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 35 

Abstract 36 

Pseudowords offer a unique opportunity to investigate how humans deal with new (verbal) 37 

information. Within this framework, previous studies have shown that, at the implicit level, humans 38 

exploit systematic associations in the form-meaning interface to process new information by relying 39 

on (sub-lexical) contents already mapped in semantic memory. However, whether speakers exploit 40 

such processes in explicit decisions about the meanings elicited by unfamiliar terms remains an open, 41 

important question. Here, we tested this by leveraging computational models that are able to induce 42 

semantic representations for out-of-vocabulary stimuli. Across two experiments, we demonstrate that 43 

participants’ guesses about pseudoword meanings in a 2AFC task consistently align with the model’s 44 

predictions. This indicates that humans’ ability to extract meaningful knowledge from complex 45 

statistical patterns can affect explicit decisions. 46 

 47 

Keywords 48 

semantic memory, pseudowords, statistical learning, distributional semantic models 49 

 50 
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Introduction 53 

Knoddled quocky ba boppi ziaowed tolque divords lurb: floal ribnier bureer. If the Introduction 54 

would start with this sentence nobody would (probably) understand the beginning of this article. The 55 

reason is simple: when looking for a meaning for these strings, an English speaker cannot find any 56 

direct connection with information stored in their semantic memory. Knoddled or quocky do 57 

(apparently) lack meaning, as they cannot be found in the vocabulary. However, while the vocabulary 58 

“knows” all the words, humans do not, and what might seem a meaningless string can be a word with 59 

a meaning that it is not (yet) known. This is indeed for example the case of low frequency words, like 60 

lackadaisical, that might not be known to a given speaker, but they might be able to activate 61 

intuitively a certain meaning. This makes lexical stimuli like knoddled or quocky intriguing from a 62 

scientific point of view: to all intents and purposes they are akin to unfamiliar existing words, 63 

allowing us to investigate if and how humans assign meaning to with novel (verbal and possibly 64 

meaningful) stimuli.  65 

Verbal stimuli like knoddled or quocky are indeed generally labeled as “pseudowords”, describing 66 

stimuli that are consistent with the phono- and orthotactical rules of a given language but are not 67 

attested in the lexicon of that language, and thus are not familiar to a given speaker. Contrary to the 68 

naïve perspective described above, in recent years, several studies have shown that semantic effects 69 

can be observed during the processing of these out-of-vocabulary stimuli (e.g., Bonandrini et al, 2023; 70 

Hendrix & Sun, 2021; Pugacheva & Günther, 2024; Sulpizio et al., 2021), that the same mechanisms 71 

governing word meaning can also subserve pseudowords processing (Gatti et al., 2023), and that 72 

humans are able to reliably assign affective content to these stimuli (e.g., Aryani et al., 2020; Gatti et 73 

al., 2024). These findings can be interpreted in terms of non-arbitrary components of language 74 

processing, like systematic form-to-meaning mapping (Dingemanse et al., 2015; for evidence on 75 

pseudowords processing see: Cassani et al., 2020; Chuang et al., 2021), that is humans’ tendency to 76 

detect systematic and statistical regularities in the (language) environment (Romberg & Saffran, 77 

2010; Vidal et al., 2021). In line with this view, previous studies have also shown that humans are 78 

able to exploit these mechanisms across a broad range of linguistic processes, in the grammatical, 79 

orthographical, phonological, and even semantic domains (for a review: Bogaerts et al., 2021; 80 

Christiansen, 2019). 81 

The way humans attribute potential meaning to pseudowords has been recently investigated thanks 82 

to the methodological advancements in distributional semantic models (DSMs). Briefly, DSMs 83 

represent word meanings as high-dimensional numerical vectors induced from large corpora of 84 

natural language, under the assumption that the contexts in which words occur are informative of 85 
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their meanings (Harris, 1954; Wittgenstein, 1953). Thus, words that are used in similar contexts in 86 

language will be located to nearby points in a semantic space, and the cosine of the angle between 87 

their vectors can be taken as a measure of how (semantically) related these words are (Günther et al., 88 

2019; Mandera et al., 2017). Interestingly, it has been shown that it is even possible to induce 89 

representations for verbal stimuli that are not included in the training set (i.e., when they are out-of-90 

vocabulary words) by modeling them as a sum of vectors representing the sequences of n contiguous 91 

letters (labeled as n-grams) composing it, that is by quantifying the distributional patterns of their 92 

sub-word information (Bojanowski et al., 2017). This approach has been used to estimate the 93 

“meaning” of pseudowords, that is the semantic pattern that an unfamiliar letter string can elicit in a 94 

speaker of the language (for a graphical representation see: Figure 1a, b, c, d). 95 

 96 

 97 

Figure 1. Schematical representation of how the DSM used in the present study is trained 98 
(a), represent the meaning of words (b) and pseudowords (c) and how to compare the 99 
similarity between the semantic pattern elicited by each string of letters (d). 100 

 101 

By using this type of DSMs, it has been demonstrated that the semantic neighborhood density of 102 

pseudowords (i.e., how similar a pseudowords is to the five closest words in the semantic space) 103 

predicts humans’ responses in lexical decision, with slower rejection latencies for pseudowords with 104 

denser semantic neighborhood (Hendrix & Sun, 2021; see also: Bonandrini et al., 2023) and that, in 105 

priming tasks, the more similar the meaning of a prime-word to the semantics elicited by a target-106 

pseudoword, the slower participants’ rejection latencies (Gatti et al., 2023). Overall, these studies 107 

showed that pseudowords can be indicative of meaning since – at least at the implicit level – humans’ 108 

behavior is affected by the semantic pattern elicited by them. However, while it might seem intuitively 109 

reasonable that a speaker would exploit systematic sublexical patterns while processing new (verbal) 110 

information, to what extent these might affect explicit intuitions remains an open question. That is, 111 

explicit tasks focus on conscious, deliberate comparisons, potentially missing the subtle, automatic 112 

associations that influence decision-making at a chronometric level, as the ones employed by previous 113 
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works. Observing such a reliance on systematic sublexical patterns while processing new (verbal) 114 

information also on a more explicit level would indicate that humans could be able to exploit 115 

linguistic statistical regularities in a “productive” way. That is, for example, this ability could emerge 116 

when there is the need to generate a novel label for a new concept, with possibly this process being 117 

optimizable for more applied reasons. Furthermore, in previous works modelling estimates were post-118 

hoc obtained to describe previously collected behavioral data. That is, it was tested whether the model 119 

was able to account for existing phenomena; however, such approach missed a central contribution 120 

of computational psychology, namely prediction (e.g., Sun, 2008): a priori independently generating 121 

a certain output (the quantification of a given property, a set of automatically produced stimuli) that 122 

is then empirically tested in experiments involving human participants. 123 

In the present study, we aimed to probe this possibility by conducting two-alternative-forced-choice 124 

(2AFC) experiments adopting a predictive approach. In both experiments, DSMs were applied to 125 

automatically produce stimulus sets in which a target was paired with two alternatives, the former 126 

maximally semantically related, the latter randomly associated. Participants were presented with the 127 

target, a string of letters corresponding to a word in Experiment 1 and a pseudoword in Experiment 128 

2. They were then asked to indicate which of two alternatives (pseudowords in Experiment 1 and 129 

words in Experiment 2) was semantically more similar to the target stimulus. Notably, by showing 130 

(pseudo)words in isolation (i.e., without context) we aimed to directly test how sub-word components 131 

affect human behavior by removing possible contextual effects. We expected that, if humans are 132 

capable of assigning meaning to pseudowords at an explicit level, we would observe behavioral 133 

estimates aligned with the independently obtained model predictions. 134 

 135 

Experiment 1 136 

Methods 137 

Participants 138 

Sample size was determined a priori by means of a simulation procedure. We chose to include as 139 

coefficient for the effect size an extremely conservative value, b = .21 (i.e., probability = 55%). The 140 

choice to use this value was driven by the fact that we expected the possible semantic effect elicited 141 

by pseudowords to be small. The simulation showed that, using 50 experimental stimuli, the design 142 

employed here would have reached a power of 95% when including at least 55 participants (with an 143 

α = .05). 144 



ON HUMANS’ (EXPLICIT) INTUITIONS ABOUT THE MEANING OF NOVEL WORDS 
 

6 
 

Sixty students participated in the study (7 males, M age = 21.75 years, SD = 2.55, age range = 19 – 145 

34). All participants were native Italian speakers, had normal or corrected to normal vision and were 146 

naïve to the purpose of the study. Informed consent was obtained from all participants before the 147 

experiment. The protocol was approved by the psychological ethical committee of the University of 148 

Pavia and participants were treated in accordance with the Declaration of Helsinki. 149 

 150 

Distributional semantic model 151 

The DSM used here was fastText (Joulin et al., 2016), and in particular the Italian pre-trained vectors 152 

(Grave et al., 2018). We employed fastText because of its ability to compute semantic representations 153 

for both words and pseudowords. Indeed, fastText is based on the idea (originally proposed by 154 

Schütze, 1992; and realized computationally by Bojanowski et al., 2017) to take into account sub-155 

word information and induce representations as the sum of the vectors of the letter n-grams associated 156 

with a given string. That is, fastText computes the semantic representation of a word as the sum of 157 

the vector of the full string plus all the vectors of the 5-grams that compose it.  158 

A similar approach can be applied to unattested strings in order to try to capture the semantic 159 

information associated with pseudowords like futmaw. Of course, in this latter case, the induced 160 

representation will not consider the <futmaw> vector (since it does not exist by itself), but only the 161 

sum of its embedded n-grams. It should also be noted that, since fastText hashes n-grams into bins, 162 

including the ones that were not observed in the training data, out-of-vocabulary n-grams will be 163 

associated to a random vector (or to the vector corresponding to another n-gram in case of a collision). 164 

Note that this is not an issue when working with word-like pseudowords (as the ones employed here), 165 

as the overall number of out-of-vocabulary n-grams will be very low, thus limiting representational 166 

errors. 167 

The model was trained on Common Crawl and Italian Wikipedia (around 11 billion words) using the 168 

Continuous Bag of Words (CBoW) method, an approach originally proposed by Mikolov and 169 

colleagues (2013), with 300 dimensions and a co-occurrence window of 5 words. When using CBoW, 170 

the obtained vector dimensions capture the extent to which a target element is reliably predicted by 171 

the linguistic contexts in which it appears, where “context” is represented as the words contained in 172 

a fixed size window around the target word. Specifically, the CBoW model will induce a 173 

representation for a given target w0 based on context words w−n, ..., w−1, w1, ..., wn.  174 

Using fastText, we therefore obtained semantic representations for the words and pseudowords 175 

included in the present Experiment. For each pair, we computed a semantic-relatedness index based 176 
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on the cosine of the angle formed by vectors representing the meanings of the corresponding strings. 177 

The higher the cosine of the angle, the more semantically related the letter strings are expected to be, 178 

as estimated by the model. 179 

 180 

Stimuli 181 

Fifty triplets including one word and two pseudowords were automatically produced as stimuli. 182 

Firstly, using fastText (Joulin et al., 2016) on the Italian pre-trained vectors (Grave et al., 2018) we 183 

retrieved vector representations (see above the section Distributional semantic model for more 184 

information on fastText) for the 15,000 most frequent nouns and adjectives from the Italian 185 

SUBTLEX (http://crr.ugent.be/subtlex-it/) and for all the pseudowords included in Vergallito and 186 

colleagues (2020). Vergallito and colleagues (2020) report response latencies for 1,121 words and 187 

1,121 pseudowords in a typical lexical decision task. Pseudowords were created using Wuggy 188 

(Keuleers & Brysbaert, 2010), a pseudoword generator that is able to create orthographic strings that 189 

respect the orthotactic rules of a given language (Italian, in the case of Vergallito et al., 2020). 190 

Because fastText is based on very large natural language corpora and might have ended up including 191 

some non-existent string by mistake, we systematically checked whether a “whole-pseudoword” 192 

vector was available in the corpus for the pseudowords included. In such cases, indeed, fastText could 193 

learn distributional patterns about these pseudowords as if they were meaningful elements, even if 194 

their occurrence was based on errors and typos. A full vector representation was available for none 195 

of the considered pseudowords. 196 

Then, after obtaining such semantic representations, we computed the cosine of the angle formed by 197 

each possible word-pseudoword pair vectors. The higher the cosine value, the more semantically 198 

related the letter strings are expected to be, as estimated by the model. Additionally, using the 199 

stringdist R package (Van der Loo, 2014) we computed the Levenshtein distance for each possible 200 

word-pseudoword pair. The Levenshtein distance measures the orthographic distance between two 201 

strings of characters by quantifying the minimum number of single-character edits (e.g., insertions, 202 

deletions, or substitutions) required to change one element into the other. 203 

Finally, we defined the 50 triplets included as stimuli. Each triplet included one word and two 204 

pseudowords (e.g., as word: zuffa; as pseudowords: umalo and tallarni). Specifically, for each word, 205 

we retrieved two pseudowords: one was randomly selected among the ones with the closest vectors, 206 

while the other was equally random but semantically less similar. That is, among the pseudowords in 207 

each triplet, one was selected as related to the target word (i.e., it had a relatively high similarity 208 
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index, with cosine similarity comprised between .20 and .44) and the other was selected as unrelated 209 

(i.e., it had a relatively low similarity index, with a cosine similarity comprised between .05 and 210 

.00007). The minimum cosine difference between the related and the unrelated pseudoword in a given 211 

triplet was .18. Among all the possible triplets, the 50 triplets eventually included were selected based 212 

on other linguistic indexes: length and Levenshtein distance. That is, in order to avoid that one of the 213 

two pseudowords was orthographically more similar to the target word or systematically 214 

longer/shorter than the other pseudoword, we selected the triplets that were more balanced across 215 

these indexes. This was tested by inspecting the histograms of the distributions and performing two 216 

two-samples Kolmogorov-Smirnov Test considering pseudowords lengths and Levenshtein 217 

distances, all Ds < .12, all ps > .91. Additionally, none of the pseudowords included was a 218 

pseudocompound (i.e., a concatenation of two existing words) or a novel derived form (i.e., a 219 

combination of existing stems and affixes), more specifically none of the pseudowords rhymed with 220 

the target word or shared with it the first letter, nor included recognizable suffixes, and no 221 

combination of evident prefix-like onsets (with length > 3) and existing words was included in our 222 

set of stimuli1,2. 223 

 224 

Procedure 225 

Participants were tested using Psychopy (Pierce, 2007, 2009; Pierce & MacAskill, 2018; Pierce et al., 226 

2019) through the online platform Pavlovia (https://pavlovia.org/).  227 

Participants were told that they would have been presented with a word and two pseudowords (i.e., 228 

pronounceable out-of-vocabulary strings of letters). They were instructed that, although the 229 

pseudowords shown were unfamiliar, they could intuitively evoke a certain meaning, and that their 230 

task was to think about that potential meaning in order to judge which of the two pseudowords was 231 

more similar to the target word. They were also instructed to take all the time they needed for each 232 

trial. 233 

Each trial started with a fixation cross (presented for 500 ms), then in the same screen a word was 234 

shown in uppercase letters in the upper part of the screen and two pseudowords in lowercase letters 235 

 
1 We discarded potential pseudowords based on suffixes only. The decision to consider only suffixes and not also 
prefixes was driven by the fact that it would have been extremely complex to exclude pseudowords based also on all the 
Italian prefixes (see: https://it.wikipedia.org/wiki/Prefissi_e_prefissoidi_della_lingua_italiana) as some of them, like the 
a- (indicative of negation) would have automatically excluded all the pseudowords beginning with a- (and a large 
number of Italian words start with a- but are not indicative of negation). However, note that no pseudoword having 
evident prefix-like onsets (with length > 3, e.g., anti-, contro-, extra-). 
2 For a complete list of Italian suffixes see: https://www.treccani.it/enciclopedia/suffissi_(La-grammatica-italiana)/ 
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in left and right positions (until the participant’s response). Participants indicated the chosen 236 

pseudoword with left and right keypresses (A and L). Participants’ responses ended the trial and a 237 

blank screen (presented for 1000 ms) followed, then the next trial began (see Figure 2). Order of trials 238 

was counterbalanced across participants. The position on the screen (left vs. right) of related and 239 

unrelated words was counterbalanced (i.e., half of related words appeared on the left part of the screen 240 

and the other half on the right). 241 

 242 

 243 

Figure 2. Schematical representation of the task used across Experiment 1 and Experiment 244 
2; participants were shown one uppercased string of letters (a word in Experiment 1 and a 245 
pseudoword in Experiment 2) and were asked to indicate which one of the two lowercased 246 
strings of letters (pseudowords in Experiment 1 and words in Experiment 2) presented in 247 
the left and right of the screen was (semantically) more similar to the target word (note that 248 
for exposition the stimuli are in English, while the stimuli actually used were in Italian). 249 
They were also instructed that, although the pseudowords shown were out-of-vocabulary 250 
they could have been able to intuitively evoke a certain meaning, and that their task would 251 
have been to think at that potential meaning while solving the task (a). In each trial, one of 252 
the two alternatives (represented with the red vector) was predicted to be more related to 253 
the target stimulus (represented with the yellow vector) as compared with the other 254 
alternative according to the DMS used (b). 255 

 256 

Data analysis and results 257 

All the analyses were performed using R-Studio (RStudio Team, 2015). Data was analyzed through 258 

a mixed-effects approach, which incorporates both fixed-effects and random-effects (associated to 259 

participants and items) and allows for managing non-independency of the observations at both 260 

participants and item level (Baayen et al., 2008). Generalized linear mixed models (GLMMs) were 261 

run using the lme4 R package (Bates, et al., 2015) and were estimated on a binomial distribution. 262 



ON HUMANS’ (EXPLICIT) INTUITIONS ABOUT THE MEANING OF NOVEL WORDS 
 

10 
 

The dependent variable was participants’ binomial response (i.e., trials in which they selected the 263 

pseudoword that was produced by the model were coded as 1s, and trials in which they chose the 264 

other were scored as 0s). Hence, we tested whether participants selected as “related” the pseudoword 265 

produced by the DSM more frequently than the unrelated one. We first estimated a GLMM having 266 

participants’ binomial responses as dependent variable and participants and items as random 267 

intercepts. That is, this model included only the intercept and random effects, allowing to test if 268 

participants’ binomial responses differ from chance level. The estimates in GLMMs fitted on a 269 

binomial distribution are provided in log-odds (i.e., logit), thus if probability = .5, then the odds = 1 270 

and the log-odds = 0. Thus, an estimate significantly higher than 0 indicates that participants’ 271 

responses aligned towards the ones produced by the DSM. Indeed, this was the case: results indicated 272 

that participants reliably selected as “related” the pseudoword produced as such by the DSM, z = 273 

6.50, p < .001, b = .68, prob. = 66%, Pseudo-R² (total) = .12 (Figure 3a). 274 

Then, we tested whether participants’ judgements could be predicted by the variables considered in 275 

the definition of the item set, namely: cosine similarity, orthographic length and Levenshtein distance. 276 

To do this, for each stimulus and for each variable, we computed the difference between the score for 277 

the related pseudoword vis-à-vis the unrelated one. For example, delta cosine similarity was 278 

computed by subtracting the cosine between the unrelated pseudoword and the target word from the 279 

cosine between the related pseudoword and the target word. Thus, we expect that participants’ 280 

tendency to select the related pseudoword would increase at increased delta cosine similarity (i.e., as 281 

it should be easier to detect the “related” one). Broadly, these measures index how much the related 282 

pseudoword is more semantically or orthographically related to the target word, or longer as 283 

compared with the unrelated pseudoword. We thus estimated a GLMM having participants’ binomial 284 

responses as dependent variable and participants and items as random intercepts. Delta cosine 285 

similarity, delta length, and delta Levenshtein distance were additively included as continuous 286 

predictors. Results are reported in Table 1 (Pseudo-R² (total) = .12, Pseudo-R² (marginal) = .01) and 287 

showed that delta cosine similarity predicted participants’ performance, thus indicating that the higher 288 

the cosine similarity between the model-produced related pseudoword and the target word (as 289 

compared to the cosine similarity between the unrelated pseudoword and the target word), the higher 290 

the proportions of judgements aligned with the prediction of the model (Figure 3b). The other 291 

linguistic predictors were not significant.  292 

 293 

Table 1. Results of the GLMM on participants’ judgements including linguistic variables 294 
as predictors estimated in Experiment 1. 295 
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FIXED EFFECT b z-value p-value 

Δ cosine similarity 4.11 2.05 .04 

Δ length .09 1.90 .057 

Δ Levenshtein distance -.17 -1.92 .054 

 296 

 297 

Figure 3. Plots illustrating the results of the GLMMs estimated in Experiment 1 (blue lines) 298 
and Experiment 2 (red lines) on participants’ judgements showing that participants’ 299 
classified as “related” the pseudoword considered as related by our DSM more frequently 300 
than the unrelated one (a); plots illustrating the results of the GLMMs including delta cosine 301 
similarity as predictor in Experiment 1 (b) and Experiment 2 (c). Across both experiments, 302 
the higher the delta, the higher participants’ tendency to select as “related” the item 303 
predicted by the model. 304 

 305 

Experiment 2 306 

Methods 307 

Participants 308 

Power analysis was identical to Experiment 1. Sixty students participated in the study (22 males, M 309 

age = 25.2 years, SD = 3.45, age range = 19 – 35); none of them participated in Experiment 1. All 310 

participants were native Italian speakers, had normal or corrected to normal vision and were naïve to 311 

the purpose of the study. Informed consent was obtained from all participants before the experiment. 312 

The protocol was approved by the psychological ethical committee of the University of Pavia and 313 

participants were treated in accordance with the Declaration of Helsinki. 314 

 315 
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Distributional semantic model 316 

The DSM used here was identical to Experiment 1. 317 

 318 

Stimuli 319 

The definition of the item set was similar to Experiment 1 and moved from the same pool of words 320 

and pseudowords but, in this case, the 50 triplets included one target pseudoword and two words as 321 

alternative. Among the words in each triplet, one was produced by the DSM as related to the target 322 

pseudoword (i.e., it had a high similarity index, with cosine similarity comprised between .20 and 323 

.44) and the other was estimated as unrelated (i.e., it had a low similarity index, with a cosine 324 

similarity comprised between .13 and .00003). The minimum cosine similarity difference between 325 

related and unrelated words was .14. The stimuli were balanced by inspecting the histograms of the 326 

distributions and performing a two-sample Kolmogorov-Smirnov Test considering word lengths, 327 

Levenshtein distance, frequencies of words and lemmas as retrieved from the Italian SUBTLEX 328 

(http://crr.ugent.be/subtlex-it/), all Ds < .18, all ps > .39. Additionally, the two words included in each 329 

triplet were matched for gender (i.e., generally in Italian male and female words end with different 330 

letters), part of speech (i.e., noun or adjective) and number (i.e., singular or plural), and none of the 331 

words rhymed with the pseudoword nor shared with it the first letter. As for Experiment 1, none of 332 

the pseudowords included recognizable suffixes. 333 

 334 

Procedure 335 

The procedure was identical to Experiment 1; the only difference was that participants were instructed 336 

to judge which of the two words was more similar to the target pseudoword.  337 

 338 

Data analysis and results 339 

The first part of the data analysis was identical to Experiment 1. Results indicated that participants 340 

reliably selected as “related” the word produced as such by the DSM, z = 2.45, p = .01, b = .33, prob. 341 

= 58%, Pseudo-R² (total) = .20 (Figure 3a). 342 

In the second part of the analyses, over and above delta cosine, delta length and delta Levenshtein 343 

distance, we also included the differences between the form and lemma frequency of the alternatives. 344 

These two new measures index how much the related word is more frequent as compared with the 345 

unrelated word. Results are reported in Table 2 (Pseudo-R² (total) = .20, Pseudo-R² (marginal) = .04) 346 

http://crr.ugent.be/subtlex-it/
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and showed that delta cosine similarity predicted participants’ decision, thus indicating that the higher 347 

the cosine similarity between the model-produced related word and the target pseudoword (as 348 

compared to the cosine similarity between the unrelated word and the target pseudoword), the higher 349 

the proportions of judgements aligned with the prediction of the model (Figure 3c). The other 350 

linguistic predictors were not significant.  351 

 352 

Table 2. Results of the GLMM on participants’ judgements including linguistic variables 353 
as predictors estimated in Experiment 2. 354 

FIXED EFFECT b z-value p-value 

Δ cosine similarity 4.74 2.17 .03 

Δ length .10 1.49 .14 

Δ form frequency .23 .47 .64 

Δ lemma frequency -.35 -.75 .45 

Δ Levenshtein distance -.15 -1.45 .15 

 355 

Control analyses 356 

In this section we present several control analyses performed to evaluate the specificity of the 357 

observed effects within the (systematic component of the) Italian language and to rule out possible 358 

trivial orthographic effects. On the one hand one might argue that the observed effect could be 359 

ascribed to language-independent effects related to similarity between linguistics sounds and their 360 

referents (e.g. phonosymbolic or iconic patterns, e.g., Lockwood et al., 2016; Sidhu et al., 2022), on 361 

the other hand one might argue that the observed effect could be traced back to simply the impact of 362 

orthographic neighbors (as in the turple effect; Forster & Hector, 2002) or of embedded strings (e.g., 363 

Bowers et al., 2005). This latter point is particularly relevant as excluding such impact would indicate 364 

that that the findings of the present study should be mainly traced back to the distributional history 365 

of the n-grams composing the (pseudo)words. 366 

To exclude that the observed effect could ascribed to language-independent aspects, across both 367 

Experiment 1 and Experiment 2, we recoded participants’ responses according to the estimates 368 

extracted from fastText DSMs pre-trained on Finnish and Basque (i.e., two languages that are 369 

typologically far from Italian). In fact, if the observed effect were due to general meaning impressions 370 

related to word forms (via iconicity or phonosymbolism, for example) we would find it even when 371 
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using models trained on different languages than the one that is actually tested. Conversely, if the 372 

Italian-trained model outperformed the Finnish and Basque-trained ones, the observed effect should 373 

be interpreted as genuinely dependent on the distributional patterns at the sublexical level, and thus 374 

on the human ability to build upon it via statistical learning. 375 

Models for a number of languages are available here: https://fasttext.cc/docs/en/crawl-vectors.html. 376 

We extracted from the Finnish and the Basque models vector representations for the words and the 377 

pseudowords included in both Experiment 1 and Experiment 2 and tested whether participants’ 378 

responses aligned with their predictions. 379 

Results showed that participants’ responses did not align with the Finnish model, z = .002, p = .99, b 380 

= .0003, prob. = 50%, or the Basque model, z = .89, p = .37, b = .12, prob. = 53%. Similar patterns 381 

were found for Experiment 2 across both Finnish, z = 1.48, p = .14, b = .20, prob. = 55%, and Basque, 382 

z = .77, p = .44, b = .11, prob. = 52%1. These results indicate that the effects observed in Experiment 383 

1 and Experiment 2 can be traced back to humans’ sensitivity to meaningful patterns of letters which 384 

they were exposed during their (linguistic) experience, and not to the reliance on iconic or 385 

phonosymbolic cues in the adopted stimuli3. 386 

We hence implemented a way to estimate the semantic activation for pseudowords that did not rely 387 

on n-gram distributions, but rather on the impact of its orthographic neighbors. Therefore, as 388 

additional control across both Experiment 1 and Experiment 2, we recoded participants’ responses 389 

according to the estimates of an approach extending the orthography-to-semantics (OSC) analyses 390 

proposed by Marelli and Amenta (2018), and that has seen a similar application to pseudowords in 391 

Hendrix and Sun (2021). In this case the vector of each pseudoword was defined as the average vector 392 

of its k closest orthographic neighbors (with k = 5 following Hendrix & Sun, 2021) among the 20k 393 

most frequent words attested in the Italian fastText model used (following Hendrix & Sun, 2021, and 394 

Gatti et al., 2023). Notably, to exclude the effect of sub-word information in the processes at hand, in 395 

this case the vector representations retrieved from fastText did not include sub-word information but 396 

only the “whole-word” vector of each stimulus (i.e., corresponding to a classical word2vec approach; 397 

Mikolov et al., 2013). 398 

Overall, participants’ responses significantly aligned with the prediction of the OSC model only in 399 

Experiment 1, z = 3.20, p = .001, b = .40, prob. = 60%, while in Experiment 2 this was not the case, 400 

z = .86, p = .39, b = .12, prob. = 53%. Notably, even though in Experiment 1 participants’ responses 401 

 
3 Notably, across all these models, except for the Basque one in Experiment 2, we had to drop the intercept of the 
participants due to singular fit, thus indicating that this portion of the random effect did not contribute to explaining the 
observed variability. 
 

https://fasttext.cc/docs/en/crawl-vectors.html
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aligned with the OSC model, the effect observed when the predictions included subword information 402 

(i.e., the one tested in Experiment 1; prob. = 66%) was substantially larger. 403 

These control analyses indicate that the effects observed are related to actual systematicity in the 404 

distributional history of sublexical units within a given language, and not trivially dependent on the 405 

processing of orthographic neighbors, thus toning down interpretations related to phenomena such as 406 

the turple effect or the impact of embedded strings (e.g., Bowers et al., 2005; Forster & Hector, 2002). 407 

 408 

Discussion 409 

In the present study, we investigated whether humans’ intuitions about the meaning of novel words 410 

can be observed in a task requiring an explicit decision between two alternatives. We took advantage 411 

of a distributional semantic model (DSM), namely fastText (e.g., Bojanowski et al., 2017), able to 412 

approximate the semantic information evoked by sub-word units in language and explored whether 413 

such prediction is aligned with participants’ intuitions. Across two 2AFC experiments, participants 414 

were shown a target item (i.e., a word in Experiment 1 and a pseudoword in Experiment 2) and two 415 

other alternative items (i.e., two pseudowords in Experiment 1 and two words in Experiment 2) and 416 

were then asked to indicate which of two strings of letters they felt to be more related to the target 417 

item, in terms of the meanings they evoked in their semantic memory. Results showed that 418 

participants reliably selected the stimulus produced by the DSM used. Notably, the language used in 419 

the present study – Italian – is completely transparent and thus, by controlling for orthographic 420 

information, we also directly ruled out possible phonological constraints. Follow-up analyses further 421 

revealed that the higher the difference in cosine similarity between the alternatives and the target the 422 

higher the probability of responding consistently with the model predictions, thus ruling out the 423 

possibility that the effect was item-dependent. That is, while the fact that participants responded 424 

consistent with the prediction of the model higher than chance could have been caused by the structure 425 

of the item set (i.e., the distribution of the population could be centered on chance level and we could 426 

have sampled more items from one of the two halves), the follow-up analysis directly traces back the 427 

observed effect to a specific process (i.e., the semantic information evoked by sub-word units as 428 

predicted by the DSM). 429 

Overall, these findings extend previous evidence suggesting that, at the implicit level, humans are 430 

sensitive to the semantic patterns elicited by novel words: this effect can be indeed observed also 431 

when requesting explicit intuitions. Overall, the present study indicates that humans can exploit 432 

distributional information in their language to explicitly make sense of novel (seemingly 433 
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meaningless) stimuli. Because the task we employed is very simple, this also speaks in favor of the 434 

generalizability of this phenomenon to many everyday life situations. Moreover, whereas previous 435 

studies post-hoc produced model estimates for stimuli employed in existing experiments, here we 436 

applied the model to directly and automatically generate an item set that was then administered to 437 

participants. In this perspective, the present study speaks for the reliability of the fastText estimates 438 

and their wide applicability in cognitive research; the model does not only produce robust measures 439 

but can also predict novel unexplored phenomena. 440 

The effects described can be traced back to humans’ tendency to detect systematic and statistical 441 

regularities in the (language) environment (Romberg & Saffran, 2010; Vidal et al., 2021) and thus 442 

can be framed within non-arbitrary perspectives on language, with specific reference to systematic 443 

mapping (Dingemanse et al., 2015). Within this context, systematic mapping refers to the reliable 444 

statistical relationships between sub-lexical structures and semantic features (e.g., Nölle et al., 2018). 445 

Reliance on systematic (but also iconic) pattern has been shown within early-age word learning (Imai 446 

et al., 2008; Monaghan et al., 2011; Monaghan & Roberts, 2021; Nielsen & Dingemanse, 2021) and, 447 

more generally, in scaffolding the production and comprehension of language (Perry et al., 2018). 448 

Consistent with this theoretical line, several studies have shown that, when processing novel words 449 

or words from an unfamiliar language, speakers exploit form-related cues to activate meaning 450 

information (Cassani et al., 2020; Forster & Hector, 2002; Louwerse & Qu, 2017). More specifically, 451 

our results extend those described by previous studies employing (linear) discriminative learning (i.e., 452 

implementing linear mappings between pseudowords form and semantic vectors; Baayen et al., 2019) 453 

algorithms to account for the systematic relation between pseudowords forms and their meanings 454 

(e.g., Cassani et al., 2020; Chuang et al., 2021). In parallel, seminal (distributed) connectionists 455 

approaches argued that morphology (i.e., how words are formed) might reflect a learned sensitivity 456 

to the systematic relationships among the surface forms of words and their meanings (e.g., Plaut & 457 

Gonnerman, 2000). Consistent with this, recently Ulicheva and colleagues (2020) have shown across 458 

multiple tasks that (in English) suffixes are highly informative of parts of speech, and that readers are 459 

sensible to this sub-lexical regularity. Critically, in explaining humans’ behavior as observed in the 460 

present study, we may argue that fastText’s architecture, by relying on sub-word information, might 461 

computationally index the same form-to-meaning components that were algorithmically described by 462 

these pioneering approaches. Notably, strengthening the observed effects, while the Plaut & 463 

Gonnerman (2000) model required the modeller’s input in the pre-segmentation phase (see: Rastle & 464 

Davis, 2008, but also: Stevens & Plaut, 2022), fastText works blindly, with this (possibly) providing 465 

new (and entirely bottom-up) ways to discovering the meanings of morphemes.  466 
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Building upon these theoretical perspectives and pushing the argument further, humans’ ability to 467 

overtly exploit sublexical information when making sense of novel but plausible linguistic 468 

information can be linked to psychological models that describe lexical effects as an epiphenomenon 469 

of stable statistical patterns between form and meaning (e.g., Baayen et al., 2011, 2019; Harm & 470 

Seidenberg, 2004; Milin et al., 2017; Seidenberg, 1995). More specifically, in the model proposed by 471 

Harm and Seidenberg’s (2004), semantics, orthography and phonology constitute the angles of a 472 

triangle and its sides represent the interconnected (and possibly bidirectional) nature of the processes 473 

at hand. Interestingly, in this model, semantics emerges following information running through both 474 

the ortho-semantic and the phono-semantic pathways. Considering this, we can interpret the effect of 475 

sublexical information when understanding novel words via the processing of orthographic 476 

information to activate meaning (i.e., the side of the triangle linking orthography and semantics) and 477 

thus ultimately describing form-to-meaning mapping.  478 

Other relevant theoretical approaches can be used to explain our findings, like the dual route cascade 479 

model (DRC, see Coltheart et al., 2001) and the dual-route approach to orthographic processing 480 

(Grainger & Ziegler, 2011). According to the former model, humans would rely on two distinct 481 

pathways when recognizing a word: a lexical one, involved in recognizing words directly via 482 

representations of word forms stored in memory, and a non-lexical one, based on sublexical 483 

regularities and commonly used to decode unfamiliar letter strings. Given the absence of a lexical 484 

entry (i.e., the pseudoword does not exist in the vocabulary, and thus the lexical route cannot be 485 

activated), we can interpret our findings as humans’ reliance on the non-lexical route and thus to the 486 

emergence of semantic information encoded at the n-gram level through the use of sublexical 487 

(orthographic) regularities. However, while in the classical DRC (e.g., Coltheart et al., 2001) lexical 488 

and sublexical pathways run parallelly, and thus the latter one cannot affect semantic processes, our 489 

results speak for possible interactions between the two routes. Alternatively, these results could be 490 

framed within the classical DRC by keeping the notion of parallel pathways, and by arguing that the 491 

lexical pathway could be sensitive to (distributionally) salient strings of letters, with this ability 492 

serving as a bridge to semantics. Finally, according to Grainger and Ziegler (2011), humans are 493 

thought optimize the mapping of form to meaning by using two different prelexical orthographic 494 

codes: a coarse-grained one which facilitates the access to word meaning by relying on the 495 

identification of highly informative letters, and a fine-grained one which is characterized by the 496 

detection of (pre-existing) relevant sublexical combinations of letters. We can interpret the results of 497 

the present study as a reader’s reliance on the latter code, that can be activated (even) when the 498 

stimulus has no place on the vocabulary of a given language and explicitly exploited to make sense 499 

of novel (linguistic) information. 500 
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The observed effects can be further framed by drawing a parallel with episodic memory. When 501 

experiencing a new event, individuals can try to make sense of it by exploiting information from 502 

events they encoded during their lives (e.g., Tulving, 1993; 2002). This can be done at the declarative 503 

(i.e., explicit) level by navigating at will within the information stored in memory and then by 504 

retrieving it. Similarly, here, individuals are shown to (overtly) navigating within their semantic 505 

memory to search for a (possible) way to interpret the meaning of novel words. This encompasses 506 

the idea that semantic memory is a generative system that constantly deals with novel information, 507 

as supported by studies estimating that an adult speaker learns from 1.7 (Nation, 2006) to 11 (Nagy 508 

& Anderson, 1984) novel words per day (Brysbaert et al., 2016). In doing so, humans would take 509 

advantage of low-level featural elements found in the environment that, in the case of verbal stimuli, 510 

are ultimately quantifying the (distributional) learning history of sub-word units in language. Indeed, 511 

given the nature of the DSM applied here, these findings are consistent with a view of semantic 512 

memory as a cognitive system that taps onto general-purpose associative learning mechanisms 513 

(Günther et al., 2019). Pushing forward these generative capabilities of semantic memory, this 514 

explicit effect indicates that, in principle, humans could be able to exploit systematic regularities of 515 

sublexical units in a given language not only when processing novel words, but also when asked to 516 

generate novel labels for new (or existing) concepts. This topic can be of great applicative interest, 517 

and we believe constitutes the major future direction for the findings reported here. 518 

Regarding other future directions, the method adopted here could be easily applied to answer novel 519 

empirical questions. For example, one might test to what extent bilingual individuals rely on L1 or 520 

on L2 when performing a similar task. Additionally, in the present study we used plausible linguistic 521 

stimuli shown in isolation; a possible extension is hence related to the use of pseudowords in context 522 

and/or stimuli that do not follow a given language’s orthotactics. This allows to test how the reliance 523 

on sub-word information when dealing with novel linguistic stimuli can be generalized across 524 

different scenarios and tasks. This latter perspective is particularly intriguing as it would allow to 525 

clarify whether the findings of the present study, that is that (pseudo)word meaning can be extracted 526 

from the distributional history of the n-grams composing the stimulus, is dependent on the readability 527 

of the stimuli. Indeed, non-readable stimuli typically include sublexical elements that are extremely 528 

rare, if at all attested (e.g., “klvmst” or “rptglf”). Their associated distributions might hence not be 529 

informative enough to elicit any semantic intuitions, shaping readability as a crucial condition to set 530 

off semantic access. Interestingly, as fastText allows to specify the length of the sequences of letters 531 

(i.e., the n-grams) to be considered in the training phase, future studies could address this point by 532 

training ad-hoc models including information from shorter n-grams generally not considered in pre-533 

trained models (e.g., uni-grams, bi-grams) and using the experimental procedure adopted here. 534 
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A possible source of concern is related to the use of computational modeling in predicting human 535 

behavior. On the one hand, indeed, one should be careful in inferring that model’s parameters and 536 

algorithms can be directly applied to human cognition. On the other hand, the empirical evidence 537 

presented here indicates that there is a certain degree of overlap between fastText predictions and 538 

humans processing of novel information. When reasoning about fastText characteristics, one should 539 

always keep in mind that it is a resource build within natural language processing contexts with the 540 

explicit applicative scope of facilitating and improving text representation (and not pseudoword 541 

representation!). We believe that this latter point does strengthen even more our results as fastText 542 

architecture was not explicitly tuned for the material and processes we are investigating, but 543 

nevertheless it can be used to (successfully) capture humans’ responses to such stimuli. 544 

In conclusion, using DSMs we provide evidence that humans are able to exploit sub-word information 545 

when dealing with novel words in an explicit task, thus demonstrating that semantic (explicit) 546 

intuitions on the meaning of novel (verbal) stimuli can be traced back to domain-general associative 547 

mechanisms. Our findings directly support theories on the non-arbitrariness of language and provide 548 

novel insights into the distributed structure of human semantic memory. 549 

 550 

  551 
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