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1 Introduction

In a transportation network an equilibrium flow is classically defined by Wardrop’s
principle: each traveler tries to minimize his own travel time irrespective of the other
travelers, this principle is known as the user equilibrium principle. A lot of analysis has
been carried out in order to connect this principle with a variational formulation. In
fact, variational inequalities are very useful tools for the study of an equilibrium flow. In
this paper we propose new definitions of equilibrium flow, we propose some relationships
with variational formulations and we show that this study permits us to select different
equilibrium points. Moreover these new definitions aim to analyse the evolution of a traffic
network when the flow is not an equilibrium flow.

Now we briefly recall a definition which will be useful in the sequel.

Definition 1.1. Given a closed and convex set K ⊂ R
n and a vector function F :

K → R
n. The Variational Inequality we consider, say SVI(F,K), consists in determining a
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vector x∗ ∈ K, such that

〈F (x∗), x− x∗〉 ≥ 0, ∀ x ∈ K,

where 〈·, ·〉 denotes the inner product in R
n; the corresponding Minty Variational Inequal-

ity, say MVI(F,K), consists in determining a vector x∗ ∈ K, such that

〈F (x), x− x∗〉 ≥ 0, ∀ x ∈ K.

The following known result establishes relationships between the solutions of SVI(F,K)
and those of MVI(F,K).

Theorem 1.1. (Generalized Minty Lemma) The following statements hold:

1. if F is continuous on K, then each solution to MVI(F,K) is a solution of SVI(F,K);

2. if F is pseudomonotone on K, that is

〈F (y), x− y〉 ≥ 0 ⇒ 〈F (x), x− y〉 ≥ 0, ∀ x, y ∈ K,

then each solution to SVI(F,K) is a solution to MVI(F,K).

2 Equilibrium model in a traffic network

Let (N,A,W ) be a transportation network where N = {N1, ..., Np} is the set of nodes,
A = {A1, ..., An} the set of directed arcs and W = {W1, ...,Wl} the set of OD (origin-
destination) pairs. We denote by Rj the set of those paths Rr, r = 1, ..., rj, that connect
the pair Wj ∈ W , and by Fr, r = 1, ..., rj, the path flow on Rr. If we consider the set of all

paths R =

l⋃
j=1

Rj and arrange the path flows into a vector F ∈ R
m where m = r1+ · · ·+rl,

we obtain a column vector F = (F1, ..., Fm), whose components Fr represent the flow
on the path Rr, r = 1, ..., m suitably rearranged. A feasible flow has to satisfy demand
requirements,

rj∑
r=1

Fr = ρj , j = 1, ..., l,

where ρ ≥ 0 is given in Rl. Introducing the pair-path incidence matrix φ = (φj r),
namely

φj r =

{
1 if Rr ∈ Rj ,

0 if Rr /∈ Rj ,

the demand requirements can be written as

φF = ρ.
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Thus, the set of all feasible flows is given by

K = {F ∈ R
m : F ≥ 0, φ F = ρ}.

The flow on arc Ai is denoted by fi and f denotes the column vector whose components
are fi, i = 1, ..., n. The travel cost on arc Ai is a given function of f which we denote by
ci(f) and the column vector c(f), whose components are ci(f), denotes the travel cost on
all arcs. We denote by ∆ = (δi r) the arc-path incidence matrix, namely

δi r =

{
1 if Ai ∈ Rr i = 1, ..., n r = 1, ..., m,

0 if Ai /∈ Rr i = 1, ..., n r = 1, ..., m,

hence it results

fi =

m∑
r=1

δi r Fr, i = 1, . . . , n

that is f = ∆F , and, denoting by Cr(F ) the travel cost on path Rr, we obtain

Cr(F ) =
n∑

i=1

δi r ci(f), r = 1, . . . , m,

that is
C(F ) = ∆T c(∆F ).

Therefore we have a cost function C : K → R
m such that Cr(F ) gives the marginal cost

of sending one additional unit of flow through path r, when the flow F is already present.

Now we may recall the classical Wardrop equilibrium condition.

Definition 2.1. A feasible flow H ∈ K is called an equilibrium flow if and only if[
for each OD pair Wj ∈ W and each Rq, Rs ∈ Rj ,

Hs > 0 =⇒ Cs(H) ≤ Cq(H).

]
(1)

It is classically possible to characterize an equilibrium flow by means of a variational
inequality.

Theorem 2.1. A feasible flow H is an equilibrium flow if and only if H is a solution to
SVI(C,K).

Remark 2.1. If we consider a network equilibrium flow in the network standard model,
namely a model where travel link cost functions are differentiable, positive, strictly increas-
ing and separable in the sense that

c(f) =
n∑

i=1

ci(fi) i = 1, . . . , n,
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we have a more clear situation. In fact in this case the jacobian matrix of the cost function
C(F ) is symmetric:

∂Cq

∂Fs
=

∂Cs

∂Fq
∀ q, s = 1, . . . , m.

and hence one has C(F ) = ∇T (∆F ) where

T (∆F ) = T (f) =
n∑

i=1

∫ fi

0

ci(s)ds.

Since functions ci are strictly increasing, then the following functions

fi →
∫ fi

0

ci(s)ds i = 1, . . . , n,

are strictly convex, thus T (∆F ) is also strictly convex and cost function C is strictly
monotone.

Therefore in this special case the following are equivalent:

- Wardrop network equilibrium flow;
- minimization points of T (∆F );
- solutions to SVI(C,K);
- solutions to MVI(C,K)

Since K is a compact set and T (∆F ) is a strictly convex function, then there exists a
unique minimizer for T (∆F ).

Hence, in such symmetric network, there is a unique equilibrium flow H ; moreover since
C is strictly monotone, we obtain

〈C(F ), H − F 〉 < 0 ∀ F ∈ K.

Wardrop equilibrium condition states that if, at a certain time, the network flow is an
equilibrium flow, then no user wants to change his path and therefore the traffic flow will
remain constant for all future times. Nevertheless, if the network flows are not equilibrium
flows, then Wardrop condition is not useful to know the network traffic evolution.

Moreover we observe that to check whether or not a feasible flow H satisfies Wardrop
condition, we need not to compare H to the other feasible flows; now we are going to
introduce a new Wardrop-type condition for a flow H ∈ K that involves all the network
feasible flows. This is done in the following:

Definition 2.2. A feasible flow H ∈ K is called a strong equilibrium flow if and only
if 

 for each OD pair Wj ∈ W, each Rq, Rs ∈ Rj ,
and each flow F ∈ K,

Cq(F ) < Cs(F ) =⇒ Fs > Hs or Fs = Hs = 0.


 (2)
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First we remark that a strong equilibrium flow is, in particular, an equilibrium flow.

To better understand the above definition suppose that for some OD pair Wj ∈ W ,
for some paths Rq, Rs ∈ Wj and for some feasible flow F ∈ K, with Fs > 0, we have
Cq(F ) < Cs(F ), then network flow will go down on path Rs; now if a flow H satisfies
condition (2), then flow on Rs approaches to Hs. In other words a strong equilibrium flow
H takes into account the information Cq(F ) < Cs(F ) over all the other flows F .

The following examples show a network in which there exists a strong equilibrium flow.

Example 2.1. Let us consider a network with four nodes N1, N2, N3, N4 and five arcs
A1, A2, A3, A4, A5:

N 1 N

N N

2

3 4

A

A

A

1

3

5

A 2 A 4

We have only one OD pair (N1, N4) with travel demand ρ = 10 and three paths that
connect this pair:

R1 = A1 ∪ A4, R2 = A2 ∪A5, R3 = A1 ∪ A3 ∪ A5,

therefore the set of feasible flows is

K = {F ∈ R
3 : F ≥ 0, F1 + F2 + F3 = 10}.

We assume that travel cost on all arcs is defined as follows:


c1(f1) = f1
c2 = 21
c3(f3) = f3
c4 = 21
c5(f5) = f5,

and hence the corresponding travel cost on paths is


C1(F ) = F1 + F3 + 21
C2(F ) = F2 + F3 + 21
C3(F ) = F1 + F2 + 3F3.
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We remark that, for all feasible flows F ∈ K, one has:

C1(F ) > C3(F ), and C2(F ) > C3(F ),

therefore the feasible flow H = (0, 0, 10) is the unique Wardrop equilibrium flow. Moreover,
for an arbitrary flow F ∈ K, the inequality Cq(F ) < Cs(F ) in the condition (2) is true
only if s = 1 or s = 2, and H1 = H2 = 0, thus the condition

Fs > Hs or Fs = Hs = 0

is equivalent to
Fs > 0 or Fs = 0,

which is trivially true.

Example 2.2. Let us consider the same network as the example 2.1, in which travel
demand is ρ = 10 and travel cost on arcs is defined as follows:



c1(f1) = f1
c2(f3) = 10 + f3
c3(f3) = f3
c4(f3) = 10 + f3
c5(f5) = f5,

and hence the corresponding travel cost on paths is


C1(F ) = F1 + 2F3 + 21
C2(F ) = F2 + 2F3 + 21
C3(F ) = F1 + F2 + 3F3.

We remark that for all feasible flow F ∈ K one has:

C1(F ) ≥ C3(F ), and C2(F ) ≥ C3(F ),

therefore the feasible flow H = (0, 0, 10) is the unique equilibrium flow. Moreover, for an
arbitrary flow F ∈ K, the inequality Cq(F ) < Cs(F ) in the condition (2) is true only if
s = 1 or s = 2, and H1 = H2 = 0, thus the condition

Fs > Hs or Fs = Hs = 0

is equivalent to
Fs > 0 or Fs = 0,

which is trivially true.

Besides Wardrop equilibrium, also the condition (2) has connections with a variational
formulation, as the following theorem states.
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Theorem 2.2. If H is a strong equilibrium flow, then H is a solution to MVI(C,K).

Proof. Let F ∈ K and Wj ∈ W be arbitrary. We consider a path Rq ∈ Rj such that

Cq(F ) = min
Rr∈Rj

Cr(F ).

Then from condition (2) one has

(Cr(F )− Cq(F ))(Fr −Hr) ≥ 0 ∀ Rr ∈ Rj .

Thus
rj∑
r=1

Cr(F )(Fr −Hr) ≥ Cq(F )

rj∑
r=1

(Fr −Hr) = Cq(F )(ρj − ρj) = 0.

Hence

〈C(F ), F −H〉 =
l∑

j=1

rj∑
r=1

Cr(F )(Fr −Hr) ≥ 0,

hence H is a solution of MVI(C,K). �

The vice versa of theorem 2.2 is, in general, false as the following example shows.

Example 2.3. Let us consider the same network as in the example 2.1, where travel costs
on paths are: 


C1(F ) = 3F1 + 2F3

C2(F ) = 5F2 + 2F3

C3(F ) = 2F1 + F2 + 3F3.

We observe that H = (5, 3, 2) is an equilibrium flow, because

C1(H) = C2(H) = C3(H) = 19,

and H is solution of MV I(C,K), in fact for all F ∈ K we can write F3 = 10−F1−F2,
and thus we have

〈C(F ), F −H〉 = 2F 2
1 + 5F 2

2 − F1F2 − 17F1 − 25F2 + 80 = φ(F1, F2).

Since

∇2φ(F1, F2) =

(
4 −1
−1 10

)

has positive eigenvalues λ1,2 = 7±√
10, φ is a strictly convex function, his minimum point

is (5, 3) and φ(5, 3) = 0, hence φ(F1, F2) ≥ 0 for all (F1, F2) ∈ R
2, that is H is solution

of MV I(C,K).
However H is not a global equilibrium flow, because, if we consider F =

(6, 3, 1) ∈ K, one has

17 = C2(F ) < C3(F ) = 18 and 1 = F3 < H3 = 2.
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For a feasible flow H ∈ K we now introduce another Wardrop-type condition giving
the ”stability” of H with respect to some perturbations of flow H on a arbitrary couple of
paths connecting an OD-pair.

Definition 2.3. A feasible flow H ∈ K is called a ”stable” equilibrium flow if and
only if 

 for each OD pair Wj ∈ W, each Rq, Rs ∈ Rj ,
and each flow F ∈ K such that Fi = Hi, ∀ i �= q, s and Fs < Hs

Hs > 0 =⇒ Cs(F ) ≤ Cq(F )


 (3)

To better understand the above definition, suppose that a feasible flow H be a ”stable”
equilibrium flow, Rq, Rs be two paths connecting a certain OD pair and that the flow Hs

be positive; if we perturb H only on the paths Rq, Rs pushing flow from Rs to Rq, then
the path Rq does not cost less than the path Rs.

In the following theorem we check the relationships between stable equilibrium flow
and solutions of SVI(C,K) and MVI(C,K).

Theorem 2.3.

1. If a flow H ∈ K solves MVI(C,K), then H is a stable equilibrium flow;

2. if H ∈ K is a stable equilibrium flow and the cost function C is continuous, then H
is an equilibrium flow.

Proof.

1. We consider an arbitrary OD pair Wj and two paths Rq, Rs ∈ Rj fixed. Since H ∈ K
is a solution to MVI(C,K) then for all feasible flow F ∈ K one has

〈C(F ), F −H〉 =
l∑

j=1

rj∑
r=1

Cr(F )(Fr −Hr) ≥ 0;

in particular, if we choose a feasible flow F such that Fi = Hi, ∀ i �= q, s and Fs < Hs,
then

(Cs(F )− Cq(F ))(Fs −Hs) ≥ 0,

and hence Cs(F ) ≤ Cq(F ).

2. For each OD pairWj and for each Rq, Rs ∈ Rj , with Hs > 0, we have Cs(H) ≤ Cq(H)
by continuity of the cost function C.

�

From the above theorem it follows that the stable equilibrium flows are selected network
equilibrium flows, with the following property: if a feasible flow H is a network equilibrium
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flow and Rq, Rs are two paths connecting a certain OD pair Wj, with Hs > 0, then we know
that Cs(H) ≤ Cq(H); moreover, if H is a stable equilibrium flow then Cs(F ) ≤ Cq(F ) for
all perturbation flows F which shift flow from Rs to Rq.

We remark that a stable equilibrium flow does not coincide with all the network equi-
librium flows as the following example shows.

Example 2.4. Let us consider the same network as the example 2.1, in which travel cost
on arcs is: 



c1(f1) = f1
c2(f2, f3) = f2 + 4 f3
c3(f2, f3) = f2 + 2 f3
c4(f3, f4) = 2 f3 + 2 f4
c5(f5) = f5,

and therefore the travel cost on paths is


C1(F ) = 3F1 + 3F3

C2(F ) = 2F2 + 5F3

C3(F ) = F1 + 2F2 + 4F3.

We assume that travel demand is ρ = 10. An equilibrium flow is H = (4, 2, 4), in fact

C1(H) = C2(H) = C3(H) = 24,

but H is not a stable equilibrium flow because if we perturb H on paths R2 and R3 so that
F1 = 4, F2 = 2 + x and F3 = 4− x, with 0 < x < 4, one has

C3(F ) = 24− 2 x > C2(F ) = 24− 3 x.

Moreover we can remark, by the following example, that all the stable equilibrium flows
are not solution to MVI(C,K).

Example 2.5. We consider the same network as the example 2.1, with the following travel
cost on paths: 


C1(F ) = 5F1 + 4F3

C2(F ) = 5F2 + 4F3

C3(F ) = 3F1 + 3F2 + 3F3

and travel demand is ρ = 9.
An equilibrium flow is H = (3, 3, 3), in fact

C1(H) = C2(H) = C3(H) = 27,

moreover H is a stable equilibrium flow. In fact if we choose a feasible flow F such that
F1 = 3, F2 = 3− x and F3 = 3 + x, with 0 < x < 3, one has

C2(F ) = 27− x < 27 = C3(F ),
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if F2 = 3, F1 = 3− x and F3 = 3 + x then

C1(F ) = 27− x < 27 = C3(F ),

if F3 = 3, F1 = 3− x and F2 = 3 + x then

C1(F ) = 27− 5 x < 27 + 5 x = C2(F ).

If we choose the perturbation −3 < x < 0 we will obtain analogous inequalities.
However H is not solution to MVI(C,K) because for F = (0, 0, 9) we have

〈C(F ), F −H〉 = 〈(36, 36, 27), (−3,−3, 6)〉 = −54.

Finally we show an example that gives a global picture:

Example 2.6. Let us consider the following network with four nodes N1, N2, N3, N4 and
four arcs A1, A2, A3, A4:

N 1 N

N N

2

3 4

A

A

2

A 1 3A

4

We have only one OD pair (N1, N4) with travel demand ρ = 10 and only two paths
connecting this pair:

R1 = A1, R2 = A2 ∪ A3 ∪ A4,

therefore the set of feasible flows is

K = {F ∈ R
2 : F ≥ 0, F1 + F2 = 10}.

We assume that travel cost on paths is defined as follows:{
C1(F ) = 2F1 + 5
C2(F ) = 1

2
F 2
1 − 4F1 + 15
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From the figure it is easy to argue that there are two equilibrium flows: H ′ = (2, 8) and
H ′′ = (10, 0).

We remark that H ′ is a strong equilibrium flow because: if C2(F ) > C1(F ) then
F1 < H ′

1, that is F2 > H ′
2, and if C1(F ) > C2(F ), then F1 > H ′

1.
Moreover H ′′ is an equilibrium flow but it is not a stable equilibrium: indeed H ′′

1 > 0
but C1(F ) > C2(F ) for each feasible flow F such that 2 < F1 < 10.

Finally, we sum up in the following figure the relationships between Wardrop-type
equilibria and solutions to SVI(C,K) and MVI(C,K) when the cost function C is assumed
continuous on K.
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Example 2.1

Example 2.6

Example 2.2

Example 2.3

STABLE EQUILIBRIA

STRONG EQUILIBRIA

SOLUTIONS TO MVI(C,K)

WARDROP EQUILIBRIA=SOLUTIONS TO VI(C,K)

Example 2.4

Example 2.6

Example 2.5
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