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An explainable model of host genetic interactions
linked to COVID-19 severity
Anthony Onoja1, Nicola Picchiotti2,3, Chiara Fallerini4,5, Margherita Baldassarri4,5, Francesca Fava4,5,6,

GEN-COVID Multicenter Study*, Francesca Colombo 7, Francesca Chiaromonte8,9,

Alessandra Renieri 4,5,6✉, Simone Furini4 & Francesco Raimondi 1✉

We employed a multifaceted computational strategy to identify the genetic factors con-

tributing to increased risk of severe COVID-19 infection from a Whole Exome Sequencing

(WES) dataset of a cohort of 2000 Italian patients. We coupled a stratified k-fold screening,

to rank variants more associated with severity, with the training of multiple supervised

classifiers, to predict severity based on screened features. Feature importance analysis from

tree-based models allowed us to identify 16 variants with the highest support which, together

with age and gender covariates, were found to be most predictive of COVID-19 severity.

When tested on a follow-up cohort, our ensemble of models predicted severity with high

accuracy (ACC= 81.88%; AUCROC= 96%; MCC= 61.55%). Our model recapitulated a

vast literature of emerging molecular mechanisms and genetic factors linked to COVID-19

response and extends previous landmark Genome-Wide Association Studies (GWAS). It

revealed a network of interplaying genetic signatures converging on established immune

system and inflammatory processes linked to viral infection response. It also identified

additional processes cross-talking with immune pathways, such as GPCR signaling, which

might offer additional opportunities for therapeutic intervention and patient stratification.

Publicly available PheWAS datasets revealed that several variants were significantly asso-

ciated with phenotypic traits such as “Respiratory or thoracic disease”, supporting their link

with COVID-19 severity outcome.
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The coronavirus disease 2019 (COVID-19) pandemic, caused
by the infection with severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2), is challenging health, eco-

nomical and societal systems worldwide at an unprecedented level.
The SARS-CoV-2 infection is characterized by a large variation in
consequence ranging from asymptomatic to life-threatening con-
ditions such as viral pneumonia and acute respiratory distress
syndrome (ARDS). ARDS is caused by an exaggerated host
immune response leading to lung injury, which starts at the
epithelial–interstitium–endothelial interface with increased vas-
cular permeability and extravasation of immune cells, mostly
macrophages, and granulocytes. Infected epithelial cells and debris
bind immune cell receptors, triggering the release of inflammatory
cytokines (predominantly IL-6, IL-1, and TNF-α) and activating
fibroblasts, resulting in a cytokine release syndrome1.

Established host risk factors for disease severity, such as
increasing age, male gender, and higher body mass index2, do not
explain all the variability in disease severity observed across
individuals. Genetic factors contributing to COVID-19 suscept-
ibility and severity may provide novel biological insights into
disease pathogenesis mechanisms, new drug targets as well as new
means for patient stratification. It is important to consider that,
despite the recent development of vaccines, treating the disease
remains an important goal in the clinics. The first genetic factors
described to contribute to COVID-19 severity were rare loss-of-
function variants in genes involved in type I interferon (IFN)
responses3–7. At the same time, several GWAS projects investi-
gating the contribution of common genetic variation8,9 to
COVID-19 have provided robust support for the involvement of
various genomic loci associated with COVID-19 severity and
susceptibility, with the strongest finding for severity being located
on chromosome 3. Until now, the Italian GEN-COVID Multi-
center Study contributed to the identification of rare variants 6,10

and common polymorphisms11–13 associated with COVID-19
severity through the collection of more than two thousand
biospecimens and clinical data from SARS-CoV-2-positive
individuals14 and whole exome sequencing (WES) analysis. The
COVID-19 Host Genetics Initiative (COVID-19 HGI) (https://
www.COVID-19hg.org) has recently provided the most com-
prehensive picture of host genetic factors linked to COVID-19
severity through meta-analyses of tens of studies from 19
countries15.

While GWAS studies provide solid evidence of the host genetic
factors individually associated with COVID-19 severity, they
most often fail to provide an organic picture about their interplay.
By learning (non-)linear patterns from data in a human inter-
pretable fashion, explainable machine learning algorithms might
help in understanding the multifactorial nature of the interactions
between host genetics and COVID-19, at the same time providing
effective tools for risk and severity forecasting.

In 2020, the Italian GEN-COVID Multicenter Study started to
investigate how the combination of common and rare variants
could determine COVID-19 severity in a pilot study including
WES data of a first small cohort of hospitalized patients16. Pre-
vious and ongoing efforts entailed machine learning techniques
(i.e. LASSO logistic regression models) in combination with a
boolean representation of genetic variants to identify the most
informative features associated with the severity which were used
to compile an Integrated PolyGenic Score for COVID-19 severity
predictions17,18. In this study, we combined variant case-control
screening, supervised binary classifiers training, feature impor-
tance analysis, and dimensionality reduction techniques with
pathway enrichment and phenotype association studies to iden-
tify a few dozens genetic variants contributing to increased risk of
severe COVID-19 infection from a Whole Exome Sequencing
(WES) dataset of a cohort of Italian patients.

Results
Comparing genetic variation in severe and asymptomatic
individuals. We considered the Whole Exome Sequencing (WES)
dataset of germline variants from 1982 European descent patients
provided by the GEN-COVID Multicenter Study group14. All
subjects were classified according to the grading scheme by the
World Health Organization (WHO), refined based on an ordinal
logistic model using age as input feature for sex-stratified patients17.
Demographic (sex, age, and ethnicity) and clinical data (family
history, pre-existing chronic conditions, and SARS-CoV-2 related
symptoms) were also collected (Fig. 1a; see “Methods”).

We started our analysis from a total of 1.057M simple variants
which were screened to identify mutations associated with severe
patients, likely representing risk factors, from those associated
with asymptomatic patients, more likely contributing to protec-
tion. We employed log odds ratio statistics, using an additive
model, to screen variants significantly associated with either
severe or asymptomatic groups (Fig. 1a, b; see “Methods”). We
performed the screening on the majority portion (training set) of
a randomly split dataset (keeping 80% of the samples for training
and 20% for testing), to find a set of variants to be used as features
set for downstream ML and pathways analysis. To ensure
robustness, we repeated the splitting procedure five times,
employing a stratified five fold cross-validation scheme, by
performing the screening on the training set and finally retaining
those variants found to be significantly enriched in each of the
five splits (Fig. 1d; see “Methods”). We found on average 1130
variants significantly enriched across the five folds (Data S1).

Genetic variants predict severity through supervised ML clas-
sifiers. We embedded the stratified five fold screening within a
supervised classifier training procedure (Fig. 1d; see “Methods”).
For each random split of the dataset, we trained the model by
considering the variants screened in the training set (80% of the
original dataset),and tested it on the corresponding held-out por-
tion (20% of the dataset) of the same split. For each screened
random split, we trained multiple models using a stratified five fold
Cross-validation (five fold CV) grid search to estimate optimal
hyperparameters for supervised classifiers training (Fig. 1d; see
“Methods”). XGBoost was the algorithm that displayed the smallest
drops between training and testing accuracies, achieving the best
average performance during testing across the five folds (Fig. 2a;
Data S2). In more details, the best XGBoost model had the fol-
lowing performances: Precision=77.27%, Recall=83.33%, MCC=
46.69%, AUCROC= 80, Accuracy=75%, F1= 80.2% (Data S2).
Overall, we found that 3217 unique variants (out of a total of

3258 unique, screened variants), corresponding to 2546 unique
genes, had non-zero coefficients in at least one of the five, tree-
based models (i.e. RF or XGBoost). However, the XGBoost
classifier led to a sharper reduction of relevant variants (1086,
corresponding to 1049 genes, with non-zero feature importance
in at least one model), consisting of a subset of those identified
with the RF models. As expected, clinical covariates such as age
and gender were found among the features with the highest
median of the distribution of importance coefficients collected
from XGBoost models (Fig. 2b). Among this shortlist, only 16
variants (and corresponding genes; Data S1) consistently received
non-zero coefficients in all tree-based models, out of which 9
variants were found to be enriched among severe patients
(Fig. 2b, c). To confirm the predictive performance of these
variants, we re-trained the models by considering only this subset
of variants, plus age and gender covariates, and we calculated
aggregated performances by considering the median of the
probabilities outputted by each model for each sample in the
testing set (see “Methods”). While age and gender covariates
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Fig. 1 Patient cohort and workflow of the computational pipeline. a piechart with the fraction of sequenced patients for each grading group; b stacked bar-
charts with distribution of patients in the two groups (severe=5+ 4+ 3; asymptomatic=0), and their gender composition, whose variants were used for
screening, training and initial testing; c stacked bar-charts with distribution of patients in the two groups (severe=5+ 4+ 3; asymptomatic=0), and their
gender composition, from a follow-up cohort used for final testing of the model; d workflow of the bottom-up computational strategy to identify and
interpret variants linked to COVID-19 severity.
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alone retained high predictive power (AUCROC= 80%), the
addition of these most informative genetic features led to an
increase of performances (AUCROC= 86%, best model
AUCROC= 91%; Fig. 2d; Data S3).

We observed a high level of performance when we tested the
ensemble of models trained with only informative variants on a
follow-up cohort of 618 individuals (122 asymptomatic,
496 severe; Fig. 1c), either at the individual model level or at
the ensemble one (Data S4). In fact, when computing aggregated
metrics by considering the median of the probability distribution
collected from the ensemble of models (Data S4, 5; see
“Methods”), we identified severe patients with good accuracy
(ACC= 81.88%; AUCROC= 96%), performing considerably
better than the ones obtained by training with only covariates
or variants (Fig. 2e; Data S4). The model also showed good
performances on an additional validation set comprising a total of
375 samples excluded from both training and testing due to
inconsistent classification from the WHO grading and the ordinal
logistic model adjusted by age (ACC= 85.34%, MCC= 67.8%,
AUCROC= 91.4%; Fig. S1; Data S6).

Risk and protective genetic factors impinge on modular,
interconnected networks underlying distinct biological pro-
cesses. We analyzed the subset of variants receiving non-zero
feature importance in at least one XGBoost model to provide a

mechanistic explanation for their potential interaction with
COVID-19 infection. We performed pathway analysis by map-
ping mutated genes in a functional interaction (FI) network (i.e.,
Reactome FI network; see Methods). We built a general FI net-
work (Fig. 3b), as well as networks specific for clinical groups, by
grouping variants and genes enriched in severe and asymptomatic
patients (Fig. 3a). Pathway analysis on group-specific networks
revealed patterns of significantly enriched processes connected to
either risk or protection (Fig. 3a).

In severe patients we found significant processes associated
with cardiomyopathies, e.g. Arrhythmogenic right ventricular
cardiomyopathy (FDR= 4.03E–05), Calcium signaling pathways
(FDR= 4.22E–02), and immune response such as C-type leptin
receptors (CLRs) (FDR= 5.67E–02) (Fig. 3a; Data S7). Asympto-
matic patients were instead characterized by distinct processes,
including Fanconi anemia pathway (FDR= 7.89E–04) and DNA
repair processes such as HDR through HRR or SSA
(FDR= 4.84E–03), (Fig. 3a; Data S8).

The general FI network comprised a total of 344 mutated genes
and 630 functional interactions, marking a high degree of
interconnection between affected genes, which participate in
different, cross-talking biological processes. Cluster analysis on
the general FI network revealed modules characterized by specific
pathways. Intriguingly, we found out that no cluster exclusively
contained variants enriched in severe or asymptomatic patients. In
detail, the largest cluster (i.e. Module 1; 43 nodes) encompassed

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

 oitaR sddO goL

d

a

c

b

e

Fig. 2 Performances of the supervised classifier for prediction of COVID-19 severity. a Distribution of performance metrics of different algorithms during
testing on the five folds. The horizontal line inside each box represents the median value, and the height (whiskers) of each of the boxes depict the
standard error (variability) of a particular performance metrics under consideration as scored across the five fold CVs by the employed supervised ML
algorithms. The dotted points above and below the individual box-and-whisker lines are potential outliers that are above or below the 25th percentile, and
the 75th percentile; b feature importance distribution for features with non-zero importance across the five folds. The characteristics of each box-plot are
as in Fig. 2a; c log-odds ratio of the 16 variants with full support in XGBoost trained models; d performances of the predictors with 16 variants plus
covariates (age and gender; orange), only co-variates (green), all screened variants plus covariates (blue) in the held-out test set (samples n= 168);
e performances of the predictors with 16 variants plus covariates (age and gender; orange), only co-variates (green),all screened variants plus covariates
(blue) in a follow-up testing set cohort (new samples n= 618).
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Fanconi anemia pathway (FDR= 2.46E–07) and DNA repair
processes such as HDR through HRR or SSA (FDR= 4.51E–06) or
Homologous recombination (FDR= 1.76E–03) (Fig. 3b). In this
cluster, we found that the gene characterized by the variant with the
strongest model support (ms) (i.e. fraction of tree-based models
assigning non-zero feature importance; see Methods) isMYBBP1A

rs117615621, which is enriched in asymptomatic patients (Odds
Ratio OR)= 0.26; p value= 6.5E–03; ms= 90%; (Data S1, S8).

The second-largest module (Module 2; 42 nodes) involves
genes mediating signal transduction cascades such as Ras
GTPases, e.g. Rap1 signaling pathway (FDR= 1.01E–04) or
MAP kinases, e.g. MAPK signaling pathway (FDR= 5.95E-04)
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Fig. 3 network analysis and pathway enrichment. a Pathways overrepresented among variants with non-zero feature in at least one XGB model and
enriched in either severe(red) or asymptomatic (blue); b reactome FI network of genes affected by variants with non-zero feature importance from
XGBoost. Node diameter is proportional to the number of variants with non-zero coefficients in any tree based models. Node color is instead proportional
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(Fig. 3b, c). We also found processes more directly linked to the
immune and inflammatory response to the virus, such as the
JAK-STAT signaling pathway (FDR= 1.11E-03), Cytokine-
cytokine receptor interaction (FDR= 1.92E–03), and
Interleukin-6 family signaling (FDR= 1.92E–03) (Fig. 3b, c).
All three pathways include the CNTFR gene, which codes for the
alpha subunit of the receptor for the ciliary neurotrophic factor,
and is affected by a novel variant (chr9:34557898:A: T) enriched
in severe patients (lor=1.230663067; p val=2.2E–04; Data S1).
Intriguingly this variant was ranked in the top 20 genes with the
highest median importance (Fig. 2b) and received 100% model
support (Fig. 2c). Another variant with 100% support within the
same cluster is rs150021157, which is significantly enriched
among severe patients (OR= 3.95; p val=1.9E–03; Data S1,S8),
and it affects the PCSK5 gene, a serine endoprotease which
processes various proteins including cytokines, NGF, renin and
which has been reported to regulate the viral life cycle19.

The third-largest module (Module 3; 38 nodes) is characterized
by the Regulation of nuclear SMAD2/3 signaling pathway
(FDR= 1.95E–03) as the most enriched pathway, therefore being
tightly interconnected with cluster 2. The variant SMAD3
rs897912452 (OR= 0.31; p val=5.1E–4) and the novel ZMIZ1
10:79307376:-:GGGGGGGGGG (OR= 0.27; p val=6.18E–05)
have the highest support (ms=90%) and are found enriched in
asymptomatic patients. Additionally, the latter gene ZMIZ1
participates in another significant pathway, Coregulation of
Androgen receptor activity (FDR= 0.01), which also entails AR,
which carries several mutations which, depending on the specific
genic locus, can be found enriched either in severe or asympto-
matic patients with variable support (Fig. 3, S2; Data S1, S8).

We found additional potentially relevant pathways in the
remaining modules. Module 4 (33 nodes) contains genes involved
in Deubiquitination (FDR= 1.15E-05), a process frequently
modified by viral infection20, as well as several other pathways
mediating innate immune response such as the TNF receptor
signaling pathway (FDR= 1.15E–05) (Fig. S3; Data S9). Within
this module we found the PLEC gene, affected by the variant
rs140300753 (OR= 3.2, p val=2.8E-03, ms=100%), which is
enriched in severity and received 100% support from tree-based
models (Data S1).

In the remaining clusters we found additional processes with
high translational and therapeutic potential. For instance, we
found several GPCR-signaling instances significantly enriched
in Modules 6 (e.g. G alpha (i) signaling events, FDR= 3.69E–04)
and 8, which exclusively entails GPCR-downstream signaling
pathways and where again the G alpha (i) signaling events
(FDR= 2.56E–09) and G alpha (q) signaling events
(FDR= 4.83E–08) are the two downstream pathways most
significantly over-represented (Fig. S4; Data S9).

We also found that a few genes whose variants have been
identified through our pipeline are among the ones carrying top
associations to severity as assessed from studies of the COVID-19
HGI (https://app.COVID-19hg.org/variants)15. In detail, variants
of 9 out of the 43 genes identified from GWAS studies are also
present in our list, including: ABO, ARL17A, ARL17B, DPP9,
LRRC37A, LRRC37A2, RAVER1, TMEM65, ZBTB11 (Data S1).

Severe patients tend to cluster together using only more
informative variants. We applied unsupervised clustering and
dimensionality reduction techniques (i.e. Principal Component
Analysis (PCA)) to group patients based on the genetic distance
calculated by considering the most informative variants selected
after screening and supervised machine learning procedure. By
projecting the patients on the first two PCs followed by k-means
clustering (see “Methods”), we detected three groups of patients

in the original cohort (Fig. 4a–c). The two largest clusters were
separated by PC1. The largest one, 515 patients, was characterized
by a majority of severe cases (78% of the total). The second cluster
was instead characterized by a prevalence of asymptomatic
patients (70% of the total). Finally, a third small cluster was
identified through the combined usage of PC1 and PC2 and it was
characterized almost exclusively by severe patients (95% of 24
patients in total). Notably, the severity of this cluster is only
partially explained on the basis of either gender (59% males and
37% females; Fig. 4c) or age (Fig. S5a). This cluster was char-
acterized by peculiar genetic features, with a smaller number of
variants and a neat prevalence of risk over protection factors
(Fig. S5b). Remarkably, a total of 7 (out of 9 overall enriched in
severe patients) variants with 100% support from XGB models
were also found in this cluster (Data S10). Network analysis of the
mutated genes in this predominantly severe cluster highlighted
several common processes as well as candidates for drug target-
ing. In particular, several GPCRs (ADRB2, ADRA1, GRM6), ion
channels (GRIN1, CACNA1G), (receptor tyrosine) kinases
(NTRK1, CSF1R, GAK) and nuclear hormone receptors (AR,
THRB) participate to this network and can be readily targeted by
approved drugs (Fig. 4c; Data S11).

Important variants are associated with disease traits linked to
COVID-19 severe phenotypes. To provide further evidence of a
functional relationships between our variants and COVID-19
severe phenotypes, we checked available open-access integrative
resources (i.e. Open Target Genetics initiative21) which aggregate
human GWAS and functional genomics data to link between
GWAS-associated loci, variants, and likely causal genes. In par-
ticular, we considered Phenome Wide Association Study (Phe-
WAS) analysis considering a wide range of diseases and traits to
identify the phenotypes associated with our variants (see Meth-
ods). Intriguingly, we found that many identified variants are
associated with traits or phenotypes which might be linked with
either risk or protection from severe consequences to the viral
infection.

For example, by considering variants with non-zero impor-
tance in at least one XGB model, we found that those enriched in
severe patients were 70% of the total associated with the category
“respiratory or thoracic diseases” (see Fig. 5A). Among the
specific traits with strong associations to more supported variants,
we found instances such as “Doctor diagnosed emphysema”
(ITPKA, rs41277684; LTK, rs35932273), the latter variant
associated also to “Other alveolar and parietoalveolar pneumo-
pathy”, “Respiratory disorders in diseases classified elsewhere”
(KCNB1, rs34467662), “Chronic bronchitis/emphysema”
(C12orf43;HNF1A, rs11065390; SLC47A2, rs34399035), “Acute
sinusitis” (SHANK2, rs146204677), “Pleural plaque” (CFAP74,
rs141833643), “Allergic asthma” (SYTL2, rs61740616 and
rs35751209), “Symptoms and signs involving the circulatory
and respiratory systems” (PCSK5, rs150021157) (Fig. 5b).
Although more weakly associated and supported by our models,
we also found several associations with chronic obstructive
pulmonary disease (COPD) both in “respiratory or thoracic
diseases” and in “infectious disease” categories (Data S12). Other
disease categories displaying a net prevalence of phenotypic
associations for variants enriched among severe were “immune
system disease”, with multiple variants associated with specific
traits such as “Autoimmune diseases” “Immunodeficiency with
predominantly antibody defects” or “Noninfectious disorders of
lymphatic channels”, and “pancreatic disease” (Fig. 5a; Data S12).

Two of the variants enriched among severe patients which had
highest importance in all our models (i.e. PCSK5 rs150021157
and PLEC rs140300753) were significantly associated with the
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“Abnormalities of breathing” phenotype (p val= 4E–06 and p
val= 1.6E–04, respectively), suggesting that patients carrying
these variants might be at higher risk due to pre-existing
difficulties of breathing (Fig. S6; Data S12).

Other general categories of traits that might be linked to severe
COVID-19, such as “Cardiovascular disease” or “Infectious
disease” showed similar distributions of associations of risk or
mitigation factors (Fig. S7). Interestingly other categories, such as
“Integumentary system disease” showed instead a prevalence of
associations with mitigation factors (Fig. S7).

Discussion
In this study, we have set up a multifaceted computational
strategy to dissect patient genetic variants which might interplay

with the SARS-Cov-2 virus to increase the risk of, or to protect
from, a severe response to infection.

We integrated into a stratified k-fold scheme a pipeline to
perform variant features screening followed by machine learning
model training and testing to robustly identify variants associated
with severe response to COVID-19 infection. Our pipeline
allowed a drastic reduction of the initial number of variants by
several orders of magnitudes: from an initial set of approximately
1M unique variants derived from WES to 1k variants receiving
non-zero feature importance in at least one of the tree-based
models. By only considering the variants with full support, i.e.
always found to have non-zero feature importance in all the tree-
based models, we further reduced the pool to only 16 variants.
Models retrained with only full-support variants (plus age and
gender as covariates) achieved superior performances (median
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AUCROC= 86%, best model AUCROC= 91%). Although
models trained with only patients age and gender already showed
good performances in severity prediction (median AUCROC=
80%), confirming the predictive power of these covariates, the
increase in performance followed by the inclusion of curated
genetic information provides the foundation for integrated tools
for COVID-19 severity forecast and patient stratification. When
tested on a follow-up cohort of more than 600 our models
achieved remarkable performances in identifying severe patients
with good accuracy (ACC= 81.88% and AUCROC= 96%),
performing considerably better than the ones obtained by training
with only covariates or variants (Fig. 2e; Data S4).

The interpretability of our models allowed us to shed new
light on the complex landscape of genetic interactions
with virus genetics which contributed to a severe response to
COVID-19 in an Italian cohort. Among the 16 variants with
100% support, only 6 genes (37%) were annotated in the largest

pathway knowledgebase, i.e. Reactome22, suggesting that unan-
notated variants might modulate the interaction with the virus
through yet-to-be-discovered biological mechanisms. Intrigu-
ingly, we found that two of these highly supported variants, i.e.
chr9:34557898:A:T (CNTFR) and rs150021157 (PCSK5) interact
within the second-largest module identified on the interaction
network of the genes affected by mutations within our study. This
cluster, which is moreover the only one characterized by two fully
supported variants, is highly enriched in pathways linked to
immune response and inflammation, such as the such as JAK-
STAT signaling pathway, Cytokine-cytokine receptor interaction,
and Interleukin-6 family signaling. The third cluster, which cross-
talks with the second one, involves processes related to SMAD
and TGF-β signaling, which were previously shown to be
modulated by SARS nucleocapsid proteins23.

We found that variants enriched in severe patients are involved
in cardiomyopathies processes, supporting the established notion

a

b Respiratory or thoracic disease specific trait / variant associations

Respiratory or thoracic disease Immune system diseases Pancreas disease

Severe Asymptomatic

Fig. 5 PheWAS analysis of most important variants. a Phenotype categories displaying the greatest fraction of specific trait associations with variants
enriched in severe versus asymptomatic patients; b scatter plot showing variant-specific traits associated within the “Respiratory or thoracic disease
category”. Dot diameter is proportional to the model support for each variant. The color is proportional to the log-odds ratio of the variant in the two groups
of the cohort. Labels are printed only associations with PheWAS P value <0.001 and PheWAS oddsratio >2.5 or for variants having non-zero coefficients in
at least one XGBoost model.
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that patients with heart disease or its risk factors are at greater
risk of severe consequences following COVID-19 infection,
including hospitalization, ventilation, or death24. Additional
processes significantly enriched among severe mutations was
ECM, whose importance in mediating the interaction with viral
particles have been highlighted by affinity-purification proteomics
experiments25. Recent experiments also confirmed a role for
integrins in binding to UV-inactivated viral particles, through
which outside-inside signaling is elicited via binding to Gα1326.
Vesicle-mediated transport, such as clathrin-mediated endocy-
tosis, has been shown to mediate a key entry point for SARS27.
The latter pathway has also been confirmed to drive a chronic
immune response in severe COVID-1928. Moreover, C-type
leptin receptors have been shown to engage with the virus
inducing robust pro-inflammatory responses in myeloid cells that
correlated with COVID-19 severity29.

On the other hand, some of the processes that we found sig-
nificantly enriched among asymptomatic patients have been
previously put in connection to SARS viral infection. For exam-
ple, members of the machinery for DNA damage response have
been shown to interact and affect the response to several DNA
and RNA viruses30 and it has been recently demonstrated that
these pathways are also triggered by SARS-CoV-2 in vitro cellular
models31. The Fanconi anemia pathway is tightly linked to DNA
repair processes involving homologous recombination and gen-
ome integrity32. We therefore speculate that patients carrying
variants on these pathways might differently interact with the
virus, modulating a milder response to viral infection.

Several identified processes offer druggable options for ther-
apeutic treatment. Androgen receptor signaling and its genetic
variability have been already linked to COVID-19 severity11,33 and
its inhibition proposed as a therapeutic strategy (e.g34.). We found
several GPCR signaling instances significantly enriched in our
network, in particular those related to Gi and Gq signaling, which
mediate vascular inflammation. In particular, the Gq pathway
contributes to regulating calcium signaling, which is one of the
most enriched processes in our dataset and which leads to endo-
thelial barrier disruption via adherens junction disassembly35. On
the other hand, Gq signaling might also contribute to transactivate
JAK-STAT pathway via (ERK)1/2 signaling35, the latter in turn also
activated by Gi signaling36. It has also been recently shown that the
C5a–C5aR1 axis, which also signals intracellularly through Gq,
plays a key role in the pathophysiology of ARDS associated with
COVID-19 by starting and maintaining several inflammatory
responses through the recruitment and activation of neutrophils
and monocytes37. Hence, similarly to what we and others pre-
viously described in cancer38, genetic factors converging on mod-
ulating common GPCR downstream signaling pathways might also
contribute to the onset of the inflammatory response related to
COVID-19, at the same time offering new therapeutic intervention
options for patients with severe forms of COVID-19. The recent
finding that autoantibodies targeting GPCRs are associated with
COVID-19 severity39, further strengthens these receptors as ther-
apeutic candidates.

We found multiple, recurrent disease traits associated with the
variants identified. The variants rs150021157 and rs140300753,
characterized by full support during supervised learning, also
provide an example of associations to phenotypes that might play
a role in COVID-19 severity, such as “Abnormalities of breathing
phenotype”. Some categories show a prevalence of associations
with risk factors, such as “respiratory or thoracic disease”,
including specific traits such as chronic bronchitis, emphysema or
COPD (the latter also found in the “infectious disease” category).
Other categories enriched for associations with variants enriched
in severe patients are “immune system disorders”, including traits
such as immunodeficiency with antibody defects, or “pancreas

disease”, including several instances mainly associated to Type 2
diabetes, which is a known risk factor for severe COVID-1940 and
whose molecular connection to cytokine storm inflammatory
response has now begun to emerge17,41. Taken together, these
results further corroborate our analysis.

Our model is complementary to previous and ongoing efforts
entailing machine learning techniques (i.e. LASSO logistic
regression models) and a boolean representation of genetic var-
iants to identify the most informative features associated to
severity to compile an Integrated PolyGenic Score for COVID-19
severity predictions17,18. While we expect that some of the var-
iants identified in this study might be specific for the Italian
population, we believe that our approach could be readily trained
on different cohorts to identify additional biomarkers for patient
stratification in the clinics. Our capability to understand and
forecast the genetic factors contributing to COVID-19 disease
severity will certainly benefit from the availability of larger
sequencing cohorts, the usage of more advanced methods for
case-control associations in WES studies, new methodological
advancement in the explainable AI field, as well as on our prior-
or data-driven knowledge of biological mechanisms linking
genetic variants to disease phenotypes.

Methods
Dataset and pre-processing. We used the whole-exome sequencing (WES)
dataset of 1982 European descent patients collected from the GEN-COVID Mul-
ticenter Study group coordinated by the University of Siena (https://clinicaltrials.
gov/ct2/show/NCT04549831)14. Briefly, the GEN-COVID Multicenter Study
includes a network of 22 Italian hospitals as well as local healthcare units and
departments of preventative medicine (https://sites.google.com/dbm.unisi.it/gen-
covid). It started its activity on March 16, 2020, following approval by the Ethical
Review Board of the Promoter Center, University of Siena (Protocol n. 16917,
approval dated March 16, 2020). Written informed consent was obtained from all
individuals who contributed samples and data. Detailed clinical and laboratory
characteristics (data), specifically related to COVID-19, were collected for all
subjects.

Specifically, the WES dataset contained a total of 1.057 M unique simple
variants. Patients were classified according to the grading scheme by the World
Health Organization (WHO). The grading classification contained the following
categories: 0=not hospitalized (a- or pauci-symptomatic); 1=hospitalized without
respiratory support; 2=hospitalized O2 supplementation; 3=hospitalized CPAP-
biPAP; 4= hospitalized intubated; 5=dead. We considered patients from more
severe groups, i.e. 3,4, and 5, as cases, and asymptomatic patients from group 0, as
controls, for a total of 1078 patients. We further refined the grading classification
based on an ordinal logistic model which uses age as input feature for sex-stratified
patients17 and we retained only those patients whose grading classification was
concordant with the one adjusted by age. This yielded a final set of 841 samples for
downstream analysis.

Statistics and reproducibility. We employed the cohort of 841 patients to identify
variants most associated to COVID-19 severity which we used, along with clinical
co-variates such as age and sex, to train and test supervised binary classifiers of
severity. We finally tested our ensemble of predictors on two unseen cohorts of
patients: 618 individuals (122 asymptomatic, 496 severe), from a follow-up cohort
of sequenced patients, and a set of 375 unique patients that were excluded from the
original as well as the follow-up cohort due to inconsistencies between the original
WHO grading classification and the one outputted by an ordinal logistic regression
adjusted by age17.

We detail below the statistical procedure employed.

Stratified K-fold split of sample cohort into train and test sets. We embedded a
strategy for variant screening into a stratified five fold cross-validation scheme
(using the StratifiedKFold function from the scikit-learn library https://scikit-learn.
org/) to generate 5 random training and testing set splits of the original dataset.
Each fold was constituted by a training set, corresponding to 80% of the dataset,
which was also employed for variant screening and a remaining 20% for the testing
set. The variants in the test set were curated from the variants screened in the
training set. Through the stratified fivefold approach, we made sure that all the
samples of the dataset were employed for testing.

Variant screening. GATK best-practices for germline variant calling pipeline were
employed, as described in our previous work aimed at characterizing common,
low-frequency, rare, and ultra-rare coding variants contribute to COVID-19
severity17. We employed a Log-Odds Ratio (LOR) statistics calculated on a 2×2
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contingency Data to perform case-control association and to screen variants
associated with either severe or asymptomatic patients in each of the training sets
for each of the five folds generated. We grouped severe patients from clinical
groups 5, 4, and 3 which were contrasted against the asymptomatic ones, con-
sidered as controls (group 0). We defined a contingency Data to measure the
enrichment of reference (Ref) or alternative (Alt) alleles in either severe or control
groups by employing an additive model, whereby homozygous genotype (1/1) has
twice the risk (or protection) of the heterozygous type (0/1 or 1/0). We employed
the Data2x2 function from the statsmodels library (https://www.statsmodels.org/
sData/index.html) to calculate LORs values and associated p-values and confidence
intervals from the the contingency Data in Fig. S8, respectively employing the
functions log_oddsratio, log_oddsratio_pvalue() and log_oddsratio_confint(). We
filtered variants with the following characteristics: p� value<0:05 and LORj j≥ 1:
Variants with LOR > 1 are enriched among severe, while those with LOR < -1 are
enriched among asymptomatics.

Feature matrix generation. For each split, we generated a feature matrix for the
training set by assigning the allele counts of each screened variant for each sample
of the training: i.e. 0 for genotype 0/0, 1 for genotypes 1/0 or 0/1, 2 for genotype
1/1. The feature matrix for the test set was defined by considering only variants
identified as significant after screening the training set of the corresponding split
and by assigning the allele count of each sample of the test set. We also included as
additional features age, which was normalized, and gender, which was binarized by
setting males to 0 and females to 1. Severe patients from group “3+ 4+ 5” were
given the classification label “1”, the asymptomatic patients from group 0 were
given the label “0”.

Feature selection (removal of multicollinearity). We employed feature selection
techniques to further reduce the number of considered features initially screened
through the Log-Odds-Ratio statistics. We tried several approaches, including
Lasso, ElasticNet and Multicollinearity, in combination with supervised training
approaches (see below). After training several classifiers with the variants selected
with each of these methods on a smaller cohort of 1200 samples, we found that
removing multicollinearity from features by considering variant allele counts with
correlation coefficients (corr.≤|0.8 | ) gave the best results. The screened features
with little or no effects of multicollinearity formed the final 80% training sets in
each fold and the final 20% corresponding validation sets used for training the
supervised machine learning models.

Supervised binary classification. We trained supervised learning models for
binary classification tasks by employing several algorithms, i.e. Support Vector
Machine, Logistic Regression, Random Forest, and Extreme Gradient Boosting
classifiers, available within the scikit-learn python library (https://scikit-learn.org/).

Support Vector Classifier (SVC): a popular machine learning method that
classifies data points utilizing the concept of hyper-plan and kernel tricks to find
fits that best separate the data cloud. In this study, we used the popular Jupyter
notebook and scikit-learn python package to import the “sklearn.svm” SVC
classifier model. We first set the SVC default regularization parameter “C” to 1, the
class weight to “balanced” in order to account for imbalanced classification
problems in the dataset. The default linear kernel was used first with the prediction
probability set to true. The GridSearchCV was used to select the best
hyperparameter values for the estimator “C”, “gamma”, and the kernel (Linear,
Radial Basis Function (RBF), and polynomial) that are critical to the performance
of the SVC classifier. The best GridSearchCV estimator hyperparameter values that
were used to train our dataset were identified as the RBF kernel, C= 10, and
gamma set to 0.1.

Logistic Regression: a binary classification regression model that uses the logistic
function to estimate the parameters of the logistic model. We import from the
scikit-learn package the “sklearn.linear_model” the Logistic Regression model
function. We first set the default logistic model classifier parameters; “class
weight= balanced”, C= 0.3 and solver= sag. The best GirdSearchCV estimator
values used to train our dataset uses the regularization penalty of l1 (Lasso),
C= 0.7, and solver= saga.

Random Forest (RF): an ensemble learning method that employs a bagging
strategy. Multiple decision trees are trained using the same learning algorithm, and
then predictions are aggregated from the individual decision tree. From the
“sklearn.ensemble” library, we import the Random Forest Classifier function. The
RF default model parameters use a class weight set to “balanced”, maximum depth
(max_depth) of the decision trees was set to 80, the number of features
(max_features) was set to 2, minimum samples (min_samples_leaf) leaf of 3,
minimum samples split (min_samples_split) of 10, and the number of trees
(n_estimators) in the forest was set to 300. The GridSearchCV best model estimator
parameters were “bootstrap= True”, “max_depth” = 110, “max_features” = 2,
“min_samples_leaf” = 5, “min_samples_split” = 10, and “n_estimators” = 100.

Extreme Gradient Boosted Trees classifier (XGBoost): an ensemble learning
classifier family that utilizes boosting strategy to combine a set of weak learners and
delivers improved prediction accuracy. We import from the XGBoost package
“xgboost” library and xgboost function. We defined the data matrix (training
feature set and classification label). We set the default XGBoost classifier model

parameters class weight to “balanced”, learning objective to “binary logistic”. The
best GridSearchCV estimator parameters values we used to train the dataset were
“learning_rate” = 0.01, “max_depth” = 3, “n_estimators” = 140.

In summary, for each of the four ML models, we performed a parameter
optimization through grid search (GridSearchCV), using the accuracy_score during
grid search as a scoring method. We performed a fivefolds cross-validation, by
splitting 80% for training and 20% for validation in each fold, repeated three times,
using the StratifiedKFold function with n_splits= 5 and n_repeats= 3. We also set
the class weight parameter to “balanced” in each of the ML algorithms employed.
Both model training and hyperparameters optimization was done with a Python
Jupyter notebook interactive web-based development environment using the scikit-
learn and the xgboost packages. Model performances on the testing set were
evaluated through the following metrics: Accuracy, F1, Precision, Recall, Matthew
correlation coefficient (MCC), AUCROC.

A consensus voting approach was used to aggregate validation prediction
probability scores of the four ML algorithms (SVC, Logistic Regression, Random
Forest, and XGBoost classifiers) from each of the (20%) testing sets from each fold
by considering the median of the probability distribution collected from the
ensemble of models. The features (variants) that received non-zero weight during
training of the supervised ML methods (Random Forest and XGBoost classifiers) in
each fold were combined across the fivefold for further interpretation.

We performed a randomization test (i.e. Salzberg’s test) to assess over-fitting
(Salzberg, 1997), where we replace the original phenotypic labels of the training
matrix with randomly assigned labels while preserving the ratio of the number of
positive (severe) and negative (asymptomatic) patients (Data S13).

Feature importance scores. The feature importance assigns weight scores to
individual features that interact to predict a particular event in the model. Feature
importance for RandomForest and XGBoost models were calculated as the mean
decrease in impurity for the feature using the feature importances function from
xgboost. The feature importance (weights) scores assigned from these models’ pre-
dictions were aggregated across the fivefolds to prioritize variants according to their
consensus importance across folds for further downstream analysis. In particular we
defined the model support (ms) of a given variant as the fraction of tree-based
models assigning non-zero feature importance during the training of the model.

Final testing on a follow-up cohort. We tested the best performing models
trained using most supported variants with and without covariates on a followup
cohort of sequenced, Italian patients. An initial set of 838 samples corresponding to
grading groups 0, 3, 4 and 5 were refined by applying the same ordered logistic
regression classification adjusted_by_age, which yielded a final set of 618 indivi-
duals (122 asymptomatic, 496 severe). We generated an additional testing test by
considering all the samples that were previously excluded due to inconsistency
between the original WHO grading classification and the one outputted by an
ordinal logistic regression adjusted by age classifier17. In details, in the original
cohort that we used for training the model, there were 237 samples from either
asymptomatic (grading 0) or severe (grading 3+ 4+ 5) patients that were excluded
due to classification inconsistencies, while in the follow-up cohort used for final
testing of the model, 220 more individuals were excluded according to the same
criteria. After removing patients with missing values, we obtained an aggregated list
of 375 unique patients. We curated the allele counts of the 16 most informative
variants, identified in the first stage of the analysis and model training, from this
new set of patients and we used them, together with age and gender, as features for
the testing. We evaluated the performances of the ensemble of the 20 models both
on an individual as well as on an aggregated level, by calculating aggregated metrics
obtained from the median of the probability distribution outputted by the
ensemble of the 20 models on the testing samples.

Principal component analysis (PCA) and clustering. The variants with non-zero
weights from best performing tree-based models were remapped back into the
feature space to form a new feature count matrix covering 100% of the samples (i.e.
841 individuals). This reduced feature matrix was analyzed using Principal Com-
ponent Analysis (PCA) techniques to reduce the dimensional space. In order for us
to do this, we utilized the “sklearn.decomposition” library to import the PCA
function. We standardized the feature count matrix using the “sklearn.preproces-
sing” library to import the Standard Scaler function. We transformed the normal
feature count matrix considering the 1st and 2nd PCA components. We further
employ the K-means clustering technique (using the “sklearn.cluster” library to
import the “KMeans” function) to visualize and cluster the 2D PCA components
(1st and 2nd dimensions). We set the default cluster size to 3, the maximum
iteration (max_iter=1000), and a tolerance value (tol=1E–04). Clusters of patients
that express interesting severity patterns were further analyzed using the pathway
enrichment for biological interpretations and implications.

Pathway enrichment analysis. The pathway enrichment analysis was done using
the ReactomeFIViz plugin42 available in Cytoscape43. The genes corresponding to
variants with non-zero feature importance from XGBoost were used to construct a
Functional Interaction (FI) network. The general FI network comprised all the
genes affected by variants with non-zero feature importances in both patient
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groups. Node diameter is proportional to the number of variants with non-zero
coefficients in any tree-based models. Node color is instead proportional to the
LOR with the highest absolute value among the variants associated with a given
gene. Modules within the network were identified through spectral partition
clustering44. Reactome pathways over-representation analysis (FDR<0.1) was cal-
culated on either the whole network or for each individual module. We also
generated group-specific networks by keeping separated genes with variants enri-
ched in severity from those enriched in asymptomatic and performed pathway
over-representation analysis (FDR < 0.1) on the distinct networks.

Retrieving associations between variants and disease traits or phenotypes.
We retrieved associations among the variants identified in our study and disease
traits or phenotypes through the Open Targets Genetics platform21. We inter-
rogated the database using the GraphQL query language embedded in a python
script and by inputting the variant coordinates (given by chromosome nr, position,
Ref, and Alt allele). For each PheWAS association, we retrieved the following data:
eaf, beta, se, nTotal, nCases, oddsRatio, studyId and pval. Only PheWAS with
oddsRatio > 1 and p val <0.001 were considered. The statistics were done only for
the variants with non-zero feature importance from XGBoost models.

All the analyses were performed using customized Python (v3.8) scripts, with
the following libraries: scipy (v1.2.0), numpy (v1.19.4), scikit-learn (v0.23.2.),
statsmodels (v0.11.0) and matplotlib (v3.2.1).

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
All the data and scripts to generate the figures are available, in a dedicated folder for each
figure, at the following URL: https://github.com/raimondilab/An-explainable-model-of-
host-genetic-interactions-linked-to-Covid19-severity/tree/main/scripts_figures_
manuscript_COVID_19. The source data for graph and charts are provided in
Supplementary Data 1–13.

Code availability
All the scripts and models generated and data to reproduce them are available at the
following URL: https://github.com/raimondilab/An-explainable-model-of-host-genetic-
interactions-linked-to-Covid19-severity
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