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ABSTRACT
Generative AI is changing the way developers interact with soft-
ware systems, providing services that can produce and deliver new
content, crafted to satisfy the actual needs of developers. For in-
stance, developers can ask for new code directly from within their
IDEs by writing natural language prompts, and integrated services
based on generative AI, such as Copilot, immediately respond to
prompts by providing ready-to-use code snippets. Formulating the
prompt appropriately, and incorporating the useful information
while avoiding any information overload, can be an important fac-
tor in obtaining the right piece of code. The task of designing good
prompts is known as prompt engineering.

In this paper, we systematically investigate the influence of eight
prompt features on the style and the content of prompts, on the
level of correctness, complexity, size, and similarity to the develop-
ers’ code of the generated code. We specifically consider the task
of using Copilot with 124,800 prompts obtained by systematically
combining the eight considered prompt features to generate the im-
plementation of 200 Java methods. Results show how some prompt
features, such as the presence of examples and the summary of the
purpose of the method, can significantly influence the quality of
the result.

CCS CONCEPTS
• Software and its engineering → Integrated and visual de-
velopment environments.
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1 INTRODUCTION
Generative AI solutions, and in particular those built on Large Lan-
guage Models (LLM), such as ChatGPT [23], Bard [12], and CoPi-
lot [9], promise to become a powerful tool that can aid software
developers in completing their tasks more efficiently and effectively.
For instance, LLMs have already been exploited to support program-
ming tasks by automatically generating code that responds to a
given natural language request formulated by a user [8, 14, 22].
Some other recent studies investigated how developers interact
with these tools during project development [2], and how usable
these tools are [2].

A key concern about LLMs is that they are known to be sensitive
to the prompt, that is, the quality of the result strongly depends
on the query that is asked by the user to the model [16, 17, 27].
In fact, the style of the prompt, as well as its content, may de-
termine the level of correctness of the response. This is also con-
firmed by our observations in the domain of code generation. For
instance, when asking for the body of the Java method String
convertToBase7(int num) Copilot generates better code when
the prompt includes some basic hints about the semantics of the
intended solution, such as "The base 7 digits are 0–6 and the digit posi-
tions represent powers of 7". Or sometimes the resulting code might be
better by just considering some simple stylistic rules, such as using
the imperative mood (e.g., . . . implement pattern matching that...), which
is often easier to be interpreted by LLMs compared to future (e.g.,
. . . the method shall implement pattern matching that...). As a consequence,
researchers are actively studying how to interact with LLMs, so
that the prompts that are likely to provide the best results can be
quickly formulated and submitted to the models, without losing
time with ineffective interactions.

Only a few studies preliminary investigated prompt engineering
for code generation. Denny et al. studied the impact of changes
implemented in prompts used for solving Python programming
problems [6]. The results show that prompt engineering has been
useful in the vast majority of the cases to improve the correctness of
the resulting code. White et al. proposed patterns that can be used
by programmers to write prompts in different situations, however
without reporting data about their effectiveness [29]. Ren et al.
investigated the specific case of adjusting the prompt to obtain
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proper exception handling code [25]. So far, no study systematically
considered prompt engineering in code generation tasks.

In this paper, we propose a first controlled experiment that in-
vestigates the effectiveness of eight prompt features on the same
prompt for 200 Java code generation problems extracted from both
GitHub [10] and LeetCode [13]. For example, we systematically
compare the generated code when the same request is formulated
according to different grammar styles (e.g., active and passive forms)
or includes different content (e.g., with and without examples). We
consider both GitHub and LeetCode to investigate the impact of
the same prompt features when occurring within different kinds
of prompts. Prompts derived from the GitHub methods’ comments
usually are concise explanations of a method’s behavior, such as
The function inserts the given vertex into a sorted position in the given ar-
ray. On the contrary, prompts derived from LeetCode methods’
descriptions usually are lengthy descriptions about the method
to be implemented, such as The function implements wildcard pattern
matching . . .where ’?’ matches a single character . . . return true if any match
is found. Example: . . . .

In our study, we focus on the Copilot-3 LLM, since it is the most
adopted AI developer tool, with more than 1 million developers
and 20,000 organizations that adopted it [7]. We executed Copilot
with a total of 124, 800 queries discovering important information
about prompt engineering for code generation. In particular, we
discover that including a summary of the purpose of the method
and including examples in the prompt are particularly useful to
obtain code that passes the available test cases. Some stylistic rules
may also have an impact. For instance, the usage of the presence
tense seems beneficial in prompts.

On the other hand, including some other information has not
produced beneficial results. For instance, the inclusion of boundary
cases and contextual information in the prompts had no significant
effect on the level of correctness of the results. Including exces-
sive information may even have a negative effect, as reported for
boundary cases that made Copilot produce code that differs more
from the code implemented by the developers when included in
the prompt.

The experimental materials necessary to reproduce our study
have been made available for online access at https://shorturl.at/
hmpBM.

The paper is structured as follows. Section 2 introduces prompt
engineering and describes the prompt features that we considered
in our experimental study. Section 3 reports the three research
questions that we investigated and describes the methodology that
we followed to answer them. Section 4 presents the results that
we obtained for each research question, discusses threats to valid-
ity, and distills some advice about the definition of the prompts.
Section 5 discusses related work. Section 6 provides final remarks.

2 PROMPT ENGINEERING AND PROMPT
FEATURES

Although powerful, LLMs may generate results of different quality
depending on the style and content of the prompt. For this reason
prompt engineering, that is, “the formal search for prompts that
retrieve desired outcomes from language models” [16], is now an
active field of research. For example, in computer vision, studies on

prompt engineering revealed that focusing on the mood and style
of the keywords that occur in the prompts is more important than
rephrasing the prompts themselves [16].

In a nutshell, prompt engineering can be seen as a kind of pro-
gramming in natural language, where programming statements
are the natural language sentences in the prompts [26]. Under-
standing how to write good prompts is indeed also relevant when
considering code generation tasks. To derive insights about how to
write prompts for code generation, we systematically considered
the same prompts written according to different styles and with
variations in the content. The selection of the features derives from
the analysis of the comments and prompts present in the GitHub
and LeetCode methods we extracted. In particular, we considered
three prompt features affecting the style of the sentences and five
prompt features affecting the content of the prompt, for a total of
eight prompt features.

Prompt features about the style
Mood: (a) Indicative, when the prompt uses the indicative mood
to specify what the function has to do, for instance Given an integer
array . . . , the function returns true if there are two distinct indices . . . ; (b)
Imperative, when the prompt uses the imperative mood of to specify
what the function has to do, for instance Given an integer array . . . ,
return true if there are two distinct indices . . . ;
Sentence Mode: (a) Active, when the prompt is in active mode,
for instance Given an integer array . . . , the function returns True if . . . ;
(b) Passive, when the prompt is in passive mode, for instance An
integer array and . . . are given to the function. True is returned by the function
if . . . .
Tense: (a) Present, when the prompt uses the present tense, for
instance Given an integer array . . . , the function returns true if there are two
distinct indices . . . ; (b) Future, when the prompt uses the future tense,
for instance Given an integer array . . . , the function will return true if there
are two distinct indices . . .

Prompt features about the content
Reference to the Parameters: (a) Implicit without names, when
the prompt implicitly refers to the parameters of the functions
without using their name, for instance Return True if there are two
distinct indices . . . in an integer array, such that . . . ; (b) Implicit with names,
when the prompt implicitly refers to the parameters but uses their
names, for instance Return True if there are two distinct indices . . . in
an integer array nums, such that . . . ; (c) Explicit without names: when
the prompt explicitly refers to the parameters without using their
names, for instance Given an integer array and . . . , return True if there are
two distinct . . . ; (d) Explicit with names: when the prompt explicitly
refers to the parameters using their names, for instance Given an
integer array nums and . . . , return True if there are two distinct . . . .
Boundary Cases: (a) Missing, when the prompt does not include
any boundary case; (b) Implicit, when the boundary case is stated
but it is not stated what the method should do, for instance Given
an integer array . . . return true if there are . . . and the array is not null; (c)
Explicit, when the boundary case is stated, including the expected
behavior, for instance Given an integer array . . . return true if there are . . . .
If the array is null, return false.
Summary of the Method: (a) Missing, when the semantic of the
method is not summarized in the prompt, like in all the examples
reported so far; (b) Provided Upfront, when the semantic is stated
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at the beginning of the prompt, for instance The result is a boolean
representing if there are any duplicates in the array. Given an integer . . . ; (c)
Provided Afterward, when the semantic of themethod is summarized
at the end of the prompt, for instance Given an integer . . . The result is a
boolean representing if there are any duplicates in the array.
Examples: (a) Present, when the prompt includes examples about
the input-output behavior of themethod, for instance Given an integer
array . . . Example Input nums=[1, 2, 3, 1], Output = true; (b) Absent, when
the prompt does not include any example.
Context: (a) Present, when the prompt includes information about
the characteristics of the inputs and the outputs, for instance Given
an integer array . . .Constraints 1 <= nums.length <= 100000, 0<=k<=100000;
(b) Absent, when the prompt does not include such information.

3 METHODOLOGY
The objective of our study is to investigate how prompt features
may impact the correctness of the code generated by LLMs. In
particular, we consider the generation of a method body as a task,
and Copilot as LLM assisting this task. We selected this task because
these tools are mainly designed and trained to help developers with
the implementation of code snippets, such as individual methods
and functions [2, 11]. We selected Copilot because it is the most
popular and used AI-based code assistant at the moment [7].

Our study is structured around three main research questions:
RQ1 - How do prompt features impact on the correctness of
the code generated by Copilot? This research question investi-
gates how prompt features impact on the generation of code that
compiles and passes test cases.
RQ2 - How do prompt features impact on the complexity of
the code generated by Copilot? This research question investi-
gates how prompt features impact on the cyclomatic complexity
and size of the generated code.
RQ3 - How do prompt features impact on the similarity be-
tween the code generated by Copilot and the code imple-
mented by the developers? This research question investigates
how prompt features impact the possibility of obtaining code that is
syntactically and semantically close to the code that the developers
have implemented.

We describe below how we selected the prompts for answering
RQ1-3, how we obtained the alternative prompts, consistently with
the identified prompt features, howwe collected the responses from
Copilot, and finally how we analyzed the results.

3.1 Selection of the Prompts
Our experiment involves creating many different variants for the
same prompts. We have thus to limit the initial set of prompts to
start from to achieve a feasible total number of prompts to be an-
alyzed. On the other hand, we want to study prompt engineering
both in the context of short prompts mostly reflecting what devel-
opers already write as comments for their code, and in the context
of richer prompts designed to be more explicative of the code that
must be generated. For this reason, we decided to select 100 GitHub
methods with comments, representing the case of shorter prompts

derived from comments, and 100 LeetCode1 methods, representing
the case of longer and more explicative prompts.

To select the prompts from GitHub, we built on top of results
obtained by Mastropaolo et al. [19] who collected prompts from the
Javadoc comments present in the GitHub code that is part of Java
projects with at least 300 commits, 50 contributors, and 25 stars.
We selected prompts corresponding to methods with at least 75% of
the statements exercised by the test case available in the repository
of the project. From this set of prompts and methods, to make sure
to consider a variety of prompts of different lengths, we randomly
selected 40 prompts in the range 36-97 characters, 30 prompts in
the range 98-159 characters, and 30 prompts in the range 160-221
characters2.

To select the prompts from LeetCode, we exploited the classi-
fication of the problems present in the platform as easy, medium,
and hard tasks. We thus randomly selected 40 easy problems, 30
medium problems, and 30 hard problems. Differently from GitHub,
LeetCode provides the prompts but provides neither the expected
solution nor the test suite to validate the code3. To obtain the solu-
tions for the selected problems, we exploited the walkccc platform
(https://walkccc.me/LeetCode) that stores solutions to LeetCode prob-
lems. Finally, to obtain the test cases, we automatically generated
the tests from the solutions by running the EvoSuite test generator
tool (https://www.evosuite.org) with its default configuration. We ob-
tained a total of 426 test cases, an average number of 4.3 test cases
per method. The average statement coverage achieved by these
tests is 99.8%. Actually 97 methods are fully covered, and three
methods have a lower coverage, with a minimum equal to 88%.

At the end of this step, we obtained 100 prompts derived from
GitHub and 100 prompts derived from LeetCode. Each prompt is
associated with a method signature, a method implementation, and
a set of test cases. In all cases, we packaged the code as a Maven
project to ease the automation of the next steps.

3.2 Generation of the Alternative Prompts
So far, the collected prompts are available in a single shape in terms
of prompt features, while our objective is to systematically study
the impact of different combinations of prompt features. To this
end, we created every possible version of each prompt, according
to the prompt features reported in Section 2.

In the case of the prompts extracted from GitHub, five prompt
features can be modified systematically: the three prompt features
about style, plus the Reference to the Parameters and the Boundary
Cases. The prompt features Summary of the Method, Examples, and
Context are always absent, and we decided to not add this informa-
tion ourselves in the prompts to avoid any bias in the experiment.
We, however, modified the prompts considering any possible com-
bination of the applicable features obtaining 96 alternative versions
of each prompt (2 Mood × 2 Sentence Mode × 2 Tense × 4 Reference

1LeetCode is an online platform for programming challenges, and to train developers
to get ready for technical job interviews.
236 characters are the length of the shortest prompt in the dataset and 221 characters
are the length of the longest prompt.
3LeetCode provides test suites to validate solutions, but the test suites are not publicly
available and they can be used only by submitting solutions online, which is not doable
for such a large study.
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to the Parameters × 3 Boundary Cases), for a total of 9, 600 prompts
studied.

In the case of the prompts extracted from LeetCode, all prompt
features can be modified systematically. This leads to 1,152 prompt
variants (96 prompt variants as for GitHub prompts × 3 Summary
of the Method × 2 Examples × 2 Context) for each prompt, for a total
of 115,200 prompts studied.

We obtained these so many variants of the prompts with a com-
bination of manual effort and automatic scripts. Changes to prompt
features like Mood, Sentence Mode, and Reference to the Parameters,
require manual intervention, since part of the sentence should be
rewritten. These changes have been actuated first. The remaining
prompt features could be addressed semi-automatically, that is, for
each prompt that has to be modified, we implemented an ad-hoc
script that makes substitutions and suppressions, finally obtaining
the modified prompts.

Note that we always generated the variants of the features manu-
ally, and the scripts have been used to only systematically combine
their values. For instance, the scripts can include the right instance
of a feature in a sentence or selectively replace verbs. The overall
set of prompts studied amounts to 124, 800.

3.3 Collection of the Results
To complete our benchmark, we need to collect the code generated
by Copilot for all the prompts we generated. To this end, we auto-
matically generated a query package for each prompt in the dataset.
The query package consists of a Java file with the prompt that has
to be studied, followed by the signature of the method whose code
has to be generated, and an empty method body implementation.
For the cases derived from GitHub, we included in the file with the
empty method the rest of the code of the class where the method
occurs, so that Copilot could still exploit contextual information.

To automatically collect the results generated by Copilot, since
an API is not available, we implemented an automation tool with
PyAutoGUI (www.pyautogui.readthedocs.io), which is a Python library
for automating I/O operations. To implement a quick and reliable
tool, we interacted with Copilot within Visual Studio Code mainly
using shortcuts. In particular, our tool opens Visual Studio Code
directly on the file with the empty method from the command
line, it then searches that method, moves the cursor over the target
method, closes the searchmenu, enters into the empty bodymethod,
and invokes Copilot using shortcuts. Finally, it continuously takes
screenshots until Copilot has produced a response, it then moves
over the suggestion, accepts it, saves the files, and closes the editor.

The experimental material, including the full set of prompts
and responses produced by Copilot, are available online at https:
//shorturl.at/hmpBM to facilitate further studies on this subject.

3.4 Analysis of the Results
To answer RQ1-3, we analyzed the code generated by Copilot ac-
cording to multiple perspectives.

To answer RQ1, we checked if the generated code compiles and,
in case it compiles, we determine if it also passes the execution of
the available test cases. Although testing cannot guarantee the full
correctness of the generated code, a code that passes a test suite
that extensively exercises the code implemented by the developer is

likely a quite useful piece of code. To determine if a prompt feature
has a significant influence on the level of correctness of the code,
we compute the contingency table and use the 𝜒2 test to check
significance.

To answer RQ2, we compute the cyclomatic complexity and the
number of lines of code in the generated code using JaSoMe (https:
//github.com/rodhilton/jasome). To determine if a prompt feature has
a significant influence on the complexity and size of the generated
code, we use the Wilcoxon-Mann-Whitney U test [20] for prompt
features with two categorical values and the Kruskal-Wallis H-
test [18] for the prompt features with three or more categorical
values.

To answer RQ3, we compare the generated code and the orig-
inal code written by the developers according to both the nor-
malized Levenshtein distance and the CodeBLEU metric [24]. The
Levenshtein distance captures the percentage of syntactic changes
necessary to obtain the desired code from the code generated by
Copilot (the higher, the more diverse the two code snippets are).
The CodeBLEU metric is a more sophisticated metric that cap-
tures the degree of syntactic and semantic similarity between the
compared codes, considering both their abstract syntax tree and
their data-flow (the higher, the more similar they are). We used
the javalang library (https://pypi.org/project/javalang/) to compute the
normalized Levenshtein between tokens and the CodeXGLUE tool
(https://github.com/microsoft/CodeXGLUE/tree/main) to compute the
CodeBLEUmetric. To determine if the prompt features have a signif-
icant influence on the Levenshtein distance and on the CodeBLEU
metric of the generated code, we use the Wilcoxon-Mann-Whitney
U test [20] for prompt features with two categorical values and the
Kruskal-Wallis H-test [18] for the prompt features with three or
more categorical values.

For all the statistical tests, we consider a significance level of
0.05, but we also mention when results are nearly significant, that
is, they are significant at a significance level of 0.1.

4 RESULTS
In this section, we discuss the results obtained for the three research
questions.

4.1 RQ1 - Level of Correctness
This research question investigates the correlation between the level
of correctness of the code generated by Copilot and the content and
style of the prompts, depending on the occurrences of the prompt
features.

Table 1: Level of correctness of the generated code.

Subject Cases Tot. Prompts No Compile Fail Test Pass All Tests

GitHub 9,600 6,246 (65%) 1,772 (18%) 1,582 (17%)
LeetCode 115,200 86,847 (75%) 14,434 (13%) 13,919 (12%)

Total 124,800 93,093 (75%) 16,206(13%) 15,501(12%)

Table 1 reports the number and percentage of method bodies
generated by Copilot that do not compile (Column No Compile),
that fail at least a test case (Column Fail Test), and that pass all the
available test cases (Column Pass All Tests). The code generated for
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Figure 1: Complexity and size of methods in GitHub and
LeetCode.

the GitHubmethods compiled and passed test cases more frequently
than the code generated for LeetCode methods: 35% of method
bodies compiled and 17% of method bodies passed all the test cases
for GitHub methods, while 25% of method bodies compiled and
12% passed all the test cases for LeetCode. This is likely due to
the different characteristics of the problems present in LeetCode,
compared to the code present in actual GitHub projects. Figure 1
shows the complexity and size of the GitHub and LeetCode methods
in our benchmark. LeetCode methods tend to be more complex
and longer than GitHub methods, likely explaining the difference
in the results. GitHub methods capture the small-scale problems
that developers face when writing code, while LeetCode methods
capture some algorithmic problems that developers may have to
face. Overall, the percentage of cases that pass all the available test
cases is quite limited (12%), but consistent with previous results
reported in studies about the effectiveness of Copilot. For instance,

Mastropaolo et al. [19] obtained approximately 13% method bodies
that pass the test cases with Copilot using both the original prompts
and those generated, either manually or automatically, through
specialized tools.

Table 2: P-values of prompt features significantly influencing
the level of correctness of the generated code.

Prompt Features GitHub LeetCode

Compile Pass Tests Compile Pass Tests

Mood No No No No
Mode No No No No
Tense 0.1 0.1 No No

Param No No No No
B. Cases No No No No
Summary - - No 0.04
Examples - - 10−4 10−4

Context - - No No
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Figure 2: Influence of Tense on GitHub prompts.

In terms of the influence of the prompt features, Table 2 lists
all the considered features, and their significance on the genera-
tion of code that respectively compiles and passes all the available
test cases, for both GitHub and LeetCode. We report No when the
prompt feature is not significant, we report the boldface p-value
with a grey background when the feature is significant, we use a
lighter background when the p-value is nearly significant, and -
when the prompt feature does not apply.

None of the five studied features have a statistically significant
impact on the level of correctness of the results obtained for the
prompts derived from GitHub. The only prompt feature with a mild
influence on the correctness is the Tense (p-value 0.1). Figure 2
shows how Tense impacts on the results. The present tense tends
to be better interpreted by Copilot than the future tense, especially
in terms of code that passes all the test cases.

In the case of LeetCode, two prompt features have been statis-
tically significant: the presence of a Summary, for the purpose of
obtaining code that passes all the available test cases only, and the
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Figure 3: Influence of Summary on test-
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Figure 4: Influence of Examples on com-
pilation.
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Figure 5: Influence of Examples on test-
ing.

presence of Examples, for both the generation of code that compiles
and passes all the tests. The Tense in LeetCode is not even mildly
significant. Probably, the Tense has little impact when the descrip-
tion is richer, as the one derived from LeetCode, but it has a slightly
more significant impact when the prompt is short.

The presence of a Summary of the purpose of the method has
been significantly useful for generating code that passes the test
cases, while it is not fundamental to simply obtain code that only
compiles. Figure 3 shows the impact of Summary that, especially
when occurring before the rest of the description, increases the
number of methods that pass all the available tests.

The presence of Examples resulted to be a key element for the
success of the code generation task. Figures 4 and 5 show its impact
on the generation of code that compiles and passes all the tests,
respectively. Indeed, examples provide important guidance for the
generation of the right code for Copilot, especially to obtain code
that passes the test cases. This is partially surprising since Copilot
just interprets the text, not using the examples, for instance to run
the generated code, and thus their strong impact on the results was
not entirely expected.

In our experiments, the presence of Context information about
how methods are used, the specification of Boundary Cases, the
Reference to Parameters, as well as the Mood and the Sentence Mode,
have not revealed as introducing any significant difference on the
level of correctness of the results. Based on our observations, they
might tend to overcomplicate the prompt with information that
cannot be fully exploited by the LLM.

Answer to RQ1 According to our results, effective prompts
start with a summary of the purpose of the method and in-
clude some examples of its input/output behavior. Prompts
should preferably use the present tense. Providing additional
contextual information does not necessarily produce signifi-
cantly better results.

4.2 RQ2 - Complexity and Size
This research question investigates the correlation between the
complexity and size of the generated code, and the content and style
of the considered prompts.

Table 3 reports the prompt features that have a significant in-
fluence on code complexity and size. In the case of GitHub, the

Sentence Mode has been reported as significantly influencing com-
plexity, although generating a mild impact. In fact, the mean (and
standard deviation) of the complexity when using the active mode
is 2.81(±2.5), while when using the passive mode is 2.72(±2.35). It
thus seems that using the passive form may mildly influence code
complexity, when the prompt is short (e.g., the GitHub prompt) and
does not include additional information such as Examples, Sum-
mary of the Method, and Boundary Cases, as opposed to LeetCode’s
prompts. Due to difficulty in explaining observations with LLM, it
is hard to identify the reason for such a mild dependency.

Table 3: P-values of prompt features significantly influencing
the complexity and size of the generated code.

Prompt Features GitHub LeetCode

Complexity (CC) Size (loc) Complexity (CC) Size (loc)

Mood No No No No
Mode 0.02 No No No
Tense No No No No

Param No No No No
B. Cases 10−6 10−1 No No
Summary - - 0.09 No
Examples - - 10−11 10−23

Context - - No No

The specification of the Boundary Cases had a significant in-
fluence on the complexity and size of the code generated for the
GitHub cases.

Figure 6 shows how the presence of the Boundary cases induces
the generation of longer and slightly more complicated code. In
fact, when a boundary case is explicit, Copilot often generates code
that explicitly incorporates if statements to handle the boundary
cases specified in the prompt. For example, one of the parameters
of the method defineLigand, which is one of the methods that we
selected from GitHub, is an object of type IAtomContainer named
container. The implementation is supposed to check the parame-
ter for null values, and Copilot adds this check in the code only
when the boundary case is specified. The presence of the check
increases the level of correctness, but also the length and the com-
plexity of the resulting code. While Copilot often outputs additional
checks when boundary cases are included in the prompt, thus in-
creasing the size and complexity of the code, these extra checks
are not sufficient to significantly increase the level of correctness
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Figure 6: Influence of Boundary Cases on complexity and
size.

of the code in our study, since they are sometimes unnecessary or
implied by the already generated code (see the results for RQ1).

When the prompt is particularly rich, for instance it already
includes summaries and examples, the inclusion of boundary cases
does not have an impact on the complexity and size of the code, as
reported by the lack of significance of the boundary cases on the
size and complexity of the code generated for LeetCode’s methods.
This is likely to happen because examples and boundary cases
report partially overlapping information.

Figure 7: Influence of Examples on complexity and size.

The Summary and especially the Examples had a significant in-
fluence on code complexity and size of the generated code. Figure 7
quantifies the impact of these prompt features. This result was
expected since these prompt features correlate with the correctness
of the code and the largely wrong code (i.e., code that does not even

Table 4: Mean size and complexity of the generated code.

Subject Metric Not Compile Compile Fail Test Pass All Tests

GitHub CC 2.68 2.87 3.06 2.65
Locs 9.48 11.15 11.42 10.84

LeetCode CC 1.88 4.85 5.05 4.85
Locs 6.28 16.70 17.09 16.31

compile) is often over-simplistic. Table 4 reports the complexity
(row CC) and size (row Locs) for the methods generated for both
GitHub and LeetCode cases, distinguishing between the methods
that do/do not compile and, among the ones that compile, the ones
that fail/do not fail at least a test case. These results show how the
shortest code usually does not even compile. In fact, the code that
does not compile has the lowest mean complexity and the smallest
mean size for both GitHub and LeetCode. On the other hand, it
is interesting to see how, among the code that compiles, the most
complex and largest one usually fails at least a test case. In fact, the
highest mean complexity and largest mean size are reported for the
code that fails at least a test for both GitHub and LeetCode.

Table 5: Significant relationships between size and complex-
ity of the code to be generated and the level of correctness of
the solution.

Subject Metric Generated Code Generated Code
Compiles Passes All the Tests

GitHub CC of the original code No 10−8

Locs in the original code 10−30 10−32

LeetCode CC of the original code 10−6 0.001
Locs in the original code 10−8 10−15

We also investigated if a similar relationship holds with the code
that has to be generated, that is, the complexity and length of the
original code extracted from GitHub and LeetCode. Table 5 shows
the significant correlations between complexity and size metrics
and the resulting level of correctness of the code, distinguishing
between achieving code that compiles and code that passes all
the test cases. We can notice that there is a strong correlation
between all these factors (all the correlations are significant with
the exception of code complexity correlated to the generation of
code that compiles in GitHub).

Figures 8 and 9 show the results for GitHub and LeetCode, re-
spectively. Interestingly, they show opposite trends for GitHub and
LeetCode, concerning the code that fails to compile. Although the
population is spread, most of the code that fails to compile origi-
nates from the attempt to generate the body of a method that is
rather simple and short in GitHub. While most of the code that
fails to compile originates from the attempt to generate the body
of methods that are rather complex and long in LeetCode. This can
be explained by the nature of the cases. The complexity of GitHub
is more on the use of appropriate APIs and less on the algorithmic
aspects, making the complexity and length of a method a less rele-
vant factor. While the length and complexity are a more important
factor for the algorithmic code present in LeetCode.
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Figure 8: Complexity and size of the developers’ code for the
GitHub methods whose code generated by Copilot does not
compile, fails at least a test case, or passes all the tests.

Once code that compiles is generated, Copilot succeeds mostly
with the simpler and shorter methods in GitHub, while it is not
necessarily the case in LeetCode.

Answer to RQ2 The complexity and length of the generated
code are influenced by the Sentence Mode of the prompt, the
presence of Boundary Cases, the presence of the Summary and
the Examples. While the examples demonstrated beneficial
for code correctness, it was not the same for the boundary
cases. The mode had also a mild impact on the complexity of
the generated code, with the passive form producing slightly
simpler code.

4.3 RQ3 - Similarity to the Intended Code
This research question investigates how close the generated code,
even if incorrect, is to the original code according to the Levenshtein
and the CodeBLEU metrics. Table 6 reports the significant prompt
features for these two metrics.

Results show that the Sentence Mode has an influence on the
Levenshtein distance and the CodeBLEU distance for the LeetCode
cases. In particular, when the active mode is used, the mean Lev-
enshtein distance is 0.601 while it is 0.599 with the passive mode.
Similarly, the CodeBLEU is 0.412 with the active mode and 0.415
with the passive one. The active mode generates code that is slightly
more diverse from the original code according to both metrics
(higher Levenshtein distance and lower CodeBLEU). However, the
impact of this phenomenon is marginal.

The presence of Boundary cases also had a significant impact
on the similarity of the resulting code compared to the original

Figure 9: Complexity and size of the developers’ code for the
LeetCode methods whose code generated by Copilot does not
compile, fails at least a test case or passes all the tests.

Table 6: P-values of prompt features significantly influencing
the normalized Levenshtein distance and the CodeBLEU of
the generated code.

Prompt Features GitHub LeetCode

Levenshtein CodeBLEU Levenshtein CodeBLEU

Mood No No No No
Mode No No 0.05 0.01
Tense No No No No

Param No No No No
B. Cases 0.007 0.054 No No
Summary - - No No
Examples - - No No
Context - - No No

code. Figure 10 shows the influence of boundary cases. They cause
the code to differ slightly more from the original code (higher
Levenshtein distance and lower CodeBLEU). This suggests that
boundary cases might induce the generation of conditions that
should not be present in the code, increasing the level of diversity
between the generated code and the original one. Considering that
boundary cases do not have a positive effect on correctness (RQ1)
and tend to generate longer code (RQ2), this result confirms that it
might be better not to include them in the prompt, representing a
possible overload of information for the LLM.

Note that improving the similarity between the generated code
and the original code is important also when the generated code
is not fully correct, since developers will likely have to implement
fewer changes to obtain satisfactory code.
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Figure 10: Influence of Boundary Cases on Levenshtein dis-
tance and CodeBLEU.

Answer to RQ3 Although none of the prompt features had
a large influence on the level of similarity between the code
generated by Copilot and the original code, some prompt
features may have a mild influence. In particular, using the
passive mode and not stating Boundary Cases explicitly may
result in code with higher similarity to the original one.

4.4 Threats to Validity
As with every study, also our empirical study is affected by multiple
threats to validity that we identified and addressed as follows.

The main internal threat to validity is about the actual influence
that prompt features had on the results. We addressed this threat
in two ways. First, we studied prompt features systematically, con-
sidering every possible combination. Second, we investigated their
impact statistically, to focus on the relevant phenomena. Although
we cannot claim the presence of any strong cause-effect relation-
ship between inputs and outputs, due to the low explainability of
large language models, the results reported in this paper provide an
initial guidance towards the challenge of designing good prompts.

Another threat is how we measure the quality of the generated
code. We relied on automated methods to assess the quality of
the generated code due to the scale of the study (124,800 methods
generated with Copilot). In particular, we relied on the capability
to compile the code, and the execution of test cases, to capture
different levels of correctness of the code. Indeed, we never claim
that a method that passes all the available test cases is a fully correct
method, but yet test execution provides useful information about
the quality of the code. This limitation is shared with several other
studies in the area [4, 15, 21, 30].

To not limit the analysis to test execution, we also consider
a combination of syntactic (Levenshtein distance) and semantic
(CodeBLEU) metrics that measure the differences between the two
methods, disclosing information about the level of closeness of the
generated code to the original developers’ code.

The main external threat to validity concerns the representa-
tiveness and generalizability of the findings. Our study targets a

common, although specific, use case, that is, the generation of the
body of a method. Results cannot be generalized beyond this use
case. Moreover, we focus on the design of a good prompt with the
aim of obtaining the right code with a single request. Engineering
conversations with large language models is a different problem.
Again, although our findings might be useful also in the context
of a conversation, the study explicitly focuses on individual and
independent interactions (e.g., useful to decide how to start the
conversation). Finally, we covered both the case of Java methods
extracted from GitHub, representing small-scale problems that de-
velopers face daily, and the case of Java methods extracted from
LeetCode, representing algorithmic problems that developers may
also have to face. We do not know if our findings can be generalized
beyond these two cases, which however already cover a reasonable
spectrum of the interesting coding problems faced by developers.

4.5 Prompt Advices
Based on our results, there are some advices that could be exploited
to design an initial prompt to request for some code. Although
the study focuses on individual features, and not on the impact of
multiple interacting features, we can conjecture that it is useful to
include the following three sections in the prompt:

<Summary> <Description (Present Tense)><Examples>
The prompt should start with a short summary of the purpose of

the method. It follows a description of the behavior of the method,
preferably written using the present tense (with either imperative
or indicative mood). The usage of the passive mode may some-
times reduce the length of the generated code. Finally, the examples
should include a few input-output pairs that demonstrate how the
code should behave in some specific cases.

The following listing shows an example prompt extracted from
our dataset that matches this structure. We marked the three main
sections with <summary>, <description>, and <examples>.
<summary>
Return true if any match is found.
</summary>

<description (present tense)>
Given an input string (s) and a pattern (p), the function
implements wildcard pattern matching with support for '?' and '*'
where:
'?' Matches any single character.
'*' Matches any sequence of characters (including the empty

sequence).
The matching should cover the entire input string (not partial).
</description>

<examples>
Example 1:
Input: s = "aa", p = "a"
Output: false
Explanation: "a" does not match the entire string "aa".

Example 2:
Input: s = "aa", p = "*"
Output: true
Explanation: '*' matches any sequence.

Example 3:
Input: s = "cb", p = "?a"
Output: false
Explanation: '?' matches 'c', but the second letter is 'a', which
does not match 'b'.
</examples>
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5 RELATEDWORK
The use of generative models of artificial intelligence, such as lan-
guage models and code generators, has gained considerable atten-
tion in recent years, and is changing the way developers create
software. Generative AI solutions, and in particular those built on
LLMs have demonstrated remarkable success in understanding and
generating code for various programming languages [8, 14, 22].
Some other recent studies investigated how developers interact
with these tools during project development [2], and how usable
these tools are [2]. However, the effectiveness of these models
largely depends on the quality and informativeness of the provided
prompts [6]. There is a growing interest in understanding the influ-
ence of prompt features on the quality of the generated code.

Prompts are essential for guiding language models towards spe-
cific tasks and outputs, without the need for retraining [16, 17, 27].
It can be difficult to understand a model’s true capabilities and
distinguish between infeasible tasks and those where the model
simply misunderstood the prompt. A failed task may indicate a
poorly designed prompt, rather than the model’s inability to per-
form the task [3]. For instance, previous research has explored
various aspects of prompt engineering. Brown et al. [3] observed
that enriching prompts with practical examples of the desired task
enhances the capabilities of these models, with more examples cor-
relating positively with better output quality. This is consistent
with our findings in the context of LLMs used to generate the body
of methods. On the other hand, Reynolds and McDonell [26] stud-
ied example-free approaches, focusing on prompt engineering to
improve results, outperforming, in some cases, poorly structured
prompts with examples. They utilized techniques like task specifica-
tion, encompassing various methods to describe the same goal, both
directly and through proxies, such as analogies and synonyms for
common concepts. They also exploredmethods to restrict unwanted
outputs. Other studies [28, 29] have introduced and categorized
prompt patterns, similar to software design patterns, with the goal
of establishing a context for models like ChatGPT and directing
them toward specific desired outcomes. While these patterns were
initially developed with software development in mind, their utility
extends to a wide range of model applications. Moreover, some of
these patterns rely on the conversational aspect of the model, which
may not align with Copilot’s non-conversational nature. Building
upon this prior research, our study uniquely focuses on the impact
of eight prompt features on the quality of the code produced by
Copilot.

In recent years, various studies have explored the capabilities and
limitations of Copilot and its underlying model. Some initial evalu-
ations focused on the classic approach of testing the correctness of
the solutions provided [1, 4, 5, 21]. These assessments did not em-
ploy prompt engineering techniques, but observed that Copilot was
capable of generating correct code for relatively simple tasks even
without detailed implementation guidance. An alternative perspec-
tive was explored in a study that examined metamorphic testing
of Copilot, focusing on prompt modifications [15]. This research
investigated the effect of altering prompts, with a unique emphasis
on code fragments as prompts rather than natural language de-
scriptions. The study conducted operations involving semantically
equivalent mutations, often resulting in distinct code outputs.

Finally, a recent empirical study analyzed the impact of changes
made to prompts expressed in natural language through both man-
ual and automated paraphrasing, leveraging tools such as PEGA-
SUS [31] and translation pivoting [19]. The authors created a dataset
of Javamethods collected from established projects on GitHub. They
maintained the original code while automatically generating code
for these methods using paraphrases of the original descriptions
as prompts for Copilot. The study revealed significant diversifica-
tion in terms of code correctness, similarity to the original code,
and complexity of the code produced, all driven by changes in the
prompt. Denny et al. [6] conducted research to assess the impact
of prompt modifications when tackling Python programming chal-
lenges. Their findings suggest that prompt engineering has proven
beneficial in enhancing the accuracy of the resulting code across
a majority of cases. White et al. [29] introduced various prompt
patterns that programmers can utilize in different scenarios, al-
though they did not provide data regarding the efficacy of these
patterns. Additionally, Ren et al. [25] focused on adjusting prompts
to facilitate the generation of proper exception handling code.

Nevertheless, to the best of our knowledge, prompt engineering
in code generation tasks has not been studied systematically. Our
work provides initial insights about prompt engineering for code
generation, considering Copilot as generative AI solution.

6 CONCLUSIONS
Generative AI techniques represent sophisticated services that de-
velopers can exploit to increase their efficiency and effectiveness in
several tasks, including code development. In this context, Copilot
is one of the most used tools based on generative AI that can assist
developers while they are coding from within the integrated devel-
opment environment. A key capability of Copilot is the possibility
to generate the body of a method starting from a prompt, that is,
the request written by the developer as the method’s comment.

To obtain a good response from generative AI tools, it is well-
known that crafting an appropriate request ismandatory. This paper
systematically studies this aspect by empirically investigating how
eight prompt features may impact the effectiveness of the prompts
submitted to Copilot. The reported study involves 200 Java methods
and 124,800 prompts, whose response is assessed in terms of their
correctness, complexity, size, and similarity to the intended code.

The results show how only some prompt features influence the
results. In particular, we report how a good prompt should include
a summary of the semantics of the method, a description of its
behavior, possibly using the presence tense, and some examples
of input-output pairs that exemplify the behavior of the method.
On the contrary, other prompt features, such as the description
of boundary cases, the reference to the parameters, and contex-
tual information have little influence on the results. We ended up
recommending a structure for the prompt.

Our results represent a starting point for a deeper investigation of
this subject. In fact, our future work includes widening the study to
consider conversations between the developers and the generative
AI tools, and not only individual interactions. Further, we plan
to extend our analysis to other tools to investigate to what extent
prompt engineering, and in particular results about prompt features,
generalize across generative AI solutions.
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