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1 Introduction

Starting from the seminal work by Ryu and Takayanagi [1] on the holographic dual
of Entanglement Entropy (EE), the development of the AdS/CFT correspondence [2]
intertwined with quantum information. One of the characters that recently entered the
scene is computational complexity, which may provide a field theory dual to the asymptotic
growth of the Einstein-Rosen Bridge (ERB) after long time scales [3, 4]. Heuristically,
quantum computational complexity estimates the difficulty to build a target state starting
from a simple, usually unentangled, reference state. This is done by counting the number
of steps needed to reach the target state from the reference one, picking unitaries from
a universal set of elementary operations [5, 6]. This problem is of primary importance
in the context of quantum infomation [7]. Two main conjectures have been proposed as
holographic duals of computational complexity:

• Complexity=volume (CV) [8], in which complexity is proportional to the volume of
the maximal slices anchored to the boundary

CV ∼
V
GL

, (1.1)

where V is the maximal volume of the ERB, G the Newton’s constant and L the AdS
radius.

• Complexity=action (CA) [9, 10], in which complexity is proportional to the gravi-
tational action evaluated on the Wheeler DeWitt (WDW) patch, which is the bulk
domain of dependence of the above-mentioned spatial slice

CA = IWDW
π~

, (1.2)

where IWDW is the on-shell gravitational action evaluated on the WDW patch. We
will use natural units for the Planck’s constant ~ = 1.

In spite that both the CV and the CA proposals have been investigated in several con-
texts [11–25], we are still far away from a definitive understanding of complexity conjectures.
One of the most important open problems is a satisfactory definition of the computational
complexity on the field theory side. Up to now, most of the developments have been done
in quantum-mechanical systems with a finite number of degrees of freedom [26–30] and in
free field theories [31–34], but a precise definition in interacting CFTs is still lacking (see
e.g. [35–40] for some progresses in this direction). See also [41] for the case of Topological
Quantum Field Theory. See [42, 43] for reviews.

To achieve further insights, it may be useful to take inspiration from the EE, for which
both the holographic and the field theory side of the duality are under control. In field theory,
the definition of EE requires a splitting of the system in two complementary subregions. In
the gravity theory, the entropy is computed as the area delimited by the Ryu-Tayanagi (RT)
surface [1], which is attached on the boundary of the given subsystem. It is then natural
to conjecture that subsystems play an important role also for complexity. Indeed, several
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definitions have been proposed to generalise the concept of computational complexity to
mixed states and subregions [44, 45]. On the holographic side, both the volume and action
conjectures have natural extensions to the case of subsystems. The CV generalisation [46]
requires to compute the maximal volume of the codimension-one bulk surface RA anchored
to a subregion A on the boundary and delimited by its Ryu-Tayanagi (RT) surface

CV (A) ∼ V(RA)
GL

. (1.3)

The CA subregion proposal [12] requires instead to calculate the gravitational action in
the intersection between the WDW patch and the Entanglement Wedge (EW), which is
the bulk domain of dependence of the RT surface:

CA(A) = IWDW∩EW
π~

. (1.4)

Subregion complexity has then been investigated for several configurations [47–54], including
the Banados-Teitelboim-Zanelli (BTZ) [55] black hole.

At the qualitative level, the volume and the action conjectures share many important
features, such as the linear growth at late time [8–10], the structure of divergences [12, 16]
and the switch-back effect [56]. A certain degree of arbitrariness is expected in defining
computational complexity, due to the choice of the reference state and of the allowed
computational gates. Consequently, CV and CA (and their further generalizations [14, 25])
might correspond to different ways to define complexity on the field theory side. It is then
crucial to focus on the examples where CV and CA provide different results. Systems with
defects may provide such examples [57]. Indeed, this is precisely what happens for the
2-sided Randall-Sundrum (2-RS) model [58] in AdS3. In this case, the contribution to the
CV due to the defect contains a logarithmic divergence in the UV regulator, while CA is
not influenced by the presence of the defect [59]. This is true both for the complexity of
the total space and for the subregion complexity of an interval centered around the defect,
once the subtraction of the vacuum result is performed (complexity of formation).

Boundaries are related to defects via the folding trick [60], and so we expect a similar
behaviour for their contribution to complexity. One can consider also the 1-sided version of
the Randall-Sundrum model, which is dual to a Boundary Conformal Field Theory (BCFT).
In the following we shall refer to this case as the AdSd+1/BCFTd model [61–63]. Complexity
in AdSd+1/BCFTd model was investigated in [64, 65]. For d = 2, the contribution of the
defect to CV is again logarithmically divergent, while the contribution to CA is finite. For
d > 2, instead, both volume and action give rise to the same type of divergences. These
results were established in [64, 65] for the case of total complexity. The behaviour of the
UV divergences should be the same also for the complexity of a subregion which contain
the defect, because (by locality) the UV divergences are expected to come from the region
nearby the defect. This was explicitly checked in AdS3/BCFT2 for CV in [64]. In section 4
we will check this claim also for CA.

Studying these examples, one is tempted to conclude that, for defects and boundaries in
2-dimensional field theories, the UV divergences of CV and CA are different. It is important
to understand if this is a general feature of every two-dimensional theory with defects. In
this paper, we show that this is not the case.
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∆CV (l) ∆CA(l)

2-sided Randall-Sundrum 2
3c ηRS log

(
l
δ

)
+ finite 0

AdS3/BCFT2
2
3c ηBCFT log

(
l
δ

)
+ finite finite

Janus AdS3
2
3c ηJAdS log

(
l
δ

)
+ finite 2c

3π2P (γ, L̃/L) log
(
l
δ

)
+ finite

Table 1. Behaviour of the contributions of the defect ∆CV and ∆CA to the subregion complexity,
for an interval of length l for CV and CA, respectively. The coefficients of the log divergences
η are specific of the details of the defect or boundary. In the case of Janus geometry, ηJAdS is
given in eq. (3.110). For the other models, the η coefficients can be extracted from [59, 64, 65, 68];
their specific values are not essential for the present discussion. The function P (γ, L̃/L) is given in
eq. (3.108).

To this purpose, we study complexity in Janus AdS3. This geometry is a dilatonic
deformation [66, 67] of pure AdS3, which can be embedded in type IIB supergravity. Due
to technical reasons related to the regularization of IR-divergences, in this background it
is natural to directly work with the case of subregions. In fact, the length of the subregion
provides a natural IR regulator. In [68] we considered the volume conjecture for Janus AdS3
and we found that, also in this case, the contribution to complexity due to the defect is
logarithmically divergent. We performed the calculation with three different regularizations
(Fefferman-Graham, single and double cutoff regularizations [69–71]) and we checked that the
coefficient of the logarithmically divergent term is independent of the regularization choice.

In section 3 we will study the subregion action complexity for Janus AdS3 and we
will find that, contrarily to what happens in the three dimensional 2-RS and AdS/BCFT
models, the contribution to complexity due the defect is logarithmically divergent, as it
happens for the volume complexity. We summarise the results for the contribution of the
defect to CV and CA in various models in table 1.

The first comment comes from reading the table by columns. While in the volume
case the three models have a common logarithmic divergence, for the action there are three
different behaviours:

• The action of the 2-RS model is completely blind to the presence of the defect, because
it does not depend on the brane tension. Therefore, after subtracting the vacuum
part of the action, we find an identically zero ∆CA.

• The action of the AdS/BCFT model is modified by the presence of the end-of-the-
world brane because the action depends on the tension of the brane. After subtracting
the vacuum contribution, the divergences cancel and ∆CA is finite.

• In the Janus geometry, the divergent part of the action is modified by the presence of
the defect. After subtracting the vacuum part, the log divergence survives in ∆CA
and depends on the parameter γ of the Janus solution.
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Another perspective that can be taken is to compare the volume and the action results for
each background, i.e. we read table 1 by rows. In this case we note that:

• The 2-RS model distinguishes between volume and action: the former has a logarithmic
divergence dependent on the tension of the defect, while the latter is identically zero.

• The AdS/BCFT model distinguishes between volume and action, but in a milder way.
Only the finite term in the action depends on the brane tension. Furthermore, in
higher dimensions (d > 2) the same divergences reappear both in the action and in
the volume [65].

• For the Janus AdS3 geometry both the volume and the action have a logarithmic
divergence dependent on the deformation parameter γ.

The manuscript is organized as follows. In section 2 we introduce the Janus AdS3 and the
AdS3/BCFT2 geometries, we list all the terms entering the gravitational action and we
discuss the regularization prescriptions to systematically treat UV divergences. In sections 3
and 4 we derive the results collected in table 1 by performing the calculation of subregion
action complexity for the Janus and the BCFT backgrounds, respectively. Further open
problems are discussed in section 5. The appendices contain technical details.

2 Preliminaries

In this section we introduce the main characters entering the computation of subsystem
complexity. In section 2.1 we will review the Janus AdS3 geometry, dual to an interface
CFT (ICFT) where the coupling constant is different on each side of the interface. In
section 2.2 we will describe the AdS/BCFT model. In the remaining sections, we will
discuss the gravitational action in the presence of null boundaries and the regularizations
adopted in our calculation.

2.1 Janus AdS3 geometry

The Janus AdS3 geometry is a solution of type IIB supergravity which preserves the isometry
subgroup SO(1, 2)× SO(4) of the background geometry AdS3 × S3 ×M4, where M4 is a
four-dimensional compact manifold [67]. Upon dimensional reduction we obtain Einstein
gravity coupled to a dilaton field φ, i.e.

I = 1
16πG

∫
d3x
√
−g

(
R− ∂aφ∂aφ+ 2

L2

)
, (2.1)

where L the AdS3 radius. The metric of the Janus solution reads

ds2
3 = L2f(µ) cos2 µds2

AdS3 , ds2
AdS3 = 1

cos2 µ

(
dµ2 + ds2

AdS2

)
. (2.2)

Unless otherwise specified, the two-dimensional AdS slices will be parametrized using
Poincaré coordinates

ds2
AdS2 = 1

z2

(
dz2 − dt2

)
. (2.3)
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The profile function f and the dilaton φ are given by [72]

f(µ) = α2
+

sn2(α+(µ+ µ0)|m) ,

φ(µ) = φ0 +
√

2 log
[
dn(α+(µ+ µ0)|m)−

√
m cn(α+(µ+ µ0)|m)

]
, (2.4)

where
α2
± = 1

2

(
1±

√
1− 2γ2

)
, m =

(
α−
α+

)2
, µ0 = K(m)

α+
. (2.5)

The conventions on the Jacobi elliptic functions are collected in appendix A. The parameter
γ ∈ [0, 1√

2 ] specify the details of the dilatonic deformation. The range of the angular
coordinate is µ ∈ [−µ0, µ0] with µ0 ≥ π/2. The value γ = 0 corresponds to vacuum AdS
space with constant dilaton, µ0 = π/2 and f(µ) = 1

cos2 µ . The case γ = 1√
2 corresponds to

an infinite dilaton excursion between the two sides of the Janus interface.
In some cases, it is convenient to change variables from µ to y in the following way

dµ = dy√
f(y)

, ds2 = L2
(
f(y)ds2

AdS2 + dy2
)
. (2.6)

In this coordinate system, y ∈ [−∞,∞] and these two extrema correspond to the two
sides of the boundary where the dual interface field theory lives. In this system the profile
functions are

f(y) = 1
2

(
1 +

√
1− 2γ2 cosh(2y)

)
,

φ(y) = φ0 + 1√
2

log
(

1 +
√

1− 2γ2 +
√

2γ tanh y
1 +

√
1− 2γ2 −

√
2γ tanh y

)
. (2.7)

This geometry admits a dual description in terms of a two-dimensional interface CFT where
the deformation is produced by a marginal operator O(x) with couplings J±

∫
d2xO(x) on

each side of the boundary, such that

J± = lim
y→±∞

φ(y) . (2.8)

Since the Janus deformation is associated with an exactly marginal operator, it does not
change the central charge of the CFT.

2.2 AdS3/BCFT2 model

The AdS/BCFTmodel can be thought as a 1-sided version of the Randall-Sundrum setup [58],
in which the brane intersects the asymptotically AdS boundary. The AdS3/BCFT2 model
was studied in detail in [61–63] to describe a QFT which is restricted to live on a half plane
of flat space, i.e. along the portion of spacetime given by x ≥ 0 in the Minkowski metric, as
shown in figure 1. The bulk dual description corresponds to AdS3 space with a boundary
given by an end-of-the-world brane Q of tension T . We use the AdS metric in Poincaré
coordinates

ds2 = L2

z2

(
−dt2 + dz2 + dx2

)
, (2.9)
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Figure 1. Schematic set-up of the AdS/BCFT model. We represent a section at constant time and
represent the end-of-the-world brane as the red hypersurface defined by x = −z cotα.

and the gravitational action is supplemented by a codimension-one term

I = 1
16πG

∫
B
d3x
√
−g

(
R+ 2

L2

)
+ 1

8πG

∫
Q
d2x
√
−h (K − T ) , (2.10)

where B is the bulk AdS spacetime and Q is the brane located at x = −z cotα, with
induced metric hµν and trace of the extrinsic curvature K. The tension of the brane reads

T = 1
L

cosα . (2.11)

2.3 Gravitational action with null boundaries

In order to evaluate the gravitational action associated to a subsystem on the boundary, we
discuss the contributions coming from null boundaries, following [11]. The total on-shell
action is

Itot = 1
16πG

∫
WDW∩EW

dd+1x
√
−g
(
R+ 2

L2

)
+ εt,s

8πG

∫
Bt,s

ddx
√
|h|K + εn

8πG

∫
Bn
dλ dd−1x

√
γ κ

+ εη
8πG

∫
Jt,s

dd−1x
√
γ η + εa

8πG

∫
Jn
dd−1x

√
γ a

+ 1
8πG

∫
Bn
dλ dd−1x

√
γΘ log |L̃Θ| ,

(2.12)

where d = 2 in the cases considered in the present work. We comment on each term:

• The first line contains the bulk term, i.e. the Einsten-Hilbert action with cosmological
constant, evaluated in the intersection between the WDW patch and the EW. For
the Janus geometry, the bulk term also includes the kinetic part of the dilaton field,
see eq. (2.1).

• The second line contains codimension-one boundary terms which make the variational
problem well-defined. The first contribution refers to timelike or spacelike surfaces

– 6 –
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Bt,s and it is the Gibbons-Hawking-York (GHY) term, containing the determinant
of the induced metric h and the trace K of the extrinsic curvature. In the case
of the AdS/BCFT model, this term is supplemented by a tension term involving
the end-of-the-world brane, see eq. (2.10). The second term is evaluated on the
null boundaries Bn and involves the integration along the parameter λ describing
a congruence of null geodesics generating the surface and the integration along the
remaining (d− 1) orthogonal directions with induced metric γ. The parameter κ is
defined by the geodesic equation

kνDνk
µ = κ kµ . (2.13)

If the parameter λ is affine, κ identically vanishes. The prefactors εt,s and εn (referring
to timelike/spacelike and null surfaces, respectively) take the values ±1 depending on
the orientation of the normals to the hypersurfaces Bt,s or Bn of interest.

• The third line contains joint terms, which are codimension-two surfaces found at
the intersection of the previous codimension-one boundary terms. When there is at
least a timelike or spacelike surface, they involve the boost parameter η, while in the
purely null case they contain a scalar product of the corresponding null normals, here
denoted with a. We will be more explicit about the expressions of the integrands
when doing the actual computations of this work.

• The last line is a counterterm which must be included on null boundaries to restore
reparametrization invariance, which is broken by the terms in the second and third
lines. This introduces an extra scale L̃. This term involves the expansion parameter
Θ along the null geodesics, which will be introduced in eq. (3.7).

Since the geometries under consideration are static and do not present causally disconnected
boundaries, it is not restrictive to consider the case where the time on both boundaries is
vanishing. In order to set up the actual computation, we need to determine the WDW patch
and the EW, which both require to analyze null geodesics in the spacetime of interest. Before
doing that, we comment on the regularization prescriptions that will be used throughout
the paper.

2.4 Regularization prescriptions for UV divergences

We are interested in the computation of the UV divergences of the subregion action for
theories with defects. These kinds of geometries can be described by performing an AdSd
slicing of asymptotically AdSd+1 space to obtain a metric in the form [69]

ds2 = L2
(
A2(y)ds2

AdSd + ρ2(y)dy2
)
, (2.14)

where y is a non-compact coordinate such that when y → ±∞

A(y)→ L±
2 e±y±c± , ρ(y)→ 1 , (2.15)

– 7 –
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where L± and c± are constants. We parametrize the AdSd slices using Poincaré coordinates

ds2
AdSd = 1

z2

(
dz2 − dt2 + d~x2

d−2

)
, (2.16)

where (t, z) are the time and radial coordinates on each slice and ~x collects all the other
orthogonal directions.

Three different regularisation prescriptions have been used the literature [69–71]:

• The Fefferman-Graham (FG) regularization relies on performing a FG expansion of
the metric to select a radial direction ξ for the asymptotic AdSd+1 region in Poincaré
coordinates, and introducing a UV cutoff by cutting the spacetime with a surface
located at ξ = δ. The metric in FG form reads

ds2 = L2

ξ2

[
dξ2 + g1(ξ/η)

(
−dt2 + d~x2

)
+ g2(ξ/η) dη2

]
, (2.17)

where ξ is a radial coordinate for the asymptotic AdS region in Poincaré coordinates,
η is the boundary direction orthogonal to the defect, and g1, g2 are two appropriate
functions, such that the original metric (2.14) with slicing (2.16) is equivalent to (2.17)
with a suitable change of coordinates (z, y) → (ξ, η). In the region ξ � η, the FG
expansion breaks down because the coordinates ξ and η are not well defined [73]. This
problem can be solved by introducing a continuous curve which interpolates between
the right and left patches of the defect [69].

• In the single cutoff regularization [70] the arbitrary interpolation curve is replaced by
a cutoff on the minimal value of the z coordinate such that

δ = z

A(y) , zmin = δmin
y∈R

[A(y)] . (2.18)

The physical quantities are then expanded in series around δ = 0.

• The double cutoff regularization [71] introduces two different cutoffs for each of the
directions (y, z). The first cutoff is directly imposed on the AdSd slicing at z = δ.
The second cutoff regularizes the divergences of A(y) at infinity. This can be achieved
by restricting the y domain up to a maximum value y∗, defined by

A(y∗) = 1
ε
. (2.19)

While the δ cutoff has physical relevance since it regularizes the intrinsic contributions
from the defect, the ε cutoff is only a mathematical artifact introduced at intermediate
steps. Observables which are intrinsic to the defect must be ε-independent after the
subtraction of the vacuum solution.

The advantage of both the FG and the single cutoff regularizations is the introduction of
only one regulator; the drawback is that integrals along different coordinates are nested.
From a technical point of view, it is simpler to consider the double cutoff regularization.
For volume complexity, we checked [68, 74] that all the three methods only differ by finite
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Figure 2. The two regularizations of the WDW patch introduced in [12]. In the picture it is
represented the case of a black hole in asymptotically AdS spacetime.

parts, while we expect universal contributions to appear in logarithmically divergent terms.
We then choose to evaluate the action complexity with the double cutoff method, since the
universal behaviour is not influenced by the regularization scheme.

The previous discussion applies in particular to the case of the Janus AdS geometry
and will be used in section 3.3. The case of the AdS/BCFT model is simpler, because the
spacetime is empty AdS space with the addition of an end-of-the-world brane. While it is still
possible to employ the parametrization (2.14), it is simpler to work using three-dimensional
Poincaré coordinates including a UV regulator cutting the spacetime with the surface z = δ,
without any need for a second parameter ε. This choice will be used for the computations
in section 4.

The three regularization procedures discussed above do not represent the only ambigui-
ties involving the computation of the action. It is also possible to define the WDW patch
surfaces in two different ways [12], depicted in figure 2:

• Regularization A amounts to build the WDW patch starting from the true boundary
located at z = 0, and cut the spacetime with a surface located at z = δ.

• Regularization B corresponds to the null geodesics delimiting the WDW patch to
directly start from the cutoff surface located at z = δ.

The same ambiguity arises for the Ryu-Takayanagi (RT) surface.
In this paper we will work with regularization A. The divergences of regulatization B

are related to the ones of regularization A by another counterterm that can be introduced
on the cutoff at the boundary [75, 76], in the spirit of holographic renormalization [77–80].
We will check that in our case such a counterterm is finite (see appendix C).

3 Subregion complexity in the Janus AdS3 geometry

In this section we perform the computation of the subregion action complexity in the Janus
AdS3 spacetime. In section 3.1 we review some background material on null surfaces and
on the properties of null geodesics under conformal transformations. In section 3.2 we find
the integration domain for the action. In section 3.3 we perform the actual calculation.
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3.1 Null surfaces, geodesic congruencies and conformal rescalings

The boundary of the integration domain of the action will involve many null hypersurfaces.
Let us review a few useful properties, following [81]. We consider a null hypersurface Σ
selected by an appropriate restriction on the coordinates xµ of spacetime

Φ(xµ) = 0 , (3.1)

where Φ is a scalar function increasing towards the future. The normal one-form kµ to Σ,
defined by

kµ = −α∂µΦ , (3.2)

is by construction null kµkµ = 0 and also tangent to Σ. Here α > 0 is a constant prefactor,
such that the corresponding vector kµ is future-oriented.

Moreover, the vector field kµ satisfies the geodesic equation

kνDνk
µ = κ kµ , (3.3)

where κ is a spacetime scalar which vanishes for affine parameterisations.
We can in general parameterize a null hypersurface as a congruence of null geodesics.

Besides using an implicit expression of kind (3.1) an alternative way to parametrize a null
hypersurface is through the expression Xµ = Xµ(λ, θA) with the requirements that the
parameter λ moves along a single generator in the congruence of null geodesics, and the
parameters θA are constant on each null generator spanning the hypersurface. We define
then the tangent vectors along the hypersurface to be

kµ ≡ dXµ

dλ
, eµA ≡

dXµ

dθA
, (3.4)

where kµ is the null tangent vector and eµA is a spacelike vector, defined in such a way that
it is orthogonal to kµ, i.e.

kµeAµ = 0 . (3.5)

The normal kµ satisfies eq. (3.3) where κ is a function of λ. The vectors eµA define the
induced metric

γAB = gµνe
µ
Ae

ν
B . (3.6)

The expansion parameter along the congruence of null geodesics is given by

Θ = 1
√
γ

d
√
γ

dλ
, (3.7)

where γ is the determinant of γAB.
In order to determine the null hypersurface in Janus, it will be convenient to perform a

conformal rescaling. Let us review a few basic properties [82, 83] Consider two metrics g
and g̃ related by a conformal transformation

g̃µν(x′) = Ω(x)2 gµν(x) . (3.8)
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Under this map the causal structure of the spacetime is preserved. While in general the
two metrics have different spacelike and timelike geodesics, the null geodesics are the same.
However, the affine parameterization condition of these geodesics in general is not preserved
under (3.8).

As a matter of fact, starting from an affine parameterization for the geodesics of the
metric g, i.e.

kνDνk
µ = 0 , (3.9)

under the conformal transformation (3.8) the equation (3.9) becomes

kνD̃νk
µ = κ kµ , κ = 2

Ω
dΩ
dλ

. (3.10)

We can think of κ(λ) as the measure of the failure of λ to be an affine parameter.

3.2 Null boundaries in the Janus AdS3 geometry

Using a conformal transformation with

Ω2 = L2 f(µ)
z2 , (3.11)

we can write the Janus metric (2.2) as

ds̃2 = Ω2 ds2 , ds2 = −dt2 + dz2 + z2dµ2 (3.12)

where ds2 is the flat spacetime metric in polar coordinates. We proceed to study the null
congruence of geodesics delimiting the WDW patch and the EW.

WDW patch. By going to cartesian coordinates

X = z sinµ , Y = z cosµ , (3.13)

we bring the metric to the form ds2 = −dt2 + dX2 + dY 2. In these coordinates, the
two-dimensional plane specified by

g(t,X, Y ) = aX + b Y + c t = 0 , c = ±
√
a2 + b2 , (3.14)

is a null surface. From now on we will specialize to the case of c < 0, in view of the
parametrization of the part at positive time of the WDW patch.

From the general result that null geodesics are invariant under conformal transformations
of the metric, it follows that eq. (3.14) specifies a null surface also in the Janus AdS3
background. In polar coordinates, it reads

g(t, µ, z) = a z sinµ+ b z cosµ+ c t = 0 . (3.15)

Let us first consider the WDW patch anchored at the right boundary µ = µ0. In order to
impose that this null surface is part of the boundary of the WDW patch in the regularization
A, we enforce that at t = 0, the angular coordinate is µ = µ0. This condition determines

tanµ0 = − b
a
. (3.16)
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Therefore we conclude that the null boundary of the WDW patch is described by the
equations

tWDW(µ, z) = z sin(µ0 − µ) , (3.17)

where we used as a working assumption that µ0 ∈ [π/2, π]. Using eq. (2.5), this implies

γ ≤ γ0 ≈ 0.704 . (3.18)

For simplicity, we will restrict to the case γ ∈ [0, γ0]. In the case γ ∈
(
γ0,

1√
2

)
, the geometry

of the WDW patch changes.
We can then describe the boundary of the WDW patch as

Xµ
WDW = (tWDW(µ, z), µ, z) . (3.19)

Since the spacetime is three-dimensional, there is only one coordinate θ entering eq. (3.4),
i.e.

kµR = dXµ
WDW
dλ

, eµR = dXµ
WDW
dθ

. (3.20)

We should also impose that the orthogonality condition (3.5) holds. The affine parameter-
ization is not convenient for the calculation.1 It turns out that a convenient choice is

λ = − z
α

sin(µ0 − µ) , θ = − log(z cos(µ0 − µ)) , (3.21)

where α > 0 parametrizes the ambiguity in the normalization of a null vector. With this
choice, eq. (3.20) takes the form

kµR = −α
(

1,−cos(µ0 − µ)
z

, sin(µ0 − µ)
)
, (3.22)

eµR = −
(

0, 1
2 sin(2(µ0 − µ)), z cos2(µ0 − µ)

)
. (3.23)

The induced metric γ (which is a number because it is a 1 by 1 matrix), the expansion
parameter Θ and the scalar κ are given by:

γWDW = L2f(µ) cos2(µ0 − µ) ,

ΘWDW = α

[sin(µ0 − µ)
z

+ cos(µ0 − µ)
2z

f ′(µ)
f(µ)

]
,

κWDW(λ) = 2ΘWDW . (3.24)

The boundary of the WDW patch anchored at the left boundary L (placed at µ = −µ0)
can be treated in an analog way,2 obtaining

Xµ
WDW,L = (z sin(µ+ µ0), µ, z) . (3.25)

1The reason is technical: the affine parameter is determined by the integral curves generated by the
vector field kµ, but the differential equation contains the conformal factor, which depends on f(µ) defined
in eq. (2.4). The choice we adopt in the main text avoids the appearance of such conformal factor in the
differential equation.

2Notice that the left side of the WDW patch with positive times is obtained from the right side by
sending µ→ −µ. We apply this change in the choice of the parametrization as well.
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The corresponding parameterization is

λ = − 1
α
z sin(µ+ µ0) , θ = − log(z cos(µ+ µ0)) , (3.26)

which gives the following vectors

kµL = −α
(

1, cos(µ+ µ0)
z

, sin(µ+ µ0)
)
,

eµL =
(

0, 1
2 sin(2(µ+ µ0)),−z cos2(µ+ µ0)

)
, (3.27)

and the following geometric data

γWDW,L = L2f(µ) cos2(µ+ µ0) ,

ΘWDW,L = α

[sin(µ+ µ0)
z

− cos(µ+ µ0)
2z

f ′(µ)
f(µ)

]
,

κWDW,L(λ) = 2ΘWDW,L . (3.28)

For future convenience, we write the normal to the left and right side of the WDW patch
as one-forms

kR = α
L2f(µ)
z2 (dt+ z cos(µ0 − µ)dµ− sin(µ0 − µ)dz) ,

kL = α
L2f(µ)
z2 (dt− z cos(µ+ µ0)dµ− sin(µ+ µ0)dz) . (3.29)

Entanglement wedge. Since the Janus metric is conformally equivalent to 2 + 1 di-
mensional flat spacetime, the two spaces share the same null geodesics, in particular the
lightcones at constant µ

z = ±t± c . (3.30)

Here the constant c will be determined by suitable boundary conditions. We will show that
the geodesics (3.30) define the boundary of the EW.

The Ryu-Takayanagi (RT) surface anchored at the boundary [84] is described by the
equation

zRT = l/2 (3.31)

for an interval of length l located symmetrically along µ on the surface at constant time
t = 0. By imposing that the curves at constant µ given in eq. (3.30) pass through the RT
surface, we determine that the null boundary of the EW is

tEW = l

2 − z , (3.32)

where we are restricting the solution to the part with positive time coordinate. This
expression holds both in empty AdS space and in the Janus background.

It is convenient to work in the affine parametrization. The Langrangian which describes
affinely parametrized geodesics is of the form

L = Ω2
(
−ṫ2 + ż2 + z2µ̇2

)
, (3.33)
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where dot denotes derivative with respect to the affine parameter. The equations of motion
give the following tangent vector for the null geodesics with constant µ

wµ = β (ṫ, ż, 0) = β
1

Ω2 (−1, 1, 0) , (3.34)

where β is an arbitrary constant. Lowering the indices, we get the one-form

w = β(dt+ dz) . (3.35)

Note that the dependence on the conformal factor disappears on the form w. Such one-form
is orthogonal at the boundary to the curve parametrizing the RT surface, i.e.

wµ
dXµ

RT
dλ

∣∣∣
bdy

= 0 . (3.36)

This shows that the congruence of null geodesics (3.32) describes indeed the null boundary
of the EW. As anticipated, the parametrization is affine and therefore κEW = 0. From
eq. (3.7), we find that the expansion parameter vanishes ΘEW = 0, as expected on general
grounds since the EW is delimited by an extremal surface [85].

Intersection curve. In view of the computation of the gravitational action, we need to
determine the intersection curve between the WDW patch and the EW. It is sufficient for
symmetry reasons to focus on the region with positive (t, µ). By equating the hypersurfaces
defined in eq. (3.17) and eq. (3.32), we obtain the following curve

zint(µ) = l

2
1

sin(µ0 − µ) + 1 . (3.37)

A picture of the WDW patch, the EW and their intersecton curve in (t,X, Y ) coordinates
is shown in figure 3.

3.3 Computation of the action

We are now ready to compute the gravitational action (2.12) in the Janus AdS3 background
using the double cutoff prescription. The equivalent of eq. (2.19) for this case is√

f(y∗) = 1
ε
. (3.38)

This equation determines a value of y∗(ε) which delimits the corresponding integration

y∗(ε) = 1
2 arccosh

( 2
ε2 − 1√
1− 2γ2

)
. (3.39)

We can express this result in terms of the µ coordinates by means of the change of variables

tanh y = sn(α+µ|m) , (3.40)

which infinitesimally corresponds to eq. (2.6) and where we are using the definitions (2.5).
A derivation of eq. (3.40) is provided in eq. (A.9). The corresponding value of the cutoff
in the µ variable, such that

√
f(µ∗(ε)) = ε−1, can be obtained by combining eqs. (3.39)

and (3.40).
We compute the subregion action term by term. Our general strategy will be the

following: we will evaluate explicitly the integrations over (t, z), while we will collect all the
integrands in the µ variables, and extract their divergences at the very end of the calculation.
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Figure 3. A pictorial representation of the null boundaries of the WDW patch (light orange
surfaces), of the entanglement wedge (red), and the intersection curve zint(µ) between them (green).
The blue plane restricts the integration region to t ≥ 0 only. The purple transparent region represents
the cutoff surfaces located at z = δ and µ = ±µ∗(ε). The diagram corresponds to the choice γ = 0.5.

3.3.1 Bulk term

The bulk term reads

IB = 1
16πG

∫
WDW∩EW

d3x
√
−gL , L = R+ 2

L2 − g
µν∂µφ∂νφ , (3.41)

where R is the Ricci scalar of the metric (2.6) with profile function f and dilaton solution
given in eq. (2.7). It is important to remark that the presence of the defect is responsible
for the backreaction of the original vacuum AdS3 spacetime, which leads to a different value
of the Ricci scalar than empty AdS. However, the addition of a kinetic term for the dilaton
gives a simple on-shell action which reads

L = − 4
L2 . (3.42)

The intersection curve between the null boundaries of the WDW patch and the EW naturally
splits the integration region in two parts:

IB = I1
B + I2

B , (3.43)

where

I1
B = − L

πG

∫ µ∗(ε)

0
dµ

∫ zint(µ)

δ
dz

∫ tWDW(µ,z)

0
dt
f(µ)3/2

z2 ,

I2
B = − L

πG

∫ µ∗(ε)

0
dµ

∫ zRT

zint(µ)
dz

∫ tEW(z)

0
dt
f(µ)3/2

z2 . (3.44)
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We introduced a symmetry factor of 4 coming from the integrations along (t, µ). A direct
evaluation of the integrals over (t, z) brings to the result

IB = L

πG

∫ µ∗(ε)

0
dµ f(µ)3/2

{
(sin(µ0 − µ) + 1) log[sin(µ0 − µ) + 1]

+ sin(µ0 − µ)
[
log
(2δ
l

)
− 1

]}
. (3.45)

3.3.2 GHY term

The regularization prescription A in figure 2 requires to evaluate the GHY term

IGHY = εt,s
8πG

∫
Bt,s

d2x
√
|h|K , (3.46)

at the cutoff surfaces z = δ and µ = ±µ∗(ε). In eq. (3.46) K is the trace of the extrinsic
curvature, h the determinant of the induced metric, and εt,s = ±1 if the surface of interest
Bt,s is timelike or spacelike, respectively.

Cutoff surface located at z = δ. The unit normal vector nµ to the cutoff surface
located at z = δ is given by

nµ1 = − z

L
√
f(µ)

(0, 0, 1) , (3.47)

the minus sign being chosen in such a way that it is outward-directed from the region of
interest for the computation of the action. The determinant of the induced metric and the
trace of the extrinsic curvature are

√
−h = L2 f(µ)

z
, K = Dµn

µ
1 = 1

L
√
f(µ)

. (3.48)

In principle, one would expect to split the integration region according to the intersection
curve zint(µ) in eq. (3.37) between the null boundaries of the WDW patch and of the EW.
However, a choice of a small enough value of δ always allows to keep the entire cutoff surface
inside the region where the WDW patch sits below the EW, since

zint(µ) = l

2
1

sin(µ0 − µ) + 1 ≥
l

4 . (3.49)

For this reason, the GHY term reads

IδGHY = L

2πG

∫ µ∗(ε)

0
dµ

∫ tWDW(δ,µ)

0
dt

√
f(µ)
δ

, (3.50)

where we put a symmetry factor of 4 (there is a factor of 2 from each of the two integrations).
Performing the first integration, we find

IδGHY = L

2πG

∫ µ∗(ε)

0
dµ
√
f(µ) sin(µ0 − µ) . (3.51)
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Cutoff surface located at µ = µ∗(ε). The outward-directed normal to the cutoff
surface located at µ = µ∗(ε) is given by

nµ2 = 1
L
√
f(µ)

(0, 1, 0) , (3.52)

and the determinant of the induced metric and the trace of the extrinsic curvature are
√
−h = L2 f(µ)

z2 , K = Dµn
µ
2 = 1

L

f ′(µ)
f(µ)3/2 . (3.53)

In this case, the surface µ = µ∗(ε) cuts both the WDW patch and the EW; for this reason,
the GHY term decomposes into two parts determined by the intersection curve in eq. (3.37).
These codimension-one boundary terms are given by

IεGHY = IεGHY,1 + IεGHY,2 , (3.54)

where

IεGHY,1 = L

2πG

∫ zint(µ∗(ε))

δ
dz

∫ tWDW(z,µ∗(ε))

0
dt

f ′(µ)
z2
√
f(µ)

∣∣∣
µ=µ∗(ε)

IεGHY,2 = L

2πG

∫ zRT

zint(µ∗(ε))
dz

∫ tEW(z)

0
dt

f ′(µ)
z2
√
f(µ)

∣∣∣
µ=µ∗(ε)

(3.55)

In these integratons, we already put the symmetry factor of 4 (one factor of 2 comes from
the integration along t, while the other factor of 2 arises because we also account for the
cutoff surface located at µ = −µ∗(ε) by symmetry reasons). Both these integrations can be
performed explicitly, and further simplifications occur by using properties of the elliptic
functions to find

f(µ∗(ε)) = 1
ε2 ,

df

dµ

∣∣∣
µ=µ∗(ε)

= 2
ε3

√(
1− α2

+ε
2)(1−mα2

+ε
2) . (3.56)

Employing these identities and solving the integrals, we find

IεGHY = L

πGε2

√(
1− α2

+ε
2)(1−mα2

+ε
2) {sin(µ0 − µ∗(ε))

[
1− log

(2δ
l

)]
−[sin(µ0 − µ∗(ε)) + 1] log[sin(µ0 − µ∗(ε)) + 1]

}
.

(3.57)

3.3.3 Null boundary terms

The contribution due to null boundaries is of the following form

IN = εn
8πG

∫
Bn
dλdθ

√
γ κ(λ) , (3.58)

where εn = ±1 depends on the orientation of the null normal to the surface, λ is a parameter
along the congruence of geodesics, γ is the induced metric along the θ direction and κ(λ) is
defined in the geodesic equation (3.3).
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WDW patch. Using the parametrization in eq. (3.21), the WDW patch is not affinely
parametrized and therefore we need to evaluate the following integral:

IWDW
N = αL

4πG

∫∫
dλdθ

[sin(µ0−µ)
z

+ cos(µ0−µ)
2z

f ′(µ)
f(µ)

]√
f(µ)|cos(µ0−µ)| . (3.59)

We take εn = 1 because the spacetime region under consideration lies in the past of the
null boundary of the WDW patch [11].

We change integration variables from (λ, θ) to (µ, z) using the Jacobian determinant

J = 1
α cos(µ0 − µ) , (3.60)

leading to the following form:

IWDW
N = L

πG

∫ µ∗(ε)

0
dµ

∫ zint(µ)

δ
dz
√
f(µ)

[sin(µ0 − µ)
z

+ cos(µ0 − µ)
2z

f ′(µ)
f(µ)

]
. (3.61)

We put a symmetry factor of 4 to take into account both the region at negative time and the
analog boundary term associated to the WDW patch anchored at the boundary µ = −µ0.
An explicit evaluation gives

IWDW
N = L

πG

∫ µ∗(ε)

0
dµ

[√
f(µ) sin(µ0 − µ) + f ′(µ)

2
√
f(µ)

cos(µ0 − µ)
]

×
[
log
(
l

2δ

)
− log(1 + sin(µ0 − µ))

]
.

(3.62)

Entanglement wedge. We use an affine parameterization for the boundaries of EW, so
eq. (3.58) vanishes.

3.3.4 Joint terms

The typical structure of a codimension-two joint [11] term reads

IJn = εa
8πG

∫
Jn
dd−1x

√
γ a , (3.63)

for the case where at least one null boundary is included, as it will always be the case in
the following computation. The expression of a will be specified for each case and involve
appropriate scalar products of the null normals. The coefficients εη, εa = ±1 depend on
the orientations of the normal one-forms, while γ is the determinant of the induced metric
along the codimension-two joint.

Joint between the cutoff z = δ and the WDW patch. This joint involves the
timelike surface z = δ and the null boundary of the WDW patch, therefore it reads

Iδ,WDW
J = εη

2πG

∫ µ∗(ε)

0
dµ
√
γ log |kR · n1| , (3.64)

where kR and n1 were defined in eq. (3.29) and (3.47), respectively.
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We put a symmetry factor of 2 for the integration along µ, and another factor of 2 due
to the presence of two joints of this kind, at positive and negative times. We determine the
sign εη according to [11]: with respect to the null boundary of the WDW patch, the joint is
a past boundary and the outward direction is a future one. Therefore we get the sign

εη = −1. (3.65)

The induced metric is determined by imposing that the joint is located at constant z = δ,
and that the intersection between such cutoff surface and the null boundary of the WDW
patch is given by

tWDW(µ, δ) = δ sin(µ0 − µ) . (3.66)

In this way we get

ds2
ind = L2f(µ)

[
1− 1

z2

(
dtWDW(µ, δ)

dµ

)2]
dµ2 , (3.67)

with induced metric determinant
√
γ = L

√
f(µ) sin(µ0 − µ) . (3.68)

The integrand reads

log |kR · n1| = log
∣∣∣∣αLz

√
f(µ) sin(µ0 − µ)

∣∣∣∣ . (3.69)

Putting everything together and evaluating the terms at z = δ, we find

Iδ,WDW
J = − L

2πG

∫ µ∗(ε)

0
dµ
√
f(µ) sin(µ0 − µ)

[
log
(
αL

δ

)
+ log

(√
f(µ) sin(µ0 − µ)

)]
.

(3.70)

Joint between the cutoff µ = µ∗(ε) and the WDW patch. We remind that the
cutoff surface located at µ = µ∗(ε) intersects both the WDW patch and the EW, therefore
we need to consider two joint contributions arising from such spacetime region. The first
one corresponds to an expression of the kind

Iε,WDW
J = εη

2πG

∫ zint(µ∗(ε))

δ
dz
√
γ log |kR · n2| , (3.71)

where kR and n1 were defined in eq. (3.29) and (3.52), respectively.
The factor of 4 comes from the symmetry along the time direction and the fact that we

include both the joints at µ = ±µ∗(ε). The joint is a past boundary for the null surface of the
WDW patch, and the outward direction points towards the future. Therefore, we find again

εη = −1 . (3.72)

The induced metric is

ds2
ind = L2f(µ∗(ε))

z2

[
1−

(
dtWDW(µ∗(ε), z)

dz

)2]
dz2 , (3.73)
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with metric determinant
√
γ = L

z ε
cos(µ0 − µ∗(ε)) , (3.74)

having used the definition of the cutoff in eq. (3.38).
We also compute the integrand

log |kR · n2| = log
∣∣∣∣αLz

√
f(µ) cos(µ0 − µ)

∣∣∣∣
µ=µ∗(ε)

= log
∣∣∣∣αLzε cos(µ0 − µ∗(ε))

∣∣∣∣ . (3.75)

Therefore we obtain

Iε,WDW
J = L

4πGε cos(µ0 − µ∗(ε))
{

2 log
[
αL

ε
cos(µ0 − µ∗(ε))

]
log
(2δ
l

)
+2 log

[
αL

ε
cos(µ0 − µ∗(ε))

]
log[1 + sin(µ0 − µ∗(ε))]

− log2 δ + log2
[2(1 + sin(µ0 − µ∗(ε)))

l

]}
.

(3.76)

Joint between the cutoff µ = µ∗(ε) and the EW. The computation is similar to
the previous joint, but in this case the intersection involves the EW instead of the WDW
patch. The term to include in the action is

Iε,EW
J = εη

2πG

∫ zRT

zint(µ∗)
dz
√
γ log |w · n2| , (3.77)

where w and n2 were defined in eq. (3.35) and (3.52), respectively.
The factor of 4 comes from the fact that there are two joints of this kind, for both

positive and negative times, and there is another joint located at µ = −µ∗(ε). The induced
metric in this case is

ds2
ind = L2f(µ)

z2

[
1−

(
dtEW(z)
dz

)2]
dz2 = 0 , (3.78)

and the scalar product between the normals is w · n2 = 0. The result seems divergent
because the last term enters as the argument of a logarithm, but since the induced metric
determinant vanishes as well and faster, we find Iε,EW

J = 0.

Joint on the RT surface. There is a joint precisely at the RT surface located at t = 0
and z = l/2, arising from the intersection between the positive and negative parts of the
entanglement wedge. The structure of the integration is given by

IRT
J = εη

4πG

∫ µ∗(ε)

0
dµ
√
γ log

∣∣∣∣12w+ ·w−
∣∣∣∣ , (3.79)

where the symmetry factor of 2 comes from the integration along µ. Here we denoted with
w± the normals to the positive and negative parts of the entanglement wedges, respectively

w± = β(±dt+ dz) . (3.80)
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The RT surface represents for the upper (lower) portion of the entanglement wedge a
past (future) boundary, and the outward normal points towards the future (past). Therefore,
the sign is given by

εη = −1 . (3.81)
The induced metric is

ds2
ind = L2f(µ)dµ2 , (3.82)

since the RT surface sits at constant t = 0 and z = l/2. Therefore the metric determinant is
√
γ = L

√
f(µ) . (3.83)

The scalar product between the null normals reads
1
2 w+ ·w− = β2

L2
z2

f(µ) . (3.84)

Collecting these factors together, we obtain

IRT
J = − L

2πG

∫ µ∗(ε)

0
dµ
√
f(µ) log

∣∣∣∣∣ β2L l√
f(µ)

∣∣∣∣∣ . (3.85)

Joint at the intersection between WDW patch and EW. There are a couple of
joints (located at positive or negative times) at the intersection curve between the WDW
patch and the entanglement wedge. By symmetry, we compute only one of them and we
multiply the result by a factor of 2. The structure is the following:

I int
J = εη

2πG

∫ µ∗(ε)

0
dµ
√
γ log

∣∣∣∣12w · kR
∣∣∣∣ , (3.86)

where another factor of 2 arises due to the integration over µ. The sign is given by

εη = 1 , (3.87)

since for both null surfaces the joint represents the future boundary and the outward-directed
normal also points to the future. The induced metric is

ds2
ind = L2f(µ)

[
1 + 1

z2

(
dzint(µ)
dµ

)2
− 1
z2

(
dtint(µ)
dµ

)2]
dµ2 , (3.88)

where in the last part we express the intersection curve as a function tint(µ) by plugging in
the function (3.37) inside either tWDW(µ, z) or tEW(z). Working in this way, we obtain

tint(µ) = l

2

(
1− 1

sin(µ0 − µ) + 1

)
. (3.89)

The metric determinant simplifies to
√
γ = L

√
f(µ) , (3.90)

and the argument of the logarithmic term in the integral reads
1
2 kR ·w = −αβ2 [1 + sin(µ0 − µ)] . (3.91)

Therefore, the corresponding joint term is given by

I int
J = L

2πG

∫ µ∗(ε)

0
dµ
√
f(µ) log

∣∣∣∣αβ2 [1 + sin(µ0 − µ)]
∣∣∣∣ . (3.92)
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Joint at µ = 0. The last kind of joint term arises from the intersection between the
WDW patches at µ = 0. By symmetry, there are two of them, at positive and negative
values of time. The integral reads

IµJ = εη
4πG

∫ zint(0)

δ
dz
√
γ log

∣∣∣∣12kL · kR
∣∣∣∣ , (3.93)

where εη = −1 and kL,R denotes the null normals to the WDW patch on the left and right
sides of the surface µ = 0, see eq. (3.29).

We compute the induced metric

ds2
ind = L2f(µ)

z2

[
1−

(
dtWDW(0, z)

dz

)2]
dz2 , (3.94)

and the metric determinant
√
γ = −α+L

z
cosµ0 , (3.95)

where in the last step we used that f(0) = α2
+. The scalar product between the null

one-forms reads ∣∣∣∣12 kL · kR
∣∣∣∣ = α2L2

z2 α2
+ cos2 µ0 . (3.96)

Since the integral involves only the z variable, it can be explicitly evaluated:

IµJ = −Lα+ cosµ0
4πG

{
2 log|αLα+ cosµ0| log

(2δ
l

)
+2 log |αLα+ cosµ0| log(1 + sinµ0)− log2 δ + log2

(2(1 + sinµ0)
l

)}
.

(3.97)

3.3.5 Counterterm on null boundaries

Since the gravitational action is not reparametrization-invariant as it stands, we need to
add a counterterm [11] on null boundaries which reads

Ict = 1
8πG

∫
Bn
dλdd−1x

√
γΘ log |L̃Θ| , (3.98)

where γ is the induced metric determinant along the coordinates orthogonal to the parameter
λ, Θ is the expansion of the congruence of null geodesics and L̃ is an arbitrary scale.

WDW patch. Using the parametrization (3.21) for the null boundary of the WDW patch
and the corresponding expansion determined in eq. (3.24), we obtain

IWDW
ct = L

2πG

∫ µ∗(ε)

0
dµ

∫ zint(µ)

δ
dz

[√
f(µ) sin(µ0 − µ)

z
+ cos(µ0 − µ)

2z
f ′(µ)√
f(µ)

]

× log
∣∣∣∣αL̃[sin(µ0 − µ)

z
+ cos(µ0 − µ)

2z
f ′(µ)
f(µ)

]∣∣∣∣
(3.99)
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where we put a symmetry factor of 4 (due to the time and µ coordinates) and we used the
Jacobian determinant (3.60) to change variables. A direct calculation gives

IWDW
ct = L

4πG

∫ µ∗(ε)

0
dµ

[√
f(µ) sin(µ0 − µ) + cos(µ0 − µ) f ′(µ)

2
√
f(µ)

]

×
{

log2
[
αL̃

δ

(
sin(µ0 − µ) + cos(µ0 − µ) f

′(µ)
2f(µ)

)]

− log2
[

2αL̃
l

(
sin(µ0 − µ) + cos(µ0 − µ) f

′(µ)
2f(µ)

)
(1 + sin(µ0 − µ))

]}
.

(3.100)

Entanglement wedge. The expansion parameter Θ vanishes on the EW and so the term
in eq. (3.98) vanishes.

3.3.6 Series expansion of the gravitational action

In the previous subsections we computed term by term the contributions to the action in
Janus AdS3 spacetime. It reads

Itot(γ) =
∑
X
IX (γ) , (3.101)

where the subscript X runs over

X ∈ {B,GHY,N ,J , ct} , (3.102)

i.e. it contains the terms defined in eq. (2.12): bulk, Gibbons-Hawking-York, null codimension-
one boundaries, joints and counterterm.

A generic contribution IX to the gravitational action is of two kinds:

1. All the integrations have been performed explicitly. This is the case of eqs. (3.57),
(3.76), (3.97). In this case, we simply perform a Laurent expansion around ε = 0 as
explained at the beginning of appendix B.

2. There is still a remaining integration over µ to perform. This is the case of eqs. (3.45),
(3.51), (3.62), (3.70), (3.85), (3.92), (3.100). In this case, we need to extract the
singular behaviour as explained below.

The steps that we perform in case 2 are the following:

• Consider a generic integral among the list of case 2, i.e.

I(µ0) =
∫ µ∗(ε)

0
dµF(µ) , (3.103)

where µ∗(ε) is the regulator defined in eq. (3.38) such that it collapses to µ0 when
ε = 0, but is otherwise chosen to avoid that µ0 enters the integration domain. If the
integrand F is singular in µ = µ0, we Laurent expand it around µ0.
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• Collect the terms in the series expansion of F as follows:

F(µ) = FS(µ, µ0) + FR(µ, µ0) , (3.104)

where FS are singular terms in µ0 after the integration over µ, and FR are instead
regular (i.e. analytic). The number of singular terms will be finite, while the regular
part will contain, in principle, infinite terms with positive powers of (µ0 − µ).

• Sum and subtract the singular part from the original integral, getting

I(µ0) =
∫ µ0

0
dµ (F(µ)−FS(µ, µ0)) +

∫ µ∗(ε)

0
dµFS(µ) . (3.105)

We analytically compute the last term, since it is now a sum of rational functions;
instead we numerically evaluate the former term. The advantage of this splitting is
that the first part of the solution is regular in µ = µ0, and therefore we can evaluate
the limit ε→ 0 explicitly.

The result of this method is a bunch of numerical functions analytic in µ0, plus divergent
terms evaluated with this regularization procedure. After performing the integrals along µ
in this way, we expand the remaining terms around ε = 0. The details of the computation
are explained term by term in appendix B.1. At the end of the procedure, the gravitational
action is given by eq. (3.101), where the five terms entering the set (3.102) are written in
eqs. (B.8), (B.9), (B.12), (B.14), (B.19).

3.3.7 Subtraction of the empty AdS solution and final result

The double cutoff regularization requires to subtract the subregion action evaluated in
vacuum AdS3 (which is recovered in the γ → 0 limit) and verify that the quantity obtained
in this way is independent of the parameter ε introduced above. This step can be performed
using the following results:

lim
γ→0

α+ = 1 , lim
γ→0

α−= 0 , lim
γ→0

µ0 = π

2 , lim
γ→0

f(µ) = 1
cos2µ

, lim
γ→0

µ∗(ε) = π

2−arcsinε.
(3.106)

In this way, we get the contribution to the subregion complexity intrinsic to the defect

∆CJAdS
A (γ) = L

π2G
P
(
γ, L̃/L

)
log
(
l

δ

)
+ finite terms , (3.107)

where

P
(
γ, L̃/L

)
= −I(1)

B (γ) + 1
2

(
π

2 − IGHY(γ)
)
− 1

4
(
I(1)

ct (γ)− I(1)
ct (0)

)
+ 3

2µ0
− 1
π
− α+ cosµ0

(
1 + 1

2 log
∣∣∣∣∣ L̃L tanµ0

α+

∣∣∣∣∣
)
.

(3.108)

The functions I(1)
B , IGHY and I(1)

ct are defined in eqs. (B.21), (B.22), (B.26), while α+ and
µ0 were introduced in eq. (2.5).
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Figure 4. Plot of the expression defined in eq. (3.108) as a function of γ. Various colors correspond
to different choices of L̃/L.

We observe that the contribution intrinsic to the defect ∆CJAdS
A is logarithmically

divergent in the ratio between the length l of the subregion on the boundary and the UV
cutoff δ. All the dependence in the computation from the ambiguity in normalizing the null
normals, parametrized by α and β, disappear in the final result. On the contrary, ∆CJAdS

A

depends on the arbitrary scale L̃ which enters in the counterterm in eq. (3.98).
According to the discussion in [74], we expect that the coefficient P (γ, L̃/L) of the

logarithmic divergence is independent of the regularization prescription. The quantity
P (γ, L̃/L) is numerically evaluated in figure 4 as a function of γ for various choices of L̃/L.
Note that, for small deformation parameter γ, the quantity ∆CJAdS

A is positive, meaning
that it is computationally harder to produce an interface than vacuum space. Since our
calculation is only valid for γ ≤ γ0 ≈ 0.704, see eq. (3.18), we can not give any physical
meaning to the divergence of P for γ → 1/

√
2 ≈ 0.707.

The divergence structure obtained in eq. (3.107) is of the same kind as the one predicted
using the volume conjecture [68]. Indeed, we found using the double cutoff regularization:

∆CJAdS
V = L

G
η(γ) log

(
l

δ

)
+ finite terms , (3.109)

where
η(γ) = 2α+(K(m)− E(m)) . (3.110)

The plot of the function η(γ) is shown in figure 5. The contribution intrinsic to the defect
∆CJAdS

V is always positive and diverges when γ → 1/
√

2.
At small γ, the coefficient of the volume divergent term [68] scales as γ2, i.e. η ≈ πγ2/4.

From the eq. (3.108), we checked that the coefficient O(γ) of the small γ expansion of P
indeed vanishes, i.e.

P (γ, L̃/L) = c1γ
2 + c2γ

2 log γ2 +O(γ3) , (3.111)
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η(γ)

γ

Figure 5. Plot of η(γ) as defined in eq. (3.110), which is the coefficient of the log divergences due
to the defect in the volume case.

where
c1 = 15

8π −
5π
64 + 3π

32 log
∣∣∣∣∣ 8
3π

L̃

L

∣∣∣∣∣ , c2 = −3π
32 . (3.112)

The divergent parts of volume and action have then a similar (even if not identical)
parametric dependence at small γ.

4 Subregion complexity in the AdS3/BCFT2 model

In this section we compute the subregion complexity in the AdS3/BCFT2 model. The CFT
is restricted to live on a half plane of the flat spacetime x ≥ 0, because there is a boundary
at x = 0. In the present work we are interested to determine if the presence of this boundary
entails a logarithmically divergent complexity. In principle, we could consider the case of an
arbitrary interval x ∈ [l1, l2], which, in general, does not contain the boundary at x = 0. If
the interval does not contain the boundary, we do not expect extra divergences in addition
to the ones of pure AdS (this was explicitly checked for the CV case in [64]). Therefore we
will consider the subregion complexity of the interval x ∈ [0, l/2].

In section 4.1 we specify the domain of integration, see figure 6. We perform the
calculation of the action in section 4.2. In order to find the intrinsic contribution coming
from the presence of the brane, we will subtract the vacuum solution.

4.1 Null boundaries in the AdS3/BCFT2 model

We work with the metric in Poincaré coordinates Xµ = (t, z, x), see eq. (2.9). The bulk
dual geometry is delimited by the end-of-the-world brane

x = −z cotα . (4.1)

The RT surface at t = 0 is the same as in pure AdS

zRT(x) =

√(
l

2

)2
− x2 . (4.2)
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The EW and most of the WDW patch are also the same as the ones in empty AdS space.
An extra portion of WDW patch (see [64, 65]) is also needed.

We use the regularization A in figure 2 where the WDW patch and the EW start from
the true boundary located at z = 0. The cutoff is the surface z = δ. At the end of the
computation, we will send δ → 0.

WDW patch. Here we consider just the t > 0 boundary of the WDW, the t < 0 part
can be found by symmetry. The null boundary of the WDW patch in the right region x ≥ 0
originating from the surface at t = 0 and z = 0 is

tWDW,R(z, x) = z . (4.3)

In the left region x < 0, the boundary of the WDW patch is a portion of the cone

tWDW,L(z, x) =
√
x2 + z2 , (4.4)

which intersects the brane defined by eq. (4.1). The null boundary of this portion of WDW
patch can be parametrized by the congruence of geodesics

Xµ
WDW,L = B (λ, λ cos θ,−λ sin θ) , (4.5)

where each value of θ ∈ [0, π2 −α] gives a different null geodesic, λ is the (non-affine) geodesic
parameter and B > 0 is an arbitrary constant. The relevant geometric quantities are

kµWDW,L = B (1, cos θ,− sin θ) , κWDW,L = − 2
λ
,
√
γWDW,L = L

cos θ , ΘWDW,L = 0 .
(4.6)

Entanglement wedge. The boundary of the EW is the same as in pure AdS

tEW(z, x) = l

2 −
√
x2 + z2 . (4.7)

The tangent vector of the null affine geodesics is

wµ = C
z2

L2

(
−1, z√

x2 + z2
,

x√
x2 + z2

)
, (4.8)

where C > 0 is a constant. The expansion parameter Θ vanishes as expected [85].

Intersection between surfaces. The following intersection curves play an important
role in delimiting the integration regions:

• The intersection curve between the right side of the WDW patch and the EW:

xint,R(z) = 1
2

√
l(l − 4z) , tint,R(z) = z . (4.9)

• The intersection between the left part of the WDW patch and the EW:

xint,L(z) = −

√(
l

4

)2
− z2 , tint,L(z) = l

4 . (4.10)
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The intersection between the curve in eq. (4.10) and the end-of-the-world brane is the point:

(t1, z1, x1) =
(
l

4 ,
l

4 sinα,− l4 cosα
)
. (4.11)

It is useful to determine the intersection between the RT geodesic in eq. (4.2) and the brane
in eq. (4.1), which is the point with coordinates

(t2, z2, x2) =
(

0 , l2 sinα ,− l2 cosα
)
. (4.12)

The following inequalities hold

z1 < z2 , |x1| < |x2| . (4.13)

The intersection between the RT and the cutoff surface is the point with coordinates

(t3, z3, x3) =
(

0 , δ , 1
2
√
l2 − 4δ2

)
. (4.14)

Note that x3 is different from xint,R evaluated at z = δ, which is instead

xint,R(δ) = 1
2

√
l(l − 4δ) , (4.15)

and in particular
x3 ≥ xint,R(δ) . (4.16)

Therefore, when splitting the evaluation of the gravitational action using regularization
A in figure 2, we need to include the contribution from spacetime regions in this interval.
The full geometric setting is depicted in figure 6. A projection on the (x, z) plane is shown
in figure 7.

4.2 Computation of the action

The evaluation of the subregion action is composed by two parts: the right side of the
conformal diagram in figure 6, which is the same as in empty AdS space, and the left side
where the end-of-the-world brane modifies the geometry to consider. The former contribution
for symmetry reasons is half of the subregion action evaluated in AdS3 spacetime, which
was studied in [12, 45, 48]:

IR = L

8πG log
∣∣∣∣∣ L̃L
∣∣∣∣∣ lδ + L

4πG log
∣∣∣∣∣2L̃L

∣∣∣∣∣ log
(
δ

l

)
− L

4πG log
∣∣∣∣∣ L̃L
∣∣∣∣∣+ Lπ

32G . (4.17)

Now we proceed with the computation of the left side.

4.2.1 Bulk term

Using the decomposition in figure 7, for α ≥ π/6 we can split the computation of the left
side of the bulk term as follows

IB,L = 2
(
I1
B,L + I2

B,L + I3
B,L + I4

B,L + I5
B,L

)
, (4.18)
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Figure 6. Geometrical sketch of the null boundaries of the WDW patch (light yellow surfaces) and
of the entanglement wedge (red), taken from two different perspectives. The blue plane represents
the brane and restricts the intergration to the region x ≥ −z cotα. The purple transparent region
represents the cutoff surfaces located at z = δ. There are several curves depicted in green representing
the intersections between the WDW patch, the entanglement wedge and the brane. In the figure we
take α = π/6.
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1

23

4

5

(x1 ,z1)

(x2 ,z2)

l/2

l/4

x

z

Figure 7. Projection on the (x, z) plane of the integration domain. It corresponds to figure 6 seen
from above (where for “above” we mean large positive t). The end-of-the-world brane is shown in
blue and the RT surface is drawn in red. The intersection curve in eqs. (4.9) and (4.10) is shown in
green. The splitting of integration in eq. (4.18) for the bulk term for α ≥ π/6 is also shown. The
integrals I1

B,L, . . . , I
5
B,L correspond to the regions 1, . . . , 5.

where

I1
B,L = − L

4πG

∫ z1

δ
dz

∫ 0

−z cotα
dx

∫ tWDW,L(z,x)

0
dt

1
z3 ,

I2
B,L = − L

4πG

∫ l/4

z1
dz

∫ 0

xint,L(z)
dx

∫ tWDW,L(z,x)

0
dt

1
z3 ,

I3
B,L = − L

4πG

∫ l/4

z1
dz

∫ xint,L(z)

−z cotα
dx

∫ tEW(z,x)

0
dt

1
z3 , (4.19)

I4
B,L = − L

4πG

∫ z2

l/4
dz

∫ 0

−z cotα
dx

∫ tEW(z,x)

0
dt

1
z3 ,

I5
B,L = − L

4πG

∫ l/2

z2
dz

∫ 0
√

(l/2)2−z2
dx

∫ tEW(z,x)

0
dt

1
z3 .

The integrals I1
B,L, . . . , I

5
B,L are performed respectively in the domains 1, . . . , 5 shown in

figure 7. In eq. (4.18), we put a factor of 2 to account for the part of the geometry at negative
times. In the evaluation of the gravitational action, we need to consider the spacetime
region given by the intersection between the EW and the WDW patch, which are delimited
by their respective null boundaries. Using the symmetry along the time direction, the recipe
is to integrate along t from 0 up to the smaller value between tWDW,L(z, x) and tEW(z, x).
In the following, we will refer to the application of this prescription by stating that either
the WDW patch sits below the EW, or viceversa. Here by “below” we mean being closer to
the plane t = 0, see figure 6. The intersection curves depicted in green in figure 6 and 7
delimit the region where the time coordinate of the EW patch becomes bigger than the
WDW patch, or similar transitions in the splitting of the geometrical decomposition.
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The first two terms in eq. (4.18) refer to the region where the WDW patch is below the
EW, and therefore the integration along t goes from 0 to the function tWDW,L(z, x). The
terms I3

B,L, I
4
B,L, I

5
B,L correspond instead to the spacetime region where the EW sits below

the WDW patch.
Strictly speaking, the decomposition in eq. (4.19) only applies when α ≥ π/6. For

α < π/6, the splitting is slightly different and the integrals to evaluate get modified. However
there is nothing singular at the special value α = π/6: rather, the distinction arises from
the splitting of the integration domains. We verified by direct computation that the result
for α < π/6 is given by the same analytical formula.

We find that the relevant divergences all come from the first contribution

I1
B,L = L

8πG

[cotα
sinα − log

(
tan

(
α

2

))][
log
(
δ

l

)
− log

(sinα
4

)]
, (4.20)

while the other terms contribute only to finite parts. Summing all these contributions, we get

IB,L = L

4πG

[cotα
sinα−log

(
tan

(
α

2

))][
log
(
δ

l

)
−log

(sinα
4

)]
+ L

96πG

[
π2−36 cotα

sinα−6log2 2−12log2(sinα)+6log(4−4cosα) log(1−cosα)

+12log
(

tan
(
α

2

))
−24log(2sinα) log

(
tan

(
α

2

))
+24 cotα

sinα log2−12Li2
(

sin2
(
α

2

))]
.

(4.21)

The divergent part is all contained into the logarithm in the first line; everything else
amounts to a finite part.

4.2.2 GHY term

The contribution to the GHY term in the left region is evaluated exactly in the same way as
in [64], since the presence of the entanglement wedge does not modify this part. Indeed, for
small enough δ, the cutoff only intersects the WDW patch; therefore we obtain (including a
symmetry factor of 2):

IGHY,L = L

2πG

∫ 0

−δ cotα
dx

∫ tWDW,L(δ,x)

0

dt

δ2 = L

4πG

[cotα
sinα − log

(
tan

(
α

2

))]
. (4.22)

Unlike the computation in [64], here there is no IR cutoff because the finite length of the
subregion on the boundary works as a regulator.

4.2.3 Brane term

The brane term is a codimension-one contribution coming from the surface Q parametrized
by x = −z cotα. For the brane, the outward-directed normal vector, induced metric and
extrinsic curvature are

nµ =− z
L

(0,cosα,sinα) , ds2 = L2

z2

(
−dt2+ dz2

sin2α

)
,
√
−h= L2

z2
1

sinα , K = 2cosα
L

,

(4.23)
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while the tension is given in eq. (2.11). The brane term can be splitted into a contribution
coming from the intersection with the WDW patch, and the other one coming from the
intersection with the EW. After including a symmetry factor of 2 to account for negative
times, we compute these terms as follows:

IQ = 2
(
I1
Q + I2

Q

)
, (4.24)

where

I1
Q = 1

8πG

∫ zint,L(α)

δ
dz

∫ tWDW,L(z,x=−z cotα)

0
dt
L

z2 cotα = L

8πG
cotα
sinα log

(
l

4δ sinα
)
,

I2
Q = 1

8πG

∫ zmax,L(α)

zint,L(α)
dz

∫ tEW(z,x=−z cotα)

0
dt
L

z2 cotα = L

8πG
cotα
sinα (1− log 2) . (4.25)

Summing the two contributions, we find

IQ = L

4πG
cotα
sinα

[
log
(
l

δ

)
+ 1 + log

(sinα
8

)]
. (4.26)

4.2.4 Joint terms

There are several joint terms to include:

• Joint between the cutoff surface z = δ and the brane Q.

This joint involves two timelike surfaces. The induced metric is determined by imposing
z = δ and x = −z cotα, so that

ds2 = −L
2

z2 dt
2 ,

√
−h = L

δ
. (4.27)

In addition, the argument of the integrand corresponds to the boost parameter relating
the cutoff and the brane, and reads

η = |arccos (n · nδ)| = α , (4.28)

where n is defined in eq. (4.23) and nδ is the normal one-form to the cutoff surface. This
joint is fully contained in the region where the WDW patch sits below the EW, and
therefore the integration along the coordinate t runs along the range [0, tWDW,L(z =
δ, x = −δ cotα)]. Explicitly, this is given by

IQ,δJ ,L = 1
4πG

∫ δ
sinα

0
dt
αL

δ
= L

4πG
α

sinα . (4.29)

We included here a symmetry factor of 2 to include also the region at negative times.
This expression is the same appearing in [64].

• Joint between the WDW patch and the cutoff surface z = δ.

The WDW patch at z = δ is given by tWDW,L(δ, x) =
√
x2 + δ2. Therefore the induced

metric reads
ds2 = L2

z2

[
−
(
dtWDW,L

dx

)2
+ 1

]
dx2 ,

√
γ = L

cos θ , (4.30)
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where we are using for convenience polar coordinates such that θ = −arctan (x/z). The
scalar product between the normal one-forms is

a = log|nδ · kWDW,L| = log
∣∣∣∣BL cos θ

δ

∣∣∣∣ . (4.31)

This allows to evaluate

IWDW,δ
J ,L = − L

4πG

∫ π
2−α

0

dθ

cos θ log
∣∣∣∣BL cos θ

δ

∣∣∣∣ =

= L

4πG log
(

tan
(
α

2

))
log
(
BL

δ

)
− L

96πG

[
π2 + 12 log

(
tan

(
α

2

))
log
(1

4 tan
(
α

2

))
+ 12Li2

(
− cot2

(
α

2

))]
.

(4.32)
where we assigned ηη = −1 sign due to the fact that the joint is a past boundary for the
WDW patch, and the spacetime region of interest is also in the past with respect to the
null boundary of the WDW patch. In addition, we put a symmetry factor of 2. There
would be in principle a joint term from the intersection between the cutoff surface at
z = δ and the EW, but since the brane delimits the spacetime region of integration, this
intersection is cut away.

• Joint at the RT surface.
The computation works in the same way as for empty AdS spacetime, the only difference
being that the lower endpoint of integration along x is determined by putting x = −z cotα
in the equation defining the RT surface. We get

IRT
J ,L = − L

8πG

∫ 0

− l
2 cosα

dx
2l

l2 − 4x2 log
∣∣∣∣∣ C2

4L2

(
l2 − 4x2

)∣∣∣∣∣
= L

4πG log
(

tan
(
α

2

))
log
(
Cl

L

)
− L

96πG

[
π2 + 12 log2

(
tan

(
α

2

))
+ 12Li2

(
− cot2

(
α

2

))]
. (4.33)

We notice that this joint amounts only to a finite part.

• Joint at the intersection curve between WDW patch and EW.
The induced metric is

ds2 = L2

z2

[(
dzint,L
dx

)2
+ 1

]
dz2 = L2

z2
int,L

l2

l2 − 16x2dz
2 ,

√
γ = 4l

l2 − 16x2 , (4.34)

and the integrand contains the factor

a = log|kWDW,L ·w| = log|BC| . (4.35)

In this computation, we used the fact that the intersection curve is located at constant
t = l/4. Therefore we obtain (putting a symmetry factor of 2)

I int
J ,R = L

4πG

∫ 0

− l
4 cosα

dx
4l

l2−16x2 log(BC) =− L

4πG log(BC) log
(

tan
(
α

2

))
. (4.36)
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• Joint between orthogonal surfaces.

There are three joints between orthogonal surfaces. One of them is between the two
parts of the WDW patch at x = 0 and involves two parallel null surfaces. The other
two involve the joints between the brane and the WDW patch and the EW, respectively.
All of them have a potentially divergent integrand, which involve the logarithm of the
scalar product of two orthogonal vectors. However, the integrand is multiplied by the
vanishing determinant of the induced metric. Although formally undetermined, these
terms can be shown to vanish by an opportune limiting procedure [64].

Summing all the joint contributions from the left side of the geometry, we obtain

IJ ,L =− L

4πG log
(

tan
(
α

2

))
log
(
δ

l

)
+ L

48πG

[
12 α

sinα−12log
(

tan
(
α

2

))
log
(1

2 tan
(
α

2

))
−12Li2

(
−cot2

(
α

2

))
−π2

]
.

(4.37)
The only divergence is logarithmic and comes from the joint between the WDW patch
and the cutoff surface; all the other terms contribute to finite parts. Remarkably, all the
dependence on the ambiguity in parametrizing the null vectors cancel, and we obtain a
logarithmic divergence in δ/l plus a finite part which depends only on α.

4.2.5 Null boundary term and counterterm

The computation of the codimension-one terms on the WDW patch works in the same
way as explained in [64, 65], except that the range of the λ coordinate is delimited by the
intersection between the WDW patch and the EW. In particular, the biggest value of z
reached along the null boundary of the WDW patch is z = l/4. We find

IWDW,L
N =− 1

4πG

∫ π
2−α

0
dθ

∫ l
4B cosθ

δ
B cosθ

dλ
L

cosθ

(
− 2
λ

)
= L

2πG log
(

tan
(
α

2

))
log
(4δ
l

)
. (4.38)

Since the expansion parameter of the congruence of geodesics vanishes both on the left side
of the WDW patch and on the boundary of the EW, the counterterm action is zero, Ict = 0.

One should also consider the analogous terms evaluated on the EW; however they both
vanish because the parametrization (4.8) is affine and the expansion parameter vanishes.

4.2.6 Subtraction of the vacuum solution and final result

Summing all the contributions, one observes that the divergences arising from the left side
cancel, giving just a finite contribution. There is also a contribution to the total action
from the right side, (4.17), which is independent of α.

As in [65], we can isolate the contribution of the boundary by subtracting the complexity
of the α = π

2 case,3 which correspond to a vanishing brane tension, see eq. (2.11). We find

3Note that the conventions used in [65] are such that their parameter, that we call α̃, is related to the α
used here and in [64] by the relation α̃ = cotα.
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CA(sub)

CA(tot)

0.0 0.5 1.0 1.5

α

0.2

0.4

0.6

0.8

ΔCA

Figure 8. Plot of the contribution of the defect to the subregion complexity in eq. (4.39) as a
function of α (red) and comparison with the result for the total space studied in [65] (blue). Here
we set L/G = 1.

that the boundary contribution to the subregion complexity is finite, and independent from
l i.e.

∆CBCFT
A = L

96π2G

{
12cotα

sinα − π
2 − 6 log2 2− 12 log2(sinα) + 24 α

sinα − 12 log
(

tan
(
α

2

))
+6 log(4− 4 cosα) log(1− cosα) + 24 log

(
tan

(
α

2

))
log 4

−24 log2
(

tan
(
α

2

))
− 12Li2

(
sin2

(
α

2

))
− 24Li2

(
− cot2

(
α

2

))}
.

(4.39)
The result is plotted in figure 8, showing a divergent result when α→ 0 and its vanishing
value when α = π

2 .
As the contribution of the defect ∆CBCFT

A to the subregion complexity is independent
of the subregion size l, we may expect that it should reproduce the calculation of the total
complexity of formation in [64, 65]. This is not the case, because the choice of the infrared
cutoff is different: while in [64, 65] the action is regulated by an IR cutoff at constant z, we
instead use as an IR cutoff the RT surface. The two choices agree just for the UV divergent
part of the action: in fact, this divergence is independent of the infrared regulator because
it is localised nearby the location of the defect.

5 Conclusions

In this work we computed the CA conjecture for a subregion given by an interval of length
l on the boundary for both the Janus AdS3 geometry and the AdS3/BCFT2 model. As
discussed below table 1, the action conjecture does not provide a universal structure of UV
divergences, but the results depend on the particular defect or boundary characterizing
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the geometry. It was recently proposed that ambiguities in the field theory realization of
complexity models could be related to similar ambiguities in the holographic proposal [25].
It would be interesting to investigate if the distinct behaviours of the interface models
considered in this paper can be related to such ambiguities.

In [74] we studied the volume conjecture for the non-supersymmetric Janus AdS5
geometry. We computed the volume using the single and the double cutoff regularizations,
and we found that only the coefficient of the log-divergences was independent of the
regularization. It would be interesting to check this also for action complexity.

We believe that further insights on the universality properties of the holographic
complexity conjecture could arise from an investigation of the subregion action in the
moving mirror model, which was studied using the CV conjecture [86]. The moving mirror
setting is also a useful tool to investigate the evaporation of black holes. The recent
developments coming from the island conjectures [87–89] have been related to subregion
complexity in [90]. It would be interesting to test these conjectures in the models with
defects or boundaries considered here.
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A Jacobi elliptic functions and elliptic integrals

We follow the conventions of [91] to define the incomplete elliptic integrals

F(ϕ|m) =
∫ ϕ

0

dθ√
1−m sin2 θ

, (A.1)

E(ϕ|m) =
∫ ϕ

0
dθ
√

1−m sin2 θ , (A.2)

Π(n;ϕ|m) =
∫ ϕ

0

dθ(
1− n sin2 θ

)√
1−m sin2 θ

, (A.3)

of the first, second and third kind, respectively. The complete elliptic integrals are defined as

F

(
π

2

∣∣∣∣m) = K(m) , E

(
π

2

∣∣∣∣m) = E(m) , Π
(
n; π2

∣∣∣m) = Π(n|m) . (A.4)

The Jacobi amplitude ϕ = am(x|m) is the inverse of F(x|m)

x = F(ϕ|m) . (A.5)

The Jacobi elliptic functions are defined as

sn(x|m) = sinϕ, cn(x|m) = cosϕ and dn(x|m) =
√

1−m sin2 ϕ, (A.6)
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such that sn(K(m)|m) = 1 and cn(K(m)|m) = 0. They satisfy the identities

sn(x|m)2 + cn(x|m)2 = 1 , (A.7)
dn(x|m)2 +m sn(x|m)2 = 1 . (A.8)

We conclude with the derivation of the finite form of the change of variables presented
in eq. (3.40). Infinitesimally, we apply the transformation in eq. (2.6). Taking eq. (2.4) into
account, a direct integration leads to

y =
∫ µ

0
ds
√
f(s)

=
∫ µ

0
ds

α+
sn(α+(s+ µ0)|m)

=
∫ α+µ

0
dσ

1
sn(σ + K(m)|m)

=
∫ α+µ

0
dσ

dn(σ|m)
cn(σ|m)

= 1
2log

(1 + sn(α+µ|m)
1− sn(α+µ|m)

)
= arctanh[sn(α+µ|m)] .

(A.9)

In the first equation we replaced eq. (2.4), in the second we used the definition of µ0 in
eq. (2.5); then the (half)-periodicity property sn(σ + K(m)|m) = cn(σ|m)/dn(σ|m) was
taken into account. The resulting (indefinite) integral is known and can be found for example
in eq. (5.135.5) of [92]. Inverting the hyperbolic function leads to the form reported in
eq. (3.40).

B Details of the series expansion of Janus AdS action

We report in this appendix the details of the series-expansion of the terms composing the
gravitational action evaluated in section 3.3, following the steps outlined in section 3.3.6.

Using the definition of µ0 in eq. (2.5) and the property f(µ∗(ε)) = ε−2, we obtain (see
eq. (2.12) in [67])

µ0 − µ∗(ε) = 1
α+

F(arcsin(α+ε)|m) = ε+O(ε3) . (B.1)

This identity is the building block to determine the expansion of the action around ε = 0,
and it is sufficient to perform the expansion of the terms of case 1 in section 3.3.6.

In order to perform the procedure described for the terms of case 2 in section 3.3.6, the
following Laurent-expansions around µ = µ0 are needed:

f(µ)3/2 sin(µ0−µ) = 1
(µ0−µ)2 + 1

3 +O(µ0−µ) , (B.2)

f(µ)3/2 [sin(µ0−µ)+1] log[sin(µ0−µ)+1] = 1
(µ0−µ)2 + 1

2(µ0−µ) + 1
6 +O(µ0−µ) , (B.3)√

f(µ) log
[√

f(µ)(sin(µ0−µ)+1)
]

=− 1
µ0−µ

log(µ0−µ)+1+O[(µ0−µ) log(µ0−µ)] .

(B.4)
In the following subsection we perform the procedure term by term.
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B.1 Expansion of the action term by term

Using the identities and the definitions listed above, we determine the expansions of the
terms entering the gravitational action:

• Bulk term. Consider the second term in eq. (3.45), which is analytic in all the integration
domain, except for a neighbourhood of µ = µ0. Its Laurent-expansion around µ = µ0 is
given in eq. (B.2). The only term contributing to a divergence is the first one, therefore
we regularize the integral by adding and subtracting such term, which evaluates to

∫ µ∗(ε)

0

dµ

(µ0 − µ)2 = 1
µ0 − µ∗(ε)

− 1
µ0

= 1
ε
− 1
µ0

+O(ε) (B.5)

where we used the definition of µ0 in eq. (2.5) and the property f(µ∗(ε)) = ε−2 to
obtain the expansion around ε = 0. Now we move to the first part of the integral (3.45).
The series expansion of the integrand around µ = µ0, which is the only point where
singularities arise, reads

f(µ)3/2 [sin(µ0 − µ) + 1] log[sin(µ0 − µ) + 1] = 1
(µ0 − µ)2 + 1

2(µ0 − µ) + 1
6 +O(µ0 − µ) .

(B.6)
In this case there are two divergent terms: the first one corresponds precisely to eq. (B.5),
while the second one is computed as follows:

∫ µ∗(ε)

0

dµ

2(µ0 − µ) = 1
2 log

(
µ0

µ0 − µ∗(ε)

)
= −1

2 log
(
ε

µ0

)
+O(ε2) . (B.7)

We can now combine all the previous results to find

IB(γ) = L

πG

{
log
(2δ
l

)(1
ε
− 1
µ0

)
− 1

2 log
(
ε

µ0

)
+I(0)
B (γ)+

[
log
(2δ
l

)
−1
]
I(1)
B (γ)

}
+O(ε) ,

(B.8)
where I(0)

B and I(1)
B are given in (B.20) and (B.21).

• GHY term. The GHY term arising from the cutoff surface located at z = δ and
evaluated in eq. (3.51) is already a finite expression, which we denote as the numerical
function (B.22). The GHY contribution coming from the surfaces at µ = ±µ∗(ε) are
expanded by means of the identity (B.1). The sum of both terms is given by

IGHY(γ) = − L

πG

[1
ε

log
(2δ
l

)
+ 1

2 −
1
2 IGHY(γ)

]
+O(ε) , (B.9)

where IGHY(γ) is given in eq. (B.22).
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• Null boundary term. We consider the expression (3.62) and perform an integration by
parts of the second term (which we report here for convenience) to get

L

πG

∫ µ∗(ε)

0
dµ

f ′(µ)
2
√
f(µ)

cos(µ0 − µ)
(

log
(
l

2δ

)
− log(1 + sin(µ0 − µ))

)
=

= L

πG

[√
f(µ) cos(µ0 − µ)

(
log
(
l

2δ

)
− log(1 + sin(µ0 − µ))

)]µ∗(ε)

0

− L

πG

∫ µ∗(ε)

0
dµ
√
f(µ)

{
1 + sin(µ0 − µ)

(
log
(
l

2δ

)
− log(1 + sin(µ0 − µ))− 1

)}
.

(B.10)
The series expansion of the part without any further integration is simplified by the
properties f(0) = α2

+ and f(µ∗(ε)) = ε−2. Instead the last line combines with the first
term in eq. (3.62) to a simpler expression:

L

πG

∫ µ∗(ε)

0
dµ
√
f(µ)[sin(µ0 − µ)− 1] = L

πG
IGHY(γ)− L

πG

∫ µ∗(ε)

0
dµ
√
f(µ) . (B.11)

The last contribution is evaluated using the change of variables
√
f(µ)dµ = dy. Collecting

all the results, we get

IN (γ) = L

πG

{1
ε

log
(
l

2δ

)
− α+ cosµ0 log

(
l

2δ

)
+ α+ cosµ0 log(1 + sinµ0)

+ log
(

(1− 2γ2)1/4 ε

2

)
+ IGHY(γ)− 1

}
+O(ε) .

(B.12)

• Joint terms. Most of the joint terms can be evaluated immediately using the identity (B.1)
and the numerical functions defined in appendix B.2. We also need this explicit integral,
giving a divergent part:∫ µ∗(ε)

0

dµ

µ0 − µ
log(µ0 − µ) = −1

2
(
log2 ε− log2 µ0

)
+O(ε) . (B.13)

The result for the total joint action is

IJ (γ) = Iδ,WDW
J (γ) + Iε,WDW

J (γ) + IRT
J (γ) + I int

J (γ) + IµJ (γ) , (B.14)

where

Iδ,WDW
J (γ) =− L

2πG

[
log
(
αL

δ

)
IGHY(γ)+I(0)

J (γ)
]
, (B.15)

Iε,WDW
J (γ) = L

4πG

{1
ε

[
2log

(
αL

ε

)
log
(2δ
l

)
−log2 δ+log2

(2
l

)]
+2log

(2αL
lε

)}
+O(ε) ,

(B.16)

IRT
J (γ)+I int

J (γ) = L

2πG

{
1
2 log2 ε−log

(
αL

l

)
log
((

1−2γ2
)1/4 ε

2

)
− 1

2 log2µ0+I(1)
J (γ)

}
+O(ε) ,
(B.17)

IµJ (γ) =−Lα+ cosµ0

4πG

{
2log |αLα+ cosµ0| log

(2δ
l

)
+2log|αLα+ cosµ0| log(1+sinµ0)−log2 δ+log2

(
2(1+sinµ0)

l

)}
+O(ε) ,
(B.18)
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where the functions I(0)
J (γ) and I(1)

J (γ) are respectively defined in eqs. (B.23) and (B.24).
It is relevant to observe that the ambiguity in the normalization of the null normals to
the boundary of the EW, parametrized by β, cancels once we combine the joints at the
RT surface and at the intersection between WDW patch and EW.

• Counterterm. The treatment of the counterterm is similar to the null boundary term;
since the expression is rather cumbersome, we directly report the result:

IWDW
ct (γ) = L

4πG

{
2log

(
2αL̃
l

)
log
(
(1−2γ2)1/4 ε

2

)
+2log

(
2αL̃
l

)
IGHY(γ)+log2µ0−log2 ε

+I(0)
ct (γ)+2log

(2δ
l

)(1
ε
− 1
µ0

)
+log

(2δ
l

)
I(1)

ct (γ)+2log
(
µ0

ε

)
+I(2)

ct (γ)

−1
ε

[
2log

(
αL̃

ε

)
log
(2δ
l

)
−log2 δ+log2

(2
l

)]
−2log

(
2αL̃
lε

)
+α+ cosµ0

[
2log

(
αL̃sinµ0

)
log
(2δ
l

)
+2log

(
αL̃sinµ0

)
log(1+sinµ0)

]
+α+ cosµ0

[
log2

(
2(1+sinµ0)

l

)
−log2 δ

]}
+O(ε) , (B.19)

where the numerical functions I(0)
ct , I

(1)
ct ar defined in eqs. (B.25) and (B.26).

B.2 Collection of numerical functions

We collect here all the numerical functions obtained from the regularization procedure
applied in appendix B.1:

I(0)
B (γ)≡

∫ µ0

0
dµ

{
f(µ)3/2[(sin(µ0−µ)+1)log(sin(µ0−µ)+1)]− 1

(µ0−µ)2−
1

2(µ0−µ)

}
,

(B.20)

I(1)
B (γ)≡

∫ µ0

0
dµ

[
f(µ)3/2 sin(µ0−µ)− 1

(µ0−µ)2

]
, (B.21)

IGHY(γ)≡
∫ µ0

0
dµ
√
f(µ)sin(µ0−µ) , (B.22)

I(0)
J (γ)≡

∫ µ0

0
dµ
√
f(µ)sin(µ0−µ) log

(√
f(µ)sin(µ0−µ)

)
, (B.23)

I(1)
J (γ)≡

∫ µ0

0
dµ

{√
f(µ) log

[√
f(µ)(1+sin(µ0−µ))

]
+ 1
µ0−µ

log(µ0−µ)
}
, (B.24)

I(0)
ct (γ)≡

∫ µ0

0
dµ

{
−2
√
f(µ)(1−sin(µ0−µ)) log

[(
sin(µ0−µ)+ f ′(µ)

2f(µ) cos(µ0−µ)
)

×(1+sin(µ0−µ))]− 2
µ0−µ

log(µ0−µ)
}
, (B.25)

I(1)
ct (γ)≡

∫ µ0

0
dµ

[
−2
√
f(µ)K(µ)

2f(µ)sin(µ0−µ)+f ′(µ)cos(µ0−µ)−
2

(µ0−µ)2

]
, (B.26)

K(µ)≡ 2cos2(µ0−µ)f(µ)+cos2(µ0−µ)f
′(µ)2

f(µ)
−sin(µ0−µ)cos(µ0−µ)f ′(µ)−cos2(µ0−µ)f ′′(µ) .

(B.27)
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C Counterterms on timelike boundaries

In this appendix we consider the inclusion in the action of the counterterm introduced
in [75, 76], which for d = 2 is

Icutoff
ct = − 1

8πG

∫
dx dt

√
−h 1

L
, (C.1)

where h is the metric determinant of the induced metric on the boundary. This term was
introduced in [75, 76] for the regularization prescription A in figure 2, in order to reproduce
the divergences of regularization B.

C.1 Janus AdS3 geometry

In the Janus AdS3 background there are two timelike regulator surfaces:

• The first timelike cutoff surface corresponds to z = δ, and its contribution reads

Iδct = − L

2πG

∫ µ∗(δ)

0
dµ

∫ tWDW(δ,µ)

δ
dt
f(µ)
δ

= − L

2πG

∫ µ∗(ε)

0
dµ f(µ) sin(µ0 − µ) ,

(C.2)
where we put a symmetry factor of 4. The integrand gives rise to divergences due to
the singularity in µ = µ0. Therefore we Laurent-expand the function around this point

f(µ) sin(µ0 − µ) = 1
µ0 − µ

+O(µ0 − µ) . (C.3)

Adding and subtracting this divergence allows to find

Iδct = − L

2πG

[
log
(
µ0
ε

)
+ Iδct(γ)

]
+O(ε) , (C.4)

where we define the numerical function

Iδct(γ) ≡
∫ µ0

0
dµ

(
f(µ) sin(µ0 − µ)− 1

µ0 − µ

)
, (C.5)

such that Iδct(0) = log
(

4
π

)
. After subtracting the vacuum AdS solution, we find

∆Iδct = − L

2πG

[
log
(
µ0
2

)
+ Iδct(γ)

]
. (C.6)

• The second timelike cutoff surface corresponds to µ = µ∗(ε) and to its partner located
at µ = −µ∗(ε), which contributes to the same result by symmetry reasonings. We find

Iεct = − L

2πGε2

{∫ zint(µ∗(ε))

δ

dz

z
sin(µ0 − µ∗(ε)) +

∫ zRT

zint(µ∗(ε))

dz

z2

(
l

2 − z
)}

=

= L

2πG

[1
ε

log
(2δ
l

)
− 1

2

]
+O(ε) .

(C.7)

After subtracting the vacuum AdS solution, this simply vanishes, ∆Iεct = 0.

Therefore, the total contribution coming from timelike counterterms in the Janus AdS
background amounts to a finite part given in eq. (C.6).
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C.2 AdS3/BCFT2 model

The AdS/BCFT model contains a cutoff surface located at z = δ. Since the extrinsic
curvature on the cutoff surface at z = δ is K = 2/L, the timelike counterterm (C.1) is
proportional to the corresponding GHY contribution:

Iδct = −1
2I

δ
GHY = − L

8πG

[cotα
sinα − log

(
tan

(
α

2

))]
. (C.8)

The vacuum solution corresponds to α = π
2 , but for this value the action vanishes. Therefore

we directly obtain that the same result holds after the subtraction, ∆Iδct = Iδct.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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