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ABSTRACT. Set in the Riemannian enviroment, the aim of this paper is to present and discuss some equiva-
lent characterizations of the Liouville property relative to special operators, in some sense modeled after the
p-Laplacian with potential. In particular, we discuss the equivalence between the Lioville property and the
Khas’minskii condition, i.e. the existence of an exhaustion function which is also a supersolution for the oper-
ator outside a compact set. This generalizes a previous result obtained by one of the authors and answers to a
question in [26].

Sui quisque laplaciani faber

1. INTRODUCTION

In what follows, let M denote a connected Riemannian manifold of dimension m, with no boundary. We
stress that no completeness assumption is required. The relationship between the probabilistic notions of
stochastic completeness and parabolicity (respectively the non-explosion and the recurrence of the Brownian
motion onM ) and function-theoretic properties ofM has been the subject of an active area of research in the
last decades. Deep connections with the heat equation, Liouville type theorems, capacity theory and spectral
theory have been described, for instance, in the beautiful survey [8]. In [23] and [22], the authors showed
that stochastic completeness and parabolicity are also related to weak maximum principles at infinity. This
characterization reveals to be fruitful in investigating many kinds of geometric problems (for a detailed
account, see [24]). Among the various conditions equivalent to stochastic completeness, the following two
are of prior interest to us:

- [L∞-Liouville] for some (any) λ > 0, the sole bounded, non-negative, continuous weak solution of
∆u− λu ≥ 0 is u = 0;

- [weak maximum principle] for every u ∈ C2(M) with u? = supM u < +∞, and for every η < u?,

(1) inf
Ωη

∆u ≤ 0, where Ωη = u−1{(η,+∞)}.

R.Z. Khas’minskii [11] has found the following condition for stochastic completeness. We recall that w ∈
C0(M) is called an exhaustion if it has compact sublevels w−1((−∞, t]), t ∈ R.

Theorem 1.1 (Khas’minskii test, [11]). Suppose that there exists a compact set K and a function w ∈
C0(M) ∩ C2(M \K) satisfying for some λ > 0:

(i) w is an exhaustion; (ii) ∆w − λw ≤ 0 on M\K.
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Then M is stochastically complete.

A very similar characterization holds for the parabolicity ofM . Namely, among many others, parabolicity
is equivalent to:

- every bounded, non-negative continuous weak solutions of ∆u ≥ 0 on M is constant;

- for every non-constant u ∈ C2(M) with u? = supM u < +∞, and for every η < u?,

(2) inf
Ωη

∆u < 0, where Ωη = u−1{(η,+∞)}.

Note that the first condition is precisely case λ = 0 of the Liouville property above. As for Khas’minskii type
conditions, it has been proved by M. Nakai [20] and Z. Kuramochi [15] that the parabolicity of M is indeed
equivalent to the existence of a so-called Evans potential, that is, an exhaustion, harmonic function w de-
fined outside a compact set K and such that w = 0 on ∂K. To the best of our knowledge, an analogue of
such equivalence for stochastic completeness or for the nonlinear case has still to be proved, and this is the
starting point of the present work.

With some modifications, it is possible to define the Liouville property, the Khas’minskii test and Evans
potentials also for p-Laplacians or other nonlinear operators, and the aim of this paper is to prove that in
this more general setting the Liouville property is equivalent to the Khas’minskii test, answering in the
affirmative to a question raised in [26] (question 4.6). After that, a brief discussion on the connection with
appropriate definitions of the weak maximum principle is included. The final section will be devoted to
the existence of Evans type potentials in the particular setting of radially symmetric manifolds. To fix the
ideas, we state the main theorem in the “easy case” of the p-Laplacian, and then introduce the more general
(and more technical) operators to which our theorem applies. Recall that for a function u ∈ W 1,p

loc (Ω), the
p-laplacian ∆p is defined weakly as:∫

Ω
φ∆pu = −

∫
Ω
|∇u|p−2 〈∇u|∇φ〉(3)

where φ ∈ C∞c (Ω) and integration is with respect to the Riemannian measure.

Theorem 1.2. Let M be a Riemannian manifold and let p > 1, λ ≥ 0. Then, the following conditions are
equivalent.

(W ) The weak maximum principle for C0 holds for ∆p, that is, for every non-constant u ∈ C0(M) ∩
W 1,p
loc (M) with u? = supM u <∞ and for every η < u? we have:

inf
Ωη

∆pu ≤ 0 (< 0 if λ = 0)(4)

weakly on Ωη = u−1{(η,+∞)}.
(L) Every non-negative, L∞ ∩W 1,p

loc solution u of ∆pu− λup−1 ≥ 0 is constant (hence zero if λ > 0).
(K) For every compactK with smooth boundary, there exists an exhaustionw ∈ C0(M\K)∩W 1,p

loc (M\K)

such that
w > 0 on M\K, w = 0 on ∂K, ∆pw − λwp−1 ≤ 0.

Up to some minor changes, the implications (W ) ⇔ (L) and (K) ⇒ (L) have been shown in [25],
Theorem A, where it is also proved that, in (W ) and (L), u can be equivalently restricted to the class
C1(M). In this respect, see also [26], Section 2. On the other hand, the second author in [33] has proved
that (L) ⇒ (K) when λ = 0. The proof developed in this article covers both the case λ = 0 and λ > 0, is
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easier and more straightforward and, above all, does not depend on some features which are typical of the
p-Laplacian.

2. DEFINITIONS AND MAIN THEOREMS

Notational conventions. We set R+ = (0,+∞), R+
0 = [0,+∞), and R−, R−0 accordingly; for a function

u defined on some set Ω, u? = esssupΩu and u? = essinfΩu; we will write K b Ω whenever the set K has
compact closure in Ω; Liploc(M) denotes the class of locally Lipschitz functions onM ; with u ∈ Hölloc(M)

we mean that, for every Ω b M , u ∈ C0,α(Ω) for some α ∈ (0, 1] possibly depending on Ω. Finally, we
will adopt the symbol Q .

= . . . to define the quantity Q as . . ..

In order for our techniques to work, we will consider quasilinear operators of the following form. Let
A : TM → TM be a Caratheodory map, that is if π : TM → M is the bundle projection, π ◦ A = π,
moreover every representation Ã of A in local charts satisfies

• Ã(x, ·) continuous for a.e. x ∈M
• Ã(·, v) measurable for every v ∈ Rm

Note that every continuous bundle map satisfies these assumptions. Furthermore, let B : M × R → R be
of Caratheodory type, that is, B(·, t) is measurable for every fixed t ∈ R, and B(x, ·) is continuous for a.e.
x ∈M . We shall assume that there exists p > 1 such that, for each fixed open set Ω bM , the following set
of assumptions S is met:

〈A(X)|X〉 ≥ a1|X|p ∀ X ∈ TM(A1)

|A(X)| ≤ a2|X|p−1 ∀X ∈ TM(A2)

A is strictly monotone, i.e. 〈A(X)−A(Y )|X − Y 〉p ≥ 0 for

every x ∈M, X, Y ∈ TxM, with equality if and only if X = Y
(Mo)

|B(x, t)| ≤ b1 + b2|t|p−1 for t ∈ R(B1)

for a.e. x, B(x, ·) is monotone non-decreasing(B2)

for a.e. x, B(x, t)t ≥ 0,(B3)

where a1, a2, b1, b2 are positive constants possibly depending on Ω. We could state our main theorem
relaxing condition B1 to:

|B(x, t)| ≤ b(t) for t ∈ R(B1+)

for some positive and finite function b, however for the moment we assume B1 to avoid some complications
in the notation, and explain later how to extend our result to this more general case.

We define the operators F ,A,B : W 1,p(Ω)→W 1,p(Ω)? by setting

(5)

A : u 7−→
[
φ ∈W 1,p(Ω) 7−→

∫
Ω 〈A(∇u)|∇φ〉

]
B : u 7−→

[
φ ∈W 1,p(Ω) 7−→

∫
ΩB(x, u(x))φ

]
F .

= A+ B.
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With these assumptions, it can be easily verified that both A and B map to continuous linear functionals on
W 1,p(Ω) for each fixed Ω bM . We define the operators LA, LF according to the distributional equality:∫

M
φLAu

.
= − < A(u), φ >,

∫
M
φLFu

.
= − < F(u), φ >

for every u ∈W 1,p
loc (M) and φ ∈ C∞c (M), where <,> is the duality. In other words, in the weak sense

LFu = div(A(∇u))−B(x, u) ∀ u ∈W 1,p
loc (M).

Example 2.1. The p-Laplacian defined in (3), corresponding to the choicesA(X)
.
= |X|p−2X andB(x, t)

.
=

0, satisfies all the assumptions in S for each Ω bM . Another admissible choice ofB isB(x, t)
.
= λ|t|p−2t,

where λ ≥ 0. For such a choice,

(6) LFu = ∆pu− λ|u|p−2u

is the operator of Theorem 1.2. We stress that, however, in S we require no homogeneity condition either
on A or on B.

Example 2.2. More generally, as in [25] and in [29], for each function ϕ ∈ C0(R+
0 ) such that ϕ > 0 on R+,

ϕ(0) = 0, and for each symmetric, positive definite 2-covariant continuous tensor field h ∈ Γ(Sym2(TM)),
we can consider differential operators of type

Lϕ,hu
.
= div

(
ϕ(|∇u|)
|∇u|

h(∇u, ·)]
)
,

where ] is the musical isomorphism. Due to the continuity and the strict positivity of h, the conditions (A1)
and (A2) in S can be rephrased as

(7) a1t
p−1 ≤ ϕ(t) ≤ a2t

p−1.

Furthermore, if ϕ ∈ C1(R+), a sufficient condition for (Mo) to hold is given by

(8)
ϕ(t)

t
h(X,X) +

(
ϕ′(t)− ϕ(t)

t

)
〈Y |X〉h(Y,X) > 0

for every X,Y with |X| = |Y | = 1. The reason why it implies the strict monotonicity can be briefly
justified as follows: for Lϕ,h, (Mo) is equivalent to requiring

(9)
ϕ(|X|)
|X|

h(X,X − Y )− ϕ(|Y |)
|Y |

h(Y,X − Y ) > 0 if X 6= Y.

In the nontrivial case when X and Y are not proportional, the segment Z(t) = Y + t(X − Y ), t ∈ [0, 1]

does not pass through zero, so that

F (t) =
ϕ(|Z|)
|Z|

h(Z,Z ′)

is C1. Condition (8) implies that F ′(t) > 0. Hence, integrating we get F (1) > F (0), that is, (9). We
observe that, if h is the metric tensor, the strict monotonicity is satisfied whenever ϕ is strictly increasing on
R+ even without any differentiability assumption on ϕ.

Example 2.3. Even more generally, if A is of class C1, a sufficient condition for the monotonicity of A has
been considered in [1], Section 5 (see the proof of Theorem 5.3). Indeed, the authors required that, for every
x ∈ M and every X ∈ TxM , the differential of the map Ax : TxM → TxM at the point X ∈ TxM is
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positive definite as a linear endomorphism of TX(TxM). This is the analogue, for Riemannian manifolds,
of Proposition 2.4.3 in [28].

We recall the concept of subsolutions and supersolutions for LF .

Definition 2.4. We say that u ∈ W 1,p
loc (M) solves LFu ≥ 0 (resp. ≤ 0, = 0) weakly on M if, for every

non-negative φ ∈ C∞c (M), < F(u), φ >≤ 0, (resp., ≥ 0, = 0). Explicitly,∫
M
〈A(∇u)|∇φ〉+

∫
M
B(x, u)φ ≤ 0 (resp., ≥ 0, = 0).

Solutions of LFu ≥ 0 (resp, ≤ 0, = 0) are called (weak) subsolutions (resp. supersolutions, solutions),

Remark 2.5. When defining solutions of LFu = 0, we can drop the requirement that the test function φ is
non-negative. This can be easily seen by splitting φ into its positive and negative parts and using a density
argument.

Remark 2.6. Note that, since B is Caratheodory, (B3) implies that B(x, 0) = 0 a.e. on M . Therefore, the
constant function u = 0 solves LFu = 0. Again by (B3), positive constants are supersolutions.

Following [25] and [26], we present the analogues of theL∞-Liouville property and the Khas’minskii property
for the nonlinear operators constructed above.

Definition 2.7. Let M be a Riemannian manifold, and let A,B,F be as above.

- We say that the L∞-Liouville property (L) for L∞ (respectively, Hölloc) functions holds for the
operator LF if every u ∈ L∞(M) ∩W 1,p

loc (M) (respectively, Hölloc(M) ∩W 1,p
loc (M)) essentially

bounded, satisfying u ≥ 0 and LFu ≥ 0 is constant.
- We say that the Khas’minskii property (K) holds for LF if, for every pair of open sets K b Ω bM

with Lipschitz boundary, and every ε > 0, there exists an exhaustion function

w ∈ C0(M\K) ∩W 1,p
loc (M\K)

such that
w > 0 on M\K, w = 0 on ∂K,

w ≤ ε on Ω\K, LFw ≤ 0 on M\K.
Such a w will be called a Khas’minskii potential relative to the triple (K,Ω, ε).

- a Khas’minskii potential w relative to some triple (K,Ω, ε) is called an Evans potential if LFw = 0

on M\K. The operator LF has the Evans property (E) if there exists an Evans potential for every
triple (K,Ω, ε).

The main result in this paper is the following

Theorem 2.8. Let M be a Riemannian manifold, and let A,B satisfy the set of assumptions S , with (B1+)
instead of (B1). DefineA,B,F as in (5), and LA, LF accordingly. Then, the conditions (L) for Hölloc, (L)

for L∞ and (K) are equivalent.

Remark 2.9. It should be observed that if LF is homogeneous, as in (6), the Khas’minskii condition con-
siderably simplifies as in (K) of Theorem 1.2. Indeed, the fact that δw is still a supersolution for every
δ > 0, and the continuity of w, allow to get rid of Ω and ε.
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Next, in Section 5 we briefly describe in which way (L) and (K) are related to the concepts of weak
maximum principle and parabolicity. Such relationship has been deeply investigated in [24], [25], whose
ideas and proofs we will follow closely. With the aid of Theorem 2.8, we will be able to prove the next
Theorem 2.12. To state it, we shall restrict to a particular class of potentials B(x, t), those of the form
B(x, t) = b(x)f(t) with

(10)
b, b−1 ∈ L∞loc(M), b > 0 a.e. on M ;

f ∈ C0(R), f(0) = 0, f is non-decreasing on R.

Clearly, B satisfies (B1+), (B2) and (B3). As for A, we require (A1) and (A2), as before.

Definition 2.10. Let A,B be as above, define A,B,F as in (5) and LA, LF accordingly.

(W ) We say that b−1LA satisfies the weak maximum principle forC0 functions if, for every u ∈ C0(M)∩
W 1,p

loc (M) such that u? < +∞, and for every η < u?,

inf
Ωη
b−1LAu ≤ 0 weakly on Ωη = u−1{(η,+∞)}.

(Wpa) We say that b−1LA is parabolic if, for every non-constant u ∈ C0(M) ∩ W 1,p
loc (M) such that

u? < +∞, and for every η < u?,

inf
Ωη
b−1LAu < 0 weakly on Ωη = u−1{(η,+∞)}.

- We say that F is of type 1 if, in the potential B(x, t), the factor f(t) satisfies f > 0 on R+.
Otherwise, when f = 0 on some interval [0, T ], F is called of type 2.

Remark 2.11. infΩη b
−1LAu ≤ 0 weakly means that, for every ε > 0, there exists 0 ≤ φ ∈ C∞c (Ωη),

φ 6≡ 0 such that

− < A(u), φ > < ε

∫
bφ.

Similarly, with infΩη b
−1LAu < 0 weakly we mean that there exist ε > 0 and 0 ≤ φ ∈ C∞c (Ωη), φ 6≡ 0

such that − < A(u), φ > < −ε
∫
bφ.

Theorem 2.12. Under the assumptions (10) for B(x, t) = b(x)f(t), and (A1), (A2) for A, the following
properties are equivalent:

- The operator b−1LA satisfies (W );
- Property (L) holds for some (hence any) operator F of type 1;
- Property (K) holds for some (hence any) operator F of type 1;

Furthermore, under the same assumptions, the next equivalence holds:

- The operator b−1LA is parabolic;
- Property (L) holds for some (hence any) operator F of type 2;
- Property (K) holds for some (hence any) operator F of type 2;

In the final Section 6, we address the question whether (W ), (K), (L) are equivalent to the Evans property
(E). Indeed, it should be observed that, in Theorem 2.8, no growth control onB as a function of t is required
at all. On the contrary, as we will see, the validity of the Evans property forces some precise upper bound for
its growth. To better grasp what we shall expect, we will restrict to the case of radially symmetric manifolds.
For the statements of the main results, we refer the reader directly to Section 6 covering the situation.
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3. TECHNICAL TOOLS

In this section we introduce some technical tools, such as the obstacle problem, that will be crucial to
the proof of our main theorems. In doing so, a number of basic results from literature is recalled. We have
decided to add a full proof to those results for which we have not found any reference convering the situation
at hand. Our aim is to keep the paper basically self-contained, and to give the non-expert reader interested
in this topic a brief overview also of the standard technical tricks. Throughout this section, we will always
assume that the assumptions in S are satisfied, if not explicitly stated. First, we state some basic results
on subsolutions-supersolutions such as the comparison principle, which follows from the monotonicity of
A and B.

Proposition 3.1. Assume w and s are a super and a subsolution defined on Ω. If min{w−s, 0} ∈W 1,p
0 (Ω),

then w ≥ s a.e. in Ω.

Proof. This theorem and its proof, which follows quite easily using the right test function in the definition
of supersolution, are standard in potential theory. For a detailed proof see [1], Theorem 4.1. �

Next, we observe that A, B satisfy all the assumptions for the subsolution-supersolution method in [14]
to be applicable.

Theorem 3.2 ([14], Theorems 4.1, 4.4 and 4.7). Let φ1, φ2 ∈ L∞loc∩W
1,p
loc be, respectively, a subsolution and

a supersolution forLF onM , and suppose that φ1 ≤ φ2 a.e. onM . Then, there is a solution u ∈ L∞loc∩W
1,p
loc

of LFu = 0 satisfying φ1 ≤ u ≤ φ2 a.e. on M .

A fundamental property is the strong maximum principle, which follows from the next Harnack inequality

Theorem 3.3 ([28], Theorems 7.1.2, 7.2.1 and 7.4.1). Let u ∈ W 1,p
loc (M) be a non-negative solution of

LAu ≤ 0. Let the assumptions in S be satisfied. Fix a relatively compact open set Ω bM .

(i) Suppose that 1 < p ≤ m, where m = dimM . Then, for every ball B4R ⊂ Ω and for every
s ∈ (0, (p− 1)m/(m− p)), there exists a constant C depending on R, on the geometry of B4R, on
m and on the parameters a1, a2 in S such that

‖u‖Ls(B2R) ≤ C
(

essinfB2R
u
)
.

(i) Suppose that p > m. Then, for every ball B4R ⊂ Ω, there exists a constant C depending on R, on
the geometry of B4R, on m and on the parameters a1, a2 in S such that

esssupBRu ≤ C
(

essinfBRu
)
.

In particular, for every p > 1, each non-negative solution u of LAu ≤ 0 on M is such that either u = 0 on
M or essinfΩu > 0 for every relatively compact set Ω.

Remark 3.4. We spend few words to comment on the Harnack inequalities quoted from [28]. In our
assumptions S , the functions ā2, ā, b1, b2, b in Chapter 7, (7.1.1) and (7.1.2) and the function a in the
monotonicity inequality (6.1.2) can be chosen to be identically zero. Thus, in Theorems 7.1.2 and 7.4.1 the
quantity k(R) is zero. This gives no non-homogeneous term in the Harnack inequality, which is essential
for us. For this reason, we cannot weaken (A2) to

|A(X)| ≤ a2|X|p−1 + ā
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locally on Ω, since the presence of non-zero ā implies that k(R) > 0. It should be observed that Theorem
7.1.2 is only stated for 1 < p < m but, as observed at the beginning of Section 7.4, the proof can be adapted
to cover the case p = m.

Remark 3.5. In the rest of the paper, we will only use the fact that either u ≡ 0 or u > 0 on M , that is, the
strong maximum principle. It is worth observing that, for the operators LA = Lϕ,h described in Example
2.2, very general strong maximum principles for C1 or Liploc solutions of Lϕ,hu ≤ 0 on Riemannian
manifolds have been obtained in [27] (see Theorem 1.2 when h is the metric tensor, and Theorems 5.4 and
5.6 for the general case). In particular, if h is the metric tensor, the sole requirements

(11) ϕ ∈ C0(R+
0 ), ϕ(0) = 0, ϕ > 0 on R+, ϕ in strictly increasing on R+

are enough for the strong maximum principle to hold for C1 solutions of Lϕu ≤ 0. Hence, for instance for
Lϕ, the two-sided bound (7) on ϕ can be weakened to any bound ensuring that the comparison and strong
maximum principles hold, the subsoluton-supersolution method is applicable and the obstacle problem has
a solution. For instance, besides (11), the requirement

(12) ϕ(0) = 0, a1t
p−1 ≤ ϕ(t) ≤ a2t

p−1 + a3

is enough for Theorems, 3.1, 3.2, and it also suffices for the obstacle problem to admit a unique solution, as
the reader can infer from the proof of the next Theorem 3.11.

Remark 3.6. Regarding the above observation, if ϕ is merely continuous then even solutions of Lϕu = 0

are not expected to be C1, nor even Liploc. Indeed, in our assumptions the optimal regularity for u is
(locally) some Hölder class, see the next Theorem 3.7. If ϕ ∈ C1(R+) is more regular, then we can avail of
the regularity result in [32] to go even beyond the C1 class. Indeed, under the assumptions

γ(k + t)p−2 ≤ min

(
ϕ′(t),

ϕ(t)

t

)
≤ max

(
ϕ′(t),

ϕ(t)

t

)
≤ Γ(k + t)p−2,

for some k ≥ 0 and some positive constants γ ≤ Γ, then each solution of Lϕu = 0 is in some class C1,α

on each relatively compact set Ω, where α ∈ (0, 1) may depend on Ω. When h is not the metric tensor, the
condition on ϕ and h is more complicated, and we refer the reader to [25] (in particular, see (0.1) (v), (vi)

p. 803).

Part of the regularity properties that we need are summarized in the following

Theorem 3.7. Let the assumptions in S be satisfied.

(i) [[18], Theorem 4.8] If u solves LFu ≤ 0 on some open set Ω, then there exists a representative in
W 1,p(Ω) which is lower semicontinuous.

(ii) [[16], Theorem 1.1 p. 251] If u ∈ L∞(Ω) ∩W 1,p(Ω) is a bounded solution of LFu = 0 on Ω, then
there exists α ∈ (0, 1) depending on the geometry of Ω, on the constants in S and on ‖u‖L∞(Ω)

such that u ∈ C0,α(Ω). Furthermore, for every Ω0 b Ω, there exists C = C(γ, dist(Ω0, ∂Ω)) such
that

‖u‖C0,α(Ω0) ≤ C.

Remark 3.8. As for (i), it is worth observing that, in our assumptions, both b0 and a in the statement of [18],
Theorem 4.8 are identically zero. Although we will not need the following properties, it is worth noting that
any u solving LFu ≤ 0 has a Lebesgue point everywhere and is also p-finely continuous (where finite).
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Next, this simple elliptic estimate for locally bounded supersolutions is useful:

Proposition 3.9. Let u be a bounded solution of LFu ≤ 0 on Ω. Then, for every relatively compact, open
set Ω0 b Ω there is a constant C > 0 depending on p, Ω, Ω0 and on the parameters in S such that

‖∇u‖Lp(Ω0) ≤ C(1 + ‖u‖L∞(Ω))

Proof. Given a supersolution u, the monotonicity of B assures that for every positive constant c also u + c

is a supersolution, so without loss of generality we may assume that u? ≥ 0. Thus, u? = ‖u‖L∞(Ω).
Shortly, with ‖·‖p we denote the Lp norm on Ω, and withC we denote a positive constant depending on p,Ω
and on the parameters in S , that may vary from place to place. Let η ∈ C∞c (Ω) be such that 0 ≤ η ≤ 1 on Ω

and η = 1 on Ω0. Then, we use the non-negative function φ = ηp(u? − u) in the definition of supersolution
to get, after some manipulation and from (A1), (A2) and (B3),

(13) a1

∫
Ω
ηp|∇u|p ≤ pa2

∫
Ω
|∇u|p−1ηp−1(u? − u)|∇η|+

∫
Ω
ηpB(x, u)u?

Using (B1), the integral involving B is roughly estimated as follows:

(14)
∫

Ω
ηpB(x, u)u? ≤ |Ω|(b1u? + b2(u?)p) ≤ C(1 + u?)p,

where the last inequality follows by applying Young inequality on the first addendum. As for the term
involving |∇η|, using (u? − u) ≤ u? and again Young inequality |ab| ≤ |a|p/(pεp) + εq|b|q/q we obtain

(15)
pa2

∫
Ω

(
|∇u|p−1ηp−1(u? − u)|∇η|

)
≤ pa2

∫
Ω

(
|∇u|p−1ηp−1

)(
u?|∇η|

)
≤ a2

εp ‖η∇u‖
p
p + a2pεq

q ‖∇η‖pp (u?)p

Choosing ε such that a2ε
−p = a1/2, inserting (14) and (15) into (13) and rearranging we obtain

a1

2
‖η∇u‖pp ≤ C

[
1 + (1 + ‖∇η‖pp)(u

?)p
]
.

Since η = 1 on Ω0 and ‖∇η‖p ≤ C, taking the p-root the desired estimate follows. �

Remark 3.10. We observe that, when B 6= 0 we cannot apply the technique of [9], Lemma 3.27 to get
a Caccioppoli-type inequality for bounded, non-negative supersolutions. The reason is that subtracting a
positive constant to a supersolution does not yield, for general B 6= 0, a supersolution. It should be stressed
that, however, when p ≤ m a refined Caccioppoli inequality for supersolution has been given in in [18],
Theorem 4.4.

Now, we fix our attention on the obstacle problem. There are a lot of references regarding this subject
(for example see [18], Chapter 5 or [9], Chapter 3 in the case B = 0). As often happens, notation can be
quite different from one reference to another. Here we try to adapt the conventions used in [9], and for the
reader’s convenience we also sketch some of the proofs.
First of all, some definitions. Given a function ψ : Ω → R ∪ ±∞, and given θ ∈ W 1,p(Ω), we define the
closed convex set

Kψ,θ
.
= {f ∈W 1,p(Ω) | f ≥ ψ a.e. and f − θ ∈W 1,p

0 (Ω)}.
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Loosely speaking, θ determines the boundary condition for the solution u, whileψ is the “obstacle”-function.
Most of the times, obstacle and boundary function coincide, and in this case we use the convention Kθ

.
=

Kθ,θ. We say that u ∈ Kψ,θ solves the obstacle problem if for every ϕ ∈ Kψ,θ:

< F(u), ϕ− u > ≥ 0.(16)

Note that for every nonnegative φ ∈ C∞c (Ω) the function ϕ = u+ φ belongs to Kψ,θ, and this implies that
the solution to the obstacle problem is always a supersolution. Note also that if we choose ψ = −∞, we get
the standard Dirichlet problem with Sobolev boundary value θ for the operator F , in fact in this case any
test function φ ∈ C∞c (Ω) verifies u ± φ ∈ Kψ,θ, and so inequality in (16) becomes an equality. Next, we
address the solvability of the obstacle problem.

Theorem 3.11. Under the assumptions S , if Ω is relatively compact andKψ,θ is nonempty, then there exists
a unique solution to the relative obstacle problem.

Proof. The proof is basically the same if we assume B = 0, as in [9], Appendix 1; in particular, it is an
application of Stampacchia theorem, see for example Corollary III.1.8 in [13]. To apply the theorem, we
shall verify that Kψ,θ is closed and convex, which follows straightforwardly from its very definition, and
that F : W 1,p(Ω) → W 1,p(Ω)? is weakly continuous, monotone and coercive. Monotonicity is immediate
by properties (Mo), (B2). To prove that F is weakly continuous, we take a sequence ui → u in W 1,p(Ω).
By using (A2) and (B1), we deduce from (5) that

| < F(ui), φ > | ≤
(

(a2 + b2) ‖ui‖p−1
W 1,p(Ω)

+ b1|Ω|
p−1
p

)
‖φ‖W 1,p(Ω)

Hence the W 1,p(Ω)? norm of {F(ui)} is bounded. Since W 1,p(Ω)? is reflexive, we can extract from any
subsequence a weakly convergent sub-subsequence F(uk) ⇀ z in W 1,p(Ω)?, for some z. From uk → u

in W 1,p(Ω), by Riesz theorem we get (up to a further subsequence) (uk,∇uk)→ (u,∇u) pointwise on Ω,
and since the maps

X 7−→ A(X), t 7−→ B(x, t)

are continuous, then necessarily z = F(u). Since this is true for every weakly convergent subsequence
{F(uk)}, we deduce that the whole F(ui) converges weakly to F(u). This proves the weak continuity of
F .
Coercivity on Kψ,θ follows if we fix any ϕ ∈ Kψ,θ and consider a diverging sequence {ui} ⊂ Kψ,θ and
calculate:

〈F(ui)−F(ϕ)|ui − ϕ〉
‖ui − ϕ‖W 1,p(Ω)

(B3)
≥ 〈A(ui)−A(ϕ)|ui − ϕ〉

‖ui − ϕ‖W 1,p(Ω)

(A1),(A2)
≥

≥
a1

(
‖∇ui‖pp + ‖∇ϕ‖pp

)
− a2

(
‖∇ui‖p−1

p ‖∇ϕ‖p + ‖∇ui‖p ‖∇ϕ‖
p−1
p

)
‖ui − ϕ‖W 1,p(Ω)

This last quantity tends to infinity as i goes to infinity thanks to the Poincarè inequality on Ω:

‖ui − ϕ‖Lp(Ω) ≤ C ‖∇ui −∇ϕ‖Lp(Ω)

which leads to ‖∇ui‖Lp(Ω) ≥ C1 + C2 ‖ui‖W 1,p(Ω) for some constants C1, C2, where C1 depends on
‖ϕ‖W 1,p(Ω). �
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A very important characterization of the solution of the obstacle problem is a corollary to the following
comparison, whose proof follows closely that of the comparison Proposition 3.1.

Proposition 3.12. If u is a solution to the obstacle problem Kψ,θ, and if w is a supersolution such that
min{u,w} ∈ Kψ,θ, then u ≤ w a.e.

Proof. Define U = {x| u(x) > w(x)}. Suppose by contradiction that U has positive measure. Since u
solves the obstacle problem, using (16) with the function ϕ = min{u,w} ∈ Kψ,θ we get

(17) 0 ≤ < F(u), ϕ− u > =

∫
U
〈A(∇u)|∇w −∇u〉+

∫
U
B(x, u)(w − u).

On the other hand, applying the definition of supersolution w with the test function 0 ≤ φ = u −
min{u,w} ∈W 1,p

0 (Ω) we get

(18) 0 ≤ < F(w), φ > =

∫
U
〈A(∇w)|∇u−∇w〉+

∫
U
B(x,w)(u− w)

adding the two inequalities we get, by (Mo) and (B2),

0 ≤
∫
U
〈A(∇u)−A(∇w)|∇w −∇u〉+

∫
U

[
B(x, u)−B(x,w)

]
(w − u) ≤ 0.

SinceA is strictly monotone,∇u = ∇w a.e. on U , so that∇((u−w)+) = 0 a.e. on Ω. Consequently, since
U has positive measure, u− w = c a.e. on Ω, where c is a positive constant. Since min{u,w} ∈ Kψ,θ, we
get c = u− w = u−min{u,w} ∈W 1,p

0 (Ω), contradiction. �

Corollary 3.13. The solution u to the obstacle problem in Kψ,θ is the smallest supersolution in Kψ,θ.

Proposition 3.14. Let w1, w2 ∈ W 1,p
loc (M) be supersolutions for LF . Then, w .

= min{w1, w2} is a super-
solution. Analogously, if u1, u2 ∈W 1,p

loc (M) are subsolutions for LF , then so is u .
= max{u1, u2}.

Proof. Consider a smooth exhaustion {Ωj} of M , and the obstacle problem Kw on Ωj . By Corollary 3.13
its solution is necessarilyw|Ωj , and so w is a supersolution being locally the solution of an obstacle problem.
As for the second part of the statement, define Ã(X)

.
= −A(−X) and B̃(x, t)

.
= −B(x,−t). Then, Ã, B̃

satisfy the set of assumptions S . Denote with F̃ the operator associated to Ã, B̃. Then, it is easy to see
that LFui ≥ 0 if and only if LF̃ (−ui) ≤ 0, and to conclude it is enough to apply the first part with operator
LF̃ . �

The next version of the pasting lemma generalizes the previous proposition to the case when one of the
supersolutions is not defined on the whole M . Before stating it, we need a preliminary definition. Given an
open subset Ω ⊂ M , possibly with non-compact closure, we recall that the space W 1,p

loc (Ω) is the set of all
functions u on Ω such that, for every relatively compact open set V bM that intersects Ω, u ∈W 1,p(Ω∩V ).
A function u in this space is, loosely speaking, well-behaved on relatively compact portions of ∂Ω, while no
global control on the W 1,p norm of u is assumed. Clearly, if Ω is relatively compact, W 1,p

loc (Ω) = W 1,p(Ω).
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We identify the following subset of W 1,p
loc (Ω), which we call Xp

0 (Ω):

(19) Xp
0 (Ω) =



u ∈W 1,p
loc (Ω) such that, for every open set U bM that

intersects Ω, there exists {φn}+∞n=1 ⊂ C0(Ω ∩ U) ∩W 1,p(Ω ∩ U),

with φn ≡ 0 in a neighbourhood of ∂Ω, satisfying

ϕn → u in W 1,p(Ω ∩ U) as n→ +∞.

If Ω is relatively compact, then Xp
0 (Ω) = W 1,p

0 (Ω).

Remark 3.15. Observe that, if u ∈ C0(Ω) ∩W 1,p
loc (Ω), then u ∈ Xp

0 (Ω) if and only if u = 0 on ∂Ω. This
is the version, for non-compact domains Ω, of a standard result. However, for the convenience of the reader
we briefly sketch the proof. Up to working with positive and negative part separately, we can suppose that
u ≥ 0 on Ω. If u = 0 on ∂Ω, then choosing the sequence φn = max{u − 1/n, 0} it is easy to check that
u ∈ Xp

0 (Ω). Viceversa, if u ∈ Xp
0 (Ω), let x0 ∈ ∂Ω be any point. Choose U1 b U2 bM such that x0 ∈ U1,

and a sequence {φn} ∈ C0(Ω ∩ U2) ∩W 1,p(Ω ∩ U2) as in the definition of Xp
0 (Ω). If ψ ∈ C∞c (U2) is a

smooth cut-off function such that ψ = 1 on U1, then ψφn → ψu in W 1,p(Ω∩U2). Since ψφn is compactly
supported in Ω∩U2, then ψu ∈W 1,p

0 (Ω∩U2). It is a standard fact that, in this case, ψu = 0 on ∂(Ω∩U2).
Since x0 ∈ ∂Ω ∩ U2 ⊂ ∂(Ω ∩ U2), u(x0) = uψ(x0) = 0. By the arbitrariness of x0, this shows that u = 0

on ∂Ω.

Lemma 3.16. Let w1 ∈W 1,p
loc (M) be a supersolution for LF , and let w2 ∈W 1,p

loc (Ω) be a supersolution on
some open set Ω with Ω ⊂ M , Ω being possibly non-compact. Suppose that min{w2 − w1, 0} ∈ Xp

0 (Ω).
Then, the function

m
.
=

{
min{w1, w2} on Ω

w1 on M\Ω

is a supersolution for LF on M . In particular, if further w1 ∈ C0(M) and w2 ∈ C0(Ω), then m is a
supersolution on M whenever w1 = w2 on ∂Ω. A similar statement is valid for subsolutions, replacing min

with max.

Proof. We first need to check thatm ∈W 1,p
loc (M). Let U bM be an open set. By assumption, there exists a

sequence of functions {φn} ∈ C0(Ω ∩ U)∩W 1,p(Ω∩U), each φn being zero in some neighbourhood of ∂Ω,
which converges in the W 1,p norm to min{w2 − w1, 0}. We can thus continuously extend φn on the whole
U by setting φn = 0 on U\Ω, and the resulting extension is in W 1,p(U). Define u = min{w2 − w1, 0}χΩ,
where χΩ is the indicatrix function of Ω. Then, φn → u in W 1,p(U), so that u ∈ W 1,p(U). It follows that
w1 + φn ∈ W 1,p(U) converges to m = w1 + u, which shows that m ∈ W 1,p(U). To prove that LFm ≤ 0

we use a technique similar to Proposition 3.12. Let U bM be a fixed relatively compact open set, and let s
be the solution to the obstacle problem Km on U . Then we have by Corollary 3.13 s ≤ w1 a.e. on U and so
s = w1 = m on U\Ω. Since s solves the obstacle problem, using ϕ = m in equation (16) we have:

(20) 0 ≤ < F(s),m− s > =

∫
Ω∩U
〈A(∇s)|∇m−∇s〉+

∫
Ω∩U

B(x, s)(m− s).

On the other hand m is a supersolution in Ω ∩U , being the minimum of two supersolutions, by Proposition
3.14. To apply the weak definition of LFm ≤ 0 on Ω ∩ U to the test function s −m, we first claim that
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s−m ∈W 1,p
0 (Ω ∩ U). Since we know that s ≤ w1 on U , then on Ω ∩ U

0 ≤ s−m ≤ w1 −min{w2, w1} = −min{w2 − w1, 0} ∈ Xp
0 (Ω).

The claim now follows by a standard result (see for example [9], Lemma 1.25), but for the sake of com-
pleteness we sketch the proof. Since 0 ≤ s − m ∈ W 1,p

0 (U) by the definition of the obstacle problem,
there exists a sequence of nonnegative functions ψn ∈ C∞c (U) converging to s −m. We further consider
the sequence {φn} of continuous functions, converging to min{w2 − w1, 0}, defined at the beginning of
this proof. Then, on Ω ∩ U , 0 ≤ s −m ≤ limn min{−φn, ψn}, where the limit is taken in W 1,p(Ω ∩ U).
Now, min{−φn, ψn} has compact support in Ω ∩ U , and this proves the claim. Applying the definition of
LFm ≤ 0 to the test function s−m we get:

(21) 0 ≤ < F(m), s−m > =

∫
Ω∩U
〈A(∇m)|∇s−∇m〉+

∫
Ω∩U

B(x,m)(s−m).

Summing inequalities (20) and (21), we conclude as in Proposition 3.12 that ∇(s−m) = 0 in Ω ∩ U with
s−m ∈W 1,p

0 (Ω∩U), and so the two functions are equal there. Since s = w = m on U\Ω, thenm = s is a
supersolution on U . The thesis follows by the arbitrariness of U . If further w1 ∈ C0(M) and w2 ∈ C0(Ω),
then the conclusion follows by Remark 3.15. The proof of the statement for subsolutions is obtained via the
same trick as in Proposition 3.14. �

As for the regularity of solutions of the obstacle problem, we have

Theorem 3.17 ([18], Theorem 5.4 and Corollary 5.6). If the obstacle ψ is continuous in Ω, then the solution
u to Kψ,θ has a continuous representative in the Sobolev sense. Furthermore, if ψ ∈ C0,α(Ω) for some
α ∈ (0, 1), then there exist C, β > 0 depending only on p, α,Ω, ‖u‖L∞(Ω) and on the parameters in S such
that

‖u‖C0,β(Ω) ≤ C(1 + ‖ψ‖C0,α(Ω))

Remark 3.18. The interested reader should be advised that, in the notation of [18], b0 and a are both
zero with our assumptions. Stronger results, for instance C1,α regularity, can be obtained from stronger
requirements on ψ, A and B which are stated for instance in [18], Theorem 5.14.

In the proof of our main theorem, and to get some boundary regularity results, it will be important to see
what happens on the set where the solution of the obstacle problem is strictly above the obstacle.

Proposition 3.19. Let u be the solution of the obstacle problem Kψ,θ with continuous obstacle ψ. If u > ψ

on an open set D, then u is a solution of LFu = 0 on D.

Proof. Consider any test function φ ∈ C∞c (D). Since u > ψ on D, and since φ is bounded, by continuity
there exists δ > 0 such that u± δφ ∈ Kψ,θ. From the definition of solution to the obstacle problem we have
that:

± < F(u), φ > =
1

δ
< F(u),±δφ > =

1

δ
< F (u), (u± δφ)− u > ≥ 0,

hence < F(u), φ > = 0 for every φ ∈ C∞c (D), as required. �

As for boundary regularity, to the best of our knowledge there is no result for solutions of the kind of
obstacle problems we are studying. However, if we restrict ourselves to Dirichlet problems (i.e. obstacle
problems with ψ = −∞), some results are available. We briefly recall that a point x0 ∈ ∂Ω is called
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“regular” if for every function θ ∈ W 1,p(Ω) continuous in a neighborhood of x0, the unique solution to
the relative Dirichlet problem is continuous in x0, and that a necessary and sufficient condition for x0 to be
regular is the famous Wiener criterion (which has a local nature). For our purposes, it is enough to use some
simpler sufficient conditions for regularity, so we just cite the following corollary of the Wiener criterion:

Theorem 3.20 ([6], Theorem 2.5). Let Ω be a domain, and suppose that x0 ∈ ∂Ω has a neighborhood
where ∂Ω is Lipschitz, then x0 is regular for the Dirichlet problem.

For a more specific discussion of the subject, we refer the reader to [6]. We mention that Dirichlet and
obstacle problems have been studied also in metric space setting, and boundary regularity theorems with the
Wiener criterion have been obtained for example in [2], Theorem 7.2.

Remark 3.21. Note that [6] deals only with the case 1 < p ≤ m, but the other cases follows from standard
Sobolev embeddings.

Using the comparison principle and Proposition 3.19, it is possible to obtain a corollary to this theorem
which deals with boundary regularity of some particular obstacle problems.

Corollary 3.22. Consider the obstacle problem Kψ,θ on Ω, and suppose that Ω has Lipschitz boundary
and both θ and ψ are continuous up to the boundary. Then the solution w to Kψ,θ is continuous up to the
boundary (for convenience we denote w the continuous representative of the solution).

Proof. If we want Kψ,θ to be nonempty, it is necessary to assume ψ(x0) ≤ θ(x0) for all x0 ∈ ∂Ω.
Let θ̃ be the unique solution to the Dirichlet problem relative to θ on Ω. Then theorem 3.20 guarantees

that θ̃ ∈ C0(Ω) and the comparison principle allow us to conclude that w(x) ≥ θ̃(x) everywhere in Ω.
Suppose first that ψ(x0) < θ(x0), then in a neighborhood U of x0 (U ⊂ Ω) w(x) ≥ θ̃(x) > ψ(x). By

Proposition 3.19, LFw = 0 on U , and so by Theorem 3.20 w is continuous in x0.
If ψ(x0) = θ(x0), consider wε the solutions to the obstacle problem Kθ̃+ε,ψ. By the same argument as

above we have that wε are all continuous at x0, and by the comparison principle w(x) ≤ wε(x) for every
x ∈ Ω (recall that both functions are continuous in Ω). So we have on one hand:

lim inf
x→x0

w(x) ≥ lim inf
x→x0

ψ(x) = ψ(x0) = θ(x0)

and on the other:

lim sup
x→x0

w(x) ≤ lim sup
x→x0

wε(x) = θ(x0) + ε

this proves that w is continuous in x0 with value θ(x0). �

Finally, we present some results on convergence of supersolutions and their approximation with regular
ones.

Proposition 3.23. Let wj be a sequence of supersolutions on some open set Ω. Suppose that either wj ↑ w
or wj ↓ w pointwise monotonically, for some locally bounded w. Then, w is a supersolution and there
exists a subsequence of {wj} that converges locally strongly in W 1,p to w on each compact subset of Ω.
Furthermore, if {uj} is a sequence of solutions of LFuj = 0 which are locally uniformly bounded in L∞

and pointwise convergent to some u, then u solves LFu = 0 and, up to choosing a subsequence, {uj}
converges to u locally strongly on each compact subset of Ω.
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Proof. Suppose that wj ↑ w. Up to changing the representative in the Sobolev class, by Theorem 3.7 we
can assume that wj is lower semicontinuous. Hence, it has minimum on compact subsets of Ω. Since w is
locally bounded and the convergence is monotone up to a set of zero measure, the sequence {wj} turns out
to be locally bounded in the L∞-norm. The elliptic estimate in Proposition 3.9 ensures that {wj} is locally
bounded in W 1,p(Ω). Fix a smooth exhaustion {Ωn} of Ω. For each j, up to passing to a subsequence,
wj ⇀ zn weakly in W 1,p(Ωn) and strongly in Lp(Ωn). By Riesz theorem, zj = w for every j, hence
w ∈W 1,p

loc (Ω). With a Cantor argument, we can select a sequence, still called wj , such that wj converges to
w both weakly in W 1,p(Ωn) and strongly in Lp(Ωn) for every fixed n. To prove that w is a supersolution,
fix 0 ≤ η ∈ C∞c (Ω), and choose a smooth relatively compact open set Ω0 b Ω that contains the support of
η. Define M .

= maxj ‖wj‖W 1,p(Ω0) < +∞. Since wj is a supersolution and w ≥ wj for every j,

< F(wj), η(w − wj) > ≥ 0.

Using (A1) we can rewrite the above inequality as follows:

(22)
∫
〈A(∇wj)|η(∇w −∇wj)〉 ≥ −

∫ [
B(x,wj) + 〈A(∇wj)|∇η〉

]
(w − wj).

Using (B1), (A2) and suitable Hölder inequalities, the RHS can be bounded from below with the following
quantity

(23)

−b1 ‖η‖L∞(Ω)

∫
Ω0

(w − wj)− b2 ‖η‖L∞(Ω)

∫
Ω0

|wj |p−1|w − wj |

−a2 ‖∇η‖L∞(Ω)

∫
Ω0

|∇wj |p−1|w − wj |

≥ −‖η‖C1(Ω)

[
b1|Ω0|

p−1
p − b2Mp−1 − a2M

p−1
]
‖w − wj‖Lp(Ω0) → 0

as j → +∞. Combining with (22) and the fact that wj ⇀ w weakly on W 1,p(Ω0), by assumption (Mo) the
following inequality holds true:

(24) 0 ≤
∫
η 〈A(∇w)−A(∇wj)|∇w −∇wj〉 ≤ o(1) as j → +∞.

By a lemma due to F. Browder (see [3], p.13 Lemma 3), the combination of assumptions wj ⇀ w both
locally weakly inW 1,p and locally strongly in Lp, and (24) for every 0 ≤ η ∈ C∞c (Ω), implies that wj → w

locally strongly in W 1,p. Since the operator F is weakly continuous, as shown in the proof of Theorem
3.11, this implies that

0 ≤ < F(wj), η > −→ < F(w), η >,

hence LFw ≤ 0, as required.
The case wj ↓ w is simpler. By the elliptic estimate, w ∈ W 1,p

loc (Ω), being locally bounded by assumption.
Let {Ωn} be a smooth exhaustion of Ω, and let un be a solution of the obstacle problem relative to Ωn with
obstacle and boundary value w. Then, by (3.13) w ≤ un ≤ wj |Ωn , and letting j → +∞ we deduce that
w = un is a supersolution on Ωn, being a solution of an obstacle problem.
The proof of the last part of the Proposition follows exactly the same lines as the case wj ↑ w done before.
Indeed, by the uniform local boundedness, the elliptic estimate gives {uj} ⊂ W 1,p

loc (Ω). Furthermore, in
definition < F(uj), φ > = 0 we can still use as test function φ = η(u − uj), since no sign of φ is
required. �
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A couple of corollaries follow from this theorem. It is in fact easy to see that we can relax the assumption
of local boundedness on w if we assume a priori w ∈ W 1,p

loc (Ω), and moreover with a simple trick we can
prove that also local uniform convergence preserves the supersolution property, as in [9], Theorem 3.78.

Corollary 3.24. Let wj be a sequence of supersolutions locally uniformly converging to w, then w is a
supersolution.

Proof. The trick is to transform local uniform convergence into monotone convergence. Fix any rela-
tively compact Ω0 b Ω and a subsequence of wj (denoted for convenience by the same symbol) with
‖wj − w‖L∞(Ω0) ≤ 2−j . The modified sequence of supersolutions w̃j

.
= wj + 3

2

∑∞
k=j 2−k = wj +3×2−j

is easily seen to be a monotonically decreasing sequence on Ω0, and thus its limit, still w by construction,
is a supersolution on any Ω0 by the previous proposition. The conclusion follows from the arbitrariness of
Ω0. �

Now we prove that with continuous supersolutions we can approximate every supersolution.

Proposition 3.25. For every supersolution w ∈ W 1,p
loc (Ω), there exists a sequence wn of continuous su-

persolutions converging monotonically from below and in W 1,p
loc (Ω) to w. The same statement is true for

subsolutions with monotone convergence from above.

Proof. Since every w has a lower-semicontinuous representative, it can be assumed to be locally bounded
from below, and since w(m) = min{w,m} is a supersolution (for m ≥ 0) and converges monotonically to
w as m goes to infinity, we can assume without loss of generality that w is also bounded above.

Let Ωn be a locally finite relatively compact open covering on Ω. Since w is lower semicontinuous
it is possible to find a sequence φm of smooth function converging monotonically from below to w (see
[9], Section 3.71 p. 75). Let w(n)

m be the solution to the obstacle problem Kw,φm on Ωn. and define
w̄m

.
= minn{w(n)

m }. Thanks to the local finiteness of the covering Ωn, w̄m is a continuous supersolution,
being locally the minimum of a finite family of continuous functions. Monotonicity of the convergence is
an easy consequence of the comparison principle for obstacle problems, i.e. Proposition 3.12. To prove
convergence in the local W 1,p sense, the steps are pretty much the same as for Proposition 3.23, and the
statement for subsolutions follows from the usual trick. �

Remark 3.26. With similar arguments and up to some minor technical difficulties, one could strenghten the
previous proposition and prove that every supersolution can be approximated by locally Hölder continuous
supersolutions.

4. PROOF OF THEOREM 2.8

Theorem 4.1. Let M be a Riemannian manifold, and let A,B satisfy the set of assumptions S . Define
A,B,F as in (5), and LA, LF accordingly. Then, the following properties are equivalent:

(1) (L) for Hölloc functions,
(2) (L) for L∞ functions,
(3) (K).

Proof. (2) ⇒ (1) is obvious. To prove that (1) ⇒ (2), we follow the arguments in [25], Lemma 1.5.
Assume by contradiction that there exists 0 ≤ u ∈ L∞(M) ∩W 1,p

loc (M), u 6≡ 0 such that LFu ≥ 0. We
distinguish two cases.
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- Suppose first that B(x, u)u is not identically zero in the Sobolev sense. Let u2 > u? be a constant.
By (B3), LFu2 ≤ 0. By the subsolution-supersolution method and the regularity Theorem 3.7, there
exists w ∈ Hölloc(M) such that u ≤ w ≤ u2 and LFw = 0. Since, by (B2), (B3) and u ≤ w,
B(x,w)w is not identically zero, then w is non-constant, contradicting property (1).

- Suppose that B(x, u)u = 0 a.e. on M . Since u is non-constant, we can choose a positive constant
c such that both {u − c > 0} and {u − c < 0} have positive measure. By (B2), LF (u − c) ≥ 0,
hence by Proposition 3.14 the function v = (u − c)+ = max{u − c, 0} is a non-zero subsolution.
Denoting with χ{u<c} the indicatrix of {u < c}, we can say that LFv ≥ 0 = χ{u<c}v

p−1. Choose
any constant u2 > v?. Then, clearly LFu2 ≤ χ{u<c}u

p−1
2 . Since the potential

B̃(x, t)
.
= B(x, t) + χ{u<c}(x)|t|p−2t

is still a Caratheodory function satisfying the assumptions in S , by Theorem 3.2 there exists a
function w such that v ≤ w ≤ u2 and LFw = χ{u<c}w

p−1. By Theorem 3.7, (ii) w is locally
Hölder continuous and, since {u < c} has positive measure, w is non-constant, contradicting (1).

To prove the implication (3) ⇒ (1), we follow a standard argument in potential theory, see for example
[25], Proposition 1.6. Let u ∈ Hölloc(M) ∩W 1,p

loc (M) be a non-constant, non-negative, bounded solution
of LFu ≥ 0. We claim that, by the strong maximum principle, u < u? on M . Indeed, let Ã be the operator
associated with the choice Ã(X)

.
= −A(−X). Then, since Ã satisfies all the assumptions in S , it is easy

to show that LÃ(u? − u) ≤ 0 on M . Hence, by the Harnack inequality u? − u > 0 on M , as desired.
Let K b M be a compact set. Consider η such that 0 < η < u? and define the open set Ωη

.
=

u−1{(η,+∞)}. From u < u? on M , we can choose η close enough to u? so that K ∩ Ωη = ∅. Let
x0 be a point such that u(x0) > u?+η

2 , Let Ω be such that x0 ∈ Ω, and choose a Khas’minskii potential
relative to the triple (K,Ω, (u? − η)/2). Now, consider the open set V defined as the connected component
containing x0 of the open set

Ṽ
.
= {x ∈ Ωη | u(x) > η + w(x)}

Since u is bounded and w is an exhaustion, V is relatively compact in M and u(x) = η + w(x) on ∂V .
Since, by (B2), LF (η + w) ≤ 0, and LFu ≥ 0, this contradicts the comparison Theorem 3.1.
We are left to the implication (2) ⇒ (3). Fix a triple (K,Ω, ε), and a smooth exhaustion {Ωj} of M with
Ω b Ω1. By the existence Theorem 3.11 with obstacle ψ = −∞, there exists a unique solution hj of{

LFhj = 0 on Ωj\K

hj = 0 on ∂K, hj = 1 on ∂Ωj ,

and 0 ≤ hj ≤ 1 by the comparison Theorem 3.1, with h continuous up to ∂ (Ωj \K) thanks to Theorem
3.20. Extend hj by setting hj = 0 on K with hj = 1 on M\Ωj . Again by comparison, {hj} is a decreasing
sequence which, by Proposition 3.23, converges pointwise on M to a solution

h ∈ ∩W 1,p
loc (M\K) of LFh = 0 on M\K.

Since 0 ≤ h ≤ hj for every j, and since hj = 0 on ∂K, using Corollary 3.22 with ψ = −∞ we deduce
that h ∈ C0(M\K) and h = 0 on ∂K. We claim that h = 0. Indeed, by Lemma 3.16 u = max{h, 0} is a
non-negative, bounded solution of LFu ≥ 0 on M . By (1), u has to be constant, hence the only possibility
is h = 0.
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Now we are going to build by induction an increasing sequence of continuous functions {wn}, w0 = 0, such
that:

(a) wn|K = 0, wn are continuous on M and LFwn ≤ 0 on M\K,
(b) for every n, wn ≤ n on all of M and wn = n in a large enough neighborhood of infinity denoted by

M\Cn,
(c) ‖wn‖L∞(Ωn) ≤ ‖wn−1‖L∞(Ωn) + ε

2n .

Once this is done, by (c) the increasing sequence {wn} is locally uniformly convergent to a continuous
exhaustion which, by Proposition 3.23, solves LFw ≤ 0. Furthermore,

‖w‖L∞(Ω) ≤
+∞∑
n=1

ε

2n
≤ ε.

Hence, w is the desired Khas’minskii potential relative to (K,Ω, ε).
We start the induction by setting w1

.
= hj , for j large enough in order for property (c) to hold. Define

C1 in order to fix property (b). Suppose now that we have constructed wn. For notational convenience,
write w̄ = wn. Consider the sequence of obstacle problems Kw̄+hj defined on Ωj+1\K and let sj be their
solution. By Theorem 3.17 and Corollary 3.22 we know that sj is continuous up to the boundary of its
domain. Take for convenience j large enough such that C1 ⊂ Ωj . Note that sj |∂K = 0 and since the
constant function n + 1 is a supersolution, by comparison sj ≤ n + 1 and sj |Ωj+1\Ωj = n + 1. So we can
extend sj to a function defined on all of M by setting it equal to 0 on K and equal to n + 1 on M\Ωj+1,
and in this fashion, by Lemma 3.16 LFsj ≤ 0 on M \ K. By Corollary 3.13, {sj} is decreasing, and so
it has a pointwise limit s̄ which is still a supersolution on M \K by Proposition 3.23. By Theorem 3.7, i)
the function s̄ admits a lower semicontinuous representative. We are going to prove that s̄ = w̄. First, we
show that s̄ ≤ n everywhere. Suppose by contraddiction that this is false. Then, since hj converges locally
uniformly to zero, on the open set A .

= s̄−1{(n,∞)} the inequality sj > w̄ + hj is locally eventually
true, so that sj is locally eventually a solution of LFsj = 0 by Proposition 3.19, and so LF s̄ = 0 on A by
Proposition 3.23. We need to apply the Pasting Lemma 3.16 to the subsolution s̄−n (defined on A) and the
zero function. In order to do so, we shall verify that max{s̄ − n, 0} ∈ Xp

0 (A), where Xp
0 (A) is defined as

in (19). This requires some care, since s̄ is not a-priori continuous up to ∂A. By Proposition 3.25, we can
choose a sequence of continuous supersolutions {σi} ⊂W 1,p

loc (M\K)∩C0(M\K) that converges to s̄ both
pointwise monotonically and inW 1,p on compacta ofM\K. Since 0 ≤ s̄ ≤ sj for every j, and the sequence
{sj} is decreasing, it follows that s̄ is continuous on ∂K with zero boundary value. Therefore,A has positive
distance from ∂K, and thus σi converges to s̄ in W 1,p

loc (A). Since s̄ is lower semicontinuous, s̄ ≤ n on ∂A,
so that σi ≤ n on ∂A for every i. Consequently, the continuous functions ψi = max{σi − n − 1/i, 0}
converge on compacta of A to max{s̄ − n, 0}, and each ψi is zero in a neighbourhood of ∂A. This proves
the claim that max{s̄− n, 0} ∈ Xp

0 (A). By Lemma 3.16 and assumptions S , the function

f
.
= max{s̄− n, 0}

is a non-negative, non-zero bounded solution of LFf ≥ 0. By (2), f is constant, hence zero; therefore
s̄ ≤ n. This proves that s̄ = w̄ = n on M\Cn. As for the remaining set, a similar argument than the one
just used shows that s̄ is a solution of LF s̄ = 0 on the open, relatively compact set V .

= {s̄ > w̄}, and that
s̄− w ∈ W 1,p

0 (V ). The comparison principle guarantees that s̄ ≤ w̄ everywhere, which is what we needed
to prove. Now, since sj ↓ w, by Dini’s theorem the convergence is locally uniform and so we can choose j̄
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large enough in such a way that sj̄ − w̄ < ε
2n on Ωn+1. Define wn+1

.
= sj̄ , and Cn+1 in order for (b) to

hold, and the construction is completed. �

5. ON THE LINKS WITH THE WEAK MAXIMUM PRINCIPLE AND PARABOLICITY: PROOF OF THEOREM

2.12

As already explained in the introduction, throughout this section we will restrict ourselves to potentials
B(x, t) of the form B(x, t) = b(x)f(t), where

(25)
b, b−1 ∈ L∞loc(M), b > 0 a.e. on M ;

f ∈ C0(R), f(0) = 0, f is non-decreasing on R,
while we require (A1), (A2) on A.

Remark 5.1. As in Remark 3.5, in the case of the operator Lϕ in Example 2.2 with h being the metric
tensor, (A1) and (A2) can be weakened to (11) and (12).

We begin with the following lemma characterizing (W ), whose proof follows the lines of [24].

Lemma 5.2. Property (W ) for b−1LA is equivalent to the following property, which we call (P ):

For every g ∈ C0(R), and for every u ∈ C0(M)∩W 1,p
loc (M) bounded above and satisfying

LAu ≥ b(x)g(u) on M, it holds g(u?) ≤ 0.

Proof. (W ) ⇒ (P ). From (W ) and LAu ≥ b(x)g(u), for every η < u? and ε > 0 we can find 0 ≤ φ ∈
C∞c (Ωη) such that

ε

∫
bφ > − < A(u), φ > ≥

∫
g(u)bφ ≥ inf

Ωη
g(u)

∫
bφ

Since b > 0 a.e. on M , we can simplify the integral term to obtain infΩη g(u) ≤ ε. Letting ε→ 0 and then
η → u?, and using the continuity of u, g we get g(u?) ≤ 0, as required. To prove that (P )⇒ (W ), suppose
by contradiction that there exists a bounded above function u ∈ C0 ∩W 1,p

loc , a value η < u? and ε > 0 such
that infΩη b

−1LAu ≥ ε. Let gε(t) be a continuous function on R such that gε(t) = ε if t ≥ u? − η, and
gε(t) = 0 for t ≤ 0. Then, by the pasting Lemma 3.16, w = max{u − η, 0} satisfies LAw ≥ b(x)gε(w).
Furthermore, gε(w?) = gε(u

? − η) = ε, contradicting (P ). �

Theorem 2.12 is an immediate corollary of the main Theorem 2.8 and of the following two propositions.

Proposition 5.3. If b−1LA satisfies (W ), then (L) holds for every operator LF of type 1. Conversely, if (L)

holds for some operator F of type 1, then b−1LA satisfies (W ).

Proof. Suppose that (W ) is met, and let u ∈ Hölloc∩W 1,p
loc be a bounded, non-negative solution ofLFu ≥ 0.

By Lemma 5.2, f(u?) ≤ 0. Since F is of type 1, u? ≤ 0, that is, u = 0, as desired. Conversely, let F
be an operator of type 1 for which the Liouville property holds. Suppose by contradiction that (W ) is not
satisfied, so that there exists u ∈ C0∩W 1,p

loc such that b−1LAu ≥ ε on some Ωη0 . Clearly, u is non-constant.
Since f(0) = 0, we can choose η ∈ (η0, u

?) in such a way that f(u? − η) < ε. Hence, by the monotonicity
of f , the function u− η solves

LA(u− η) ≥ b(x)ε ≥ b(x)f(u− η) on Ωη.

Thanks to the pasting Lemma 3.16, w = max{u − η, 0} is a non-constant, non-negative bounded solution
of LAw ≥ b(x)f(w), that is, LFw ≥ 0, contradicting the Liouville property. �
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Proposition 5.4. If b−1LA is parabolic, then (L) holds for every operator LF of type 2. Conversely, if (L)

holds for some operator F of type 2, then b−1LA satisfies (Wpa).

Proof. Suppose that (Wpa) is met. Since each bounded, non-negative u ∈ Hölloc ∩W 1,p
loc solving LFu ≥ 0

automatically solves LAu ≥ 0, then u is constant by (Wpa), which proves (L). Conversely, let F be an
operator of type 2 for which the Liouville property holds, and let [0, T ] be the maximal interval in R+

0 where
f = 0. Suppose by contradiction that (Wpa) is not satisfied, so that there exists a nonconstant u ∈ C0∩W 1,p

loc

with b−1LAu ≥ 0 on M . For η close enough to u?, u − η ≤ T on M , hence w = max{u − η, 0} is a
non-negative, bounded non-constant solution of LAw ≥ 0 = b(x)f(w) on M , contradicting the Liouville
property for F . �

6. THE EVANS PROPERTY

We conclude this paper with some comments on the existence of Evans potentials on model manifolds.
It turns out that the function-theoretic properties of these potentials can be used to study the underlying
manifold. By a way of example, we quote the papers [34] and [31]. In the first one, the authors extend
the Kelvin-Nevanlinna-Royden condition and find a Stokes’ type theorem for vector fields with integrability
condition related to the Evans potential, while in the second article Evans potentials are exploited in order
to understand the spaces of harmonic functions with polynomial growth. As a matter of fact, these spaces
give a lot of information on the structure at infinity of the manifold. We recall that, only for the standard
Laplace-Beltrami operator, it is known that any parabolic Riemannian manifold admits an Evans potential,
as proved in [20] or in [30], but the technique involved in this proof heavily relies on the linearity of the
operator and cannot be easily generalized, even for the p-Laplacian. In this respect, see [12].

From the technical point of view, we remark that, for the main Theorems 2.8 and 2.12 to hold, no growth
control onB(x, t) in the variable t is required. As we will see, for the Evans property to hold for LF we shall
necessarily assume a precise maximal growth of B, otherwise there is no hope to find any Evans potential.
This growth is described by the so-called Keller-Osserman condition.

To begin with, we recall that a model manifold Mg is Rm endowed with a metric ds2 which, in polar
coordinates centered at some origin o, has the expression ds2 = dr2 + g(r)2dθ2, where dθ2 is the standard
metric on the unit sphere Sm−1 and g(r) satisfies the following assumptions:

g ∈ C∞(R+
0 ), g > 0 on R+, g′(0) = 1, g(2k)(0) = 0

for every k = 0, 1, 2, . . ., where g(2k) means the (2k)-derivative of g. The last condition ensures that the
metric is smooth at the origin o. Note that

∆r(x) = (m− 1)
g′(r(x))

g(r(x))
, vol(∂Br) = g(r)m−1, vol(Br) =

∫ r

0
g(t)m−1dt.

Consider the operator Lϕ of Example 2.2 with h being the metric tensor. If u(x) = z(r(x)) is a radial
function, a straightforward computation gives

(26) Lϕu = g1−m[gm−1ϕ(|z′|)sgn(z′)
]′
.

Note that (7) implies ϕ(t)→ +∞ as t→ +∞. Let B(x, t) = B(t) be such that

B ∈ C0(R+
0 ), B ≥ 0 on R+, B(0) = 0, B is non-decreasing on R,
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and set B = 0 on R−. For c > 0, define the functions

(27)
Vpa(r) = ϕ−1

(
cg(r)1−m

)
, Vst(r) = ϕ−1

(
cg(r)1−m ∫ r

R g(t)m−1dt
)

zpa(r) =
∫ r
R Vpa(t)dt, zst(r) =

∫ r
R Vst(t)dt.

Note that both zpa and zst are increasing on [R,+∞). By (26), the functions upa = zpa ◦ r, ust = zst ◦ r
are solutions of

Lϕupa = 0, Lϕust = c.

Therefore, the following property can be easily verified:

Proposition 6.1. For the operator LF defined by LFu = Lϕu− B(u), properties (K) and (L) are equiv-
alent to either

(28) Vst 6∈ L1(+∞) for every c > 0 small enough, if B > 0 on R+,

or

(29) Vpa 6∈ L1(+∞) for every c > 0 small enough, otherwise.

Proof. We sketch the proof when B > 0 on R+, the other case being analogous. If Vst ∈ L1(+∞), then
ust is a bounded, non-negative solution of Lϕu ≥ c on M\BR. Choose η ∈ (0, u?) in such a way that
B(u? − η) ≤ c, and proceed as in the second part of the proof of Proposition 5.3 to contradict the Liouville
property of LF . Conversely, if Vst 6∈ L1(+∞), then ust is an exhaustion. For every δ > 0, choose c > 0

small enough that c ≤ B(δ). Since ϕ(0) = 0, for every ρ > R and ε > 0 we can reduce c in such a way
that wε,ρ = δ + ust satisfies

wε,ρ = δ on ∂BR, wε,ρ ≤ δ + ε on Bρ\BR, Lϕwε,ρ = c ≤ B(δ) ≤ B(wε,ρ).

As the reader can check by slightly modifying the argument in the proof of (3) ⇒ (1) of Theorem 2.8,
the existence of these modified Khas’minskii potentials for every choice of δ, ε, ρ is enough to conclude the
validity of (L), hence of (K). �

Remark 6.2. In the case ϕ(t) = tp−1 of the p-Laplacian, making the conditions on Vst and Vpa more
explicit and using Theorem 2.12 we deduce that, on model manifolds, ∆p satisfies (W ) if and only if(

vol(Br)

vol(∂Br)

) 1
p−1

6∈ L1(+∞),

and ∆p is parabolic if and only if (
1

vol(∂Br)

) 1
p−1

6∈ L1(+∞).

This has been observed, for instance, in [25], see also the end of [26] and the references therein for a
thorough discussion on ∆p on model manifolds.

We now study the existence of an Evans potential on Mg. First, we need to produce radial solutions of
Lϕu = B(u) which are zero on some fixed sphere ∂BR. To do so, the first step is to solve locally the related
Cauchy problem. The next result is a modification of Proposition A.1 of [4]



22 LUCIANO MARI AND DANIELE VALTORTA

Lemma 6.3. In our assumptions, for every fixed R > 0 and c ∈ (0, 1] the problem

(30)

{ [
gm−1ϕ(c|z′|)sgn(z′)

]′
= gm−1B(cz) on [R,+∞)

z(R) = ϑ ≥ 0, z′(R) = µ > 0

has a positive, increasing C1 solution zc defined on a maximal interval [R, ρ), where ρ may depend on c.
Moreover, if ρ < +∞, then zc(ρ−) = +∞.

Proof. We sketch the main steps. First, we prove local existence. For every chosen r ∈ (R,R + 1), denote
with Aε the ε-ball centered at the constant function ϑ in C0([R, r], ‖ · ‖L∞). We look for a fixed point of the
Volterra operator Tc defined by

(31) Tc(u)(t) = ϑ+
1

c

∫ t

R
ϕ−1

(
gm−1(R)ϕ(cµ)

gm−1(s)
+

∫ s

R

gm−1(τ)

gm−1(s)
B(cu(τ))dτ

)
ds

It is simple matter to check the following properties:

(i) If |r −R| is sufficiently small, Tc(Aε) ⊂ Aε;
(ii) There exists a constantC > 0, independent of r ∈ (R,R+1), such that |Tcu(t)−Tcu(s)| ≤ C|t−s|

for every u ∈ Aε. By Ascoli-Arzelà theorem, Tc is a compact operator.
(iii) Tc is continuous. To prove this, let {uj} ⊂ Aε be such that ‖uj − u‖L∞ → 0, and use Lebesgue

convergence theorem in the definition of Tc to show that Tcuj → Tcu pointwise. The convergence
is indeed uniform by (ii).

By Schauder theorem ([7], Theorem 11.1), Tc has a fixed point zc. Differentiating zc = Tczc we deduce that
z′c > 0 on [R, r], hence zc is positive and increasing. Therefore, zc is also a solution of (30). This solution
can be extended up to a maximal interval [R, ρ). If by contradiction the (increasing) solution zc satisfies
zc(ρ

−) = z?c < +∞, differentiating zc = Tczc we would argue that z′c(ρ
−) exists and is finite. Hence, by

local existence zc could be extended past ρ, a contradiction. �

We are going to prove that, if B(t) does not grow too fast and under a reasonable structure condition on
Mg, the solution zc of (30) is defined on [R,+∞). To do this, we first need some definitions. We consider
the initial condition ϑ = 0. For convenience, we further require the following assumptions:

(32) ϕ ∈ C1(R+), a−1
2 tp−1 ≤ tϕ′(t) ≤ a1 + a2t

p−1 on R+,

for some positive constants a1, a2. Define

Kµ(t) =

∫ t

µ
sϕ′(s)ds, β(t) =

∫ t

0
B(s)ds.

Note that β(t) is non-decreasing on R+ and that, for every µ ≥ 0, Kµ is strictly increasing. By (32),
Kµ(+∞) = +∞. We focus our attention on the condition

(qKO)
1

K−1
µ (β(s))

6∈ L1(+∞).

This (or, better, it opposite) is called the Keller-Osserman condition. Originating, in the quasilinear setting,
from works of J.B. Keller [10] and R. Osserman [21], it has been the subject of an increasing interest in the
last years. The interested reader can consult, for instance, [5], [17], [19]. Note that the validity of (qKO)
is independent of the choice of µ ∈ [0, 1), and we can thus refer (qKO) to K0 = K. This follows since,
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by (32), Kµ(t) � tp as t → +∞, where the constant is independent of µ, and thus K−1
µ (s) � s1/p as

s→ +∞, for some constants which are uniform when µ ∈ [0, 1). Therefore, (qKO) is also equivalent to

(33)
1

β(s)1/p
6∈ L1(+∞)

Lemma 6.4. Under the assumptions of the previous proposition and subsequent discussion, suppose that
g′ ≥ 0 on R+. If

(qKO)
1

K−1(β(s))
6∈ L1(+∞),

then, for every choice of c ∈ (0, 1], the solution zc of (30) is defined on [R,+∞).

Proof. From [gm−1ϕ(cz′)]′ = gm−1B(cz) and g′ ≥ 0 we deduce that

ϕ′(cz′)cz′′ ≤ B(cz), so that cz′ϕ′(cz′)cz′′ ≤ B(cz)cz′ = (β(cz))′.

Hence integrating and changing variables we obtain

Kµ(cz′) =

∫ cz′

µ
sϕ′(s)ds ≤

∫ cz

0
B(s)ds = β(cz).

Applying K−1
µ , cz′ = K−1

µ (β(cz)). Since z′ > 0, we can divide the last equality by K−1
µ (β(cz)) and

integrate on [R, t) to get, after changing variables,∫ cz(t)

0

ds

K−1
µ (β(s))

≤ t−R.

By (qKO), we deduce that ρ cannot be finite for any fixed choice of c. �

For every R > 0, we have produced a radial function uc = (czc) ◦ r which solves Lϕuc = B(uc) on
M\BR and uc = 0 on BR. The next step is to guarantee that, up to choosing µ, c appropriately, uc can be
arbitrarily small on some bigger ball BR1 . The basic step is a uniform control of the norm of zc on [R,R1]

with respect to the variable c, up to choosing µ = µ(c) appropriately small. This requires a further control
on B(t), this time on the whole R+ and not only in a neighbourhood of +∞.

Lemma 6.5. Under the assumptions of the previous proposition, suppose further that

(34) B(t) ≤ b1tp−1 on R+.

Then, for every R1 > R and every c ∈ (0, 1], there exists µ > 0 depending c such that the solution zc of
(30) with ϑ = 0 satisfies

(35) ‖zc‖L∞([R,R1]) ≤ K,

for some K > 0 depending on R,R1, on a2 in (32) and on b1 in (34) but not on c.

Proof. Note that, by (34), (qKO) (equivalently, (33)) is satisfied. Hence, zc is defined on [R,+∞) for
every choice of µ, c. Fix R1 > R. Setting ϑ = 0 in the expression (31) of the operator Tc, and using the
monotonicity of g and zc, we deduce that

uc(t) ≤
1

c

∫ t

R
ϕ−1

(
ϕ(cµ) +

∫ s

R
B(cu(τ))dτ

)
ds

≤ 1

c

∫ t

R
ϕ−1

(
ϕ(cµ) + (R1 −R)B(cuc(s))

)
ds.
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Differentiating, this gives
ϕ(cu′c(t)) ≤ ϕ(cµ) + (R1 −R)B(cuc(t)).

Now, from (32) and (34) we get

(36) cp−1(u′c)
p−1 ≤ a2ϕ(cµ) + a2(R1 −R)b2c

p−1up−1
c .

Choose µ in such a way that

ϕ(cµ) ≤ cp−1, that is, µ ≤ 1

c
ϕ−1(cp−1)

Then, dividing (36) by cp−1 and applying the elementary inequality (x+ y)a ≤ 2a(xa + ya) we obtain the
existence of a constant K = K(R1, R, a2, b2) such that

u′c(t) ≤ K(1 + uc(t)).

Estimate (35) follows by applying Gronwall inequality. �

Corollary 6.6. Let the assumptions of the last proposition be satisfied. Then, for each triple (BR, BR1 , ε),
there exists a positive, radially increasing solution of Lϕu = B(u) on Mg\BR such that u = 0 on ∂BR and
u < ε on BR1\BR.

Proof. By the previous lemma, for every c ∈ (0, 1] we can choose µ = µ(c) > 0 such that the resulting
solution zc of (30) is uniformly bounded on [R,R1] by some K independent of c. Since, by (26), uc =

(czc) ◦ r solves Lϕuc = B(uc), it is enough to choose c < ε/K to get a desired u = uc for the triple
(BR, BR1 , ε). �

To conclude, we shall show that Evans potentials exist for any triple (K,Ω, ε), not necessarily given
by concentric balls centered at the origin. In order to do so, we use a comparison argument with suitable
radial Evans potentials. Consequently, we need to ensure that, for careful choices of c, µ, the radial Evans
potentials do not overlap.

Lemma 6.7. Under the assumptions of Lemma 6.4, Let 0 < R be chosen, and let w be a positive, increasing
C1 solution of

(37)

{ [
gm−1ϕ(w′)

]′
= gm−1B(w) on [R,+∞)

w(R) = 0, w′(R) = w′R > 0

Fix R̂ > R. Then, for every c > 0, there exists µ = µ(c,R, R̂) small enough that the solution zc of (30),
with R replaced by R̂, satisfies czc < w on [R̂,+∞).

Proof. Let µ satisfy gm−1(R)ϕ(w′R) > gm−1(R̂)ϕ(cµ). Suppose by contradiction that {czc ≥ w} is a
closed, non-empty set. Let r > R̂ be the first point where czc = w. Then, czc ≤ w on [R̂, r], thus
cz′c(r) ≥ w′(r). However, from the chain of inequalities

ϕ(w′(r)) =
gm−1(R)ϕ(w′R)

gm−1(r)
+

∫ r

R
B(w(τ))dτ

>
gm−1(R̂)ϕ(cµ)

gm−1(r)
+

∫ r

R̂
B(czc(τ))dτ = ϕ(cz′c(r)),

and from the strict monotonicity of ϕ we deduce w′(r) > cz′c(r), a contradiction. �
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Corollary 6.8. For each u constructed in Corollary 6.6, and for every R2 > R, there exists a positive,
radially increasing solution w of LFw = 0 on Mg\BR2 such that w = 0 on ∂BR2 and w ≤ u on M\BR2 .

Proof. It is a straightforward application of the last Lemma. �

We are now ready to state the main result of this section

Theorem 6.9. Let Mg be a model with origin o and non-decreasing defining function g. Let ϕ satisfies (32)
with a1 = 0, and suppose that B(t) satisfies (34). Define LF according to LFu = Lϕu − B(u). Then,
properties (K), (L) (for Hölloc or L∞) and (E) restricted to triples (K,Ω, ε) with o ∈ K are equivalent,
and also equivalent to either

(38)
(

vol(Br)

vol(∂Br)

) 1
p−1

6∈ L1(+∞) if B > 0 on R+,

or

(39)
(

1

vol(∂Br)

) 1
p−1

6∈ L1(+∞) otherwise.

Proof. From (32), assumptions (38) and (39) are equivalent, respectively, to (28) and (29). Therefore, by
Proposition 6.1 and Theorem 2.8, the result will be proved once we show that (L) implies (E) restricted to
the triples (K,Ω, ε) such that o ∈ K. Fix such a triple (K,Ω, ε). Since o ∈ K and K is open, let R < ρ

be such that BR b K b Ω b Bρ. By making use of Corollary 6.6 we can construct a radially increasing
solution w2 of LFw2 = 0 associated to the triple (BR, Bρ, ε). By (L), u must tend to +∞ as x diverges,
for otherwise by the pasting Lemma 3.16 the function s obtained extending w2 with zero on BR would be
a bounded, non-negative, non-constant solution of LFs ≥ 0, contradiction. From Corollary 6.8 and the
same reasoning, we can produce another exhaustion w1 solving LFw1 = 0 on M\Bρ, w1 = 0 on ∂Bρ
and w1 ≤ w2 on M\Bρ. Setting w1 equal to zero on Bρ, by the pasting lemma w2 is a global subsolution
on M below w2. By the subsolution-supersolution method on M\K, there exists a solution w such that
w1 ≤ w ≤ w2. By construction, w is an exhaustion and w ≤ ε on Ω\K. Note that, by Remark 3.6, from
(32) with a1 = 0 we deduce that w ∈ C1(M\K). We claim that w > 0 on M\K. To prove the claim we
can avail of the strong maximum principle in the form given in [27], Theorem 1.2. Indeed, again from (32)
with a1 = 0 we have (in their notation)

pa−1
2 sp ≤ K(s) ≤ pa2s

p on R+, 0 ≤ F (s) ≤ b1
p
sp on R+,

hence
1

K−1(F (s))
6∈ L1(0+).

The last expression is a necessary and sufficient condition for the validity strong maximum principle for C1

solutions u of LFu ≤ 0. Therefore, w > 0 on M\K follows since w is not identically zero by contruction.
In conclusion, w is an Evans potential relative to (K,Ω, ε), as desired. �
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