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Abstract

Starting from a Muthian cobweb model, we extend the profit-based
evolutionary setting in Hommes and Wagener (2010) by assuming
that, in addition to pessimistic, optimistic and unbiased fundamen-
talists, the market is populated by rational producers, which correctly
anticipate the next period price. Thanks to their introduction, we find
that, differently from the framework in Hommes and Wagener (2010),
the map governing the dynamics is no more monotonically decreasing.
Hence, if on the one hand adding rational agents enlarges the stability
region of the steady state, on the other hand their consideration opens
the door to complex dynamic outcomes, characterized by chaotic at-
tractors and rich multistability phenomena, that we investigate along
the paper.
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1 Introduction

In Brock and Hommes (1997) a Muthian cobweb type demand-supply model
was presented, where producers can choose between rational and naive expec-
tations about prices, selecting the strategy on the basis of the recent profits
that the two forecasting rules allowed to realize1. In particular, an infor-
mation cost is associated to the use of the more sophisticated forecasting
rule. Dealing with the same share updating mechanism adopted in Brock
and Hommes (1997) for the case without memory, Hommes and Wagener
(2010) consider a Muthian cobweb model framework in which producers can
choose among three different fundamentalistic forecasting rules: unbiased
fundamentalists predict that prices will always be at their fundamental value,
optimists predict that the price of the good will always be above the funda-
mental price, whereas pessimists always predict prices below the fundamental
price. In Hommes and Wagener (2010) all agents face a common zero infor-
mation cost and the authors focus on the case in which the Muthian model
is globally eductively stable in the sense of Guesnerie (2002), that is, on the
case in which the model is stable under naive expectations, as the slopes of
demand and supply satisfy the familiar “cobweb theorem” by Ezekiel (1938).
They show that the unique steady state, which coincides with the fundamen-
tal, is always stable and may coexist with a locally stable two-cycle, where
the prices fluctuate around the rational expectations price, and where most
agents switch between optimistic and pessimistic strategies.
The final sentence in Hommes and Wagener (2010) reads as follows: “The
study of the stability of evolutionary systems with many trader types in

1Namely, Brock and Hommes (1997) started a new phase in the study of cobweb mod-
els, in which agents heterogeneous in the decisional mechanism and in regard to the linear
forecasting rules, such as fundamentalists, contrarians and Sample AutoCorrelation (SAC)
learning users, are considered (see e.g. Goeree and Hommes 2000, where the authors deal
with nonlinear, but monotonic, demand and supply curves in a heterogeneous expecta-
tions cobweb model with rational versus naive expectations, Branch and Evans 2006 for an
evolutionary cobweb model with two types of agents, both adopting ordinary least squares
learning of a misspecified model, and Branch and McGough 2008, where the setting with
rational and naive expectations introduced in Brock and Hommes 1997 is generalized w.r.t.
the replicator mechanism). Before the turning point by Brock and Hommes (1997), in the
works by Artstein (1983), Day and Hanson (1991), Jensen and Urban (1984), Lichten-
berg and Ujihara (1989) non-monotonic supply functions were introduced, while Chiarella
(1988) and Hommes (1991, 1994) analyzed the case of monotone nonlinear demand or
supply functions assuming adaptive expectations for agents, which are homogeneous in
relation to the learning process and the decisional mechanism.
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various market settings and with more complicated strategies remains an
important topic for future work.” In this perspective, the present contri-
bution further develops the approach in Hommes and Wagener (2010) by
considering a richer set of forecasting rules, and aims at characterizing the
resulting dynamic outcomes. In particular, we extend the model in Hommes
and Wagener (2010) by introducing rational producers with perfect foresight
expectations about prices, which face an information cost like in Brock and
Hommes (1997).2 In Hommes (2013), Paragraph 5.2, a Muthian cobweb
model with fundamentalists and naive expectations is considered, but, to the
best of our knowledge, in the literature the setting encompassing fundamen-
talists and rational agents has not been analyzed yet. And, as we shall see
below, such match produces unexpected outcomes.
In order to better compare our findings with those obtained in Hommes and
Wagener (2010), at first we need to complete the analysis performed therein,
by taking into account also the case in which the model is not globally educ-
tively stable in the sense of Guesnerie (2002). Indeed, we have to investigate
what happens when the eductive stability assumption for the Muthian model
is not fulfilled, because the model outcomes do not coincide when the model
is globally eductively stable and when it is not, both when rational agents
populate the economy and when they are not present.
The results that we obtain may be summarized as follows3.
In the setting analyzed in Hommes and Wagener (2010), without rational
agents, when the eductive stability assumption for the Muthian model is not

2We recall that the framework in Hommes and Wagener (2010) has been extended to
encompass heterogeneous information costs also for fundamentalistic agents in Naimzada
and Pireddu (2020a), where just one couple of groups of symmetrically biased agents
was considered, and in Naimzada and Pireddu (2020b), where several coupled groups of
symmetrically biased fundamentalists, differing in the strength of their bias, were taken
into account. On the other hand, the present contribution aims at showing the dynamic
phenomena arising when introducing rational agents in the original setting in Hommes
and Wagener (2010). For such reason, we will confine ourselves to the simplest case, in
which only rational agents face an information cost and in which the economy is populated
by one couple of groups of symmetrically biased agents.

3We stress that, since we are mainly interested in the agents’ heterogeneity, rather
than describing our findings in terms of the effect produced by increasing the intensity of
choice parameter of the evolutive mechanism, like it was done in Hommes and Wagener
(2010), we will present our results in terms of the effect produced by increasing the bias.
As we shall prove in Sections 2 and 3, the bias and the intensity of choice parameters have
the same effect on the system stability, and thus our choice does not affect the possible
dynamic outcomes of the system.
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fulfilled, the steady state may first lose and then recover stability through
pitchfork bifurcations of the second iterate of the map governing the dynam-
ics, being stable just for suitably small and for suitably large values of the
bias. This counterintuitive finding can be easily explained in terms of profits
of the various kind of agents and by looking at the difference in the slope of
demand and supply curves.
Namely, when the model is unstable under naive expectations, and both the
bias and the ratio between the slopes of demand and supply curves are large
enough, any initial condition for prices - lying close to or far from the steady
state - produces large price variations, which alternately favor optimists or
pessimists, leading to the emergence of the globally stable period-two cycle.
However, when the bias is excessively large, for prices close to the steady
state it becomes again more profitable being fundamentalists, because the
forecast error made by biased agents is too big. The consequent increase
in the share of unbiased fundamentalists makes prices converge towards the
steady state, that recovers its local stability. On the other hand, for high
values of the bias and price initial conditions that are distant from the funda-
mental, having biased expectations about prices allows to make large profits
far from the steady state and this accounts for the coexistence between the
steady state and the period-two cycle for high values of the bias. Since the
map governing the dynamics is monotonically decreasing, no higher-order
cycles or complex attractors may emerge.
On the contrary, with the introduction of rational agents the map governing
the dynamics admits critical points and a horizontal asymptote, and thus
we can observe the emergence of chaotic attractors and of rich multistability
phenomena, that we illustrate in the paper. Such surprising result, which can
be rephrased by saying that rational agents may lead to complex dynamics,
is partially mitigated by another finding, i.e., that the stability region of the
steady state increases when the economy is also populated by agents with
perfect foresight expectations. The latter fact implies that, like in the setting
analyzed in Hommes and Wagener (2010), eductive stability implies evolu-
tionary stability. On the other hand, when the eductive stability assumption
for the Muthian model is not fulfilled, even in the presence of rational agents
we obtain that the unique steady state, which coincides with the fundamen-
tal, is stable for suitably small and for suitably large values of the bias. Like
done for the setting without rational agents, the just described findings may
be interpreted from an economic viewpoint comparing the profits of the var-
ious kind of agents and by looking at the difference in the slope of demand
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and supply curves.
In particular, the loss of stability of the steady state in favor of the period-
two cycle occurs when the bias, starting from lower values and increasing,
becomes compatible with the strength of the “separating” effect produced
by the price adjustment mechanism, which for a sufficiently large difference
in the slopes of the demand and supply curves reacts quite violently to a
production variation, determining prices that are distant from the steady
state. We stress that in this framework rational agents do not perform well
in terms of profits and shares because of the information cost they face, while
the profits of unbiased fundamentalists are not high because their price fore-
casts are not precise.
When the bias increases further, its value becomes excessive with respect
to the intensity of the just described “separating” effect produced by the
price adjustment mechanism. Since the reaction of the latter to production
variations is no more strong enough, the determined prices are not suffi-
ciently distant from the fundamental to be compatible with the bias and
the period-two cycle is not stable anymore. Namely, rational agents become
favored thanks to their perfect foresight, despite the information cost they
face. Then, a chaotic attractor may emerge, which can coexist with the fun-
damental steady state, whose basin of attraction is in this case unconnected
due to the presence of the horizontal asymptote, with its non-immediate
components lying outside the basin of attraction of the chaotic attractor.
Indeed, when the value of the initial condition is not distant from the bias,
orbits visit the chaotic attractor, while orbits converge toward the steady
state when the value of the initial condition is too close to the fundamental
or when it is excessively large, and optimists’ and pessimists’ profits are too
low.
Finally, when the bias still increases, the chaotic attractor disappears since
the prices determined through the adjustment mechanism are much smaller
than the bias, and optimists and pessimists realize very low profits. In fact,
the fundamental steady state recovers its global stability due to the even
better than before performance of rational agents with respect to biased fun-
damentalists.
We stress that the scenarios characterized by the presence of the chaotic at-
tractor and by the return to the global stability of the fundamental steady
state can not arise when rational agents are disregarded. Namely in both
those frameworks, without rational agents, we would observe a regular pat-
tern, characterized by the cyclical alternation between a prevailing optimism
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or pessimism in the market, according to which group of biased fundamen-
talists performed better.
The remainder of the paper is organized as follows. In Section 2 we recall
the setting and the results in Hommes and Wagener (2010), and we inves-
tigate which dynamic phenomena arise when the model is unstable under
naive expectations. In Section 3 we present and analyze the model enriched
by the presence of rational agents, both when the Muthian model is glob-
ally eductively stable and when it is not, comparing the findings with those
in Section 2. In Section 4 we briefly discuss our results and describe some
possible extensions of our model.

2 The setting without rational agents

At first we recall the discrete-time evolutionary cobweb setting in Hommes
and Wagener (2010), in which the economy is populated by unbiased funda-
mentalists, named just fundamentalists, and by two types of biased funda-
mentalists, i.e., optimists and pessimists. In particular, biased fundamental-
ists are gathered in coupled groups of optimists and pessimists, that share the
same bias, but that respectively overestimate and underestimate the price of
the good they produce. For the clarity’s sake, we focus on the simplest case
with two coupled groups4.
In the Muthian farmer model, agents have to choose the quantity q of a cer-
tain good to produce in the next period and are expected profit maximizers.
Assuming a quadratic cost function

γ(q) =
q2

2s
, (2.1)

with s > 0, the supply curve is given by

S(pe) = spe, (2.2)

4On the basis of a preliminary study and of the analysis performed in Naimzada and
Pireddu (2020b), where we dealt with several types of biased fundamentalists in the pres-
ence of information costs, without encompassing rational agents, we expect that adding
further couples of groups of biased agents would reproduce the results in Section 4 in
Hommes and Wagener (2010) about the coexistence of attractors. Probably, in this case,
rather than a multiplicity of period-two cycles, we would witness multistability phenomena
involving more complex attractors. Nonetheless, the role of the various parameters should
not be affected by the number of considered coupled groups of agents. We will deepen
such investigation in a future work.
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where pe is the expected price and s describes its slope. The demand function
is supposed to be linearly decreasing in the market price, i.e.,

D(p) = A− dp, (2.3)

with A and d positive parameters, representing respectively the market size
and the slope of the demand function. We stress that the demand is positive
for sufficiently large values of A.
In the case of rational expectations, the price at which demand equals supply
is the so-called fundamental price p∗, i.e.,

p∗ =
A

d+ s
. (2.4)

This is also the expression of the unique model steady state in Hommes and
Wagener (2010).
Agents have heterogeneous expectations about the price of the good they
have to produce. In particular, fundamentalists predict that prices will al-
ways be at their fundamental value, while optimists (pessimists) predict that
the price of the good will always be above (below) the fundamental price.
Hence, assuming a symmetric disposition of the beliefs and characterizing the
fundamentalists, pessimists and optimists by subscripts 0, 1, 2, respectively,
in symbols we have that their expectations at time t are given by

pei,t = p∗ + bi, i ∈ {0, 1, 2}, with b0 = 0, b1 = −b, b2 = b, (2.5)

where b > 0 describes the bias degree of pessimists and optimists. In order
to avoid a negative expectation for pessimists, we will restrict our attention
to the bias values b ∈ (0, p∗), with p∗ as in (2.4).
Denoting by ωi,t the share of agents choosing the forecasting rule i ∈ {0, 1, 2}
at time t, the total supply is given by

∑2
i=0 ωi,tS(p

e
i,t) and thus the market

equilibrium condition at time t reads as

A− dpt =
2

∑

i=0

ωi,tS(p
e
i,t). (2.6)

The price which solves the equation obtained when specifying in (2.6) the
expectation formation rules for the various kinds of agents is called market
equilibrium price.
As concerns the share updating mechanism, Hommes and Wagener (2010)
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deal with the discrete choice model in Brock and Hommes (1997) for the case
without memory, in which only the most recently realized net profits πj,t−1,
j ∈ {0, 1, 2}, are taken into account. In symbols

ωi,t =
exp(βπi,t−1)

∑2
j=0 exp(βπj,t−1)

, i ∈ {0, 1, 2}, (2.7)

where β > 0 is the intensity of choice parameter.
In particular, net profits πj,t, j ∈ {0, 1, 2}, are defined as

πj,t = ptS(p
e
j,t)− γ(S(pej,t)), (2.8)

with γ and S as in (2.1) and (2.2), respectively.
Introducing the variable xt = pt − p∗, Hommes and Wagener (2010) write
their model dynamic equation in deviation from the fundamental as

xt = −
s

d

2
∑

i=0

ωi,t bi

with

ωi,t =
exp

(

−βs

2
(xt−1 − bi)

2
)

∑2
j=0 exp

(

−βs

2
(xt−1 − bj)2

) ,

or, more explicitly, recalling (2.5), as

xt = sb
d
(ω1,t − ω2,t)

= sb
d

exp(−βs

2
(xt−1+b)2)−exp(−βs

2
(xt−1−b)2)

exp(−βs

2
(xt−1+b)2)+exp(−βs

2
(xt−1−b)2)+exp(−βs

2
x2

t−1)
.

(2.9)

Rewriting (2.9) as
xt = f(xt−1), (2.10)

where the one-dimensional map f : (−p∗,+∞) → R is defined as

f(x) =
sb

d

exp
(

−βs

2
(x+ b)2

)

− exp
(

−βs

2
(x− b)2

)

exp
(

−βs

2
(x+ b)2

)

+ exp
(

−βs

2
(x− b)2

)

+ exp
(

−βs

2
x2
) , (2.11)

we have that f is differentiable. Moreover, Hommes and Wagener (2010)
prove in their Theorem A that such map, for all values of s and d, is al-
ways decreasing and thus it admits a unique fixed point, which is the steady
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state of (2.10). Since optimists and pessimists are symmetrically biased,
the steady state is given by x = 0, which corresponds to p = p∗ in (2.4).
Hence, at the steady state the market equilibrium price coincides with the
fundamental value. The monotonicity of f also prevents the emergence of
interesting dynamic phenomena and indeed at most period-two cycles can
occur. Nonetheless, in regard to the (local) stability of the steady state,
different frameworks may be observed. Namely, as shown in Hommes and
Wagener (2010), when s/d < 1, i.e., when the slopes of demand and supply
satisfy the familiar “cobweb theorem” by Ezekiel (1938), so that the Muthian
model is globally eductively stable in the sense of Guesnerie (2002), being
stable under naive expectations, the model is also evolutionary stable. More
precisely, the steady state may either be globally stable for all positive values
of β or b, or x = 0 can be just locally stable, due to its coexistence with a
period-two cycle. We stress that the condition s/d < 1 given in Theorem A
in Hommes and Wagener (2010) is just sufficient, but not necessary for the
unconditional stability5 of the steady state. For instance, x = 0 is (globally
or locally) asymptotically stable for s ∈ (0, 1.06) when d = 1, for all positive
values of β and b (cf. Figures 1 (A) and 2 for global stability of x = 0 when
s = 0.5, and Figures 1 (B) and 3 for local stability of x = 0 when s = 1.04).
However, in agreement with the stability condition that we shall derive (see
(2.12) below), when fixing e.g. d = 1 and we let s increase, the steady state
may lose and then recover stability through pitchfork bifurcations6 of f 2, so
that x = 0 is stable only for sufficiently low and for sufficiently high values of
the intensity of choice parameter or of the bias. In this case, after recovering
stability, the steady state is just locally stable, because the period-two cycle
that has emerged through the first pitchfork bifurcations of f 2, coinciding
with a flip bifurcation of f, persists when raising β or b (see Figures 1 (C)
and 4 for s = 1.6).
The initial global stability of the steady state, its loss and recovery of stabil-
ity, as well as the persistence of the period-two cycle can be easily explained
in terms of profits of the various kind of agents and by looking at the differ-

5We call a scenario unconditionally stable when the steady state is (globally or locally)
stable for every value of the considered parameter.

6We stress that it would be possible to verify both the occurrence and the nature of
all the bifurcations mentioned or illustrated along the manuscript by checking that the
corresponding conditions reported in Wiggins (2003) are satisfied, similarly to what done,
in a different context, e.g. in Proposition 3.1 in Naimzada and Pireddu (2019). For
brevity’s sake, we omit those proofs.
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ence in the slope of demand and supply curves. In particular, the ratio s/d
plays a crucial role in the loss of stability of x = 0.
Let us start from the interpretation of the global stability framework when
the values of β or b are small. If the value of β is low, agents are scarcely reac-
tive. Nonetheless, when the initial condition is close to the steady-state price,
the share of unbiased fundamentalists is reinforced due to their more accu-
rate forecast and prices are led toward the fundamental value (see Hommes
2013 for the stabilizing role of unbiased fundamentalists); when the initial
condition for prices is far from the steady state, population shares will not
differ too much, but optimists perform a bit better if x0 is e.g. positive. This
causes a moderate increase in the production, so that the excess demand is
negative and the price falls in a not too violent manner, making the realized
price closer to the steady state with respect to the original price. Then,
pessimists perform better in terms of profits. The production decreases, the
excess demand becomes positive and the price increases, so that the newly
realized price is still closer to the steady state with respect to the previous
period price. In this manner prices progressively approach the steady state
value in an oscillatory damped fashion, so that unbiased fundamentalists are
more and more favored, leading to the convergence toward the fundamental.
The global stability of the steady state for low values of the bias can be ex-
plained in a similar manner. Indeed, if b is small and the initial condition is
close to the steady state, all kinds of agents perform well in terms of profits
and the chosen production levels keep prices close to the fundamental. This
reinforces the share of unbiased fundamentalists, who lead prices toward the
steady state. If the initial condition is far from the steady state, since the
bias is small, all agents make big forecasting errors, but if x0 is e.g. positive
optimists perform better. This causes a moderate increase in the produc-
tion, so that the excess demand is negative and the price falls, but in a not
too violent manner. Then, pessimists perform better in terms of profits and
such alternation makes prices progressively approach the steady state in an
oscillatory fashion.
Since the destabilizing role of the intensity of choice parameter has been of-
ten witnessed and commented on in the existing literature (see e.g. Brock
and Hommes 1997 and Hommes 2013), we now focus on the effect produced
by the bias on the system stability when, starting from lower values of b, we
increase it. When the model is unstable under naive expectations, we observe
in Figure 1 two different scenarios according to the value of s/d. If the latter
ratio is moderate, in (B) the steady state is always stable but increasing the
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value of the bias it starts coexisting with a locally stable period-two cycle,
along which agents switch between optimism and pessimism. When instead
the ratio s/d is larger, for increasing values of b we find in Figure 1 (C) that
x = 0 suddenly loses stability in favor of a globally stable period-two cycle.
This dissimilarity comes from the fact that, in the scenario considered in
Figure 1 (B), the difference between the slopes of demand and supply curves
is not excessive, while it becomes more pronounced in the framework illus-
trated in Figure 1 (C). Namely, in the scenario depicted in Figure 1 (B) an
initial condition for prices close to the steady state produces a small price
variation due to the functioning of the price adjustment mechanism, which
allows for a balance between demand and supply. This favors unbiased fun-
damentalists, whose production choices lead prices toward the fundamental.
On the other hand, an initial condition for prices lying far from the steady
state produces larger price variations, which alternately favor optimists or
pessimists, leading to the emergence of the locally stable period-two cycle.
When moving to the scenario considered in Figure 1 (C), since the ratio s/d
is larger, even for an initial condition for prices close to the steady state, the
adjustment mechanism will determine a price far from the fundamental, so
that optimists or pessimists are favored. Hence, x = 0 is not locally stable
anymore and the period-two cycle becomes globally stable.
We can then conclude that b and β start playing a role, leading to the emer-
gence of a (locally or globally) stable period-two cycle, just when s/d is large
enough. Namely, when the difference between the slopes of demand and sup-
ply curves is small, the price adjustment mechanism determines a price for
the next period which is not too far from the steady state, so that unbiased
fundamentalists are favored, leading prices toward the fundamental. This
does not occur when s/d increases, as in such case the next period price will
be distant from the fundamental and one kind of biased agents (optimists or
pessimists) will have more accurate predictions, performing better from an
evolutive viewpoint, so that prices will not approach the steady state any-
more.
However, when the bias is excessively large, for prices close to the steady
state it becomes again more profitable being fundamentalists, because the
forecast error made by biased agents is too big. The consequent increase
in the share of unbiased fundamentalists makes prices converge towards the
steady state, that recovers its local stability. On the other hand, for high
values of the bias and price initial conditions that are distant from the funda-
mental, having biased expectations about prices allows to make large profits
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far from the steady state and this accounts for the persistence of the period-
two cycle when raising b, so that in Figure 1 (C) we observe the coexistence
between the steady state and the period-two cycle for high values of the bias.
A similar argument allows to explain why we witness the same phenomenon
when β is large enough. Namely, if the intensity of choice level is high, profits
are taken into big account, so that close to the steady state unbiased funda-
mentalists perform much better from an evolutive viewpoint, leading prices
toward the fundamental, while far from the steady state the share of biased
fundamentalists is high, and their production choices make the period-two
cycle persist.
Since the map f in (2.11) is decreasing, no further frameworks may arise.
We stress that the occurrence of one or the other of the possible outcomes
is also influenced by the values of β and b, which have a destabilizing effect
when they are too large. Thus, considering lower values of those parameters,
the system will be unconditionally stable even for larger values of s/d > 1.

After this preliminary discussion, we derive in the next result the stability
condition for x = 0 with respect to the intensity of choice parameter, which
is the bifurcation parameter considered in Hommes and Wagener (2010):

Proposition 2.1 Equation (2.10) admits x = 0 as unique steady state. The

equilibrium x = 0 is locally asymptotically stable for map f in (2.11) if

β <
d
(

2 + exp
(

βb2s

2

))

2b2s2
. (2.12)

Hence, according to the considered parameter configuration, x = 0 is stable

for any β > 0 or there exist 0 < β′ ≤ β′′ such that x = 0 is stable for each

β ∈ (0, β′) ∪ (β′′,+∞).

Proof. It is immediate to check that x = 0 solves the fixed-point equation
f(x) = x, with f as in (2.11).
In order to show that x = 0 is the unique steady state it suffices to recall
that, according to Theorem A in Hommes and Wagener (2010), the map f
is decreasing.
The stability condition follows by imposing that f ′(0) ∈ (−1, 1). By direct
computations, we have

f ′(0) =
−2b2βs2 exp

(

−βb2s

2

)

d
(

2 exp
(

−βb2s

2

)

+ 1
) .
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Since f ′(0) is always negative, the stability of x = 0 is guaranteed when
f ′(0) > −1, which is equivalent to (2.12). In particular, setting φ1(β) = β

and φ2(β) =
(

d
(

2 + exp
(

βb2s

2

)))

/ (2b2s2) , we notice that for β ≥ 0 both φ1

and φ2 are increasing, convex maps with φ1(0) < φ2(0). Since φ2 tends to +∞
faster than φ1 for β → +∞ due to the presence of the exponential function,
the graphs of φ1 and φ2 intersect never or twice according to the considered
parameter configuration. We can have just one intersection between the
graphs of φ1 and φ2 only when their are tangent at some point.
This concludes the proof. �

We stress that (2.12) implies that d has a stabilizing effect on x = 0, as d en-
larges the stability condition, while s plays an ambiguous role on the stability
of the steady state. Namely, considering φ2 in the proof of Proposition 2.1 as
a function of s, it holds that lims→0 φ2(s) = lims→+∞ φ2(s) = +∞ and thus,
for suitably low (high) positive values of s, such parameter has a destabilizing
(stabilizing) effect on x = 0. However, for the parameter configuration we
shall consider below, and whose dynamic outcomes are reported in Figures
1–4, we witness just the destabilizing effect of s. Indeed, s describes the slope
of the supply function. When its value is moderate and it increases, assuming
that the initial price is e.g. high, optimists produce even more, making the
supply offer increase a lot. The price adjustment mechanism, which allows
for a balance between demand and supply, makes then prices heavily fall,
operating in a more violent manner. Hence, pessimists’ forecast is now more
accurate and, obtaining higher profits, their share increases. Pessimists pro-
duce less, making the supply offer decrease, so that the price raises again,
and this process gives rise to regular or irregular wide oscillations, which do
not converge towards the steady state, thus leading to a reduction of the
steady state stability region.
The stabilizing effect of d can be explained in a similar way. Namely, as-
suming that the initial price is e.g. high, optimists produce a lot, making
the supply offer increase. However, if d raises, the demand function is more
reactive and this weakens the price oscillations needed to reach a balance
between demand and supply. In such manner, prices are less distant from
the fundamental value, so that unbiased fundamentalists’ forecast is precise
enough. This makes their share increase, so that orbits approach the steady
state, with a consequent enlargement in the steady state stability region.
In regard to s and d, as explained above, a sufficiently high ratio between
the slopes of demand and supply allows for the loss of stability of the steady
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state for increasing values of β or b.
We also remark that, rather than dealing with the intensity of choice pa-
rameter as done in Hommes and Wagener (2010), in what follows we will
consider the bias as bifurcation parameter, measuring the influence of agents’
heterogeneity through the parameter describing the degree of optimism and
pessimism. Such choice is motivated by our interest in studying the agents’
asymptotic heterogeneity and it has no consequences on the observed model
dynamic outcomes since, as we shall prove in Corollary 2.1, the bias has the
same effect on the system stability as the intensity of choice parameter.
In fact, rewriting the stability conditions in Proposition 2.1 in terms of the
bias, we obtain the next result:

Corollary 2.1 The equilibrium x = 0 is locally asymptotically stable for

(2.10) if

b2 <
d
(

2 + exp
(

βb2s

2

))

2βs2
. (2.13)

Hence, depending on the considered parameter configuration, x = 0 is stable

for any b > 0 or there exist 0 < b′ ≤ b′′ such that x = 0 is stable for each

b ∈ (0, b′) ∪ (b′′,+∞).

Thus, according to Proposition 2.1 and Corollary 2.1, recalling also The-
orem A in Hommes and Wagener (2010), when the eductive stability as-
sumption for the Muthian model is not fulfilled, there are up to two possible
stability thresholds for x = 0 with respect to β and b, and x = 0 may be
locally stable just for sufficiently low and for sufficiently high values of the
intensity of choice parameter and of the bias. In particular, this means that,
while an intermediate beliefs’ heterogeneity may have a destabilizing effect on
the steady state, sufficiently strong biases can be stabilizing, as we justified
above looking at profits.

We now report in Figure 1 the three scenarios compatible with Corollary
2.1 for increasing values of the bias. In particular, we fix the other parameters
as follows: A = 18, β = 15, d = 1, considering s = 0.5 in (A), s = 1.04 in
(B) and s = 1.6 in (C). As initial conditions in (A) we have x0 = 1; in (B)
we have x0 = 0.01 for the green points, x0 = 0.3 for the magenta points and
x0 = 1 for the blue points; in (C) we have x0 = 0.01 for the green points and
x0 = 1 for the blue points.
Since in Figure 1 (A) it holds that s/d < 1, and thus the Muthian model is
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globally eductively stable, the steady state is always stable. In particular, it
is here globally asymptotically stable, since there are no other attractors, as
we can observe by looking at Figure 2, where for s = 0.5 we report the graph
of the second iterate of f for b = 1 in (A), b = 2 in (B) and b = 3 in (C).
In Figure 1 (B), although s/d > 1 and thus the eductive stability assumption
for the Muthian model does not hold true anymore, the steady state is still
stable for all values of the bias. However, while x = 0 is globally stable for
b ∈ (0, 0.48), for b = 0.48 a stable period-two cycle emerges, together with
an unstable period-two cycle, through a double fold bifurcation of f 2 and
coexists with x = 0 for increasing values of b, so that for b > 0.48 the steady
state is just locally stable. We report in Figure 3 the graph of the second
iterate of f for s = 1.04 and b = 0.3 in (A), b = 0.48 in (B) and b = 0.6 in
(C).
Finally, for a still larger value of s/d > 1, in Figure 1 (C) we find that
x = 0 is not stable for intermediate values of the bias. Indeed, according to
Corollary 2.1, x = 0 is stable for b ∈ (0, b′) ∪ (b′′,+∞), with b′ = 0.223 and
b′′ = 0.478, and unstable otherwise. In particular, x = 0 is globally stable for
b ∈ (0, 0.223), while for b = 0.223 a flip bifurcation of f, corresponding to a
pitchfork bifurcation of f 2, occurs, at which x = 0 loses stability in favor of a
stable period-two cycle, which persists for larger values of the bias. However,
for b = 0.478 x = 0 recovers its (local) stability through a reverse pitchfork
bifurcation of f 2. In order to illustrate the main steps that we observe in
Figure 1 (C) when the bias increases, we report in Figure 4 the graph of the
second iterate of f for s = 1.6 and b = 0.2 in (A), b = 0.223 in (B), b = 0.3
in (C), b = 0.478 in (D) and b = 0.6 in (E).

(A) (B) (C)

Figure 1: The bifurcation diagram of f for b ∈ (0, 1.4) and different initial
conditions, for A = 18, β = 15, d = 1, and s = 0.5 in (A), s = 1.04 in (B)
and s = 1.6 in (C).
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(A) (B) (C)

Figure 2: The graph of the second iterate of f for s = 0.5, and b = 1 in (A),
b = 2 in (B) and b = 3 in (C).

(A) (B) (C)

Figure 3: The graph of the second iterate of f for s = 1.04, and b = 0.3 in
(A), b = 0.48 in (B) and b = 0.6 in (C).

3 The model with rational agents

We now introduce rational agents in the economy and we investigate the
effects that they produce both when the model is globally eductively stable
and when it is not. In particular, we enrich the set of expectation rules in
(2.5) by assuming that agents may also be rational and thus, being endowed
with perfect foresight, they correctly predict the next period price. More-
over, when their share is strongly prevailing in the population, in choosing
the production level which allows them to maximize profits, they determine
an aggregate production level that, together with the demand, generates
a market equilibrium price close to the fundamental value. Characterizing
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(A) (B) (C) (D) (E)

Figure 4: The graph of the second iterate of f for s = 1.6, and b = 0.2 in
(A), b = 0.223 in (B), b = 0.3 in (C), b = 0.478 in (D) and b = 0.6 in (E).

rational agents by the subscript −1, in symbols we have

pe
−1,t = pt. (3.1)

The cost function and the demand function are supposed to be described by
(2.1) and (2.3), respectively7. At the fundamental price p = p∗ it still holds
that demand equals supply. In fact, p = p∗ in (2.4) is again the only steady
state (cf. Proposition 3.1 below).
Like in Brock and Hommes (1997), we assume that rational agents face an
information cost C > 0, so that their net profits are described by

π−1,t = ptS(p
e
−1,t)− γ(S(pe

−1,t))− C = ptS(pt)− γ(S(pt))− C. (3.2)

Consequently, denoting by ωi,t the share of agents choosing the forecasting
rule i ∈ {−1, 0, 1, 2} at time t, the evolutive mechanism in (2.7), based on

7In this respect, we stress that we investigated the just described setting in which,
in addition to the introduction of rational agents, we took into account more general
technologies. In particular, we considered the cost function γ̃(q) = 1/s0+ q/s1+ q2/(2s2),
with s0, s1, s2 > 0, which coincides with c(q) in (2.1) when letting s0, s1 → +∞ and
identifying s2 with s. Although the position of the unique steady state, which corresponds
to the fundamental price p̃ = (A + s2

s1

)/(d + s2), is influenced by the value of s1, when
expressing the model in deviation from the fundamental neither s0 nor s1 enter the model
equation. This happens because of the formulation of the share updating rule, as s0 and s1
affect net profits through multiplicative terms which can be simplified between numerator
and denominator in (3.4) and in (3.5). Due to such considerations, for sake of simplicity,
we decided to present our model as an extension of the setting in Hommes and Wagener
(2010) only in regard to the set of considered forecasting rules, rather than introducing
the more general cost function γ̃(q). Such choice allows also for neater conclusions about
the role of rational agents on the model stability, as their effect need not be disentangled
from that of other modifications with respect to the original framework in Hommes and
Wagener (2010).

17



the most recently realized net profits πj,t−1, j ∈ {−1, 0, 1, 2}, becomes

ωi,t =
exp(βπi,t−1)

∑2
j=−1 exp(βπj,t−1)

, i ∈ {−1, 0, 1, 2}. (3.3)

Introducing the variable xt = pt−p∗, simple computations allow to write our
model dynamic equation in deviation from the fundamental as

xt = −
s

d+ ω−1,t s

2
∑

i=0

ωi,tbi

with

ωi,t =
exp

(

−βs

2
(xt−1 − bi)

2
)

(

∑2
j=0 exp

(

−βs

2
(xt−1 − bj)2

)

)

+ exp(−βC)
(3.4)

for i ∈ {0, 1, 2} and with

ω−1,t =
exp(−βC)

(

∑2
j=0 exp

(

−βs

2
(xt−1 − bj)2

)

)

+ exp(−βC)
. (3.5)

More explicitly, recalling (2.5), we obtain

xt = bs
d+ω

−1,ts
(ω1,t − ω2,t)

=
bs(exp(−βs

2
(xt−1+b)2)−exp(−βs

2
(xt−1−b)2))

d(exp(−βs

2
(xt−1+b)2)+exp(−βs

2
(xt−1−b)2)+exp(−βs

2
x2

t−1))+(d+s) exp(−βC)
.

(3.6)
Expressing the model in terms of xt, according to Proposition 3.1 the unique
steady state is still given by x∗ = 0.
In view of the analysis we shall perform below, it is expedient to rewrite (3.6)
as

xt = g(xt−1), (3.7)

where the one-dimensional map g : (−p∗,+∞) → R is defined as

g(x) =
bs

(

exp
(

−βs

2
(x+ b)2

)

− exp
(

−βs

2
(x− b)2

))

d
(

exp
(

−βs

2
(x+ b)2

)

+ exp
(

−βs

2
(x− b)2

)

+ exp
(

−βs

2
x2
))

+ (d+ s) exp(−βC)
.

(3.8)
We stress that, like f in (2.11), also g is differentiable. Moreover, recalling
the expression of p∗ in (2.4), the domain of g is enlarged by considering
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increasing values of A. When extending its domain to R, the map is odd8.
Namely, replacing x with −x leaves the denominator unchanged, while the
two terms on the numerator of g are interchanged, so that g(−x) = −g(x)
for every x ∈ R. We also observe that the extension of g to R admits the
x-axis as horizontal asymptote for x → ±∞. Hence, unlike f in (2.11),
g is not monotone and indeed, as we shall see below, the introduction of
rational agents may lead to complex dynamics. We notice however that
chaotic phenomena can occur only when the eductive stability assumption
for the Muthian model is not fulfilled. Indeed, according to Proposition 3.1,
the stability region is enlarged by the introduction of rational agents and
thus, like in Hommes and Wagener (2010), when s/d < 1 the steady state
x = 0 is always (globally or locally) stable and at most it coexists with a
period-two cycle. On the other hand, for s/d > 1 we witness interesting
dynamic outcomes of the model. Before illustrating the possible scenarios
in Figures 5–9, we derive the stability conditions for the steady state x = 0
with respect to the intensity of choice parameter in Proposition 3.1 and with
respect to the bias in Corollary 3.1. The proof of Proposition 3.1, where we
also show that x = 0 is the unique steady state for (3.7), is based on the
same argument that we used to derive the stability region in Proposition 2.1.
Nonetheless, we report all the details for the sake of completeness.

Proposition 3.1 Equation (3.7) admits x = 0 as unique steady state. The

equilibrium x = 0 is locally asymptotically stable for map g in (3.8) if

β <
2d+ exp

(

βb2s

2

)

(d+ (d+ s) exp(−βC))

2b2s2
. (3.9)

Hence, according to the considered parameter configuration, x = 0 is stable

for any β > 0 or there exist 0 < β′

R ≤ β′′

R such that x = 0 is stable for each

β ∈ (0, β′

R) ∪ (β′′

R,+∞).

Proof. A straightforward check ensures that x = 0 solves the fixed-point
equation g(x) = x, with g as in (3.8).
In order to show that x = 0 is the unique steady state it suffices to observe
that g is positive if and only if x is negative.

8We remark that analogous properties hold for f in (2.11) as well, even if we did not
need to use them in Section 2.
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The stability condition follows by imposing that g′(0) ∈ (−1, 1). By direct
computations, we have

g′(0) =
−2b2βs2 exp

(

−βb2s

2

)

d
(

2 exp
(

−βb2s

2

)

+ 1
)

+ (d+ s) exp(−βC)
.

Since g′(0) is always negative, the stability of x = 0 is guaranteed when
g′(0) > −1, which is equivalent to (3.9). In particular, setting ϕ1(β) =

β and ϕ2(β) = (2d + exp(βb
2s

2
)(d + (d + s) exp(−βC)))/(2b2s2), we notice

that for β ≥ 0 both ϕ1 and ϕ2 are convex maps with 0 = ϕ1(0) < ϕ2(0).
Since ϕ2 tends to +∞ faster than ϕ1 for β → +∞ due to the presence of
the exponential function, the graphs of ϕ1 and ϕ2 intersect never or twice
according to the considered parameter configuration. We can have just one
intersection between the graphs of ϕ1 and ϕ2 only when their are tangent at
some point. This concludes the proof. �

Comments analogous to those made after Proposition 2.1 about the sta-
bilizing role of d and the ambiguous role of s hold in relation to (3.9) as well.
Again, for the parameter configuration we shall consider below and whose
dynamic outcomes are reported in Figures 5–9, we witness just the destabi-
lizing effect of s, while d does not vary.
Moreover, rewriting (3.9) as

β <
d
(

2 + exp
(

βb2s

2

))

+ (d+ s) exp(β( b
2s
2
− C))

2b2s2
(3.10)

and comparing such expression with (2.12), we notice that the right-hand
side in (3.10) is larger than that in (2.12) for any C > 0. Hence, as expected,
we can conclude that rational agents have a stabilizing effect on the system
stability, no matter what is the information cost C they face. Nonetheless,
as the right-hand side in (3.10) is decreasing in C, raising the latter param-
eter has a destabilizing effect on the steady state. Indeed, the choices of
rational agents lead prices towards the fundamental value and raising their
information cost makes the corresponding share decrease, due to their result-
ing lower fitness in terms of profits, not only for prices far from the steady
state, but also in a neighborhood of it, and this may lead to a destabiliza-
tion of the steady state. In particular, in the limit C → +∞ the term on
the right-hand side in (3.10) coincides with that on the right-hand side in
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(2.12), meaning that the stabilizing effect of rational agents tends to dis-
appear when C is excessively large. Namely, in correspondence to x = 0
for the profits and the share of rational agents we find π∗

−1 = s
2
(p∗)2 − C

and ω∗

−1 = exp (−βC) /
(

2 exp
(

−βs

2
b2
)

+ 1 + exp (−βC)
)

, respectively, from
which it follows that, when C is too high, their profits become negative and
their share tends to vanish. On the other hand, in addition to the information
cost faced by rational agents, also the bias degree plays an important role in
determining which forecasting strategy is more profitable at the steady state.
Indeed, in correspondence to x = 0 the profits of biased fundamentalists are
given by π∗

1 = π∗

2 = s
2
((p∗)2 − b2) , and thus it holds that π∗

−1 > π∗

1 = π∗

2

if and only if C < s
2
b2. We can then conclude that, when the bias is very

large, due to the high inaccuracy degree of the price forecasts by optimists
and pessimists, it is still more convenient being rational at the steady state,
despite the information cost faced by rational agents.

As done in Section 2, also in the framework encompassing rational agents
we will consider as bifurcation parameter the bias, which again has the same
effect on the system stability as the intensity of choice parameter. Namely,
rewriting the stability conditions in Proposition 3.1 in terms of the bias, we
obtain the next result:

Corollary 3.1 The equilibrium x = 0 is locally asymptotically stable for

(3.7) if

b2 <
2d+ exp

(

βb2s

2

)

(d+ (d+ s) exp(−βC))

2βs2
. (3.11)

Hence, according to the considered parameter configuration, x = 0 is stable

for any b > 0 or there exist 0 < b′R ≤ b′′R such that x = 0 is stable for each

b ∈ (0, b′R) ∪ (b′′R,+∞).

Thus, we found up to two stability thresholds for x = 0 with respect to b as
well, and the steady state is locally stable for sufficiently low and for suffi-
ciently high values of the bias. We are going to illustrate in Figures 5–9 the
latter double effect of b, as well as the interesting dynamic phenomena which
may arise when the economy is populated by rational agents, too.
In particular, we report in Figure 5 the bifurcation diagrams corresponding
to the three main scenarios9 compatible with Corollary 3.1 for increasing val-
ues of the bias. In particular, like in Section 2 we fix the other parameters

9We stress that for the parameter configuration considered in Figure 5 (B), where in
particular s = 1.6, the period-two cycle persists for all b ≥ 0.282. Nonetheless, for lower
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as follows: A = 18, β = 15, d = 1, considering C = 0.1 and s = 1.2 in (A),
s = 1.6 in (B) and s = 3 in (C). As initial conditions in (A) we have x0 = 1;
in (B) we have x0 = 0.01 for the green points, x0 = 0.5 for the magenta
points and x0 = 1 for the blue points; in (C) we have x0 = 0.01 for the green
points, x0 = 0.35 for the magenta points and x0 = 0.55 for the blue points.
Although in Figure 5 (A) it holds that s/d > 1, and thus the eductive sta-
bility assumption for the Muthian model is not fulfilled, the steady state is
always globally asymptotically stable, since there are no other attractors, as
we can observe by looking at Figure 6, where we report the graph of the sec-
ond iterate of g for b = 0.4 in (A), b = 0.9 in (B) and b = 1.4 in (C). Namely,
also in the setting with rational agents, the condition s/d < 1 is just suffi-
cient, but not necessary for the unconditional stability of the steady state.
This phenomenon is strengthened by the stabilizing effect produced by the
introduction of rational agents, whose presence enlarges the stability region,
as discussed just after Proposition 3.1. Indeed, for A = 18, β = 15, d = 1,
in the setting considered in Section 2 it holds that x = 0 is globally asymp-
totically stable for all values of the bias when s ∈ (0, 0.768), while in the
framework with rational agents facing an information cost C = 0.1 we ob-
serve the unconditional stability of x = 0 for a larger interval of values for
s, i.e., for s ∈ (0, 1.422). On the other hand, due to the destabilizing effect
produced by an increase in the information cost faced by rational agents,
when C raises it holds that x = 0 is globally asymptotically stable for all
values of the bias when s varies in a smaller interval. For instance, with

values of s the period-two cycle may disappear for sufficiently high values of the bias,
because the maximum and minimum values of g2 are not pronounced enough. Since
increasing values of b produce an horizontal translation of those extrema, if they are not
sufficiently high in absolute value, they do not exceed the 45-degree line when b is too
large. We observe the just described phenomenon e.g. with s = 1.5, in correspondence to
which, drawing the bifurcation diagram with respect to b like in Figure 5 (B), we still find
a double stability threshold, but the period-two cycle disappears for b ≥ 1.3 through a
double reverse fold bifurcation of g2 and after that x = 0 is globally asymptotically stable.
Although the latter framework is new with respect to the scenarios portrayed in Section
2, we chose not to deal with it because for s = 1.5 the map g2 almost coincides with the
45-degree line in a neighborhood of x = 0 and thus the bifurcations illustrated in Figure
7 would not be clearly visible.
We also remark that, for values of s larger than those used in Figure 5 (C), the chaotic
attractor could not coexist with the steady state and that, for still higher values of s,
the chaotic attractor in two pieces could become a chaotic attractor in one piece before
disappearing. All such effects are in agreement with the destabilizing role of s, highlighted
and interpreted in Section 2.
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C = 0.2 the unconditional stability of x = 0 holds just for s ∈ (0, 1.099),
which is anyway larger than the interval (0, 0.768) found in regard to the
setting without rational agents.
In Figure 5 (B), we have again s/d > 1, but this time we find a scenario
similar to Figure 1 (C), in which x = 0 is unstable for intermediate values
of the bias. Indeed, according to Corollary 3.1, for the considered parameter
configuration x = 0 is stable just for b ∈ (0, b′R)∪ (b′′R,+∞), with b′R = 0.282
and b′′R = 0.386. In particular, x = 0 is globally stable for b ∈ (0, 0.282), while
for b = 0.282 a flip bifurcation of g, corresponding to a pitchfork bifurcation
of g2, occurs, at which x = 0 loses stability in favor of a stable period-two
cycle, which persists for larger values of the bias. However, x = 0 recovers
its (local) stability for b = 0.386 through a reverse pitchfork bifurcation of
g2. In order to illustrate the main steps that we observe in Figure 5 (B) as
the bias increases, we report in Figure 7 the graph of g2 for b = 0.2 in (A),
b = 0.282 in (B), b = 0.36 in (C), b = 0.386 in (D) and b = 0.5 in (E).
Before discussing the framework in Figure 5 (C), we stress that in the pres-
ence of rational agents it is not possible to observe a scenario analogous to
Figure 1 (B). Namely in that case x = 0 was locally stable even after the
emergence of the period-two cycle through a double fold bifurcation of f 2.
On the contrary, with rational agents the period-two cycle arises through a
flip bifurcation of g and thus the steady state can not be stable for all values
of the bias. However, like in Figure 1 (C), according to Corollary 3.1 also
with rational agents x = 0 recovers stability through a further pitchfork bi-
furcation of g2. Another difference between the frameworks with and without
rational agents lies in the fact that, as remarked in Section 2, with the map
f in (2.11) once a period-two cycle has emerged, it persists for increasing
values of the bias. Vice versa, as explained in Footnote 9, when dealing with
g in (3.8), for suitable values of s such as s = 1.5, the period-two cycle may
disappear for sufficiently high values of the bias through a double reverse fold
bifurcation of g2 and after that x = 0 is globally asymptotically stable. We
show the corresponding bifurcation diagram for g in Figure 8, where s = 1.5
and b varies in (0, 1.4). Due to unconnectedness of the basin of attraction
of x = 0, we need different initial conditions to represent the whole period-
two cycle before it loses stability for b ≈ 1.3. Namely, in Figure 8 as initial
conditions we have x0 = 0.01 for the green points, x0 = 0.5 for the magenta
points, x0 = 1 for the blue points and x0 = 1.2 for the red points.
Passing now to Figure 5 (C), for a still larger value of s/d > 1 we finally
observe the presence of chaotic dynamics, which could not arise in the frame-
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work without rational agents, where the map f governing the dynamics is
monotonically decreasing. On the contrary, quite surprisingly, when the econ-
omy is populated by agents endowed with perfect foresight, too, we may wit-
ness complex behaviors and variegated multistability phenomena. Namely,
according again to Corollary 3.1, for the considered parameter configuration
x = 0 is stable just for b ∈ (0, b′R)∪(b

′′

R,+∞), with b′R = 0.134 and b′′R = 0.354.
In particular, x = 0 is globally stable for b ∈ (0, 0.134), while it becomes un-
stable and recovers its local stability through pitchfork bifurcations of g2,
occurring at b = b′R and b = b′′R, respectively. The pitchfork bifurcation of g2

occurring at b = b′R corresponds to a flip bifurcation of g, at which x = 0 loses
stability in favor of a stable period-two cycle, which undergoes a cascade of
flip bifurcations leading to chaos. We notice that the external - first periodic,
and then chaotic - attractor coexists with the locally stable steady state for
b ∈ (0.354, 0.487), while for b = 0.487 the chaotic attractor suddenly disap-
pears, so that for larger values of the bias x = 0 is again globally stable. In
order to better describe the dynamic phenomena related to Figure 5 (C), we
chose to report in Figure 9 the graph of g rather than that of g2. This allows
us to represent the periodic and chaotic trajectories of the system, at the cost
of not showing the bifurcations occurring as the bias value raises. We stress
however that the two pitchfork bifurcations of g2 through which the steady
state loses and recovers its stability are analogous to those depicted in Figure
7. More precisely, in Figure 9 we draw the graph of g for various increasing
values of the bias, in order to illustrate how x = 0, in agreement again with
(3.9), after losing stability for b = 0.134, recovers stability for b = 0.354, at
first locally and then globally. In particular, in (A), for b = 0.1, the steady
state x = 0 is globally asymptotically stable. In (B), for b = 0.2, x = 0 has
become unstable and we represent the stable period-two cycle that has arisen
through the flip bifurcation of g occurring for b = 0.134. After recovering its
local stability through the pitchfork bifurcation of g2, the steady state coex-
ists with two stable period-two cycles. Due the oddness of the map g, the
two-cycles are symmetric and for e.g. b = 0.36 they are composed by the
periodic points {x̂1, x̂2} = {−0.351, 0.553} and {x̄1, x̄2} = {−0.553, 0.351},
respectively. Raising b in Figure 9 to 0.46, x = 0 is still locally stable and
it is surrounded by a one-piece chaotic attractor. In particular, in (C) we
show an orbit visiting the chaotic attractor, while in (D), still for b = 0.46,
we illustrate an orbit which directly hits the steady state, since the initial
condition belongs to a non-immediate component of its basin of attraction,
coinciding with the x-axis. We stress that the basin of attraction of x = 0 is
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unconnected due to presence of rational agents, since now the map generat-
ing the dynamics is no more monotone. Finally, in Figure 9 (E), for b = 0.5,
x = 0 is again globally stable due to the disappearance of the chaotic attrac-
tor. Namely, for b = 0.487 the forward iterates of the extrema of g enter the
basin of attraction of x = 0.

(A) (B) (C)

Figure 5: The bifurcation diagram of g for b ∈ (0, 1) and different initial
conditions, for C = 0.1, A = 18, β = 15, d = 1, and s = 1.2 in (A), s = 1.6
in (B) and s = 3 in (C).

(A) (B) (C)

Figure 6: The graph of the second iterate of g for C = 0.1, s = 1.2, and
b = 0.4 in (A), b = 0.9 in (B) and b = 1.4 in (C).

Like done for the setting without rational agents, the scenarios illustrated
in Figure 9 may be interpreted from an economic viewpoint comparing the
profits of the various kind of agents and by looking at the difference in the
slope of demand and supply curves.
Let us start from the global asymptotic stability framework in (A), whose
explanation bears a strong resemblance to that presented for Figure 1 (A),
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(A) (B) (C) (D) (E)

Figure 7: The graph of the second iterate of g for C = 0.1, s = 1.6, and
b = 0.2 in (A), b = 0.282 in (B), b = 0.36 in (C), b = 0.386 in (D) and b = 0.5
in (E).

Figure 8: The bifurcation diagram of g for b ∈ (0, 1.4) and different initial
conditions, for C = 0.1, A = 18, β = 15, d = 1 and s = 1.5.

being based on the functioning of the price adjustment mechanism and on
the stabilizing role of unbiased fundamentalists, which is now strengthened
by the presence of rational agents. Namely, when the bias is small and the
initial condition for prices is close to the steady state, unbiased fundamen-
talists and rational agents realize higher profits due to their more accurate
price forecasts. Then their shares increase and, due to the positive effect they
have on the system stability (see Hommes 2013), prices converge towards the
fundamental. Also when the initial condition is far from the steady state,
since the bias is small, biased fundamentalists still make big forecast errors
and thus they are not favored by the share updating mechanism. More pre-
cisely, if like in Figure 9 (A) the initial condition is positive, rational agents
and, in a reduced manner, optimists perform well. Hence, the share of ratio-
nal agents is that which increases more and the total supply approaches its
stationary value. Close to the steady state, the forecasting errors made by
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Figure 9: The graph of map g for C = 0.1, s = 3, and b = 0.1, x0 = 0.4 in
(A), b = 0.2, x0 = 0.26 in (B), b = 0.46, x0 = 0.5 in (C), b = 0.46, x0 = 1.3
in (D) and b = 0.7, x0 = 0.4 in (E).

both biased and unbiased fundamentalists are small, being the bias low. In
particular, unbiased fundamentalists’ forecast is now the most precise among
fundamentalists, while the profits realized by rational agents are very low
due to the information cost they face. Nonetheless, the convergence towards
the steady state occurs.
Also the loss of stability of the steady state in favor of the period-two cycle
that we observe in Figure 9 (B) can be interpreted similarly to what done
with Figure 1 (C). Indeed, since b has increased with respect to (A), its value
has become compatible with the strength of the “separating” effect produced
by the price adjustment mechanism, which now determines prices that are
more distant from the steady state. Namely, the price adjustment mechanism
reacts more violently to a production variation due to the raised difference in
the slopes of the demand and supply curves. Such compatibility between the
bias and the prices allows to explain the global stability of the period-two
cycle, characterized by an alternation of optimism and pessimism. We stress
that in this framework rational agents do not perform well in terms of profits
and shares because of their information cost, while the profits of unbiased
fundamentalists are not high because their price forecasts are not precise.
When b increases further moving to Figures 9 (C) and (D), its value becomes
excessive with respect to the intensity of the just described “separating” ef-
fect produced by the price adjustment mechanism. Since the reaction of
the latter to production variations is no more strong enough, the determined
prices are not sufficiently distant from the fundamental to be compatible with
the bias and the period-two cycle is not stable anymore. Namely, rational
agents become favored thanks to their perfect foresight, despite the infor-
mation cost they face. According to the chosen initial condition for prices,
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orbits visit the chaotic attractor, when like in (C) the value of the initial
condition is not distant from the bias, or they converge toward the steady
state, when the value of the initial condition is too close to the fundamen-
tal or when like in (D) it is excessively large, and optimists’ and pessimists’
profits are too low. In particular, if the initial condition is close to the fun-
damental, both rational agents and unbiased fundamentalists perform well
since the beginning, while if the initial condition is much higher than the
bias then just rational agents perform well and this immediately leads prices
toward the steady state, where also unbiased fundamentalists obtain high
profits. The latter scenario, reported in Figure 9 (D), is made possible by
the unconnectedness of the basin of attraction of the steady state. Indeed,
the initial condition x0 = 1.3 belongs to a non-immediate component of the
basin of attraction, coinciding with the horizontal asymptote, located on the
x-axis. We recall that without rational agents the map governing the dy-
namics would be decreasing, and thus the basin of attraction of the steady
state would be connected.
Finally, when like in Figure 9 (E) the bias still increases, the chaotic attractor
disappears since the prices determined through the adjustment mechanism
are much smaller than the bias, and optimists and pessimists realize very
low profits. In fact, the fundamental steady state recovers its global stabil-
ity due to the even better than before performance of rational agents with
respect to biased fundamentalists. In particular, in Figure 9 (E) we depict
a situation in which the bias, being very large, exceeds the initial condition.
Hence, rational agents obtain the highest profits, due to their more accurate
forecast, and this makes prices approach the steady state, so that also unbi-
ased agents start performing well. We stress that if in (E) we started from
an initial condition larger than the bias, then the convergence towards the
steady state could be explained again thanks to the prevailing role played
by rational agents in the beginning, witnessing however less oscillations with
respect to the case depicted in (E), since the initial condition would probably
belong to a non-immediate component of the basin of attraction like in (D).
We remark that the phenomena portrayed in Figure 9 (C)–(E) can not arise
when rational agents are not taken into account. Indeed in framework (C),
rather than irregular oscillations, without rational agents we would observe
a regular pattern, like that found in (B), characterized by the alternation be-
tween a prevailing optimism or pessimism in the market, according to which
group of biased fundamentalists performed better. Moreover in (D) and (E),
due to the high bias values, if rational agents were not present, rather than
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the convergence toward the steady state, we would observe again a periodic
behavior of the same kind.
Summarizing, we have shown that the introduction of rational agents opens
the door to complex dynamic outcomes, characterized not only by chaotic
attractors, but also by rich multistability phenomena. Namely, differently
from the context considered in Hommes and Wagener (2010), the basin of
attraction of the steady state may be unconnected due to the presence of the
horizontal asymptote, with its non-immediate components lying outside the
basin of attraction of the chaotic attractor, when they coexist.

4 Conclusion

In the present contribution, following the final suggestion by Hommes and
Wagener (2010) according to which “The study of the stability of evolution-
ary systems with many trader types in various market settings and with more
complicated strategies remains an important topic for future work”, we en-
riched the set of forecasting rules considered in that paper by assuming that
the economy is populated by rational agents, too. We found that, on the
one hand, their presence enlarges the steady state stability region, but, on
the other hand, they allow for the emergence of chaotic attractors and varie-
gated multistability phenomena, since the map governing the dynamics is no
more monotonically decreasing. Hence, we can say that, quite unexpectedly,
rational agents may lead to complex dynamics.
We deem that the proposed setting can be the starting point for other inter-
esting investigations.
A first natural extension of the present framework consists in considering
several couples of groups of symmetrically biased fundamentalists, which dif-
fer in the strength of the bias, in view of investigating the effect of their
presence on the system stability and on the possible model dynamic out-
comes. We recall that we dealt with several types of biased fundamentalists
also in Naimzada and Pireddu (2020b), where we introduced heterogeneous
information costs in the original framework in Hommes and Wagener (2010),
without encompassing rational agents.
In regard to information costs, we here dealt with the simplest setting in
which, like in Brock and Hommes (1997), only rational agents face a non-
zero cost. However, as done in Naimzada and Pireddu (2020a), where just
one couple of groups of symmetrically biased agents was considered, and in
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Naimzada and Pireddu (2020b), with several types of biased fundamentalists,
the present framework could be extended so as to encompass for all groups
of agents heterogeneous information costs, that are directly proportional to
their rationality degree. Indeed, in the present contribution we found that ra-
tional agents have a stabilizing effect on the steady state, while in Naimzada
and Pireddu (2020a, 2020b) we discovered that introducing heterogeneous in-
formation costs for fundamentalists may have a destabilizing effect. Hence,
it would be interesting to analyze the setting including both rational agents
and heterogeneous information costs, in order to investigate whether the sta-
bilizing effect of the former element or the destabilizing effect of the latter
factor prevails. Such study will be the topic of a future work.
Looking from a formal viewpoint at the model here proposed, two weak
points emerge, that partially pertain also to the setting in Hommes and Wa-
gener (2010). The first limit concerns the assumed symmetry in the bias
of optimists and pessimists, without which the steady state would not nec-
essarily coincide with the fundamental value. The second issue regards the
formulation of the considered evolutionary mechanism, that does encompass
the extinction of any group of agents neither at the steady state, nor along
orbits. It would then be interesting to investigate how the results obtained in
the present work change when dealing with one or both those improvements.
In particular, we stress that, even in the presence of asymmetric biases, one
of the steady states could coincide with the fundamental value if the share
updating rule allowed for the extinction of some kinds of agents.
A different modification of the model, which would also lead to an increase
in the number of dynamic equations describing the system, would consist
in introducing into the original framework in Hommes and Wagener (2010)
a group of agents endowed with naive expectations, in addition to rational
agents. We recall indeed that a Muthian cobweb model with fundamentalists
and naive expectations has been considered in Hommes (2013). However, to
the best of our knowledge, in the literature the setting encompassing fun-
damentalists, rational agents and naive expectations has not been analyzed
yet.
A further variant of the proposed setting, which would raise the number of
dynamic equations describing the system, too, would be the introduction of
memory in the share updating mechanism, so that agents, in choosing the
heuristics to adopt, rather than taking into account just the most recently re-
alized profit, would consider the performance of the various forecasting rules
in terms of realized profits in the recent past.
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