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A B S T R A C T

In this paper, we propose a new class of assortativity measures for weighted and directed networks. We extend
Newman’s classical degree–degree assortativity by considering node attributes other than degree, and we
propose connections among nodes via directed walks of length greater than one, thus obtaining higher-order
assortativity. We test the new measure in the paradigmatic case of the world trade network and for other
networks from a socioeconomic context, and we also provide some simulation results. Importantly, we show
how this global network indicator is strongly related to the autocorrelations of the states of a Markov chain.
1. Introduction

Asymmetric interactions characterize many complex systems in na-
ture, and directed networks are suitable tools for representing these
complex situations. However, despite the remarkable persistence of
such systems in real-world phenomena, a formal representation as
directed networks is still not used, probably because of the difficulty
in treating such models mathematically. Indeed, some network indi-
cators are difficult to manage in the directed framework, and some
cases lack a proper definition of the network measures for directed
networks. Against that background, the focus herein is on providing the
generalized concept of an assortativity measure for directed networks.
This theme is relevant because assortativity is a global indicator that
provides useful insights about network structure.

In the classical definition by Newman (2002), assortativity is repre-
sented by a global measure based on the Pearson correlation between
the degrees of nodes. This measure ranges in the interval [−1, 1],
having positive values in assortative networks and negative values in
disassortative ones. The interpretation of the degree–degree assorta-
tivity measure is simple: for undirected networks, high assortativity
means that high-degree nodes tend to connect to other high-degree
nodes, whereas in disassortative networks, high-degree nodes tend to
be connected to low-degree nodes.

The analysis of the correlation between a given attribute of the
nodes responds to the necessity to obtain more complete information
concerning that provided by the simple distribution of the considered
nodal attribute.

The assortativity measure can be extended in two different direc-
tions: (i) we can consider quantitative attributes of nodes other than

∗ Corresponding author.
E-mail address: rosanna.grassi@unimib.it (R. Grassi).

degree, or (ii) we can move on from the adjacency of nodes – which
is the basis of Newman’s degree–degree assortativity – and propose
more-general ways to connect them. In our approach, we seek to meet
both these important requirements. Regarding direction (i), degree-
based assortativity provides a restrictive view of the accordance among
nodes, but a generalization to different nodal attributes overcomes this
issue, extending the meaning of the coefficient to describe similarities
and dissimilarities among nodes in terms of something other than
degree (Arcagni et al., 2019; Meghanathan, 2016; Yuan et al., 2021).
Regarding direction (ii), it is relevant to mention the generalization of
Newman’s assortativity index proposed by Arcagni et al. (2017), who
provided a closed formula leading to a unifying approach for the as-
sortativity of undirected and unweighted networks. In particular, they
considered pairs of vertices not necessarily adjacent but connected via
paths, shortest paths, and random walks. Importantly, connecting nodes
via paths of length greater than one offers insights into the similarities
between connected but non-adjacent nodes. Indeed, high-degree nodes
may not be connected directly to each other but nevertheless remain
equally connected via low-degree ones.

Arcagni et al. (2017) labeled the new concept of assortativity based
on paths as higher-order assortativity, which in particular cases al-
lows us to recover the Newman index as well as other measures
based on assortativity (Estrada et al., 2008; Mayo et al., 2015; Van
Mieghem et al., 2010) using suitable definitions of the matrix governing
the connections. In the same vein, Arcagni et al. (2019) extended
higher-order assortativity to a new class of higher-order measures
specific for weighted undirected networks, recovering as a particular
vailable online 29 February 2024
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case the weighted assortativity index introduced by Leung and Chau
(2007). The problem of assortativity in directed networks has also been
investigated (Yuan et al., 2021). In particular, Foster et al. (2010)
nd Piraveenan et al. (2010) proposed a natural modification of the
ewman formula, encoding the assortativity measure into four directed
easures based on combinations of nodal in-degree and out-degree.
he coefficients quantify the tendencies of nodes with high in-degree
r out-degree to be connected to other such nodes or those with the
pposite tendency. However, still lacking is a higher-order measure of
ssortativity tailored for weighted and directed networks.
This paper contributes by filling this gap. We introduce the new

oncept of an assortativity measure of order ℎ (with ℎ ≥ 1) for the
eneral case of weighted and directed networks. According to previous
tudies and when needed, we refer to this as the higher-order assorta-
ivity measure, and we complete the definitions introduced by Arcagni
t al. (2017) and Arcagni et al. (2019) by including weighted directed
etworks. Moreover, the proposed concept is formulated based on a
odal attribute that is not necessarily degree or strength. In doing so,
e extend Newman’s assortativity coefficient in both aforementioned
irections.
Notice that taking different kinds of centrality measures allows us

o have clear information on the similarity of the nodes in terms of
ther attitudes — like the propensity to create a community (clustering
oefficient), the relevance in connecting different sides of the network
betweenness) and so on. Furthermore, the possibility of further gener-
lizing the assortativity measures to the case of directed arcs and also
or nodes that are not necessarily adjacent to the reference ones leads to
particularly versatile instrument, to be exploited for the description of
he correlations at different levels and according to different attributes.
It is recognized that network-based models can be meaningful for

epresenting the complexity of real-world systems (Breza et al., 2019;
Arcangelis & Rotundo, 2016; Gosak et al., 2022; Varela & Rotundo,

2016), and studying higher-order properties is particularly relevant.
The classical approach of network theory is based on pairwise re-
lationships between nodes, but in real-world networks, interactions
between individual entities or groups often go beyond dyadic interac-
tions. This motivates the recent interest in studying interactions that
go beyond adjacency relationships. From this perspective, our proposal
addresses an essential and relevant issue that will have promising
application developments. Interesting published reviews provide an
overview of higher-order networks from their mathematical represen-
tations to recent advances in this field (Bick et al., 2023; Majhi et al.,
2022).

We show the effectiveness of the proposed measure by applying it to
the world trade network. Indeed, network theory provides a good tool
for capturing the complexity of trade relations among countries. Several
previous studies have been devoted to the structure and dynamics of the
international trade network, as well as its connection with fundamental
economic factors (Acemoglu et al., 2012; Bhattacharya et al., 2008;
De Benedictis et al., 2014; De Benedictis & Tajoli, 2011; Garlaschelli
Loffredo, 2004, 2005), and this is why we expect the proposed
easure to be useful in this context. We also test the measure on two
etworks taken from a socioeconomic context, i.e., the electricity trade
etwork and the migration network. Finally, to assess the measure’s
ensitivity to variations in model parameters, we apply it to some
ynthetic networks from a stochastic block model (SBM).
Note that the proposed assortativity measure offers a relevant in-

erpretation in the field of Markov chains (see Norris et al., 1998,
or a survey of this class of stochastic processes). Indeed, directed
nd weighted networks are particularly suitable for describing random
lows moving over a discrete set of states identified by nodes. In
he graph representation of a Markov chain, the existence of an arc
onnecting state/node 𝑖 with state/node 𝑗 is associated with a non-null
robability of jumping from 𝑖 to 𝑗. Therefore, the (suitably normalized)
eights of the arcs in a complex network are naturally associated with
216

he probability of observing a flow from a state to another one in the z
orresponding Markov chain. In stating the bridge between complex
etworks and Markov chains, we follow the route traced by some
elevant contributions in the literature. It is worth mentioning (Gómez
t al., 2010), who dealt with a disease propagation model by merging
omplex networks and Markov chains. In the same application environ-
ent, Iannelli et al. (2017) elaborated on the informative content of the
eneral network-based measures derived from Markov-chain theory.
ur novelty here is to connect higher-order assortativity – a topological
roperty of the network involving nodes other than adjacent ones – and
omogeneous discrete-time Markov chains.
Specifically, let us consider nodal assortativity with reference to
given vertex centrality measure. The assortativity index of order ℎ
anges in [−1, 1]; it approaches 1 (resp. −1) when the nodes connected
ia walks of length ℎ have a high level of concordance (resp. dis-
ordance) in the considered centrality measure. This variation range
uggests that the assortativity index of order ℎ can be interpreted as
n autocorrelation term at ℎ lags in the context of Markov chains, and
his is exactly our case. Indeed, the order ℎ is the length of a walk from
ne node to another, and if we imagine that each link takes one unit of
ime, then the considered walk takes ℎ units of time. In this respect, the
rder ℎ can be seen as a temporal variable for a discrete-time Markov
hain with states given by the nodes of the network along with their
entrality measures and transition probabilities related opportunely to
he weights of the network’s links.
This interpretation of the assortativity measure of order ℎ allows us

o state a natural bridge between complex networks and stochastic pro-
esses. In so doing, we are able to move from the information content of
he higher-order assortativity of a network to the dynamical properties
f the underlying Markov chain. Specifically, the temporal dimension
f the network and the regularities captured by the autocorrelation –
hich are hidden in the network structure – become clear when moving
o Markov-chain theory.
This paper is structured as follows. In Section 2, we describe the
athematical notation, and in Section 3 we introduce the novel defi-
ition of higher-order assortativity extended to weighted digraphs. We
hen apply the proposed index to the world trade network (Section 4)
nd to the electricity and migration networks (Section 5). Some simu-
ations are shown in Section 6. Section 7 shows how the higher-order
ssortativity measure can be interpreted in the context of discrete-
ime homogeneous Markov chains with finite states. Finally, the paper
oncludes with Section 8.

. Preliminaries

In this section, we outline some basic definitions and notation re-
ated to directed complex networks that are used to present our method-
logical proposal. For a more detailed treatment, see Bang-Jensen and
utin (2008), Newman (2010), and Gross and Yellen (2003).
A directed graph (or digraph) 𝑁 = (𝑉 ,𝐴) is a pair of sets 𝑉 and 𝐴,

here 𝑉 is the set of 𝑛 vertices (or nodes) and 𝐴 is the set of 𝑚 ordered
airs (arcs) of vertices of 𝑉 ; if (𝑖, 𝑗) and/or (𝑗, 𝑖) is an element of 𝐴,
hen vertices 𝑖 and 𝑗 are adjacent. An 𝑖–𝑗 directed walk is a sequence of
ertices and arcs from 𝑖 to 𝑗 such that all arcs have the same direction.
A weight 𝑤𝑖𝑗 > 0 can be associated with each arc (𝑖, 𝑗) so that
weighted digraph is obtained. Moreover, it is assumed that 𝑤𝑖𝑗 =
if and only if (𝑖, 𝑗) ∉ 𝐴. The 𝑤 weights are collected in a real
-square matrix 𝐖 (the weighted adjacency matrix). By definition,
he elements of this matrix describe both the adjacency relationships
etween the vertices in 𝑉 and the weights on the arcs. In this context,
weighted directed network is a directed graph 𝑁 = (𝑉 ,𝐴) equipped
ith a weighted non-symmetric matrix𝐖. In the unweighted case, non-
ull weights can take only unitary value, and so matrix 𝐖 provides
nly information about the adjacency relationships. In the case of
nweighted networks, we denote 𝐖 by 𝐀 (the adjacency matrix), and
e assume that the main diagonal of the adjacency matrix is filled by

eros to exclude loops. Indeed, assortativity is usually computed for
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networks without loops to avoid the trivial situation of computing self-
correlations (for example, see the survey on assortativity measures for
complex networks by Noldus & Van Mieghem, 2015).

The (𝑖, 𝑗) element of the 𝑘th power of the matrix A is the number of
directed walks of length 𝑘 from 𝑖 to 𝑗.

Because in-degree, out-degree, in-strength, and out-strength are the
most popular centrality measures in the context of the assortativity,
as the original definition by Newman (2002) suggests, we introduce a
particular notation for them, along with their definitions. We define the
in-degree 𝑑𝐼𝑖 (resp. out-degree 𝑑𝑂𝑖 ) of a node 𝑖 ∈ 𝑉 as the number of
arcs pointing toward (resp. starting from) 𝑖. Then, the in-degree and
out-degree vectors are 𝐝𝐼 and 𝐝𝑂, respectively, and the vector of the
vertices’ degrees is given by 𝐝 = 𝐝𝐼 +𝐝𝑂. We define the in-strength and
out-strength of node 𝑖 ∈ 𝑉 (𝑠𝐼𝑖 and 𝑠𝑂𝑖 , respectively) and in-strength
and out-strength vectors (𝐬𝐼 and 𝐬𝑂, respectively) analogously. A vertex
𝑖 ∈ 𝑉 with 𝑑𝐼𝑖 = 0 and 𝑑𝑂𝑖 > 0 is called a source because it is the origin
of its outgoing arcs. Similarly, a vertex 𝑖 ∈ 𝑉 with 𝑑𝑂𝑖 = 0 and 𝑑𝐼𝑖 > 0
is called a sink because it is the end of each incoming arc.

3. A novel definition of higher-order assortativity

We consider two vertex centrality measures and collect their values
for the weighted directed network 𝑁 in the 𝑛-dimensional vectors 𝐱
and 𝐲. We define the higher-order assortativity of length ℎ ≥ 1 for this
weighted digraph as a particular case of the Pearson correlation index
in the 𝑛-dimensional vectors 𝐱 and 𝐲, as follows:

𝑟ℎ = 𝑟(𝐱, 𝐲,𝐄ℎ) =
𝐱⊤

(

𝐄ℎ − 𝐩ℎ𝐪⊤ℎ
)

𝐲
√

[

𝐱⊤
(

𝐃𝐩ℎ − 𝐩ℎ𝐩⊤ℎ
)

𝐱
] [

𝐲⊤
(

𝐃𝐪ℎ − 𝐪ℎ𝐪⊤ℎ
)

𝐲
]

, (1)

where 𝐄ℎ is a normalized 𝑛-squared matrix whose element in row 𝑖
and column 𝑗 is denoted by 𝑒(ℎ)𝑖𝑗 , with ‖𝐄ℎ‖1 =

∑𝑛
𝑖,𝑗=1

|

|

|

𝑒𝑖𝑗
|

|

|

= 1, while
𝐩ℎ = 𝐄ℎ𝟏, 𝐪ℎ = 𝐄⊤

ℎ𝟏, where 𝟏 is the conformable vector of elements
equal to 1, and 𝐃𝐩ℎ and 𝐃𝐪ℎ are the diagonal matrices with the vectors
𝐩ℎ and 𝐪ℎ, respectively, on the main diagonal.

𝐶𝑜𝑣(𝐱, 𝐲,𝐄ℎ) = 𝐱⊤
(

𝐄ℎ − 𝐩ℎ𝐪⊤ℎ
)

𝐲 is the covariance between 𝐱 and
𝐲 with joint distribution 𝐄ℎ, 𝑉 𝑎𝑟(𝐱,𝐩ℎ) = 𝐱⊤

(

𝐃𝐩ℎ − 𝐩ℎ𝐩⊤ℎ
)

𝐱 is the

variance of 𝐱 with distribution 𝐩ℎ, and 𝑉 𝑎𝑟(𝐲,𝐪ℎ) = 𝐲⊤
(

𝐃𝐪ℎ − 𝐪ℎ𝐪⊤ℎ
)

𝐲
is the variance of 𝐲 with distribution 𝐪ℎ.

In particular, we assume that 𝐄1 = 𝐖
‖𝐖‖1

, and as we will see in
Section 7.2, matrix 𝐄ℎ is also related to Markov chains for all ℎ ≥ 1.
herefore, the assortativity measure in Eq. (1) depends on suitable
entrality measures 𝐱 and 𝐲 that are related to the initial and terminal
tate, respectively, of a stochastic process of ℎ steps.
The considered higher-order assortativity extends the related con-

epts introduced by Arcagni et al. (2017, 2019) for weighted undirected
networks. In accord with Newman (2002), we note that the in-strength
and out-strength of the nodes play a relevant role when dealing with
assortativity also in the context of weighted digraphs. Indeed, such
centrality measures provide distinct information about the network
topology. Therefore, we describe such cases in detail while also giving
the interpretation of the higher-order assortativity measure in this
particular context.

Specifically, for a complete treatment of the higher-order assorta-
tivity measure for weighted and directed networks, we consider all
possible combinations of in-strength and out-strength, and starting from
Eq. (1), we define the four types of higher-order assortativity index for
weighted digraphs as follows.

1. 𝑟𝑂𝐼
ℎ = 𝑟(𝐬𝑂 , 𝐬𝐼 ,𝐄ℎ) (out–in)
This coefficient evaluates the correlation between the out-
strength and in-strength vectors using Eq. (1) for nodes that are
connected via a directed walk of length ℎ. Specifically, a high
value of 𝑟𝑂𝐼

ℎ is associated with high concordance between the
out-strength and in-strength of such vertices, while a value of
𝑂𝐼
217

𝑟ℎ close to −1 implies high discordance. C
2. 𝑟𝐼𝑂ℎ = 𝑟(𝐬𝐼 , 𝐬𝑂 ,𝐄ℎ) (in–out)
This index measures the concordance and discordance between
the in-strength of the starting vertices and the out-strength of the
arrival vertices after a directed walk of length ℎ.

3. 𝑟𝐼𝐼ℎ = 𝑟(𝐬𝐼 , 𝐬𝐼 ,𝐄ℎ) (in–in)
This coefficient provides an evaluation of the correlation be-
tween the in-strength of the starting vertices and the in-strength
of the ending vertices in the presence of a directed walk of length
ℎ.

4. 𝑟𝑂𝑂
ℎ = 𝑟(𝐬𝑂 , 𝐬𝑂 ,𝐄ℎ) (out–out)
This version of the higher-order assortativity index captures the
correlation between the out-strength of the starting vertices and
the out-strength of the terminal ones when they are connected
via a directed walk of length ℎ.

Note that given ℎ, it is not necessarily the case that 𝑟𝑂𝐼
ℎ = 𝑟𝐼𝑂ℎ

because the indexes depend on the distribution of directed walks
described by the matrix 𝐄ℎ, which is not necessarily symmetric.

4. Higher-order assortativity in the world trade network

To illustrate the advantages of our definition, we show an appli-
cation of higher-order assortativity to the world trade network. This
application is interesting given the extensive literature merging net-
works and economic theory (see Carvalho & Tahbaz-Salehi, 2019, for
an excellent review of the literature on production networks from both
theoretical and empirical perspectives).

International trade plays a fundamental role in the global eco-
nomic system, and understanding the structure of interactions among
economic agents at the international level is useful for studying the
cross-country transmission and propagation of local shocks (Acemoglu
et al., 2016, 2012; Carvalho, 2014) or for explaining the co-movement
of business cycles (Burstein et al., 2008; Long & Plosser, 1983). In this
context, complex networks and their properties are effective in offering
a way to represent these interactions. In this regard, some interesting
contributions are those by Barigozzi et al. (2010), Bartesaghi et al.
(2022), De Benedictis et al. (2014), De Benedictis and Tajoli (2011), Fa-
giolo et al. (2008), and Serrano et al. (2007). One property of the trade
network is the local heterogeneity of its structure (De Benedictis &
Tajoli, 2011; Serrano et al., 2007). Fagiolo et al. (2008) showed the
coexistence of weak and strong trade links, and countries with intense
trade relationships tend to be more clustered together. Acemoglu et al.
(2012) studied how the intersectoral network structure contributes to
generate aggregate fluctuations from microeconomic shocks. The em-
pirical model of network formation proposed by Mundt (2021) applied
to the input–output data reveals significant fluctuations of network ties
over time, inducing changes also in the aggregate network structural
properties.

Studying higher-order assortativity for the trade network is moti-
vated by the complexity of the trade relationships, which often cannot
be explained by simply investigating adjacent commercial partners, and
the higher-order properties of the network could be more informative
than the first-order ones. For instance, Acemoglu et al. (2012) stated
that even if two different networks exhibit the same first-order charac-
teristics (same degree or strength distribution), different higher-order
interactions among economic sectors can lead to different levels of
severity of aggregate downturns. These facts motivate us to test our
measure on the world trade network.

The data refer to goods traded between countries, with the trade
volumes expressed in US dollars.1 We constructed both export and
import weighted networks, where the vertices are countries and the
weights on arcs represent the volumes of imported or exported goods

1 The data are freely available for download from ComTrade; see UN
omtrade (2022).
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among 222 countries in the year 2021. Note that the number of
vertices is greater than the number of recognized countries because
ComTrade includes even almost-uninhabited territories. Therefore, in
the following, the word ‘‘country’’ covers a broad definition that also
includes these regions.

Concerning links between countries, the export network should be
complementary to the import network because import from 𝑖 to 𝑗
hould be equal to export from 𝑗 to 𝑖. However, this is not the case
ecause the data describe only trade declared officially by reporter
ountries with their partners, and some declarations are either missed
r mismatched. This problem pertains also to years before 2021.
Here, we follow an approach similar to that adopted by Antonietti

t al. (2022), who constructed a symmetric trade network aggregating
mport and export data. However, unlike Antonietti et al. (2022), our
etwork preserves the edge directions, working in this way with a
irected network.
More specifically, let 𝐖𝐼 and 𝐖𝐸 be weighted adjacency matrices

epresenting the volumes of import and export trade among countries.
hus, the trade network is defined as 𝑁 = (𝑉 ,𝐖), where the elements
𝑖𝑗 of the matrix 𝐖 are

𝑖𝑗 = max
(

𝑤𝐸
𝑖𝑗 , 𝑤

𝐼
𝑗𝑖

)

,

ith 𝑤𝐸
𝑖𝑗 and 𝑤𝐼

𝑗𝑖 being the 𝑖𝑗 entries of matrices 𝐖𝐸 and 𝐖⊤
𝐼 , re-

pectively. In this way, the asymmetric matrix 𝐖 expresses the flow
f goods from country 𝑖 to country 𝑗. Note that in constructing 𝐖,
e choose the maximum between import and export. Indeed, in line
ith Antonietti et al. (2022), we assume that the higher the value de-
lared, the higher the quality of the information that can be contained.

.1. Analysis of the main characteristics of the network

First, we analyze some classical network characteristics. The num-
er of vertices is 𝑛 = 222, and let 𝐀 be the adjacency matrix obtained
rom𝐖 by neglecting the arc weights. The network density is computed
s the ratio between the total number of arcs and the maximum number
f potential arcs2 𝑛(𝑛 − 1). Therefore, the density is

‖𝐀‖1
𝑛(𝑛 − 1)

=

∑𝑛
𝑖,𝑗=1 𝑎𝑖𝑗

𝑛(𝑛 − 1)
= 0.4996.

lthough one might expect the trade network to be complete, this is not
o in this case because of the presence of peripheral nodes representing
mall countries and regions that probably communicate only a part of
heir exports or imports.
Distributions of centrality measures – in particular degree and

trength – provide other important information. The degree and strength
f a vertex represent the number and volume of a country’s exchanges,
iving insights into the diversification and intensity of trade. Fig. 1
hows the marginal distributions of in–out degree and in–out strength.
n line with Bhattacharya et al. (2008), in-strength and out-strength
are represented graphically using a logarithmic scale with base 10.
We choose the log-transformation for the strength because in the
trade network, the strength increases exponentially and the resulting
distribution is log-normal. In fact, as can be seen in Fig. 1, the log-
strength has a bell shape similar to that of a normal distribution.
Choosing a logarithmic base equal to 10 allows us to express the scale
of trade in multiples of ten thousand million dollars.

The distributions of the ‘‘in’’ and ‘‘out’’ measures are quite similar,
but note the following characteristics of the degree and log-strength
distributions: (i) on the horizontal axis, the magnitude of the degree
corresponding to the number of countries is a few hundred, whereas
that of the strength ranges from 106 to 1012; (ii) the log-strength distri-
bution is bell-shaped; (iii) the degree distribution is polarized because
more than half of the countries have connections with fewer than 100

2 𝑁 is a directed network without loops.
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Table 1
Matrix of correlations between centrality measures.

in-deg. out-deg. in-log-str. out-log-str.

in-deg. 1
out-deg. 0.883 1
in-log-str. 0.792 0.785 1
out-log-str. 0.742 0.771 0.947 1

other countries, while one-tenth of the countries are connected with
almost all the other ones. As we will see later, this last characteristic
is meaningful when searching for clusters of central and peripheral
countries.

We now compare countries via the four centrality measures: in-
degree, out-degree, in-log-strength, and out-log-strength. Table 1 shows
the strong correlations (computed using the Pearson coefficient) be-
tween the considered variables. As expected, the ‘‘in’’ and ‘‘out’’ di-
rections are strongly correlated (0.883 and 0.947 for degree and log-
strength, respectively). However, there is also a strong linear correla-
tion between degree and log-strength centralities, with values ranging
from 0.771 to 0.792. Although correlation is not causation, these high
values suggest that an increasing number of connections increases
volumes exponentially.

We now analyze the principal components from the standardized
variables. The first component represents 87% of the whole variability
(considering the first two together, the variability increases to 96%),
and its loading is all positive. Therefore, its scores can be used to
provide a mixed and rough order of the countries in terms of centrality.
In increasing order, the top 10 central countries are Canada, Belgium,
Japan, Italy, Great Britain, the Netherlands, France, Germany, China,
and the United States.

We performed a hierarchical cluster analysis using the four principal
components instead of the strongly correlated original variables. We
used Euclidean distances between countries, and we defined distances
between groups with the complete method. The number of groups
suggested by the hierarchical method is two. One cluster of 116 is
composed of small territories and countries almost peripheral in terms
of trade volumes, and the other cluster of the remaining 106 countries
controls most of the volumes; we refer to the latter cluster as the main
network.

Fig. 2 provides a graphical representation of the trade network,
howing the groups that emerged from the cluster analysis, i.e., the
ain network and peripheral countries. However, how these groups
elate to each other remains to be investigated. As we will see in the
ext subsection, assortativity provides an answer in terms of centrality
orrelation.

.2. Higher-order assortativity

Evidently, there are several combinations of centrality measures and
djacency matrices that can be used when computing the higher-order
ssortativity coefficient. In this section, we focus on only those cases
hat offer a more intuitive interpretation of the results in the context of
he world trade network.3
It is important to note that the assortativity coefficient can be

eveloped by taking the centrality measures 𝐱 and 𝐲 as in- or out-
one, as explained in the four cases of assortativity in Section 3 (in–
out, out–in, in–in, out–out). The selection of 𝐱 and 𝐲 leads to different
assortativity measures with different interpretations. In particular, we
give the following economical interpretations of the used centrality
measures: out-going centrality measures supply, i.e., the out-degree and

3 We also computed the higher-order assortativity measures in all the
emaining cases and results are available upon request.
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Fig. 1. Histograms of four centrality-measure distributions observed on 222 countries. The distributions are partitioned into 10 classes whose breaks are the deciles, and the heights
f the rectangles are the densities of the relative frequencies, so each rectangle represents about one-tenth of the observations. The top-left histogram represents the out-degree
istribution, the top-right one the in-degree distribution, the bottom-left one the out-log-strength distribution, and the bottom-right one the in-log-strength distribution.
Fig. 2. Map of world trade network. A directed edge is represented by a black arrow from the exporting country to the importing one, the opacity of which is proportional
to the value of the traded goods. Countries are clustered via a hierarchical division method using the centrality measures (in and out degree and log-strength) as the original
dimensions. The optimal cutting of the dendrogram generates two groups that can be interpreted as the main network (green) and peripheral countries (red). (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this article.)
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out-strength of vertex 𝑖 reflect the supply of goods of country 𝑖; in-
going centrality measures demand, i.e., the in-degree and in-strength
of vertex 𝑖 reflect the demand of goods of country 𝑖; the directions of
edges represent export, i.e., an arrow from 𝑖 to 𝑗 represents export from
country 𝑖 to country 𝑗.

In view of the economic meanings of the centrality measures given
above, the most suitable directed assortativity in this application is
the out–in assortativity 𝑟𝑂𝐼

ℎ in order to effectively track the paths of
he exchanges of goods between countries. Indeed, referring to the
olume of flows (then to the strength), of the four measures proposed
erein, those mentioned above describe well the relationship between
xporting and importing countries.
Fig. 3 shows the higher-order direct assortativity for increasing ℎ

computed on both the unweighted and weighted network. In both
219

o

cases, the network is disassortative at order ℎ = 1, which means that
he exporters with many connections and a large volume tend to trade
ith small importers. Note that in absolute value, the assortativity is
lways lower than 0.5, which is because of large traders needing to
rade with each other (e.g. the United States and China) and maybe
lso small traders.
At order ℎ = 2 the assortativity becomes positive. Similar behavior

as also been observed for undirected networks (Arcagni et al., 2017,
019), and it may be the consequence of the disassortative behavior
t order ℎ = 1. Indeed, if at the first step exporters and importers
end to belong to different groups, then at the second step they tend
o belong to the same one. Focusing on the meaning of the measure,
ecause the network refers to the totality of traded goods, the exchange
f goods between countries 𝑖 and 𝑘 may occur directly (e.g. exchanging
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Fig. 3. Higher-order assortativity between out-centrality and in-centrality of world trade network; results refer to unweighted structure (left) and weighted network using log-strength
s centrality measure (right); 𝑥-axis represents the length of walks, 𝑦-axis the assortativity indexes.
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aw materials) in one time unit ℎ = 1 or indirectly in two time units
= 2 through the transformation of the raw materials (into semi-
anufactured goods) via country 𝑗. Then, the assortativity of order
= 2 captures a new pattern of the exchange of goods between

wo countries. This bouncing between disassortative and assortative
ehavior continues for odd and even orders, respectively.
Considering the weights, the behavior of higher-order assortativ-

ty is similar because of the correlations among centrality measures
eported in Table 1. However, considering the weights, we observe a
trong reduction in the amplitude of variation. In fact, weights on arcs
eparate the main network (identified with the cluster analysis) from
he remaining, and the main network of trades is almost complete as
xpected.
Finally, we observe that assortativity tends to zero when the order

ncreases, this being because of the increased of randomness in the
xpected flow of goods in the network.

. Other applications

In this section, we apply our indexes to two different real-world
etworks in order to show the effectiveness of the proposed measure
n other contexts as well. The considered networks are the electricity
rade network and the migration network. This allows us to provide
ifferent results and to investigate the long-term behavior of people
lows or a specific sector in the trade scenario.

.1. Electricity trade network

Unlike the application to the world trade network, in which the
otal volume of trade was considered, we focus here on the specific
lectricity sector. Also, in this case weights refer to the value and are
xpressed in US dollars.
In the analysis, we are interested in the exchanges between coun-

ries, therefore the electricity produced for self-consumption is not in-
luded; formally, the network construction does not incorporate loops.
rom an economic perspective, this implies that trade is concentrated
ainly in Europe, with China and the United States becoming pe-
ipheral countries in the network. Unlike the whole trade network
hat incorporates the aggregated volume of traded goods, this network
as only 10 source nodes (then zero in-centrality) and 29 sinks (then
ero out-centrality). Therefore, the weighted results are based on the
trength centrality because the log-strength is not finite.
Fig. 4 shows the results, and it is evident that the outcomes are

uite different from those in the case of the whole trade network.
220

his is due to the different network topology that emerges when we
ocus on only this specific sector. In this case, some countries (e.g., the
nited States) self-produce electricity for internal consumption, which
an have more than one motivation. For instance, it is related to a
ountry’s investment in renewable energies. In this sense, the United
tates does not follow a general common regulation as in Europe,
nd investment in renewable energies is left as a choice of individual
tates, some of which are experimenting with beneficial forms of energy
elf-production. Conversely, European countries are in general still
ependent on energy supplied from external sources (Di Silvestre et al.,
021). Therefore, trade is concentrated mostly in Europe, and European
ountries have high centrality. Consequently, the assortativity is always
ositive and seems not to vanish.

.2. International migration network

In this application, a network of people is constructed starting from
he international migration database provided by OECD (2020),4 which
s the most recent and complete dataset. Weights correspond to the
umber of migrants in a year from a country to another one.
Similar to the world trade network, two information items are

vailable for each pair of countries: the number of outgoing people,
nd the number of incoming people. As was done in the case of the
nternational trade network, we assume as weights the largest numbers
f people, and we preserve the edge directions.
Fig. 5 shows the higher-order assortativity indexes obtained for this

pplication. The international migration network is disassortative for
alks of odd length and assortative for walks of even length. At order
= 1, both the binary and weighted networks exhibit disassortative
ehavior, and this is in line with the literature (Fagiolo & Mastrorillo,
013). Finding the actual reason for the oscillating behavior of the
ssortativity measure would require migration to be explored in depth,
hich is well beyond the present scope, but we can make some interest-
ng suggestions. For various reasons (e.g., geographical), few countries
re typically the first destination of people coming from many poor
ountries, and often the first country reached is only the first step of a
ong journey, with the final destination reached after passing through
ifferent intermediate countries. For instance, several countries with
ow migrations outflows concentrate migrants toward a few countries
ith high levels of inflow (e.g., the European countries that are closer
o the migration source). As a second step, migrants disperse into
urope, moving to several countries with low levels of inflow. This
act is reflected by the alternating behavior of the assortativity as the
rder increases. The results based on the weighted network replicate
he unweighted structure but with smaller absolute values.

4 https://stats.oecd.org/Index.aspx?DataSetCode=MIG#

https://stats.oecd.org/Index.aspx?DataSetCode=MIG#
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Fig. 4. Higher-order assortativity between out-centrality and in-centrality of electricity trade network. The results refer to the unweighted structure (left) and the weighted network
sing strength as the centrality measure (right). The horizontal axis represents the walk length, and the vertical axis represents the assortativity index.
Fig. 5. Higher-order assortativity between out-centrality and in-centrality of network based on International Migration Database. The results refer to the unweighted structure (left)
nd the weighted network using log-strength as the centrality measure (right). The horizontal axis represents the walk length, and the vertical axis represents the assortativity
ndex.
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. Simulations

In this section, some simulations are reported to show how the
ssortativity at a few steps is strongly conditioned by the weights.
Figs. 6 and 7 show 500 simulated networks from an SBM for differ-

ent network sizes 𝑛 ∈ {20, 50, 100, 200, 500, 1000}. The same simulations
were proposed by Yuan et al. (2021) for the case of assortativity of
rder ℎ = 1. The results in Fig. 6 refer to binary networks, in which
ase the higher-order indexes are computed by identifying the node
egree as the centrality measure and using the binary adjacency matrix
o build the matrix 𝐄. In Fig. 7, the results refer to weighted networks,
n which case the strength is adopted as the centrality measure and the
eighted adjacency matrix is used to build the matrix 𝐄. The simulation
esults are represented by box plots depicting the distribution of the
esults for different orders ℎ. To provide an intuitive view of matrices
ℎ, we show the case of ℎ = 1,… , 20 for a simulated Erdös–Rényi
irected network with order 𝑛 = 100 (see the Supplementary material).
The simulations were run under the same conditions as those

f Yuan et al. (2021). The SBM comprises blocks of Erdös–Rényi
irected graphs with probability 𝑝 of creating an arc within blocks.
n edge between two blocks is generated with probability 𝑝′ < 𝑝.
ecause the networks are directed, once an edge is created, a direction
221

s assigned to that edge with equal probability 0.5. In line with Yuan i
t al. (2021), we consider two blocks, each with the same size 𝑛∕2, the
ithin probability is 𝑝 = 0.2, and the between probability is 𝑝′ = 0.02.
eights are also assigned as in the cited article: the first block has
eights sampled uniformly from integers between 0 and 5, the second
lock has weights sampled uniformly from integers between 5 and 10,
nd arcs between blocks have weights equal to 5.
The networks with sizes 20 and 50 show many outliers. However,

n both the unweighted and weighted cases, the stability of the sim-
lations increases with the network size. Focusing on the weighted
ase, the first block is characterized by vertices with low centrality
nd the second one by vertices with high centrality. Because the within
robability 𝑝 is much higher than the between probability 𝑝′ and the
wo blocks are characterized by different levels of weights, there are
ore connections between vertices with similar centrality. In other
ords, the walk remains trapped in the block and struggles to exit from
t.
In the unweighted case, the assortativity is close to zero because the

wo blocks have the same structure; this is typical of an Erdös–Rényi
ame, which generates almost regular graphs with a low variability
n degree. On the contrary, when taking the weights into account, the
ssortativity is positive because nodes tend to be connected to others
ith the same strength but not to those with different strengths. This

s because the probability of creating edges within blocks is higher
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Fig. 6. Higher-order assortativity between out-degree and in-degree using binary adjacency matrix of 500 simulated networks from stochastic block model (SBM) comparing different
sizes 𝑛 of the model. The horizontal axis represents the walk length, and the vertical axis represents the assortativity index. The simulations returned different distributions of the
assortativity index for each order, so the distributions are represented using box plots to show the quartiles and any anomalous values.
Fig. 7. Higher-order assortativity between out-strength and in-strength using weighted adjacency matrix of 500 simulated networks from SBM comparing different sizes 𝑛 of the
model. The horizontal axis represents the walk length, and the vertical axis represents the assortativity index. The simulations returned different distributions of the assortativity
index for each order, so the distributions are represented using box plots to show the quartiles and any anomalous values.
than that of creating them between blocks. The strength has different
222

expected values but the same variability in each block. The simulations

for the unweighted case required almost an hour, and the time was

similar for the weighted case.
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To enable the simulations to be reproduced, we have provided the
R code for weighted networks in the supplementary material. In the
unweighted case, it is sufficient to remove the instructions that assign
weights to the edges. Note that most of the R instructions are related
to the simulation of the SBM, and the higher-order assortativity is
computed with only one instruction thanks to the HOasso package
that evaluates the assortativity for objects of class igraph from the
homonym package (Csardi & Nepusz, 2006; Csárdi et al., 2023).

. A Markov chains-based interpretation of the higher-order as-
ortativity

In this section, we formalize the informative content of the higher-
rder assortativity measure in terms of the transition probabilities
f discrete-time homogeneous Markov chains with finite states. As a
remise, we introduce some basic definitions and notation for Markov
hains. For a complete treatment, see Norris et al. (1998).

.1. Markov chains: basic definitions and notation

A homogeneous discrete-time Markov chain with finite states is a
tochastic process  = (𝑋(𝑡) ∶ 𝑡 ∈ N) such that the following conditions
re true.

(P1) There exists a set 𝑉 with 𝑛 elements such that 𝑋(𝑡) ∈ 𝑉 for each
𝑡 ∈ N. The elements of 𝑉 are the states of  , and the set 𝑉 is the
state space of the Markov chain.

(P2) The Markov property holds, i.e.,

𝑃 (𝑋(𝑡 + 1) = 𝑗|𝑋(𝑡) = 𝑖, 𝑋(𝑡 − 1) = 𝑖𝑡−1,… , 𝑋(0) = 𝑖0)

= 𝑃 (𝑋(𝑡 + 1) = 𝑗|𝑋(𝑡) = 𝑖),

for each 𝑡 ∈ N and 𝑖, 𝑗, 𝑖0,… , 𝑖𝑡−1 ∈ 𝑉 .
(P3) The one-step transition probabilities are invariant with respect to

time, i.e.,

𝑃 (𝑋(𝑡 + 1) = 𝑗|𝑋(𝑡) = 𝑖) = 𝑃 (𝑋(1) = 𝑗|𝑋(0) = 𝑖),

for each 𝑡 ∈ N and 𝑖, 𝑗 ∈ 𝑉 . We collect all the one-step transition
probabilities in an 𝑛-square matrix 𝐏 whose generic element is
𝑝𝑖𝑗 = 𝑃 (𝑋(1) = 𝑗|𝑋(0) = 𝑖). 𝐏 is the transition probability matrix
of the Markov chain  .

As we will see below, the node set 𝑉 of the network coincides with
he state space of the Markov chain.
Properties (P1)–(P3) allow us to identify a Markov chain via three

lements: the state space 𝑉 , the transition probability matrix 𝐏, and
he initial probability distribution 𝜋0 = (𝜋0(1),… , 𝜋0(𝑛)), where 𝜋0(𝑖) =
(𝑋(0) = 𝑖) for each 𝑖 ∈ 𝑉 . In particular, property (P3) states that the
arkov chain  is homogeneous.
Furthermore, property (P3) can be extended to the case of ℎ-step

ransition probabilities that are invariant with respect to time for each
∈ N. A straightforward computation shows that

(𝑋(𝑡 + ℎ) = 𝑗|𝑋(𝑡) = 𝑖) = 𝑃 (𝑋(ℎ) = 𝑗|𝑋(0) = 𝑖) (2)

or each 𝑡, ℎ ∈ N and 𝑖, 𝑗 ∈ 𝑉 . We collect the ℎ-step transition
robabilities in the 𝑛-square matrix 𝐏ℎ, the element of which in row
and column 𝑗 is 𝑝(ℎ)𝑖𝑗 = 𝑃 (𝑋(ℎ) = 𝑗|𝑋(0) = 𝑖).
Because the state space 𝑉 is finite, the matrix 𝐏ℎ is 𝐏ℎ, i.e., the

-step transition probability matrix is the ℎth power of the one-step
atrix 𝐏.
223

o

.2. Higher-order assortativity in the context of Markov chains

Given ℎ ≥ 1, we recall that ‖𝐄ℎ‖1 = 1. Therefore, by referring to
arkov-chain theory, the generic element 𝑒(ℎ)𝑖𝑗 may represent the joint
robability that 𝑖 and 𝑗 are the position states of  at time 𝑡 and 𝑡 + ℎ,
espectively, for each 𝑡, i.e.,
(ℎ)
𝑖𝑗 = 𝑃 (𝑋(ℎ) = 𝑗, 𝑋(0) = 𝑖). (3)

By considering the Markov chain  for which Eq. (3) is true and by
sing the conditioned probability definition, we can write

ℎ = 𝐃𝜋0𝐏
ℎ, (4)

here 𝐃𝜋0 is a diagonal 𝑛-squared matrix whose diagonal entries are
he components of the initial distribution 𝜋0.
Notice that (4) leads to 𝐄1 = 𝐖

‖𝐖‖1
= 𝐃𝜋0𝐏. Thus, matrices 𝐃𝜋0

and 𝐏 identify 𝐄ℎ, for each ℎ ≥ 1. In this respect, we notice that the
construction of 𝐄ℎ is not flexible, being constrained to the considered
network. This said, we do not have any conditions on the selection of
the network, so that we have the possibility of representing 𝐄ℎ in the
case of any chosen structure.

From matrix 𝐏 and then 𝐏ℎ with ℎ > 1, which is stochastic by rows,
i.e., the rows of the matrix sum to 1, we have 𝐏ℎ𝟏 = 𝟏 and hence

ℎ𝟏 = (𝐃𝜋0𝐏
ℎ)𝟏 = 𝐃𝜋0 (𝐏

ℎ𝟏) = 𝐃𝜋0𝟏 = 𝜋0, (5)

hich gives 𝜋0 = 𝐩ℎ, ℎ ≥ 1, where 𝐩ℎ is the vector that appears in
q. (1). Indeed, given the joint probabilities 𝑒(ℎ)𝑖𝑗 , by Eq. (3) we have

𝑛

𝑗=1
𝑒(ℎ)𝑖𝑗 =

𝑛
∑

𝑗=1
𝑃 (𝑋(ℎ) = 𝑗, 𝑋(0) = 𝑖) = 𝑃 (𝑋(0) = 𝑖) = 𝜋0(𝑖) ∀𝑖 = 1,… , 𝑛,

.e., 𝐩ℎ is the initial probability distribution.
It is clear that in general there is no a unique Markov chain  with

tate space 𝑉 for which Eq. (4) is valid. However, given Eq. (5), there is
unique vector 𝜋0. So, once we choose the network 𝑁 = (𝑉 ,𝐴), there
s a unique Markov chain  = (𝑋(𝑡) ∶ 𝑡 ∈ N) with 𝑉 ,𝐏, and 𝜋0 fixed.
Note that for each network node 𝑖 ∈ 𝑉 that is a sink, matrix 𝐏
ust remain stochastic. Therefore, a 1 is added in the main diagonal
o associate with the sink an absorbing state in the Markov chain, and
0(𝑖) must be 0 so as not to modify the network topology and comply
ith Eq. (4) for ℎ = 1. On the contrary, if 𝑖 is not a sink 𝜋0(𝑖) must be
ositive otherwise Eq. (4) would return a zero line in 𝐄1 no matter the
alues in 𝐏.
Analogous to Eq. (5), we have

⊤
ℎ𝟏 = (𝐃𝜋0𝐏

ℎ)⊤𝟏 = (𝐏ℎ)⊤𝐃𝜋0𝟏 = (𝐏ℎ)⊤𝜋0 = 𝜋ℎ (6)

hen 𝜋ℎ = 𝐪ℎ, ℎ ≥ 1, where 𝐪ℎ is the vector that appears in Eq. (1).
gain, by Eq. (3) we have
𝑛

𝑖=1
𝑒(ℎ)𝑖𝑗 =

𝑛
∑

𝑖=1
𝑃 (𝑋(ℎ) = 𝑗, 𝑋(0) = 𝑖) = 𝑃 (𝑋(ℎ) = 𝑗) = 𝜋ℎ(𝑗) ∀𝑗 = 1,… , 𝑛,

.e., 𝐪ℎ is the probability distribution after ℎ steps.
Keeping this in mind, we can rewrite the higher-order assortativity

ndex (defined in Eq. (1)) in the Markov-chain context as

ℎ = 𝑟(𝐱, 𝐲,𝐃𝜋0𝐏
ℎ) =

𝐱⊤
(

𝐃𝜋0𝐏
ℎ − 𝜋0𝜋⊤

ℎ

)

𝐲
√

[

𝐱⊤
(

𝐃𝜋0 − 𝜋0𝜋⊤
0

)

𝐱
] [

𝐲⊤
(

𝐃𝜋ℎ − 𝜋ℎ𝜋⊤
ℎ

)

𝐲
]

. (7)

he higher-order assortativity index of length ℎ then represents the
utocorrelation at time–distance ℎ of a Markov chain evaluated not on
he states 𝑣𝑖 ∈ 𝑉 but on their transformations 𝐱 and 𝐲. Indeed, in a
etwork context, centrality measures can be the image of a real function
n the node set 𝑉 .
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Table 2
In-strength 𝐬𝐼𝑘 and out-strength 𝐬𝑂𝑘 for each example 𝑘 = 1,… , 4.

𝑉 𝑠𝐼1 𝑠𝑂1 𝑠𝐼2 𝑠𝑂2 𝑠𝐼3 𝑠𝑂3 𝑠𝐼4 𝑠𝑂4
a 396 6 396 200 350 200 350 396
b 8 400 8 400 202 100 398 100
c 4 0 392 0 398 300 398 300
d 8 400 8 400 100 200 100 200
e 396 6 396 200 150 400 150 400

Mean 162.4 240 240 279.2

7.3. Some illustrative examples

We present some toy examples to illustrate how the newly intro-
duced assortativity measure works in the context of Markov chains. For
this, we consider some instances of weighted networks whose related
Markov chains have a meaningful state classification. We go into detail
below.

We consider four networks 𝑁𝑘 = (𝑉 ,𝐖𝑘) with 𝑘 = 1,… , 4, sharing
the same set of nodes 𝑉 = {a, b, c, d, e} and with weighted adjacency
matrices 𝐖𝑘 defined as follows:

𝐖1 =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

0 2 𝟐 2 0
396 0 0 4 0
0 0 0 0 0
0 4 0 0 396
0 2 𝟐 2 0

⎞

⎟

⎟

⎟

⎟

⎟

⎠

, 𝐖2 =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

0 2 𝟏𝟗𝟔 2 0
396 0 0 4 0
0 0 0 0 0
0 4 0 0 396
0 2 𝟏𝟗𝟔 2 0

⎞

⎟

⎟

⎟

⎟

⎟

⎠

,

3 =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

0 𝟐 198 0 0
0 0 0 100 0

150 0 0 0 150
0 200 0 0 0

200 0 200 0 0

⎞

⎟

⎟

⎟

⎟

⎟

⎠

,

4 =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

0 𝟏𝟗𝟖 198 0 0
0 0 0 100 0

150 0 0 0 150
0 200 0 0 0

200 0 200 0 0

⎞

⎟

⎟

⎟

⎟

⎟

⎠

.

he networks are shown in Fig. 8. From inspection, note that 𝑁1 and𝑁2
ave the same topology and differ only by two weights. In particular,
here are no outflows from node c; i.e., it is a sink. However, while in
he former case the inflows into node c have remarkably low weights, in
he latter they are particularly high. This evidence is true in terms of the
eights’ absolute values (i.e., considering matrices𝐖1 and𝐖2) but also

from a relative perspective (i.e., considering the transition probability
matrices 𝐏1 and 𝐏2 shown below).

Also, 𝑁3 and 𝑁4 share the same topology, and there are no outflows
from the class of nodes {b, d} ⊂ 𝑉 . In both cases, it is possible to have
an inflow in such a class from the set {a, c, e} via the arc from node a
to node b. This arc has a low weight in network 𝑁3 but a remarkably
high one in 𝑁4.

We now consider the centrality measures. In Table 2, we report
the in-strength 𝐬𝐼𝑘 and out-strength 𝐬𝑂𝑘 distributions for each network
𝑁𝑘, 𝑘 = 1,… , 4 as well the average values. Note that the average
values for the in-strengths and out-strengths are the same because of
the associativity of the sum.

We classify the nodes as large or small with respect to the average
values of the corresponding centrality measure. Table 2 shows that in
network 𝑁1, nodes a and e are large receivers but small spreaders,
whereas nodes b and d are small receivers and large spreaders, and
node c is peripheral. In network 𝑁2, the node centrality is the same
as that in network 𝑁1, with the exception of node c, which becomes a
large receiver. In network 𝑁3, nodes of the absorbing class {b, d} are
peripheral, and node a is a large receiver but a small spreader; node e
is a small receiver but a large spreader, and node c is central. The
centralities in network 𝑁 differ only for node a, which also becomes
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Table 3
First and last evaluated values of 𝑟𝑂𝐼

ℎ for the four illustrative examples.

ℎ 𝑁1 𝑁2 𝑁3 𝑁4

1 0.7718 0.0828 0.5404 0.5503
2 −0.7664 −0.0739 0.5204 −0.0309
3 0.6031 0.0507 0.3515 0.2663
4 −0.6031 −0.0470 0.5067 −0.0130
5 0.5086 0.0361 0.4034 0.1688
⋯ ⋯ ⋯ ⋯ ⋯

9996 0 0 −0.0098 −0.0718
9997 0 0 0.0098 0.0718
9998 0 0 −0.0098 −0.0718
9999 0 0 0.0098 0.0718
10000 0 0 −0.0098 −0.0718

a large spreader and consequentially a central node; therefore, node b
is affected by this variation and becomes a large receiver.

The homogeneous Markov chains related to the networks of the
examples share the same state space 𝑉 = {a, b, c, d, e}. We denote the
Markov chain associated with network 𝑁𝑘 by 𝑘 for 𝑘 = 1,… , 4. The
transition matrix and the initial probability distribution of 𝑘 can be
obtained from the adjacency matrix 𝐖𝑘 and are labeled as 𝐏𝑘 and 𝜋0,𝑘.
Here, we give the transition matrices:

𝐏1 =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

0 0.3̄ 0.3̄ 0.3̄ 0
0.99 0 0 0.01 0
0 0 1 0 0
0 0.01 0 0 0.99
0 0.3̄ 0.3̄ 0.3̄ 0

⎞

⎟

⎟

⎟

⎟

⎟

⎠

,

𝐏2 =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

0 0.01 0.98 0.01 0
0.99 0 0 0.01 0
0 0 1 0 0
0 0.01 0 0 0.99
0 0.01 0.98 0.01 0

⎞

⎟

⎟

⎟

⎟

⎟

⎠

,

𝐏3 =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

0 0.01 0.99 0 0
0 0 0 1 0
0.5 0 0 0 0.5
0 1 0 0 0
0.5 0 0.5 0 0

⎞

⎟

⎟

⎟

⎟

⎟

⎠

,

𝐏4 =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

0 0.5 0.5 0 0
0 0 0 1 0
0.5 0 0 0 0.5
0 1 0 0 0
0.5 0 0.5 0 0

⎞

⎟

⎟

⎟

⎟

⎟

⎠

.

The initial probability distributions are proportional to the out-strengths
because of Eq. (5), and they are written as follows:

𝜋⊤
0,1 = [0.008, 0.493, 0, 0.493, 0.007],

𝜋⊤
0,2 = [0.16̄, 0.3̄, 0, 0.3̄, 0.16̄],

𝜋⊤
0,3 = [0.16̄, 0.083̄, 0.25, 0.16̄, 0.3̄],

𝜋⊤
0,4 = [0.284, 0.072, 0.215, 0.143, 0.287].

For illustration, see the Supplementary material, where we present the
direct computation of 𝐄ℎ, for ℎ = 1, 2, 3 along with some comments for
the case of network 𝑁4.

The states of the Markov chains  are easily classified: state c is
an absorbing state for Markov chains 1 and 2, and the set of states
{b, d} is an absorbing class for 3 and 4. In accordance with the related
networks, the probabilities of being absorbed by states c and {b, d}
represent the elements distinguishing 1 from 2 and distinguishing
3 from 4, respectively.

Next, we inspect the assortativity as the correlation between the
out-strength and in-strength associated with the states of the aforemen-
tioned Markov chains. Fig. 9 reports the out–in higher-order assortativ-
ity 𝑟𝑂𝐼 for networks 𝑁 and 𝑁 . In 𝑁 , the probability of falling into
ℎ 1 2 1
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Fig. 8. Graphical representations of four illustrative examples. The red vertices are sinks or classes without out-flows. The numbers on the edges refer to the corresponding weights.
Networks 𝑁1 and 𝑁2 have the same topology but different weights, as do 𝑁3 and 𝑁4. (For interpretation of the references to color in this figure legend, the reader is referred to
he web version of this article.)
Fig. 9. Higher-order assortativity 𝑟𝑂𝐼
ℎ between out-strength and in-strength using weighted adjacency matrix to evaluate transition probabilities. The results refer to networks 𝑁1

(left) and 𝑁2 (right). The horizontal axis represents the walk length on a logarithmic scale, and the vertical axis represents the assortativity index.
the absorbing state c is small, so we can consider its effect as marginal.
Nodes a and e have small out-strength and high in-strength, in contrast
to nodes b and d, which have the opposite characteristics. We identify
the pair {a, e} as group 1 and the pair {b, d} as group 2. At the first step
(ℎ = 1), the assortativity is due mainly to the correlation between the
out-strengths in group 1 and the in-strengths in group 2, and vice versa.
As can be seen, there is concordance between them, and therefore
positive assortativity. After two steps (ℎ = 2), if the Markov chain
starts from group 1, then it is highly probable that it jumps to group 2
and then back to group 1, generating disassortative behavior; the same
is true if the Markov chain starts from group 2. Consequently, for
increasing ℎ, this creates the alternating between positive and negative
assortativity for odd and even values of ℎ, respectively, as confirmed
in Table 3. The asymptotic zero-assortative behavior is caused by both
225

the randomness and the presence of the absorbing state c. In network
𝑁2, the same behavior can be observed with a smaller oscillation;
this is due to the increased out-degrees of nodes in group 1 and the
higher probability of falling into the absorbing state c where there is
no centrality variability.

Note that even if there is no variability of strength measures in the
sink, there is no indeterminate form in Eq. (1) because the probability
of falling into the sink is less than one. Moreover, in network 𝑁1, the
probability of falling into the sink is high, so the asymptotic value
is reached immediately. By contrast, in network 𝑁2 the asymptotic
value is reached after a long time alternating between assortative and
disassortative behavior.

Fig. 10 shows the same results for networks 𝑁3 and 𝑁4. These
networks are characterized by the absorbing class {b, d} and the com-
plementary one {a, c, e} connected by the bridge represented by the

edge from node a to node b. Both classes have positive assortativity.
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Fig. 10. Higher-order assortativity 𝑟𝑂𝐼
ℎ between out-strength and in-strength using weighted adjacency matrix to evaluate transition probabilities. The results refer to networks 𝑁3

(left) and 𝑁4 (right). The horizontal axis represents the walk length on a logarithmic scale, and the vertical axis represents the assortativity index.
In 𝑁3, the bridge has a low weight, so the inter-assortative behavior
dominates. In network 𝑁4, the weight of the bridge is very high, and
so the larger oscillations are justified by the differences between the
classes.

8. Conclusions

This paper fills a gap in the literature on complex networks by
introducing the concept of higher-order assortativity for weighted and
directed networks, where the considered nodal attributes are the di-
rected versions of degree and strength centrality. These measures have
a clear interpretation in socioeconomic applications that are well-linked
to directed and weighted networks, such as migration and international
trade as studied in the proposed empirical applications. Furthermore,
we also highlighted the strong connection between the introduced as-
sortativity measure and the autocorrelations of suitably defined Markov
chains.

The versatility of the proposed methodology makes it possible to
describe the preferential attachment of a wide set of models, with
a possible paradigmatic empirical instance being the structure and
systemic risk profile of the interbank system (Bargigli et al., 2015;
Bo & Capponi, 2015; Castellano et al., 2021; Castiglionesi & Eboli,
2018; Cerqueti et al., 2022, 2021). Moreover, the interpretability of
the proposed assortativity measure in the context of Markov chains
might be exploited efficiently to analyze the properties of some classes
of dynamical random systems that have Markovian properties. In this
respect, it is important to note that the decay of the autocorrelation
explains the long-term memory properties of the underlying stochastic
process (Hurst, 1951). These challenging themes are already part of our
research agenda.
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