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Abstract

The authors propose an innovative technique for dealing with optimal shape design prob-
lems that exploits the flexibility of the virtual element method in generating meshes
composed of general polygonal and polyhedral elements. Virtual element method and finite
element method can coexist on the same discretized domain; therefore, the possibility of
dealing with hanging nodes and gluing sub-domain meshes is ensured. Accordingly, the
shape synthesis of a magnetic pole is considered as the case study. It is shown that the
proposed technique is effective in handling the shape variations dictated by an algorithm
of evolutionary optimisation.

1 INTRODUCTION

The virtual element method (VEM) is a recent and success-
ful method for the numerical solution of partial differential
equations [1]. VEM can be considered as an evolution of the
finite element method (FEM) that can make use of very general
decompositions of the computational domain into polygonal
or polyhedral elements. Moreover, VEM allows for a generic
degree of accuracy, that corresponds to the polynomial degree
in standard FEM, and exhibits an excellent robustness with
respect to mesh distortions. As a consequence of this flexibility,
VEM may be particularly useful, for example, in the presence
of solutions with varying regularity, for grid adaptation, moving
meshes, and in discretizing complex geometries. VEM and FEM
share the same degrees of freedom on edges, hence they can
coexist on the same mesh. In the case of triangular elements, it is
advisable to use FEM because, apart from the linear case, VEM
on triangles has more internal degrees of freedom with respect
to FEM. Furthermore, general polygons do not have a reference
element, so the computation of local stiffness matrices is more
expensive with respect to FEM. Hence, it is recommended to
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use virtual elements only in those parts of the domain where
they are really needed.

In the framework of magnetostatic problems, the VEM was
developed both for the potential and the Kikuchi formula-
tions in a linear and non-linear case, see, for instance, [2,
3]. Furthermore, such kind of problems attracted other poly-
topal technologies such as hybrid high order (HHO) and
discontinuous Galerkin (DG) methods, see, for instance, [4–8].

We focus on the VEM and we exploit such a method in an
optimal shape design problem. We consider the benchmark
problem [9, 10] that is one of the classical optimal shape design
problem of a magnetic pole for synthesising a uniform field
profile in a region of interest. We take a fixed background mesh
composed of equal squares, and at each step of the iteration we
‘cut’ the squares following the computed shape of the magnetic
pole. The cuts of the squares generate polygons which are
treated as VEM. The idea of cutting elements is not new, see,
for instance, [11]. Our approach is different, since VEM can
deal with general polygonal and polyhedral elements and does
not require ad hoc constructions depending on the shape of
the cut.
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2 MAGNET SHAPE DESIGN
OPTIMISATION: AN OVERVIEW

Shaping a magnetic pole for synthesising a field is a typical prob-
lem in computational electromagnetism and can be considered
as a benchmark against which testing various methods. In gen-
eral, a set of points describing the iron/air boundary are to be
varied in position in order that the magnetic field over a pre-
scribed region of space tends to a given distribution. Typical
distribution are a uniform field in a dipole, uniform field gra-
dient for a quadrupole or some other criterion like, for instance,
the field circulation or the field flux to be equal to a given value.
A uniform field within a region of interest is usually a basic
requirement for many applications, like it happens, for example,
in the area of nuclear magnetic resonance or clinical hyper-
thermia based on magnetic fluids. Pioneering contributions to
optimal shape design methods can be found, for example, in [9,
12] where the optimal shape design of an iron-cored electro-
magnet is developed, while the synthesis of a distributed field
winding is considered in [13].

To achieve the goal of field syntheses, the optimal shape
design model can be reformulated as an inverse problem which
is subsequently solved by means of an iterative technique of
numerical optimisation. A suitable functional is the infinity
norm of the discrepancy between actual and prescribed flux
density in the region of interest: The unknown is the pole shape,
belonging to the class of uniformly Lipschitzian open sets in
ℝ2 or ℝ3, which minimises the functional. There are many
strategies related to such issue. In [14, 15] a parametric opti-
misation strategy was used to design a coreless winding as the
field source. In [10] a non-parametric approach was proposed in
order to optimise the shape of a ferrite core. In all these cases,
given a feasible shape, that is, a shape fulfilling the problem con-
straints, the relevant field-analysis problem has to be solved via
a finite element (FE) model in two or three dimensions.

Whatever the optimisation strategy, during the optimisation
procedure, the mesh discretising the magnetic pole is modified
so the problem of handling a deformed mesh arises. Based on
the traditional approach, at each iteration new triangles are gen-
erated. Indeed, if the area of a triangle becomes too large, any
triangle can be split into three new triangles using its centre as a
new node [16].

Alternatively, the triangle can be split into four new triangles
using the edge midpoints as new nodes, and then the neighbour-
ing triangles are accordingly sub-divided into two new elements.
In doing this, a limitation on the angle width is introduced in
order to avoid the creation of too sharp triangles. In particu-
lar, in [10] two strategies for updating the profile of the pole
shape were implemented: In the fixed-grid strategy the region
to synthesise is subdivided into several square sub-regions,
whose material property can be attributed to either air or fer-
rite. This way, the unknown profile is approximated by means
of a staircase-shaped line, and a structured mesh discretises
the synthesis region: The material permeability (either ferrite or
air) is updated, and the field analysis is repeated. This way, the
FE mesh does not change, while the distribution of magnetic

permeability changes (fixed topology, variable material). Alter-
natively, in the variable-grid strategy, the unknown profile is
approximated by means of a polygonal line defined by a number
of moving nodes, and the FE mesh is accordingly regenerated.

In contrast, the VEM approach to field analysis suggests a
completely new way of handling the shape variation during the
optimisation procedure: The key idea is to start from a uniform
mesh composed, for example, of quadrilateral elements regu-
larly spaced, and then to introduce suitable cuts by means of
lines which join vertices or edges of the quadrilateral mesh. This
way, the cutting line splits the original quadrilateral element into
a pair of polygonal elements which are naturally handled in the
VEM model; in the case of the magnet design, the cutting line
represents the air–ferrite boundary defining the magnet shape
dictated by the optimisation algorithm at the current iteration.

We consider the optimal design of a large-size electromagnet
for applications in magneto-fluid hyperthermia (MFH). Indeed,
MFH represents an important application of magnets in med-
ical therapy; however, the particular case study does not limit
the general validity of the proposed method by any means.
Actually, magnetic fluids have a good potential for clinical
hyperthermia due to their capability of concentrating power.
The heat generated by magnetic nanoparticles suspended in a
fluid depends on the squared value of an applied time-harmonic
field so nanoparticles excited by an AC field can be exploited
to treat tumoral issues [17–20]. Indeed, experiments with MFH
have shown that human tumour cells are homogeneously inac-
tivated after AC magnetic field excitation of magnetic fluids
injected in the tumour region [21]. Since the power density gen-
erated by nanoparticles is a function of the applied magnetic
field [20–22], field uniformity and field strength are a twofold
prerequisite for homogeneously heating the tumour tissue at
a therapeutic temperature, without damaging the neighbouring
healthy tissues.

A typical device for clinical MFH is characterised by a mag-
netic core made of ferrite and exhibiting three limbs. Two
series-connected current-carrying coils are wound on the cen-
tral limb which exhibits a wide air gap, where the patient is
accommodated during the treatment; the system has proven its
capability and practicability for heat treatment in deep regions
of the human body [21]. So, the design challenge is to shape the
magnetic pole in such a way that a uniform field of prescribed
strength takes place in the region of interest.

3 THE DEVICE MODEL

A quarter of the model geometry here considered is shown in
Figure 1: A ferrite core fills in regionΩ , while an air gap 30 cm
high and 20 cm long incorporates the region of interestΩ , that
is, an air region where the degree of uniformity of flux density
is controlled. A non-linear material is considered in the model.
More specifically, we consider the non-linear relation between
H and 𝜇r of iron silicon with width of 0.5 mm [23]. The comple-
mentary domain includes the winding cross-section Ω , which
is composed of 16 turns and carries a sinusoidal current of 150
A rms at 100 kHz, and an air region, Ω.
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FIGURE 1 Domain to consider

Although in MFH applications the magnet is excited by a
sinusoidal current and, as a consequence, a time-harmonic field
takes place, here we consider a static case, that is, the current is
constant in time and generates a static field. This choice does
not imply a loss of generality since we aim at shaping just the
field pattern and we are not interested in the simulation of
induced current in the magnetic core. Moreover, any material
exhibits a magnetic property in terms of tissue permeability
which, at least in principle, could have an influence on the field
pattern, and human body is no exception. This is the so-called
load effect, that is, the reaction of organic material to an external
magnetic field, the one driven by the electromagnet. It is worth
noting that this load effect is patient dependent. Indeed, the per-
meability of tissues depends on some factors like, for instance,
temperature. Furthermore, the field pattern is also influenced
by shape and volume of the body which are again patient-
dependent factors. Therefore, for the sake of generality, in the
model we assumed to neglect the presence of human body.

4 POTENTIAL FORMULATION

We consider the classical potential formulation in a two-
dimensional domain Ω, which consists of searching for the
scalar field A, that is, the potential associated with the magnetic
induction field B = curl A, such that

curl (𝜇−1 curl A) = j in Ω, (1)

plus boundary conditions on 𝜕Ω. The two-dimensional curl

and the scalar curl are defined as

curl A ∶= (𝜕2A, −𝜕1A) and curl A ∶= 𝜕1A2 − 𝜕2A1 ,

(2)

respectively. In Equation (1), the scalar 𝜇 represents the material
permeability, while j is the assigned current density which in two
dimensions is a scalar quantity. It turns out to be

curl (𝜇−1 curl A) = 𝜕1(−𝜇−1𝜕1A) − 𝜕2(𝜇−1𝜕2A)

= − div(𝜇−1∇A) ,

so Equation (1) becomes

−div(𝜇−1∇A) = j in Ω,

subject to appropriate boundary conditions. For our problem
we take homogeneous Dirichlet boundary conditions along x =

0, x = l1, and y = l2, while homogeneous Neumann boundary
conditions along y = 0, see Figure 1.

5 THE VEM FOR THE POISSON
PROBLEM

As we have seen, the potential formulation for magnetostatics
consists of a single Poisson’s equation with variable diffusion.
In this section, we will describe the VEM in the simpler case
of Poisson’s equation with constant diffusion [1]. The same
numerical method can be easily extended to a piecewise con-
stant diffusion, while for the extension to the general case and
the complete convergence analysis we refer to [24]. Moreover, it
has been shown in [25] that the VEM can also be extended to
the approximation of field oriented formulations.

Solving Poisson equation with constant diffusion and homo-
geneous Dirichlet boundary condition amounts to find the
solution of the problem:{

−Δu = f in Ω

u = 0 on 𝜕Ω
(3)

which can be written in variational form as follows:

⎧⎪⎨⎪⎩
find u ∈ H 1

0 (Ω) such that

∫
Ω

∇u ⋅ ∇v dx = ∫
Ω

fv dx for all v ∈ H 1
0 (Ω).

(4)

Classical conforming FEMs require the following steps:

1) discretize the domain Ω with non-overlapping triangles {T };
2) construct in each triangle through suitable basis functions a

local space V k
h

(T ) made of polynomials up to degree k;
3) assemble the global space V k

h
(Ω) ⊂ H 1

0 (Ω) by gluing
together in a continuous fashion the local spaces, respecting
global boundary conditions;

4) solve the approximate variational problem

⎧⎪⎨⎪⎩
find uh ∈ V k

h
(Ω) such that

∫
Ω

∇uh ⋅ ∇vh dx = ∫
Ω

fvh dx for all vh ∈ V k
h

(Ω).
(5)
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340 DASSI ET AL.

If k is an integer and  ⊆ ℝ2, we define ℙk() as the space
of polynomials of degree up to k defined on . In the following,
 will be a segment or a polygon.

We start with k = 1.

5.1 The Courant triangle

Given a triangle T , we define the local FE space of degree 1 on
T by

V 1
h

(T ) ∶= ℙ1(T ) , (6)

and if V1, V2, and V3 are the vertices of T , the local degrees of

freedom of a function vh ∈ V 1
h

(T ) are defined by

dofi (vh ) ∶= vh(Vi ). (7)

In other words, we are saying that a function vh ∈ V 1
h

(T )
is completely determined by its values at the vertices of
the triangle.

The local basis functions 𝜑i ∈ V 1
h

(T ) are defined in terms
of the local degrees of freedom by the following condition:

dofi (𝜑 j ) = 𝛿i j . (8)

The previous equation simply means that 𝜑i is the only linear
function that is one on vertex Vi and zero on the other two
vertices. The set of functions {𝜑1, 𝜑2, 𝜑3} is a basis for the space
V 1

h
(T ).

We now characterise the space V 1
h

(T ) in a different way that
will be crucial for the rest of the section. Given that there exists a
unique harmonic function with assigned value at the boundary,
the local space V 1

h
(T ) can also be identified by the following

properties:

∙ for each edge e of T , vh|e is linear on e;
∙ the linear functions vh|e on the edges match at the common

vertices;
∙ vh is harmonic inside, that is, Δvh = 0 in T .

We underline that such properties will allow us to extend the
definition of ‘linear triangular element’ to a general polygon.

5.2 Extension to general polygons

The advantage of the previous characterisation is that it can be
extended in a seamless way to a general polygon P (even non-
convex). In this case, we will obtain a space V 1

h
(P ) that contains

linear polynomials, together with other functions.
Given a polygon P , we define the space V 1

h
(P ) in the

following way:

∙ functions are linear on each edge and match at the vertices,
see Figure 2;

FIGURE 2 Virtual functions are linear on each edge and match at the
vertices

FIGURE 3 Virtual functions are harmonic inside

FIGURE 4 Local basis function

∙ they are harmonic inside, see Figure 3.

It is clear that if P is a triangle, we recover the Courant
element.

The space V 1
h

(P ) is known in literature as harmonic FEs on

a polygon. The i-th local degree of freedom is still defined as
the value of the function at vertex i; in fact, a function in
V 1

h
(P ) is completely determined by its values at the vertices.

Hence
dimension of V 1

h
(P ) = # of vertices of P ∶= NV .

The local basis function 𝜑i takes the value one at vertex i and
is zero at the other vertices, see Figure 4.
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The key property of the space V 1
h

(P ) is that it contains linear

polynomials:

ℙ1(P ) ⊆ V 1
h

(P ). (9)

In fact, if p1 ∈ ℙ1(P ) then

✓ p1 is linear on each edge;
✓ p1 is continuous on the boundary of the polygon;
✓ p1 is harmonic: Δp1 ≡ 0.

It has been proved in [1] that the fact that linear polynomials
are inside the space ensures the same good approximation prop-
erties of classical FEM. If we were able to compute exactly the
stiffness matrices, the method would converge at the expected
rates. However, the value of 𝜑i at a point inside the polygon
is not readily available, since we only know that 𝜑i is har-
monic; hence the stiffness matrix cannot be simply computed
by quadrature. This issue is addressed in Section 5.4.

5.3 The global space

The global FE space is defined in the same way as for classical
FE: The local spaces on adjacent polygons sharing an edge glue
together continuously through the common edge, producing
globally continuous approximation functions.

We point out that the extra non-linear functions of V 1
h

(P ),
which exist if the polygon is not a triangle, ensure continuity
of potential when two elements are joined together, giving a
conformal method. If we allow discontinuous functions across
elements, we could define the local space on each polygon sim-
ply as ℙ1(P ). This choice leads to the DG method. The main
difference with respect to VEM is that DG is non-conformal.

5.4 The projection 𝚷𝛁
1

We cannot compute in a cheap way the value of a function
vh ∈ V 1

h
(P ) inside P starting from the degrees of freedom. In

fact, we can easily recover the function on the boundary, being
linear on each edge; but computing the value inside the poly-
gon would require the solution of Laplace equation with given
boundary data. Hence it is not feasible to directly compute the
local stiffness matrices by quadrature.

We show that we can compute directly from the degrees
of freedom a linear polynomial p1 that approximate vh in the
following integral sense:

∫
P

∇(p1 − vh ) ⋅ ∇q1 dx = 0 for all linear polynomials q1.

(10)

In other words, p1 is the projection of vh with respect to the
scalar product ∫

P
∇u ⋅ ∇v dx. We denote the projection p1 by

Π∇
1 vh. Note that the null space of the operator Π∇

1 , that is, the

subspace of V 1
h

(P ) such that Π∇
1 vh = 0, has dimension NV −

3 since dimℙ1(P ) = 3.
In order to show that (10) can be solved by knowing only the

degrees of freedom of vh (i.e. the value of vh at the vertices of
the polygon), we argue in the following way.

If we express the unknown Π∇
1 vh in the monomial basis of

linear polynomials, namely {1, x, y}, and we let q1 vary among
{1, x, y}, we obtain a 3 × 3 linear system. Let m1 ∶= 1, m2 ∶= x,
and m3 ∶= y; we write

�∇
1 vh =

3∑
𝛼=1

c𝛼m𝛼, c𝛼 = unknowns

and (10) becomes

∫
P

∇

(
3∑

𝛼=1

c𝛼 m𝛼 − vh

)
⋅ ∇m𝛽 dx = 0, 𝛽 = 1, 2, 3

or equivalently

3∑
i=1

c𝛼

[
∫

P

∇m𝛼 ⋅ ∇m𝛽 dx

]
= ∫

P

∇vh ⋅ ∇m𝛽 dx, 𝛽 = 1, 2, 3.

(11)

The 3 × 3 matrix ∫
P
∇m𝛼 ⋅ ∇m𝛽 dx is singular, since it has the

first row (and the first column) identically zero: in fact∇m1 ≡ 0.
This feature reflects the fact that (10) determines the projection
Π∇

1 vh only up to a constant, or, in other words, that (10) deter-
mines only the gradient ofΠ∇

1 vh. In order to completely recover
Π∇

1 vh we need to substitute the first equation in (11) with a
(computable) condition guaranteeing that when vh is constant,
Π∇

1 vh = vh. This can be achieved by asking, for instance, that

NV∑
i=1

Π∇
1 vh(Vi ) =

NV∑
i=1

vh(Vi ).

The final 3 × 3 final linear system is then

⎧⎪⎪⎪⎨⎪⎪⎪⎩

3∑
𝛼=1

c𝛼

NV∑
i=1

m𝛼 (Vi ) =
NV∑
i=1

vh(Vi ) (first row)

3∑
𝛼=1

c𝛼

[
∫

P

∇m𝛼 ⋅∇m𝛽 dx

]
= ∫

P

∇vh ⋅∇m𝛽 dx, 𝛽 = 2, 3.

(12)
We need to show that the matrix and the right-hand side of the
linear system (12) are directly computable from the degrees of
freedom of vh, that is, the values of vh at the vertices.

∙ The matrix of (12) clearly does not depend on vh, and its
coefficients are simple computable from the monomial basis
which is explicitly given;
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∙ as far as the right-hand side is concerned, in the first line of
(12) there are the values of vh at the vertices, while in lines 2
and 3 there is the expression

∫
P

∇vh ⋅ ∇m𝛽 dx, 𝛽 = 2, 3.

Integrating by parts, we have

∫
P

∇vh ⋅ ∇m𝛽 dx = −∫
P

vh Δm𝛽 dx + ∫
𝜕P

vh

𝜕m𝛽

𝜕n
ds

= ∫
𝜕P

vh

𝜕m𝛽

𝜕n
ds

since Δm𝛽 ≡ 0, m𝛽 being a linear monomial or a constant.
Recalling that vh is linear on each edge, from the degrees of
freedom of vh, that is, the values of vh at the vertices, we
can easily reconstruct vh on the boundary of P and hence
compute the boundary term.

5.5 The local stiffness matrix for the
Poisson equation

Given that the degrees of freedom of the basis functions 𝜑i are
known by definition (they are all zeros except the i-th which is
1), we can easily compute Π∇

1 𝜑i and it seems to be a good idea
to make the following approximation of the ‘true’ local stiffness
matrix for the Poisson equation:

∫
P

∇𝜑 j ⋅ ∇𝜑i dx ≈ ∫
P

∇Π∇
1 𝜑 j ⋅ ∇Π

∇
1 𝜑i dx. (13)

However, this is not appropriate because the NV × NV

matrix ∫
P
∇Π∇

1 𝜑 j ⋅ ∇Π
∇
1 𝜑i dx is rank-deficient, giving rise to

a singular global matrix. The ‘right’ rank for the local matrix
∫

P
∇Π∇

1 𝜑 j ⋅ ∇Π
∇
1 𝜑i dx would be NV − 1, because the con-

stant functions are clearly in the kernel but they are ruled out
by the global boundary conditions, giving at the end an invert-
ible matrix. Instead, it can be easily shown that the rank is 2
which is strictly less than NV − 1 unless P is a triangle. For, we
have already observed that the null space of the projection oper-
ator Π∇

1 has dimension NV − 3, and the gradient annihilates
the constant functions. In the global space the constant func-
tions are ruled out by the boundary condition, but the global
stiffness matrix (in general) remains singular, unless all polygons
are triangles.

5.6 Consistency

Using (13) amounts to replace (5) with

⎧⎪⎨⎪⎩
find uh ∈ V 1

h
(Ω) such that

∫
Ω

∇Π∇
1 uh ⋅ ∇Π

∇
1 vh dx = ∫

Ω

fvh dx for all vh ∈ V 1
h

(Ω),

(14)

where

∫
Ω

∇Π∇
1 uh ⋅ ∇Π

∇
1 vh dx =

∑
T

∫
T

∇Π∇
1 uh ⋅ Π

∇
1 ∇vh dx.

We do not discuss how to approximate the load term; we refer
to [26] for the details.

As explained before, problem (14) is singular, hence in gen-
eral it has no solution. However, it is consistent in the following
sense: If the exact solution u is a global linear polynomial p1,
then it is a solution of (14) as well. In fact, by (4), u = p1 would
solve

∫
Ω

∇p1 ⋅ ∇vh dx = ∫
Ω

fvh dx for all vh ∈ V 1
h

(Ω).

By the definition of the projector Π∇
1 , we have

∫
Ω

∇p1 ⋅ ∇vh dx = ∫
Ω

∇p1 ⋅ ∇Π
∇
1 vh dx (15)

and since Π∇
1 p1 = p1, we also have

∫
Ω

∇p1 ⋅ ∇Π
∇
1 vh dx = ∫

Ω

∇Π∇
1 p1 ⋅ ∇Π

∇
1 vh dx .

Hence p1 satisfies Equation (14):

∫
Ω

∇Π∇
1 p1 ⋅ ∇Π

∇
1 vh dx = ∫

Ω

fvh dx for all vh ∈ V 1
h

(Ω).

Property (15) is crucial: It ensures consistency. However, (15)
alone it is not enough: We need to add stability.

5.7 Stabilisation

We need to supplement (14) with a stabilisation term that

∙ guarantees existence and uniqueness;
∙ does not spoil consistency (Equation (15));
∙ is defined element by element.

It turns out that we can add to (14) a term of the form

S
(

(I − Π∇
1 )uh, (I − Π∇

1 )vh

)
=

=
∑

T

ST

(
(I − Π∇

1 )uh, (I − Π∇
1 )vh

)
, (16)

where ST (⋅, ⋅) is a symmetric coercive bilinear form that scales
in the right way. Note that if one of the entries is a linear
polynomial p1, since (I − Π∇

1 )p1 ≡ 0 the term (16) is zero, so
consistency is preserved.
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DASSI ET AL. 343

It can be shown that under certain assumption on the mesh,
we have convergence at the expected rates. There is much free-
dom in the choice of the local stability bilinear form ST (⋅, ⋅).
One possibility in this simple case is to define ST (⋅, ⋅) by
ST (𝜑i , 𝜑 j ) = 𝛿i j .

5.8 The case k = 2

We briefly consider the case k = 2. As for FE on triangles, we
need to add the middle point of each edge in order to have poly-
nomial of degree 2 on each edge. Since the Laplacian of a degree
2 polynomial is constant, we substitute the condition Δvh ≡ 0
with Δvh = constant. The degrees of freedom of a function
vh ∈ V 2

h
(P ) are:

∙ boundary degrees of freedom: as for FEM, the pointwise
values at the vertices and at the middle point of the egdes;

∙ internal degrees of freedom: the mean value on P , that is,
1|P| ∫P

vh dx.

Hence we have dim V 2
h

(P ) = 2NV + 1 and it is immediate to
verify that ℙ2(P ) ⊆ V 2

h
(P ). Note that in this case if P is a tri-

angle we do not recover the classical FEs of order 2 but a
larger space.

We need to check that we can compute the Π∇
2 projection

starting from the degrees of freedom. Considering the construc-
tion above for the case k = 1, it turns out that we only need to
be able to compute the right-hand side of the linear system, that
is,

∫
P

∇vh ⋅ ∇m𝛽 dx, 𝛽 = 1, 2, … , 6,

where m𝛽 is a monomial in two variables up to degree 2
(m1 ∶= 1, m2 ∶= x, m3 ∶= y, m4 ∶= x2, m5 ∶= xy, m6 ∶= y2).
Integrating by parts, we have as before

∫
P

∇vh ⋅ ∇m𝛽 dx = −∫
P

vh Δm𝛽 dx + ∫
𝜕P

vh

𝜕m𝛽

𝜕n
ds. (17)

This time Δm𝛽 is zero for 𝛽 = 1, 2, 3 but is constant for 𝛽 =
4, 5, 6. Hence

∫
P

vh Δm𝛽 dx

can be readily computed starting from the internal degree of
freedom. The rest of the construction works in the same way.

5.9 The general case

In the general case, the functions vh ∈ V k
h

(P ) are polynomials
of degree k on each edge of P , they match at the vertices and

FIGURE 5 Example of cutting squares where we highlight the elements
where we use FEM, light green, and the ones where we exploit VEM, light
blue. Note that a VEM element can be fully surrounded by FEM elements

Δvh is a polynomial of degree k − 2. These conditions ensure
thatℙk(P ) ⊆ V k

h
(P ). The boundary degrees of freedom are the

pointwise values at the vertices and at k − 1 internal nodes on
each edge (which can be taken equispaced as in classical FEM),
and the internal degrees of freedom are the moments up to order
k − 2 in P , that is,

1|P| ∫P

vhm dx, m monomial up to degree k − 2. (18)

If we consider Equation (17) in this case, we observe that
Δm𝛽 is a polynomial of degree up to k − 2, so the term
∫

P
vhΔm𝛽 dx can be computed directly from the internal degrees

of freedom of vh. We refer to [26] for a detailed description.

6 VEM AND FEM: A FREE-CUTTING
STRATEGY

In practice, we can mix VEM and FEM in a seamless way
because the degrees of freedom on the edges are the same.
There are several ways to take advantage of this fact.

In view of a mesh strategy that naturally complies with
the shape variations characterising a shape design process, the
key idea is to start from a uniform mesh in the optimising
region, composed, for example, of quadrilateral elements reg-
ularly spaced, and then introduce suitable cuts by segments
whose end-points are located at the vertexes or on edges of
the background mesh. Consequently the original quadrilateral
element is cut in polygons that, if they are not triangles or
quadrilaterals, are naturally handled by VEM and there is no
need of sub-triangulating or re-building the mesh.

Actually, there are three situations to handle:

∙ A segment cutting a square into two quadrilaterals: in this case,
the two quadrilaterals with be treated via FEM, see the first
column of the mesh in Figure 5.

∙ A vertex of the profile falling into the square: in this case, we cut
vertically the square to avoid non-convex elements and the
square is divided into three polygons, see the second column
of the mesh in Figure 5. The resulting polygons could be tri-
angles, quadrilaterals, or pentagons. We notice that the square
below will become a pentagon.
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344 DASSI ET AL.

FIGURE 6 The whole meshing procedure during optimisation

∙ A segment cutting a square into a triangle and a pentagon: the triangle
will be treated via FEM, the pentagon via VEM, see the third
column of the mesh in Figure 5.

The whole meshing process is summarised in Figure 6. Each
piece of the domain is discretised at the beginning and then
glued together, see Figure 6a–c. Such a procedure is possible
and straightforward since hanging nodes are naturally handled
by VEM. Then, the mesh associated with regionΩ is extracted
and the structured quadrilateral mesh is stored, see Figure 6d.
Given the computed profile, that is, the locations of design
variables, such a profile is drawn over this structured mesh,
see Figure 6e, and glued back to the mesh without region Ω,
Figure 6f. In the optimisation process described in Section 7.3,
the meshing part jumps from Figure 6f until the minimum
is reached.

There are several strategies to re-meshing. One possible way
is to resort to meshless methods, see, for example, [27–29].
In this case, connections among nodes are not required and
it is based on the interaction of each node with all its neigh-
bours. Another possible strategy is to use mortar methods,
see, for instance, [30, 31]. Indeed, this method is also able
to deal with hanging nodes and, consequently, it handles
the mesh coming from such cutting and gluing process.
However, we here prefer to fully preserve an FE approach

since its methodological background is well assessed in the
literature.

7 THE OPTIMISATION STRATEGY

In this section, we proceed with the validation of the proposed
optimisation algorithm. To better understand the whole proce-
dure, we split this section in the following parts. In Section 7.1
we introduce two objective functions which will drive the opti-
misation. In Section 7.2 we define the design variables we are
using for the proposed study. Then, in Section 7.3, we explain
the results obtained via the proposed semi-random walk. Finally,
in Section 7.4 we show several numerical experiments.

7.1 Objective functions

The optimisation procedure aims at having a uniform upward-
pointing magnetic field B0 = (0, 20) mT inside the region of
interest Ω . Consider a magnet profile Γ and let BΓ be the
magnetic field associated with the profile Γ . If BΓ (x) equals
B0 on Γ , then B(x) = B0 on the whole Ω . Indeed, we have
homogeneous Neumann and Dirichlet boundary conditions on
y = 0 and x = 0, respectively, and no current source inside Ω ,
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DASSI ET AL. 345

FIGURE 7 We highlight the part of the domain involved in the
optimisation procedure. The domain of interest Ω and its boundary Γ . The
domain where the magnet profile, Γ , varies Ω and the varying iron core
region, Ω(Γ )

that is, j = 0, so A has linear variation with respect to x, it is
constant in y and therefore curl (A) = B0.

As a consequence of this observation we look for the
minimum of the following functional:

𝜓1(Γ ) ∶= max
x∈Γ

‖‖BΓ (x) − B0
‖‖‖‖B0

‖‖ , (19)

where ‖ ⋅ ‖ is the standard Euclidean norm. This quantity is
a good measure of how much the resulting magnetic field is
uniform inside the whole Ω . Moreover, since we have the
normalising factor ‖B0‖ and we are computing the difference
between the actual field and the target one, the more 𝜓1(Γ )
is close to zero, the more the resulting field BΓ is close to B0
inside Ω .

The function defined in Equation (19) does not contain any
information about the geometry at hand. However, starting
from the results in [9, 10], we know that a uniform magnetic
field is achieved when we ‘dig’ the magnet. To advance this
digging process, we propose the following correction of 𝜓1:

𝜓2(Γ ) ∶= 𝜓1(Γ ) + 𝜆
|Ω(Γ )||Ω| , (20)

where 𝜆 ∈ [0, 1] is a penalty factor, Ω(Γ ) is the region
occupied by the magnet inside the optimising region Ω, see
Figure 7, and | ⋅ | denotes the area of a region. The correction
made by this new term penalise configurations where the mag-
net inside the optimising region is more enlarged. Consequently,
the functional 𝜓2 will prefer configurations that are ‘dug’ as
in [9, 10].

FIGURE 8 Mesh of the computational domain where we take the 4pt
strategy. We also highlight the design points A,B,C , and D, and the optimising
region

7.2 Design variables

In this section, we describe the design variables we use to define
the profile Γ . To validate the proposed results and to explore
new and more involved configurations, we consider two sets
of design parameters. We refer to such design variables as 4pt
and 6pt strategy. In the next paragraphs we describe both
approaches in details.

Four-point strategy, 4pt:
The magnetic pole Γ is parametrized by the position of four
points

A(0, y1), B(x1, y1), C (x2, y2) and D(x3, y2) .

Such points depend on five variables, x1, x2, x3, y1, and y2, see
Figure 8. However, since the minimisation algorithm exploits
semi-random walk to reach a local minimum, we have to impose
some constraints on them [10]. First of all we have to impose
that they are inside Ω. Then, since we know that the optimal
does not present kinks, we impose

x1 < x2 < x3 ,

and, since we know that it is dug, we require that

y1 ≥ y2 .

Six-point strategy, 6pt:
In this case the magnetic pole Γ is parametrized by six points

A′(0, y1), B′(x1, y2), C ′(x2, y3), D′(x3, y4)
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346 DASSI ET AL.

FIGURE 9 Mesh of the computational domain where we take the 6pt
strategy. We also highlight the design points and the optimising region

E ′(x4, y5), and F ′(x5, y5).

Starting from this set of points, we are exploring more complex
configuration, see Figure 9. Indeed, we have more points and
parameters with respect to the previous case. Another impor-
tant difference is that in the 4pt strategy segments AB and
CD are horizontal by construction, while in this case only the
segment E ′F ′ is forced to be horizontal.

As we have done before, we put some constraints on the val-
ues of such parameters. More specifically, we impose that they
are inside Ω and for the same reasons as before we force the
conditions

x1 < x2 < x3 < x4 < x5 (21)

and

y1 ≥ y2 ≥ y3 ≥ y4 ≥ y5 . (22)

Consider one of the previous strategies to approximate of
the magnet profile Γ , then the optimal shape design problem
can be formally cast as follows: Starting from an initial guess,
find the design variables identifying the shape of the magnetic
pole that gives the prescribed induction field B0 in the region
of interests.

7.3 Semi-random walk optimisation

To solve the optimisation process, we use the semi-random walk
algorithm introduced in [10]. Starting from an initial guess, this
procedure changes the value of the design variables to minimise
a functional. In Figure 10 we show one run of such procedure
considering the 4pt strategy and the functional 𝜓1.

FIGURE 10 Analysis of one run of the proposed optimisation procedure

More specifically, in Figure 10a, we show the values of 𝜓1
during the process. We observe that, since the proposed proce-
dure uses a semi-random walk to enhance the exploration of the
search-space, its trend is not monotonic.

In Figure 10b, we report the evolution of the actual best
design variables. From those lines we can better realise that the
optimising approach provides values that are far from the initial
ones. Moreover, this plot is a numerical evidence of the fact that
the proposed method does explore several configurations.

Finally, in Figure 10c, we show the number of mesh ele-
ments during the optimisation process. The VEM approach
does not change so much the complexity of the mesh in terms
of elements and, consequently, in terms of degrees of freedom.
As a matter of fact we just ‘draw’ the profile Γ on a back-
ground mesh and cut elements so that the whole optimisation
procedure is sped up.

In Figure 11 we give a more quantitative analysis about the
results of the optimising process. We compare both compo-
nents of the magnetic field B at the beginning, in black, and the
end of the optimisation procedure, in red. From these data we
see that the field becomes more uniform on the boundary and
its magnitude is closer to the target value of 20 mT. Then, in
Figure 12, we show the optimised profile. Such optimal config-
uration presents similar characteristics with respect to the ones
already presented in the literature [10].
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DASSI ET AL. 347

FIGURE 11 Comparison between the initial and final values of B: in
black the values associated with the initial configuration, in red the ones
associated with the final one

FIGURE 12 Comparison between the initial and the optimised profile: in
black the values associated with the initial configuration, in red the ones
associated with the final one

7.4 Numerical results

The optimisation problem at hand is challenging. Indeed, it
is numerically ill-conditioned, that is, there exist many local
minima very close to the global one characterised by different
design variables.

From the analysis shown in Section 7.3, we understood that
the proposed method is fast, effective, and based on a random
walk. Consequently, in the numerical experiments described
in this subsection, we do not focus on one specific run, but
we collect many experiments starting from the same initial
configuration to get different optimal configuration. We will
summarise the result of all optimisation processed by showing
the final design for each run where we lift such profiles accord-
ing to the value of 𝜓1: The more those profiles are close to
the xOy plane, the lower 𝜓1 is. To facilitate such a comparison,
we use a colour scale from dark to light red. More specifically,
the initial configuration is black and the red colour associated

FIGURE 13 Different results of 4pt strategy with the functional 𝜓1

FIGURE 14 Different results of 4pt strategy with the functional 𝜓2

with the final configuration is lighter if the value of 𝜓1 is closer
to zero.

7.4.1 4pt strategy 𝜓1 versus 𝜓2

In this set of experiments we compare the results of the opti-
misation procedure driven by 𝜓1 or 𝜓2. For the last functional
we take 𝜆 = 0.25 as a penalisation factor. To achieve this goal
we run 100 of optimisation procedures driven by the functional
𝜓1 and 𝜓2, respectively. The results of all runs are shown in
Figures 13 and 14. From such graphs we observe that the final
optimised profiles are similar and in both cases we obtain a
shape that is comparable to the ones found in the literature, see,
for example, [10].

The functional we are trying to minimise presents many local
minima but, thanks to the proposed semi-random walk proce-
dure, we are able to explore several configurations. To give a
further numerical evidence about this fact, we compute the vari-
ance of the design variables with respect to their initial values.
In Table 1 we compute such a quantity only for the functional
𝜓1, similar considerations can be done for 𝜓2. All these vari-
ances, but y1, have a value far from zero so the final optimal
configuration is far from the initial one.
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348 DASSI ET AL.

TABLE 1 Variance of the design variables 4pt strategy

x1 x2 x3 y1 y2

run 1 0.9025 0.0689 0.3364 0.0584 0.5878

run 2 0.7511 0.1702 0.7225 0.0667 0.0951

⋮ ⋮ ⋮ ⋮ ⋮ ⋮

run 20 0.0803 0.0756 0.2704 0.0506 1.0336

⋮ ⋮ ⋮ ⋮ ⋮ ⋮

run 42 0.0278 0.8327 0.4356 0.0251 0.0951

⋮ ⋮ ⋮ ⋮ ⋮ ⋮

run 61 0.0803 0.6006 0.2500 0.0117 0.1534

⋮ ⋮ ⋮ ⋮ ⋮ ⋮

run 99 0.4225 0.7439 0.6561 0.0400 0.1167

run 100 0.5878 0.1139 0.8281 0.0625 0.1284

all 0.4374 0.4227 0.5951 0.0441 0.2570

FIGURE 15 Comparison between the final best profiles among all runs
for both 𝜓1 and 𝜓2

Now we move on the analysis of the resulting magnetic fields
and we verify that they are almost uniform inside Ω and close
to the target value. To achieve this goal, in Figure 15 we show
the initial and the final best profiles among all runs for both 𝜓1
and 𝜓2, which are run 87 and run 44, respectively. The shape
of both profiles is similar, the location of the recess is at the
same position. Moreover, the values of the optimising variables
y1 coincide.

Recalling that in both figures we lifted the final configura-
tion with the values of 𝜓1, the optimisation process based on 𝜓2
achieves approximately the same values of 𝜓1, about 10−2. We
analyse more in detail this aspect in Figures 16 and 17, where we
show the absolute values of Bx , dashed lines, and By, full lines,
along the boundary of the optimising region.

In both cases we see a great improvement, compare the black
lines associated with the initial profile and the red ones that are
associated with the optimal configuration found. However, the
field associated with 𝜓1 is closer to the uniform one: The red
lines in Figure 16 are flatter with respect to the ones in Figure 17.

Moreover, other than getting an almost uniform field, its
intensity is close to the target value, ‖B0‖ = 20 mT. Indeed, in

FIGURE 16 Absolute values of Bx , dashed lines, and By , full lines, along
the boundary of the optimising region for the best configuration made by 4pt
strategy with 𝜓1

FIGURE 17 Absolute values of Bx , dashed lines, and By , full lines, along
the boundary of the optimising region for the best configuration made by 4pt
strategy with 𝜓2

both cases Bx , dashed red lines, are close to zero and By, full red
lines, are around 20 mT. Also in this case such a trend is better
achieved via the optimisation guided by the functional 𝜓1 with
respect to the one guided by 𝜓2.

7.4.2 4pt strategy 𝜓1 validity analysis

The idea of this experiment is to show the robustness of the
proposed approach with respect to meshes. Indeed, we would
like to verify that the final design is not affected by the refine-
ment level of the region where we construct the magnet profile
Γ , Ω. To simplify the exposition, we consider only the opti-
misation strategy guided by 𝜓1; similar considerations can be
done for 𝜓2.

We build three meshes where we consider three different level
of refinement of Ω. We refer to such meshes as level 1,
level 2, and level 3. In Figure 18 we show only the detail
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DASSI ET AL. 349

FIGURE 18 Different refinement of the optimising region Ω

FIGURE 19 Different results of 4pt strategy with the functional 𝜓1 and
considering the level 1 refinement of Ω

FIGURE 20 Different results of 4pt strategy with the functional 𝜓1 and
considering the level 1 refinement of Ω

of such a region. Before showing the numerical experiments, we
further underline that the flexibility of VEM in gluing meshes
was the key point to generate such meshes. Indeed, one can
extract Ω from the domain Ω, make the modifications only on
this region, and then glue it back to Ω∖Ω. The main advan-
tage of such a procedure is that all the local mesh operations
are made on a smaller mesh so the whole meshing procedure
sped up.

The results associated with level 2 are the ones discussed
in the previous paragraph so they are summarised in Figure 13.
For the remaining refinement levels we make 100 of runs as
we did before. Such new results are reported in Figure 19 and
Figure 20, for level 1 and level 3, respectively.

FIGURE 21 Comparison among the best profiles resulted from the
optimisation procedure with refinement levels 1, 2, and 3

FIGURE 22 Absolute values of Bx , dashed lines, and By , full lines, along
the boundary of the optimising region for the best configuration made by 4pt
strategy with 𝜓1 and level 1 mesh

If we compare these three set of results, Figures 13, 19,
and 20, we observe that they are similar each other and the final
best configurations are associated with about the same value of
𝜓1, that is, 10−2.

To prove this fact we compare the best profiles and the
resulting magnetic field B along the boundary of the optimis-
ing region. In Figure 21 we show that the best designs are
really close to each other. Indeed, all of them found the same
optimal y1 and the values of y2 are close. Moreover, these
three best profiles have the recess of Γ about at the same
place.

In Figures 22 and 23 we show the values of Bx and By

along the boundary of the optimising region for level 1 and
3 meshes, the ones of level 2 are shown in Figure 16. If we
compare these three plots, we observe that the resulting mag-
netic fields are similar to each other and, as we observed in
the previous example, they all fit the requirement of the target
magnet field.

Such an experiment on the robustness of the optimising
process with respect to the mesh is passed, that is, we can
infer that the proposed method is not affected by the mesh
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350 DASSI ET AL.

FIGURE 23 Absolute values of Bx , dashed lines, and By , full lines, along
the boundary of the optimising region for the best configuration made by 4pt
strategy with 𝜓1 and level 3 mesh

FIGURE 24 Different results of 6pt strategy with the functional 𝜓1

in the optimising region Ω. Indeed, since we are considering
a semi-random walk and a functional that is characterised by
many local minima, we cannot claim to have exactly the same
profiles but at least similar results.

7.4.3 4pt versus 6pt strategy

In this set of numerical examples we are considering the 6pt
strategy. We consider as initial profile the same of the previ-
ous experiments, see, for instance, the black line in Figure 15.
Then, we run 100 of numerical optimisation processes for each
functional 𝜓1 and 𝜓2.

In Figures 24 and 25 we collect all the final designs obtained
by the optimisation procedure. If we compare such data with
the corresponding ones using the 4pt strategy, that is, compare
Figure 13 with Figure 24 and Figure 14 with Figure 25, we notice
that we do not reach the same good results as before. Indeed,
the final optimal designs are associated with a not so low value
of the target functional.

This fact is due to the semi-random walk procedure. Indeed,
since we are considering 10 variables and the constraints defined
in Equations (21) and (22), it is harder to find a set of numbers

FIGURE 25 Different results of 6pt strategy with the functional 𝜓2

FIGURE 26 Different results of 6pt strategy with the functional 𝜓1
starting from run 86 of 4pt strategy

that satisfies such constraints. As a consequence the optimisa-
tion procedure does not explore so many configurations and it
is not able to reduce much the objective functional.

7.4.4 6pt strategy as new start

In the previous set of experiments we observe that the 6pt
strategy is not so effective if we consider as initial profile the
same as the 4pt strategy. To ‘save’ the 6pt strategy, we decide
to use the best result obtained by the 4pt one as a trigger for it.

We consider only the optimisation procedure driven by the
functional 𝜓1 since this functional offers a more uniform dis-
tribution of the magnetic field B along the boundary of the
optimising region.

In Figure 26 we show the final profiles of 100 runs starting
from the best profile obtained via the 4pt strategy, that is, run
86. From the data in such a figure we notice that the functional
𝜓1 is further reduced, it is below 10−2.

Thanks to the new added points in the design of the pro-
file, the shape of the magnet profile is ‘refined’, see Figure 27.
The new added point E ′ smooths the profile of the magnet on
the right part, while the point B′ does not affect the shape of
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FIGURE 27 Comparison between the initial final best profile among all
runs for 𝜓1 using 6pt strategy and the best result of the 4pt strategy

FIGURE 28 Absolute values of Bx , dashed lines, and By , full lines, along
the boundary of the optimising region for the best configuration made by 6pt
strategy with 𝜓1

the optimal profile. Indeed, we still have a flat profile on the
left part.

This further improvement on the shape of magnet profile
becomes more evident from Figure 28. Here, we compare the
values of the magnetic field associated with the functional 𝜓1
via 4pt strategy, the black lines, and the values of run 83 of
6pt strategy triggered by run 86 of 4pt strategy, in red. The
good result of the first optimisation strategy is further improved
by this new run. Indeed, the field is more uniform and closer to
the target value.

8 CONCLUSION

The paper summarises the theoretical aspects behind the VEM
based on potential formulation and presents an original tech-
nique of meshing for two-dimensional domains. In particular,
the flexibility of VEM in mesh generation for complex compu-
tational domains is described and it is shown that such flexibility
can be further exploited combining virtual and FE approaches.
This way, one can use local spaces over elements characterised

by hanging nodes and polygonal geometries combined with
standard FEs over triangles and squares.

This approach puts the ground for an original technique for
handling the shape variation in a problem of optimal shape
design. The promising results encourage further investigations
in this field.
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