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Abstract
Nonparametricmixturemodels based on the Pitman–Yor process represent a flexible tool for density estimation and clustering.
Natural generalization of the popular class of Dirichlet process mixture models, they allow for more robust inference on the
number of components characterizing the distribution of the data. We propose a new sampling strategy for such models,
named importance conditional sampling (ICS), which combines appealing properties of existing methods, including easy
interpretability and a within-iteration parallelizable structure. An extensive simulation study highlights the efficiency of the
proposed method which, unlike other conditional samplers, shows stable performances for different specifications of the
parameters characterizing the Pitman–Yor process. We further show that the ICS approach can be naturally extended to other
classes of computationally demanding models, such as nonparametric mixture models for partially exchangeable data.

Keywords Bayesian nonparametrics · Dependent Dirichlet process · Importance conditional sampling · Nonparametric
mixtures · Pitman–Yor process · Sampling-importance resampling

Mathematics Subject Classification 65C60 · 62F15 · 65C40 · 62G07

1 Introduction

Bayesian nonparametric mixtures are flexible models for
density estimation and clustering, nowadays a
well-established modelling option for applied statisticians
(Frühwirth-Schnatter et al. 2019). The first of such models
to appear in the literature was the Dirichlet process (DP)
(Ferguson 1973) mixture of Gaussian kernels by Lo (1984),
a contribution that paved the way to the definition of a wide
variety of nonparametric mixture models. In recent years,
increasing interest has been dedicated to the definition of

B Bernardo Nipoti
bernardo.nipoti@unimib.it

Antonio Canale
canale@stat.unipd.it

Riccardo Corradin
riccardo.corradin@nottingham.ac.uk

1 Department of Statistical Sciences, University of Padova,
Padua, Italy

2 School of Mathematical Sciences, University of Nottingham,
Nottingham, UK

3 Department of Economics, Management and Statistics,
University of Milano Bicocca, Milan, Italy

mixture models based on nonparametric mixing random
probability measures that go beyond the DP (e.g. Nieto-
Barajas et al. 2004; Lijoi et al. 2005a, b, 2007; Argiento
et al. 2016). Among these measures, the Pitman–Yor process
(PY) (Perman et al. 1992; Pitman 1995) stands out for conve-
niently combining mathematical tractability, interpretability,
and modelling flexibility (see, e.g., De Blasi et al. 2015).

Let X = (X1, . . . , Xn) be an n-dimensional sample of
observations defined on some probability space (Ω,A ,P)

and taking values inX, andF denote the space of all proba-
bility distributions onX. A Bayesian nonparametric mixture
model is a random distribution taking values in F , defined
as

f̃ (x) =
∫

Θ

K(x; θ)d p̃(θ), (1)

where K(x; θ) is a kernel and p̃ is a discrete random proba-
bility measure. In this paper we focus on p̃ ∼ PY (σ, ϑ; P0),
that is we assume that p̃ is distributed as a PY process with
discount parameter σ ∈ [0, 1), strength parameter ϑ > −σ ,
and diffuse base measure P0 ∈ F . The DP is recovered as
a special case when σ = 0. Model (1) can alternatively be
written in hierarchical form as
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Xi |θi ind∼ K(Xi ; θi ), i = 1, . . . , n

θi | p̃ iid∼ p̃,

p̃ ∼ PY (σ, ϑ; P0).
(2)

The joint distribution of θ = (θ1, . . . , θn) is characterized
by the predictive distribution of the PY, which, for any i =
1, 2, . . ., is given by

P(θi+1 ∈ dt |θ1, . . . , θi ) = ϑ + kiσ

ϑ + i
P0(dt)

+
ki∑
j=1

n j − σ

ϑ + i
δθ∗

j
(dt), (3)

where ki is the number of distinct values θ∗
j observed in

the first i draws and n j is the number of observed θl , for

l = 1, . . . , i , coinciding with θ∗
j , such that

∑ki
j=1 n j = i .

Markov chain Monte Carlo (MCMC) sampling methods
represent the gold standard for carrying out posterior infer-
ence based on nonparametric mixture models. Resorting to
the terminology adopted by Papaspiliopoulos and Roberts
(2008), most of the existing MCMC sampling methods for
nonparametric mixtures can be classified into marginal and
conditional, the two classes being characterized by different
ways to deal with the infinite-dimensional random probabil-
itymeasure p̃.Whilemarginalmethods rely on the possibility
of analytically marginalizing p̃ out, the conditional ones
exploit suitable finite-dimensional summaries of p̃.

Marginal methods for nonparametric mixtures were first
devised by Escobar (1988) and Escobar and West (1995),
contributions that focused on DP mixtures of univariate
Gaussian kernels. Extensions of such proposal include the
works ofMüller et al. (1996),MacEachern (1994),MacEach-
ern and Müller (1998), Neal (2000), Barrios et al. (2013),
Favaro and Teh (2013), and Lomelí et al. (2017). It is worth
noting that, despite being the first class of MCMC methods
for Bayesian nonparametric mixtures appeared in the liter-
ature, marginal methods are still routinely used in popular
packages such as the DPpackage (Jara et al. 2011), the
de facto standard software for many Bayesian nonparamet-
ricmodels. Alternatively, conditionalmethods rely on the use
of summaries—of finite and possibly randomdimension—of
realizations of p̃. To this end, the stick-breaking representa-
tion for the PY (Pitman and Yor 1997) turns out to be very
convenient. The almost sure discreteness of the PY allows
p̃ to be written as an infinite sum of random jumps {p j }∞j=1

occurring at random locations {θ̃ j }∞j=1, that is

p̃ =
∞∑
j=1

p jδθ̃ j
. (4)

The distribution of the locations is independent of that of the

jumps and, while θ̃ j
iid∼ P0, the distribution of the jumps is

characterized by the following construction:

p1 = V1, (5)

p j = Vj

j−1∏
l=1

(1 − Vl), (6)

Vj
ind∼ Beta(1 − σ, ϑ + jσ). (7)

A first example of conditional approach can be found
in Ishwaran and James (2001) and Ishwaran and Zarepour
(2002), contributions that consider a fixed truncation of the
stick-breaking representation of a large class of randomprob-
ability measures, and provide a bound for the introduced
truncation error. Along similar lines, Muliere and Tardella
(1998) and Arbel et al. (2019) make the truncation level of
the DP and the PY, respectively, random so to make sure
that the resulting error is smaller than a given threshold.
Exact solutions that avoid introducing truncation errors are
the slice samplers of Walker (2007) and Kalli et al. (2011),
the improved slice sampler of Ge et al. (2015), and the retro-
spective sampler of Papaspiliopoulos and Roberts (2008). It
is worth noticing that, although originally introduced for the
case of DP mixture models, the ideas behind slice and ret-
rospective sampling algorithms are naturally extended to the
more general class of mixture models for which the mixing
random probability measure admits a stick-breaking repre-
sentation (Ishwaran and James 2001), thus including the PY
mixture model as a special case. In this context Favaro and
Walker (2013) propose a general framework for slice sam-
pling the class of mixtures of σ -stable Poisson–Kingman
model. Henceforth we will use the term slice sampling to
refer to the proposals ofWalker (2007) andKalli et al. (2011),
and not to the general definition of slice sampling.

Recent contributions have proposed hybrid strategies for
posterior sampling nonparametric mixture models, which
combine steps of marginal and conditional algorithms and
therefore cannot be classified as either type of algorithm.
Notable examples are the hybrid sampler of Lomelí et al.
(2015) for the general class of Poisson–Kingman mixture
models, and the hybrid approach proposed by Dubey et al.
(2020) for a wide range of Bayesian nonparametric models
based on completely random measures.

Marginal methods are appealing for their simplicity and
for the fact that the number of random elements that must be
drawn at each iteration of the sampler, i.e. the components
of θ , is deterministic and thus bounded. At the same time,
quantifying the posterior uncertainty, e.g. via posterior credi-
ble sets, by using the output ofmarginalmethods is in general
not straightforward since marginal methods do not generate
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realizations of the posterior distribution of f̃ , but only of its
conditional expectation E[ f̃ |θ, X], where the expectation is
taken with respect to p̃. To this end, convenient strategies
have been proposed, which typically exploit the possibility
of sampling approximate realizations of p̃ conditionally on
the values of θ generated by the marginal algorithm (see
discussions in Gelfand and Kottas 2002; Taddy and Kottas
2012; Arbel et al. 2016). Conditional methods, instead, pro-
duce approximate trajectories from the posterior distribution
of f̃ , which can be readily used to quantify posterior uncer-
tainty.Moreover, by exploiting the conditional independence
of the parameters θi ’s, given p̃ or afinite summaryof it, condi-
tional methods conveniently avoid sequentially updating the
components of θ at each iteration of theMCMC, thus leading
to a fully parallelizable updating step within each iteration.
On the other hand, the random truncation at the core of con-
ditional methods such as slice and retrospective samplers
makes the number of atoms and jumps that must be drawn
at each iteration of the algorithm, random and unbounded.
By confining our attention to the slice sampler of Walker
(2007) and, equivalently, its dependent slice-efficient ver-
sion (Kalli et al. 2011), we observe that, while its sampling
routines are efficient and reliable when the DP case is con-
sidered, the same does not hold for the more general class
of PY mixtures, specially when large values of σ are con-
sidered. In practice, we noticed that, even for small sample
sizes, the number of random elements that must be drawn
at each iteration of the algorithm can be extremely large,
often so large to make an actual implementation of the slice
sampler for PY mixture models unfeasible. It is clear-cut
that this limitation represents a major problem as the dis-
count parameter σ greatly impacts the robustness of the prior
with respect to model-based clustering (see Lijoi et al. 2007;
Canale and Prünster 2017). In order to shed some light on
this aberrant behaviour, we investigate the distribution of the

random number Nn of jumps that must be drawn at each iter-
ation of a slice sampler, implemented to carry out posterior
inference based on a sample of size n. We can define—see
Appendix A for details—a data-free lower bound for Nn , that
is a random variable Mn such that Nn(ω) ≥ Mn(ω) for every
ω ∈ Ω and for every sample of size n. Mn is distributed

as min
{
l ≥ 1 : ∏

j≤l(1 − Vj ) < Bn

}
, where the Vj ’s are

defined as in (5) and Bn ∼ Beta(1, n): studying the distri-
bution of the lower bound Mn will provide useful insight
on Nn . Note that, in addition, Mn coincides with the num-
ber of jumps to be drawn in order to generate a sample of
size n by adapting to the PY case the retrospective sampling
idea introduced for the DP by Papaspiliopoulos and Roberts
(2008).

Figure 1 shows the empirical distribution of Mn , with
n = 100, for various combinations of ϑ and σ . The esti-
mated median of the distribution of Mn grows with σ and,
for any given value of σ , with ϑ . It can be appreciated that
the size of the values taken by Mn , and thus by Nn , explodes
when σ grows beyond 0.5, fact that leads to the aforemen-
tioned computational bottlenecks in routine implementations
of the slice sampler. For example, when σ = 0.8, the esti-
mated probability of Mn exceeding 109 is equal to 0.35, 0.42
and 0.63, for ϑ equal to 0.1, 1 and 10, respectively. From
an analytic point of view, following Muliere and Tardella
(1998), it is easy to show that in the DP case (i.e. σ = 0),
(Mn −1) ∼ Poisson(ϑ log(1/Bn)). Beyond the DP case (i.e.
σ ∈ (0, 1)), an application of Arbel et al. (2019) allows us
to derive an analogous asymptotic result, which corroborates
our empirical findings on the practical impossibility of using
the slice sampler for PY mixtures with σ ≥ 0.5. See Propo-
sition 2 and related discussion in the Appendix.

Herein, we propose a new sampling strategy, named
importance conditional sampling (ICS), for PY mixture

Fig. 1 Boxplots for the
empirical distributions of Mn ,
with n = 100, for
σ ∈ {0, 0.2, 0.4, 0.6, 0.8} and
different values of ϑ , namely
ϑ = 0.1 (left), ϑ = 1 (middle)
and ϑ = 10 (right). Results,
based on 100 realizations of Mn ,
are truncated at 109 (dashed
line)

123



40 Page 4 of 18 Statistics and Computing (2022) 32 :40

models, which combines the appealing features of both
conditional and marginal methods, while avoiding their
weaknesses, including the computational bottleneckdepicted
in Fig. 1. Like marginal methods, the ICS has a simple and
interpretable sampling scheme, reminiscent of Blackwell-
MacQueen’s Pólya urn (Blackwell and MacQueen 1973),
and allows to work with the update of a bounded number
of random elements per iteration; at the same time, being a
conditional method, it allows for fully parallelizable param-
eters update and it accounts for straightforward approximate
posterior quantification. Our proposal exploits the posterior
representation of the PY process, derived by Pitman (1996)
in combinationwith an efficient sampling-importance resam-
pling idea. The structure of Pitman (1996)’s representation
makes it suitable for numerical implementations of PY based
models, as indicated in Ishwaran and James (2001), and
nicely implemented by Fall and Barat (2014).

The rest of the paper is organized as follows. The ICS is
described in Sect. 2. Section 3 is dedicated to an extensive
simulation study, comparing the performance of the ICSwith
state-of-the-art marginal and conditional sampling methods.
Section 4 proposes (reports) an illustrative application,where
the proposed algorithm is used to analyse a data set from the
Collaborative Perinatal Project (Klebanoff 2009). In this con-
text, Sect. 4.2 is dedicated to illustrate how the ICS approach
can be extended to the case of nonparametric mixture mod-
els for partially exchangeable data. Section 5 concludes the
paper with a discussion. Additional results are presented in
the Appendix.

2 Importance conditional sampling

The random elements involved in a PY mixture model
defined as in (2) are observations X , latent parameters θ , and
the PY random probability measure p̃. The joint distribution
of (X, θ , p̃) can be written as

p(X, θ , p̃) =
n∏

i=1

K(Xi ; θi )

kn∏
j=1

p̃(dθ∗
j )

n j Q( p̃), (8)

where θ∗ = (θ∗
1 , . . . , θ∗

kn
) is the vector of unique values in

θ , with frequencies (n1, . . . , nkn ) such that
∑kn

j=1 n j = n,
and Q is the distribution of p̃ ∼ PY (σ, ϑ; P0). In line of
principle, the full conditional distributions of all random ele-
ments can be derived from (8) and used to devise a Gibbs
sampler. Given that the vector X , conditionally on θ , is
independent of p̃, the update of θ is the only step of the
Gibbs sampler which works conditionally on a realization
of the infinite-dimensional p̃. The conditional distribution
p(θ |X, p̃) therefore will be the main focus of our attention:
its study will allow us to identify a finite-dimensional sum-

mary of p̃, sufficient for the purpose of updating θ from its
full conditional distribution. As a result, as far as p̃ is con-
cerned, only the update of its finite-dimensional summary
will need to be included in the Gibbs sampler. Our proposal
exploits a convenient representation of the posterior distri-
bution of a PY process (Pitman 1996), reported in the next
proposition.

Proposition 1 (Corollary 20 in Pitman 1996). Let t1, . . . , tn|
p̃ ∼ p̃ and p̃ ∼ PY (σ, ϑ; P0), and denote by (t∗1 , . . . , t∗kn )
and (n1, . . . , nkn ) the set of kn distinct values and corre-
sponding frequencies in (t1, . . . , tn). The conditional distri-
bution of p̃, given (t1, . . . , tn), coincides with the distribution
of

p0q̃(·) +
kn∑
j=1

p jδt∗j (·),

where (p0, p1, . . . , pkn ) ∼ Dirichlet(ϑ + knσ, n1 − σ, . . . ,

nkn − σ) and q̃ ∼ PY (σ, ϑ + knσ ; P0) is independent of
(p0, p1, . . . , pkn ).

In the context of mixture models, Pitman’s result implies that
the full conditional distribution of p̃ coincides with the distri-
bution of amixture composed by aPYprocess q̃ with updated
parameters, and a discrete random probability measure with
kn fixed jump points at t = (t∗1 , . . . , t∗kn ). This means that, in
the context of a Gibbs sampler, while, by conditional inde-
pendence, the update of each parameter θi is done indepen-
dently of the other parameters (θ1, . . . , θi−1, θi+1, . . . , θn),
the distinct values θ∗ taken by the parameters at a given iter-
ation, are carried on to the next iteration of the algorithm
through p̃, in the form of fixed jump points t . Specifically,
if Θ∗ = Θ \ {t∗1 , . . . , t∗kn }, then, for every i = 1, . . . , n, the
full conditional distribution of the i-th parameter θi can be
written as

P(θi ∈ dt |Xi , p̃) (9)

∝ p0K(Xi ; t)q̃(dt) +
kn∑
j=1

p jK(Xi ; t∗j )δt∗j (dt), (10)

where q̃ is the restriction of p̃ to Θ∗, p0 = p̃(Θ∗) and
p j = p̃(t∗j ), for every j = 1, . . . , kn . The full conditional in
(9) is reminiscent of the Blackwell-MacQueen urn scheme
characterizing the update of the parameters inmarginalmeth-
ods: the parameter θi can either coincide with one of the kn
fixed jump points of p̃ or take a new value from a distribu-
tion proportional to K(Xi ; t)q̃(dt). The key observation at
the basis of the ICS is that, for the purpose of updating the
parameters θ , there is no need to know the whole realiza-
tion of p̃ but it suffices to know the vector t of fixed jump
points of p̃, the value p = (p0, p1, . . . , pkn ) taken by p̃ at
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the partition (Θ∗, t∗1 , . . . , t∗kn ) of Θ , and to be able to sam-
ple from a distribution proportional to K(Xi , t)q̃(dt). For
the latter task, we adopt a sampling-importance resampling
approach (see, e.g., Smith and Gelfand 1992) with proposal
distribution q̃ . It is remarkable that such solution allows us
to approximately sample from the target distribution while
avoiding the daunting task of simulating a realization of q̃
itself. Indeed, for any m ≥ 1, a vector s = (s1, . . . , sm) such

that si |q̃ iid∼ q̃ can be generated by means of an urn scheme
exploiting (3). Given the almost sure discreteness of q̃ , the
generated vector will show ties with positive probability and
thus will feature rm ≤ m distinct values (s∗

1 , . . . , s
∗
rm ), with

frequencies (m1, . . . ,mrm ) such that
∑rm

j=1m j = m. In turn,
importanceweights for the resampling step are computed, for
any 	 = 1, . . . ,m, as

w	 = K(Xi , s	)q̃(s	)

q̃(s	)
= K(Xi , s	),

thus without requiring the evaluation of q̃ . As a result, the
full conditional (9) can be rewritten as

P(θi ∈ dt |Xi , p̃) ∝ p0

rm∑
j=1

m j

m
K(Xi ; s∗

j )δs∗j (dt)

+
kn∑
j=1

p jK(Xi ; t∗j )δt∗j (dt). (11)

Once more we highlight an interesting analogy between the
conditional approach we propose and marginal methods: the
introduction of the auxiliary random variables s∗

1 , . . . , s
∗
rm

reminds of the augmentation introduced in Algorithm 8
of Neal (2000), marginal algorithm proposed to deal with
a non-conjugate specification of the mixture model. From
(11) it is straightforward to identify (s, t, p) as a finite-
dimensional summary of p̃, sufficient for the purpose of
updating the parameters θi from their full conditionals. This
means that, as far as p̃ is concerned, only its summary
(s, t, p) must be included in the updating steps of the Gibbs
sampler. To this end, Proposition 1 provides the basis for
the update of (s, t, p). Indeed, conditionally on θ , the fixed
jump points t coincide with the kn distinct values appearing
in θ , while the random vectors p and s are independent with
p ∼ Dirichlet(ϑ + σkn, n1 − σ, . . . , nkn − σ) and the joint
distribution of s characterized by the predictive distribution
of a PY(σ, ϑ +σkn; P0), that is, for any 	 = 0, 1, . . . ,m−1,

P(s	+1 ∈ ds|s1, . . . , s	)

= ϑ + σ(kn + r	)

ϑ + σkn + 	
P0(ds) +

r	∑
j=1

m j − σ

ϑ + σkn + 	
δs∗j (ds),

(12)

where (s∗
1 , . . . , s

∗
r	 ) is the vector of r	 distinct values

appearing in (s1, . . . , s	), with corresponding frequencies
(m1, . . . ,mr	 ) such that

∑r	
j=1m j = 	.

By combining the steps just described, as summarized in
Algorithm 1, we can then devise a Gibbs sampler which we
name ICS. In Algorithm 1 and henceforth, the superscript
(r) is used to denote the value taken by a random variable
at the r -th iteration. In order to improve mixing, the ICS
includes an acceleration step which consists in updating, at
the end of each iteration, the distinct values θ∗ from their full
conditional distributions. Namely, for every j = 1, . . . , kn ,

P(θ∗
j ∈ dt |X) ∝ P0(dt)

∏
i∈C j

K(Xi ; t), (13)

where C j = {i ∈ {1, . . . , n} : θi = θ∗
j }.

Finally, a realization from the posterior distribution of
(s, t, p) defines an approximate realization f of the pos-
terior distribution of the random density defined in (1), that
is

f̃m(x) = p0

rm∑
l=1

ml

m
K(x; s∗

l ) +
kn∑
j=1

p jK(x; t∗j ). (14)

If the algorithm is run for a total of R iterations, the first
Rb of which discarded as burn-in, then the posterior mean is
estimated by

f̂ (x) = 1

R − Rb

R∑
r=Rb+1

f̃ (r)
m (x),

where f̃ (r)
m denotes the approximate density sampled from

the posterior at the r -th iteration. The set of densities f̃ (r)
m

can be also used to quantify posterior uncertainty. It is worth
remarking though that any such quantification is based on
realizations of a finite dimensional summary of the infinite-
dimensional p̃ and thus is, by its nature, approximated. For
a quantification of the approximating error one could resort
to Arbel et al. (2019).

It is instructive to consider how the ICS works for the
special case of DP mixture models, that is when σ = 0.
In such case, the steps described in Algorithm 1 can be
nicely interpreted by resorting to three fundamental proper-
ties characterizing the DP, namely conjugacy, self-similarity,
and availability of finite-dimensional distributions. More
specifically, when σ = 0, step 4 of Algorithm 1 consists
in generating the random weights p from a Dirichlet dis-
tribution of parameters (ϑ, n1, . . . , nkn ). This follows by
combining the conjugacy of the DP (Ferguson 1973), for
which
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Algorithm 1: ICS for PY mixture model

1 Set admissible initial values θ (0)

2 for each iteration r = 1, . . . , R do
3 set t(r) = θ∗(r−1);
4 sample p(r) from p(r) ∼ Dirichlet(ϑ + σk(r−1)

n , n(r−1)
1 − σ, . . . , n(r−1)

kn
− σ);

5 for each 	 = 0, . . . ,m − 1 do
6 let r (r)

	 be the number of distinct values in (s(r)
1 , . . . , s(r)

	 ), sample s(r)
	+1 from

P(s(r)
	+1 ∈ ·|s(r)

1 , . . . , s(r)
	 ) = ϑ + σ(k(r−1)

n + r (r)
	 )

ϑ + σk(r−1)
n + 	

P0(·) +
r (r)
	∑
j=1

m(r)
j − σ

ϑ + σk(r−1)
n + 	

δ
s∗(r)
j

(·);

7 let r (r)
m be the number of distinct values in s(r);

8 for each i = 1, . . . , n do
9 sample θ

(r)
i from

P(θ
(r)
i = t | · · · ) ∝

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

p(r)
0

m(r)
	

m K(Xi ; s∗(r)
	 ) if t ∈ {s∗(r)

1 , . . . , s∗(r)

r (r)
m

}
p(r)
j K(Xi ; t∗(r)

j ) if t ∈ {t∗(r)
1 , . . . , t∗(r)

k(r−1)
n

}
0 otherwise

10 let θ∗(r) = (θ
∗(r)
1 , . . . , θ

∗(r)

k(r)
n

) be the vector of distinct parameters in θ (r);

11 for each j = 1, . . . , k(r)
n do

12 let C(r)
j be the set of indexes i such that θ

(r)
i = θ

∗(r)
j ;

13 update θ
∗(r)
j from P(θ

∗(r)
j ∈ dt | · · · ) ∝ P0(dt)

∏
i∈C(r)

j
K(Xi ; t);

14 end

p̃|θ ∼ DP

⎛
⎝ϑ + n; ϑ

ϑ + n
P0 +

kn∑
j=1

n j

ϑ + n
δθ∗

j

⎞
⎠ ,

with the availability of finite-dimensional distributions of
DP (Ferguson 1973), which provides the distribution of p,
defined as the evaluation of the conditional distribution of p̃
on the partition of Θ induced by θ . Moreover, when σ = 0,
according to the predictive distribution displayed in step 6 of
Algorithm 1, the auxiliary random variables s are exchange-
able from q̃ ∼ DP(ϑ; P0), with q̃ independent of p. This
is nicely implied by the self-similarity of the DP (see, e.g.,
Ghosal 2010), according to which q̃ = p̃|Θ∗ is indepen-
dent of p̃|Θ\Θ∗ , and therefore of p, and is distributed as a
DP(ϑP0(Θ∗); P0|Θ∗), and by the diffuseness of P0. As a
result, in the DP case, the auxiliary random variables s are
generated from the prior model.

3 Simulation study

We performed a simulation study to analyze the performance
of the ICSalgorithmand to compare itwithmarginal and slice
samplers. For the latter, two versions proposed by Kalli et al.
(2011) were considered, namely the dependent and the inde-

pendent slice-efficient algorithms. The independent version
of the algorithm requires the specification of a determinis-
tic sequence ξ1, ξ2, . . ., which in our implementation was set
equal to E[p1],E[p2], . . ., with the p j ’s defined in (5), in
analogy with what was proposed by Kalli et al. (2011) for
the DP (see Algorithm 5 in the Supplementary Material for
more details). All algorithms were written in C++ and are
implemented in the BNPmix package (Corradin et al. 2021),
available on CRAN. Aware that different implementations
can lead to a biased comparison (see Kriegel et al. 2017, for
an insightful discussion), we aimed at reducing such bias to
a minimum by letting the four algorithms considered here
share the same code for most sub-routines.

Throughout this section we consider synthetic data gen-
erated from a simple two-component mixture of Gaussians,
namely f0(x) = 0.75φ(x;−2.5, 1)+0.25φ(x; 2.5, 1), with
φ(·;μ, σ 2) denoting the density of a Gaussian random vari-
able with mean μ and variance σ 2. All data were analyzed
by means of the nonparametric mixture model defined in
(1) and specified by considering a univariate Gaussian ker-
nel K(x, θ) = φ(x;μ, σ 2), with θ = (μ, σ 2), and by
assuming a normal-inverse gamma base measure P0 such
that σ 2 ∼ IG(2, 1) and μ|σ 2 ∼ N (0, 5σ 2). Different com-
binations of values for the parameters σ and ϑ , and for the
sample size n were considered. The results of this section
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are then obtained as averages over a specified number of
replicates. All algorithms were run for 1 500 iterations, of
which the first 500 discarded as burn-in. Convergence of the
chains was checked by visual inspection of the trace plots of
randomly selected runs, which did not provide any evidence
against it. The analysis was carried out by running BNPmix
on R 4.0.3 on a 64-bit Windows machine with a 3.4-GHz
Intel quad-core i7-3770 processor and 16 GB of RAM.

The first part of our investigation is dedicated to the role
of m, the size of the auxiliary sample generated for the
sampling-importance resampling step within the ICS. To this
end, we considered two sample sizes, namely n = 100 and
n = 1 000, and generated 100 data sets per size. Such data
were then analyzed by considering a combination of values
for the PYparameters, namely σ ∈ {0, 0.2, 0.4, 0.6, 0.8} and
ϑ ∈ {1, 10}, and by running the ICS with m ∈ {1, 10, 100}.
Estimated posterior densities, not displayed here, did not
show any noticeable effect of m. More interesting findings
were obtained when the analysis focused on the quality of
the generated posterior sample: larger values form appear to
lead to a better mixing of the Markov chain at the price of
additional computational cost. These effects were measured
by considering the effective sample size (ESS), computed by
resorting to the CODA package (Plummer et al. 2006), and
the ratio between runtime, in seconds, and ESS (time/ESS),
both averaged over 100 replicates. Following the algorithmic
performance analyses of Neal (2000), Papaspiliopoulos and
Roberts (2008) and Kalli et al. (2011), the ESS was com-

puted on the number of clusters—kn as far as the ICS is
concerned—and on the deviance of the estimated density,
with the latter defined as

dev(X, θ (r)) = −2
n∑

i=1

⎛
⎝ k(r)

n∑
j=1

n(r)
j

n
K(Xi ; θ

∗(r)
j )

⎞
⎠ ,

for the r -th MCMC draw. The ratio time/ESS takes into
account both quality of the generated sample and computa-
tional cost, and can be interpreted as the average time needed
to sample one independent draw from the posterior.

The results show that larger values of m lead, on average,
to a larger ESS, that is to better quality posterior samples.
This is displayed in the top row of Fig. 2, which shows the
estimated ESS for kn . We observe that, when averaging over
all the considered scenarios, the ESS obtained by setting
m = 100 is 1.82 and 1.09 times larger than the average ESS
obtained by setting m = 1 and m = 10, respectively. At the
same time, larger values of m require drawing more random
objects per iteration and thus, as expected, lead to longer run-
times. In this sense, the bottom row of Fig. 2 clearly indicates
that, as far as kn is concerned, the ratio time/ESS tends to be
larger for larger values of m. This is particularly evident, for
example, when σ = 0.8 as the ratio time/ESS corresponding
to m = 100 is, on average, 1.81 and 1.06 times larger than
the same ratio corresponding to m = 1 and m = 10, respec-
tively. Similar conclusions can be drawn by looking at Fig.

Fig. 2 Simulated data. ICS: ESS computed on the random variable number of clusters (top row) and ratio between runtime (in seconds) and ESS
for the same random variable (bottom row). Results are averaged over 100 replicates
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8, presented in Appendix B and displaying time/ESS for the
deviance of the estimated densities.

When implementing the ICS, the value of m can be tuned
based on the desired algorithm performance in terms of qual-
ity of mixing and runtime. As for the rest of the paper, and for
the ease of illustration, we will work withm = 10, chosen as
a sensible compromise between good mixing and controlled
computational cost.

The second part of the simulation study compares the
performance of ICS, marginal sampler, dependent and inde-
pendent slice-efficient samplers. For the sake of clarity,
pseudo-code of the implemented algorithms is provided as
supplementary material. We considered the sample sizes
n = 100, n = 250 and n = 1 000, and generated 10 data sets
per size from f0. These data were then analyzed by consid-
ering a combination of values for the PY parameters, namely
σ ∈ {0, 0.2, 0.4, 0.6, 0.8} and ϑ ∈ {1, 10, 25}. The results
we report are obtained, for each scenario, by averaging over
the 10 replicates. As for the two slice samplers, due to the
aforementioned explosion of the number of drawings per iter-
ation when σ takes large values, our analysis was forcefully
confined to the case σ ≤ 0.4. Moreover, the results referring
to the case σ = 0.4 are approximate as they were obtained
by constraining the slice sampler to draw at most 105 com-
ponents at each iteration: such limitation of our study could
not be avoided, given the otherwise unmanageable computa-
tional burden associated with this specific setting. Table 1 in
Appendix B shows that such bound was reached more often
when large data sets were analyzed. For example, while for
n = 100 the bound was reached on average 12% and 15% of
the iterations, for independent and dependent slice-efficient

samplers respectively, the same happened on average 26%
and 40% of the iterations when n = 1 000. For this rea-
son, these specific results must be considered approximated
and, as far as the runtime is concerned, conservative. The
four algorithms were compared by using the same measures
adopted in the first part of the simulation study, namely the
ESS for the number of clusters, the ESS for the deviance of
the estimated density, and the corresponding ratios time/ESS.

A clear trend can be appreciated in Fig. 3 where the focus
is on the ESS for the number of clusters: the marginal sam-
pler displays, on average, a larger ESS than ICS, whose ESS
appears, in turn, uniformly larger than the ones character-
izing the two slice samplers. As for the latter two, while
the displayed trend is similar, it can be appreciated that the
independent algorithm is uniformly characterized by a bet-
ter mixing. Results referring to the ratio time/ESS, for the
variable number of clusters, are displayed in Fig. 4. ICS and
marginal sampler show in general similar performances. It is
interesting to notice though that, while the ratio time/ESS for
the marginal algorithm is rather stable over the values of σ

considered in the study, the same quantity for ICS indicates
a slightly better performance when σ takes large values. On
the other hand, the efficiency of the two slice samplers is
heavily affected by the value of σ , with time/ESS explod-
ing when σ moves from 0 to 0.4 and when ϑ increases. On
the basis of this study, the slice samplers appear competitive
options when σ ∈ {0, 0.2} and a small ϑ are considered. On
the contrary, it is apparent that larger values of σ make the
two slice samplers less efficient than ICS and marginal sam-
pler. Similar considerations can be drawnwhen analyzing the
performance in terms of deviance of the estimated densities,

Fig. 3 Simulated data. ESS
computed on the random
variable number of clusters, for
ICS (gray), marginal sampler
(orange), independent
slice-efficient sampler (green)
and dependent slice-efficient
sampler (blue). Results are
averaged over 10 replicates. The
×-shaped marker for the two
slice samplers indicates that,
when σ = 0.4, the value of the
ESS is obtained with an
arbitrary upper bound at 105 for
the number of jumps drawn per
iteration
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Fig. 4 Simulated data. Ratio of
runtime (in seconds) over ESS,
in log-scale, computed for the
number of clusters, for ICS
(gray), marginal sampler
(orange), independent
slice-efficient sampler (green)
and dependent slice-efficient
sampler (blue). Results are
averaged over 10 replicates. The
×-shaped marker for the two
slice samplers indicates that,
when σ = 0.4, the value of
time/ESS is obtained with an
arbitrary upper bound at 105 for
the number of jumps drawn per
iteration

with the plots for ESS and the ratio time/ESS displayed in
Figs. 9 and 10 in Appendix B.

4 Illustrations

We consider a data set from the Collaborative Perinatal
Project (CPP), a large prospective study of the cause of neu-
rological disorders and other pathologies in children in the
United States. Pregnant women were enrolled between 1959
and 1966 when they showed up for prenatal care at one of
12 hospitals. While several measurements per pregnancy are
available, our attention focuses on two main quantities: the
gestational age (in weeks) and the logarithm of the concen-
tration level of DDE in μg/l, a persistent metabolite of the
pesticide DDT, known to have adverse impact on the ges-
tational age (Longnecker et al. 2001). Our analysis has a
two-fold goal. First, we focus on estimating and comparing
the joint density of gestational age and DDE for two groups
of women, namely smokers and non-smokers. This will also
allow us to assess how the probability of premature birth
varies conditionally on the level of DDE. Adopting a non-
parametric mixture model will allow us to investigate the
presence of clusters within the data. Second, we consider
the data set partitioned in the 12 hospitals of the study and
focus on the estimation of the hospital-specific distribution
of the gestational age, by accounting for possible association
across subsamples collected at different hospitals. For this
analysis we adopt a nonparametric mixture model for par-
tially exchangeable data and propose an extension of the ICS
approach presented in Sect. 2.

4.1 Cross-hospital analysis

Smokers and non-smokers samples have size of n1 = 1023
and n2 = 1290, respectively. For the two groups we inde-
pendently model the joint distribution of gestational age and
DDE by means of a PY mixture model (2) with bivariate
Gaussian kernel function K(x, θ) = φ(x, θ), with θ =
(μ,Σ), and with conjugate normal-inverse Wishart base
measure P0 = N -IW (m0, k0, ν0, S0). In absence of precise
prior information on the density to be estimated, we specify a
vague base measure following an empirical Bayes approach.
Specifically we let m0 be equal to the sample average, S0 be
equal to three times the empirical covariance, k0 = 1/10, and
ν0 = 5. These settings are equivalent to assuming that the
scale parameter of the generic mixture component coincides
with 1.5 times the empirical covariance, while the location
parameter is centered on the samplemeanwith prior variance
equal to 10 times the scale parameter. Next, we set the param-
eters ϑ and σ on the basis of the prior distribution they imply
on the number of clusters kn , within each group. Specifically,
we set the prior expectation and prior standard deviation for
kn equal to 10 and 20, respectively. Our choice implies that a
small probability (≈ 0.05) is assigned to the event kn ≥ 50.
This argument leads to set (σ, ϑ) equal to (0.548,−0.485)
and (0.5295,−0.4660) for the groups of smokers and non-
smokers, respectively. The values specified for σ are thus
larger than 0.5, a situation that is conveniently tackled by
the ICS, as displayed by the simulation study of Sect. 3.
An alternative modelling strategy is achieved by introduc-
ing a hyperprior distribution for both σ and θ . While not
explored in this illustration, it is worth stressing that this
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Fig. 5 CPP cross-hospital data. Left: observations and contour curves
of the estimated joint posterior density of gestational age and DDE,
for smokers (yellow dots and curves) and non-smokers (black dots and
curves). Right: estimated probability of premature birth (gestational age

below 37 weeks), conditionally on the level of DDE, for smokers (yel-
low curves) and non smokers (black curves), and associated pointwise
90% quantile-based posterior credible bands (filled areas)

strategy might be conveniently implemented by adopting the
ICS: if the prior on σ is defined on (0, 1), an implementation
of the model requires a sampler whose efficiency is not com-
promised by the specific values of σ explored by the chain.

The analysis of both samples was carried out by running
the ICS for 12 000 iterations, with the first 7 000 discarded as
burn-in. Convergence of the chain was assessed as satisfac-
tory by visually investigating the trace plots and by means of
the Geweke’s diagnostics (Geweke 1992). Running the anal-
ysis of the two samples took less than two minutes in total.
It is important to stress that, given the model specification,
the same analysis could not be carried out by implementing
the two versions of the slice samplers we considered (see
Algorithms 4 and 5 in the Supplementary Material), as the
value of σ would make computations prohibitive. We could
instead implement the marginal sampler (Algorithm 3 in the
Supplementary Material) which, as expected, took consid-
erably longer than the ICS (about 11 minutes), due to the
moderately large sample sizes.

The contour curves of the estimated joint densities of ges-
tational age and DDE for the two groups are displayed in the
left panel of Fig. 5 and suggest different distributions between
smokers and non-smokers, specially when large values for
DDE are considered. Differences between the two groups
are further highlighted by the right panel of Fig. 5, which
shows the estimated probability—along with corresponding
pointwise 90% posterior credible bands—of premature birth
(i.e. gestational age smaller than 37 weeks), conditionally on
the value taken by DDE, for the two groups. Once again, a
difference between smokers andnon-smokers canbe appreci-
ated for large levels of DDE, although a sizeable uncertainty
is associated with posterior estimates, as displayed by the
large credible bands. Although the difference between the

estimated densities for smokers and non-smokers is narrow,
Fig. 5 suggests that being a smoker might be a risk factor:
smoking mothers face a higher risk of premature birth, more
apparently for large levels of concentration of DDE, and their
average gestational age is overall slightly smaller than the one
of non-smokers.

4.2 Multi-hospital analysis

The same data set as in the previous section is considered
here, with observations classified according to both smoking
habits of women and the hospitals where they were enrolled.
This leads to two samples stratified into L = 12 strata, with
cardinalities summarized by the vectors

n1 = (n1,1, n2,1, . . . , n12,1)

= (236, 51, 59, 38, 92, 56, 67, 51, 61, 187, 81, 44)

and

n2 = (n1,2, n2,2, . . . , n12,2)

= (245, 73, 91, 39, 113, 98, 74, 90, 56, 197, 70, 144)

for smokers and non-smokers, respectively. The focus of the
analysis is modelling the distribution of gestational age.

4.2.1 Amixture model for partially exchangeable data

Smokers and non-smokers data are analyzed independently.
For each group, heterogeneity across hospitals suggests to
assume that data are partially exchangeable in the sense of
deFinetti (1938). To account for this assumption,we consider
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a mixture model for partially exchangeable data, where the
stratum-specific mixing random probability measures form
the components of a dependent Dirichlet process.Within this
flexible class of processes (see Foti andWilliamson2015, and
references therein), we consider the Griffiths-Milne depen-
dent Dirichlet processes (GM-DDP), as defined and studied
in Lijoi et al. (2014a, b). For an allied approach see Griffin
et al. (2013). Let Xi,l be the gestational age of the i-thwoman
in the l-th hospital, and θ l be the vector of latent variables
θi,l referring to the l-th hospital. The mixture model can be
represented in its hierarchical form as

Xi,l |θ1, . . . , θ L
ind∼ K(xi,l; θi,l)

θil ,l |( p̃1, . . . , p̃L)
iid∼ p̃l

( p̃1, . . . , p̃L) ∼ GM-DDP(ϑ, z; P0), (15)

with l = 1, . . . , L, i = 1, . . . , nl , ϑ > 0, z ∈ (0, 1), P0
is a probability distribution on R × R+, and the GM-DDP
distribution of the vector ( p̃1, . . . , p̃L) coincides with the
distribution of the vector of random probability measures
whose components are defined, for every l = 1, . . . , L , as

p̃l = γl wl + γ0 (1 − wl),

where γ1, . . . , γL
iid∼ DP(ϑz; P0) and γ0 ∼ DP(ϑ(1 −

z); P0) is independent of γl , for any l = 1, . . . , L . More-
over, the vector of random weights w = (w1, . . . , wL),
taking values in [0, 1]L , is distributed as a multivariate beta
of parameters (ϑz, . . . , ϑz, ϑ(1 − z)), as defined in Olkin
and Liu (2003), and its components are independent of the
random probability measures γ0, γ1, . . . , γL . As a result,
the random probabilities p̃l are, marginally, identically dis-
tributed with p̃l ∼ DP(ϑ; P0) (see Lijoi et al. 2014a, for
details).

4.2.2 ICS for GM-DDPmixture model and its application

The ICS can be easily adapted to a variety of models. For
example, it naturally fits the partially exchangeable frame-
work ofmodel (15). The ICS algorithm forGM-DDPmixture
models is described in Algorithm 2 in Appendix C, and con-
sists of three main steps.

First, conditionally on the allocation of observations to
clusters referring to either the idiosyncratic process γl , with
l = 1, . . . , L , or the commonprocessγ0, summaries of all the
processes, that is (sl , tl , pl), for l = 0, . . . , L , are updated
as done in Sect. 2 for a single process, with the proviso that
σ = 0. Second, the latent variables θi,l are updated for every
l = 1, . . . , L and 1 ≤ i ≤ nl ; and, third, the components of
w are sampled. The full conditional distributions for θi,l and
w are provided in Appendix C. Model (15) is specified by
assuming a univariate Gaussian kernel and normal-inverse

gamma base measure P0 = N -IG(0, 5, 4, 1). Moreover, the
specification ϑ = 1 and z = 0.5 is adopted, with the lat-
ter choice corresponding to equal prior weights assigned to
idiosyncratic and common components γl and γ0. The ICS
algorithm for theGM-DDPmixturemodelwas run for 10000
iterations, the first 5000 of which were discarded as burn-in.
Estimating posterior densities for smokers and non-smokers
required a total runtime of less than two and a half minutes.
Convergence of the chains was assessed by visually inves-
tigating the trace plots, which did not provide any evidence
against it.

Figure 6 shows the estimated densities of the gestational
age, for each stratum, with a comparison between smokers
and non-smokers. The distribution for smokers is glob-
ally more skewed and shifted to the left than the one for
non-smokers, indicating an expected more adverse effect of
smoking on gestational age.

5 Discussion

Weproposed a new sampling strategy for PYmixturemodels,
named ICS, which combines desirable properties of existing
marginal and conditional methods: the ICS shares easy inter-
pretability with marginal methods, while allowing, likewise
conditional samplers, for a parallelizable update of the latent
parameters θ , and for a straightforward quantification of pos-
terior uncertainty. The simulation study of Sect. 3 showed
that the ICS overtakes some of the computational bottle-
necks characterizing the conditional methods considered in
the comparison. Specifically, the ICS can be implemented
for any value of the discount parameter σ , with its efficiency
being stable to the specification of σ . This is appealing as
the discount parameter plays a crucial modelling role when
PY mixture models are used for model-based clustering: the
ICS allows for an efficient implementation of such models,
without the need of setting artificial constraints on the value
of σ . As far as the comparison of the performances of ICS
and other algorithms is concerned, it is important to remark
that the independent slice-efficient algorithm proposed by
Kalli et al. (2011) is more general than the one considered in
Sect. 3 as other specifications of the deterministic sequence
ξ1, ξ2, . . . are possible. As nicely discussed by Kalli et al.
(2011), the choice of such sequence “is a delicate issue and
any choice has to balance efficiency and computational time”.
Alternative specifications of the sequencemaybe exploredon
a case-by-case basis but, in our experience, the computational
time can be reduced only at the cost of worsening the mixing
of the algorithm. It is also worth remarking that the ICS does
not rely on any assumption of conjugacy between base mea-
sure and kernel, and thus it can be considered by all means a
valid alternative to the celebrated Algorithm 8 of Neal (2000)
when non-conjugate mixture models are to be implemented.
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Fig. 6 CPP multi-hospital data.
Estimated densities of the
gestational age for the 12
hospitals, with comparison
between smokers (yellow
curves) and non-smokers (black
curves)

Finally, while originally introduced to overtake computa-
tional problems arising in the implementation of algorithms
for PY mixture models, the idea behind the ICS approach
can be naturally extended to other classes of computation-
ally demanding models. As an example, we implemented the
same idea to deal with posterior inference based on a flexi-
ble class of mixture models for partially exchangeable data.
Other extensions are also possible and are currently subject
of ongoing research.

Supplementary Information

Details on the implementation of the algorithms considered
in Sect. 3 are provided as supplementary material.

Supplementary Information The online version contains supplemen-
tary material available at https://doi.org/10.1007/s11222-022-10096-
0.
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Appendix A On the number of jumps to be
drawnwith the slice sampler

Let Nn be the random number of jumps that need to be
drawn at each iteration of a slice sampler (Walker 2007) or,
equivalently, its dependent slice-efficient version (Kalli et al.
2011), implemented to carry out posterior inference based on
a sample of size n. Conditionally on the cluster assignment
variables c1, . . . , cn and on the weights pc1, . . . , pcn of the
non-empty components of the mixture, Nn is given by

Nn = min

⎧⎨
⎩l ≥ 1 :

∑
j≤l

p j > 1 − min(U1 pc1 , . . . ,Un pcn )

⎫⎬
⎭ ,

where the random weights p j ’s are defined as in (5) and
U1, . . . ,Un are independent uniform randomvariables, inde-
pendent of the weights p j ’s.We next define a second random
variable Mn , function of the same uniform random variables
U1, . . . ,Un , as

Mn = min

⎧⎨
⎩l ≥ 1 :

∑
j≤l

p j > 1 − min(U1, . . . ,Un)

⎫⎬
⎭

≤ min

⎧⎨
⎩l ≥ 1 :

∑
j≤l

p j > 1 − min(U1 pc1 , . . . ,Un pcn )

⎫⎬
⎭

= Nn .

The random number Mn is thus a data-free lower bound
for Nn , where the inequality Mn(ω) ≤ Nn(ω) holds for
every ω ∈ Ω . Studying the distribution of Mn will shed
light on the distribution of its upper bound Nn . Interest-
ingly, Mn represents also the random number of jumps to be
drawn in order to generate a sample of size n from a PY by
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Fig. 7 Estimated values for P(Mn > 106) (solid curves) and P(Ln > 106) (dashed curves) as a function of σ ∈ (0, 1), for n = 100 (blue),
n = 1 000 (orange), n = 10 000 (gray), and for θ = 0.1 (left panel), θ = 1 (middle panel), θ = 10 (right panel)

adapting the retrospective sampling idea of Papaspiliopou-
los and Roberts (2008), described in their Sect. 2 for the
DP case. The distribution of Mn coincides with the dis-

tribution of min
{
l ≥ 1 : ∏

j≤l(1 − Vj ) < Bn

}
, where the

stick-breaking variables {Vj }∞j=1 are defined as in (5) and Bn

is a beta random variable with parameters 1 and n. Follow-
ingMuliere and Tardella (1998), it is easy to show that, when
σ = 0, then Mn−1 is distributed as a mixture of Poisson dis-
tributions, specifically (Mn − 1) ∼ Poisson(ϑ log(1/Bn)).
This leads toE[Mn] = ϑHn+1,where Hn = ∑n

l=1 l
−1 is the

n-th harmonic number. It is worth noting that, for n → ∞,
E[Mn] ≈ ϑ log(n), that is the growth is logarithmic in n,
while the contribution of ϑ is linear. As for the PY process,
we resort to Arbel et al. (2019), where the asymptotic distri-
bution of the minimum number of jumps of a PY, needed to
guarantee that the truncation error is smaller than a determin-

istic threshold, is studied.We introduce the notation an
a.s.∼ bn

to indicate that P(limn→∞ an/bn = 1) = 1 and, by exploit-
ing Theorem 2 in Arbel et al. (2019), we prove the following
proposition.

Proposition 2 Let Mn = min
{
l ≥ 1 : ∏

j≤l(1 − Vj )

< Bn} where the sequence (Vj ) j≥1 is defined as in (5) and
Bn is a beta random variable with parameters 1 and n. Then,
for n → ∞,

Mn − 1
a.s.∼

(
BnTσ,ϑ

σ

)−σ/(1−σ)

, (16)

where Tσ,ϑ , independent of Bn, is a polynomially tilted stable
random variable (Devroye 2009), with probability density
function proportional to t−ϑ fσ (x), where fσ is the density
function of a unilateral stable random variable with Laplace
transform equal to exp{−λσ }.

Proof Define M(ε) = min
{
l ≥ 1 : ∏

j≤l(1 − Vj ) < ε
}
.

Following Arbel et al. (2019),

M(ε) − 1
a.s.∼

(
εTσ,ϑ

σ

)−σ/(1−σ)

, (17)

as ε → 0. Observe that Mn = M(Bn) and that Bn
a.s.∼ 0 as

n → ∞. We then define the events

A =
{
ω ∈ Ω : M(ε) �a.s.

(
εTσ,ϑ/σ

)−σ/(1−σ) as ε → 0
}

B = {ω ∈ Ω : Bn �a.s. 0 as n → ∞}
C =

{
ω ∈ Ω : Mn �a.s.

(
BnTσ,ϑ/σ

)−σ/(1−σ) as n → ∞
}

and observe that C ⊂ A ∪ B. Which implies that P(C) ≤
P(A ∪ B) ≤ P(A) + P(B) = 0. 
�

If we define Ln = (
BnTσ,ϑ/σ

)−σ/(1−σ), for any positive
integer n, the statement of Proposition 2 is tantamount to

Mn −1
a.s.∼ Ln as n → ∞. The random variable Ln has finite

mean if and only if σ ∈ (0, 1/2), case in which E[Ln] =
cσ,ϑΓ (n + 1)/Γ (n + 2 − 1/(1 − σ)), where

cσ,ϑ = σσ/(1−σ) Γ (2 − 1/(1 − σ))Γ (1 + ϑ/σ + 1/(1 − σ))

Γ (ϑ + 1/(1 − σ))
,

which implies that E[Ln] ≈ cσ,θnσ/(1−σ), when n → ∞. A
simple simulation experiment was run to empirically inves-
tigate the quality of the asymptotic approximation of Mn

provided by Ln . The random variable Tσ,ϑ appearing in the
defintion of Ln was sampled by resorting to Hofert (2011).
Figure 7 displays the estimated probability of the events
Mn > 106 and Ln > 106, as a function of σ ∈ (0, 1), for ϑ ∈
{0.1, 1, 10} and for different sample sizes n ∈ {100, 1 000,
10 000}.
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Appendix B Additional details on the simula-
tion study

This section provides additional results of the simulation
study presented in Sect. 3. Table 1 reports on the number of

times the upper bound for the number of jumps drawn at each
iteration of dependent and independent slice-efficient sam-
plers was reached. Figures 8, 9 and 10 focus on the functional

Table 1 Relative frequency of
the of times that the bound 105

on the number of jumps is
reached when σ = 0.4 for the
independent slice-efficient
algorithm (I-SE) and the
dependent slice-efficient
algorithm (D-SE)

I-SE D-SE

ϑ = 1 n = 100 0.00 0.00

n = 250 0.00 0.00

n = 1000 0.00 0.00

ϑ = 10 n = 100 0.06 0.07

n = 250 0.8 0.14

n = 1000 0.16 0.31

ϑ = 25 n = 100 0.30 0.39

n = 250 0.39 0.54

n = 1000 0.63 0.89

Fig. 8 Simulated data. ICS: ratio between runtime (in seconds) and ESS computed on the deviance on a log-scale. Results are averaged over 100
replicates

Fig. 9 Simulated data. ESS
computed on the deviance, for
ICS (gray), marginal sampler
(orange), independent
slice-efficient sampler (green)
and dependent slice-efficient
sampler (blue). Results are
averaged over 10 replicates. The
×-shaped marker for the two
slice samplers indicates that,
when σ = 0.4, the value of the
ESS is obtained with an
arbitrary upper bound at 105 for
the number of jumps drawn per
iteration
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Fig. 10 Simulated data. Ratio
of runtime (in seconds) over
ESS computed on the deviance,
in log-scale, for ICS (gray),
marginal sampler (orange),
independent slice-efficient
sampler (green) and dependent
slice-efficient sampler (blue).
Results are averaged over 10
replicates. The ×-shaped marker
for the two slice samplers
indicates that, when σ = 0.4,
the value of time/ESS is
obtained with an arbitrary upper
bound at 105 for the number of
jumps drawn per iteration

deviance and display results analogous to those presented in
Sect. 3 for the random variable number of clusters.

Appendix C ICS for GM-DDP

In order to describe the full conditional distributions of θi,l
and w, and to provide the pseudo-code of the ICS for the
GM-DDP mixture model, some notation needs to be intro-
duced. Let rm,0 and rm,l , for l = 1, . . . , L , represent the
number of distinct values s∗

j,0 and s∗
j,l appearing in the vec-

tors s0 and sl , respectively. The corresponding frequencies

are givenbym j,0 andm j,l , and are such that
∑km,l

j=1m j,l = m,
for every l = 0, 1, . . . , L . Let θ∗

0 be the vector of dis-
tinct values appearing in (θ1, . . . , θ L) coinciding with either
the kn,0 fixed jump points t0 of the common process γ0 or
with any of the rm,0 values appearing in s0. Similarly, for
any l = 1, . . . , L , θ∗

l denotes the vector of distinct val-
ues appearing in (θ1, . . . , θ L) coinciding with either the
kn,l fixed jump points tl of the idiosyncratic process γl or
with any of the rm,l values appearing in sl . Finally, we let
C j,0 = {(i, l) : θi,l = θ∗

j,0} and, for l = 1, . . . , L ,
C j,l = {i : θi,l = θ∗

j,l}.

The full conditional distribution of θi,l , for every l =
1, . . . , L and 1 ≤ i ≤ nl , is given, up to a proportional-
ity constant, by

P(θi,l ∈ dt | . . .) ∝ wl

⎛
⎝p0,l

rm,l∑
j=1

m j,l

m
K(Xi,l , s

∗
j,l )δs∗j,l (dt)

+
kn,l∑
j=1

p j,lK(Xi,l , t
∗
j,l )δt∗j,l (dt)

⎞
⎠

+(1 − wl )

⎛
⎝p0,0

rm,0∑
j=1

m j,0

m
K(Xi,l , s

∗
j,0)δs∗j,0 (dt)

+
kn,0∑
j=1

p j,0K(Xi,l , t
∗
j,0)δt∗j,0 (dt)

⎞
⎠ .

The full conditional forw is given, up to a proportionality
constant, by

P(w = (v1, . . . , vL )| . . . )

∝
L∏

l=1

vϑz−1
l

(1 − vl )
ϑz+1

nl∏
i=1

(
vl q

(l)
i,l + (1 − vl )q

(0)
i,l

)

×
⎛
⎝1 +

L∑
l=1

vl

1 − vl

⎞
⎠

−Lϑz−θ(1−z)

(18)
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Algorithm 2: ICS for GM-DDP mixture model

1 set admissible initial values for θ
(0)
l , for l = 1, . . . , L;

2 for each iteration r = 1, . . . , R do
3 set t(r)0 = θ

∗(r−1)
0 ;

4 sample p(r)
0 from p(r)

0 ∼ Dirichlet(c(1 − z), n(r−1)
1,0 , . . . , n(r−1)

kn,0,0
);

5 sample s(r)0 from a DP(c(1 − z); P0);
6 for each urn l = 1, . . . , L do
7 set t(r)l = θ

∗(r−1)
l ;

8 sample p(r)
l from p(r)

l ∼ Dirichlet(cz, n(r−1)
1,l , . . . , n(r−1)

kn,l ,l
);

9 sample s(r)l from a DP(cz; P0);
10 sample w(r) from (18);
11 for each i = 1, . . . , nl ; l = 1, . . . , L do
12 sample θ

(r)
i,l from

P(θ
(r)
i,l = t | · · · ) ∝

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

wl p
(r)
0,l

m(r)
j,l
m k(Xi,l ; s∗(r)

j,l ) if t ∈ {s∗(r)
1,l , . . . , s∗(r)

r (r)
m,l

}
wl p

(r)
j,l k(Xi,l ; t∗(r)

j,l ) if t ∈ {t∗(r)
1,l , . . . , t∗(r)

k(r−1)
n,l ,l

}

(1 − wl)p
(r)
0,0

m(r)
j,0
m k(Xi,l ; s(r)

j,0) if t ∈ {s∗(r)
1,0 , . . . , s∗(r)

r (r)
m,0

}
(1 − wl)p

(r)
j,0k(Xi,l ; t∗(r)

j,0 ) if t ∈ {t∗(r)
1,0 , . . . , t∗(r)

k(r−1)
n,0 ,0

}
0 otherwise

13 for each element θ∗(r)
j,0 in θ

∗(r)
0 do

14 let C(r)
j,0 be the set of pairs (i, l) such that θ

(r)
i,l = θ

∗(r)
j,0 ;

15 update θ
∗(r)
j,0 from

P(θ
∗(r)
j,0 ∈ dt | · · · ) ∝ P0(dt)

∏
(i,l)∈C(r)

j,0

K(Xi,l ; t);

16 for each element θ∗(r)
j,l in θ

∗(r)
l , l = 1, . . . , L do

17 let C(r)
j,l be the set of index pairs indexes i such that θ

(r)
i,l = θ

∗(r)
j,l ;

18 update θ
∗(r)
j,l from

19

P(θ
∗(r)
j,l ∈ dt | · · · ) ∝ P0(dt)

∏
i∈C(r)

j,l

K(Xi,l ; t);

20 end

where

q(l)
i,l = p0,l

rm,l∑
j=1

m j,l

m
K(Xi,l , s

∗
j,l)δs∗j,l (dt)

+
kn,l∑
j=1

p j,lK(Xi,l , t
∗
j,l)δt∗j,l (dt),

q(0)
i,l = p0,0

rm,0∑
j=1

m j,0

m
K(Xi,l , s

∗
j,0)δs∗j,0(dt)

+
kn,0∑
j=1

p j,0K(Xi,l , t
∗
j,0)δt∗j,0(dt).

The pseudo-code of the ICS for the GM-DDP mixture
model is presented in Algorithm 2.
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