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Abstract: We present a strategy based on the step-scaling technique to study non-
perturbatively thermal QCD up to very high temperatures. As a first concrete application,
we compute the flavour non-singlet meson screening masses at 12 temperatures covering
the range from T ∼ 1GeV up to ∼ 160GeV in the theory with three massless quarks. The
calculation is carried out by Monte Carlo simulations on the lattice by considering large
spatial extensions in order to have negligible finite volume effects. For each temperature we
have simulated 3 or 4 values of the lattice spacing, so as to perform the continuum limit
extrapolation with confidence at a few permille accuracy. Chiral symmetry restoration
manifests itself in our results through the degeneracy of the vector and the axial vector
channels and of the scalar and the pseudoscalar ones. In the entire range of temperatures
explored, the meson screening masses deviate from the free theory result, 2πT , by at most
a few percent. These deviations, however, cannot be explained by the known leading term
in the QCD coupling constant g up to the highest temperature, where other contributions
are still very relevant. In particular the vector-pseudoscalar mass splitting turns out to
be of O(g4) in the entire range explored, and it remains clearly visible up to the highest
temperature, where the two screening masses are still significantly different within our
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numerical precision. The pattern of different contributions that we have found explains why
it has been difficult in the past to match non-perturbative lattice results at T ∼ 1GeV with
the analytic behaviour at asymptotically high temperatures.

Keywords: Lattice QCD, Lattice Quantum Field Theory, Quark-Gluon Plasma, Phase
Diagram of QCD
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1 Introduction

Thermal Quantum Chromodynamics (QCD) plays a fundamental rôle in particle and
nuclear physics, and in cosmology. Apart from its intrinsic theoretical interest, the collective
behaviour of strongly-interacting particles is crucial input for determining the evolution
of the Universe in its early stages. Today the quark-gluon plasma is also produced and
investigated at heavy-ion colliders, where some of its basic properties are essential to analyze
the experimental data.

At asymptotically high temperatures, thermal QCD is described by a three-dimensional
effective gauge theory [1, 2] which needs to be solved non-perturbatively [3]. As a result,
perturbation theory can predict the coefficients of the expansion in the strong coupling
constant g only up to a finite order. An important example is the Equation of State (EoS),
where non-perturbative contributions start at O(g6) [4, 5]. In the SU(3) Yang-Mills theory,
these terms are found to be large up to temperatures two orders of magnitude higher than
the critical one [6]. All these facts call for a non-perturbative strategy to study thermal
QCD up to very high temperatures, possibly up to the electroweak scale.

The purpose of this paper is to combine information encoded in the three-dimensional
effective theory, lattice QCD, step-scaling techniques, and Monte Carlo integration to devise
a strategy for studying QCD non-perturbatively up to very high temperatures from first
principles. The aim is to generalize to QCD the proposal made in ref. [6] for the Yang-Mills
theory. As a concrete implementation, we consider QCD with Nf = 3 flavours of massless
quarks in the range of temperatures from about 1GeV up to approximately 160GeV.1

As a first application we compute the non-singlet meson screening masses, maybe
the simplest properties of the plasma to be computed. They characterize the exponential
decay of two-point correlation functions of fermion bilinears in the spatial directions, i.e.
their inverses are the long-distance spatial correlation lengths when mesons are present in
the plasma. Screening masses can be easily investigated numerically, they are related to
spectral functions, and they signal the restoration of chiral symmetry at high temperature.
Their O(g2) component is known, and is found to be spin independent [7]. The first
spin-dependent term is expected to appear only at O(g4) [8, 9]. These masses are therefore
ideal quantities to test the strategy proposed in this paper, and to further investigate the
relevance of non-perturbative contributions in thermal QCD. It must be said that they have
been computed non-perturbatively in lattice QCD for decades, see refs. [10–13] for recent
efforts. These computations, however, are limited to temperatures up to approximately
1GeV. Here we want to extend the range up to much higher temperatures so as to elucidate
the approach to the infinite temperature limit, where the effective theory is expected to
match thermal QCD.

The paper is organized as follows. In section 2 we review the three-dimensional effective
theory, and summarize the properties relevant to this paper. The next section is devoted
to introduce the screening masses, and to summarize the known analytic contribution to
them. In section 4 we present the strategy for simulating lattice QCD up to very high

1As the temperature becomes higher and higher, the relevance of the light quark masses becomes
quickly negligible.
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temperatures. The lattice setup and the raw results are discussed in section 5, while the
value of the screening masses in the continuum limit are given in section 6. We discuss
and interpret the final results in section 7, while our conclusions and outlook are given in
section 8. Notations, conventions, and technical details are reported in several appendices.

2 Preliminaries on the effective theory at large T

In thermal QCD at high temperature the physics that takes place at energies much lower
than T , or equivalently that involve distances much larger than the temporal direction, can
be described by a three-dimensional effective gauge theory [1, 2, 4], dubbed Electrostatic
QCD (EQCD), defined by the action

SEQCD = 1
g2

E

∫
d3x

{1
2Tr [FijFij ] + Tr [(DjA0)(DjA0)] +m2

ETr
[
A2

0

]}
+ . . . (2.1)

where the dots stand for higher dimensional operators, see ref. [14] for a recent review.
The field content is made of the Matsubara zero-modes of the gauge field, while quark
fields are decoupled because their modes pick up a mass proportional to πT due to the
antiperiodic boundary conditions in the compact direction. The dynamics of the spatial
components is governed by a three-dimensional Yang-Mills theory with field strength tensor
Fij and dimensionful coupling constant g2

E . The temporal component of the gauge field A0
behaves as a three-dimensional scalar field of mass mE which transforms under the adjoint
representation of the gauge group. The matching with QCD fixes the low-energy constants
to be m2

E = 3
2g

2T 2 + . . . and g2
E = g2T + . . . , with g being the renormalized coupling of

QCD (usually taken at scale 2πT ), and the dots stand for higher order terms in the coupling
constant [15].

At asymptotically high T , the coupling g is small and three different energy scales
develop so that

g2
E

π
� mE � πT . (2.2)

If one is interested in processes at scales of O(g2
E), the scalar field can be integrated out. The

action of the remaining effective theory, dubbed Magnetostatic QCD (MQCD), is given by

SMQCD = 1
g2

E

∫
d3x

{1
2Tr [FijFij ]

}
+ . . . (2.3)

Being a three-dimensional Yang-Mills theory, it has non-perturbative dynamics and therefore
it needs to be solved non-perturbatively [3]. All dimensionful quantities are proportional to
the appropriate power of g2

E times a non-perturbative coefficient.
This in turn implies that, at asymptotically high temperatures, the mass gap developed

by thermal QCD is proportional to g2
E [16]. Finite volume effects are therefore expected

to be exponentially small in g2
EL = g2TL + . . . times a non-perturbative coefficient, see

below and appendix C. This fact turns out to be crucial for the strategy outlined in the
next sections for studying non-perturbatively thermal QCD up to very high temperatures.
At intermediate temperatures, the pre-factors may be relevant in determining what is the
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mass gap of the theory. But given the relevant scales in the problem, and provided the
temperature is sufficiently high with respect to ΛQCD, the mass gap of the theory is always
expected to be proportional to the temperature times an appropriate power of the coupling
constant [17].

2.1 Fermion correlators

In the effective field theory approach, the quarks are very heavy fields that can be considered,
in first approximation, as static fields. By adopting the notation of ref. [7], we represent
the spinor field as

ψ =
(
χ

φ

)
, (2.4)

so that the effective action for the fermion modes can be written as [7–9, 18]

Seff
q =

∫
d3x

{
iχ†
[
M − gEA0 +D3 −

1
2M

(
D2
k + gE

4i [σk, σl]Fkl
)]

χ (2.5)

+ iφ†
[
M − gEA0 −D3 −

1
2M

(
D2
k + gE

4i [σk, σl]Fkl
)]

φ

}
+ . . .

where the mass M is identified with a low-energy constant which, for the lightest modes, is
given byM = πT [1+g2/(6π2)]+ . . . , while the spatial direction 3 is the one along which the
mesonic 2-point functions are measured in order to compute the screening masses. In three
dimensions the chiral symmetry group is enlarged with respect to the four-dimensional one
due to dimensional reduction. The quark mass M , however, breaks the three-dimensional
chiral group down to the unbroken four-dimensional chiral symmetry, and the familiar
pattern of chiral symmetry restoration at high temperature is recovered [19]. As we shall
see, the restoration of chiral symmetry in thermal QCD will show up in the degeneracy of
various masses measured by Monte Carlo simulations at large T .

By scrutinizing the magnitude of the various terms in eq. (2.5), the interaction term in
the covariant derivatives Dk (k = 1, 2) and the spin-dependent contributions proportional
to Fkl are of higher order in the strong coupling constant with respect to the other terms,
and they can be dropped if one is interested in the leading contributions [7]. Before doing
so, however, it is interesting to notice that the spin-dependent terms give contributions
starting at O(g4) [8, 9].

3 Definition of the mesonic screening masses

We are interested in the screening masses related to flavour non-singlet fermion bilinear
operators

Oa(x) = ψ(x)ΓO T a ψ(x) , (3.1)

where ΓO = {11, γ5, γµ, γµγ5} characterizes the structure of the operators in the Dirac space,
with the latter named as usual as O = {S, P, Vµ, Aµ}, and we restrict ourselves to µ = 2.
Since we will be considering QCD with three massless flavours, the Hermitean matrices
T a are the traceless generators of SU(3) flavour group, and they are normalized so that
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Tr[T a T b] = δab/2. Being singlets in color space, for better readability the summation over
the color index is not shown. The spatially separated two-point correlation functions of
these operators can be defined as

CO(x3) =
∫
dx0dx1dx2 〈Oa(x)Oa(0)〉 , (3.2)

where no summation over a is understood, and the flavour index has been dropped on the
l.h.s. since CO(x3) does not depend on a when quarks are degenerate. Note that in this case
the disconnected Wick contractions do not contribute. The screening masses are defined as

mO = − lim
x3→∞

d

dx3
ln
[
CO(x3)

]
, (3.3)

and they characterize the exponential decrease of the correlation function at large spa-
tial distances.

At low temperatures, due to the chiral anomaly and to the spontaneous breaking of
chiral symmetry, the masses resulting from the above correlation functions are different.
When the temperature is large enough, the vector and axial vector screening masses are
expected to become degenerate thanks to the restoration of the non-singlet chiral symmetry.
Moreover, at high temperature, the distribution of the topological charge becomes narrower
and narrower [20], and only the sector with zero topology contributes de facto to the
functional integral [21], see refs. [20, 22] and references therein for recent results on this
topic. This in practice implies a degeneracy of the non-singlet scalar and pseudoscalar
screening masses as well.

3.1 Leading interacting contribution in the effective theory

The O(g2) contribution to the non-singlet mesonic screening masses has been computed in
the effective theory [7, 9]. For three massless quarks, the expression reads

mPT
O = 2πT +

g2
E

3π
(
1 + 0.93878278

)
= 2πT (1 + 0.032739961 · g2) , (3.4)

where the first two terms come from the low-energy constant M , while the last one is
generated by the interactions [7]. Indeed the latter is expected to receive non-perturbative
contributions starting only at O(g3). In eq. (3.4) the masses are independent of the specific
mesonic operator O since, as anticipated, spin-dependent effects are expected to appear
at O(g4).

4 Lattice strategy and setup

In order to set up our strategy for studying thermal QCD non-perturbatively up to very high
temperatures, we consider a 4-dimensional lattice with size L0 in the compact (temporal)
direction and extension L along the three spatial directions. As usual, the gauge field is
represented by the link variables Uµ(x) ∈ SU(3), while the quark and anti-quark fields are
given by the flavour multiplets ψ(x) and ψ(x) respectively.
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4.1 Shifted boundary conditions

The thermal theory is defined by requiring that the fields satisfy shifted boundary conditions
in the compact direction [23–25], while we set periodic boundary conditions in the spatial
directions. The former consist in shifting the fields by the spatial vector L0 ξ when crossing
the boundary of the compact direction, with the fermions having in addition the usual sign
flip. For the gauge fields they read

Uµ(x0 + L0,x) = Uµ(x0,x− L0ξ) , Uµ(x0,x+ k̂Lk) = Uµ(x0,x) , (4.1)

while those for the quark and the anti-quark fields are given by

ψ(x0 + L0,x) = −ψ(x0,x− L0ξ) , ψ(x0,x+ k̂Lk) = ψ(x0,x) ,
ψ(x0 + L0,x) = −ψ(x0,x− L0ξ) , ψ(x0,x+ k̂Lk) = ψ(x0,x) . (4.2)

A relativistic thermal field theory in the presence of a shift ξ is equivalent to the very
same theory with usual periodic (anti-periodic for fermions) boundary conditions but with
a longer extension of the compact direction by a factor

√
1 + ξ2 [25], i.e. the standard

relation between the length and the temperature is modified as T = 1/(L0

√
1 + ξ2). Shifted

boundary conditions represent a very efficient setup to tackle several problems that are
otherwise very challenging both from the theoretical and the numerical viewpoint. A recent
example is the EoS of the SU(3) Yang-Mills theory obtained at the permille level up to
very high temperatures [6, 26]. The strategy presented in this paper, when supplemented
by shifted boundary conditions, paves the way for the computation of the EoS at large
temperatures in thermal QCD [27]. Even if the use of shifted boundary conditions is
not crucial for the calculation of the screening masses, we have chosen to use them with
ξ = (1, 0, 0) so as to share the cost of generating the gauge configurations with that project.
The free case computation of the screening masses reported in appendix F, moreover,
indicates that the use of shifted boundary conditions with ξ = (1, 0, 0) makes discretization
effects in the screening masses milder.

4.2 Renormalization and lines of constant physics

A hadronic scheme is not a convenient choice to renormalize QCD non-perturbatively
when considering a broad range of temperatures spanning several orders of magnitude.
In fact, this would require to accommodate on a single lattice the temperature and the
hadronic scale which may differ by orders of magnitude, making the numerical computations
prohibitive. A similar problem is encountered when renormalizing QCD non-perturbatively,
and it was solved many years ago by introducing a step-scaling technique [28, 29].

In order to solve our problem, we build on that knowledge by considering a non-
perturbative definition of the coupling constant, ḡ2

SF(µ), which can be computed precisely
on the lattice for values of the renormalization scale µ which span several orders of magnitude.
Making a definite choice, in this section we use the definition based on the Schrödinger
functional (SF) [30], but other choices are available today. In particular later on in the
paper we will also consider the gradient flow (GF) definition [31–33]. Once ḡ2

SF(µ) is known
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in the continuum limit for µ ∼ T [32, 34], we renormalize thermal QCD by fixing the value
of the renormalized coupling constant at fixed lattice spacing a to be

ḡ2
SF(g2

0, aµ) = ḡ2
SF(µ) , aµ� 1 . (4.3)

This is the condition that fixes the so-called lines of constant physics, i.e. the dependence of
the bare coupling constant g2

0 on the lattice spacing, for values of a at which the scale µ
and therefore the temperature T can be easily accommodated. QCD at temperature T can
then be simulated at different values of the lattice spacings, and the continuum limit of the
observable of interest can be taken with confidence. All the technical details on how this
procedure is implemented in practice are given in appendix B.

4.3 Lattice setup

We perform our study at the 12 values of the temperature, T0, . . ., T11, reported in table 1,
covering the range from approximately 1GeV up to about 160GeV. For the 9 highest
ones, T0, . . ., T8, gluons are regularized with the Wilson plaquette action in eq. (A.1) of
appendix A, while for the 3 lowest temperatures, T9, T10 and T11, we adopt the tree-level
improved gauge action in eq. (A.3). The three massless flavours are always discretized by
the O(a)-improved Wilson-Dirac operator defined in appendix A. In order to extrapolate the
results to the continuum limit, several lattice spacings are simulated at each temperature
with the extension of the fourth dimension being L0/a = 4, 6, 8 or 10. The bare coupling
and the critical mass mcr are fixed at each lattice spacing from the results of refs. [32–35]
by adopting the strategy outlined above and explained in details in appendix B.

4.4 Finite-volume effects

As we have discussed in section 2, at high temperature the mass gap of the theory is
proportional to T times an appropriate power of the coupling constant. As a consequence,
finite-size effects are proportional to LT times a coefficient that tends to decrease loga-
rithmically with the temperature, see refs. [25, 36] and appendix C. For this reason, the
lattices that we consider have rather large spatial directions, i.e. L/a = 288, so that LT
ranges always from 20 to 50. We profit here from the continuous theoretical and algorithmic
progress in the simulation of gauge theories, as well as the steady progress in HPC hardware,
which has made it possible to simulate lattices with a very large number of points. As
we will discuss below, we also always explicitly check that finite-size effects are negligible
within the statistical precision of our observables.

4.5 Restricting to the zero-topological sector

At high temperature, the topological charge distribution is expected to be highly peaked
at zero. In particular, in QCD with three light degenerate flavours of mass m, the
instanton analysis predicts the topological susceptibility to be proportional to T−bm3 with
b ∼ 8. The analogous prediction for the Yang-Mills theory has been verified explicitly
on the lattice [20]. When fermions are introduced, the numerical computations become
significantly more involved and the systematics are still difficult to control. The simulations
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done so far, however, are compatible with the T -dependence predicted by the semi-classical
analysis [37, 38]. As a result, already at the lower end of the temperature range considered
here, T = 1GeV, the probability to encounter a configuration with non-zero topology in
our volumes is expected to be several orders of magnitude smaller than the permille or so.
This is even less probable in the limit of massless quarks. We can therefore restrict our
calculations to the sector with zero topology, and generate the ensembles of gauge field
configurations by a Hybrid Monte Carlo (HMC) as described in appendix E.

5 Lattice correlation functions and screening masses

After integrating over the fermion fields, the lattice version of the correlation function in
eq. (3.2) reads

CO(x3 − y3) = −a
3

2
∑

x0,x1,x2

〈Tr
[
ΓOD−1(x, y) ΓO γ5D

†−1(x, y)γ5
]
〉 , (5.1)

where Tr indicates the trace over the color and spin indices, and the same name as in
the continuum is used since the ambiguity can be resolved from the context. The quark
propagator D−1(x, y) from the source point y to the sink x is the inverse of the O(a)-
improved Wilson-Dirac operator defined in eq. (A.6) computed at the critical value of the
quark mass. At high temperature, the inversion of the lattice Dirac operator needs to be
done with particular care. This is because the lowest Matsubara frequency πT provides
an infrared cutoff to quark propagation and, as a result, the matrix elements of D−1(x, y)
become extremely small when T |x− y| � 1. At those distances a very accurate solution
of the Dirac equation is required, and the brute-force approach of simply implementing
higher-precision by requiring a smaller tolerance is not practicable. We have solved this
problem by introducing a distance preconditioning of the Dirac equation as discussed in
appendix D.

The two-point correlation functions for the scalar and pseudoscalar densities and for
the vector and axial currents have been computed on all lattices generated, see tables 4
and 7. We report in tables 8 and 9 the number of Molecular Dynamics Units (MDUs) after
the thermalization phase of each HMC chain, the number of MDUs skipped between two
consecutive independent configurations, and the number of local sources per configuration
on which the Wilson-Dirac operator has been inverted. The best estimates of CO(x3) on
each configuration have been obtained by properly averaging their values from all local
sources and then symmetrizing the correlators with respect to x3 = L/2. We carefully
monitored the autocorrelation of the correlators, and we never observed long autocorrelation
times with respect to the number of MDUs skipped between two consecutive measurements.

Within our statistical errors, at all the temperatures that we have investigated, we
observe an excellent agreement between the scalar and pseudoscalar correlators as well
as between the vector and axial ones at intermediate and large distances, see ref. [39] for
details. This is a distinctive feature of the restoration of chiral symmetry which occurs at
high temperatures. For this reason, in the rest of the paper we focus our discussion on the
pseudoscalar and the vector correlators only.
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Figure 1. Plot of the effective masses, normalized to 2πT , for the pseudoscalar (left) and vector
(right) correlators at the temperature T3 for L0/a = 6.

Once the correlation functions in eq. (5.1) have been computed, effective screening
masses are defined as

mO (x3) = 1
a

arcosh
[
CO(x3 + a) + CO(x3 − a)

2CO(x3)

]
. (5.2)

Their values for the pseudoscalar density (left panel) and the vector current (right panel)
are shown in figure 1 for T3 and L0/a = 6. An analogous behaviour is observed for all
other lattices. We obtain very long plateaux thanks to the fact that we have simulated
lattices with a very large spatial extension, and that there is no signal-to-noise ratio problem
at high temperature. To determine the best estimates of the screening masses mO, we
start by fitting the symmetrized correlator to a sum of two exponentials from a minimum
value of x3/a up to the last point available. The minimum value is chosen so as to obtain
a good quality of the two-exponential fit, and at the same time a statistically non-zero
contribution from the sub-leading exponential. From the result of this fit we then estimate
the minimum value xmin

3 /a from which the contamination in the effective mass due to the
second exponential is negligible with respect to the statistical precision that we obtain by
fitting the effective mass to a constant from xmin

3 /a up to the last available point. We then
verify explicitly that a constant value fits well the effective mass from xmin

3 /a up to the end
of the plateau, and that by increasing xmin

3 /a by a few units the result of the fit does not
change significantly. Examples of results of these fits are represented in figure 1 as straight
lines again for T3 and L0/a = 6. Our best estimates of the screening masses are reported in
tables 8 and 9 for all the lattices simulated. The statistical error is at most a few permille
in all cases. In order to profit from the correlations in our data for reducing the statistical
errors, we also compute (mV −mP )/(2πT ) and report its values in tables 8 and 9 as well.
This combination is particularly interesting because it is a measure of the spin-dependent
terms which can be computed very precisely.
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We have explicitly checked that finite volume effects are negligible within our statistical
errors: we have generated three more lattices at the highest and at the lowest temperatures
for the smallest spatial volumes corresponding to L0/a = 6, L0/a = 10, and L0/a = 8 for
T0, T1, and T11 respectively. These lattices have the same dimensions in the compact and
in the x3 directions as those in tables 4 and 7 but smaller extension in the other two spatial
directions. The screening masses computed on them are in agreement with those calculated
on the larger volume, see appendix E for the details, and therefore we can safely assume
that our results have negligible finite-volume effects within the statistical precision.

6 Continuum limit of meson screening masses

The results that we have collected at finite lattice spacing have to be extrapolated to
the continuum limit along lines of constant physics. For O(a)-improved actions, the
Symanzik effective theory predicts the leading behaviour of the lattice artifacts to be of
order a2. We can accelerate the convergence to the continuum by introducing the tree-level
improved definitions

mO −→ mO −
[
mfree
O − 2πT

]
, (6.1)

where mfree
O is the mass in the free lattice theory. As shown in the appendix F, where the

computation is reported, the latter is the same for all non-singlet meson masses. From now
on we will consider always the tree-level improved definition of the screening masses and
indicate them with mO.

All data for the improved pseudoscalar (left panel) and vector (right panel) screening
masses are represented in figure 2 where, in order to improve the readability, data corre-
sponding to Ti (i = 0, . . . , 11) are shifted downward by 0.02 × i. The analogous plot for
(mV −mP ) is shown in figure 3. At each temperature, lattice artifacts are well described
by a single correction proportional to (a/L0)2. Indeed by fitting each data set linearly in
(a/L0)2, the values of χ2/dof are all around 1 with just a few outliers which, however, are
not surprising given the large amount of data and fits. The results of the fits are shown
in the plots of figures 2 and 3 as straight lines. For the mass difference, the coefficient of
(a/L0)2 is found to be compatible with zero at all temperatures. We take the continuum
limit values from these fits as our best results for the non-singlet meson screening masses
and their difference. They are reported in table 1 for all the 12 temperatures considered.
As a further check of the extrapolations, we have fitted the data by excluding the coarsest
lattice spacing, i.e. L0/a = 4, for the temperatures T1, . . . , T8 for which we have 4 data
points. The intercepts are in excellent agreement with those of the previous fits, albeit
with a slightly larger error. For the same sets of data, we have also attempted to include
in the fit a (a/L0)2 ln(a/L0) or a (a/L0)3 term. The resulting coefficients are compatible
with zero. Given the high quality of the fits and of the data, it is not necessary to model
the temperature dependence of the discretization effects so as to perform a global fit of
the data.
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Figure 2. Numerical results for the tree-level improved pseudoscalar (left panel) and vector (right
panel) screening masses at finite lattice spacing (black dots). The lines in the panels represent the
linear extrapolations in (a/L0)2 to the continuum limit. Each temperature is analyzed independently
from the others. Data corresponding to Ti (i = 0, . . . , 11) are shifted downward by 0.02 × i for
better readability.
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Figure 3. As in figure 2 but for the mass difference.
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T T (GeV) mP

2πT
mV

2πT
(mV −mP )

2πT
T0 164.6(5.6) 1.0194(25) 1.0261(23) 0.0071(7)
T1 82.3(2.8) 1.0219(15) 1.0291(18) 0.0076(4)
T2 51.4(1.7) 1.0216(16) 1.0312(18) 0.0087(4)
T3 32.8(1.0) 1.0217(15) 1.0302(19) 0.0092(6)
T4 20.63(63) 1.0220(15) 1.0343(17) 0.0105(6)
T5 12.77(37) 1.0185(18) 1.0306(24) 0.0132(10)
T6 8.03(22) 1.0200(18) 1.0341(28) 0.0143(13)
T7 4.91(13) 1.0192(18) 1.037(3) 0.0181(14)
T8 3.040(78) 1.0124(18) 1.0380(25) 0.0252(13)
T9 2.833(68) 1.0147(24) 1.038(3) 0.0244(20)
T10 1.821(39) 1.0122(18) 1.044(4) 0.0305(20)
T11 1.167(23) 1.0039(20) 1.045(6) 0.041(4)

Table 1. Best results for the pseudoscalar, mP , and the vector, mV , non-singlet screening masses
in the continuum limit together with their difference.

7 Discussion and interpretation of the results

The main results of this paper are the non-singlet meson screening masses reported in
table 1. They have been computed in a wide temperature range starting from T ∼1GeV up
to 160GeV or so with a precision of a few permille.

The first observation is that, as anticipated in section 5, within our rather small
statistical errors we find an excellent agreement between the scalar and pseudoscalar masses
and the vector and axial ones. This is a clear manifestation of the restoration of chiral
symmetry occurring at high temperature. For this reason we do not show explicitly the
results for the other two channels, and we focus on the pseudoscalar and vector masses.

A second observation is that the bulk of the non-singlet meson screening masses is
given by the free-theory value, 2πT , plus a few percent positive contribution over the entire
range of temperatures explored.

Thanks to the precision of our results, we can scrutinize in detail the temperature
dependence induced by the non-trivial dynamics. We introduce the function ĝ2(T ) defined as

1
ĝ2(T ) ≡

9
8π2 ln 2πT

ΛMS
+ 4

9π2 ln
(

2 ln 2πT
ΛMS

)
, (7.1)

where ΛMS = 341MeV is taken from ref. [40]. It corresponds to the 2-loop definition of
the strong coupling constant in the MS scheme at the renormalization scale µ = 2πT .
For our purposes, however, this is just a function of the temperature T , suggested by the
effective theory analysis, that we use to analyze our results.2 The crucial point is the leading
logarithmic dependence on T .

2One could also use a non-perturbative definition of the coupling constant, such as ḡ2
SF. In this case,

however, comparing our data with the analytic results in the literature would be more involved.
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Figure 4. Left: the pseudoscalar mass, normalized to 2πT , subtracted of the analytically known
contributions versus ĝ4. Right: the vector-pseudoscalar mass difference, normalized to 2πT , versus
ĝ4. Red bands represent the best fits of the data as explained in the text.

7.1 Pseudoscalar mass

We start our analysis by fitting the pseudoscalar mass in the third column of table 1 to
a quartic polynomial in ĝ. The intercept turns out to be compatible with 1, as predicted
by the free theory, within a large error. We have thus enforced it to the free-theory value,
p0 = 1, and we have fitted again the data. The coefficient of the ĝ2 term turns out to be
compatible with the theoretical expectation in eq. (3.4) within again a large uncertainty.
We have thus fixed also this coefficient to its analytical value, p2 = 0.032739961, and we
have performed again the quartic fit of the form

mP

2πT = p0 + p2 ĝ
2 + p3 ĝ

3 + p4 ĝ
4 . (7.2)

As a result, for the fit parameters we obtain p3 = 0.0038(22), p4 = −0.0161(17) and
cov(p3, p4)/[σ(p3)σ(p4)] = −1.0 with the excellent value of χ2/dof = 0.75. The quality of
the fit can be appreciated in the left plot of figure 4, where mP /(2πT ) — subtracted of
the analytically known contributions — is shown as a function of ĝ4 together with the best
fit to eq. (7.2). If the cubic coefficient is enforced to vanish, i.e. p3 = 0, the fit returns
p4 = −0.01323(20) with again an excellent value of χ2/dof = 0.96. The subtracted data lie on
a straight line over two orders of magnitude in the temperature. The polynomial in eq. (7.2)
is our best parameterization of the results over the entire range of temperatures explored.

The quartic term is necessary to explain the data over the entire temperature range. In
particular at the electroweak scale or so, it is still approximately half of the total contribution
due to the interactions. Notice that the sign of the quartic term is negative, opposite to
the one of the quadratic contribution, and the magnitude turns out to be approximately
2–3 times smaller than p2. When the data are plotted as a function of ĝ2, the quartic
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contribution competes with the quadratic one to bend down the pseudoscalar mass as shown
in figure 5. Toward the lower end of the range, the competition between this term and the
leading one results in an effective slope of opposite sign with respect to the analytically
known one. At T ∼ 1GeV, the various terms cancel each other and the mass turns out to
be very close to free-value 2πT .

7.2 Vector mass

The mass difference (mV−mP )/(2πT ) is an interesting quantity to investigate the magnitude
of the spin-dependent contributions. We plot our results for this quantity (last column of
table 1) as a function of ĝ4 on the right panel of figure 4. The data turn out to lie on a
straight line with a vanishing intercept. By fitting them to

(mV −mP )
2πT = s4 ĝ

4 , (7.3)

we obtain s4 = 0.00704(14) with χ2/dof = 0.79. It turns out that the spin-dependent
contribution can be parameterized by a single O(ĝ4) term in the entire range of temperatures
explored. Furthermore, it remains clearly visible up to the highest temperature, where the
pseudoscalar and the vector masses are still significantly different within our numerical
precision, see figure 5. The best polynomial that parameterizes our results for the vector
mass (fourth column of table 1) is therefore

mV

2πT = p0 + p2 ĝ
2 + p3 ĝ

3 + (p4 + s4) ĝ4 , (7.4)

where p0, . . . , p4 are those in eq. (7.2) while s4 is taken from eq. (7.3). The covari-
ances of the coefficients p3 and p4 with s4 are cov(p3, s4)/[σ(p3)σ(s4)] = 0.08 and
cov(p4, s4)/[σ(p4)σ(s4)] = −0.07.

As shown in figure 5, the quartic contribution is necessary to explain the data over the
entire temperature range. In particular at the electroweak scale, it is still approximately 15%
of the total contribution due to the interactions. Also for the vector mass, the coefficient of
the quartic term in eq. (7.4) has an opposite sign with respect to p2, but it is approximately
half of the analogous one for the pseudoscalar. When the mass is plotted as a function of
ĝ2, see figure 5, the quartic contribution competes with the quadratic one but is not large
enough to push down the vector mass, at least in the range considered. At the lower end of
our range, T ∼ 1GeV, it is the spin-dependent term that is responsible for the deviation of
the vector mass from 2πT , given the cancellation among the other terms.

In the literature, non-perturbative computations of these masses are available only
up to temperatures of 1GeV or so [12]. Even if these results have been obtained at the
physical values of the quark masses or close by, they are in agreement with ours at those
temperatures within the rather large errors. In fact, the relevance of the quark masses at
that temperature is very mild, and it becomes quickly negligible as the temperature increases.
The pattern of different contributions that we have just discussed, however, explains why it
has been difficult in the past to match non-perturbative lattice results at T . 1GeV with
the expected analytic behaviour at asymptotically high temperatures. Indeed the apparently
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Figure 5. Pseudoscalar (red) and vector (blue) screening masses versus ĝ2. The bands represent
the best fits in eqs. (7.2) and (7.4), while the dashed line is the analytically known contribution.

small 2–4% effect in the screening masses induced by the interactions among quarks and
gluons encodes a lot of interesting non-trivial information about the dynamics of the plasma.
When the corresponding non-perturbative computations in the three-dimensional effective
theory will become available, the matching with the results presented here will allow to
shed light on the origin of the various terms, and to verify non-perturbatively the effective
theory paradigm over several orders of magnitude in the temperature.

8 Conclusions and outlook

The continuous theoretical and algorithmic progress in the simulation of gauge theories, as
well as the steady progress in HPC hardware, has made it possible to simulate lattices with
a very large number of points. This has opened to the possibility of studying thermal gauge
theories non-perturbatively at very high temperature. Here we have profited from this
progress to simulate, for the first time, QCD with three massless flavours at temperatures
ranging from 1GeV up to the electroweak scale and above. We have renormalized the
theory by imposing the value of the strong coupling constant defined non-perturbatively
in a finite-volume renormalization scheme. The entire strategy has been implemented by
discretizing fermions with the O(a)-improved Wilson-Dirac operator. This is a theoretically-
sound regularization, not only simple to simulate, but which enjoys de-facto automatic
O(a)-improvement at high temperature [27].

In the very high temperature regime, the non-singlet meson screening masses are perhaps
the simplest computations to start with. For QCD with three massless flavours, we observe
an excellent agreement within our statistical errors between the scalar and pseudoscalar
masses as well as between the vector and axial ones. This is a clear manifestation of the
restoration of chiral symmetry for temperatures from T ∼1GeV up to 160GeV. Our best
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results for the pseudoscalar and vector masses are reported in table 1, they are parameterized
in eqs. (7.2) and (7.4), and they are shown in figure 5. In the entire range explored, the
meson screening masses deviate from the free theory result, 2πT , by at most a few percent.
These deviations, however, cannot be explained by the known leading term in the coupling
constant up to the highest temperature, where other contributions are still very significant.
The latter bend down the pseudoscalar mass to the point that the effective slope in ĝ2, at
the lower temperatures, is of opposite sign with respect to the analytically known one. The
spin-dependent contributions are very well parameterized, within our statistical errors, by a
single O(ĝ4) term in the entire range of temperature explored. At low temperatures, and in
particular at T ∼ 1GeV, this term is responsible for the deviation of the vector mass from
2πT . It remains clearly visible up to the highest temperature, where the pseudoscalar and
the vector masses are still significantly different within our numerical precision.

The pattern of different contributions that we have found explains why it has been
difficult in the past to match non-perturbative lattice results at T . 1GeV with the known
analytic behaviour at asymptotically high temperatures. From a more theoretical point
of view, when the corresponding non-perturbative computations in the three-dimensional
effective theory will become available, the matching with the results presented here will
allow to shed light on the origin of the various terms, and to verify non-perturbatively
the effective theory paradigm. At the same time, the possibility of studying QCD at high
temperatures by Monte Carlo simulations, makes the perturbative results less compelling
especially if higher and higher orders must be taken into account.

The strategy proposed here clears the way to compute many other interesting properties
of thermal QCD in the high temperature regime. Indeed this work is part of a larger effort
which aims at computing the EoS non-perturbatively up to the electroweak scale or so.
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A Lattice actions

The QCD lattice action is S = SG + SF where SG and SF are the pure gauge and the
fermionic parts respectively. In this paper we use both the Wilson plaquette action, S(W )

G ,
and the tree-level Symanzik improved action, S(I)

G , for the pure gauge sector. The former is
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defined as [41]
S

(W )
G = 1

g2
0

∑
x

∑
µ,ν

Re Tr
[
11− Uµν(x)

]
(A.1)

where the plaquette field is

Uµν(x) = Uµ(x)Uν(x+ aµ̂)U †µ(x+ aν̂)U †ν (x) , (A.2)

and µ̂, ν̂ are unit vectors oriented along the directions µ, ν respectively. The tree-level
Symanzik improved action is defined as [42]

S
(I)
G = 1

g2
0

∑
x

∑
µ,ν

Re
{5

3Tr
[
11− Uµν(x)

]
− 1

12Tr
[
11− Ũµν(x)

]}
(A.3)

where Ũµν is a rectangular two-plaquette field defined as

Ũµν(x) = Uµ(x)Uµ(x+ aµ̂)Uν(x+ 2aµ̂)U †µ(x+ aµ̂+ aν̂)U †µ(x+ aν̂)U †ν (x) . (A.4)

The fermionic part of the action is

SF = a4∑
x

ψ(x)(D +M0)ψ(x) (A.5)

where M0 is the bare quark mass matrix and D is the lattice Dirac operator for which we
consider the O(a)-improved definition [43, 44]

D = Dw + aDsw . (A.6)

The first term Dw is the massless Wilson-Dirac operator given by

Dw = 1
2
{
γµ(∇∗µ +∇µ)− a∇∗µ∇µ

}
, (A.7)

where ∇∗µ,∇µ are covariant lattice derivatives that act on the quark fields as follows

a∇µψ(x) = Uµ(x)ψ(x+ aµ̂)− ψ(x) ,

a∇∗µψ(x) = ψ(x)− U †µ(x− aµ̂)ψ(x− aµ̂) . (A.8)

The second term Dsw is the Sheikholeslami-Wohlert operator

Dswψ(x) = csw(g0)1
4σµνF̂µν(x)ψ(x) (A.9)

where σµν = i
2 [γµ, γν ]. The field F̂µν(x) is the clover discretization of the field strength

tensor which is given by

F̂µν(x) = i

8a2
{
Qµν(x)−Qνµ(x)

}
, (A.10)

with

Qµν(x) = Uµ(x)Uν(x+ aµ̂)U †µ(x+ aν̂)U †ν (x)
+ Uν(x)U †µ(x− aµ̂+ aν̂)U †ν (x− aµ̂)Uµ(x− aµ̂)
+ U †µ(x− aµ̂)U †ν (x− aµ̂− aν̂)Uµ(x− aµ̂− aν̂)Uν(x− aν̂)
+ U †ν (x− aν̂)Uµ(x− aν̂)Uν(x+ aµ̂− aν̂)U †µ(x) .

(A.11)
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By a proper non-perturbative tuning of the coefficient csw(g0), all O(a) discretization effects
generated by the action in on-shell correlation functions can be removed [44, 45]. For the
Wilson plaquette action this is achieved by fixing csw(g0) to [46]

c(W )
sw (g0) = 1− 0.194785 g2

0 − 0.110781 g4
0 − 0.0230239 g6

0 + 0.137401 g8
0

1− 0.460685 g2
0

, (A.12)

while for the tree-level Symanzik improved gauge action the analogous expression is [47]

c(I)
sw (g0) = 1− 0.1921 g2

0 − 0.1378 g4
0 + 0.0717 g6

0
1− 0.3881 g2

0
. (A.13)

B Temperature values and lines of constant physics

In this appendix we discuss in detail how the 12 temperatures T0, . . ., T11 have been chosen,
and how for each temperature the various lattice spacings and the corresponding bare
parameters have been fixed so as to define lines of constant physics.

Either for quarks or gluons we remind that shifted boundary conditions, always with
ξ = (1, 0, 0), have been enforced in the compact direction so that T = 1/(

√
2L0). The

temperature values T0, . . ., T8 and T9, . . ., T11 have then been fixed by specifying the values
of the Schrödinger functional (SF) and the gradient flow (GF) finite-volume couplings
respectively by using the results of refs. [32–35].

B.1 High temperatures

The temperature values T0, . . . , T8 are fixed from the results in refs. [32, 34, 35] by imposing
the relation

T = 1
L0
√

2
= µ√

2
, (B.1)

where µ is the renormalization scale of the Schrödinger functional (SF) coupling ḡ2
SF(µ)

determined in a box with linear extension LSF
0 = 1/µ and SF boundary conditions enforced,

i.e. L0 = LSF
0 . From ref. [40] we obtain

ḡ2
SF(µ0) = 2.0120 ⇒ µ0 = 4.30(11) GeV = T8

√
2 , (B.2)

where the contribution from the charm and bottom quarks can be safely neglected given
the current level of precision on the combination of the pion and kaon decay constants used
to fix the overall scale [48], see ref. [49] for more details. Given T8, the higher values of the
temperature can be inferred through the relation

ln
(
µ

µ0

)
=
∫ ḡSF(µ)

ḡSF(µ0)

dg
βSF(g) , (B.3)

which readily follows from integrating the definition of the β-function. By using the results
of ref. [34], the non-perturbative β-function of the SF coupling can be parameterized over
the range of couplings of interest as (cf. eq. (2.34) of ref. [35])

βSF(ḡ) = −ḡ3
3∑

n=0
bnḡ

2n, ḡ2 ∈ [0, 2.45] , (B.4)
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T ḡ2
SF(µ = T

√
2) T (GeV)

T0 − 164.6(5.6)
T1 1.11000 82.3(2.8)
T2 1.18446 51.4(1.7)
T3 1.26569 32.8(1.0)
T4 1.3627 20.63(63)
T5 1.4808 12.77(37)
T6 1.6173 8.03(22)
T7 1.7943 4.91(13)
T8 2.0120 3.040(78)

Table 2. Values of the SF couplings corresponding to the lines of constant physical temperature
that we consider.

L0/a δam
(0)
cr δam

(1)
cr

4 −0.0015131 0.0120930
6 −0.0006384 0.0008250
8 −0.0003209 0.0001878
10 −0.0001835 0.0000751
12 −0.0001145 0.0000403
16 −0.0000531 0.0000168

Table 3. Tree-level and one-loop cutoff effects for the critical mass in the SF for setup A with
background gauge field, θ = π/5 and improvement coefficients as specified in ref. [50]. Note that
the one-loop coefficient depends on the number of flavours, δam(1)

cr = δam
(1,0)
cr + δam

(1,1)
cr Nf , with

numerical values taken from [50].

with b0, b1, b2 being the perturbative coefficients of the SF β-function (for Nf = 3)

(4π)b0 = 9
4π , (4π)2b1 = 4

π2 , (4π)3b2 = −0.064(27) ,

while b3 is an effective higher-order contribution extracted from the non-perturbative data

(4π)4beff
3 = 4(3) . (B.5)

Given this representation, we integrated eq. (B.3) numerically using the result for µ0 in
eq. (B.2), and we obtained the values for the temperatures reported in table 2.

B.1.1 Bare parameters

For the 9 highest temperatures T0, . . ., T8, we opted for the Wilson plaquette action in
eq. (A.1). This allows us to fix the bare parameters along the lines of constant physics by
exploiting the known results for the SF coupling computed de facto at the critical mass. For
L0/a = 6, 8, 10 they are given in table 3 of ref. [34], while those for L0/a = 4 were given to
us by the authors of that reference as a private communication. For each value of L0/a, we
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can determine the values of β at which the SF coupling has the prescribed values reported
in table 2 by fitting ḡ2

SF(µ) to the functional form3

1
ḡ2

SF
= 1
g2

0
+

np∑
k=0

ckg
2k
0 . (B.6)

For L0/a = 4 we have fitted 16 data points in the ranges ḡ2
SF = 2.0451–1.1077 and

β = 5.9949–8.3130 with np = 3 obtaining χ2/dof ≈ 1. The results for the interpolated
β-values are reported in table 4. For L0/a = 6, 8, the values of β reported in table 4 are
taken from table 6 of ref. [35], which were obtained by interpolating the data of ref. [34]
as well. As an independent check, we performed our own fits using the functional form in
eq. (B.6) with np = 2 including always all available data. We obtained χ2/dof = 0.38 and
0.74 for L0/a = 6, 8 respectively. For the interpolated β-values we find excellent agreement
within errors between the determinations of ref. [35] and our results. We decided to take as
central values the results of this reference as this will allow us in the future to directly profit
from the determination of renormalization factors obtained on the ensembles generated
in ref. [35]. The 6 data points for L0/a = 10 have been fitted to the functional form in
eq. (B.6) with np = 2 obtaining χ2/dof ≈ 0.7. The interpolated β-values are again reported
in table 4. Since T0 = 2T1, the β-value of L0/a = 4 is the one for T1 at L0/a = 8, while
the β-value of L0/a = 6 corresponds to the one for L0/a = 12 at ḡ2

SF = 1.11 from table 6
in ref. [35].

Once defined the lines of constant physics, the values of the critical mass have been
determined from ref. [51]. They fix mcr by requiring that the PCAC mass, computed in a
finite volume with SF boundary conditions, vanishes, see ref. [51] for more details. They get

amcr(g2
0, a/L0) = am2lp

cr (g2
0, a/L0) + c

L/a
1 g6

0 + c
L/a
2 g8

0 + c
L/a
3 g10

0 ,

were the coefficients cL/ai , i = 1, 2, 3, are given in ref. [51]. The rest of the expression
corresponds to the two-loop critical mass,

am2lp
cr (g2

0, a/L0) =
(
am(0)

cr +δam(0)
cr (a/L0)

)
+
(
am(1)

cr +δam(1)
cr (a/L0)

)
g2

0 +am(2)
cr g

4
0 , (B.7)

where
am(0)

cr = 0 , am(1)
cr = −0.270075349459 , am(2)

cr = −0.039772 , (B.8)

are the asymptotic coefficients in the limit L0/a→∞ while table 3 contains the coefficients
due to cutoff effects. The interpolated values for κcr = 2 amcr + 8 as well as those for csw
obtained from eq. (B.7) and eq. (A.12) respectively are reported in table 4 and are indicated
with κ(W )

cr and c(W )
sw .

3The results for ḡ2
SF from ref. [34] come with an error which includes both statistical and systematic

uncertainties. The latter is an estimate for the remaining O(ag8
0) effects stemming from the SF boundary

counter-terms after the known perturbative improvement is implemented. We have explicitly checked that,
once propagated to the screening masses, these errors are negligible within the statistical uncertainties. We
can therefore safely assume that the screening masses are free from O(a) contaminations deriving from the
conditions which fix the lines of constant physics.
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T L0/a β κ
(W )
cr c

(W )
sw

T0
4 8.7325 0.131887597685602 1.224666388699756
6 8.9950 0.131885781718599 1.214293680665697

T1

4 8.3033 0.132316223701646 1.244443949720750
6 8.5403 0.132336064110711 1.233045285565058
8 8.7325 0.132133744093735 1.224666388699756
10 8.8727 0.131984877002653 1.218983546266290

T2

4 7.9794 0.132672230374640 1.262303345977765
6 8.2170 0.132690343212428 1.248924515099129
8 8.4044 0.132476707113024 1.239426196162344
10 8.5534 0.132305706323476 1.232451001338001

T3

4 7.6713 0.133039441274476 1.282333503658225
6 7.9091 0.133057201010874 1.266585617959733
8 8.0929 0.132831173856378 1.255711356539447
10 8.2485 0.132638399517155 1.247267216254281

T4

4 7.3534 0.133449711446233 1.307002958449583
6 7.5909 0.133469338865844 1.288146969458134
8 7.7723 0.133228362183550 1.275393611340024
10 7.9322 0.133013578229002 1.265160978064686

T5

4 7.0250 0.133908723921720 1.338089264736139
6 7.2618 0.133933679858703 1.315030958783770
8 7.4424 0.133674531074371 1.299622821237046
10 7.6042 0.133438165920285 1.287166774665371

T6

4 6.7079 0.134386271436463 1.375352693193284
6 6.9433 0.134421953633166 1.346919223092444
8 7.1254 0.134141768774467 1.327878356622864
10 7.2855 0.133888442235086 1.312909828079458

T7

4 6.3719 0.134926677491050 1.425561566301377
6 6.6050 0.134982857878749 1.389385004928746
8 6.7915 0.134676613758678 1.364706438701718
10 6.9453 0.134412950133538 1.346697162567041

T8

4 6.0433 0.135481632961481 1.489790983990814
6 6.2735 0.135571353236717 1.442967721668930
8 6.4680 0.135236172024848 1.409845308468962
10 6.6096 0.134976206524104 1.388734449325687

Table 4. Parameters of the Monte Carlo simulations performed with the Wilson plaquette action.
The bare gauge coupling is expressed in terms of β = 6/g2

0 .

– 20 –



J
H
E
P
0
4
(
2
0
2
2
)
0
3
4

B.2 Low temperatures

The lower temperature values T9, T10 and T11 are fixed analogously to the higher ones but
from the gradient flow (GF) coupling. The temperature is fixed by imposing that

T = 1
L0
√

2
=
√

2µ , (B.9)

where µ is the renormalization scale of the GF coupling ḡ2
GF(µ) defined in a box with spatial

and temporal extensions satisfying LGF = LGF
0 = 1/µ, i.e. L0 = LGF

0 /2.
In order to determine the physical values of the temperature, we start from the result

(cf. eqs. (15)-(16) and tables I-II of ref. [40]),

ḡ2
GF(µhad,1) = 11.31 ⇒ µhad,1 = 196.9(3.2) MeV , (B.10)

where µhad,1 is inferred from the experimental value of a combination of the pion and kaon
decay constant as for µ0. The value of the temperatures corresponding to the couplings of
interest can then be inferred through the relation,

ln
(

µ

µhad,1

)
=
∫ ḡGF(µ)

ḡGF(µhad,1)

dg
βGF(g) , (B.11)

where
µ

dḡGF(µ)
dµ = βGF(ḡGF) . (B.12)

Using the results of ref. [33], the non-perturbative β-function of the GF coupling can be
parameterized over the range of couplings of interest as (cf. eq. (2.36) of ref. [35])

βGF(ḡ) = − ḡ3∑2
n=0 pnḡ

2n , ḡ2 ∈ [2.1, 11.3] , (B.13)

with fit parameters
p0 = 16.07 , p1 = 0.21 , p2 = −0.013 , (B.14)

and covariance matrix

cov(pi, pj) =

 5.12310× 10−1 −1.77401× 10−1 1.32026× 10−2

−1.77401× 10−1 6.60392× 10−2 −5.10305× 10−3

1.32026× 10−2 −5.10305× 10−3 4.06114× 10−4

 . (B.15)

Given this representation, we integrated eq. (B.11) numerically using the result for µhad,1
in eq. (B.10), the relation eq. (B.9), and the values for the coupling in table 5 where are
also reported the final values of the temperatures T9, T10 and T11.

B.2.1 Bare parameters

For the 3 lowest temperatures T9, T10 and T11 we adopted the tree-level Symanzik improved
gauge action in eq. (A.13) so as to be able to use the results from ref. [33] on the GF
coupling, ḡ2

GF(µ), computed in the massless theory.
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T ḡ2
GF(µ = T/

√
2) T (GeV)

T9 2.7359 2.833(68)
T10 3.2029 1.821(39)
T11 3.8643 1.167(23)

Table 5. Values of the GF couplings corresponding to the lines of constant physical temperature
that we consider.

For each value of L0/a, the bare parameters are taken from table 8 of ref. [35] and
are reported in table 7. To verify that the temperature is constant within each set, we
have fitted the results in table 1 of ref. [33] for each value of L0/a using the functional
form in eq. (B.6) but with ḡ2

SF(µ) replaced by ḡ2
GF(µ) and by taking into account that in

this case µ = 1/(2L0). By including all the 9 data points for each value of L0/a, and by
choosing np = 2 for L0/a = 4, 6, and np = 3 for L0/a = 8, we obtained excellent fits with
χ2/dof ≈ 0.93, 0.16 and 1.07 for L0/a = 4, 6 and 8 respectively. The results confirm that
the temperature is constant within errors for the lattices within each set.4

Once the lines of constant physics have been defined, the corresponding values of the
critical mass have been computed from the result in appendix A.1.4 of ref. [33] which reads

amcr(g2
0, a/L0) =

(∑6
k=0

µk g
2k
0

)
×
(∑6

i=0
ζi g

2i
0

)−1
, (B.16)

with the parameters µk and ζi listed in table 6 for the relevant L0/a. As for the case of the
Wilson-plaquette gauge action, the values of mcr(g2

0, a/L0) depend on L0/a because it has
been determined by requesting the PCAC mass to vanish in a finite volume, see ref. [33] for
more details.

Once the β-values have been determined, the corresponding values for κcr = 2 amcr + 8
as well as those for csw are obtained from eqs. (B.16) and (A.13) respectively, and are
reported in table 7 as κ(I)

cr and c(I)
sw .

C Finite-volume effects in thermal two-point correlators

In this appendix we derive the formula for the leading finite-volume effects in the spatial
correlators CO(x3) defined in eq. (3.2) at asymptotically high temperatures. We follow the
lines of argumentation in refs. [25, 36, 52], and we assume the reader to be familiar with
these papers. Gauge and quark fields are assumed to satisfy shifted boundary conditions,
eqs. (4.1) and (4.2), with ξ = (ξ1, 0, 0). In the continuum theory, where finite volume effects
are derived, the results can be readily generalized to a generic shift ξ by exploiting the
invariance of the theory under the SO(3) spatial rotations, see ref. [25] for details.

We start by considering a box of volume L0 × L3, and we define the finite-volume
residue due to the compactification in the 1-direction as

I1(x3, L) ≡
[
1− lim

L1→∞

]
CO(x3) , (C.1)

4Considerations analogous to those in footnote 3 apply also here for the case of the GF coupling.
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Coeff. L0/a = 4 L0/a = 6 L0/a = 8
ζ0 +1.005834130000000 +1.002599440000000 +1.001463290000000
µ0 −0.000022208694999 −0.000004812471537 −0.000001281872601
µ1 −0.202388398516844 −0.201746020772477 −0.201520105247962
ζ1 −0.560665657872021 −0.802266237327923 −0.892637061391273
ζ2 +3.262872842957498 +4.027758778155415 +5.095631719496583
ζ3 −5.788275397637978 −6.928207214808553 −8.939546687871335
ζ4 +4.587959856400246 +5.510985771180077 +7.046607832794273
ζ5 −1.653344785588201 −2.076308895962694 −2.625638312722623
ζ6 +0.227536321065082 +0.320430672213824 +0.405387660384441
µ2 +0.090366980657738 +0.128161834555849 +0.139461345465939
µ3 −0.600952105402754 −0.681097059845447 −0.847457204378732
µ4 +0.934252532135398 +0.991316994385556 +1.261676178806362
µ5 −0.608706158693056 −0.606597739050552 −0.754644691612547
µ6 +0.140501978953879 +0.129031928169091 +0.153135714480269

Table 6. Coefficients for the parameterization eq. (B.16). The three leading coefficients ζ0, µ0, and
µ1 in the upper part of the table are combinations of known perturbative coefficients while the
others were determined by a fit.

T L0/a β κ
(I)
cr c

(I)
sw

T9

4 4.764900 0.134885548000448 1.335350323996506
6 4.938726 0.134507608658235 1.308983384364439
8 5.100000 0.134168886219319 1.288203306487197

T10

4 4.457600 0.135606746160064 1.39574103127591
6 4.634654 0.135199857298424 1.358462476494125
8 4.800000 0.134821158536685 1.329646151978636

T11

4 4.151900 0.136325892438363 1.482418125298923
6 4.331660 0.135926636004668 1.427424655158656
8 4.500000 0.135525721037715 1.386110343557152

Table 7. Parameters of the Monte Carlo simulations performed with the tree-level improved
Symanzik action. The bare gauge coupling is expressed in terms of β = 6/g2

0 .

where L1 is the length of the box in direction 1. In order to determine I1 we consider the
transfer-matrix representation of CO(x3) along the 1-direction (cf. section 4 of ref. [25]),

CO(x3) =
∫
dx0dx1dx2

Tr[e−(Lγ1−x1)H̃Oa(x̃) e−x1H̃Oa(0̃) e−iLγ1ξ1ω̃]
Tr[e−Lγ1(H̃+iξ1ω̃)]

, (C.2)

where x̃ = (x0, x2, x3), γ1 = (1 + ξ2
1)−1/2, and the trace Tr is carried over the states of the

corresponding Hilbert space. In this equation, H̃ stands for the screening Hamiltonian
along the 1-direction. This operator has a discrete spectrum of states defined on a slice of
dimensions (L0/γ1) × L × L, with ordinary periodic boundary conditions. The operator
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ω̃ denotes instead the momentum operator along the 0-direction of length (L0/γ1). We
indicate with |n〉 the simultaneous eigenstates of H̃, ω̃, and potentially other conserved
charge operators. The eigenvalues of H̃ and ω̃ corresponding to the state |n〉 are the energies
En and Matsubara frequencies ωn = 2πmnγ1/L0, mn ∈ Z, respectively. We assume that
the states are ordered in such a way that En+1 ≥ En. The state |0〉 is therefore the unique
ground state of the system, for which we conveniently set E0 = 0. At asymptotically high
temperature, the state |1〉 is then expected to have a strictly positive mass(-gap), Mgap,
proportional to the temperature T , see section 2. Furthermore, due to the fact that at
asymptotically high temperature the effective theory of QCD contains only purely gluonic
degrees of freedom, we expect the lowest-lying energy states, i.e. those with En � πT , to
have zero flavour quantum-numbers [17]. Inserting two complete sets of eigenstates |n〉 with
zero baryon number in eq. (C.2), we have

CO(x3)= 1
Z

∫
dx0dx1dx2

∑
n,n′

e−Lγ1(En+iξ1ωn)e−x1(En′−En)〈n|Oa(x̃)|n′〉〈n′|Oa(0̃)|n〉+ . . . ,

(C.3)
where Z =

∑
n e
−Lγ1(En+iξ1ωn) + . . . , and the dots stand for baryonic contributions which

are suppressed exponentially with respect to the sum. Let us focus on the terms in the sum
for which En 6= En′ . For these, the integral over x1 gives

e−Lγ1En
∫ Lγ1

0
dx1 e

−x1(En′−En) = e−Lγ1En − e−Lγ1En′

En′ − En
. (C.4)

Inserting this relation in eq. (C.3), and relabeling n↔ n′ in some terms, we obtain

CO(x3) = 1
Z

∫
dx0dx2

∑
n,n′

En 6=En′

e−Lγ1(En+iξ1ωn)

En′ − En

×
{
〈n|Oa(x̃)|n′〉〈n′|Oa(0̃)|n〉+ 〈n|Oa(0̃)|n′〉〈n′|Oa(x̃)|n〉

}
+ . . . , (C.5)

where the terms with En = En′ are included in the dots.5 In this form, it is evident that in
the limit where L1 →∞, the terms with energies En � πT dominate the sum. Furthermore,
within this energy range, there are no terms with En = En′ that can contribute. This is
because the operators Oa have non-trivial flavour quantum-numbers and any flavoured
mesonic state has an energy En & 2πT . As we are interested in determining the leading
finite-volume effects in CO(x3), from now on we shall restrict ourselves to consider only
states that satisfy the above energy constraint. These include, in particular, the theory
vacuum and the 1-particle states with mass equal to the mass-gap Mgap. We can thus
introduce the two-point correlation function

Gn(τ, x̃) = 〈n|T{Oa(τ, x̃)Oa(0, 0̃)}|n〉 , (C.6)

5Note that in order to derive eq. (C.5) we used the fact that CO(x3) is projected onto zero Matsubara
frequency and therefore ωn = ωn′ .
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where T{· · · } stands for the ordered product of the operators with respect to the parameter
τ , and Oa(τ, x̃) = eτH̃ Oa(x̃) e−τH̃ . After some trivial algebra, it is immediate to show that,∫ ∞
−∞
dτ Gn(τ, x̃)=

∑
n′

1
En′ − En

{
〈n|Oa(x̃)|n′〉〈n′|Oa(0̃)|n〉+ 〈n|Oa(0̃)|n′〉〈n′|Oa(x̃)|n〉

}
.

(C.7)
Considering the L1 →∞ limit of eq. (C.5), and using the above relation, we find for I1 the
result

I1(x3, L) =
∑

n
∣∣1-particle

states

e−Lγ1(En+iξ1ωn)
∫
dx0dx2dτ

{
Gn(τ, x̃)−G0(τ, x̃)

}
+ . . . , (C.8)

where the energies of the 1-particle states are confined to the range Mgap . En . πT

and the dots stand for terms which are exponentially suppressed compared to the leading
ones. From this expression, it is immediate to conclude that I1 is exponentially suppressed
as MgapL → ∞. Moreover the length of the other two spatial directions can be sent to
infinity on the r.h.s. of eq. (C.8) up to sub-leading finite-volume effects. The analogous
contribution from the 2-direction, I2, is obtained from the one for I1 in eq. (C.8) by
replacing Lγ1 → L, ξ1 → 0, and x2 → x1. (Note that the length of the 0-direction remains
L0/γ1). Finite-volume corrections in the 3-direction can be taken into account, as usual, by
considering the backward propagation in the series of exponentials due to periodic boundary
conditions in that direction. The total finite-volume effects in CO(x3) are finally given by
summing all three contributions. Since the screening masses are extracted at asymptotically
large distances according to eq. (5.2), their finite-volume corrections are determined by
I1 + I2 only.

D Inversion of the Dirac operator

The usual stopping criterion used in iterative methods for the numerical solution of the
Dirac equation

Dψ = η (D.1)

requires that the norm of the residual ρ = Dψ − η is sufficiently small, i.e. the global
condition r = ‖ρ‖/‖η‖ < ε. The tolerance ε is chosen to be small enough that the error
introduced by using such an approximate solution must be negligible with respect to the
statistical fluctuations on the observable of interest. However, the tolerance cannot be
smaller than what is allowed by the finite-precision arithmetic of a given implementation.

At high temperature, the lowest Matsubara frequency πT provides an infrared cutoff
to quark propagation. As a result, the matrix elements D−1(x, y) become extremely small
when T |x − y| � 1, and a very accurate solution of the Dirac equation is required at
those distances. The brute-force approach of simply implementing higher-precision and
requiring a smaller tolerance is not always practicable. In this case, a solution is achieved
by introducing a preconditioned version of the Dirac equation,

D̃ψ̃ = η̃ (D.2)
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where
D̃ = M−1DM , ψ̃ = M−1ψ , η̃ = M−1η , (D.3)

with the preconditioning matrix M chosen so that the various components of the solution
ψ̃ are comparable in magnitude [53].

The quark propagators needed for the two-point meson correlation functions considered
in this paper have been computed by implementing the preconditioning matrix

M(x, y) = cosh{mM (x3 − y3 − L/2)} · 11, (D.4)

where 11 indicates the identity matrix in the indices not explicitly indicated, i.e. color, spin
and the first three components of space-time coordinates. After some tuning, for the lattices
with L0/a = 4, 6, 8 and 10 we have chosen mM = 0.4, 0.3, 0.2 and 0.15 respectively, with
the shift being always ξ = (1, 0, 0). This indeed guarantees that the components of ψ̃ are
always comparable in magnitude. We have also monitored explicitly a posteriori that the
global condition r < ε is always satisfied by the solution vector.

E Simulation details and results

We have simulated three-flavour QCD with a HMC algorithm by using the openQCD-1.6
package [54, 55] modified so as to allow for shifted boundary conditions. We have employed
several efficient algorithms to speed up the simulations. More precisely, the doublet of
up and down quarks have been simulated with an optimized twisted-mass Hasenbusch
preconditioning of the quark determinant [54, 56]. The determinant has been split in three
factors by employing the twisted masses values aµ = 0.0, 0.1 and 1.0. The strange quark has
been simulated through a RHMC algorithm [57, 58] with an optimized frequency splitting
of the rational approximation in two separate contributions. Even-odd preconditioning
has been used for both the light and strange quarks. The integration of the molecular
dynamics equations has been based on a three-level integration scheme. The gauge force
has been integrated on the finest level using a 4th-order Omelyan-Mryglod-Folk (OMF4)
integrator [59] with step-size 1, while the fermionic forces have been integrated on the two
coarser levels. On the finest of these we have used a OMF4 integrator step-size 1, while on
the coarsest a 2nd-order OMF integrator [59] with step-size between 7 and 9. The solution
of the Dirac equation along the molecular dynamics evolution has been obtained by using a
standard conjugate gradient with chronological inversion. The length of each trajectory is 2
MDUs for all lattices. More details on the exact implementation of these algorithms can be
found in refs. [54, 55].

For each ensemble, we have started the thermalization phase by simulating a lattice
with a spatial length of L/a = 48 in all three directions and the same bare parameters as
the target one. After approximately 1000 MDUs, we have duplicated the lattice in each
direction so that L/a = 96. We have then run the HMC for approximately 500 MDUs,
after which we have triplicated the lattice in all spatial directions so to have L/a = 288.
We have completed the thermalization phase by running the HMC for a number of MDUs
between 100 to 200, and then we have started the computation of the correlation functions.
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T L0/a nmdu nskip nnsrc
mP

2πT
mV

2πT
(mV −mP )

2πT

T0
4 90 10 4 0.9659(5) 0.9716(7) 0.00577(20)
6 90 10 2 0.9934(14) 0.9996(12) 0.0065(4)

T1

4 90 10 4 0.9656(7) 0.9721(8) 0.0068(3)
6 270 30 2 0.9945(14) 1.0014(19) 0.0070(8)
8 450 50 2 1.0078(18) 1.0148(20) 0.0075(5)
10 900 100 2 1.0090(25) 1.0160(27) 0.0075(4)

T2

4 90 10 4 0.9685(7) 0.9753(8) 0.0075(3)
6 270 30 2 0.9961(14) 1.0049(18) 0.0089(5)
8 450 50 2 1.0055(23) 1.0147(25) 0.0089(5)
10 900 100 2 1.0122(25) 1.0207(25) 0.0073(6)

T3

4 90 10 4 0.9682(11) 0.9764(18) 0.0087(5)
6 270 30 2 0.9971(11) 1.0050(16) 0.0084(10)
8 450 50 2 1.0039(18) 1.0130(22) 0.0083(7)
10 810 90 2 1.0124(25) 1.0219(29) 0.0099(7)

T4

4 90 10 4 0.9704(7) 0.9804(14) 0.0103(4)
6 270 30 2 0.9973(14) 1.0087(14) 0.0109(8)
8 450 50 2 1.0051(20) 1.0172(25) 0.0093(9)
10 540 60 2 1.0138(20) 1.0248(23) 0.0108(7)

T5

4 90 10 4 0.9708(8) 0.9838(12) 0.0128(4)
6 180 20 2 0.9941(22) 1.006(3) 0.0109(20)
8 450 50 2 1.0057(18) 1.0172(29) 0.0119(21)
10 540 60 2 1.0090(27) 1.0228(29) 0.0137(10)

T6

4 90 10 4 0.9676(10) 0.9830(18) 0.0156(11)
6 180 20 2 0.9948(15) 1.0089(24) 0.0142(11)
8 450 50 2 1.0037(29) 1.018(4) 0.0150(23)
10 540 60 2 1.0108(25) 1.026(4) 0.0153(16)

T7

4 90 10 4 0.9679(8) 0.9854(18) 0.0172(11)
6 180 20 2 0.9930(15) 1.0093(28) 0.0171(17)
8 450 50 2 1.0051(22) 1.024(4) 0.0188(16)
10 900 100 2 1.012(3) 1.028(5) 0.0171(19)

T8

4 90 10 4 0.9677(8) 0.9910(18) 0.0235(17)
6 180 20 4 0.9907(16) 1.015(4) 0.0237(17)
8 450 50 4 1.000(3) 1.025(4) 0.0247(14)
10 900 100 4 1.0032(23) 1.0288(25) 0.0252(14)

Table 8. Results for the pseudoscalar, mP , and the vector, mV , non-singlet meson masses together
with their difference (mV −mP ) all normalized to 2πT at finite lattice spacing for the temperatures
T0, . . . , T8. The number of MDUs generated, nmdu, those skipped between two consecutive measure-
ments, nskip, and the number of local sources per configuration on which the two-point correlation
functions have been computed, nnsrc, are also reported.
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T L0/a nmdu nskip nnsrc
mP

2πT
mV

2πT
(mV −mP )

2πT

T9

4 90 10 4 0.9663(16) 0.9872(23) 0.0205(15)
6 90 10 4 0.9907(24) 1.012(4) 0.0233(27)
8 90 10 4 1.0010(20) 1.0238(25) 0.0233(16)

T10

4 90 10 4 0.9645(13) 0.9912(17) 0.0259(22)
6 90 10 4 0.9896(11) 1.0203(24) 0.0294(18)
8 90 10 4 0.9963(22) 1.024(4) 0.0290(16)

T11

4 90 10 4 0.9552(16) 0.992(3) 0.0375(18)
6 90 10 8 0.9768(20) 1.018(5) 0.0406(26)
8 90 10 8 0.9912(16) 1.031(6) 0.039(4)

Table 9. As in table 8 but for T9, T10 and T11.

During all the phases of thermalization we have always monitored the action and the various
components of the energy-momentum tensor. We have also constantly monitored the
topological charge computed with the Wilson flow, and we have explicitly checked that at
the end of each thermalization process we always ended up in the trivial topological sector.

Once the thermalization has been concluded, we have accumulated a certain number of
configurations for the computation of the EoS. Among those, we have selected some that
we have used for the computation of the screening masses. In particular in tables 8 and 9
we report the number of MDUs considered, the number of MDUs skipped between two
consecutive independent configurations, and the number of local sources per configuration on
which the two-point correlation functions have been computed. For each configuration, the
best estimates of CO(x3) in eq. (5.1) have been obtained by properly averaging their values
from all local sources, and then symmetrizing the correlators with respect to x3 = L/2.
The screening masses have then been extracted as described in section 6. The results are
reported in tables 8 and 9 for the 9 highest temperatures T0, . . ., T8 and for the lowest ones,
T9, T10 and T11 respectively.

To explicitly check that finite volume effects are negligible within our statistical errors,
we have generated three more lattices at T0 (L0/a = 6), T1 (L0/a = 10) and T11 (L0/a = 8)
at three smaller spatial volumes, namely 6× 1442 × 288, 10× 962 × 288, and 8× 1442 × 288
(direction 3 the longest) respectively. On these lattices we have computed the screening
masses following the same procedure as described before. They are in very good agreement
with the analogous ones reported in tables 8 and 9, and therefore they confirm the theoretical
expectations that finite volume effects are negligible.

F Screening masses in the free lattice theory

With the aim of accelerating the continuum limit extrapolation, we report here the calcula-
tion of the non-singlet meson screening masses in the free theory on the lattice. Since Dsw
in eq. (A.6) does not contribute in the free case, the quark propagator in momentum space
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for each single flavour is given by

S(p) = −iγµ p̄µ +m0(p)
DF (p) , with DF (p) =

3∑
µ=0

p̄2
µ +m2

0(p) (F.1)

and

m0(p) = m0 + a

2

3∑
µ=0

p̂2
µ , p̄µ = 1

a
sin(apµ) , p̂µ = 2

a
sin
(
apµ
2

)
, (F.2)

where we have assumed M0 = m0 ·11. In the presence of shifted boundary conditions (see
appendices A and E in [27]), the fermionic lattice momenta in the compact direction take
the values

p0 = 2πn0
L0

+ π

L0
−

3∑
k=1

pkξk where n0 = 0, . . . , L0/a− 1 (F.3)

while in the spatial directions we consider the infinite volume limit and therefore the
momenta are given by pk ∈ [−π/a, π/a).

To extract the screening masses, we compute the two-point correlators defined in
eq. (3.2) for O = {S, P, Vµ, Aµ} corresponding to ΓO = {11, γ5, γµ, γµγ5} respectively. At
tree-level they are given by

CO(x3) = −3
2

∫
d4p

(2π)4
dk3
2π Tr

[
ΓO S(k) ΓO S(p)

]
e−i(p3−k3)x3 , (F.4)

where k = (p0, p1, p2, k3) and Tr stands for the trace over the Dirac index. From eq. (3.613−
1.6) of ref. [60] we obtain ∫

dp3
2π

e−ip3x3

DF (p) = e−2ω̂(p)x3

aω(p)ω̄(p) (F.5)

where

ω2(p) = m2(p) +
2∑

ν=0
p̄2
ν , ω̄2(p) =

[
m (p) + 2

a

]2
+

2∑
ν=0

p̄2
ν , (F.6)

m (p) = m0 + a

2

2∑
0
p̂2
n , aω̂ (p) = 1

2 ln
[
ω̄(p) + ω(p)
ω̄(p)− ω(p)

]
. (F.7)

By using the above formulas, one finds that

CO(x3) = − 3
a2L0

∑
n0

∫
dp1 dp2 C̄O(p) e−4 ω̂(p)x3 (F.8)

where

C̄S(p) = − 4
∑2
ν=0 p̄

2
ν

ω2(p)ω̄2(p) , C̄Vµ(p) = (1− δµ3)
[

1
[m(p) + 1/a]2 −

4p̄2
µ

ω2(p)ω̄2(p)

]
, (F.9)

C̄P (p) = 1
[m(p) + 1/a]2 , C̄Aµ(p) = − δµ3

[m(p) + 1/a]2 +
4
∑
ν 6=µ,3 p̄

2
ν

ω2(p)ω̄2(p) . (F.10)
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L0/a mfree/(2πT )
4 0.932614077. . .
6 0.967811412. . .
8 0.981401809. . .
10 0.987944825. . .

Table 10. Tree-level values of the non-singlet screening masses on lattices with temporal extension
L0/a, infinite spatial volume, and shift vector ξ = (1, 0, 0).

Notice that C̄S + C̄P = C̄Vµ − C̄Aµ . For the shift vector ξ = (1, 0, 0), the minimum of ω̂ is
attained for (p0, p1, p2) = ( π

2L0
, π

2L0
, 0) for all correlators we are interested in. The tree-level

values of the screening masses are therefore all the same. They are given by the expression

mfree
O = 4 ω̂

(
π

2L0
,
π

2L0
, 0
)
, (F.11)

whose values normalized to 2πT are listed, for practical convenience, in table 10 for the
temporal extensions L0/a relevant to this paper.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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