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In this paper, we explore the prospect for improving the measurement accuracy of masses and radii of neutron
stars. We consider imminent and long-term upgrades of the Laser Interferometer Gravitational-Wave Observatory
(LIGO) and Virgo, as well as next-generation observatories—the Cosmic Explorer and Einstein Telescope. We
find that neutron star radius with single events will be constrained to within roughly 500 m with the current
generation of detectors and their upgrades. This will improve to 200 m, 100 m and 50 m with a network of
observatories that contain one, two or three next-generation observatories, respectively. Combining events in
bins of 0.05 M⊙ we find that for stiffer (softer) equations-of-state like ALF2 (APR4), a network of three XG
observatories will determine the radius to within 30 m (100 m) over the entire mass range of neutron stars from
1 M⊙ to 2.0 M⊙ (2.2 M⊙), allowed by the respective equations-of-state. Neutron star masses will be measured to
within 0.5% with three XG observatories irrespective of the actual equation-of-state. Measurement accuracies
will be a factor of 4 or 2 worse if the network contains only one or two XG observatories, respectively, and a
factor of 10 worse in the case of networks consisting of Advanced LIGO, Virgo KAGRA and their upgrades.
Tens to hundreds of high-fidelity events detected by future observatories will allow us to accurately measure the
mass-radius curve and hence determine the dense matter equation-of-state to exquisite precision.

I. INTRODUCTION AND BACKGROUND

An outstanding problem in nuclear astrophysics is the
equation-of-state of neutron star (NS) cores, believed to con-
tain matter at several times the nuclear saturation density [1–3]:
near the core the density reaches 4 to 6 times the nuclear satura-
tion density and in the outer core it would be twice the nuclear
saturation density. This makes them the densest objects any-
where in the Universe. Decades after their discovery, the radii
of neutron stars are still uncertain1 by about ∼ 10% [4–10],
and the composition of their dense cores likely depends on
the neutron star mass and could be composed of hadrons or
deconfined quarks [3, 11–14]. Indeed, it is not clear whether
the matter at such densities undergoes a phase transition from a
hadronic phase to quark-gluon plasma and the critical neutron
star mass and temperature at which the transition might occur
[3, 11–16].

Neutron stars in binaries are studied either as radio pulsars
or X-ray sources and both have helped in our understanding
of the structure of neutron stars [17–23]. The Neutron Star
Interior Composition Explorer (NICER) space observatory is
providing precision X-ray data on neutron stars [24]. Precise
general relativistic modeling of the X-ray pulsation of neutron
stars has been used to constrain their masses and radii as well as
the equation-of-state (EOS) of their dense cores [4, 10, 25–29].
The best-measured NICER radius errors are about 1 km.

At the same time, advances in gravitational-wave observa-
tions from merging neutron stars are allowing new approaches

1 Note that some authors, who claim a 5% uncertainty in the radius, are
quoting one-sided, one-σ credible intervals. The 10% to which we refer
corresponds to a two-sided, 90% credible interval, which is the standard in
LIGO-Virgo Collaboration publications.

to resolve this puzzle. Indeed, the detection of binary neu-
tron stars (BNSs) [30–34] and neutron star-black hole binaries
(NSBHs) [35] by the Laser Interferometer Gravitational-Wave
Observatory (LIGO) and Virgo has opened up a new and in-
dependent window for exploring neutron stars. Gravitational
waves emitted in the final tens of milliseconds of the inspiral
and coalescence of BNSs can be used to explore the compo-
sition and EOS of dense matter in neutron star cores [36–40].
Encoded in the phase evolution of the waves is the (dimen-
sionless) tidal deformability Λ1,2 of the two stars, which is a
measure of the quadrupole deformation imparted on the stars
due to the tidal field of their companions. The leading order
finite size effect in the post-Newtonian (PN) approximation of
the waves’ phase evolution is a highly sub-dominant effect. In
terms of the post-Newtonian expansion parameter (v/c) < 1,
it is, in fact, an order O(v/c)10 effect beyond the dominant
quadrupole term [39–42], yet it is significant when the instan-
taneous gravitational-wave frequencies are ∼ 100 Hz or greater
(v/c ∼ 0.16 or larger) for a typical BNS system comprising a
pair of 1.4 M⊙ companions [43].

The tidal deformability goes as the inverse fifth power of the
star’s compactness, i.e. Λk ∝ [Gmk/(c2Rk)]−5, k = 1, 2, where
mk and Rk are the masses and radii of the companion stars
in a binary system [41, 44]. Matched filtering the data with
gravitational-wave templates calibrated to numerical relativity
simulations [45–52] of BNS mergers can be used, in principle,
to measure the tidal deformabilities of the companions, in
addition to their masses2. In practice, however, it is not possible
to accurately measure the individual tidal deformabilities, but
only a certain linear combination of the two called effective

2 Neutron stars in merging binaries are not expected to have large spins.
Consequently, the only intrinsic parameters that we will consider in this
paper are the masses and the tidal deformabilities.
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tidal deformability Λ̃, defined by:

Λ̃ =
16

13(1 + q)5

[
(1 + 12q)Λ1 + q4 (12 + q)Λ2

]
(1)

where q ≡ m2/m1 ≤ 1 is the mass ratio [39, 42, 44, 53].
Although the dominant tidal effect, which depends only on Λ̃,
is measured accurately, the PN correction, required to measure
the individual tidal deformabilities, cannot be inferred with any
accuracy. This is because of two reasons: On the one hand, it
is a higher order PN correction, an O(v/c)12 effect, compared
to the dominant quadrupole term and, on the other hand, the
PN correction vanishes for binaries with comparable masses.
In fact, the tidal PN correction depends on δΛ̃ defined by:

δΛ̃ =
√

1 − 4η
(
1 −

13272
1319

η +
8944
1319

η2
) (
Λ2 + Λ1

2

)
+

(
1 −

15910
1319

η +
32850
1319

η2 +
3380
1319

η3
) (
Λ2 − Λ1

2

)
,(2)

where η ≡ m1m2/(m1 + m2)2 = q/(1 + q)2 is the symmetric
mass ratio. For BNS systems in general, companion masses
are similar, and hence q ≃ 1 and Λ1 ≃ Λ2, giving Λ̃ ≃ Λ1,2 and
hence δΛ̃ ≃ 0.Additionally, the tidal deformability of a neutron
star depends not only on its mass, but also the (unknown) EOS.
For neutron stars of 1.4M⊙ and over a wide range of equations-
of-state (EOSs), typical values are Λk ∼ 200–2000 [44]. While
the first post-Newtonian correction is already sub-dominant as
a sixth post-Newtonian order effect compared to the leading
order quadrupole [44], this range of Λk also results in the term
being at least two orders of magnitude smaller compared to
the leading order tidal term. These effects combined make
the term difficult to measure. Consequently, only the leading
order tidal term, is readily available, making it necessary to
supplement gravitational-wave observations with other input in
order to infer the individual tidal deformabilities and the radii
of neutron stars. Several such approaches have been proposed
in the literature and applied to GW170817 [32, 54].

The BNS coalescence event GW170817, at ∼ 40 Mpc and a
signal-to-noise ratio (SNR) of 33, provided the first opportunity
to constrain the tidal deformabilities from gravitational-wave
observations, and hence the radii, of neutron stars [32–34].
Theoretical models of the EOS of neutron stars are plenty
and varied and they allow tidal deformabilities in the range
of 10 ≲ Λ1,2 ≲ 10000 [40, 41], depending on the mass, being
larger for lighter neutron stars and stiffer EOSs. Analysis of
the event GW170817 found that the 90% credible range of
the companion masses were 1.36 M⊙ ≤ m1 ≤ 1.89 M⊙ for
the primary and 1.00 M⊙ ≤ m2 ≤ 1.36 M⊙ for the secondary
[33], the effective tidal deformability had a 90% credible upper
bound of Λ̃ ≲ 600 and the radius was constrained to be R1 =

11.9+1.4
−1.4 km [32, 55]. Unfortunately, the second BNS event

GW190425 [56] was farther and had a significantly lower SNR
than GW170817 and did not yield tighter constraints on the
tidal deformability on its own.

However, constraints have also been derived by com-
bining LIGO-Virgo results of GW170817 and GW190425
with additional observations. Including NICER observations
[4, 5, 10, 25–29] bound the radius of a 1.4 M⊙ neutron star to
the range R1.4 = 12.33+0.76

−0.81 km. Likewise, combining nuclear
physics experiments and gravitational-wave data has found

R1.4 = 11.0+0.9
−0.6 km [57], and R1.4 = 12.75+0.42

−0.54 km [58] while
combining data from GW170817, its companion gamma-ray
burst GRB170817A, and subsequent kilonova AT2017gfo, the
same radius was determined to an accuracy of less than about
a km at 90% credible interval [59]. However, see Vinciguerra
et al. 60 for sensitivity of NICER results on model hypotheses.

The planned upgrades of LIGO and Virgo, the addition of
observatories currently under construction, KAGRA [61] in
Japan and LIGO-Aundha in India [62], and new, longer-arm
facilities that are currently being conceived, have the potential
to make new discoveries of both sources and science. In this
study, we explore the accuracy with which future observatories
are able to measure the radii of neutron stars, an important step
in constraining their equation of state. The networks consid-
ered in this work include the imminent upgrade of LIGO and
Virgo over the next five years called A+ [30, 31], the Voyager
upgrade to LIGO detectors that would be possible within the
next ten years [63], and the next-generation (XG) observato-
ries such as the Einstein Telescope (ET) [64–66] or Cosmic
Explorer (CE) [67] that are expected to operate in the mid-
2030s in tandem with the fully upgraded versions of current
observatories. Given the rate of BNS mergers as determined by
the events GW170817 and GW190425, we expect the future
observations to constrain the neutron star radius to within 600
m (A+ generation), 400 m (Voyager generation), 200 m (one
XG observatory) and < 100 m (two or more XG observatories),
with the high-fidelity events observed by the respective net-
works of observatories. At the same time, neutron star masses
will be measured to better than 10%, 5%, 3% and 0.5% [68].
The mass-radius relation is a proxy to the EOS of ultra-dense
matter in neutron-star cores that will be tightly constrained
with high-precision measurements of the masses and radii with
future networks of gravitational-wave observatories (see, e.g.,
[69]).

When combining information from a multiple set of events
it is necessary to employ a population model for the observed
sources in addition to the unknown equation of state. For
binary neutron stars, the population model will involve the as-
trophysical distribution of neutron star masses (or, equivalently,
the neutron star central densities), the pairing probability as a
function of the total mass and mass ratio and the distribution
of neutron star spins. Moreover, gravitational-wave detectors
and the analysis pipeline used to detect binary neutron stars
have selection effects. For example, it is easier to detect equal-
mass systems compared to mass-asymmetric systems of the
same total mass. Likewise, binaries with a larger total mass
produces a larger signal-to-noise ratio compared to a binary
of smaller total mass but the same mass ratio. Bayesian infer-
ence of the source parameters for a single event will also be
affected by the unknown hyper parameters of the population
model since the posterior distribution depends on the assumed
prior model. Thus, one has to simultaneously determine the
population model and the EOS. For the EOS, this means one
has to marginalize over the population model. Additionally
one must also account for the selection effects to assure that
the model selection of EOS is unbiased.
We are ignoring these effects in this work since our Fisher
matrix approach currently does not allow for the inclusion of
systematic biases. We also envisage that in the XG era the
selection effects would have been better understood. Our goal,
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instead, is to provide the statistical uncertainty that we expect
in the determination of the EOS. We are currently in the pro-
cess of preparing a mock data challenge for XG observatories.
The mock data challenge will allow us to address the afore-
mentioned issues.
We also note that the estimation of intrinsic source masses re-
quires the use of a cosmological model. Since we detect BNS
events to a significant cosmological distance, cosmological
parameters must be inferred together with the parameters of
a BNS event [70, 71]. As explained in Sec. V E, we find that
the bias introduced due to an unknown cosmological model is
negligible.

The rest of the paper is organized as follows. In Sec. II we
describe the cosmic BNS population used in this study together
with the distribution of companion masses, the merger rate and
its variation with redshift and the waveform model used. This
is followed by a brief summary of detector networks consid-
ered in Sec. III, focusing on the efficiency of the networks in
detecting BNS systems. In Sec. IV we present the capabilities
of the different observatories in characterizing the source prop-
erties. We describe in Sec. V the method to infer the radii of
neutron stars from the measurement of effective tidal deforma-
bility using a set of EOS independent universal relations with
corrections and how we combine the results from a population
to obtain joint bounds. In Sec. VI we present the application
of the methods to events expected to be observed in detector
networks considered in this study. The results are obtained by
combining radius measurements of a small sub-population of
observed events: either the loudest 100 events or the 100 events
for which tidal deformability is best measured, to infer the radii
of neutron stars. A summary of the results and conclusions is
presented in Sec. VII.

II. NEUTRON STAR POPULATION AND WAVEFORM
MODEL

In this section, we describe the neutron star population and
the waveform approximations used in the study. We begin by
recalling how the redshift dependence of the merger rate is
computed using the observed star formation rate as a function
of redshift as a proxy for the redshift evolution of the rate. The
redshift dependence is not exactly the same as the star forma-
tion rate since binaries that form from stars only merge after a
certain time delay, which is essentially the gravitational radia-
tion back reaction timescale. This is followed by a summary
of the distribution of neutron star masses used in the study. We
conclude the section with a description of the waveform model
used, which is built upon the point-particle approximation
but includes finite-size tidal effects with the waveform model
parameters calibrated to hydrodynamical numerical relativity
simulations of BNS mergers.

A. BNS Merger Rate

The merger rate density r0 in the local Universe (i.e., at
zero redshift) inferred from LIGO-Virgo observations of BNS
coalescences during the second and third observing runs is
r0 = 10−1700 yr−1 Gpc−3 [72]. The two BNS events observed

during this period, GW170817 and GW190425, were localized
to luminosity distances of 40 Mpc and 159 Mpc, respectively,
and corresponding redshifts of z ≃ 0.01 and z ≃ 0.036. Thus,
the LIGO-Virgo rate is essentially the local merger rate density,
i.e. at redshift z = 0. In this work, we will consider mergers
up to a redshift of z = 1. The merger rate density over this
redshift range is expected to increase since the rate of star
formation ψ(z), from which compact binaries form, increases
with redshift up to about z = 2 [73].

To model the variation of the merger rate with redshift, we
assume that it follows the star formation rate except that a
binary that forms at redshift z1 merges at redshift z < z1. This
is because there could be a significant time-delay td between
the binary’s initial formation and eventual merger as driven by
gravitational radiation back reaction. The time delay td for a
specific binary depends on a number of astrophysical processes
that take place between the formation of the companion stars,
their common evolution, and survival following supernova
kicks they receive. Therefore, td will not be the same for
every binary and the time delay distribution is not well known
either due to the complexity of how the progenitors of compact
binaries evolve. However, making reasonable assumptions
about the intervening processes, i.e. neutron stars form with no
delay after the formation of their progenitor stars, their orbit
decays due to the emission of gravitational waves only, and the
semi-major axis of their orbit follows a uniform in log-space
distribution, td follows the distribution P(td) ∝ 1/td [74, 75].
Thus, the merger rate density in the source’s frame3 rz(z) is
given by:

rz(z) = A
∫ tmax

d (z)

tmin
d (z)

ψ(z − td(z)) P(td(z))
dtd
dz

dz, (3)

where a subscript z is included to clarify that rz(z) is the rate
density with respect to an observer at z, tmin

d and tmax
d are the

minimum and maximum time delays, A is a normalization
constant (see below), and ψ(z) denotes the star formation rate
(whose dimensions are not important to us but only its de-
pendence on redshift). For ψ(z) we use the fit proposed in
Ref. [76]:

ψ(z) ∝
a exp (b(z − zm))

a − b + b exp (a(z − zm))
(4)

where a = 2.8, b = 2.46, and zm = 1.72. For the minimum
time-delay we use tmin

d = 0.2 Gyr and for the maximum we use
tmax
d = 10 Gyr. The normalization constant A is determined so

that this expression is consistent with the local rate density, i.e.
r0(z = 0) = r0. The merger rate, rz(z), peaks at a slightly lower
redshift than ψ(z) because of the time-delay. The dependence
of the cosmic time t on redshift is determined by the Planck
2015 Cold Dark Matter cosmology:

dt
dz
=

1

H0(1 + z)
√
ΩΛ + ΩM(1 + z)3

, (5)

3 In what follows lower case letters are used to denote the merger rate densities
while capital letters are used to denote the merger rates.
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with the Hubble constant H0 = 69.6 km s−1 Mpc−1,ΩΛ = 0.714
and ΩM = 0.286.

Next, the merger rate (as opposed to rate density) in a red-
shift interval dz is given by:

dRz(z) = rz(z)
dV
dz

dz (6)

where dV = (dV/dz) dz is the comoving volume element cor-
responding to redshift range dz. To convert this to the rate as
measured by an observer at z = 0 we must divide by (1 + z) to
take into account the redshift of the rate due to cosmological
expansion: dR0(z) = dRz(z)/(1 + z). The cumulative merger
rate is given by:

R(z) =
∫ z

0
dR(z′) =

∫ z

0

rz(z′)
(1 + z′)

dV
dz′

dz′. (7)

Within z = 1 the merger rate is about ∼ 105 per year. Not all
of these mergers would be detectable by a gravitational-wave
detector (or a network) but only a certain fraction depending
on its sensitivity which we will discuss in Sec. III.

B. Waveform Models and Mass Distribution

In order to characterize the capability of various detector
networks to measure the tidal deformability and the compan-
ion masses, it is important to choose an appropriate waveform
model that includes the relevant physical effects. As in the case
of binary black holes, BNS waveforms are based on approxi-
mate solutions to Einstein equations. They include the domi-
nant tidal effects and incorporate additional parameters in the
phase evolution which are calibrated by matching the analytical
solution against numerical relativity simulations. We chose the
frequency-domain phenomenological waveform model IMR-
PhenomPv2NRTidalv2 [47–49] for the generation of simulated
signals as well as templates for Fisher-matrix based inference.
This model is based on the IMRPhenomPv2 BBH waveform
[77, 78] with tidal effects up to 7.5 post-Newtonian order (or
to O(v/c)13 beyond the leading quadrupole term), making it
appropriate for use in BNS analysis. An earlier version of this
waveform was used for the analysis of GW170817 [79].

The waveform model takes as input the intrinsic masses of
the companions and their tidal deformabilities. In this paper,
the companion masses are drawn from a uniform distribution
over a range of masses whose lower limit is 1 M⊙ and the
upper limit is the maximum allowed by the EOS used in the
simulation (see below): m1,m2 ∼ U(1 M⊙, MEOS

max ). Although
the masses of neutron stars in the Milky Way seem to be con-
centrated around 1.4 M⊙, there is a priori no physical reason
to assume that this is the preferred value in other galaxies.
Theoretically, neutron star masses are allowed to be as large
as 2.9 M⊙ [80], although the largest measured masses tend to
be significantly lower. The heaviest neutron stars among as-
tronomical observations are in range 2.01–2.35 M⊙ [81–83],
while from gravitational-wave observations the companion
masses in BNS systems are as large as 1.6 M⊙, and 1.4 M⊙ in
the case of GW170817, and 1.9 M⊙, and 1.7 M⊙ in the case of
GW190425. Neutron-star masses in neutron star-black hole
systems GW200105 and GW20015 [84] are both 2.2 M⊙. In
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FIG. 1. Mass-Radius curves for EOS used in this paper. Please note
that our choice of three injections EOS here (ALF2, APR3, APR4
shown with thicker lines) are motivated by the conservative constraint
on Λ1.4 < 800 as put forward by [79]. We also consider the fact that
these three EOS covers a significant range in the maximum masses
while the inclusion of addtional seven EOS provide good coverage of
the rest of the mass radius space.

this small population there seems to be no preference for the
Galactic value of ∼ 1.4 M⊙ and it would be more prudent to
assume a wider range for the mass distribution. We have cho-
sen the widest range allowed by the model EOSs considered in
this paper.

We assume, however, that the dimensionless spin magni-
tudes of neutron stars are negligible. The fastest-spinning
Galactic pulsar has a rotational frequency of just over 700
Hz. Its dimensionless spin angular momentum is still roughly
a = cI2πω/Gm2 ≃ 0.4—far smaller than the maximum spin
neutron stars could, in principle, have; here I is the principal
moment-of-inertia of the star (roughly equal to 2

5 mR2, where
m and R are the neutron star’s mass and radius, respectively),
and ω is its spin angular frequency. Neutron star spins in other
galaxies could be far greater than those in the Milky Way but
the waveform models that are currently available are calibrated
against numerical relativity simulations of BNSs with small
spins (dimensionless spin, χ < 0.1) [47–49].

In addition to masses and spins, we also have to specify
the distance to the source, its orientation relative to the detec-
tor frame, and its position in the sky. Sources are assumed
to follow the redshift distribution determined by Eq. (6) and
uniformly distributed over the angular parameters describing
the sky position and orientation of the binary.

Given the mass, the radius of the neutron star is calculated
for a given EOS by solving the Tollmann-Oppenheimer-Volkoff
(TOV) equations [85, 86]. In practice, this is computationally
too expensive since our simulations have to deal with hundreds
of thousands of systems. Thus, it is more practical to solve the
TOV equations to obtain radii for a set of masses and then use
an interpolating function to find the radius for an arbitrary value
of mass. We have confirmed that the fractional difference in
the radius, for a given mass, obtained from numerical solution
to the TOV equation and the interpolating function are below
0.1% over the full range of neutron star masses allowed by the
EOS.

We consider three EOS used for injection, and an additional
seven EOS used for reference that are still allowed by X-ray
and gravitational-wave data: the injection set of ALF2, APR3,
APR4 and reference set of DD2, H4, S220, PP2, PP5, SFHo,
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and SLy. We then plot the corresponding mass-radius curves
in Fig. 1. ALF2 (APR4) represents a stiffer (softer) EOS allow-
ing for larger (smaller) radii, while APR3 allows intermediate
radii. The reference EOS then provide good coverage of the
mass-radius parameter space between the three, allowing for
stronger model discrimination tests with our methods. Given
the mass Mi and radius Ri, the dimensionless tidal deformabil-
ity is computed using the expression:

Λi =
2 k2(Ri)

3

(
c2Ri

Gmi

)5

, (8)

where k2(R) is the tidal Love number, which also depends on
the radius of the neutron star and is fixed for a given mass and
EOS [41].

III. FUTURE OBSERVATORIES AND THEIR REACH FOR
THE BINARY NEUTRON STAR POPULATION

Advanced LIGO (aLIGO) and Advanced Virgo (AdV) are
currently taking data and are expected to reach their design
sensitivity goals (see Fig. 2) in late 20234 [30]. At that sensi-
tivity, the network of LIGO-Hanford, LIGO-Livingston, and
Virgo (HLV) [31] could detect ∼ 40 BNS mergers per year
from within a distance of about 400 Mpc. Both projects have
concrete plans to upgrade their sensitivity over a period of two
years, which we will refer to as the HLV+ network, enhancing
the detection rate by about a factor ∼ 5 by about 20274.

A. Upgrades and New Facilities

The Japanese KAGRA detector, currently being commis-
sioned, and LIGO-India are expected to join the HLV+ network
over the 2020-2030 decade and the five detectors would be to-
gether referred to as the HLVKI+ network. HLV+ and HLVKI+
networks will begin to observe events with SNRs large enough
to facilitate accurate measurement of the tidal deformability.

Further upgrades to LIGO beyond A+ have been studied and
they involve the development of new technology to mitigate
thermal noise and gravity gradient background. Voyager [87]
is one such concept that could lead to a further increase in the
sensitivity by a factor of ∼ 2–5 over the frequency range 10
Hz to a few kHz (see Fig. 2. At the moment we are not aware
of any plans to upgrade Virgo or KAGRA and hence we will
consider a network of five detectors: the three LIGO detectors
operating with Voyager technology and Virgo and KAGRA in
A+ mode. We will refer to this as the Voyager network, which
will have access to several loud binary merger events. The
Voyager network could constrain neutron star radius to within
about 5% or roughly 500 m for neutron stars between 1.5M⊙
and 2.0M⊙, as seen in Figure 8.

Improvements in sensitivity beyond the level of Voyager
would require, among other technologies, longer arms and/or

4 For up to date schedule of the runs see https://rtd.igwn.org/
projects/userguide/en/latest/capabilities.html.
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FIG. 2. Strain sensitivity of three generations of ground-based gravi-
tational wave detectors: (i) Advanced Virgo (AdV), Advanced LIGO
(aLIGO) and A+, (ii) Voyager, and (iii) Einstein Telescope (ET) and
Cosmic Explorer (CE). In the case of ET the sensitivity shown is that
of an L-shaped detector with 10 km arms. The three V-shaped arms
make the effective strain sensitivity a factor 3/2 better (and the noise
floor lower by the same factor).

underground facilities, neither of which would be possible with
the infrastructure that exists at the location of current detectors.
The boldest of the new concepts are the Einstein Telescope
(ET) in Europe and Cosmic Explorer (CE) in the US and,
possibly, Australia. ET is an underground facility hosting three
V-shaped detectors at the vertices of an equilateral triangle of
10 km sides [66], while CE is a over-ground, L-shaped detector
with 40 km arms [67]. ET and CE will be roughly 10 to 30
times more sensitive than advanced detectors (cf. Fig. 2) with
the capability to observe hundreds of thousands BNSs mergers
each year, many with SNRs larger than 100.

B. Detector Networks

Advanced LIGO, Advanced Virgo and KAGRA (LVK) have
been taking data, albeit intermittently, since 2015, 2017 and
2019, respectively. They are expected to operate at design
sensitivity during 2023-2024. We have not included the mea-
surement capability of this network as the number of loud
(i.e., SNRs in excess of 25) BNS coalescences expected to be
detected during the next science run (O4) is only ∼ few.

LIGO-India, currently under construction, could join the up-
graded A+ versions of the LVK network in the latter half of this
decade; we shall call this the HLVKI+ network. Both LIGO
and Virgo are planning for a further upgrade beyond 2030,
referred to as Voyager in the US. A network in which Virgo
and KAGRA operate at A+ sensitivities and LIGO-Hanford,
LIGO-Livingston and LIGO-India operate at Voyager sensi-
tivity, will be called VK+HLIv. This network will have the
same performance as the one in which any three of 5 detectors
are upgraded to Voyager and the remaining two operate at A+
sensitivity and we do not consider them separately.

Beyond 2035 one or more next generation observatories
could begin to operate. To understand the relative merits of
operating one or more such observatories we consider four

https://rtd.igwn.org/projects/userguide/en/latest/capabilities.html
https://rtd.igwn.org/projects/userguide/en/latest/capabilities.html
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TABLE I. Upgraded and future gravitational-wave detectors whose
ability to measure the EOS of matter in neutron star cores is evaluated
in this study. The time-scale of operation of the various networks is
our best guess estimate of when a given network is likely to operate;
they do not correspond to any official projections.

Detectors Network Name
LIGO (HLI+), Virgo+, KAGRA+ HLVKI+

LIGO (HLI-Voy), Virgo+, KAGRA+ VK+HLIv

ET, LIGO (HLI+), KAGRA+ HLKI+E

CE, Virgo+, KAGRA+ LIGO-I+ VKI+C

ET, CE, KAGRA+, LIGO-I+ KI+EC

ET, CE, CE-South ECS

different networks in which a subset of the current detectors
operate at A+ sensitivity at the same time as one CE (which we
shall denote VKI+C), one ET (denoted HLKI+E), one each of
CE and ET (denoted KI+EC) and a network consisting of one
ET, one CE in the US and one CE in Australia (denoted ECS)
without any A+ detectors. In all, we consider six networks
as enumerated in Table I. For the ET and CE, we use fiducial
locations and orientations as given in Ref. [88]. We will next
discuss the expected performance of various detector networks
in detecting signals from and measuring the parameters of
BNSs.

C. Network Efficiency

Gravitational wave detectors have a wide field of view of
the sky but they are not equally sensitive to all directions. An
interferometric detector like LIGO has a quadrupole antenna
pattern and is able to detect only a fraction of all the sources
from within a given distance. A network of non-collocated de-
tectors increases the sky coverage and the five-detector network
of HLVKI+ has an almost isotropic response.

The efficiency of a detector network is a function of the
luminosity distance (or redshift) and is defined as the fraction
of all sources within a certain luminosity distance that can
be (confidently) detected by the network, say with an SNR
above a threshold SNR. In order to compute the efficiency of
a detector network we simulate BNS events with their param-
eters distributed as described in Sec. II B. The network SNR
of an event is simply the quadrature sum of the SNRs in each
detector:

ρ2 =

nD∑
A=1

ρ2
A, ρ2

A = 4
∫
|h̃A( f )|2

S A
h ( f )

d f , (9)

where h̃A( f ) is the Fourier transform of the response of detector
A to an incident gravitational wave [cf. Eq. (12)], S (A)

h ( f ) is the
one-sided noise power spectral density of detector A as in
Fig. 2, ρA is the matched filter SNR of the signal in detector
A, nD is the number of detectors in the network, and ρ is the
network SNR. The efficiency of a detector is then defined as:

ϵ(z) =
1
N

∑
k

Π(ρk(z) − ρT ), (10)

where N is the total number of simulated events, ρk(z) is the
network SNR for the kth event, ρT is the SNR threshold and
Π is the step function, Π(x) = 0, if x < 0 and Π(x) = 1, if
x > 0. The SNR of an event depends not just on the redshift
but on all other parameters of the source. In computing the
network efficiency, we bin the SNR by redshift and ignore its
dependence on all other parameters. The SNR threshold ρT
serves as a proxy for detection confidence, larger SNRs are
generally detected with greater confidence. We choose the
threshold to be ρT = 12—the minimum SNR required for a
network of detectors to make a confident detection. While the
SNR of 12 used here is required for a confident detection, it is
not necessarily the SNR at which we can make the accurate
measurements of tidal deformability necessary to determine
a neutron star’s radius and its EOS. In later sections, we will
choose the best subset of all events to evaluate how well a
network is able to measure the radii of neutron stars.

The efficiency of a network then also determines its detection
rate. Within a given redshift, a network does not observe all
the possible sources, but only a fraction DR given by:

DR =

∫ z

0

rz(z′)
(1 + z′)

dV
dz′

ϵ(z′) dz′. (11)

We call DR the detection rate of a network and it is essentially
the same as Eq. (7) except that the integrand is weighted with
the efficiency of the network.

Table II lists the number of events detected over a period
of two years, as a function of detection threshold. An SNR
of 12 is required for a confident detection, and at that level,
the A+ network would observe about 800 sources over two
years while the Voyager network would observe almost ten
times as many. Meanwhile, a network containing at least one
XG detector would observe about half all the sources within
z = 1, (70,000 if XG is ET and 100,000 if XG is CE) (see
Table II), and a network containing one ET and one CE would
observe 30% more sources than that. The ECS network would
additionally observe about 10% more sources than a network
containing two XG detectors and 50% more than a network
containing a single XG detector.

IV. BNS MEASUREMENT CAPABILITY OF FUTURE
DETECTOR NETWORKS

In this Section we assess the measurement capabilities of
different networks of gravitational-wave detectors introduced
in Sec. III. We begin with a brief discussion of the distribution
of the SNR in various detector networks followed by the accu-
racy with which parameters can be measured, in particular the
effective tidal deformability.

In the rest of the paper, we will only consider sources up
to a redshift of z = 1. Within this redshift, we expect about
150,000 BNS mergers over a two-year period but the current
rate uncertainty means this number could be 50% larger or
25% smaller. This is a redshift that is far greater than the
horizon distance of A+ and Voyager networks while a network
containing one or more of XG detectors would observe a vast
majority of mergers within it. However, only a small fraction of
them will have large enough SNRs to be useful for measuring
the EOS.
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A. Signal to Noise Ratio Distribution for Nearby BNS Mergers

Figure 3 plots the cumulative distribution of the SNR for
the population of BNS mergers up to a redshift of z = 1. The
VKI+C network should observe 10% of the events with SNRs
greater than 30 and 1% of the events with SNRs greater than
60. In contrast, in the A+ network less than 0.1% of events will
have SNRs greater than 10. Cosmic Explorer and its southern
counterpart operating along with Einstein Telescope would
observe thousands of events each two years with SNRs greater
than 100.

One must multiply the expected number of mergers within
this redshift with the corresponding value of the CDF to get
the number of sources expected to be observed each year. An
estimate of actual number of events along with their SNR
distribution is also given in Table II.

ρT HLVKI+ VK+HLIv HLKI+E VKI+C KI+EC ECS

12 840 7400 67,000 100,000 130,000 146,000
30 50 600 10,000 25,000 40,000 65,000
50 10 100 2,500 8000 12,000 23,000

100 0 10 300 1000 1,800 3800
300 0 0 10 50 70 150
500 0 0 1 5 10 30

TABLE II. We list the number of events expected to be detected as we
increase the SNR of events. Even with one Cosmic Explorer and/or
Einstein Telescope, the number of BNS detections increases by an
order of magnitude. In the bulk of this work, we focus our analysis on
top 100 events with the highest SNR for each detector network. This
cut corresponds to SNR of 100 or more for networks with at least on
XG-era detector and about 50 or below for A+ detectors.

B. Fisher Information Approach for Measurement Accuracy

Our goal is to estimate the accuracy with which parameters
of an event can be measured by gravitational-wave detector
networks. To this end, we employ the Fisher information ma-
trix approach [89], which allows a reliable estimation of errors
when the SNRs large (say more than about 30 or 50). We use
the open source software gwbench [88] to generate and sample
posteriors for a set of randomly selected signals. gwbench
is a software package that computes the Fisher information
matrix (FIM) F whose inverse gives the variance-covariance
matrix. The starting point of the computation is the response
of a detector to incident gravitational wave with polarizations
h+ and h×:

hA(t,θ) = FA
+(t, α, δ, ψ)h+(t,µ) + F×(t, α, δ, ψ)h×(t,µ) (12)

where A is an index denoting the detector in question. Here
F+,× are the plus and cross antenna pattern functions of the de-
tector that depend on the right ascension α and declination δ of
the source, and the polarization angle ψ. The time dependence
of the antenna pattern functions are only important when the
motion of the detector relative to the source is perceptible, and
for sources that last for more than 30 minutes. The polarization
amplitudes h+ and h× depend on the intrinsic parameters of the

sources such as the masses m1 and m2 of the companion stars,
5 and the effective tidal deformability Λ̃, but also the extrinsic
parameters that include the orientation ι of the binary’s orbit
relative to the line-of-sight from the Earth to the source and
the source’s luminosity distance DL. These are all combined
in the parameter µ = {M, η, Λ̃, ι,DL}, where instead of the
companion masses we have used the symmetric mass ratio
η ≡ m1m2/M2, and the chirp massM≡ ν3/5M (M ≡ m1 + m2).
The parameter set θ captures all the parameters describing the
response of a detector to an incoming gravitational wave (see
below for the full list of parameters).

Given the Fourier domain representation hA( f ; θ⃗) of the de-
tector response, the Fisher matrix is given by:

F A
i j =

〈
∂hA( f )
∂θi ,

∂hA( f )
∂θ j

〉
, (13)

where the inner product of any two functions a( f ) and b( f ) is
defined as

⟨a( f ), b( f )⟩ = 2
∫ fhigh

flow

a( f )∗b( f ) + a( f )b( f )∗

S A
h ( f )

d f . (14)

where a∗( f ) denotes the complex conjugate of a( f ). The Fisher
matrix of a network of detectors is simply the sum of the matri-
ces corresponding to individual observatories in the network,
i.e.

Fi j =
∑

A

Fi j. (15)

Given the Fisher matrix, the covariance matrix Ci j among the
parameters is the inverse of the Fisher matrix, i.e. Ci j = F

−1
i j .

To construct the Fisher likelihood surface, we choose a low-
frequency cutoff, flow, of 10 Hz for A+ and Voyager detectors
and 5 Hz for XG detectors. The high-frequency limit is taken
to be the maximum allowed frequency given the sampling rate
(typically chosen to be 4096 Hz), but the signal model never
extends to such high frequencies even for the lowest-mass
neutron stars considered in this paper. We then compute a
10-dimensional Fisher likelihood consisting of the parameter
set θ = {M, η, Λ̃,DL, ψ, cos ι, α, δ, ϕc, tc}, where tc, and ϕc are
the fiducial time of coalescence, and the gravitational-wave
phase at coalescence, respectively.

C. Measurement Accuracy of Simulated Population

Fig. 3 plots the errors on the parameters of the simulated pop-
ulation in the form of distribution functions. We have shown
the results for a subset of all the parameters that are relevant
to the measurement of the mass-radius curves. These are the
chirp massM, the symmetric mass ratio η and the effective
tidal deformability Λ̃. We see a clear delineation in the mea-
surement capabilities of current and upgraded networks and

5 In principle the companions can have spin angular momenta, but neutron
stars are not expected to have large spins and they are not included in this
study.



8

10−1 100 101 102 103

SNR

100

101

102

103

104

105
N

o.
of

E
ve

nt
s

ECS

VKI+C

KI+EC

HLKI+E

VK+HLIv

HLVKI+

10−7 10−6 10−5 10−4 10−3 10−2

∆M/M

100

101

102

103

104

105

N
o.

of
E

ve
nt

s

10−4 10−3 10−2 10−1 100

∆η

100

101

102

103

104

105

N
o.

of
E

ve
nt

s

10−2 10−1 100 101 102

∆Λ̃/Λ̃

100

101

102

103

104

105

N
o.

of
E

ve
nt

s

FIG. 3. This plot shows the distribution of the measurement accuracy of the chirp massM, combined tidal deformability Λ̃, symmetric mass
ratio η, and the SNR for 160 000, events expected over a two year period, up to a redshift of z = 1. The source parameters are distributed as
described in Sec. II B.

XG observatories. The precise measurement of the parameters
is, of course, accomplished by tracking the phase evolution of
the binary. The chirp mass and mass ratio are most accurately
measured if the number of cycles in the band is large (i.e. if the
signal’s phase can be tracked over longer periods) and a good
improvement in low-frequency sensitivity for XG detectors is
responsible for this vast improvement in the measurement of
the mass parameters. The reduced tidal deformability measure-
ment comes from the signal’s phase evolution close to merger,
or the high-frequency part of the signal, which will be clearly
visible in XG detectors.

The remaining parameters—sky position, distance, and ori-
entation of the binary in the plane of the sky—also show a
clear delineation between detector generations, except the in-
stance where the addition of CE without ET performs similar
to Voyager networks6.

a. Sky localization For very short transient signals, the
sky localization is measured using the gravitational-wave travel
times between different detectors and, therefore, depends on
the number of non-collocated detectors. Thus, the 5-detector

6 The performance equivalence argued here is for a fraction relative to the
total number of detected events. In absolute terms, even a single CE will
have outstandingly more events with a given measurement error.

network of VK+HLIv, achieves greater precision than a 4-
detector XG network VKI+C, although the signal strengths
in the latter are much greater. For longer signals that make
a discernible trail on the sky, the variation of the antenna re-
sponse across the sky can be used to improve the sky position
of the source. Since ET is more sensitive between 5 Hz and
8 Hz, where a typical BNS signal (1.4 M⊙ + 1.4 M⊙) spends
more than an hour (∼ 75 minutes), a trail spanning more than
15◦ on the sky (or, a fifth of the total variation in the antenna
pattern) is clearer in the presence of an ET detector. Moreover,
HLKI+E is composed of five detectors, which accentuates the
sky resolution.

b. Inclination angle The measurement of the inclina-
tion angle is dependent on the distinguishability of the two
gravitational-wave polarizations. Since ET is a triangular de-
tector that measures three independent strains, each strain has
different polarization content, leading to an accurate estimate
of the polarization content and, thereby, the inclination an-
gle. A CE detector alone cannot distinguish between the two
gravitational-wave polarizations and it is the 2G background
(inclined with respect to each other and CE) that provides cru-
cial assistance to the VKI+C network in the polarization mea-
surement. However, a mutually inclined 5-detector network
VK+HLIv still achieves greater precision than a 4-detector
VKI+C network.
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c. Luminosity distance The luminosity distance param-
eter is most correlated with the inclination angle. Hence, a
precise measurement of the inclination angle also leads to an
accurate measurement of the luminosity distance. Thus, the
measurement trends for the luminosity distance across net-
works follows the trends in the inclination angle.

V. INFERRING NEUTRON STAR EOS FROM
MASS-RADIUS CURVES

The Bayesian inference of the chirp massM, and symmetric
mass ratio η of the BNS events detected by LIGO and Virgo are
the most precise measurements among all parameters of BNS
events. While the effective tidal deformability is not measured
as precisely, upcoming gravitational-wave detector networks
promise vastly improved measurements (cf. Fig.3). To measure
the radii of component stars, however, it is necessary to know
what the individual tidal deformabilities Λ1 and Λ2 are as
well as the tidal Lover number k2 (cf. Eq. 1). Unfortunately,
gravitational-wave observations can only provide a reliable
estimation of the linear combination Λ̃. This problem has been
resolved temporarily via the proposal of a set of quasi-universal
relations for neutron stars, which are approximately obeyed by
hundreds of current models of the EOS [90].

In this set, there are basically two universal relations. The
first of these relates the asymmetric combination of the individ-
ual tidal deformabilities7 Λa ≡ (Λ2 − Λ1)/2 to the symmetric
combination Λs ≡ (Λ2 + Λ1)/2 via the mass ratio q

Λa = Fn(q)Λs
a +

∑3
i=1

∑2
j=1 bi jq jΛs

−i/5

1 +
∑3

i=1
∑2

j=1 ci jq jΛs
−i/5

, (16)

where the function Fn(q) is given by

Fn(q) =
1 − q10/(3−n)

1 + q10/(3−n) . (17)

The fitting parameters bi j, ci j, a and n are given in Table I
of Ref. [91]. The second universal relation [92] relates the
compactness C ≡ GM/(c2R) of an individual neutron star to
its tidal deformability:

C(Λ) =
2∑

k=0

ak(lnΛ)k, (18)

where the fitting parameter ak are also given in Table I of
Ref. [91] (also see Ref. [93] for similar relationships).

The first of the universal relations Eq. (16) can be used to
decouple the effective tidal deformability into individual tidal
deformabilities. Then the second universal relation Eq. (18)
can be used to compute the radius. These universal relations,
however, have been shown to introduce systematic errors [94]
that must be corrected in order to obtain an unbiased estimation
of the EOS [95]. In the rest of this section, we describe our
simulation method to assess the radii measurements for a set
of future gravitational-wave observatories with corrections for
these errors.

7 We follow the convention m1 > m2 and, consequently, Λ1 < Λ2.

A. From Gravitational Wave Measurements to Neutron Star
Radii

We begin with the Fisher information matrices (FIM), com-
puted using the gwbench software, for the entire simulated BNS
population and all the detector networks described in Sec. II
for a set of three EOS models and the IMRPhenomPv2NRTidal
waveform model. Diagonal elements of the covariance ma-
trix (inverse of the FIM) are the standard deviations of the
source parameters: (M, η, Λ̃, ϕc, tc,DL, cos ι, α, δ, ψ). In order
to obtain radii of the companion stars from the parameters
measured via gravitational-wave observation, we simulate pos-
terior samples by generating a multi-dimensional Gaussian
sample using the injection values as mean values and the in-
verse of the FIM as the covariance matrix. We need only three
of these parameters (M, η, Λ̃) for the estimation of radii. To
break the degeneracy between two tidal deformabilities and get
individual radii, we follow the procedure described in [95] (see
also [79] for an alternative method), which is briefly described
below.

First, in the expression for Λ̃ we eliminate Λ1 and Λ2 in
terms Λs and Λa. We then use the first universal relation in
Eq. (16) to replace Λa with Λs in the expression for Λ̃ , thereby
writing Λ̃ as a function of only Λs and q. Since gravitational-
wave observations measure Λ̃ , we can invert the expression
for Λ̃ = Λ̃(Λs, q) to get Λs(Λ̃, q). Thus, from gravitational-
wave measurements of the mass ratio and the effective tidal
deformability we can extract the symmetric combination Λs
and then, using Eq. (16), also Λa. These two are then inverted
to obtain the individual tidal deformabilities of the component
stars. Thereafter, we use the C-Λ universal relation in Eq. (18)
to derive the compactness and, with the individual masses,
obtain the posterior probability distribution of the radii for
component neutron stars.

B. Correcting Systematic Errors in Neutron Star Radii

Universal relations introduce systematic errors in the esti-
mation of individual tidal deformabilities and radii which will
dominate the source of errors in the era of XG observatories
[95]. Due to the fact that δΛ̃ cannot be measured accurately,
it is not possible to obtain a truly, arbitrarily precise, model-
agnostic measurement of neutron star radii or compactness
using only gravitational-wave measurements8. However, it
turns out that for the purpose of EOS model selection the sys-
tematic errors can be corrected as we will briefly argue below
(see Ref. [95] for details).

As discussed before, the gwbench framework is used to cre-
ate a population of BNS events in which the tidal deformability
Λ of each neutron star of mass m is computed for a specific
EOS model (one of ALF2, APR3 or APR4). Out of the 150,000
simulated events, we choose 100 events that have either the
greatest SNR or the best-measured tidal deformability. For the

8 Note that even ifΛ1 andΛ2 are measured by gravitational-wave observations
the tidal Love numbers of the two neutron stars will still be unknown and
hence the radii cannot be inferred
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100 events, we will have 200 mass-radius posteriors, one for
each of the companion stars. We then sample a discretized
mass-radius curve containing 200 points by randomly sampling
each star’s mass-radius curve and repeat the process to generate
a large number of realizations, representing the mass-radius
curve supported by the 100 chosen events. Sampling in this
manner can form mass-radius curves which violate causality,
and thermodynamic constraints. However, we note that this
makes our estimates more conservative, and curves which dif-
fer greatly from the true EOS as a result of this will be rejected
by the chi-square statistic described in the following section.
The radii used to construct these mass-radius curves then con-
tain the systematic errors introduced by our use of the universal
relations, so the resultant mass-radius curve will also be biased.
Given an EOS, we can determine the exact value of this bias
by comparing the mass-radius curve for an EOS generated
using the TOV equations to that of a curve generated using
the universal relations. With this in hand, we can calculate
the correction necessary to account for the systematic errors
introduced by the universal relations which, when applied to a
mass-radius curve, will closely match the exact TOV curve.

In this work, we thus correct for these systematic errors
by applying these corrections to the calculated mass-radius
curves per EOS. For example, if we would like to determine
whether the underlying equation of state of our mass radius
curve is ALF2, we first apply the known correction for ALF2
to our mass-radius curves and then complete the comparison
described in the next section. If the true underlying EOS is
not the one for which we have applied the correction, then the
correction will not correctly account for the systematic errors
and we can only assume that most similar resulting mass-radius
curve is the closest to the excluded true model.

We will consider the true model in turn to be one of the 10
EOS models shown in Fig. 1 and show how the corrected-mass-
radius curves compare with the true EOS model. In practice,
one has to compare the curves with the full set (of millions) of
curves. In order to clearly illustrate the power of the method,
we have not done so and instead reserved a more detailed and
careful Bayesian statistical analysis of model selection in an
upcoming publication.

C. EOS Model Selection Using χ2 Statistic

After generating a mass radius curve as described in the
previous section, we must compare it to a set of EOS models
in order to determine the true EOS of the population. We
complete this comparison with the following statistic:

χ2
k,M =

1
N

N∑
i=1

(rk
i − rM

i )2

σ2
i

(19)

Here, N is the number of events, k stands for one of the re-
alizations constructed from the mass-radius posterior and σi
are 1−σ uncertainty in the radii calculated after applying the
systematic bias correction. We generate 500 realizations of the
mass-radius curve and obtain a distribution of the χ2 statistic
for each of the 10 EOS models.

If a realization of the mass-radius curve is close to the model
to which it is compared to, the numerator of Eq. (19) becomes

zero. If, however, the uncertainties in the tidal deformability
are large, the χ2 again becomes small regardless of the position
of m-Λ posterior distribution with respect to the model m-
Λ curve. This is a drawback in our model and leads to the
underestimation of near-future LVK upgrades in distinguishing
EOS models. Therefore, when comparing against a collection
of EOS, the smallest χ2 value should correspond to the injected
EOS for XG detector configurations in which statistical errors
are much smaller and recovery of EOS in the data is more
accurate, but for near-LVK upgrades, this may not be true due
to the large errors in tidal deformability. We discuss our results
in the next section and defer the improvement to the Bayesian
formulation of our χ2 method to future studies.

D. Combining Results from Multiple Events

The accuracy of radii posteriors depends to a large extent
on the accuracy of tidal deformability measurements, which in
turn depends on mass-posteriors. Heavier component masses
have smaller tidal deformabilities, which are difficult to mea-
sure. The low accuracy of the tidal deformabilities results in
poorer radii measurements, which constrain the high-density
regime of the EOS, while lighter component masses typically
result in better measurement of the radii. The correct reflection
of the radii uncertainty, therefore, cannot be at some fiducial
mass but will be a function of the companion mass. Having
measured the radii of several hundred neutron stars, it is possi-
ble to get a better handle on the radius at a fixed mass.

Evidence from the observation of multiple events, in prin-
ciple, can be combined to give us integrated evidence of the
constraints on neutron star radii. In this paper, we bin the se-
lected set of events over the range of companion masses from
1.0 M⊙ to the maximum mass supported by the EOS in steps
of 0.05 M⊙ wide bins and assume that all neutron stars in a
given bin have the same radius. The uncertainty in the radius
in each bin is computed as the quadratic harmonic sum of in-
dividual 1-σ uncertainties in the radius of individual neutron
stars that lie within the bin. This procedure is equivalent to
combining the posteriors of radii corresponding to all the NSs
in a particular mass bin assuming priors are the same for all
NSs. While not ideal, this method improves upon the method
used in [55], which assumes that radii of neutron stars over
the entire mass range from 1.1 M⊙ to 1.6 M⊙ are the same.
We note that this latter assumption could introduce an intrinsic
systematic error of 200 m (Eq.-6 of [55]) — a value much
larger than the measurement uncertainty we find in the case
of XG detectors. We report the results of this calculation in
the next section. The accuracy of radii measurements can be
translated to the accuracy in the estimation of nuclear physics
parameters [96, 97] which we defer for future work.

E. Impacts of assumed cosmology

To obtain the error in the radius measurement, we need to
convert the uncertainties in the detector-frame chirp mass to
that of the source-frame chirp mass. In doing so, we have
assumed that the cosmological parameters, like the Hubble
constant (H0), are known exactly (see Sec. IIA). Although
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FIG. 4. TOV mass-radius curves of ALF2(blue), APR3(orange), and APR4(green) overlaid with the bias-corrected recovered mass and radius as
well as their errors (grey bars) in a subset of near-future and XG detector networks, for a set of 100 random events drawn from the 500 loudest
SNR. There is a clear trend of improving radius error as the detector networks improve left to right, top to bottom. Additionally, in the best
detector networks, radius errors also improve with decreasing mass, as is to be expected with higher accuracy in the measurement of higher tidal
deformability.

advancements in gravitational-wave detector networks are ex-
pected to achieve sub-percent precision in measuring cosmo-
logical parameters [98–103], the associated uncertainties may
still impact radius measurements.
Note that the two most precise measurements of H0, from
the Planck mission [104] and the SH0ES project [105], are in
disagreement at the 5 − σ level, which is called the Hubble
tension. To obtain a liberal estimate of how the uncertainty
in H0 can affect radius measurements, we perform Bayesian
parameter estimation with BILBY [106, 107] for a (1.45, 1.35)
M⊙ BNS system, at 400 Mpc, with APR4 as the assumed EOS.
For this zero noise analysis, the system is injected in a net-
work with one Einstein Telescope and two Cosmic Explorer
observatories (SNR 330). The injected system is made to
obey the SH0ES estimate of H0 = 73.3 km s−1 Mpc−1, whereas
the recovery is performed assuming the Planck18 value of
H0 = 67.4 km s−1 Mpc−1, i.e., a fractional error in H0 of ∼ 8%.
Employing the same analysis as in the current study, we ob-
tain the 68%-credible region for radius estimate to be 370m
(∆R/R 3%). In contrast, the bias in the estimate due to infer-
ence with the incorrect cosmology is 60m. Thus, even at an
exaggerated uncertainty of 8% in H0, we see that the statistical
uncertainty in the radius measurement outweighs the resulting
bias. Therefore, at the forecasted precision levels of cosmologi-

cal parameter measurement with next-generation observatories,
we do not expect the uncertainty in their estimation to play a
significant role in the estimation of the radius of the neutron
star.

VI. RESULTS FROM A POPULATION STUDY

In this section, we present the accuracy of radius measure-
ments inferred from a sub-population of 100 best events, for
six different detector networks and three different EOS models.
The sub-population is chosen to be either events with the best-
measured tidal deformabilities or the largest SNRs. In order to
gauge Monte Carlo errors, we start with a set of 500 events sat-
isfying the aforementioned criteria and then bootstrap several
realizations of 100 events. We present the results in a series of
plots that compare the measured mass-radius curves to those
derived from different EOS models, the χ2 histogram between
the measured and model radii, and precision with which radius
can be measured by combining events in 0.05M⊙-wide mass
bins for different EOS models.



12

0.5

1.0

1.5

2.0

2.5

HLVKI+HLVKI+HLVKI+ VK+HLIvVK+HLIvVK+HLIv HLKI+EHLKI+EHLKI+E

9 10 11 12 13
0.5

1.0

1.5

2.0

2.5

VKI+CVKI+CVKI+C

9 10 11 12 13

KI+ECKI+ECKI+EC

9 10 11 12 13

ECSECSECS

0.0 0.2 0.4 0.6 0.8 1.0
radii (km)

0.0

0.2

0.4

0.6

0.8

1.0
m

as
s

(M
�
)

FIG. 5. Same as Fig. 4 except the 100 out of 500 events with best measured tidal deformability are chosen. Again, there is a clear trend of
improving radius error as the detectors network improves left to right, top to bottom. Note that the trend of improved radius error with decreased
mass is not clear here as it was with the loudest in the SNR set. This is a natural result from the selection of only the best measured combined
tidal deformability systems as opposed to those with the best SNR as in Fig 4.

A. Radius Measurement

Figures 4 and 5 plot the uncertainties in the measurement
of masses and bias-corrected radii for 100 random events
drawn from the 500 events, with the largest SNR and the best-
measured tidal deformability, respectively, for a population of
BNS described in section II. The cumulative distribution of
the measurement uncertainties in the parameters used in this
calculation are shown in Fig 3. Multiple realizations of the 100
events (out of 500) do not show significant differences in the
mass-radius curves and hence we have shown the plots for just
one realization. Results are shown for the six different detector
networks. In each case, the true model is in turn chosen to
be ALF2 (blue), APR3 (orange), or APR4 (green). In these
plots, we show the bias-corrected radii using only the injected
models as described in V B. Otherwise, the plot would be too
busy; the chi-square plots, to be discussed below, will compare
the bias-corrections applied to radii assuming the true EOS
model to be any one of the three candidates. Measurement
uncertainties in mass and radius are plotted in grey.

Figures 10 and 11 in Appendix A show the same result but
plotted in the chirp mass-symmetric mass ratio space, while
Figures 12 and 13 show the results in the chirp mass-combined
tidal deformability space. Figures 10 and 12 are for events
with the best-measured tidal deformability while Figures 11

and 13 are for events with the largest SNRs. The color shade
of the dots in these plots represents the radius uncertainties
while the size of the dots is a measure of the SNR of the events
as shown in the legend.

Note that these results are based on the Fisher Matrix calcu-
lation of the measurement uncertainty. Therefore, the results
we see here can be taken as a lower bound of what we might
actually expect from a full Bayesian analysis of parameter
estimation of these events.

From Figs. 4 and 5, there is an evident trend of marked
improvement in the measurement of the radii as the detector
networks themselves improve. The recovered radii fall closer
to the injected EOS curve, and the measurement uncertainties
vastly decrease as the number of XG observatories in a network
rises from 0 to 3. Notably, the maximum uncertainty in the
radii, most easily read from the color bars of Figures 10-13,
vary from, in the worst detector, about 2500 m to, in the best
network, only about 300 m. At low masses, the disparity is
especially clear, and this is a natural result for these networks—
particularly the improvement once at least one XG detector
added to the network.

It is notable that in networks which contain just one XG
detector, the HLKI+E network slightly outperforms that of
VKI+C in the measurement of radius error. This is expected
for two reasons. First, the HLKI+E network contains one addi-
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tional detector than that of VKI+C, which inherently improves
its sensitivity. Second, the ET sensitivity curve, as seen in
Fig. 2, contains a long tail in the low-frequency regime not
present in the CE curve. This increases the time neutron star
signals spend in the band, and results in a better-measured
chirp mass and, therefore, better-measured radii. The evidence
of this can be seen in the chirp mass and radii CDFs of Figure
3. There, the HLKI+E chirp mass CDF shows clearly a smaller
relative error than that of VKI+C, and where the HLKI+E tidal
deformability CDF shows on level or slightly smaller relative
error than that of VKI+C.

In the data set with the loudest SNR events (Figures 4, 11,
and 13), higher-mass systems are less constrained—especially
in radius—than lower-mass systems, while this is not nec-
essarily true for the set of best-measured tidal deformability
events (Figures 5, 10, 12). Again, this is an expected result,
as we accumulate most SNR for BNS systems during the low-
frequency inspiral phase, while the best measurements of tidal
deformability come from the high-frequency part of the wave-
form during the merger. Thus, a high SNR does not beget
a well-measured tidal deformability or radius. Additionally,
although gravitational-wave amplitudes for high-mass systems
tend to be larger compared to low-mass ones, the value of their
tidal deformability tends to be smaller. These small values
combined with short inspiral times result in larger relative er-
rors in the measurement of tidal deformability and radii despite
the boost in SNR from higher amplitudes. This trend is espe-
cially clear in Figs. 12 and 13 where in Fig. 13 the highest
radii errors for each panel (in yellow) are always seen in the
right, or the high mass and low tidal deformability, portion of
the plot while in Fig. 12 the worst measured events (again in
yellow) are spread throughout parameter space.

Similarly, in Figs. 10 and 11, it appears that a high sym-
metric mass ratio, and high chirp masses may result in poorly
measured tidal deformability for the highest SNR events, but
not necessarily for those with the best measured tidal deforma-
bility. In Figure 11, large radii errors (in yellow) are typically
grouped in the upper right-hand corner of most plots, with a
small spread along the right-hand edge in the ALF2 and APR4
EOS, and a small line along the upper-edge in the VKI+C net-
work of ALF2. This is again due to the previously discussed
issue with taking the loudest SNR events, but whether this is
individually caused by either the high symmetric mass ratio
or the large chirp masses is not immediately clear. As previ-
ously mentioned, a high chirp mass comes with a small tidal
deformability and therefore large relative error. However, a
high symmetric mass ratio can also decrease the inspiral time,
or time in a frequency band, and therefore again the accuracy
of the measurements becomes low. Notably, in the set of best
measured tidal deformability shown in Fig. 10, the large errors
are distributed more evenly throughout the plot and have lower
maximums than their high SNR equivalent.

B. Model Selection

Figures 6, and 7 show the primary results from our model
selection procedure. Here we plot the distribution of the χ2

statistic defined in Eq. (19) between the observed mass-radius
curve and the one predicted by the chosen EOS model. The

separation of the distribution for any two EOS signifies the ef-
fectiveness of a detector in distinguishing between the injected
and test EOS models. In these figures, each row corresponds to
a particular detector network, while each column corresponds
to a specific injected EOS (label at the top of the column). The
χ2 histograms in each panel are additionally colored to match
the EOS color scheme as in Fig. 1, with the count on the y-axis
and the χ2 (in log-scale) on the x-axis.

For detector networks in the top two rows the inferred radius
rk is very different from that predicted radius rM by any of
the models (see top left and middle panels in Figs. 4 and 5)
which would cause χ2 to be large. However, at the same
time, the uncertainties in the measurement (σi) are also large.
Consequently, for networks with poorer sensitivity, the χ2 will
tend to be equally small no matter which EOS model the events
are compared to.

The story is different when the radius uncertainty σ of a de-
tector network is small. For such detectors, the bias-corrected
radius differs significantly from the predicted radius found
using a model other than the true one, but agrees very well
with the predicted radius of the true model. Consequently, the
ratio within the sum in Eq. (19) is small only when the set {rM

i }

corresponds to the true EOS. This is the reason why the χ2

distributions for the models other than the true one have far
greater values than they are for the true model in the bottom
two rows. We find that the method accurately recovers the
injected EOS model among a larger set of models than was
used for injection. In addition, we have also used a much larger
sample of events for our work compared to previous studies
[69, 108–110].

We stress that the power of the χ2 statistic introduced lies in
discriminating between the different EOS models when mea-
surement uncertainties are small; with less sensitive detector
networks there is no way to distinguish one EOS model from
another. The absolute value of the χ2, however, has no signifi-
cance.

Across different detector networks, when the injected EOS is
close in the M-R parameter space to the comparison EOS, the
distribution is most often confused with the true EOS as show
by the proximity of its histogram to the true one. For example,
in the least sensitive detector networks, or top rows of Fig 7 and
6, the overlap between the resultant three distributions of ALF2,
SLy, and PP5 is total, and even with one XG detector, they still
overlap significantly. It is only in the best detector networks
(bottom two rows) that they begin to become indistinguishable.
Meanwhile, comparing ALF2 to APR4 or H4, even in some of
the least sensitive networks, their distributions already diverge
from the true ALF2 one. This follow from the simple fact that
at low mass in the mass-radius curve, ALF2 lies very close
to PP5 and at high mass close to SLy and would therefore
naturally match more closely with its nearest neighbors while
the distance between ALF2 and APR4 or H4 is significant and
therefore not well matched (Kashyap et al. [95] discuss how
distinguishability of EOS models changes with respect to the
L2 distance between them).

In general, as the sensitivity of the networks increases, so
too does the separation of the posterior distributions. In the
lower sensitivity networks from both the highest SNR and best
measured tidal deformability data sets, the distributions over-
lap significantly, and it is only with the inclusion of at least
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FIG. 6. Chi-square histograms for 100 events from those 500 with the smallest error in combined tidal deformability. The injected EOS is listed
along the top, and the colored histograms represent the result assuming a second EOS model, including the original injection. Detector networks
are organized by sensitivity row-wise with the most sensitive network at the bottom. In every EOS and network scenario including at least one
XG detector, the injected EOS is recovered correctly and easily distinguishable from the other nine via this test. In our two least sensitive and
nearest future detector networks, HLVKI+ and VK+HLIvc, the opposite is clearly true and all models are indistinguishable.

one XG detector that the distributions become at all distin-
guishable. Across EOS and data sets in networks with at least
one XG detector, the smallest χ2 value always corresponds
to the injected EOS and its peak is distinguishable from the

EOS with the next smallest χ2 value. There is not a significant
separation of the true EOS from its neighbors, however, until
we begin to include at least two XG detectors in the network.
In these most sensitive networks, the true EOS centers around
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FIG. 7. Chi-square histograms for 100 events from those 500 with the smallest error in combined tidal deformability. The injected EOS is
listed along the top, and the colored histograms represent the result assuming a second EOS model, including the original injection. Detector
networks are organized by sensitivity row-wise with the most sensitive network at the bottom. While the peak of the injected EOS histogram is
generally recovered with the smallest χ2 value despite detector sensitivity, in the two networks which do not contain at least one XG detector,
the histograms are not distinguishable and we cannot claim that this test is effective in distinguishing EOSs at loud SNRs. However, in networks
with at least one XG detector, the correct EOS is consistently recovered with its distribution clearly separated from other EOS models. The same
trend is also seen in Fig 6.

one, effectively recovering the EOS, and there are an order of
one hundred separations between it and its neighbors, giving
hope that XG detector networks may be able to distinguish
clearly between these, and other EOSs.

C. Combining Radii Errors from Multiple Events

In Fig. 8, we present the results of combining the radius
uncertainties of multiple events binned in individual masses
of neutron stars in the range 1.0 M⊙ to the maximum mass
supported by the EOS used for the injection, using the method
described in Sec. V D. We plot the effective errors in the radii
of a particular mass bin for three EOS models, with the colors
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FIG. 8. Cumulative radius error in each mass bin by square harmonic sum assuming constant radii in each mass bin. The upper panel shows
the 100 events randomly selected from the 500 events with the best measurement of Λ̃ while the bottom panel shows the same result for 100
events randomly selected from 500 events with the best SNR. The band for each EOS shows the uncertainty due to random sampling. The color
encodes the results for each EOS and is the same as Fig. 1. We find generically that errors in radii are larger for larger masses across detector
networks and data sets due to smaller accuracy in the measurement of smaller tidal deformability.

the same as in Fig. 1. The color bands show the variation in
the combined error due to bootstrapping while selecting 100
events out of 500 best events according to two different criteria
(best SNR and best measured Λ̃) as described in the previous
sections. We’ve found that this selection of events does not
make a significant difference to the results.

One of the crucial features of these plots is the increase in
the effective radius uncertainty with the increase in the masses

of the individual neutron stars. This is again due to the small
tidal deformability of heavy neutron stars and poor accuracy
in their measurements irrespective of the EOS and the detector
network, leading to the poor measurement of radii via the C-
Λ universal relation. Smaller radii and tidal deformabilities
at higher masses result in poorer constraints of the EOS at
higher densities, which is usually near the neutron star core.
As expected, we find an improvement in the radii uncertainties
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for all mass bins according to the
√

N law, where N is the
number of events combined in each mass bin.

We find the uncertainties to be smaller than 1 km by com-
bining 5 or more events in any mass bins irrespective of the
network chosen. The HLVKI+ network has typical errors to
be around 1 km for all masses and becomes as large as 3 km
even after combining multiple events. The addition of one XG
detector to the network improves the radii uncertainties by an
order-of-magnitude with a typical value of 100 m, the smallest
value of 30 m, and the largest value of 1 km. The best radius
measurement, however, is accomplished by combining both
ET and CE. We show the results for two such networks of
detectors where uncertainties could be as small as 20 m with
almost all of the bins having uncertainties smaller than 100 m
(i.e., ∼ 1 %). We emphasize again that in these calculations, we
use Fisher Information Matrix to approximate the uncertain-
ties, which are a lower bound. We defer the work of accurate
analysis using Bayesian Monte Carlo methods to future work.

D. Discussion

The result of our analysis for the best-SNR and best-
measured tidal deformability data sets is promising for net-
works including XG observatories. Advanced LIGO and Virgo
and their upgrades in the near future are expected to observe
tens of events with moderate SNR (i.e., SNR> 40) and a hand-
ful of high-fidelity (SNR> 100) events over a two-year period
(cf. II, columns 2 and 3). Without any XG observatories, the
best fractional uncertainty in radii measurements for the top
100 events with best measured tidal deformability is 5–10%,
with more than half above 10%, as seen in Fig 9. This means
it will be difficult for these networks to distinguish between
even the most disparate set of EOS models considered in this
paper. However, with the inclusion of just one XG detector, the
best results show only a 0.8% uncertainty in radii, with half of
the events reporting only 6% or less, allowing EOS to become
partially distinguishable. Meanwhile, networks with at least
two XG detectors tell a completely different story.

In our most sensitive networks, we will be able to measure
the radii of neutron star sources to 0.5%, with half at 3% or
less, as seen in Fig 9. However, we have not taken into account
the models of the crust of neutron stars which themselves can
be 100 m (i.e., 1% of the radius), so further work is required
to better characterize the meaning of measurement accuracies
below this accuracy. These precise measurements, however,
result in χ2 distributions that are easily distinguishable, well
separated, and centered for both the loudest SNR and best-
measured tidal deformability event sets. Consequently, XG
networks will be able to distinguish between different EOS
models (even ones that are sufficiently close to each other in L2
measure of distance) and place stringent constraints. Overall,
the results of these data sets reveal an avenue for future research
that deserves to be pursued further.

VII. SUMMARY AND CONCLUSIONS

In this work, we report on the improvements in the inference
of the dense matter equation of the state of neutron stars with

the current and next-generation gravitational-wave detectors
based on their expected design sensitivity curves. We evalu-
ate the measurement uncertainties for hundreds of thousands
of events and consequently, it is not possible to carry out a
Bayesian inference analysis of the events as that would cur-
rently take a formidable amount of time. Instead, we use the
Fisher matrix approximation to compute the 1-σ uncertainties
and correlations of the binary neutron star parameters, includ-
ing the companion masses and the effective tidal deformability
Λ̃ using the IMRPhenomPv2NRTidal waveform. The multi-
variate distributions of the binary parameters obtained from
gravitational-wave observations, together with two universal
relations, namely, Eqs.(16) and (18), allow us to infer the mass-
radius posteriors of companion neutron stars. Since the uni-
versal relations are not exact, the inferred radii posteriors have
systematic biases. We have shown that these systematic biases
can be corrected for when comparing the measured mass-radius
posteriors with that predicted by a specific equation-of-state
model. Our bias-correction method is equivalent to comparing
the model mass-tidal deformability predictions directly with
the gravitational-wave data but computationally inexpensive
since bias corrections are known a priori and don’t need to be
generated on the fly. Moreover, the method avoids having to re-
peat the likelihood calculations and computations of posteriors
for every plausible equation-of-state.

We employed this new method to compare three disparate
model equations of state with simulated gravitational-wave
measurements for assuming the true equation of state to be
one of the 10 models. Our results demonstrate that the method
can uniquely identify the correct equation-of-state when the
detector network contains at least one XG observatory (either
Einstein Telescope or Cosmic Explorer). It will be difficult to
distinguish between different plausible equations of state with
the current network of LIGO, Virgo and KAGRA observatories
or their proposed improvements (A+ or Voyager). However,
with the addition of at least one XG observatory, it will be pos-
sible to draw firm conclusions about the true equation-of-state
describing dense matter in neutron star cores. Moreover, we
find vast improvements in the measurement uncertainties of
neutron star radii with two or more next-generation observa-
tories in the network. More specifically, we find that radius
uncertainties are a few hundred meters for networks with one
or more next-generation observatories, while this would be 1
km in a network with the LIGO-Virgo-KAGRA network and
their future upgrades. However, we found that the overall accu-
racy of radii measurements decreases with increasing neutron
star mass. This is because tidal deformabilities are smaller and
more difficult to measure for more massive neutron stars.

Building more sensitive gravitational-wave observatories is
crucial to constraining plausible EOS models—measurements
that can inform not only the gravitational-wave community but
also the nuclear physics and astronomy communities at large.
In this light, the radius of a typical NS can be constrained to
better than 30 m, at the lower end of the expected range of
neutron star masses, with joint detections of events over two
years in Einstein Telescope and Cosmic Explorer.
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FIG. 9. Upper Panel: Cumulative histograms of the uncertainty in neutron star radii in km (top two panels) and masses in solar mass (bottom
two panels) multiplied by the total number (860) of neutron stars in the 430 selected BNS events. The left panels are for events with the best
measured tidal deformability and the right panels are for events with the highest SNRs. The different curves correspond to different detector
networks considered in this study. These plots show that even the inclusion of just one XG detector (VKI+C or HLKI+E) leads to a vast
improvement in the precision of radii measurements. Such detectors could measure the radius to within about 200 m for several events. A
network containing two or three XG detectors would improve by a factor of a few. On the other hand, companion masses are better measured by
a network that has ET (0.01 M⊙ to 0.001 M⊙) whose lower frequency performance helps in more accurate determination of the chirp mass and
the mass ratio.

ACKNOWLEDGEMENTS

We thank the Cosmic Explorer Team members and the Mat-
terGroup of the LIGO Scientific Collaboration for discussions
and feedback. RH, AD, and BSS were supported by NSF grant
numbers PHY-2012083, AST-2006384 and PHY-2207638. SB
acknowledges support from the Deutsche Forschungsgemein-
schaft, DFG, Project MEMI number BE 6301/2-1.

Appendix A: Miscellaneous plots

In this section we assemble a list of four additional plots
to gain a better understanding of the results presented in the
main body of this paper. These plots show the measurement
uncertainty in radius either as a function of chirp mass and
symmetric mass ratio in Figs. 11 (for 100 randomly chosen
events out of the 500 loudest events) and 10 (for 100 randomly
chosen events out of 500 events with the best measured tidal
deformability) or as a function of the chirp mass and tidal de-
formability in Figs. 13 (for 100 randomly chosen events out of
the 500 loudest events) and 12 (for 100 randomly chosen events
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out of 500 events with the best measured tidal deformability).
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