
TRIANGULAR MAXIMAL OPERATORS

ON LOCALLY FINITE TREES

STEFANO MEDA AND FEDERICO SANTAGATI

Abstract. We introduce the centred and the uncentred triangular maximal

operators T and U , respectively, on any locally finite tree in which each vertex
has at least three neighbours. We prove that both T and U are bounded on Lp

for every p in (1,∞], that T is also bounded on L1(T), and that U is not of
weak type (1, 1) on homogeneous trees. Our proof of the Lp boundedness of U
hinges on the geometric approach of A. Córdoba and R. Fefferman. We also

establish Lp bounds for some related maximal operators.
Our results are in sharp contrast with the fact that the centred and the

uncentred Hardy–Littlewood maximal operators (on balls) may be unbounded

on Lp for every p < ∞ even on some trees where the number of neighbours is
uniformly bounded.

1. Introduction

The centred and the uncentred Hardy–Littlewood maximal operators on a metric
measure space (X, d, µ) are defined by

M f(x) := sup
r>0

1

µ
(
Br(x)

) ∫
Br(x)

|f |dµ and N f(x) := sup
B3x

1

µ(B)

∫
B

|f |dµ,

(1.1)
respectively; here Br(x) denotes the ball with centre x and radius r, and B is any
ball in X containing x.

It is well known that if the measure µ is doubling, i.e. if there exists a constant D
such that

µ
(
B2r(x)

)
≤ Dµ

(
Br(x)

)
(1.2)

for every x in X and for all r > 0, then M and N are of weak type (1, 1) and
bounded on Lp(X) for every p in (1,∞] (see, for instance, [St, Chapter 1]).

If, instead, µ is nondoubling, viz. the condition (1.2) fails, then a variety of
situations can occur. For instance, on symmetric spaces of the noncompact type
J.-O. Strömberg [Str] proved that M is bounded on Lp for all p > 1 and it is of
weak type (1, 1), and A.D. Ionescu [I] showed that N is bounded on Lp if and only
if p > 2.

These results have been complemented by H.-Q. Li [L1], who showed that given p0

in (1, 2), there is a nondoubling Riemannian manifold, which is a generalisation of
the hyperbolic space, where M is bounded on Lp if and only if p belongs to the
interval (p0,∞]. Furthermore there are Riemannian manifolds of the same type
where M is bounded on Lp if and only if p = ∞. Similar results for N are
contained in [L2]. See also [K] and the references therein for simple examples of
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nondoubling metric measure spaces where M and N have similar boundedness
properties on Lp spaces.

In this paper we focus on trees: T will denote a tree in which every vertex x has
a finite number ν(x) ≥ 3 of neighbours. We emphasize that the function ν may be
unbounded on T, in which case we say that the locally finite tree T has unbounded
geometry. We endow T with the natural graph distance d and the set of its vertices
with the counting measure µ. For notational convenience, we write |E| instead of
µ(E) for any subset E of T.

The metric measure space (T, d, µ) has exponential volume growth. If ν is
bounded, then µ is locally, but not globally, doubling; if ν is unbounded, then T is
not even locally doubling.

In this context, various authors have considered the problem of establishing Lp

bounds for M and N . Notice that the definition of M is usually modified as
follows

M f(x) := sup
r∈N

1

|Br(x)|

∫
Br(x)

|f |dµ;

here Br(x) := {y ∈ T : d(x, y) ≤ r}. Examples show that the range of p’s where
either M or N are bounded on Lp(T) may depend on the bounds of ν.

Here is a brief account of some relevant contributions in the literature concerning
the Lp boundedness of M and N . Recall that a tree where ν is constant is called
homogeneous: we denote by Tb the tree for which ν = b+1 for some b ≥ 2. A. Naor
and T. Tao [NT, Theorem 1.5] and, independently, M. Cowling, Meda and A. Setti
[CMS1, Theorem 3.1] proved that M is bounded on Lp(Tb), 1 < p ≤ ∞, and
of weak type (1, 1) (see also [RT]). A. Veca [V, Theorem 5.1] proved that N is
bounded on Lp(Tb), 2 < p ≤ ∞, and of restricted weak type (2, 2) (see also the
recent work [LS] for results concerning related maximal operators).

Generalisations of these results to trees T where ν is bounded, but not constant,
have been the object of the investigations in [LMSV]. In particular, it is shown
that if 3 ≤ a+ 1 ≤ ν ≤ b+ 1 and b ≤ a2, then the precise form of the Kunze–Stein
phenomenon on Tb (see [CMS2]) implies that M is bounded on Lp(T), τ < p ≤ ∞,
where τ = loga b, and it is of restricted weak type (τ, τ), and the result is sharp.
If, instead, b > a2, then there are examples of trees in this class for which M is
unbounded on Lp for every p <∞. Even more strikingly, whenever b > a there are
trees in this class for which N is unbounded on Lp for every p <∞.

Extensions of some of these results to graphs are contained in [ST]. We refer the
interested reader to the introduction of the paper [LMSV] for additional comments
on related works in the literature.

The abovementioned results concerning the boundedness of M and N on trees
raise the question whether there are natural “geometric” maximal operators on lo-
cally finite trees with possibly unbounded geometry that possess stable Lp bound-
edness properties, in the sense that the range of p’s for which they are bounded
on Lp do not depend on the specific assumptions on ν, besides the condition ν ≥ 3.

In this paper we answer in the affirmative to this question and propose to in-
vestigate the Lp boundedness of the centred and uncentred maximal operators on
triangles.

Their definition requires a bit of notation, which we now introduce. We fix a
geodesic ray ω = {xm : m ∈ N} in T, and consider the associated height function hω,
which is the discrete analogue of the Busemann function in Riemannian geometry,
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defined by

hω(x) = lim
m→∞

(
m− d(x, xm)

)
.

Notice that hω is integer valued. Its level sets, called horocycles associated to ω,
are then defined, for j in Z, by

Hωj :=
{
x ∈ T : hω(x) = j

}
,

and T =
⋃
j∈Z

Hωj (disjoint union). Notice that if x ∈ Hωj , then ν(x)− 1 neighbours

of x, called successors of x, belong to Hωj−1. We denote by s1
ω(x) the set of successors

of x, define s0
ω(x) := {x}, and

skω(x) :=
⋃

y∈sk−1
ω (x)

s1
ω(y), k ≥ 2.

For every nonnegative integer R, we call TωR(x) :=

R⋃
j=0

sjω(x) the triangle with

vertex x and height R. The centred and uncentred triangular maximal operators T ω

and U ω are then defined by

T ωf(x) := sup
R≥0

1

|TωR(x)|

∫
TωR (x)

|f |dµ and U ωf(x) := sup
T3x

1∣∣T ∣∣
∫
T

∣∣f ∣∣dµ,
respectively, where T is any triangle in T. The triangular centred operator may be
thought of as “directional” or “one-sided” with respect to the height function hω.
Note that TωR(x) is the set of the points in BR(x) that can be reached by geodesics
of length ≤ R starting at x that point “downwards”. Our main result states that
if T is a locally finite tree with ν ≥ 3, then T ω and U ω are bounded on Lp(T) for
every p in [1,∞] and for every p in (1,∞], respectively. Furthermore, U ω is not of
weak type (1, 1) on the homogeneous tree Tb, b ≥ 2.

The operators T ω and U ω depend on ω. However, in all our results either the
conclusion is the same for all possible choices of ω or we consider a specific example
of tree where ω is clearly specified (see Sa,b in Section 5). Thus, for simplicity,
in the sequel we shall omit the superscripts and write T and U instead of T ω

and U ω.

The proof of the Lp boundedness of T is not hard, and can be found in Sec-
tion 3, where we also study the related centred and noncentred maximal functions B
and Bu.

Our approach to the problem of determining the range of p’s where U is bounded
is much in the spirit of the work of A. Córdoba and R. Fefferman [CF]. In Section 4
we show that for every r in [1,∞) there exists a constant Ar such that for any
finite collection G of triangles in T that are maximal with respect to inclusion the
following holds ∥∥∥∑

T∈G

1T

∥∥∥
r
≤ Ar

∥∥1G∥∥r , (1.3)

where G denotes the union of all T in G . Loosely speaking, this estimate says
that the triangles in G have “finite overlapping in the Lr norm”. We mention
that Ionescu [I] has used a similar strategy to obtain bounds for the uncentred HL
maximal operator on symmetric spaces of the noncompact type and rank ≥ 2.

In Section 5 we show that (1.3) fails for every r in (1,∞) if we replace the
family G above with a family G ′ of modified maximal triangles T ′, where T ′ is the
union of a triangle T of height h and the hth ancestor of the vertex of T . This
implies that the uncentred HL maximal operator associated to the family of all
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modified triangles is unbounded on Lp(T) for every p < ∞. The reason for which
(1.3) fails lies in the fact that a point x can be the hth ancestor of the vertices of a
lot of mutually disjoint triangles of height h, which makes the left hand side, but
not the right hand side, of (1.3) big. See the observation after Remark 5.4 for the
details.

2. Preliminaries

Let T be a locally finite tree, i.e. a connected graph with no loops, in which
every vertex x has a finite number ν(x) ≥ 3 of neighbours; we call ν(x) the valence
of x.

Between any two points x and y in T, such that d(x, y) = n, there is a unique
geodesic path of the form x0, x1, . . . , xn, where x0 = x, xn = y, and d(xi, xj) =
|i− j| whenever 0 ≤ i, j ≤ n. A geodesic ray γ in T is a one-sided sequence
{γn : n ∈ N} of points of T such that d(γi, γj) = |i− j| for all nonnegative integers
i and j. We say that x lies on γ, and write x ∈ γ, if x = γn for some n in N. Given
a point y, denote by y ∧ω the point on ω closest to y (ω is as in the Introduction).
Suppose that y ∧ω = xk, and denote by γy the geodesic ray [y, xk]∪ [xk, xk+1, . . .].
Given another point x in T, we say that x lies above y, and write x � y, if x ∈ γy.
If x � y and x 6= y, then we write x � y.

Given a tree T, we implicitly assume that we have chosen a geodesic ray ω in T.
Many objects on T depend on ω. However, in order to simplify the notation, we
do not stress this dependence, and write h, TR(x), sk(x), T and U in place of hω,
TωR(x), skω(x), T ω and U ω.

We agree that the triangle with vertex x and height 0 is just the point x. If T is
any triangle, then we denote by v(T ), h(T ) and β(T ) its vertex, its height and its
base, respectively. Note that β(T ) = sh(T )

(
v(T )

)
.

Let x be a vertex in T. We denote by p(x) the predecessor of x, viz. the unique
neighbour of x with height h(x)+1. Notice that p(x) depends on the choice of ω: in
order to simplify the notation, we do not stress this dependence. Note that p

(
p(x)

)
,

also denoted p2(x), is just a vertex in Hh(x)+2. The kth ancestor of x is the point

pk(x) := p
(
pk−1(x)

)
. For any subset E of T and every positive integer k, pk(E)

will be short for
⋃
y∈E

pk(y).

The next lemma contains an elementary inequality relating the area of any tri-
angle in T and the length of its base. Such inequality can also be deduced from
Cheeger’s isoperimetric inequality on trees, for which we refer the reader to [RT,
Lemma 13] and [Wo, Theorem 4.2.2].

Lemma 2.1. Suppose that T is a locally finite tree with ν ≥ 3, and let T be a
triangle in T with height h. The following hold:

(i) 2k
∣∣pk(β(T )

)∣∣ ≤ |β(T )| for every k in {0, . . . , h};
(ii) |T | ≤ 2

∣∣β(T )
∣∣.

Proof. Since every point in pk
(
β(T )

)
has at least two successors,∣∣pk−1

(
β(T )

)∣∣ ≥ 2
∣∣pk(β(T )

)∣∣.
Then (i) follows by iterating this estimate.
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Next,

|T | =
h(T )∑
k=0

∣∣pk(β(T )
)∣∣ ≤ h(T )∑

k=0

2−k
∣∣β(T )

∣∣ ≤ 2
∣∣β(T )

∣∣,
and (ii) follows. �

3. The centred triangular maximal operator

In this section we study the centred triangular maximal operator T defined in
the Introduction, and some related maximal operators.

Theorem 3.1 (Centred triangular maximal function). Suppose that T is a tree
such that ν ≥ 3. Then T is bounded on Lp(T) for every p in [1,∞].

Proof. Define the function τ : T× T→ [0,∞) by

τ(x, y) :=
1∣∣Td(x,y)(x)

∣∣ 1E(x, y),

where E :=
{

(x, y) ∈ T× T : x � y
}

. Observe that

T f(x) ≤
∫
T

sup
R∈N

1TR(x)∣∣TR(x)
∣∣ |f |dµ ≤ ∫

T

τ(x, ·) |f |dµ.

Therefore ∥∥T f
∥∥

1
≤

∫
T

dµ(x)

∫
T

τ(x, y)
∣∣f(y)

∣∣dµ(y) ≤ A
∥∥f∥∥

1
,

where A := sup
y∈T

∫
T

τ(x, y) dµ(x). Now, given y in T, the points x for which τ(x, y) 6=

0 are just the points on the geodesic [y, ω), i.e. the points y, p(y), p2(y), . . . Thus

A = sup
y∈T

∞∑
k=0

1∣∣Tk(pk(y))
∣∣ ≤ ∞∑

k=0

2−k = 2.

This proves that
∣∣∣∣∣∣T ∣∣∣∣∣∣

1;1
≤ 2. Since T is obviously bounded on L∞(T), the

Marcinkiewicz interpolation theorem implies that T is bounded on Lp(T) for ev-
ery p in [1,∞]. �

An examination of the proof above shows that the assumption ν ≥ 3 can
be substantially relaxed. In fact, it suffices to assume that ν ≥ 2, and that

sup
y∈T

∞∑
k=0

1∣∣Tk(pk(y))
∣∣ is finite.

For each function f on T, define the centred and the uncentred maximal func-
tions Bf and Buf by

Bf(x) := sup
r∈N

1

|sr(x)|

∫
sr(x)

|f |dµ and Buf(x) := sup
T3x

1∣∣β(T )
∣∣ ∫

β(T )

∣∣f ∣∣dµ.
Clearly Bf ≤ Buf . By Lemma 2.1 (ii), applied to Tr(x), r ≥ 0,

Bf(x) ≤ sup
T :v(T )=x

2

|T |

∫
T

|f |dµ ≤ 2 Tf(x). (3.1)

The boundedness properties of B and Bu are grouped together in the next result.

Theorem 3.2. The following hold:
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(i) if T is a tree with ν ≥ 3, then B is bounded on Lp(T) for every p in [1,∞],
and Bu is bounded on Lp(T) for every p in (1,∞], and satisfies the weak
type estimate ∣∣{x ∈ T : Buf(x) > α

}∣∣ ≤ 2

α

∥∥f∥∥
1

∀α > 0;

(ii) for every b ≥ 2, the operator Bu is unbounded on L1(Tb).

Proof. Suppose that α > 0, and consider, for every f in L1(T), the level set

EBuf (α) :=
{
x ∈ T : Buf(x) > α

}
.

For notational simplicity, for the duration of this proof we write E(α) in place of
EBuf (α).

First we prove (i). The statement concerning B follows from Theorem 3.1 and
the pointwise bound (3.1).

Next we consider Bu. If z ∈ E(α), then there exists a triangle Tz, containing z,
such that

1∣∣β(Tz)
∣∣ ∫

β(Tz)

∣∣f ∣∣dµ > α. (3.2)

Now, if w and z belong to E(α) and β(Tw)∩β(Tz) 6= ∅, then either β(Tw) ⊆ β(Tz) or
β(Tw) ⊇ β(Tz). Indeed, β(Tw) and β(Tz) are both subsets of the same horocycle,
and if y belongs to their intersection, then both v(Tw) and v(Tz) (the vertices
of Tw and Tz, respectively) must belong to the infinite geodesic [y, ω). Thus, either
v(Tz) � v(Tw) or v(Tw) � v(Tz).

In the first case Tz ⊇ Tw, hence β(Tz) ⊇ β(Tw), and in the second Tz ⊆ Tw,
hence β(Tz) ⊆ β(Tw).

Clearly E(α) is a union of triangles, because if E(α) contains x, then it con-

tains Tx, where Tx is such that
1∣∣β(Tx)
∣∣ ∫

β(Tx)

∣∣f ∣∣dµ > α. Their size is uniformly

bounded, for if T is one such triangle, then Lemma 2.1 (ii) and (3.2) imply that

|T | ≤ 2 |β(T )| < 2

α

∫
β(T )

∣∣f ∣∣dµ ≤ 2
‖f‖1
α

. (3.3)

Thus, E(α) is the union of a finite number of triangles T1, . . . , TN , where, of
course, N depends on α. In view of the observation above, we may assume that
β(T1), . . . , β(TN ) are mutually disjoint. Then

∣∣E(α)
∣∣ =

N∑
j=0

∣∣E(α) ∩ Tj
∣∣ ≤ N∑

j=0

∣∣Tj∣∣.
These estimates, (3.3) and the disjointness of β(T1), . . . , β(TN ), imply that

∣∣E(α)
∣∣ < 2

α

N∑
j=0

∫
β(Tj)

∣∣f ∣∣dµ ≤ 2

α

∥∥f∥∥
1

∀α > 0,

as required to prove that Bu is of weak type (1, 1).

Clearly Bu is bounded on L∞(T). Then the Marcinkiewicz interpolation theo-
rem implies that Bu is bounded on Lp(T) for all p in (1,∞), as required.

Next we prove (ii). Consider a point o in H0, and the function δo, which is
equal to 1 at o and vanishes elsewhere. For x in T, denote by |x| the distance
between o and x. If x ∈ H0, then the smallest triangle that contains both x and o
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is T|h(o∧x)|(o ∧ x), where o ∧ x denotes the confluent of o and x, viz. the point of
least height that is a predecessor of both o and x. Note that 2h(o∧x) = |x|. Thus,

Buδo(x) =
1

β
(
T|h(o∧x)|(o ∧ x)

) = b−|x|/2.

Observe that the number of points in H0 at distance k from o is equal to 1 if k = 0,
and to (b− 1) bk/2−1 if k is even. Therefore∫

H0

Buδo dµ =

∫
H0

b−|x|/2 dµ(x) = 1 +
b− 1

b

∑
k≥2,k even

b−k/2 bk/2 =∞.

This proves (ii), and concludes the proof of the theorem. �

4. The uncentred triangular maximal operator

Suppose that G is a family of triangles in T. A triangle T in G is maximal in G
if T ′ ∈ G and T 6= T ′ imply that T ′ ∩ T 6= T . In other words, T is maximal in G
with respect to the partial ordering induced by ⊆.

Our proof of the Lp boundedness of U for 1 < p <∞ is based on the following
“geometric” lemma.

Lemma 4.1. Suppose that G is a finite collection of maximal triangles in a locally

finite tree T, with ν ≥ 3, and set G :=
⋃
T∈G

T . Then for every r in [1,∞)

∥∥∥∑
T∈G

1T

∥∥∥
r
≤ Ar

∥∥1G∥∥r , (4.1)

where Arr := 4

∞∑
k=1

kr 2−k.

Proof. Define the overlapping number Ω of the family G by

Ω(x) := ] {T ∈ G : T 3 x} ∀x ∈ T.

For x in G, denote by T1, . . . , TΩ(x) the (distinct) triangles in G that contain x, and
by v1, . . . , vΩ(x) their vertices. By possibly relabelling the triangles, we can assume
that the height of the vertices is a nonincreasing sequence, i.e., h(vj) ≥ h(vj+1),
j = 1, . . . ,Ω(x)− 1. In fact, this sequence is strictly decreasing. Indeed, if h(vj) =
h(vj+1) for some j, then either Tj ⊆ Tj+1 or Tj+1 ⊆ Tj , which would contradict
the maximality of either Tj or Tj+1. Thus, v1 � . . . � vΩ(x).

A similar argument shows that b1 > . . . > bΩ(x), where bj denotes the height
(with respect to the point at infinity ω) of the points in β(Tj). Hence T1, . . . , TΩ(x)

form a chain of triangles such that

h(v1) > . . . > h(vΩ(x)) ≥ h(x) ≥ b1 > . . . > bΩ(x).

A moment’s reflection then shows that d
(
x, β(TΩ(x))

)
≥ Ω(x)−1, and that h(Tj) ≥

Ω(x)− 1, j = 1. . . . ,Ω(x).

For every positive integer k set Ωk :=
{
x ∈ G : Ω(x) = k

}
. If x ∈ Ωk, then x

belongs to exactly k triangles in G. By the considerations above, the height of
such triangles is ≥ k − 1, and there exists at least one of them, Tx say, such that
d
(
x, β(Tx)

)
≥ k − 1. In other words, x belongs to

h(Tx)⋃
m≥k−1

pm
(
β(Tx)

)
.
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Now, we let x vary in Ωk, and obtain

Ωk ⊆
⋃

T∈G :h(T )≥k−1

h(T )⋃
m≥k−1

pm
(
β(T )

)
.

Notice that Lemma 2.1 yields∣∣∣ h(T )⋃
m≥k−1

pm
(
β(T )

)∣∣∣ ≤ h(T )∑
m=k−1

2−m
∣∣β(T )

∣∣ ≤ 22−k ∣∣β(T )
∣∣.

Hence ∣∣Ωk∣∣ ≤ 22−k
∑
T∈G

∣∣β(T )
∣∣.

Since the triangles in G are maximal, their bases are disjoint. Therefore∑
T∈G

∣∣β(T )
∣∣ =

∣∣∣ ⋃
T∈G

β(T )
∣∣∣ ≤ |G|.

Thus, ∣∣Ωk∣∣ ≤ 22−k |G|. (4.2)

Consequently, ∫
G

Ω(x)r dµ(x) =

∞∑
k=1

kr
∣∣Ωk∣∣ ≤ 4

∞∑
k=1

kr 2−k |G|

which is equivalent to the required estimate. �

For notational convenience, for every α > 0 we shall denote the level set EU f (α)
also by E(α).

Remark 4.2. Observe that if x ∈ E(α), then there exists a triangle T containing x
such that

1∣∣T ∣∣
∫
T

∣∣f ∣∣dµ > α. (4.3)

Then T ⊆ E(α). This entails that E(α) can be written as a union of triangles T
for which (5.1) holds. Furthermore, if T is one of these triangles and if f ∈ Lp(T)
for some p in (1,∞), then (5.1) and Hölder’s inequality imply that

|T | <

∥∥f∥∥p
p

αp
. (4.4)

Now,

|T | =
h(T )∑
j=0

∣∣sj(v(T )
)∣∣ ≥ h(T )∑

j=0

2j ≥ 2h(T );

the first inequality above follows from the assumption ν ≥ 3. Therefore

h(T ) ≤ log2 |T | ≤ log2

‖f‖pp
αp

. (4.5)

Notice that diam(T ) = 2h(T ) for every triangle T ; thus, if it has nonempty in-
tersection with BR(o), then T is contained in the ball BR+2h(T )(o). If, in addi-
tion, T satisfies (4.4), then T is contained in the ball with centre o and radius
R(α) := R+ 2 log2

(
‖f‖pp/αp

)
.

In particular, if f belongs to Lp(T) for some p < ∞, then E(α) can be written
as a union of a finite number of triangles.

Theorem 4.3 (Uncentred triangular maximal function). Suppose that T is a tree
such that ν ≥ 3. The following hold:
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(i) the uncentred triangular maximal operator U is bounded on Lp(T) for every
p in (1,∞];

(ii) if b ≥ 2, then U is not of weak type (1, 1) on the homogeneous tree Tb.

Proof. First we prove (i). We shall show that for every p in (1,∞)∣∣{x ∈ T : U f(x) > α
}∣∣ ≤ App′ ‖f‖ppαp

∀α > 0 ∀f ∈ Lp(T), (4.6)

where Ap′ =

∞∑
k=1

kp
′
2−k. The required result then follows from the Marcinkiewicz

interpolation theorem by interpolating (4.6) with the trivial L∞ bound.

Preliminarily observe that if α ≥ ‖f‖p and ∅ 6= T ⊆ E(α), then (4.4) implies
|T | = 0, which is absurd. Therefore E(α) is empty for all α ≥ ‖f‖p.

Thus, we assume henceforth that α < ‖f‖p. By Remark 4.2, E(α) can be written
as a union of a finite number of triangles. Denote by F (α) the collection of all
triangles T that are maximal in E(α), i.e. that are not properly contained in any

larger triangle in E(α); thus, E(α) =
⋃

T∈F(α)

T .

We prove (4.6). Much as in the proof of [CF, Proposition 1], observe that∣∣E(α)
∣∣ ≤ ∑

T∈F(α)

|T | ≤ 1

α

∑
T∈F(α)

∫
T

|f |dµ ≤ 1

α

∫
T

|f |
∑

T∈F(α)

1T dµ.

Now Hölder’s inequality and (4.1) (with p′ in place of r) and Lemma 4.1 (with
F (α) in place of G and E(α) in place of G) yield∣∣E(α)

∣∣ ≤ ‖f‖p
α

∥∥∥ ∑
T∈F(α)

1T

∥∥∥
p′
≤ Ap′

‖f‖p
α

∥∥1E(α)

∥∥
p′
.

Finally, notice that
∥∥1E(α)

∥∥
p′

=
∣∣E(α)

∣∣1/p′ , so that the last inequality may be

rewritten as ∣∣E(α)
∣∣ ≤ App′ α−p ∥∥f∥∥pp ,

as claimed.

Next we prove (ii). Suppose that T is a triangle in Tb with vertex x and height h.
Note the following relation between h and the volume of T :∣∣T ∣∣ =

h∑
j=0

∣∣sj(x)
∣∣ =

bh+1 − 1

b− 1
. (4.7)

Consider the unit point mass δo at the point o. We shall show that U δo does not
belong to weak L1(Tb). Let α > 0. Clearly EUδo

(α) can be written as the union
of maximal triangles on which the average of δo exceeds α. Each such triangle T
satisfies

1

(b+ 1)α
≤ |T | < 1

α
. (4.8)

Indeed, the right hand inequality is a direct consequence of the fact that the average
of δo on T exceeds α. As to the left inequality, let x and h be the vertex and the

height of T , respectively, and consider the triangle T̃ with vertex x and height

h + 1. Since T is maximal, T̃ is not contained in EUδo
(α), whence 1/

∣∣T̃ ∣∣ ≤ α.

Furthermore, (4.7) implies that
∣∣T̃ ∣∣ ≤ (b+ 1)

∣∣T ∣∣. The left hand inequality in (4.8)
follows by combining these two inequalities.
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Denote by hα the largest integer such that a triangle T in Tb with height hα
satisfies the right hand inequality in (4.8). If T contains o, then T is a maximal
triangle in EUδo

(α) and therefore it satisfies also the left hand inequality in (4.8).

A simple calculation then shows that bhα ≥ 1/(3bα).

It is straightforward to see that the triangles with vertices o, p(o), . . . , phα(o) and
of height hα are contained in EU δo(α). Thus,

EU δo(α) ⊃ Thα(o) ∪
hα⋃
k=1

(
Thα(pk(o)) \ Thα(pk−1(o))

)
.

Notice that ∣∣Thα(pk(o)) \ Thα(pk−1(o))
∣∣ = 1 + (b− 1)

hα−1∑
j=0

bj = bhα .

Therefore if α belongs to
(
0, 1/(3b)

)
, then

∣∣EU δo(α)
∣∣ ≥ bhα+1 − 1

b− 1
+

hα∑
k=1

bhα ≥ hα bhα ≥
1

3bα
logb

1

3bα
. (4.9)

Letting α→ 0, we see that U δo does not belong to weak L1, as required. �

5. Further comments and exotic maximal operators

Theorem 4.3 raises the question of finding an endpoint result for U when p = 1.
We can prove the following estimate on the homogeneous tree Tb, b ≥ 2.

Theorem 5.1. There exists a constant C such that∣∣EU f (α)
∣∣ ≤ C ‖f‖1

α
logb

(
1 +
‖f‖1
α

)
∀α > 0 ∀f ∈ L1(Tb).

Proof. For simplicity we write E(α) instead of EU f (α) for short.

Much as in the proof of Theorem 4.3 (i), observe that if α ≥
∥∥f∥∥

1
, then E(α)

is empty, so that we can assume that α <
∥∥f∥∥

1
.

A slight variant of the argument in Remark 4.2 shows that E(α) can be written
as union of a finite number of triangles T such that

1∣∣T ∣∣
∫
T

∣∣f ∣∣dµ > α. (5.1)

Denote by F (α) the collection of all triangles T that are maximal in E(α), i.e. that

are not properly contained in any larger triangle in E(α); thus, E(α) =
⋃

T∈F(α)

T .

Observe that∣∣E(α)
∣∣ ≤ ∑

T∈F(α)

|T | ≤ 1

α

∑
T∈F(α)

∫
T

|f |dµ ≤ 1

α

∫
T

|f |
∑

T∈F(α)

1T dµ. (5.2)

We adopt the notation introduced in the proof of Lemma 4.1, and for each x in⋃
T∈F(α)

T we denote by Ω(x) the overlapping number at x of the family F (α). In

the proof of Lemma 4.1 it is shown that Ω(x) ≤ h(T ) + 1 for each triangle T in
F (α) that contains x. Now,

|T | =
h(T )∑
j=0

∣∣sj(v(T )
)∣∣ =

h(T )∑
j=0

bj ≥ bh(T ).
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Therefore

h(T ) ≤ logb |T | ≤ logb
‖f‖1
α

. (5.3)

Hence Ω(x) ≤ 1 + logb
‖f‖1
α

. By combining this and (5.2) we see that

∣∣E(α)
∣∣ ≤ ‖f‖1

α

(
1 + logb

‖f‖1
α

)
∀α < ‖f‖1.

Since 1 + logb s ≤ C logb(1 + s) for all s ≥ 1 and C large enough, we conclude that∣∣E(α)
∣∣ ≤ C ‖f‖1

α
logb

(
1 +
‖f‖1
α

)
∀α > 0,

as required. �

We believe that this estimate is not very interesting, for it seems not strong enough
to imply the boundedness of U on Lp(Tb) for p > 1.

Observe that an estimate of the form∣∣EU f (α)
∣∣ ≤ C ‖f‖1

α
logb

(
1 +

1

α

)
∀α > 0 ∀f ∈ L1(Tb),

which would imply the boundedness of U on Lp(Tb) for p > 1, fails.

Indeed, let o be a point in Tb, and consider nδo, where n is a positive integer.
Observe that EU (nδo)(α) = EU (δo)(α/n). If the above estimate held, we would
have ∣∣EU δo(α/n)

∣∣ ≤ C n

α
logb

(
1 +

1

α

)
.

By (4.9), the left hand side is bounded below by c
(
n/α

)
logb

(
n/α

)
, at least for α

small and fixed, which is clearly incompatible with the upper bound above when
n tends to infinity.

Recall that a fairly common strategy to prove weak type (1, 1) estimates for the
“global part” of the HL maximal operator on manifolds with exponential volume
growth is to majorize the maximal function with an appropriate integral operator,
and prove that the latter is of weak type (1, 1). See, for instance, [Str], where this
strategy is shown to be effective in the study of the centred HL maximal function on
symmetric spaces of the noncompact type, and [CMS1] for the case of homogeneous
trees.

We shall prove that a similar approach fails for the uncentred triangular maximal
operator U on the homogeneous tree Tb, b ≥ 2. Consider the kernel

κ(x, y) := sup
T3x

1T (y)

|T |
∀x, y ∈ Tb, (5.4)

and denote by K the corresponding integral operator, defined by

K f(x) :=

∫
Tb

κ(x, y) f(y) dµ(y) ∀x ∈ Tb,

where f is any reasonable function on Tb. Notice that U f ≤ K |f |. The following
result implies that U and K have a quite different boundedness properties as
operators acting on Lp(Tb).

Proposition 5.2. The operator K is unbounded on Lp(Tb) for every p in [1,∞]
and for every b ≥ 2.
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Proof. It is straightforward to check that the smallest triangle that contains two
points x and y is the triangle with vertex x ∧ y (see the proof of Theorem 3.2 (ii)
for the notation) and height

η(x, y) := max
(
d(x, x ∧ y), d(y, x ∧ y)

)
.

Clearly η(x, y) =
1

2

[
d(x, y) + |h(x)− h(y)|

]
. From the definition of κ (see (5.4))

and Lemma 2.1 (ii) we deduce that

κ(x, y) =
1∣∣Tx,y∣∣ ≥ 1

2
∣∣β(Tx,y)∣∣ ≥ 1

2
b−η(x,y) ∀x, y ∈ Tb.

Suppose that o is a point in H0, and consider, for each positive integer n, the set
En := sn(pn(o)), which is the base of the triangle with vertex pn(o) and height n.
Observe that for every x and y in En we have η(x, y) = d(x, y)/2, so that

K 1En(x) ≥ 1

2

∫
En

b−d(x,y)/2 dµ(y).

Note that for every positive integer j ≤ n there are exactly (b−1) bj−1 points in En
at distance 2j from x. Therefore the last integral can be rewritten as

1 +
b− 1

b

n∑
j=1

b−j bj = 1 +
b− 1

b
n.

Altogether

K 1En(x) ≥ b− 1

2b
n ∀x ∈ En,

from which the desired result for p =∞ follows directly.

Now, set Cb := (b − 1)/(2b), and observe that if p < ∞, then for every positive
integer n the previous inequality yields∥∥K 1En

∥∥p
p
≥ Cpb n

p |En| = Cpb n
p
∥∥1En∥∥pp ,

which implies that K is unbounded on Lp(Tb), as required. �

It is worth observing that replacing triangles with appropriate slightly larger sets
in the definition of T and U may yield significant modifications of the boundedness
properties of the corresponding maximal operators, as we presently show. This is a
further example that illustrates how sensitive are maximal operators to the shape
of the sets with respect to which we take averages.

For every nonnegative integer r consider the modified triangle T ′r(x) := Tr(x) ∪
pr(x), and the corresponding centred and uncentred maximal operators

T ′f(x) = sup
r∈N

1

|T ′r(x)|

∫
T ′r(x)

|f | dµ and U ′f(x) = sup
T ′3x

1

|T ′|

∫
T ′
|f | dµ,

where T ′ is any modified triangle containing x. We emphasize that T ′ is obtained
from a triangle T by adjoining just a point at distance h(T ) from the vertex of T .
Observe that if there exists a positive constant C such that

∣∣Tr(x)
∣∣ ≥ C ∣∣Br(x)

∣∣ for
every triangle Tr(x) in T, then

T ′ ≤ CM and U ′ ≤ CN . (5.5)

For instance, this happens if T = Tb, or T = Sa,b and a ≤ b < a2: here Sa,b denotes
the tree such that each vertex has either a+ 1 or b+ 1 neighbours according to the
fact that its height is < 1 or ≥ 1. We refer the reader to [LMSV] for more on Sa,b.
For each pair a, b of positive integers, we denote the number loga b by τ . In the
next proposition we show that there are trees where T ′ and U ′ have different
boundedness properties than T and U , respectively.
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Proposition 5.3. The following hold:

(i) the operator T ′ is bounded on Lp(Tb) for every p in (1,∞], and unbounded
on L1(Tb);

(ii) if a < b < a2, then T ′ is bounded Lp(Sa,b) for p > τ and it is unbounded
on Lp(Sa,b) for p < τ ;

(iii) the operator U ′ is bounded on Lp(Tb) if and only if p > 2.

Proof. The Lp boundedness of T ′ and U ′ in the ranges described in (i)-(iii) above
follow from the bounds (5.5) and the positive results for M and N proved in
[NT, CMS1, LMSV, V].

Next we prove that T ′ is unbounded on L1(Tb). Fix a point o in H0, and consider
the set E := {x ∈ Tb : o � x}. Clearly E is the infinite triangle with vertex o. It is
straightforward to check that for each x in E

T ′δo(x) =
1∣∣T ′|x|(x)

∣∣ .
By Lemma 2.1 (ii),

∣∣T ′|x|(x)
∣∣ =

∣∣T|x|(x)
∣∣+ 1 ≤ 2 b|x| + 1, so that

∥∥T ′δo∥∥L1(Tb)
≥

∫
E

T ′δo dµ ≥
∞∑
j=0

∫
E∩H−j

1

2bj + 1
dµ.

Since
∣∣E ∩ H−j

∣∣ = bj , the series above is not convergent, and the unboundedness

of T ′ on L1(Tb) follows, thereby completing the proof of (i).

To complete the proof of (ii), fix a point o in H0, and for each positive integer n
consider the set En := sn

(
pn(o)

)
, which is a subset of the horocycle H0 in Sa,b. By

Lemma 2.1 (ii), and the fact that each vertex with nonpositive height has exactly
a successors,

T ′δpn(o)(x) =
1

|T ′n(x)|
≥ 1

2 an + 1
∀x ∈ En,

whence, much as above,∥∥T ′δpn(o)

∥∥p
Lp(Sa,b)

≥
∫
En

(
T ′δpn(o)

)p
dµ ≥

∣∣En∣∣
(2an + 1)p

.

Observe that
∣∣En∣∣ = bn = aτn. Altogether, we see that∥∥T ′δpn(o)

∥∥p
Lp(Sa,b)

≥ aτn

(2an + 1)p
.

Since, by assumption, p < τ , the right hand side above cannot be bounded with
respect to n, and the desired result follows.

Finally we complete the proof of (iii) by showing that U ′ is unbounded on Lp(Tb)
for every p ≤ 2. Let E := {x ∈ Tb : o � x}. If x ∈ E and d(o, x) is even, then

U ′δo(x) =
1∣∣T ′|x|/2(p|x|/2(x)

)∣∣ ,
and Lemma 2.1 (ii) implies that

∣∣T ′|x|/2(p|x|/2(x)
)∣∣ ≤ 2 b|x|/2 + 1. Thus,

∥∥U ′δo∥∥pLp(Tb)
≥
∞∑
j=0

∫
En∩H−2j

(2bj + 1)−p dµ =

∞∑
j=0

b2j (2bj + 1)−p.

The required conclusion follows from the fact that for every p ≤ 2 the series above
is not convergent. �
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Remark 5.4. Finally, we present an example of a tree T with unbounded geometry
where T ′, and a fortiori U ′, is unbounded on Lp for every p <∞.

Let T be the tree characterised by the property that each vertex off H0 has three
neighbours, and ν(xj) = j + 2 where {xj : j ≥ 1} is an enumeration of the points
of H0.

Notice that for every j ≥ 1

T ′δxj (y) =
1

|T ′1(y)|
=

1

4
∀y ∈ s1(xj).

Therefore ∥∥T ′δxj∥∥pp ≥ ∑
y∈s1(xj)

T ′δxj (y)p =
1

4p
|s1(xj)| =

j + 2

4p
.

Since ‖δxj‖p = 1, the operator norm of T ′ on Lp(T) is at least (j + 2)1/p/4. By
letting j vary we obtain the required conclusion.

Since U ′ ≥ T ′ pointwise, U ′ is unbounded on Lp(T) for every p ∈ [1,∞).

It is straightforward to check that for each r > 1 there is no constant C such
that ∥∥∥ ∑

T ′∈G ′

1T ′
∥∥∥
r
≤ C

∥∥1G′∥∥r (5.6)

for every finite family G ′ of maximal modified triangles in T. Here G′ is the union
of the modified triangles in G ′.

Indeed, it suffices to consider, for every positive integer j, the family G ′j of the

modified triangles {T ′1(y) : y ∈ s1(xj)}. Then the rth power of the right hand side
of (5.6) is equal to Cr

(
3(j + 2) + 1

)
, whereas the rth power of left hand side is

equal to 3(j + 2) + (j + 2)r. Thus, (5.6) fails for large values of j.
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