) + (N − 1)(1− 2 + τ)+
+ (k + 1)(N − 1)(1− τ)− (k + 1)(N − 1) + kGB[±1,±1]

= 2− Bj − Bj+k+1 . (E.5)

We checked this assumption with the index where we can see that it gives the correct
R-charge of monopoles visibile in the expansion at low Nc and Nf , In particular in the abelian
case the R-charge of the monopoles can be computed exactly since the improved bifundamental
reduces to just a standard one and we can verify that the assumption is correct in this case.

One can also play a similar game in the SU(N) SQCD mirror (see section 6.1) to establish
a map for the baryons. In this case the problem is more complicated and we do not have a
complete closed formula for the contribution of an improved bifundamental to the R-charge
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of a monopole. However we observed empirically that the baryon map can be established
by assuming the following formulae:

GB[±m,±(m − 1)] =

m(N − m)τ + (1−∆) for 1 < m < N

(N − 1)τ + (1−∆) for m = 1, N
, (E.6)

GB[±m,±m] = m(N − m)τ . (E.7)

The subcase m = 1 of these assumptions indeed coincide with the result found for the map of
the mesons. A more generic formula could be provided by the understanding of the operator
map for the dressed baryons in the SU(N) SQCD, however we do not have a clear solution
to this problem and we address this to a future work.

F Quiver mirror pair via the dualization algorithm

In the following section we present how the duality proposed in 9 can be derived using
the dualization algorithm.

We start from the electric theory as parameterized in figure (4.11). We then cut the
theory into N = 2 QFT blocks as defined in section 3, we obtain:

0 N N

1 1

N N N N

1 1

N 0
(WL)

1 − B1 1 − BF1

I(τ)
D1

τ

(−W1) (W1 − W2) (WK)

1 − C1 1 − CF2

I(τ)
(−WR) (F.1)

This consist in the following partition function identity:

∫ K+1∏
a=1

(
dZ⃗

(a)
N ∆N (Z⃗(a), τ)

)
e

2πiWL

∑N

j=1 Z
(a)
j

N∏
j=1

F1∏
a=1

sb(Ba ± (Z(1)
j − Xa))

K∏
a=1

Z
(N)
NS (Z⃗(a), Z⃗(a+1), τ, Ba,−Wa)

N∏
j=1

F2∏
a=1

sb(Ca ± (Z(K+1)
j − Ya))e−2πiWR

∑N

j=1 Z
(K+1)
j =

=
∫ K+1∏

a=1

(
dZ⃗

(a)
N ∆N (Z⃗(a), τ)

) 2∏
a=1

(
dW⃗

(a)
N ∆N (W⃗ (a), τ)

)
e

2πiWL

∑N

j=1 Z
(a)
j

×
N∏

j=1

F1∏
a=1

sb(Ba ± (Z(1)
j − Xa))Z⃗(1)IW⃗ (1)(τ)

K∏
a=1

Z
(N)
NS (Z⃗(a), Z⃗(a+1), τ, Da,−Wa)

×
N∏

j=1

F2∏
a=1

sb(Ca ± (Z(K+1)
j − Ya))Z⃗(K+1)IW⃗ (2)(τ)e−2πiWR

∑N

j=1 W
(2)
j , (F.2)

which is a trivial identity after we use the two identity operators to cancel the two extra
integrations, taking into account that:∫

dW⃗∆N (W⃗ , τ)Z⃗IW⃗ (τ) = 1 . (F.3)
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Then dualize each block using one of the basic duality moves 6 and 5. Performing this
dualization and then gluing back all the results we obtain:

0 0

1

N N N N

1 1

N N N 0

1

0
+

WL

− +
B1

· · ·

· · ·
W1 WK

1 − D1 1 − DK

· · ·
CF2

− +

WR

−

τ τ τ

τ

τ τ τ

(X1) (X2 − X1)

(−XF1 + Y1)

(YF2 -YF2-1) (−YF2 )

(F.4)

In the figure we do not give all the singlets produced from the dualization to avoid cluttering.
This step consist in starting from (F.2) and using the basic moves (3.9) and (3.8), obtaining:

∫ F1+4∏
a=1

(
dZ⃗

(a)
N ∆N (Z⃗(a), τ)

) F2+3∏
a=1

(
dM⃗

(a)
N ∆N (M⃗ (a), τ)

) N∏
j=2

sb

(
iQ

2 − jτ

)2

× Z
(N)
S−1

({
N − 1

2 τ + WL, . . . ,
1− N

2 τ + WL

}
, Z⃗(1), τ

)
Z

(N)
S (Z⃗(1), Z⃗(2), τ)

×
F1∏

a=1
Z

(N)
NS (Z⃗(a+1), Z⃗(a+2), τ, Ba,−Xa)Z(N)

S−1(Z⃗(F1+2), Z⃗(F1+3), τ)Z(N)
S (Z⃗(F1+3), Z⃗(F1+4), τ)

×
N∏

j=1

K∏
a=1

sb(Da ± (Z(F1+4)
j − Wa))Z(N)

S−1(Z⃗(F1+4), M⃗ (1), τ)Z(N)
S (M⃗ (1), M⃗ (2), τ)

×
F2∏

a=1
Z

(N)
NS (M⃗ (a+1), M⃗ (a+2), τ, Ca,−Ya)Z(N)

S−1(M⃗ (F2+2), M⃗ (F2+3), τ)

× Z
(N)
S

(
M⃗ (F2+3),

{
N − 1

2 τ + WR, . . . ,
1− N

2 τ + WR

}
, τ

)
. (F.5)

We now get rid of the identity walls. We recall that the effect of the asymmetric 0− N

identity wall is to break the first (and similarly the last) U(N) gauge symmetry down to
U(1), the effect of such deformation in an improved bifundamental is to make it into a flavor
using the duality (B.43). We then get:

N N N N N N N

1 1 1 1

B2
· · ·

BF1 C1
· · ·

CF2−1

1−N
2 τ + B1

WL

1 − D1

W1

· · ·

1 − DK

WK

1−N
2 τ + CF2

WR

(X2 − X1) (X3 − X2) (XF1 − XF1−1)

(Y1 − XF1 )

(Y2 − Y1) (YF2−1 − YF2−2) (YF2 − YF2−1)

τ

τ τ

τ

τ τ

τ

(F.6)

Which is the result depicted in (4.16). Indeed, evaluating the result for K = 1 gives the
mirror dual in (4.7). This step consist in starting from (F.5) and using the formula for
the I-walls (B.49) and then the duality for the asymmetric FM [U(N)] to a flavor (B.44).
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We then get the final result:
∫ F1+F2+1∏

a=1

(
dZ⃗

(a)
N ∆N (Z⃗(a), τ)

)
e

2πi(−X1
∑N

j=1 Z
(1)
j +YF2

∑N

j=1 Z
(F1+F2+1)
j )

×
F1∏

a=2
Z

(N)
NS (Z⃗(a−1), Z⃗(a), τ, Ba,−Xa)

N∏
j=1

K∏
a=1

sb(Da ± (Z(F1)
j − Wa))

×
F2∏

a=1
Z

(N)
NS (Z⃗(F1+a−1), M⃗ (F1+a), τ, Ca,−Ya)

×
N∏

j=1

(
sb

(
iQ

2 − 1− N

2 τ − B1 ± (Z(1)
j − WL)

)
sb

(
− iQ

2 + (j − N)τ + 2B1

))
(F.7)

×
N∏

j=1

(
sb

(
iQ

2 − 1− N

2 τ − CF2 ± (Z(F1+F2+1)
j − WR)

)
sb

(
− iQ

2 + (j − N)τ + 2CF2

))
.

Which matches with the partition function of the magnetic theory in figure (4.11).
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