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1 Introduction

Three-dimensional (3d) supersymmetric Chern-Simons (CS)–matter theories have rich
infrared (IR) behaviours. For example, the N = 3 superconformal field theory (SCFT) can
be obtained as the IR fixed point of the N = 2 theory deformed by a certain superpotential [1].
Moreover, if the gauge algebra and matter content are chosen appropriately in an N = 3
theory, supersymmetry may get further enhanced up to N = 8 [2–10]. In particular, the
U(N)k ×U(N)−k CS theory with two hypermultiplets in the bifundamental representation
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(in the 3d N = 4 language) describes the system of N M2-branes on C4/Zk, where at large
N it is dual to M-theory on AdS4×S7/Zk, and at large N with a fixed ratio N/k is dual to
Type IIA string theory on AdS4 × CP3. This CS-matter theory provides the first explicit
realisation of the AdS/CFT correspondence in these dimensions [8].

In this article, we focus on 3d N = 3 vector multiplets coupled to a certain number
of copies of a 3d SCFT, known as the 3d TN theory, whose flavour symmetry is SU(N)3.
The 3d TN theory can be realised by compactifying the 4d TN theory [11, 12] on a circle,
or equivalently by compactifying N M5-branes on a circle times a sphere with three full
punctures. An example of the theories of our interest consists of that constructed from a
single copy of the TN theory such that the SU(N)3 flavour symmetry is gauged with CS
levels k1, k2 and k3. This can be realised by compactifying N M5-branes on a three-manifold
which is a Seifert bundle over S2 with three singular fibres, with Seifert parameters 1/k1,
1/k2 and 1/k3 [13, 14]. This example can be generalised further, for example, by involving
many copies of the TN theories where each SU(N) factor of the SU(N)3 flavour symmetry
of each copy is commonly gauged with CS levels k1, k2 and k3. The corresponding three-
manifolds are then known as graph manifolds [14]. We remark en passant that, due to their
richness in mathematical and physical properties, 3d theories arising from compactifying
M5-branes on three-manifolds have received considerable attention over the recent years;
see e.g. [15–25].

For the theories of our interest with general N , it was pointed out by the authors
of [14] that whenever the CS levels satisfy the condition ∑3

i=1 1/ki = 0, then the theory
flows to an IR SCFT with enhanced N = 4 supersymmetry.1 For convenience, we shall
refer to this condition as the Assel-Tachikawa-Tomasiello (ATT) condition. This statement
was supported by a field theoretic argument. Geometrically, for a single copy of the TN

theory, supersymmetry enhancement is accounted for by the holonomy of the corresponding
Seifert manifolds. However, when the theory contains more than one TN building blocks,
supersymmetry enhancement is left unaccounted for, in general, by the holonomy of
graph manifolds.

One of the main objectives of this paper is to study supersymmetry enhancement
of this family of theories, focusing on N = 2 and N = 3, using the superconformal
index [26–33].2 We find that, when the ATT condition is satisfied, supersymmetry of the
IR SCFT generally gets enhanced to N = 4, but there are also a large number of cases
with N = 5 and N = 6 supersymmetry. Surprisingly we also find that, even if the ATT
condition is not satisfied, there is still an infinite family of theories whose IR SCFTs have
enhanced N = 4 supersymmetry. In particular, for certain special values of CS levels
such as (k1, k2, k3) = (2, 1, 1), the IR SCFT turns out to be the rank-zero minimal N = 4
SCFT, discussed in [23, 25]. Another main goal of this article is to study the one-form
symmetries [37, 38] of these theories, as well as their (mixed) ’t Hooft anomalies along the
line of [13, 39], and the mixed ’t Hooft anomalies between the one-form symmetries and
zero-form symmetries using the method of [36] (see also [40]). As a result, we deduce that

1We remark that for N = 2 and a single copy of the T2 theory, the enhancement of supersymmetry to
N = 4 follows from the result of [5].

2We adopt the same notation as [33–36]. Each notation is defined in the main text.
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there is generally a decoupled topological sector in the IR. We also identify these topological
quantum field theories (TQFTs) using ’t Hooft anomalies of the one-form symmetries.
Importantly, we point out that, even if a set of theories flow to the same IR SCFTs (which
can be deduced from the fact that the indices are the same or the associated three-manifolds
are diffeomorphic to each other), the decoupled topological sectors may be different. We
also gauge the non-anomalous one-form symmetry and study the resulting theories. Finally,
we study the Higgs and Coulomb limits of the superconformal indices [41] for theories whose
IR SCFTs have N ≥ 4 enhanced supersymmetry. These provide geometric information
of the Higgs and Coulomb branches of the IR SCFTs in question in terms of the Hilbert
series [42, 43].

The paper is organised as follows. In sections 2 and 3, we study theories with one and
two T2 building blocks, respectively. Their one-form symmetries and ’t Hooft anomalies are
investigated in section 2.1. The theories whose CS levels satisfy the ATT condition are then
studied in sections 2.2 and 3.1. In this class of theories, the Higgs and Coulomb branch
limits of the indices are studied in sections 2.2.3 and 3.1.3. We then move on to explore
theories whose CS levels do not satisfy the ATT condition in sections 2.3 and 3.2. We also
study theories coupled to one or many copies of the T (SU(2)) SCFT in sections 2.4 and 3.3.
In section 4, we discuss theories with T3 building blocks. We discuss their indices and ’t
Hooft anomalies of one-form symmetries. Due to the technicality of the computations, we
focus on the indices of theories whose CS levels satisfy the ATT condition, from which
we conclude that the IR SCFT has enhanced N = 4 supersymmetry. In appendix A, we
study certain theories with four T2 building blocks as well as their indices. In appendix B,
the mixed gauge/zero-form monopole operators in theories with one and two T2 building
blocks such that the ATT condition is satisfied are examined. The potential mixed anomaly
between the Z2 one-form symmetry and the zero-form flavour symmetry implied by the
presence of such monopole operators is discussed.

Note added. After this paper had appeared on the arXiv, we found [44] with some
overlapping content.

2 Theories with one T2 building block

Let us consider the T2 theory whose three SU(2) flavour symmetries are gauged with 3d
N = 3 Chern-Simons couplings (k1, k2, k3). We depict this theory diagrammatically by

T2

k1

k2

k3

(2.1)

where each finite line with label ki denotes an SU(2)ki
gauge group. This theory was studied

extensively in [14, section 2.2.1], where it was pointed out that (2.1) can be realised by
compactifying M5-branes on a three-manifold which is a Seifert bundle over S2 with three
singular fibres, with Seifert parameters 1/k1, 1/k2 and 1/k3.
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The effective superpotential after integrating out the adjoint scalars is

W ∝
3∑

i=1

1
ki

tr(µ2
i ) , (2.2)

where µi are the moment map operators for the SU(2)i symmetry of the T2 theory. In terms
of the chiral fields Qα1α2α3 of the T2 theory, µi can be written as

(µ1)α1α′
1
= ϵα2α′

2ϵα3α′
3Qα1α2α3Qα′

1α′
2α′

3
,

(µ2)α2α′
2
= ϵα1α′

1ϵα3α′
3Qα1α2α3Qα′

1α′
2α′

3
,

(µ3)α3α′
3
= ϵα1α′

1ϵα2α′
2Qα1α2α3Qα′

1α′
2α′

3
,

(2.3)

where the indices αi, α′
i = 1, 2 correspond to the SU(2)i gauge group (with i = 1, 2, 3). From

the above relations, it follows that

tr(µ2
1) = tr(µ2

2) = tr(µ2
3) ≡ tr(µ2) (2.4)

and so the effective superpotential can be rewritten as

W ∝
( 1

k1
+ 1

k2
+ 1

k3

)
tr(µ2) . (2.5)

If the following condition is satisfied
1
k1

+ 1
k2

+ 1
k3

= 0 , (2.6)

then supersymmetry gets enhanced from N = 3 to N = 4. This follows from the discussion
in [5] and also from [9, 14]. Relation (2.6) is what we referred to as the ATT condition in
the introduction. Subsequently we will show that this is a sufficient, but not necessary,
condition for supersymmetry enhancement. In particular, in section 2.3, we will show that
even if the ATT condition (2.6) is not satisfied, there are cases in which the IR SCFT has
accidental N = 4 supersymmetry.

A main tool that we will use to analyse these theories is the superconformal index. It
is explicitly given by

I(2.1)(a, na;x) =
(
1
8

3∏
i=1

∮
dzi

2πizi

) ∑
(m1,m2,m3)∈Z3

( 3∏
i=1

z2kimi
i ZSU(2)

vec (zi;mi;x)
)

×
∏

s1,s2,s3=±1
Z1/2

χ (zs1
1 zs2

2 zs3
3 a; s1m1 + s2m2 + s3m3 + na;x) ,

(2.7)

where the SU(2) vector multiplet contribution is

ZSU(2)
vec (z;n;x) = x−2|n| ∏

s=±1
(1− (−1)2nx2|n|z2s) , (2.8)

and the contribution of the chiral multiplet of R-charge R is

ZR
χ (z;m;x) =

(
x1−Rz−1

)|m|/2 ∞∏
j=0

1− (−1)mz−1x|m|+2−R+2j

1− (−1)mz x|m|+R+2j
. (2.9)
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If the CS levels satisfy the ATT condition (2.6), it follows from (2.5) that the effective
superpotential is zero, and the U(1)a flavour symmetry which assigns charge +1 to all of
the eight chiral multiplets of the T2 theory is a symmetry of the Lagrangian. We denote
by a and na the fugacity and background magnetic flux for this flavour symmetry. Upon
computing the series expansion of the index, we will set na = 0 and drop the na dependence
from the index, i.e. we write the latter simply as I(2.1)(a;x). Note also that, if the CS levels
do not satisfy the ATT condition (2.6), we should set a = 1 and na = 0 in (2.7), since the
U(1)a flavour symmetry is no longer a symmetry of the effective superpotential (2.5).

2.1 One-form symmetries and their ’t Hooft anomalies

We now discuss the one-form symmetries of theory (2.1) and their anomalies. Let us first
consider the T2 theory, whose global form of the manifest flavour symmetry is (see [45,
(4.2)])

SU(2)1 × SU(2)2 × SU(2)3
(Z2)13 × (Z2)23

, (2.10)

where (Z2)ij denotes the diagonal Z2 subgroup of the centre of SU(2)i times the centre
of SU(2)j . In other words, among the three Z2 factors that come from the centre of∏3

i=1 SU(2)i in the numerator of (2.10), only two combinations present in the denominator
act trivially on the four free hypermultiplets of the T2 theory. Gauging each of the SU(2)i

symmetry therefore leads to the Z2 × Z2 one-form symmetry. We will see that turning on
CS levels ki for each SU(2)i gauge group (with i = 1, 2, 3) results in ’t Hooft anomalies of a
subgroup or the whole Z2

2 one-form symmetry.
The ’t Hooft anomaly of the one-form symmetry in theory (2.1) with CS levels (k1, k2, k3)

is characterised by the 4d anomaly theory whose action is [46]

2π

2

∫
M4

3∑
i=1

ki
P(w(2)

i )
2 , (2.11)

where each of w
(2)
i ∈ H2(M4,Z2) is the two-form background field for each Z2 one-form

symmetry that arises from the centre of each SU(2)i gauge group, P(w(2)) is the Pontryagin
square operation and the integration is performed over a spin manifold M4. Note that∫
M4

P(w(2)
i ) is even on a spin manifold M4.

Since among the Z3
2 centres of SU(2)3 only Z2

2 acts non-trivially on the trifundamental
matter of the T2 theory, we have the condition

3∑
i=1

w
(2)
i = 0 . (2.12)

Using the identity∫
M4

P(A + B) =
∫
M4

P(A) +
∫
M4

P(B) + 2
∫
M4

A ∪ B , (2.13)

and the fact that
∫
M4

P(w(2)
i ) is even on spin manifold M4, we rewrite (2.11) as

Sanom = 2π

2

∫
M4

[
(k1 + k3)

P(w(2)
1 )
2 + (k2 + k3)

P(w(2)
2 )
2 − k3(w(2)

1 ∪ w
(2)
2 )

]
(2.14)
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after dropping terms that are integer multiples of 2π. Using the notation of [39, (F.8)]

Sanom = 2π

2

[ 2∑
I=1

pII

∫
M4

P(w(2)
I )
2 + p12

∫
M4

w
(2)
1 ∪ w

(2)
2

]
, (2.15)

we see that the above anomalies can be summarised in following symmetric matrix p:

p =
(

k1 + k3 −k3
−k3 k2 + k3

)
mod 2 . (2.16)

For k3 = 1, this is in agreement with the anomaly matrix given by [13, (4.58)] with
N = n = 2 and k1,2 → k1,2 + 1.

We can decompose the Z2
2 one-form symmetry of (2.1) into two parts: a subgroup ΓA

of Z2
2 that has an ’t Hooft anomaly and the anomaly free part Z2

2/ΓA. The anomalous part
ΓA is given by ΓA = Zrank(p)

2 , where rank(p) is the rank of matrix p. The non-anomalous
one-form symmetry is then Zdim(ker p)

2 , where ker p denotes the kernel (nullspace) of matrix p.
According to [13, (4.44)], it was proposed that theory (2.1) flows to an IR theory that

splits into two subsectors:

1. the minimal abelian TQFT [39]:

AΓA,p =

A2,1 ∼= SU(2)1 ∼= U(1)2 if rank(p) = 1
A{2,2},p of [39, appendix F] if rank(p) = 2

; (2.17)

2. the subsector (2.1)AF, which can be an interacting SCFT or another TQFT, whose
one-form symmetry is ’t Hooft anomaly free.

The above statement can be summarised as3

(2.1) = (2.1)AF ⊗AΓA,p . (2.18)

This relation can be inverted as in [39, (1.13)] and [13, (4.45)], namely

(2.1)AF = (2.1)⊗AΓA,−p

ΓA
. (2.19)

2.2 Cases that satisfy the ATT condition

We consider theories with CS levels satisfying (2.6).

3A piece of evidence that supports this statement is as follows. We observe that there exist theories
associated with diffeomorphic three-manifolds (their superconformal indices are equal) whose anomaly
matrices p are inequivalent; see Footnote 12. For such theories, we interpret this phenomenon in the following
way. The subsectors (2.1)AF, characterised by the index, are the same. However, the topological sectors,
characterised by the anomaly matrices, are different.

– 6 –
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2.2.1 Special case of (k1, k2, k3) = (−k, 2k, 2k)

These CS levels satisfy the ATT condition. Theory (2.1) with these CS levels, namely

T2

k1 = −k

k2 = 2k

k3 = 2k

(2.20)

can also be regarded as the USp(2)−k × Spin(4)2k gauge theory with a bifundamental
half-hypermultiplet in the representation [2;4] whose quiver diagram is

USp(2)−k Spin(4)2k
(2.21)

The equivalence of these two theories is due to the fact that Spin(4) ∼= SU(2)× SU(2) and
that the vector representation [4] of Spin(4) is equivalent to the representation [2;2] of
SU(2)× SU(2). The index of this theory can be derived as in [33, 35]. We first compute
the index for the USp(2)−k × SO(4)2k gauge theory with the same matter content, namely

USp(2)−k SO(4)2k
(2.22)

The index of this theory is

I(2.22)(ζ, a;x)

= 1
8

∑
(m1,m2)∈Z2

∑
n∈Z

 2∏
j=1

∮
dvj

2πivj
v
2kmj

j

 ζm1+m2

∮
du

2πiu
u−2kn

×ZSO(4)
vec (v1, v2;m1,m2;x)ZUSp(2)

vec (u; n;x)

×
2∏

i=1

∏
s1,s2=±1

Z1/2
χ (vs1

i us2a; s1mi + s2n;x) ,

(2.23)

where ζ is the fugacity for the zero-form magnetic symmetry such that ζ2 = 1, and the
contribution of the SO(4) vector multiplet is

ZSO(4)
vec (v1, v2;m1,m2;x) = x−|m1−m2|−|m1+m2|

×
∏

s1,s2=±1

(
1− (−1)s1m1+s2m2x|s1m1+s2m2|vs1

1 vs2
2

)
. (2.24)

For simplicity, we have set the fugacity χ for the charge conjugation symmetry to unity.
Theory (2.21) can be obtained by gauging the magnetic symmetry; its index reads

I(2.21)(a;x) =
1
2
[
I(2.22)(ζ = 1, a;x) + I(2.22)(ζ = −1, a;x)

]
. (2.25)

– 7 –
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It can be checked that (2.7) and (2.25) yield the same result for (k1, k2, k3) = (−k, 2k, 2k).
In fact, the gauge fugacities and magnetic fluxes in (2.7) and (2.23) can be mapped to each
other as follows:

z1 = u , z22 = v1v2 , z23 = v1v
−1
2 ,

m1 = n , 2m2 = m1 +m2 , 2m3 = m1 −m2 .
(2.26)

The indices up to order x4 are as follows.

k Index
1, 2 diverges
3 1 + 0x + (2a4 − 1)x2 +

(
a6 − a2 + a−2)x3 +

(
3a8 − a4 − 2

)
x4 + . . .

4 1 + 0x + (a4 − 1)x2 + a−2x3 + (2a8 − 2)x4 + . . .

≥ 5 1 + 0x + (a4 − 1)x2 + a−2x3 + (a8 − 2)x4 + . . .

(2.27)

Note that, for k ≥ 5, the indices for these cases differ from each other at a higher order
than x4. For k = 1, 2, the index diverges and the theories are bad in the sense of Gaiotto
and Witten [47].

Let us now analyse the superconformal multiplets and enhancement of supersymmetry
for the cases of k ≥ 3 using information from [48–50] (see also the argument in [34, 51]).
The vanishing coefficient of x implies that there is no 3d N = 3 flavour current multiplet
B1[0](2)1 . In general, the negative terms at order x2 receive the contribution from the N = 3
flavour current multiplet B1[0](2)1 and N = 3 extra-SUSY current multiplet A2[0](0)1 . Since
the former is absent and the only negative term at order x2 is −1, we conclude that there
is precisely one N = 3 extra SUSY-current multiplet that leads to the enhanced N = 4
supersymmetry in the IR.

As can be read off from the index, the bare monopole operator with magnetic fluxes
(m1, m2, m3) has dimension

∆(m1, m2, m3) =
1
4

∑
s1,s2,s3=±1

∣∣∣∣∣
3∑

i=1
simi

∣∣∣∣∣−
3∑

i=1
2|mi| , (2.28)

its charge under the U(1)a flavour symmetry is

a(m1, m2, m3) = −1
2

∑
s1,s2,s3=±1

∣∣∣∣∣
3∑

i=1
simi

∣∣∣∣∣ (2.29)

and it carries charge 2kimi under the Cartan subalgebra of each SU(2)i gauge factor.
Viewing the theory in question from the 3d N = 2 perspective, the U(1)a flavour

current multiplet also contributes −1 at order x2 in the index. As a consequence the
aforementioned N = 3 extra SUSY-current should be identified with that of the flavour
symmetry. Furthermore, we see that there is no relevant operator due to the vanishing
coefficient of x. For k ≥ 4, there is one marginal operator corresponding to tr(µ2

1) =
tr(µ2

2) = tr(µ2
3), where µi is the moment map of the SU(2)i flavour symmetry of the T2

theory. For k = 3, we have an extra marginal operator which, according to (2.7), receives

– 8 –
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the contribution from the eight gauge magnetic fluxes (m1, m2, m3) = (±2,±1,±1), where
± here denotes all possible 8 sign combinations that can appear. Since the bare (non-
gauge-invariant) monopole operators with such fluxes contribute z∓12

1 z±12
2 z±12

3 , x−4 and
a−8 to the index, we interpret the aforementioned marginal operator as a dressed monopole
operator, where such a bare monopole operator is dressed in a gauge invariant way with a
combination of 12 chiral fields of the T2 theory.

One-form symmetries and gauging thereof. We now examine the one-form symmetry
of (2.1) with (k1, k2, k3) = (−k, 2k, 2k). From the discussion in section 2.1, we see that

CS levels Anomaly Non-anomalous Anomalous TQFT with
(−k, 2k, 2k) matrix p 1-form symmetry 1-form symmetry anom. symmetry

k even
(
0 0
0 0

)
Z2
2 1 −

k odd
(
1 0
0 0

)
Z2 Z2 A2,1 ∼= SU(2)1 ∼= U(1)2

(2.30)

For k even, theory (2.20) flows to an N = 4 SCFT with a non-anomalous Z2
2 one-form

symmetry. However, for k odd, theory (2.20) flows to an N = 4 SCFT with a non-anomalous
Z2 one-form symmetry and a decoupled topological sector A2,1.

We can understand the above statement from another point of view. A slight modifica-
tion of [52, (3.27)] (see also [52, (3.18), (3.19)]) states that the USp(2N)−k × SO(2M)2k

gauge theory with bifundamental matter admits a quotient by a Z2 symmetry, whose
generator is a combination of the Z2 centres of SO(2M) and USp(2N), if4

1
2k(M − N) ∈ Z . (2.31)

In other words, the Z2 one-form symmetry of the USp(2N)−k × SO(2M)2k gauge theory is
non-anomalous if (2.31) is satisfied. Applying this to (2.22), namely M = 2 and N = 1, we
see that its non-anomalous one-form symmetry is

one-form symmetry of (2.22) =

Z2 k even
trivial k odd

. (2.32)

Recall that theory (2.21), or equivalently theory (2.20), arises from gauging the Z2 zero-form
magnetic symmetry of (2.22). Since gauging a discrete Z2 zero-form symmetry in 3d leads
to a dual Z2 one-form symmetry, we conclude that for k odd theory (2.21) = (2.20) has a
Z2 one-form symmetry. For k even, the one-form symmetry of theory (2.21) = (2.20) can
be either Z2 × Z2 or its extension Z4. Note that the extension is formed if theory (2.22),
with k even, has a mixed anomaly between the Z2 zero-form magnetic symmetry and the
Z2 one-form symmetry [53]. Subsequently, we will explicitly show that there is no extension
of the symmetry to Z4.

For this purpose, let us gauge the whole one-form symmetry of theory (2.21), i.e. we
turn it into a dual zero-form symmetry. This is equivalent to gauging the Z2 one-form

4More generally, for the USp(2N)k2 ×SO(2M)k1 gauge theory with bifundamental matter, this condition
reads 1

4 k1M + 1
2 k2N ∈ Z.
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symmetry in (2.22), namely considering the [USp(2)−k × SO(4)2k]/Z2 theory. The index
of the latter can be computed as in (2.23) but with the inclusion of the summation over
half-odd-integral fluxes; in particular, we modify the summation in (2.23) as follows:

∑
(m1,m2)∈Z2

∑
n∈Z

−→
1∑

p′=0
sp′

∑
(m1,m2)∈

(
Z+ p′

2

)2

∑
n∈Z+ p′

2

, (2.33)

where s is a fugacity for the Z2 zero-form symmetry arising from gauging the one-form
symmetry such that s2 = 1. For k odd, we see that the half-odd-integral fluxes (i.e. those
correspond to p′ = 1) do not contribute to the index; in other words, the index of the
[USp(2)−k × SO(4)2k]/Z2 theory is equal to that of the USp(2)−k × SO(4)2k theory. This
is in agreement with the proposal that the one-form symmetry of (2.22) for k odd has a
non-trivial ’t Hooft anomaly.5 Let us focus on k even. We see that for p′ = 0 the contribution
from ζm1+m2 is either 1 or ζ, whereas for p′ = 1 we have either s or sζ. The elements of
{1, ζ, s, sζ} form the Z2×Z2 zero-from symmetry. Observe that the Z2 zero-form symmetry
associated with s and the Z2 zero-form magnetic symmetry associated with ζ do not form
an extension to Z4, since there is no element of order 4.

We can also see this from the perspective of theory (2.20). In order to gauge the whole
one-form symmetry, we can do it in two steps. First, gauge the diagonal Z2 one-form
symmetry, whose generator is a combination of the Z2 centres of SU(2)2k and SU(2)2k;
in other words, we consider the quotient SU(2)−k × [SU(2)2k × SU(2)2k]/Z2. The latter
is equivalent to (2.22), namely the USp(2)−k × SO(4)2k gauge theory, since SO(4) ∼=
[SU(2)× SU(2)]/Z2. We report the indices up to order x4 below.

k Index
1, 2 diverges
3 1 + ζa2x +

[
(2 + ζ)a4 − (1 + ζ)

]
x2 +

[
(1 + 2ζ)a6 − (1 + ζ)a2 + a−2]x3+[

(3 + 2ζ)a8 − (1 + ζ)a4 − 2
]
x4 + . . .

4 1 + 0x +
[
(1 + ζ)a4 − 1

]
x2 +

[
ζ(a6 − a2) + a−2]x3+[

(2 + ζ)a8 − ζa4 − 2
]
x4 + . . .

5 1 + 0x +
(
a4 − 1

)
x2 +

(
ζa6 + a−2)x3 +

[
(1 + ζ)a8 − ζa4 − 2

]
x4 + . . .

≥ 6 1 + 0x + (a4 − 1)x2 + a−2x3 +
[
(1 + ζ)a8 − 2

]
x4 + . . .

(2.34)

For k ≥ 6, the terms with fugacity ζ appear at a higher order than x4.
The second step is to gauge the remaining of Z2 one-form symmetry, i.e. we consider

the further quotient [SU(2)−k × [SU(2)2k × SU(2)2k]/Z2]/Z2. The index of the latter can
be obtained from (2.7) by replacing the summation as

∑
(m1,m2,m3)∈Z3

−→
1∑

p′=0
sp′

∑
m1∈

(
Z+ p′

2

)
1∑

p=0
ζp

∑
(m2,m3)∈(Z+ p

2 )×
(
Z+ p

2+
p′
2

) , (2.35)

5One can also check, in the same way as in [36, 40], that for k odd the integrand of the index (2.23)
contains fractional powers of SO(4) gauge fugacities for the magnetic fluxes (n,m1,m2) = (1/2, 1/2, 1/2).
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where ζ is the fugacity of the Z2 zero-form symmetry arising from the first step and s is
that arising from the second step.6 We deliberately used the same notation as those for the
[USp(2)−k × SO(4)2k]/Z2 theory since they can be identified with each other. As before,
the elements of {1, ζ, s, sζ} form the Z2 × Z2 zero-from symmetry. Moreover, it is clear
from (2.35) that the order of gauging of the Z2 one-form symmetry in each of the two
steps is immaterial; this confirms that the one-form symmetry of (2.20) is indeed Z2 × Z2
for k even.

For reference, we report the index for the [USp(2)−k × SO(4)2k]/Z2 theory or the
[SU(2)−k × [SU(2)2k × SU(2)2k]/Z2]/Z2 theory, with k = 4, up to order x9 as follows:

1+(−1 + a4 + a4ζ)x2 + (a−2 − a2ζ + a6ζ)x3 + (−2 + 2a8 − a4ζ + a8ζ)x4

+ (−a6 + a10 + a10ζ)x5 + (1 + a−4 − a4 − a8 + 2a12 − 2a4ζ + 2a12ζ)x6

+ (−2a−2 − a6 + a14 + 2a2ζ − 2a6ζ − a10ζ + 2a14ζ)x7

+ (−a4 − 2a8 + 3a16 − s + a4s − ζ + a4ζ − a12ζ + 2a16ζ − sζ + a4sζ)x8

+ (a−6 + 4a2 + 2a6 − a10 − a14 + 2a18

+ 2a−2s − 2a2s − 5a6ζ − a10ζ + 2a18ζ + 2a−2sζ − 2a2sζ)x9 + . . . .

(2.36)

On the other hand, for k odd, we find that the magnetic fluxes in the sector p′ = 1 contribute
zero to the index, and so the fugacity s does not appear.

Higgs and Coulomb branches. Let us now explore the Higgs and Coulomb branches
of the IR 3d N = 4 SCFT associated with this class of theories. We can take the Higgs
and Coulomb branch limit of the index in a similar way as in [41] to obtain the Higgs and
Coulomb branch Hilbert series as follows. We define

h = xa2 , c = xa−2 ,

or equivalently x = (hc)1/2 , a = (h/c)1/4 (2.37)

and substitute them in the index (2.7). In the Higgs branch limit we send c → 0 and keep
h fixed, whereas in the Coulomb branch limit we send h → 0 and keep c fixed.

Let us now apply this to (2.1) with CS levels (−k, 2k, 2k). We obtain the Higgs and
Coulomb branch limits of (2.7) to be

Higgs limit (2.1)(−k,2k,2k): PE
[
h2 + h2k−4 + h2k−3 − h4k−6

]
,

Coulomb limit (2.1)(−k,2k,2k): 1 .
(2.38)

The former is indeed the Hilbert series of C2/D̂2k−2 [42, (5.31)]. These indicate that Higgs
and Coulomb branches of the IR N = 4 interacting SCFT associated with (2.1) with CS

6Observe that we have four mutually exclusive cases, namely (1) p = 0 and p′ = 0: m1, m2, m3 are
integral and we have ζ0s0 = 1; (2) p = 1 and p′ = 0: m1 is integral, m2, m3 are half-odd-integral and we
have ζ1s0 = ζ; (3) p = 0 and p′ = 1: m1 is half-odd-integral, m2 is integral, m3 is half-odd-integral and we
have ζ0s1 = s; (4) p = 1 and p′ = 1: m1 is half-odd-integral, m2 is half-odd-integral, m3 is integral and we
have ζs.
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levels (−k, 2k, 2k) are C2/D̂2k−2 and trivial, respectively. The generators of the Higgs
branch, corresponding to h2, h2k−4 and h2k−3, are respectively

w = tr(µ2) , v = X(2,1,1)Q
4k , u = X(2,1,1)Q

4k−4µ1µ2µ3 , (2.39)

satisfying the relation

u2 + v2w = w2k−3 . (2.40)

Here X(2,1,1) denotes the bare monopole operator of flux (2, 1, 1), where it has dimension
−4 and carries the flavour charge −8 as well as gauge charges (−4k, 4k, 4k) under the
Cartan subalgebras of each SU(2)i; see around (2.28). In the above v = X(2,1,1)Q

4k denotes
the gauge invariant dressed monopole operator, where the bare monopoles with fluxes
(±2,±1,±1) are dressed with appropriate combinations of 4k chiral multiplets Q of the T2
theory. Note that X(2,1,1) contains 4k gauge indices of each SU(2)i and these are contracted
with the gauge indices in Q4k to form v. Similarly, for u, the gauge indices of X(2,1,1) are
contracted with those of Q4k−4 as well as µ1µ2µ3, and the remaining indices are contracted
with epsilon tensors.

Let us revisit the special case of k = 2, i.e. the CS levels (−2, 4, 4). Although the index
diverges, the above computation shows that the Higgs branch is C2/D̂2. This is reminiscent
of the Higgs branch of the 3d N = 4 SU(2) gauge theory with 2 hypermultiplets in the
fundamental representation. The latter is the union of two isomorphic hyperKähler cones,
each described by C2/Z2 [47, 54–56]. We believe that the Higgs branch of the case of k = 2
has the same structure.

We can also study of the Higgs and Coulomb branch limits of the USp(2)−k × SO(4)2k

gauge theory, or equivalently SU(2)−k × [SU(2)2k × SU(2)2k]/Z2, which comes from gauging
a non-anomalous Z2 subgroup of Z2

2 one-form symmetry of the aforementioned theory. We
find that the Higgs and Coulomb branch limits are7

Higgs limit (2.1)(−k,2k,2k)/Z
[1]
2 : PE

[
h2 + hk−2 + hk−1 − h2k−2

]
,

Coulomb limit (2.1)(−k,2k,2k)/Z
[1]
2 : 1 .

(2.41)

The former is indeed the Hilbert series of C2/D̂k [42, (5.31)]. This means that the Higgs
branch is C2/D̂k, and the Coulomb branch is trivial. The generators of the Higgs branch,
corresponding to h2, hk−2 and hk−1, are respectively

w = tr(µ2) , v = X(1, 1
2 , 1

2)Q
2k , u = X(1, 1

2 , 1
2)Q

2k−4µ1µ2µ3 , (2.42)

satisfying the relation

u2 + v2w = wk−1 . (2.43)

7Throughout the paper, we put superscript [1] whenever we would like to emphasise that the corresponding
symmetry is one-form.
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Here X(1, 1
2 , 1

2) denotes the bare monopole operator of flux
(
1, 1

2 , 1
2

)
, where it has dimension

−2 and carries the flavour charge −4 as well as gauge charges (−2k, 2k, 2k) under the
Cartan subalgebras of each SU(2)i. The notations and contractions of the gauge indices are
as described above.

2.2.2 General results for (k1, k2, k3) = k(pq, −pr, −qr) with r = p + q

As pointed out in [14, Footnote 7], the ATT condition (2.6) admits the general solution of
the form

k1 = pqk , k2 = −prk , k3 = −qrk ,

with r = p+ q and p, q, r, k ∈ Z ̸=0 .
(2.44)

For simplicity, we will consider the cases of p > 0, q > 0 and k > 0. The index (2.7) receives
non-trivial contributions from gauge fluxes (0, 0, 0) and (±r,±q,±p)n with n ∈ Z≥1. The
contribution from flux (0, 0, 0), up to order x4, reads

1 + 0x + (a4 − 1)x2 + a−2x3 + (a8 − 2)x4 + . . . . (2.45)

The contributions from the eight fluxes (±r,±q,±p)n correspond to the gauge-invariant
dressed monopole operators. According to the discussion around (2.28), it follows that the
bare monopole operators associated with these fluxes have dimension −2rn. The charge
under the flavour symmetry is −4rn, and the charges under the Cartan subalgebra of each
SU(2)i are 2kpqrn(±1,∓1,∓1). This bare monopole can be dressed with a combination of
2kpqrn chiral fields of the T2 theory to form gauge invariant quantities. As a consequence,
such gauge-invariant dressed monopole operators have dimension (−2 + kpq)rn and the
charge under the flavour symmetry (−4 + 2kpq)rn. Indeed, if (−2 + kpq)rn is sufficiently
large, the index (2.45) at sufficiently low order in x does not get affected by these dressed
monopole operators. In any case, using the same argument as above, we see from (2.45)
that the SCFT in the IR has enhanced N = 4 supersymmetry, regardless of the contribution
of the dressed monopole operators.

In the previous example of (−k, 2k, 2k), corresponding to p = 1, q = 1 and r = 2, we
see that the dimension of such gauge-invariant dressed monopole operators is (2k − 4)n and
the charge under flavour symmetry is (4k − 8)n. Indeed, for k = 3, in addition to (2.45),
we have the terms a4x2 and a8x4 coming from n = 1 and n = 2 (up to order x4); as
reported in (2.27). Similarly for k = 4, we have an additional term a8x4 coming from n = 1;
see (2.27). For k = 1 and k = 2, the dimensions are negative (or zero) and this is why the
indices diverge; as reported in (2.27).

One-form symmetries. Let us now discuss the one-form symmetries as well as the
topological sector in the IR. From the discussion in section 2.1, we see that if k is even,
then all of the CS levels (k1, k2, k3) are even and it follows that the anomaly action (2.14)
is an integral multiple of 2π, which means that the corresponding anomaly theory is trivial.
We thus turn to the case in which k is odd, in which case the anomaly theory is the same
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as that for k = 1. We summarise the information in the table below.

CS levels Anomaly Non-anomalous Anomalous TQFT with
(pq,−pr,−qr) matrix p (2.16) 1-form symmetry 1-form symmetry anom. symmetry

Both p, q even
(
0 0
0 0

)
Z2
2 1 —

p even, q odd
(
1 1
1 1

)
Z2 Z2 A2,1 ∼= SU(2)1 ∼= U(1)2

p odd, q even
(
0 0
0 1

)
Z2 Z2 A2,1 ∼= SU(2)1 ∼= U(1)2

Both p, q odd
(
1 0
0 0

)
Z2 Z2 A2,1 ∼= SU(2)1 ∼= U(1)2

(2.46)

We thus conclude that if both p and q are even, the theory flows to an IR N = 4 SCFT with
a non-anomalous Z2

2 one-form symmetry with no decoupled topological sector; otherwise,
it flows to an IR N = 4 SCFT with a non-anomalous Z2 one-form symmetry with the
decoupled A2,1 TQFT.

2.2.3 Higgs and Coulomb branches

We can compute the Coulomb and Higgs branch limits of (2.7) as in (2.37). The result is as
follows:

Higgs limit: PE
[
h2 + hK + hK+1 − h2K+2

]
, K = pqrk − 2r ,

Coulomb limit: 1 .
(2.47)

These indicate that the Higgs branch is C2/D̂K+2, and the Coulomb branch is a point. The
generators of the Higgs branch, corresponding to h2, hK and hK+1, are respectively

w = tr(µ2) , v = X(r,q,p)Q
2pqrk , u = X(r,q,p)Q

2pqrk−4µ1µ2µ3 , (2.48)

satisfying the relation

u2 + v2w = wK+1 . (2.49)

In the above, X(r,q,p) denotes the bare monopole operator of flux (r, q, p), where it has dimen-
sion −2r and carries the flavour charge −4r as well as the gauge charges 2pqrk(1,−1,−1)
under the Cartan subalgebras of each SU(2)i. The notations and contractions of the gauge
indices are as described below (2.40).

2.3 Cases that do not satisfy the ATT condition

In this subsection, we focus on (2.1) whose CS levels do not satisfy the ATT condition (2.6).
As can be seen from the effective superpotential (2.5), the flavour symmetry associated
with the fugacity a is explicitly broken, and the marginal operator tr(µ2) is set to zero in
the chiral ring.
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We will consider three interesting families of theories arising from M5-branes compacti-
fied on the quotient of the three-sphere S3/Γ, where Γ is a finite subgroup of SU(2). The
CS levels for each of these families are as follows [13, section 5.4.3]:

• Lens space8 L(p, q) with9 p
q = (k1 + 1)− 1

k2+1 or (k2 + 1)− 1
k1+1 . Explicitly, we take

p = |k1k2 + k1 + k2| and q = ±(k1 + 1) or ±(k2 + 1) . (2.50)

This corresponds to the CS levels (k1, k2, 1).

• S3/Dn: This corresponds to the CS levels (−2, 2, n − 2).

• S3/Em: This corresponds to the CS levels (−2, 3, m − 3).
We summarise the results in each case below.

1. Let us consider the CS levels (k1, k2, 1). We have three cases as follows:

• If p = 1, i.e. the Lens space is diffeomorphic to the three-sphere, namely L(p =
1, q) ∼= S3, then the index vanishes and IR theory is trivial.

• If p ̸= 1 and both choices of q in (2.50) satisfy either of the following conditions:10

One of the q is ±1 (mod p) and the other is divisible by p,
or both choices of q are ±1 (mod p) ,

(2.51)

then the index (2.7)a=1 is equal to unity, and so theory (2.1) flows to a TQFT.
• Otherwise, the index (2.7)a=1 takes the form

1 + 0x − x2 + 2x3 + . . . , (2.52)

where 0x indicates that there is no N = 3 flavour current and −x2 indicates that
there is one N = 3 extra SUSY-current; therefore, each theory in this subclass
flows to a 3d N = 4 interacting SCFT, where supersymmetry gets enhanced
in the IR, with a decoupled TQFT.

Using the information in section 2.1, we summarise the information about the anomalies
and TQFTs below.

CS levels Anomaly Non-anomalous Anomalous TQFT with
(k1, k2, 1) matrix p 1-form symmetry 1-form symmetry anom. symmetry

Both k1 and
(
0 1
1 0

)
1 Z2

2 A{2,2},p ≡ (Z2)0

k2 are odd in the notation of [39]

k1 is even
(
1 1
1 0

)
1 Z2

2 A{2,2},p ≡ (Z2)2

and k2 is odd

Both k1 and
(
1 1
1 1

)
Z2 Z2 A2,1 ∼= SU(2)1

k2 are even ∼= U(1)2

(2.53)

8Recall that the Lens space L(p, q) can be viewed as the quotient space S3/Zp with the identification
(z1, z2) ∼ (e2πi/pz1, e2πiq/pz2).

9According to [57, Theorem 2.5], the Lens spaces L(p, q) and L(p′, q′) are diffeomorphic if and only if
p′ = p and q′ = ±q±1 (mod p).

10These conditions lead to the following identifications: (z1, z2) ∼ (e2πi/pz1, e±2πi/pz2) or (z1, z2) ∼
(e2πi/pz1, z2), with p ̸= 1.
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Note that, in the case of k1 and k2 even, theory (2.1) flows to either

• an N = 4 SCFT with a non-anomalous Z2 one-form symmetry ⊗ A2,1, or
• a TQFT with non-anomalous Z2 one-form symmetry ⊗ A2,1

depending on the value of p/q as discussed above.

2. Let us consider the CS levels (−2, 2, n − 2) with n ≥ 4.11 The index (2.7)a=1 is unity.
This indicates that the theory flows to a TQFT in the IR.

CS levels Anomaly Non-anomalous Anomalous TQFT with
matrix p 1-form symmetry 1-form symmetry anom. symmetry

n even
(
0 0
0 0

)
Z2
2 1 −

n odd
(
1 1
1 1

)
Z2 Z2 A2,1 ∼= SU(2)1 ∼= U(1)2

(2.54)

For n even, theory (2.1) flows to a TQFT that has a non-anomalous Z2
2 one-form

symmetry, whereas for n odd, it flows to a TQFT that has a non-anomalous Z2
one-form symmetry ⊗ A2,1.

3. Let us consider the CS levels (−2, 3, m − 3) with m = 6, 7, 8. The index (2.7)a=1 is
unity, and so theory (2.1) flows to a TQFT in the IR.

CS levels Anomaly Non-anomalous Anomalous TQFT with
matrix p 1-form symmetry 1-form symmetry anom. symmetry

m even
(
1 1
1 0

)
1 Z2

2 A{2,2},p ≡ (Z2)2

m odd
(
0 0
0 1

)
Z2 Z2 A2,1 ∼= SU(2)1 ∼= U(1)2

(2.55)

For m even, theory (2.1) flows to the TQFT A{2,2},p ≡ (Z2)2, whereas for m odd, it
flows to a TQFT that has a non-anomalous Z2 one-form symmetry ⊗ A2,1.

2.3.1 Special case of (k1, k2, k3) = (k, 1, 1)
For any integer k, these CS levels do not satisfy the ATT condition.12 Let us report the
indices, up to order x10, for the cases of k ≥ 1 below:

k Index
1 1
2 1− x2 + 2x3 − 2x4 + 2x5 − 2x6 + 2x7 − 2x8 + 2x10 + . . .

3 1− x2 + 2x3 − 2x4 + x5 + x8 − 4x9 + 7x10 + . . .

≥ 4 1− x2 + 2x3 − 2x4 + x5 − 2x9 + 5x10 + . . .

(2.56)

where for k ≥ 4 the indices differ from each other at higher order than x10.
11The case of n = 3 was discussed in Case 1.
12Other CS levels that leads to the same IR SCFTs in accordance with Footnote 9 are, for example,

(k1, k2, k3) = (−k− 1, 1, 1) and (k− 1,−3, 1). We have checked that the indices of the corresponding theories
are equal. However, if k is even, the topological sector for (k, 1, 1) is (Z2)2, whereas that for (−k − 1, 1, 1)
and (k− 1,−3, 1) is (Z2)0. On the other hand, if k is odd, the situation is reverse: the topological sector for
(k, 1, 1) is (Z2)0 and that for (−k − 1, 1, 1) and (k − 1,−3, 1) is (Z2)2. We expect that different topological
sectors (despite the diffeomorphism of the three-manifolds) arise from different choices of polarisation of the
6d N = (2, 0) theory; see also [13].
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For k = 1, the theory flows to the TQFT given by the first row of (2.53). For k ≥ 2,
each of these theories flows to an interacting SCFT with enhanced N = 4 supersymmetry,
along with a decoupled TQFT, in the IR. The enhancement of supersymmetry from N = 3
to N = 4 can be deduced using the same argument as in the precedent subsection: due to
the absence of the N = 2 preserving marginal operator, the term −x2 indicates that there
is one N = 3 extra SUSY-current, rendering the enhanced supersymmetry. From (2.53), we
see that the interacting SCFT does not have a non-anomalous one-form symmetry, and the
decoupled TQFT has an anomalous Z2

2 one-form symmetry whose anomaly is given by the
first or second row of (2.53) depending whether k is odd or even.

The case of k = 2. The case of k = 2 is of particular importance: the SCFT in question
turns out to be the (rank-zero) minimal 3d N = 4 SCFT, discussed in [23, 25]. From (2.7),
the index of this theory, up to order x12, is

1− x2 + 2x3 − 2x4 + 2x5 − 2x6 + 2x7 − 2x8 + 2x10 − 2x11 + 3x12 + . . . . (2.57)

This turns out to be equal to the index of the (rank-zero) minimal 3d N = 4 SCFT,
described by 3d N = 2 U(1)−3/2 gauge theory with one chiral multiplet of charge 1 [23, 25],
namely ∮

dz

2πiz

∑
m∈Z

wmz−
3
2 mZ1/3

χ (z, m;x)

= 1− x2 + (w + w−1)x3 − 2x4 + (w + w−1)x5 − 2x6

+ (w + w−1)x7 − 2x8 + (w2 + w−2)x10 − (w + w−1)x11

+ (w2 + 1 + w−2)x12 + . . . ,

(2.58)

upon setting the fugacity w for the topological symmetry to 1. It was pointed out in [23]
that, in the U(1)−3/2 CS theory, supersymmetry gets enhanced from N = 2 to N = 4
in the IR. Viewing these as N = 2 indices, the absence of the term at order x and the
positive term at order x2 implies that there is no N = 2 preserving relevant and marginal
deformation. As pointed out by [49, 50] (see also [48]), at order x3, there are two N = 2
extra SUSY-current multiplets A1A1[1](0)3/2 that render supersymmetry enhancement. Here
we find a new description, in terms of the N = 3 gauge theory (2.1) with the CS levels
(2, 1, 1), of the minimal 3d N = 4 SCFT, along with the decoupled TQFT described in the
second row of (2.53). The N = 3 extra SUSY-current of this theory should actually be
identified with the current of the topological symmetry that is manifest in the 3d N = 2
U(1)−3/2 CS theory.

In fact, there is another theory that has a similar behaviour: the 3d N = 2 U(1)0 gauge
theory with one chiral multiplet of charge 2. This was, in fact, mentioned in [23, (36)]. The
three-sphere partition function of this theory is Z =

∫∞
−∞ dsΓh(ir + 2s),13 where r is the

R-charge of the chiral multiplet. It turns out that the value of |Z| is independent of r such
that 0 ≤ r < 1, and we find that the free energy is F ≡ − log |Z| = − log

√
5−

√
5

10 + log
√
2.

13Here we use the same convention as [32, section 5.1] and turn off the FI and mass parameters.
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According to [25, (3.6)], the free energy of the minimal 3d N = 4 SCFT is − log
√

5−
√
5

10 .
The other contribution comes from the TQFT A2,1 ∼= U(1)2, whose free energy is given
by − log

∣∣∣∫∞−∞ ds e2πis2
∣∣∣ = log

√
2. Hence, we conclude that the 3d N = 2 U(1)0 gauge

theory with one chiral multiplet of charge 2 flows to the minimal 3d N = 4 SCFT along
with the A2,1 TQFT. Indeed, the index of the U(1)0 gauge theory is given by the integral∮ dz

2πiz

∑
m∈Z wmZr

χ(z2, 2m;x) and the result turns out to be equal to (2.58).

Description in terms of the USp(2)k × Spin(4)1 gauge theory. Theory (2.1) with
the CS levels (k, 1, 1) can also be described by the 3d N = 3 USp(2)k × Spin(4)1 gauge
theory with a half-hypermultiplet in the representation [4;2]. In fact, it can be checked that
the index of this theory is equal to that of the USp(2)k ×SO(4)1 gauge theory with the same
matter content. This is because in the latter the bare monopole operators cannot be dressed
by the half-hypermultiplet to form a gauge invariant operator. Since the fugacity ζ of the Z2
zero-form magnetic symmetry does not appear in the index of the USp(2)k × SO(4)1 gauge
theory, this means it acts trivially on the local operators. This indeed signalises that the
corresponding dual one-form symmetry in the USp(2)k × Spin(4)1 gauge theory acts on the
line operators of the decoupled topological sector, in accordance with the above statement
that the interacting SCFT does not have a non-anomalous Z2 one-form symmetry. Note
that the topological sector is invisible to the index computation (2.7).

The USp(2)k ×SO(4)1 gauge theory may have a non-anomalous Z2 one-form symmetry,
depending on k. As before, the condition for the existence of a Z2 one-form symmetry of
this theory can be determined by a simple generalisation of [52, (3.27)] (see Footnote 4 with
k1 = 1, M = 2, k2 = k and N = 1):

1
4 × 1× 2 + 1

2k = 1
2(k + 1) ∈ Z ⇔ k is odd . (2.59)

We interpret this results as follows. Although theory (2.1) with the CS levels (k, 1, 1),
or equivalently the USp(2)k × Spin(4)1 gauge theory, has an anomalous Z2

2 one-form
symmetry, its Z2 diagonal subgroup is non-anomalous for k odd. This can be seen directly
from the action (2.14) of the anomaly theory: Sanom = −2π

2
∫
M4

(w(2)
1 ∪ w

(2)
2 ), where the

first two terms of (2.14) can be dropped. Upon taking w
(2)
1 = w

(2)
2 ≡ B(2), we have

Sanom = −2π
∫
M4

P(B(2))/2. Since
∫
M4

P(B(2)) is even on a spin manifold M4, this action
is an integer multiple of 2π; this indicates that the Z2 diagonal subgroup of Z2

2 one-form
symmetry is non-anomalous for k odd. On the other hand, for k even, we also have a
non-trivial contribution from the first term of (2.14), namely π(k − 1)

∫
M4

P(w(2)
1 )/2; this

renders the anomaly of the Z2 diagonal subgroup non-trivial.
For k odd, the above interpretation can be supported by an explicit realisation of the

topological sector (Z2)0; see the first row of (2.53). As discussed around [39, (2.7)], the Z2
2

one-form symmetry of the (Z2)0 TQFT is generated by the basic electric and magnetic lines
VE , VM of integer spins, where each of such lines generates a Z2 non-anomalous one-form
symmetry labelled by p = 0. Due to a non-trivial mutual braiding phase e−iπ of VE and
VM , we can always find a line b that generates a Z2 subgroup of the Z2

2 one-form symmetry
with anomaly characterised by p (with p = 0, 1 mod 2), namely b = V

p/2
E VM . We see that
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the Z2 diagonal subgroup, generated by the line VEVM , of the Z2
2 one-form symmetry is

indeed anomaly free.

2.4 Gluing with T (SU(2)) theories

Let us now include the T (SU(2)) SCFT [47] into the discussion. This theory can be realised
as an IR SCFT of the 3d N = 4 U(1) gauge theory with two hypermultiplets of charge 1
and it has an SU(2)H × SU(2)C flavour symmetry with the mixed anomaly given by the
following anomaly theory (see [21, 58, 59] and also [60])

π

∫
M4

wH
2 ∪ wC

2 , (2.60)

where wH
2 and wC

2 are, respectively, the second Stiefel-Whitney classes associated with the
SO(3)H and SO(3)C bundles that obstruct the lift to the SU(2)H and SU(2)C bundles.

As discussed in [14], an interesting generalisation of (2.1) is to gauge the diagonal
subgroup of the SU(2)i symmetries (with i = 1, 2, 3) of the T2 theory and the SU(2)C global
symmetry of the i-th copy of the T (SU(2)) theory with CS level k

(1)
i , and then gauge the

SU(2)H global symmetry of the i-th copy of the T (SU(2)) theory with CS level k
(2)
i . The

resulting theory can be represented as

T2

S

S

S

k
(1)
1

k
(2)
1

k
(1)
2 k

(2)
2

k
(1)
3 k

(2)
3

(2.61)

where S stands for the T (SU(2)) theory. More generally, we could consider the following
longer ‘tail’:

S S · · · S
k

(1)
i k

(2)
i k

(3)
i k

(ai−1)
i k

(ai)
i (2.62)

For simplicity, we focus on the configuration (2.61). As pointed out in [14, section 3.3], this
model can be realised by compactifying M5-branes on a three-manifold given by a Seifert
bundle over S2 with three singular fibers, with Seifert parameters q1/p1, q2/p2 and q3/p3,
where

pi

qi
= k

(1)
i − 1

k
(2)
i

, i = 1, 2, 3 . (2.63)

The effective superpotential after integrating out the adjoint scalars is

W = 1
2

(
q1
p1

+ q2
p2

+ q3
p3

)
tr(µ2) +

3∑
i=1

qi

pi
tr(µiµi,C) , (2.64)

where µC
i denotes the moment map of the SU(2)C global symmetry of the i-th copy of the

T (SU(2)) theory, and µi is the moment map of the SU(2)i global symmetry of the T2 theory
satisfying (2.4). The ATT condition (2.6) is then generalised to [14]

q1
p1

+ q2
p2

+ q3
p3

= 0 . (2.65)
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Similarly to (2.1), we will again show that this is a sufficient condition for supersymmetry
enhancement in the IR. However, even if (2.65) is not satisfied, there are cases in which the
IR SCFT has accidental N = 4 supersymmetry.

The index of the T (SU(2)) SCFT can be written as

IT (SU(2))(w, n|f, m|a, na;x)

=
∑
l∈Z

(w2)l
∮

dz

2πiz
zn

∏
s=±1

Z1/2
χ ((zf)sa; s(l + m) + na;x)

× Z1/2
χ ((z−1f)sa; s(−l + m) + na;x) ,

(2.66)

where (w, n) are the (fugacity, background magnetic flux) for the topological symmetry,
(f, m) are those for the flavour symmetry, and (a, na) are those for the axial symmetry.
Here we normalise the power of the fugacity w in such a way that the elementary monopole
operators V± carry the fugacity a−2w±2. In this way, the Coulomb branch moment maps
correspond to the term a−2χ

su(2)C

[2] (w)x in the index, and the Higgs branch moment maps
correspond to the term a2χ

su(2)H

[2] (f)x. The index for theory (2.61) is therefore given by

I(2.61)(a, na;x)

=
(
1
8

3∏
i=1

∮
dzi

2πizi

) ∑
(m1,··· ,m3)∈Z3

(
1
8

3∏
i=1

∮
dfi

2πifi

) ∑
(m̂1,··· ,m̂3)∈Z3

×
( 3∏

i=1
z
2k

(1)
i mi

i ZSU(2)
vec (zi;mi;x)

)( 3∏
i=1

f
2k

(2)
i m̂i

i ZSU(2)
vec (fi; m̂i;x)

)
×

∏
s1,s2,s3=±1

Z1/2
χ (zs1

1 zs2
2 zs3

3 a; s1m1 + s2m2 + s3m3 + na;x)

×
3∏

i=1
IT (SU(2))(zi, mi|fi, m̂i|a, na;x) .

(2.67)

When the ATT condition (2.65) is satisfied, the first term in (2.64) vanishes and the
U(1)a symmetry associated with the fugacity a assigned as above is a symmetry of the
theory, since µi carries charge +2 and µi,C carries charge −2. However, if (2.65) is not
satisfied, we set a = 1 and na = 0 in the above expression of the index.

2.4.1 ’t Hooft anomalies of the one-form symmetries

Gauging the SU(2)H and SU(2)C global symmetries of T (SU(2)) respectively with CS levels
kH and kC leads to the Z2,H × Z2,C one-form symmetry arising from the centres of SU(2)H

and SU(2)C . The ’t Hooft anomaly of such a one-form symmetry is characterised by the
following anomaly theory (see [25, (3.62)])

π

∫
M4

[
kH

P(w(2)
H )
2 + kC

P(w(2)
C )
2 + w

(2)
H ∪ w

(2)
C

]
, (2.68)
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where w
(2)
H/C are the two-form background fields for the Z2,H/C one-form symmetries. The

first two terms arise as in (2.11) and the last term comes from (2.60). Upon gauging with
the T2 theory as in (2.61), we have six SU(2) gauge groups but Z5

2 one-form symmetry due
to the screening effect of the matter of the T2 theory. The ’t Hooft anomalies of the latter
are given by

π

∫
M4

[ 2∑
r=1

3∑
i=1

k
(r)
i

P(B(r)
i )
2 +

3∑
i=1

B
(1)
i ∪ B

(2)
i

]
with

3∑
i=1

B
(1)
i = 0 , (2.69)

where B
(r)
i is the two-form background field associated with the SU(2) gauge group with

CS level k
(r)
i , with i = 1, 2, 3 and r = 1, 2.14 The last constraint comes from (2.12).

2.4.2 Summary of the results

We observe the following result:

For given ratios pi/qi (with i = 1, 2, 3), the index (2.67) of theory

(2.61) is independent of specific values of k
(ai)
i in (2.63).

(2.70)

As an immediate consequence, the following statement holds:

If pi/qi ∈ Z for all i = 1, 2, 3, the index (2.67) of theory (2.61)
is equal to the index (2.7) of theory (2.1) with ki = pi/qi.

(2.71)

We remark that these statements are true, independently of whether the ATT con-
dition (2.65) is satisfied. This means that the aforementioned theories flow to the same
interacting SCFT in the IR. This observation may not be a surprise from the geometrical
perspective, since both theories are associated with Seifert manifolds that are diffeomorphic
to each other. Note that the decoupled topological sectors in the IR may be different, since
the anomalous one-form symmetries determined by (2.14) and (2.69) may be different. We
have actually seen this phenomenon in Footnote 12.

For simplicity, we examine the indices of the following theory

T2

S
k

(1)
1

k
(2)
1

k2

k3

(2.72)

14We denote the two-form background fields for the one-form symmetries differently from the other sections
in order to avoid cluttered notation.
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with various CS levels as follows.

k
(1)
1 k

(2)
1

p1
q1

k2 k3 ATT (2.65) Index
−4 −1 −3 6 6 ✓ (2.27) with k = 3
3 2 5

2 −5 −5 ✓ 1 + (2a4 − 1)x2 + (a6 − a2 + a−2)x3+
2 −2 (3a8 − a4 − 2)x4 + . . .

3 3 8
3 −4 −8 ✓ 1 + (a4 − 1)x2 + a−2x3 +

2(a8 − 1)x4 + . . .

2 2 3
2 −3 −3 ✓ diverges

1 3 2
3 1 1 ✗ 1 + 0x − x2 + 2x3 − 2x4 + . . .

2 2 3
2 1 1 ✗ 1 + 0x − x2 + 2x3 − 2x4 + . . .

1 −2
−2 −2 −3

2 1 1 ✗ 1

1 7 6
7 −2 3 ✗ 1 + 0x + 0x2 + x3 − x4 + . . .

(2.73)

For reference, we also provide the contribution of zero gauge magnetic fluxes:

1 + 0x + (a4 − 1)x2 + a−2x3 + (a8 − 2)x4 + . . . . (2.74)

The term a4x2 indicates that there is one marginal operator coming from the zero gauge
flux sector, the term 0x indicates the absence of the N = 3 flavour symmetry current, and
so the term −x2 indicates that there is one N = 3 extra SUSY-current. Therefore, when
the ATT condition is satisfied, the IR SCFT has enhanced N = 4 supersymmetry. However,
when the index diverges, we cannot conclude the IR behaviour from it.

When the ATT condition is not satisfied, there are cases in which the IR SCFTs have
enhanced N = 4 supersymmetry; these are explicitly shown in the fifth and sixth
rows of table (2.73). This can be deduced by the same reasoning as above. Note that the
marginal operator discussed below (2.74) is set to zero in the chiral ring by an F -term
equation (cf. section 2.3) and so we do not have a positive term at order x2. However, in
the final row of table (2.73), we find no indication of supersymmetry enhancement from the
index, assuming that there is no additional marginal operator. If the index is unity, then
the IR theory is a TQFT.

Next, let us report some indices for theory (2.61) with various CS levels such that the
ATT condition (2.65) is satisfied:

k
(1)
1 k

(2)
1

p1
q1

k
(1)
2 k

(2)
2

p2
q2

k
(1)
3 k

(2)
3

p3
q3

Index
−2 1 −3 7 1 6 7 1 6 (2.27) with k = 3
−3 1 −4 9 1 8 9 1 8 (2.27) with k = 4
−4 1 −5 11 1 10 11 1 10 (2.27) with k = 5

(2.75)

These results support the statement (2.71). In all of these cases, the IR interacting SCFT
has enhanced N = 4 supersymmetry.
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Finally, we observe that if a pair of Seifert fibres with parameters qi/pi and q̃i/p̃i are
isomorphic by an orientation-preserving diffeomorphism, namely [57, Prop. 2.1]

1. after possibly permuting indices, qi/pi = q̃i/p̃i (mod 1) for each i, and

2. ∑i qi/pi =
∑

i q̃i/p̃i,

then the indices of the theories associated with these Seifert fibres are equal. In other words,
the corresponding IR SCFTs are the same.

3 Theories with two T2 building blocks

Let us now couple two copies of the T2 theory together by gauging a diagonal subgroup of
the two SU(2)i flavour symmetries (with i = 1, 2, 3), belonging to different copies of the T2
theories, with CS levels ki. We denote this diagrammatically as

T2 T2

k1

k2

k3

(3.1)

We denote by µ
(I)
i , with i = 1, 2, 3 and I = 1, 2, the moment maps of the SU(2)i flavour

symmetry of the I-th T2 theory. Their explicit expression for each I is given by (2.3). We
also have the analogue of (2.4), namely

tr(µ(I) 2
1 ) = tr(µ(I) 2

2 ) = tr(µ(I) 2
3 ) ≡ tr(µ(I) 2) (3.2)

for each I = 1, 2. The effective superpotential after integrating out the adjoint scalar fields
is (see [14, (2.16)])

W = 1
2

( 1
k1

+ 1
k2

+ 1
k3

) [
tr
(
µ(1) 2

)
+ tr

(
µ(2) 2

)]
+

3∑
i=1

1
ki

tr
(
µ
(1)
i µ

(2)
i

)
. (3.3)

When the ATT condition (2.6) is satisfied, the first term vanishes and there is a flavour
symmetry that assigns charge +1 to every chiral field of the first T2 theory and charge −1
to every chiral field of the second T2 theory. As a consequence, µ

(1)
i and µ

(2)
i carry charges

+2 and −2, respectively. We denote by a the fugacity associated with this flavour symmetry.
We will shortly see that, if the CS levels obey the ATT condition, the flavour symmetry
algebra is actually su(2)a. On the other hand, if the ATT condition (2.6) is not satisfied,
this flavour symmetry is explicitly broken by the first term of the superpotential.

The index for theory (3.1) is given by

I(3.1)(a, na;x) =
(
1
8

3∏
i=1

∮
dzi

2πizi

) ∑
(m1,m2,m3)∈Z3

( 3∏
i=1

z2kimi
i ZSU(2)

vec (zi;mi;x)
)

×
∏

s1,s2,s3=±1
Z1/2

χ (zs1
1 zs2

2 zs3
3 a; s1m1 + s2m2 + s3m3 + na;x)

×
∏

s′1,s′2,s′3=±1
Z1/2

χ (zs′1
1 z

s′2
2 z

s′3
3 a−1; s′1m1 + s′2m2 + s′3m3 − na;x) .

(3.4)
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As before, we will set na = 0 and drop na from the argument in I(3.1)(a, na;x) when we
study the series expansion of the index. For the cases that do not satisfy the ATT condition,
a should be set to 1 and na should be set to zero.

Without the CS levels, theory (3.1) can be viewed as 3d reduction of the 4d N = 2
A1 class S theory associated with a Riemann surface of genus 2 with no puncture. The
one-form symmetry of the latter is Z2 × Z2; see [61, (3.12)]. With the CS levels turned on,
their ’t Hooft anomalies are characterised by (2.15) and (2.16).

3.1 Cases that satisfy the ATT condition

We consider theories (3.1) with CS levels satisfying (2.6).

3.1.1 Special case of (k1, k2, k3) = (−k, 2k, 2k)

This theory is equivalent to the USp(2)−k × Spin(4)2k gauge theory with two copies of
bifundamental half-hypermultiplets in the representation [2;4]:

USp(2)−k Spin(4)2k
(3.5)

It is indeed closely related to the ABJ theory [10], described by the USp(2)−k × O(4)2k

gauge theory with the same matter content. We can start from the USp(2)−k × SO(4)2k

variant of the theory: gauging the Z2 zero-form charge conjugation symmetry associated
with the SO(4) gauge group leads to the original ABJ theory, whereas gauging the Z2
zero-form magnetic symmetry leads to theory (3.5). This type of arguments was used
to studied variants of ABJM [8] and ABJ theories in [35, 36, 52, 62]. The index of the
USp(2)−k × SO(4)2k variant is

IUSp(2)−k×SO(4)2k
(ζ, a;x)

= 1
8

∑
(m1,m2)∈Z2

∑
n∈Z

 2∏
j=1

∮
dvj

2πivj
v
2kmj

j

 ζm1+m2

∮
du

2πiu
u−2kn

×ZSO(4)
vec (v1, v2;m1,m2;x)ZUSp(2)

vec (u; n;x)

×
2∏

i=1

∏
s1,s2=±1

Z1/2
χ (vs1

i us2a; s1mi + s2n;x)Z1/2
χ

(
vs1

i us2a−1; s1mi + s2n;x
)

.

(3.6)

where ζ (with ζ2 = 1) denotes the fugacity for the Z2 zero-form magnetic symmetry and
we have set the fugacity χ for the charge conjugation symmetry to 1. The index of (3.5)
can be obtained by gauging the magnetic symmetry as follows:

I(3.5)(a;x) =
1
2
[
IUSp(2)−k×SO(4)2k

(ζ = 1, a;x) + IUSp(2)−k×SO(4)2k
(ζ = −1, a;x)

]
. (3.7)

Let us first consider the index of the USp(2)−k × SO(4)2k variant of the ABJ theory, or
equivalently the SU(2)−k × [SU(2)2k × SU(2)2k]/Z2 theory, where a Z2 one-form symmetry
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of (3.1) is gauged. We tabulate the results, up to order x4, below.

CS levels Index (3.6)
(−k, 2k, 2k)

k = 1 1 +
[
1 + ζχ

su(2)
[2] (a)

]
x +

[
(2 + ζ)χsu(2)

[4] (a) + 2− χ
su(2)
[2] (a)

]
x2+{

(1 + 2ζ)χsu(2)
[6] (a)−

[
ζχ

su(2)
[4] (a) + (3 + 2ζ)χsu(2)

[2] (a) + ζ
]}

x3+{
(3 + 2ζ)χsu(2)

[8] (a) + 3(1 + ζ)χsu(2)
[2] (a) + 1 + 2ζ −[

(2 + ζ)χsu(2)
[6] (a) + (1 + ζ)χsu(2)

[4] (a)
]}

x4 + . . .

k = 2 1 + x +
[
(1 + ζ)χsu(2)

[4] (a) + 2− χ
su(2)
[2] (a)

]
x2+[

ζχ
su(2)
[6] (a) + 2− (2 + ζ)χsu(2)

[2] (a)
]
x3+{

(2 + ζ)χsu(2)
[8] (a) + 2−

[
(1 + ζ)χsu(2)

[6] (a) + ζχ
su(2)
[4] (a) + ζχ

su(2)
[2] (a)

]}
x4 + . . .

k = 3 1 + x +
[
χ
su(2)
[4] (a) + 2− χ

su(2)
[2] (a)

]
x2 +

[
ζχ

su(2)
[6] (a) + 2− 2χ

su(2)
[2] (a)

]
x3+{

(1 + ζ)χsu(2)
[8] (a) + 2−

[
χ
su(2)
[6] (a) + ζχ

su(2)
[4] (a)

]}
x4 + . . .

k = 4 1 + x +
[
χ
su(2)
[4] (a) + 2− χ

su(2)
[2] (a)

]
x2 + 2

[
1− χ

su(2)
[2] (a)

]
x3+{

(1 + ζ)χsu(2)
[8] (a) + 2− χ

su(2)
[6] (a)

}
x4 + . . .

(3.8)

For k ≥ 5, the terms with fugacity ζ appear at a higher order than x4. The index of the case
of k = 1 was studied in [35, (3.80)], where it was pointed out that the USp(2)−1 × SO(4)2
ABJ theory is dual to another variant of the ABJ theory, namely the [U(3)4 ×U(1)−4]/Z2
gauge theory with two bifundamental hypermultiplets, whose IR SCFT has enhanced
N = 6 supersymmetry. The indices for the cases of k ≥ 2 indicate that supersymmetry
gets enhanced to N = 5. This can be seen as follows. All of such indices have the
coefficient of x equal to 1 indicating that there is one N = 3 flavour current, but since
there is the term −χ

su(2)
[2] (a) = −(a2 + 1 + a−2) at order x2, the term −1 corresponds to

the N = 3 flavour current and the terms −a2 and −a−2 correspond to the N = 3 extra
SUSY-currents, rendering supersymmetry enhancement from N = 3 to N = 5.

Now we report the index of theory (3.1) with CS levels (−k, 2k, 2k), or equivalently (3.5),
given by I(3.5)(a;x) up to order x4 below.

CS levels Index I(3.5)(a;x)
(−k, 2k, 2k)

k = 1 1 + x +
{
2
[
χ
su(2)
[4] (a) + 1

]
− χ

su(2)
[2] (a)

}
x2 +

[
χ
su(2)
[6] (a)− 3χ

su(2)
[2] (a)

]
x3+{

3
[
χ
su(2)
[8] (a) + χ

su(2)
[2] (a)

]
+ 1−

[
2χ

su(2)
[6] (a) + χ

su(2)
[4] (a)

]}
x4 + . . .

k = 2 1 + x +
[
χ
su(2)
[4] (a) + 2− χ

su(2)
[2] (a)

]
x2 + 2

[
1− χ

su(2)
[2] (a)

]
x3+{

2
[
χ
su(2)
[8] (a) + 1

]
− χ

su(2)
[6] (a)

}
x4 + . . .

k ≥ 3 1 + x +
[
χ
su(2)
[4] (a) + 2− χ

su(2)
[2] (a)

]
x2+

2
[
1− χ

su(2)
[2] (a)

]
x3 +

[
χ
su(2)
[8] (a) + 2− χ

su(2)
[6] (a)

]
x4 + . . .

(3.9)
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For k ≥ 3 the indices differ from each other at a higher order than x4. By the same reasoning
as before, the indices indicate that the IR SCFT has enhanced N = 5 supersymmetry.

The ’t Hooft anomalies of the one-form symmetry of these theories are as presented
in (2.30). For k odd, theory (3.1) with CS levels (−k, 2k, 2k) or equivalently (3.5) flows to
an interacting N = 5 SCFT with a non-anomalous Z2 one-form symmetry, along with the
TQFT A2,1.15 For k even, the theory flows to an interacting N = 5 SCFT that has a Z2

2
one-form symmetry and there is no decoupled topological sector.

The above indices receive the contributions of the gauge invariant dressed monopole
operators, whose properties are similar to that discussed around (2.28). Explicitly, the bare
monopole operator with magnetic fluxes (m1, m2, m3) has dimension

∆(m1, m2, m3) =
1
2

∑
s1,s2,s3=±1

∣∣∣∣∣
3∑

i=1
simi

∣∣∣∣∣−
3∑

i=1
2|mi| , (3.10)

is neutral under the flavour symmetry and it carries charge 2kimi under the Cartan
subalgebra of each SU(2)i gauge factor.

We can compute the Coulomb branch and Higgs branch limits of the index as in (2.37).
We find that they are equal, as expected for SCFTs with N ≥ 5 supersymmetry. In
particular, we have

Higgs limit (3.1)(−k,2k,2k) = Coulomb limit (3.1)(−k,2k,2k)

= PE
[
t2 + t2k + t2k+1 − t4k+2

]
, with t = h or c .

(3.11)

This is the Hilbert series of C2/D̂2k+2, indicating that the Higgs and Coulomb branches are
isomorphic to this singularity. The generators of the Higgs branch are

w = tr(µ(1) 2) , v = X(2,1,1)
(
Q(1)

)4k
, u = X(2,1,1)

(
Q(1)

)4k−4
µ
(1)
1 µ

(1)
2 µ

(1)
3 , (3.12)

satisfying the relation
u2 + v2w = w2k+1 . (3.13)

The generators of the Coulomb branch can be obtained simply by replacing the superscript
(1) by (2). Note that the generators u and v are the bare monopole operator X(2,1,1),
whose dimension is zero, dressed by appropriate chiral fields from each copy of T2 such
that the combinations become gauge invariant. Indeed, from (3.9), we see that the dressed
monopoles that are related to v contribute the term χ

su(2)
[4k] (a)x

2k to the index.
We can also examine the USp(2)−k ×SO(4)2k version of the ABJ theory, or equivalently

SU(2)−k× [SU(2)2k×SU(2)2k]/Z2, which comes from gauging a non-anomalous Z2 subgroup
of the Z2

2 one-form symmetry of the aforementioned theory. In this case, we have

Higgs limit (3.1)(−k,2k,2k)/Z
[1]
2 = Coulomb limit (3.1)(−k,2k,2k)/Z

[1]
2

= PE
[
t2 + tk + tk+1 − t2k+2

]
, with t = h or c .

(3.14)

15For k odd, we can infer from (2.31) that the USp(2)−k × SO(4)2k theory does not admit a Z2 quotient.
This means that, for k odd, the non-anomalous one-form symmetry of the USp(2)−k × Spin(4)2k is Z2,
which we can gauge in order to obtain the USp(2)−k × SO(4)2k theory, and there is no further Z2 one-form
symmetry that we can gauge in the latter.
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This is the Hilbert series of C2/D̂k+2. The generators of the Higgs branch are

w = tr(µ(1) 2) , v = X(1, 1
2 , 1

2)
(
Q(1)

)2k
, u = X(1, 1

2 , 1
2)
(
Q(1)

)2k−4
µ
(1)
1 µ

(1)
2 µ

(1)
3 , (3.15)

satisfying the relation
u2 + v2w = wk+1 . (3.16)

Again, the Coulomb branch generators can be obtained by replacing the superscript (1)
by (2). From (3.8), we see that the dressed monopoles that are related to v contribute the
term ζχ

su(2)
[2k] (a)x

k to the index. This explains why, when k ≥ 5, the contribution from the
dressed monopole operators appears at a higher order than x4. In particular, for k = 1,
these operators are related to N = 3 flavour currents that are necessary for the enhanced
N = 6 supersymmetry in the IR.

3.1.2 General results for (k1, k2, k3) = k(pq, −pr, −qr) with r = p + q

We consider the CS levels (2.44) for the theories formed by gauging two copies of the T2
theory. The information about the one-form symmetries and their ’t Hooft anomalies are
as tabulated in (2.46).

Let us now consider the index (3.4). The contribution from flux (m1, m2, m3) = (0, 0, 0),
up to order x4, reads

1 + x +
[
χ
su(2)
[4] (a) + 2− χ

su(2)
[2] (a)

]
x2

+ 2
[
1− χ

su(2)
[2] (a)

]
x3 +

[
χ
su(2)
[8] (a) + 2− χ

su(2)
[6] (a)

]
x4 + . . . .

(3.17)

The term at order x is the contribution from

ϵα1α′
1ϵα2α′

2ϵα3α′
3Q(1)

α1α2α3Q
(2)
α′

1α′
2α′

3
. (3.18)

This is the moment map operator associated with the U(1) N = 3 flavour symmetry current.
The marginal operators contributing the positive terms, namely χ

su(2)
[4] (a) + 2, at order x2

are
Q((I1)Q(I2)Q(I3)Q(I4))S , tr(µ(1)

1 µ
(2)
1 ) , tr(µ(1)

2 µ
(2)
2 ) , (3.19)

where tr(µ(1)
3 µ

(2)
3 ) can be written as a linear combination of the latter two due to the

F -terms. Also, in the first quantities, the contractions of gauge indices, which we have
suppressed, are done in such a way that I1, . . . I4 are completely symmetric; the latter is
denoted by ()S . Note also that the first quantities contain tr(µ(1) 2) and tr(µ(2) 2).

There is also a contribution from eight gauge fluxes (m1, m2, m3) = (±r,±q,±p) corre-
sponding to the gauge-invariant dressed monopole operators. According to the discussion
around (3.10), the bare monopoles associated with these fluxes have dimension 0, are neutral
under the flavour symmetry, and the charges under the Cartan subalgebra of each SU(2)i

are 2kpqr(±1,∓1,∓1). They have to be dressed with 2kpqr chiral fields from each copy of
T2, or to form gauge invariant quantities. The gauge invariant dressed monopole operators
therefore contribute to the index as χ

su(2)
[2kpqr](a)x

kpqr. If kpqr is sufficiently large, the index
at sufficiently low order does not get affected by these operators. In any case, using the
same argument as above, we see from (3.17) that the SCFT in the IR has enhanced N = 5
supersymmetry, regardless of the contribution of the dressed monopole operators.
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3.1.3 Higgs and Coulomb branches

For the theories discussed in section 3.1.2, the Higgs and Coulomb branch limits of the
index are both equal to the Hilbert series of C2/D̂K+2, namely

PE
[
t2 + tK + tK+1 − t2K+2

]
, K = pqrk , t = h or c . (3.20)

The generators of the Higgs or Coulomb branch are

w = tr(µ(I) 2) , v = X(r,q,p)(Q(I))2pqrk , u = X(r,q,p)(Q(I))2pqrk−4µ
(I)
1 µ

(I)
2 µ

(I)
3 , (3.21)

with I = 1 or 2. They satisfy the relation

u2 + v2w = wK+1 . (3.22)

3.2 Cases that do not satisfy the ATT condition

From the effective superpotential (3.3), we see that the first term can be viewed as an
N = 3 preserving exactly marginal deformation of the N = 5 theory whose superpotential
contains only the second term. The index of the latter, excluding the contribution from the
dressed monopoles, is given by (3.17), which indeed indicates N = 5 supersymmetry. The
aforementioned exactly marginal deformation explicitly breaks the su(2)a flavour symmetry,
corresponding to the term −χ

su(2)
[2] (a)x2 in the index, to its Cartan subalgebra. The latter

can be seen from the term +x of the index which indicates that the N = 3 flavour symmetry
is U(1).16 From the index (3.17) with a = 1, we have

1 + x + (5− 1)x2 − 4x3 + 4x4 + . . . , (3.23)

where we see that 7 marginal operators as listed in (3.19) get reduced to 5 due to the
two F -term relations coming from the non-vanishing first term in the superpotential (3.3).
Indeed this is due to the terms a2 and a−2 in the term −χ

su(2)
[2] (a)x2 being set to 1. In

general, we expect that the cases that do not satisfy the ATT condition have N = 3
supersymmetry. Although we have not taken into account the contributions of the dressed
monopole operators, we do not expect the latter to make supersymmetry enhanced.

Nevertheless, the dressed monopole operators can make the flavour symmetry enhanced.
An example is the case of CS levels (k1, k2, k3) = (−1, 1, 1), whose index is

1 + 3x + (9− 3)x2 − 7x3 + 16x4 + . . . . (3.24)

The contributions to 3x come from (3.18), along with the dressed monopole operators
X(1,1,0)Q

(1)Q(2) and X(1,0,1)Q
(1)Q(2). We propose that these form a triplet of the enhanced

SO(3) flavour symmetry which is indeed the moment map of this symmetry. For convenience,
16To see the action of this symmetry, we view the moment maps µ(I) as 2 × 2 symmetric matrices

µ(I) =
(

a(I) b(I)

b(I) c(I)

)
. Under this U(1) symmetry, the elements a(I) and c(I) carry charges +1 and −1

respectively, whereas b(I) carry charge 0. Indeed, the terms tr(µ(I) 2) = 2a(I)c(I) − 2b(I) 2 and tr(µ(1)µ(2)) =
a(2)c(1) + a(1)c(2) − 2b(1)b(2) in the superpotential are neutral under this flavour symmetry, as it should be.
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let denote by b the fugacity of this SO(3) flavour symmetry, and so the term 3x can
be rewritten as χ

su(2)
[2] (b)x. Note that the square of such dressed monopole operators

contribute to the index at order x2; therefore, the term (9 − 3)x2 can be rewritten as[
χ
su(2)
[4] (b) + 4− χ

su(2)
[2] (b)

]
x2. The term b0 = 1 in χ

su(2)
[4] (b), together with +4, accounts for

the 5 marginal operators, as mentioned above; the remaining positive terms are marginal
operators that are dressed monopole operators. We do not see any contribution of the
N = 3 extra SUSY-current, and so we conclude that the theory has N = 3 supersymmetry.

3.3 Gluing with T (SU(2)) theories

Let us consider gauging with the T (SU(2)) theories in a similar fashion to the theories
discussed in section 2.4. In particular, we focus on the following class of theories:

T2

S

S

S

T2

k
(1)
1 k

(2)
1

k
(1)
2 k

(2)
2

k
(1)
3 k

(2)
3

(3.25)

where S stands for the T (SU(2)) theory. The SU(2)i global symmetry left T2 theory is
diagonally gauged with the SU(2)C symmetry of the i-th copy of the T (SU(2)) theory with
CS level k

(1)
i (with i = 1, 2, 3), and the SU(2)i global symmetry right T2 theory is diagonally

gauged with the SU(2)H symmetry of the i-th copy of the T (SU(2)) theory with CS level
k
(2)
i . The analogue of the ATT condition (2.65) is the following [14]:

q1
p1

+ q2
p2

+ q3
p3

= 0 ,
q′1
p1

+ q′2
p2

+ q′3
p3

= 0 , (3.26)

where
pi

qi
= k

(1)
i − 1

k
(2)
i

,
pi

q′i
= k

(2)
i − 1

k
(1)
i

. (3.27)

For convenience, we will also refer to (3.26) as the ATT conditions. The index of these
theories is given by the following expression:

I(3.25)(a, na;x)

=
(
1
8

3∏
i=1

∮
dzi

2πizi

) ∑
(m1,··· ,m3)∈Z3

(
1
8

3∏
i=1

∮
dfi

2πifi

) ∑
(m̂1,··· ,m̂3)∈Z3

×
( 3∏

i=1
z
2k

(1)
i mi

i ZSU(2)
vec (zi;mi;x)

)( 3∏
i=1

f
2k

(2)
i m̂i

i ZSU(2)
vec (fi; m̂i;x)

)
×

∏
s1,s2,s3=±1

Z1/2
χ (zs1

1 zs2
2 zs3

3 a; s1m1 + s2m2 + s3m3 + na;x)

×
∏

s1,s2,s3=±1
Z1/2

χ (zs1
1 zs2

2 zs3
3 a−1; s1m1 + s2m2 + s3m3 − na;x)

×
3∏

i=1
IT (SU(2))(zi, mi|fi, m̂i|a, na;x) .

(3.28)
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As before, when both conditions in (3.26) are satisfied, there is a flavour symmetry that
assigns charge +1 to the chiral fields of the first copy of the T2 theory, charge −2 to
the Coulomb branch moment map of T (SU(2)), +2 to the Higgs branch moment map of
T (SU(2)), and charge −1 to the chiral fields of the second copy of the T2 theory. If one of
the conditions in (3.26) is not satisfied, this symmetry is explicitly broken and we should
set a = 1 and na = 0 in the above expression.

’t Hooft anomalies of the one-form symmetries. Similarly to (2.69), here we have
six SU(2) gauge groups but Z4

2 one-form symmetry due to the screening effect of the matter
of two copies of the T2 theory. The ’t Hooft anomalies are characterised by

π

∫
M4

[ 2∑
r=1

3∑
i=1

k
(r)
i

P(B(r)
i )
2 +

3∑
i=1

B
(1)
i ∪ B

(2)
i

]

with
3∑

i=1
B

(1)
i =

3∑
i=1

B
(2)
i = 0 ,

(3.29)

where B
(r)
i is the two-form background field associated with the SU(2) gauge group with

CS level k
(r)
i , with i = 1, 2, 3 and r = 1, 2. The last constraint comes from (2.12).

Summary of the results. For simplicity, we focus on the following theories

T2

S

T2

k
(1)
1 k

(2)
1

k2

k3

(3.30)

with various CS levels. We find the following results:

• When both conditions in (3.26) are satisfied, IR SCFT always has enhanced N = 4
supersymmetry.

• When either of the conditions (3.26) is not satisfied, we generally do not find an
indication of supersymmetry enhancement from the index.

We report the indices as follows.

k
(1)
1 k

(2)
1

p1
q1

, p1
q′1

k2 k3 (3.26) Index
2 2 3

2 , 3
2 −1 3 ✓ ✓ 1 + (a4 + a−4 + 2− 1)x2 − (2a2 + 2a−2)x3+

(2a8 + 2a−8 − 1)x4 + . . .

2 2 3
2 , 3

2 −3 −3 ✓ ✓ 1 + (a4 + a−4 + 2− 1)x2 + (a6 − 2a2 − 2a−2 + a−6)x3+
(2a8 − a4 − 2− a−4 + 2a−8)x4 + . . .

1 −1 2, −2 1 1 ✗ ✗ 1 + 0x + 3x2 − 4x3 + 3x4 + . . .

−2 −1 −1,−1
2 1 1 ✗ ✓ 1 + x + 4x2 − 4x3 + 13x4 + . . .

−2 −1 −1,−1
2 2 2 ✓ ✗ 1 + 0x + 4x2 − 3x3 + 3x4 + . . .

(3.31)

Let us first consider the cases in which both conditions in (3.26) are satisfied. The
contribution of the gauge fluxes that are all zero is

1 + 0x + (a4 + a−4 + 2− 1)x2 − (2a2 + 2a−2)x3 + (a8 + a−8)x4 + . . . . (3.32)
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Comparing with the first two rows in the above table, we see that the contributions of
the higher monopole fluxes generally appear at higher order of x. Since the coefficient
of x vanishes, there is no N = 3 flavour current. The current associated with the U(1)a

flavour symmetry, contributing the term −x2, acts as the N = 3 extra-SUSY current. The
latter implies that the IR SCFTs have enhanced N = 4 supersymmetry. Due to the
vanishing coefficient of x, the index does not satisfy the sufficient conditions to have N ≥ 5
supersymmetry [50]. The marginal operators contributing the terms a4 + a−4 + 2 at order
x2 are

a±4 : ϵa1b1ϵc1d1ϵa2c2ϵb2d2ϵa3c3ϵb3d3Q(I)
a1a2a3Q

(I)
b1b2b3

Q(I)
c1c2c3Q

(I)
d1d2d3

, I = 1, 2 ,

1 : ϵa1b1ϵĉ1d̂1ϵa2c2ϵb2d2ϵa3c3ϵb3d3Q(1)
a1a2a3Q

(1)
b1b2b3

Q
(2)
ĉ1c2c3

Q
(2)
d̂1d2d3

,

1 : ϵa1b1ϵĉ1d̂1ϵa2c2ϵb2d2ϵa3d3ϵb3c3Q(1)
a1a2a3Q

(1)
b1b2b3

Q
(2)
ĉ1c2c3

Q
(2)
d̂1d2d3

.

(3.33)

The other gauge invariant combinations with R-charge 2 are related to these combinations
by the identities of the epsilon tensors or the F -term conditions.

However, in the cases in which one or both of the conditions (3.26) is not satisfied, the
U(1)a flavour symmetry is explicitly broken, and so the marginal operators listed in (3.33)
may be related to each other by the F -terms (cf. sections 2.3 and 3.2). In these cases, we
do not see clear evidence of supersymmetry enhancement from the index.

4 Theories with T3 building blocks

We now consider theories whose building blocks are the 3d T3 theory. Let us start by
summarising the important information of the T (SU(3)) and T3 theories. The T (SU(3))
theory has an SU(3)H × SU(3)C global symmetry with a mixed anomaly characterised by

2π

3

∫
M4

wH
2 ∪ wC

2 , (4.1)

where w
H/C
2 is the second Stiefel-Whitney class which measures the obstruction to lifting

the (SU(3)/Z3)H/C bundle to the SU(3)H/C bundle. The 3d N = 4 T3 theory can then
be constructed by gauging the diagonal SU(3)/Z3 subgroup of the SU(3)3H symmetry
coming from three copies of the T (SU(3)) theory. Note that the SU(3)3C manifest flavour
symmetry of the T3 theory gets enhanced to E6 in the IR. The moment map in the adjoint
representation of E6 can be decomposed into fields in representations of the SU(3)3 maximal
subgroup as follows:

78 → [8;1;1] ⊕ [1;8;1] ⊕ [1;1;8] ⊕ [3;3;3] ⊕ [3;3;3]
Xi1

j1
Y i2

j2
Zi3

j3
Qi1i2i3 Q̃i1i2i3

. (4.2)
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They satisfy the following relations (see [63, section 2.2] and [64, section 5.3]):

tr1(X2) = tr2(Y 2) = tr3(Z2) ≡ M2 ,

tr1(X3) = tr2(Y 3) = tr3(Z3) ≡ M3 ,

Xi1
j1
Qj1i2i3 = Y i2

j2
Qi1j2i3 = Zi3

j3
Qi1i2j3 ,

Xj1
i1
Q̃j1i2i3 = Y j2

i2
Q̃i1j2i3 = Zj3

i3
Q̃i1i2j3 ,

Qi1i2i3Q̃j1j2i3 =
3∑

l=0
vl

2−l∑
m=0

(X2−l−m)i1
j1
(Y m)i2

j2
, v0 = 1 , v1 = 0 , (X0)i

j = (Y 0)i
j = δi

j ,

1
2Q

i1i2i3Qj1j2j3ϵi2j2k2ϵi3j3k3 = Q̃k1k2k3δi1
p1Xj1

q1 ϵp1q1k1 ,

1
2Q̃i1i2i3Q̃j1j2j3ϵi2j2k2ϵi3j3k3 = Qk1k2k3δp1

i1
Xq1

j1
ϵp1q1k1 ,

(4.3)

where tri denotes the trace over the fundamental representation of the SU(3)i symmetry
(with i = 1, 2, 3) of the T3 theory.

4.1 One T3 building block

The theory of our interest is obtained by gauging each SU(3)C factor of the SU(3)3C symmetry
with CS levels k1, k2 and k3. Similarly to (2.1), we denote this theory by

T3

k1

k2

k3

(4.4)

’t Hooft anomalies of the one-form symmetry. Since the faithful manifest flavour
symmetry of the T3 theory is SU(3)3/(Z3 × Z3) [45, (4.40)], it follows that theory (4.4) has
a Z2

3 one-form symmetry. The ’t Hooft anomaly of the one-form symmetry in theory (4.4)
with CS levels (k1, k2, k3) is characterised by the 4d anomaly theory whose action is [46]

2π

3

∫
M4

3∑
i=1

ki
P(w(2)

i )
2 , with

3∑
i=1

w
(2)
i = 0 , (4.5)

where w
(2)
i is the two-form background field for the Z3 one-form symmetry arising from the

SU(3)i gauge group of (4.4).

Superconformal indices. The index of the T (SU(3)) theory is given by

IT (SU(3))(w, n|f , m|a, na;x)

= 1
2!

∑
h∈Z+ϵ(m)

∮
du

2πiu
wh
1un1

∑
l1,l2∈Z+ϵ(m)

∮ ( 2∏
α=1

dzα

2πizα
zn2

α

)
wl1+l2
2

×ZU(2)
vec ({z1, z2}; {l1, l2};x)×

2∏
α=1

∏
s=±1

Z
1
2
χ

(
a(uz−1

α )s; s(h − lα) + na;x
)

×
3∏

i=1

2∏
α=1

∏
s=±1

Z
1
2
χ

(
a(zαf−1

i )s; s(lα − mi) + na;x
)

,

(4.6)
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where (w, n), (f , m) and (a, na) are (fugacities, background fluxes) for the topological,
flavour, and axial symmetries respectively. In the above, ϵ(m) denotes the fractional part
of the background fluxes mi. The U(N) vector multiplet contribution is

ZU(N)
vec (z;n;x) = x

−
∑

1≤i<j≤N
|ni−nj | ∏

1≤i ̸=j≤N

(1− (−1)ni−nj x|ni−nj |ziz
−1
j ) . (4.7)

Note that the index of the T (SU(3)) theory is invariant under the mirror symmetry in the
following sense:

ÎT (SU(3))({w1;w2}, {n1, n2}|{f1, f2}, {m1, m2}|a, na;x)
= ÎT (SU(3))({f1, f2}, {m1;m2}|{w1, w2}, {n1, n2}|a−1,−na;x) ,

(4.8)

where we have defined

ÎT (SU(3))({w1, w2}, {n1;n2}|{f1, f2}, {m1, m2}|a, na;x)
:= IT (SU(3))({w1w

−1
2 , w−2

1 w−1
2 }, {n1 − n2,−2n1 − n2}|

{f1, f2, f−1
1 f−1

2 }, {m1, m2,−m1 − m2}|a, na;x) .

(4.9)

The index of the T3 theory is therefore

IT3(w(1), n(1)|w(2), n(2)|w(3), n(3)|a, na;x)

= 1
3!

2∑
r=0

∑
m1,m2∈Z+ r

3

∮ ( 2∏
α=1

dfα

2πifα

)
ZSU(3)

vec (f ;m;x)

×
3∏

I=1
ÎT (SU(3))(w(I), n(I)|f , m|a, na;x) ,

(4.10)

where the SU(3) vector multiplet contribution is given by

ZSU(3)
vec ({z1, z2}; {n1, n2};x) = ZU(3)

vec
(
{z1, z2, z−1

1 z−1
2 }; {n1, n2,−n1 − n2};x

)
. (4.11)

The index of the theory of our interest (4.4) is then

I(4.4)(a, na;x)

= 1
(3!)3

3∏
i=1

∑
n

(i)
1 ,n

(i)
2 ∈Z

∮
dw

(i)
1

2πw
(i)
1

dw
(i)
2

2πw
(i)
2

(w(i)
1 )ki(2n

(i)
1 +n

(i)
2 )(w(i)

2 )ki(n(i)
1 +2n

(i)
2 )

×
[ 3∏

i=1
ZSU(3)

vec

(
w(i);n(i);x

)]
× IT3(w(1), n(1)|w(2), n(2)|w(3), n(3)|a, na;x) .

(4.12)

As before, if the ATT condition (2.6) is not satisfied, we set a = 1 and na = 0.
Due to the technicality of the computation, let us discuss the results only in certain

cases. We first focus on the theories that satisfy the ATT condition and we set na = 0. The
contribution from the fluxes n

(i)
1 , n

(i)
2 = 0 for all i = 1, 2, 3 is

1 + 0x + (a4 − 1)x2 + (a6 − a2 + a−2 + a−6)x3 + (a8 − 1− a−4 + a−8)x4 + . . . . (4.13)
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This index holds when the CS levels are sufficiently high so that the contributions from
non-zero fluxes n

(i)
1 , n

(i)
2 appear at a higher order.17 The term 0x implies that there is no

N = 3 flavour symmetry current. Therefore, the term −x2 indicates that there is one extra
SUSY-current, implying that the IR SCFT has enhanced N = 4 supersymmetry. The term
a4x2 corresponds to the marginal operator M2, defined in (4.3). When the ATT condition
is not satisfied, we set a = 1 in (4.13). In this case, the index does not provide any evidence
for supersymmetry enhancement.

4.2 Two T3 building blocks

Similarly to (3.1), we can couple two copies of the T3 theory together by gauging a diagonal
subgroup of the two SU(3)i flavour symmetries (with i = 1, 2, 3), belonging to different
copies of the T3 theories, with CS levels ki.

T3 T3

k1

k2

k3

(4.14)

This theory has a Z2
3 one-form symmetry, whose ’t Hooft anomaly is given by (4.5). The

index of this theory is given by
I(4.14)(a, na;x)

= 1
(3!)3

3∏
i=1

∑
n

(i)
1 ,n

(i)
2 ∈Z

∮
dw

(i)
1

2πw
(i)
1

dw
(i)
2

2πw
(i)
2

(w(i)
1 )ki(2n

(i)
1 +n

(i)
2 )(w(i)

2 )ki(n(i)
1 +2n

(i)
2 )

×
[ 3∏

i=1
ZSU(3)

vec

(
w(i);n(i);x

)] ∏
s=±1

IT3(w(1), n(1)|w(2), n(2)|w(3), n(3)|as, sna;x) .

(4.15)

Once again, the fugacity a and background magnetic flux na for the flavour symmetry
should be set to 1 and 0 respectively if the ATT condition (2.6) is not satisfied.

Due to the technicality of the computation, we set na = 0 and we report only the
contributions of the zero gauge fluxes n

(i)
1 , n

(i)
2 = 0:

1 + 0x +
(
a4 + a−4 + 4− 1

)
x2 + 2

(
a6 + a−6

)
x3 +

[
2
(
a8 + a−8

)
+ 3

]
x4 + . . . . (4.16)

Note that this is the index of theory (4.14) with sufficiently large CS levels k1,2,3. As before,
the term 0x indicates that there is no N = 3 flavour symmetry current, and so the term
−1x2 indicates that there is one extra SUSY-current. The IR SCFT indeed has enhanced
N = 4 supersymmetry. The positive terms at order x2 correspond to the following marginal
operators:

a±4 : M(1)
2 , M(2)

2 ,

4 : tr1
(
X(1)X(2)

)
, tr2

(
Y (1)Y (2)

)
, tr3

(
Z(1)Z(2)

)
and Q(1)i1i2i3Q̃(2)

i1i2i3
,

(4.17)

where we have used the same notation as in (4.3) with an extra superscript (I) such that
I = 1, 2 to denote the I-th copy of the T3 theory.

17For example, the index for theory (4.4) with CS levels (−1, 2, 2) is 1 + 0x + (a4 − 1)x2 + (a6 − a2 +
a−2 − 3a−6)x3 + (a8 − 1− 5a−4 + 2a−8)x4 + . . .. On the other hand, for CS levels (−3, 6, 6), the index up
to order x4 is given by (4.13).

– 34 –



J
H
E
P
0
9
(
2
0
2
3
)
0
6
0

Acknowledgments

We express our gratitude to Matteo Sacchi and Alessandro Tomasiello for a number of
useful discussions and for carefully reading through the manuscript as well as providing us
with insightful comments. N.M. thanks the visiting research fellowship of the CNRS and
the LPTENS, ENS Paris, where part of this project was conducted.

A Theories with four T2 building blocks

In this appendix, we consider theories obtained by gauging four copies of the T2 theory in
the way depicted below:

T
(1)
2

T
(2)
2

T
(3)
2

T
(4)
2

−k

2k

2k

−k

2k

2k (A.1)

where each line with label k denotes the gauging with CS level k of the diagonal SU(2)
subgroup of the SU(2) × SU(2) flavour symmetry belonging to a pair of T2 theories.
Theory (A.1) admits an equivalent quiver description in terms of the USp(2)−k×Spin(4)2k×
USp(2)−k×Spin(4)2k circular quiver with a bifundamental half-hypermultiplet corresponding
to each line between adjacent gauge nodes.

Spin(4)2k

USp(2)−k

Spin(4)2k

USp(2)−k
(A.2)

Let us compute the index of our theory, which is given by

I(A.1) (a, na;x)

= 1
64

∑
(m1,...,m6)∈Z6

∮ ( 6∏
b=1

dzb

2πizb

)

× z−2km1
1 z4km2

2 z4km3
3 z−2km4

4 z4km5
5 z4km6

6

6∏
b=1

ZSU(2)
vec (zb;mb;x)

∏
s1,s2,s3=±1

×
[
Z

1
2
χ (zs1

1 zs2
2 zs3

3 a; s1m1 + s2m2 + s3m3 + na;x)Z
1
2
χ

(
zs1
2 zs2

3 zs3
4 a−1; s1m2 + s2m3 + s3m4 − na;x

)
×Z

1
2
χ (zs1

4 zs2
5 zs3

6 a; s1m4 + s2m5 + s3m6 + na;x)Z
1
2
χ

(
zs1
5 zs2

6 zs3
1 a−1; s1m5 + s2m6 + s3m1 − na;x

)]
,

(A.3)

where a and na are the fugacity and background magnetic flux for the flavour symmetry that
assigns charge +1 to the chiral fields of theories T (1) and T (3) and −1 to those of theories
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T (2) and T (4). For simplicity, we will set na = 0 upon computing the series expansion of
the index.

On the other hand, the index of theory (A.2) can be obtained starting from the one of
the USp(2)−k × SO(4)2k ×USp(2)−k × SO(4)2k circular quiver theory.

SO(4)2k

USp(2)−k

SO(4)2k

USp(2)−k
(A.4)

I(A.4)(ζ1, ζ2, a;x)

= 1
64

∑
m1,...,m4,n1,n2∈Z

∮ ( 4∏
b=1

dvb

2πivb
v2kmb

b

)
ζm1+m2
1 ζm3+m4

2

∮ ( 2∏
b=1

dub

2πiub
u−2knb

b

)
×

ZSO(4)
vec (v1, v2;m1,m2;x)ZUSp(2)

vec (u1; n1;x)×
ZSO(4)

vec (v3, v4;m3,m4;x)ZUSp(2)
vec (u2; n2;x)×

2∏
b=1

∏
s1,s2=±1

Z
1
2
χ
(
vs1

b us2
1 a; s1mb + s2n1;x

)
Z

1
2
χ

(
vs1

b us2
2 a−1; s1mb + s2n2;x

)
×

4∏
b=3

∏
s1,s2=±1

Z
1
2
χ

(
vs1

b us2
1 a−1; s1mb + s2n1;x

)
Z

1
2
χ
(
vs1

b us2
2 a; s1mb + s2n2;x

)
,

(A.5)

where ζ1 and ζ2 are the fugacities associated with the Z2 zero-form magnetic symmetries
of the two SO(4)2k gauge factors, and the fugacities for the zero-form charge conjugation
symmetries are set to unity. In order to obtain the index of the circular quiver (A.2) with
Spin gauge groups, we have to sum over both ζ1 = ±1 and ζ2 = ±1 and divide by four:

I(A.2) (a;x) =
1
4

∑
ζ1,ζ2=±1

I(A.4) (ζ1, ζ2, a;x) . (A.6)

It is easy to check that the indices (A.3) and (A.6) are equal if we perform the following
map between the gauge fugacities and magnetic fluxes of the two theories:

z1 = u1 , z22 = v1v2 , z23 = v1v
−1
2 ,

z4 = u2 , z25 = v3v4 , z26 = v3v
−1
4 ,

m1 = n1 , 2m2 = m1 +m2 , 2m3 = m1 −m2 ,

m4 = n2 , 2m5 = m3 +m4 , 2m6 = m3 −m4 .

(A.7)

It can now be checked that the IR SCFT in question exhibits N = 4 supersymmetry
enhancement, as expected from the general prescription described in the main text, by
computing the index as a series expansion in the variable x. We report the results up to
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order x4 for various values of k:

k = 1 : I(A.1)(a;x) = I(A.2)(a;x)

= 1 +
(
2a4 + 2a−4 + 3

)
x2 − 4

(
a2 + a−2

)
x3

+
(
6a8 + 3a4 + 3a−4 + 6a−8 + 7

)
x4 + . . . ,

k = 2 : I(A.1)(a;x) = I(A.2)(a;x)

= 1 +
(
2a4 + 2a−4 + 3

)
x2 − 4

(
a2 + a−2

)
x3

+
(
3a8 + 2a4 + 2a−4 + 3a−8 + 4

)
x4 + . . . .

(A.8)

Note that for k ≥ 2 the indices differ at a higher order than x4 in the expansion. We notice
that the coefficient of x vanishes, meaning that there is no N = 3 flavour current. The
coefficient of x2 should be written as

2a4 + 2a−4 + 4− 1 , (A.9)

where the term −1 is the contribution of the N = 3 extra SUSY-current that leads to
N = 4 supersymmetry enhancement. The marginal operators, contributing the positive
terms 2a4 + 2a−4 + 4, can be listed as follows:

2a4 : tr(µ(1) 2) and tr(µ(3) 2) ,

2a−4 : tr(µ(2) 2) and tr(µ(4) 2) ,

4 : gauge invariant combinations of two chiral fields Q
(I)
iIjIkI

of T
(I)
2

and two chiral fields Q
(J)
iJ jJ kJ

of T
(J)
2 , with I = 1, 3 and J = 2, 4 .

(A.10)

We can gauge the one-form symmetry of the theory (A.1) to obtain the SU(2)−k ×
[SU(2)2k × SU(2)2k] /Z2 × SU(2)−k × [SU(2)2k × SU(2)2k] /Z2 gauge theory, as depicted
below.

T
(1)
2

T
(2)
2

T
(3)
2

T
(4)
2

−k

2k

2k

−k

2k

2k

Z[1]
2

Z[1]
2

(A.11)

It turns out that this theory is equivalent to the circular quiver theory (A.4). The index of
theory (A.11) can be obtained from (A.3) by replacing the summation as

∑
(m1,...,m6)∈Z6

−→
1∑

p=0
ζ1

p
1∑

p′=0
ζ2

p′
∑

m1,m4∈Z2

∑
m2,m3∈(Z+ p

2 )
2

∑
m5,m6∈

(
Z+ p′

2

)2

, (A.12)
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where ζ1 and ζ2 are the fugacities of the zero-form symmetry of (A.11). The result of this
procedure is equal to the index (A.5).18 Let us report the results for various values of k up
to order x4. For k = 1, the expansion of the index up to order x4 reads

I(A.11)(ζ1, ζ2, a;x) = I(A.4)(ζ1, ζ2, a;x)

k = 1 : 1 +
[
(2 + ζ1 + ζ2 + ζ1ζ2)

(
a4 + a−4

)
+ 3 + ζ1 + ζ2 + ζ1ζ2

]
x2

+
[
(ζ1 + ζ2 + 2ζ1ζ2)a6 + (−4− ζ1 − ζ2 + 2ζ1ζ2)

(
a2 + a−2

)
+ (ζ1 + ζ2 + 2ζ1ζ2)a−6

]
x3

+
[
(6 + 3ζ1 + 3ζ2 + 3ζ1ζ2)a8 + (3− ζ1 − ζ2 − 3ζ1ζ2)

(
a4 + a−4

)
+(6 + 3ζ1 + 3ζ2 + 3ζ1ζ2)a−8 + 7− 3ζ1ζ2

]
x4 + . . . ,

(A.13)

For k = 2, 3 we get

k = 2 : 1 +
(
2a4 + 2a−4 + 3

)
x2 +

[
(ζ1 + ζ2)a6 − 4

(
a2 + a−2

)
+ (ζ1 + ζ2)a−6

]
x3

+
[
(3 + ζ1 + ζ2 + ζ1ζ2)a8 + (2 + ζ1ζ2)

(
a4 + a−4

)
+(3 + ζ1 + ζ2 + ζ1ζ2)a−8 + 4 + ζ1ζ2

]
x4 + . . . ,

k = 3 : 1 +
(
2a4 + 2a−4 + 3

)
x2 − 4

(
a2 + a−2

)
x3

+
[
(3 + ζ1 + ζ2)a8 + 2

(
a4 + a−4

)
+ (3 + ζ1 + ζ2)a−8 + 4

]
x4 + . . . .

(A.14)

For k ≥ 4 the fugacities ζ1 and ζ2 appear at a higher order than x4.
From the expansion of the indices, it is clear that we have two independent Z2 fugacities

ζ1 and ζ2 satisfying ζ1
2 = ζ22 = 1. Hence, the elements of {1, ζ1, ζ2, ζ1ζ2} corresponding to

the possible choices of p = {0, 1} and p′ = {0, 1} in (A.12) indicate the presence of the
Z2 × Z2 zero-form symmetry in theory (A.4) = (A.11), and hence the Z2 × Z2 one-form
symmetry of theory (A.1) = (A.2).

From the point of view of the USp(2)−k ×SO(4)2k ×USp(2)−k ×SO(4)2k circular quiver
theory (A.4), it is expected by a similar argument that leads to (2.32) that there is a
non-anomalous Z2 one-form symmetry for k even. In principle, one can further gauge this
one-form symmetry, generalising what we did in (2.36).

B Mixed gauge/zero-form monopole operators

In this appendix, we examine the mixed gauge/zero-form monopole operators with fractional
magnetic flux for both the Cartan subalgebra of the gauge group and the U(1)a flavour

18Indeed, by taking into account the map (A.7), ζ1 and ζ2 are such that

ζ1
m1±m2 =

{
1 m1 ±m2 ∈ Zeven ←→ m2, m3 ∈ Z←→ p = 0
ζ1 m1 ±m2 ∈ Zodd ←→ m2, m3 ∈ Zodd

2 ←→ p = 1
,

ζ2
m3±m4 =

{
1 m3 ±m4 ∈ Zeven ←→ m5, m6 ∈ Z←→ p′ = 0
ζ2 m3 ±m4 ∈ Zodd ←→ m5, m6 ∈ Zodd

2 ←→ p′ = 1
.
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symmetry group [59, 65] for theories (2.1) with one T2 building block such that the ATT
condition (2.6) is satisfied. We adopt the same method as described in [36] (see also [40])
which relies on the supersymmetric index. In particular, we take na = 1/2 in (2.7) and
examine the contribution of the gauge fluxes m1,2,3 satisfying the Dirac quantisation
condition, namely ±m1 ± m2 ± m3 + na ∈ Z, i.e.

∑
i

mi ∈ Z+ 1
2 . (B.1)

Let us report the result for various theories with one T2 building block below.

CS levels Gauge fluxes Contribution to the index (2.7)
(m1, m2, m3)

(−1, 2, 2)
(
1
2 , 0, 0

)
0(

0, 1
2 , 0
)

X2 ≡
(
1
2 + 1

2a2

)
x +

(
a4

2 − 1− 1
a2 − 1

2a4

)
x5 + O(x7)(

0, 0, 1
2

)
X2(

1
2 , 1

2 , 1
2

)
0

(−2, 4, 4)
(
1
2 , 0, 0

)
X−2 ≡ x

2a2 +
(

a2

2 − 1
a2 − 1

2a4

)
x5 + O(x7)(

0, 1
2 , 0
)

X4 ≡
(

a2

2 + 1
2

)
x2 +

(
1
2 + 1

2a2

)
x4 +

(
a6

2 − a2 − 1
2

)
x6 + O(x7)(

0, 0, 1
2

)
X4(

1
2 , 1

2 , 1
2

) (
a3

8 + a
4 + 1

8a

)
x3/2 +

(
1
8a + 1

8a3

)
x7/2 + O(x11/2)

= 1
4

[
{x1/2(a5 + a3) + . . .}X−2 + {x−1/2a−1 + . . .}X4

]
(−2, 3, 6)

(
1
2 , 0, 0

)
X−2(

0, 1
2 , 0
)

0(
0, 0, 1

2

)
X6 ≡

(
a4

2 + a2

2

)
x3 +

(
a2

2 + 1
2

)
x5 +

(
a8

2 − a4 + 1
2

)
x7 + O(x9)(

1
2 , 1

2 , 1
2

)
0

(−4, 6, 12)
(
1
2 , 0, 0

)
X−4 ≡

(
1

2a2 + 1
2

)
x4 +

(
1

2a4 + 1
2a6

)
x6 +

(
1

2a6 + a4

2 − 3
2a2 − 3

2

)
x8 + O(x10)(

0, 1
2 , 0
)

X6(
0, 0, 1

2

)
X12 ≡

(
a10

2 + a8

2

)
x6 +

(
a8

2 + a6

2

)
x8 +

(
a14

2 − a10 + a6

2

)
x10 + O(x12)(

1
2 , 1

2 , 1
2

) (
a11

8 + a9

4 + a7

8

)
x11/2 +

(
a9

8 + a7

4 + a5

8

)
x15/2 + O(x19/2)

(B.2)

From the above results, we observe that whenever all CS levels are even, the contribution
of the gauge fluxes (12 , 1

2 , 1
2) contains odd powers of a. This corresponds to a different

quantisation in comparison to, for example (2.27), where only even powers of a appear.
Note, however, that this is not the case if there exists an odd CS level. The presence of
such mixed gauge/zero-form monopole operators, when all CS levels are even, potentially
implies a mixed anomaly between a Z2 one-form symmetry and the U(1)a symmetry [59, 65]
(see also [36, 40]). In our case, such a mixed anomaly is characterised by the 4d anomaly
action π

∫
M4

w(2) ∪ ca
1, where w(2) is the two-form background field for a Z2 subgroup of the
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Z2 × Z2 non-anomalous one-form symmetry and ca
1 is the first Chern class of a background

U(1)a flavour symmetry bundle.19

A similar analysis can be performed for theories (3.1) with two T2 building blocks
such that the ATT condition (2.6) is satisfied. The only difference is that in the present
case the faithful flavour symmetry group is SO(3)a. This can be seen from the discussion
in the previous subsection, where only representations of su(2)a with even Dynkin labels
appear in the index. To determine whether there is a mixed anomaly involving the flavour
symmetry, we fix na = 1/2 in (3.4); this amounts to turning on the second Stiefel-Whitney
class wa

2 that obstructs the lift from the SO(3)a bundle to the SU(2)a bundle. The Dirac
quantisation condition requires that the gauge fluxes m1,2,3 satisfy ±m1±m2±m3±na ∈ Z,
i.e. ∑i mi ∈ Z+ 1

2 . We tabulate the contributions of some of such gauge fluxes in certain
examples below.

CS levels Gauge fluxes Contribution to the index (3.4)
(m1, m2, m3)

(−2, 3, 6)
(
1
2 , 0, 0

)
X−2 ≡

(
1
2 + 1

2a2

)
x2 +

(
a2

2 + 3
2 + 3

2a2 + 1
2a4

)
x5 + O(x7)(

0, 1
2 , 0
)

0(
0, 0, 1

2

)
X6 ≡

(
a6

2 + a4

2

)
x4 +

(
−a4

2 − a2

2

)
x5 +

(
a4

2 + 3a2

2 + 1
)

x6 + O(x7)(
1
2 , 1

2 , 1
2

)
0

(−4, 6, 12)
(
1
2 , 0, 0

)
X−4 ≡

(
1

2a2 + 1
2a4

)
x3 +

(
−1

2 − 1
2a2

)
x4 +

(
a2

2 + 1 + 1
2a2

)
x5 + O(x6)(

0, 1
2 , 0
)

X6(
0, 0, 1

2

)
X12 ≡

(
a12

2 + a10

2

)
x7 +

(
−a10

2 − a8

2

)
x8 + O(x9)(

1
2 , 1

2 , 1
2

) (
a14

8 + a12

4 + a10

8

)
x7 +

(
−a12

8 − a10

4 − a8

8

)
x8 + O(x9)

(B.3)

In contrast to the precedent example of one T2 building block, we see that only even powers
of a appear in the above. We therefore do not observe a mixed anomaly between a Z2
one-form symmetry and the SO(3)a flavour symmetry.
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