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Abstract In this paper we study a class of markets, among which we can
mention agricultural and energy markets, characterized by seasonality, i.e. in
which demand and/or supply conditions cyclically alternate with a precise and
known periodicity. We propose a new theoretical framework based on a cobweb
model with adaptive expectations, accordingly modified to be consistent with
market’s seasonality. The model, consisting in a second order non-autonomous
difference equation, is investigated with the aim of understanding how the pe-
riodical nature of the market together with the agents’ expectation formation
mechanism affect the resulting dynamics. We analytically prove the emergence
of dynamical scenarios that are missing in the classic cobweb model for non-
seasonal markets, such as quasi-periodic dynamics and an ambiguous role on
stability of the expectation weight. Finally, we discuss their economic rationale
with the help of numerical simulations. In such a peculiar economic framework,
agents’ learning plays a key role to explain the dynamical properties of eco-
nomic observables.
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1 Introduction

The supply and/or consumption patterns characterizing some classes of goods
are affected by particular time at which they are produced and/or used, with
the consequent outcome of recurrent price fluctuations that follows a broadly
predictable sequence. This peculiarity is referred as seasonality. The provision
of agricultural goods is a clear example of such a situation. Crop production
has to be planned in advance and its harvest usually takes place in a single,
specific season, giving rise to the well-know “harvest lows” and “post-harvest
rally” price behavior (see e.g. [27,29]). Another example consists of energy
goods, in particular electricity, whose consumption changes depending on the
year period, day of the week or even the hour of the day, and whose production
can be in part affected by time as well (e.g. solar energy). In energy markets,
being able to understand the seasonal effects is fundamental to forecast price
behavior ([26,22,20]). Finally, among other relevant examples of goods whose
supply and/or consumption is affected by seasonality, we can mention cloth-
ing, toys and food ([31,17,28]). It’s worth mentioning that such markets are
often characterized by peculiar distributions in economic observables1.

In seasonal markets demand and/or supply curves change over time with
an underlying deterministic pattern, according to the daily, weekly, monthly
recurrence of consumption and production. Therefore, qualitatively identical
couples of demand/supply curves arise with cyclical regularity, giving rise to
a characteristic and to a large extent predictable seasonal pattern2 in the re-
sulting price series. Indeed, suppliers are aware of the market seasonality and
they take their production decision accordingly.

Given the relevance of the previous class of markets, the aim of the present
research is to develop a theoretical model for the study of the evolution of eco-
nomic observables, like prices, quantities, in a prototypical market in which
demand and supply functions are affected by seasonality. To this end, we focus
on the simplest kind of cyclicity characterized by period 2. The general market
under consideration is unique (as well as the exchanged good), but it is struc-
tured as a sequence of cyclically alternating phases, each one characterized by
a couple of demand/supply functions. For such reason, the considered class of
seasonal markets can be addressed as double phase markets, in opposition to
the classic framework to which we refer as single phase market. The most suit-
able setting to describe the previous class of markets is the competitive one3,
so the methodological approach we pursue relies on the cobweb framework4.

1 Just as an example, times series of electricity prices are characterized by an elevated
volatility, spikes, with returns’ distributions that show a strong, leptokurtic deviation from
normality (see e.g. [23,9]).

2 Indeed, stochastic fluctuations may also superimpose to such a cyclical behavior, arising
from nondeterministic shocks that affect the demand and/or supply side.

3 Agricultural markets are the typical competitive market example provided in microeco-
nomics courses, as well as energy markets have been liberalized in the last twenty years.

4 For an introduction and survey on cobweb models we refer to [19]. A first attempt to
describe seasonal markets through a cobweb model is proposed in [13], while the effect of
demand seasonality in a monopolistic market model is studied in [12].
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A key problem in the theoretical description of markets lies in modelling
the way agents make production decisions on the basis of their information
endowment about the economic environment, i.e. the way they form expec-
tations about prices. The expectation formation mechanisms proposed in the
literature are not suitable for a double phase market, as they are not shaped to
take into account seasonality, so the first problem we address is that of agents’
learning in a double phase framework. Perfect rationality assumption is not
suitable for such frameworks, due to the intrinsic complexity of the economic
environment and the inability of such a hypothesis to give explanation of the
phenomena characterizing economic variables’ dynamics. Grounding on the
classic adaptive expectations, we introduce a modified adjustment mechanism
in which the agents form their expectations learning from the last two periods,
i.e., in a double phase framework, from a whole sequence of market phases.
The adjustment of the previous expected price is then regulated by an expec-
tation weight, representing, as in a single phase cobweb model, the relevance
the agents give to the expectation error. From the mathematical point of view,
the resulting model is essentially different from a cobweb model for a single
phase market and consists of a non-autonomous difference equation5.

Due to the novelty, a relevant part of this contribution is devoted to the
study of analytical properties of the model, to compare it with the classic
single phase cobweb model. The resulting framework exhibits much more el-
ements of complexity and ambiguity than that classic, in which instability
can just arise by means of a period doubling bifurcation and the expectation
weight has a destabilizing effect. Conversely, in a double phase cobweb model,
both periodic, chaotic and quasi-periodic dynamics can arise, even for a given
market configuration, and the expectation weight can also have a stabilizing
role. Moreover, we show that when agents form their expectations on the ba-
sis of errors related to both market phases, they can be able to learn how to
correct erratic price dynamics characterizing each phase. The main drivers of
the emergence of new phenomena are discussed, both from the dynamical and
economic points of view, with the help of numerical simulations.

The remainder of the paper is organized as follows. In Section 2 we intro-
duce the double phase cobweb model, which is then studied from the analytical
point of view in Section 3. The dynamical and economic rationale of the results
are discussed in Section 4. Conclusions and future perspectives are collected
in Section 5. Proofs of Propositions can be found in Appendix.

5 It is well known that if agents takes into account in their expectation formation mech-
anism several previously realized prices, then the resulting difference equation is non-
autonomous [11,1], and this has been already applied to cobweb models [10,24,5,16], too.
However, in such literature the non-autonomous nature of the resulting equation is due to
a refinement of the expectation formation mechanism, while the economic framework un-
der consideration is left unchanged. In the present contribution, it is a consequence of the
market seasonality, and hence it is ascribable to peculiar structure of the economic environ-
ment, which in turn affects the expectation formation mechanism. Moreover, in the present
model, the last two periods taken into account are characterized by a different couple of
demand/supply functions.
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Fig. 1 Time levels of the double phase cobweb model. Black color: Phase-time level τ. At τ
the market is characterized by different demand (Di) and supply (Si) functions. Red color:
period-time t. Each period time t collects a whole cycle of 2 consecutive phase-times.

2 Double phase cobweb model

We consider a family of markets in which the unique traded good is charac-
terized by consumption and/or production that vary depending on the par-
ticular time at which the good is exchanged, with a deterministic cyclical
recurrence (seasonality) with period 2. We assume that exchanges occur at
discrete times τ ∈ N. We then have a sequence of market phases, which,
thanks to the assumption of deterministic cyclicity of period 2, can be rep-
resented through a sequence of couples of demand/supply functions (D1, S1)
and (D2, S2), each related to a particular market phase. We assume that de-
mand functions Di : I → R

+, i = 1, 2, where I is a suitable interval, are
smooth and decreasing functions. Similarly, we assume that supply functions
Si : J → R

+, i = 1, 2, where J is a suitable interval, are smooth increasing
functions6. We remark that the shapes of both demand and supply functions,
as well as their domains I and J, may depend on the institutional charac-
teristics of the particular market under consideration. We only assume that
Si(J) ⊂ Di(I) and that each function Di always has one intersection with the
corresponding function Si, for i = 1, 2.

We refer to the time level identified by τ as the phase-time level, as it
consists of a sequence of market phases. The phase-time level is graphically
sketched in Figure 1 using black color. Without loss of generality, we can
assume that when τ is odd (respectively even), the market is characterized
by demand/supply functions D1 and S1, (resp. D2 and S2). We then have
that two phase-times τa > τb are in-phase (i.e. share the same demand/supply
functions couple) when τa = τb + 2n (i.e. when a and b are both even or
odd) for some n ∈ N, while, otherwise, they are out-of-phase (i.e. they are
characterized by different demand/supply functions couples).

In addition to the phase-time level, it is possible to introduce another time
perspective at which study a double phase market, in which at each time

6 For the sake of simplicity, in this section we assume that all the demand (resp. supply)
functions share the same domain, but such assumption is not essential and can be easily
removed. Moreover, note that the proposed setting also encompasses the situations in which
either or both the demand function is constant in time (i.e. D1 ≡ D2) or/and the supply
function is constant in time (i.e. S1 ≡ S2).
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t ∈ N a sequence of two consecutive couples of demand/supply functions is
simultaneously considered. We refer to this time level t as period-time level, in
which each period-time t collects a whole period of phase-times7. The period-
time level, superimposed to the phase time level, is sketched in Figure 1 in
red color. To give a concrete example, if phase time represents the sequence
of daytimes and nights (each daytime is followed by a night, which is in turn
followed by a daytime and cyclically so on), each period time represents a
whole day (which is followed by another whole day), which is characterized in
terms of a daytime-night couple.

The market demand and supply functions for a double-phase market can
be respectively described by introducing a unique couple of time periodic func-
tions D : I × N → R

+ and S : J × N → R
+ defined by

D(pτ , τ) =

{

D1(pτ ) if τ is odd,

D2(pτ ) if τ is even,
S(pτ , τ) =

{

S1(pτ ) if τ is odd,

S2(pτ ) if τ is even,

(1)
where pτ is the market price at τ. At each phase-time τ, the demanded and
supplied quantities are respectively qDτ = D(pτ , τ) and qSτ = S(πτ , τ), where
πτ is the price that agents expect for phase-time τ.

To complete the cobweb model we need to detail the expectation formation
mechanism. The further complexity of double-phase markets with respect to
those single-phase makes clear that it is almost impossible for the agents to
know each aspect of the market and to perfectly foresee its future evolution, so
it is more appropriate to consider a boundedly rational expectation formation
mechanism for the agents. However, the agents are indeed aware of the demand
and supply seasonality, and so they know that phase-time τ+1 will be in phase
with phase-time τ − 1 (and not with τ).

The boundedly rational mechanism we propose is grounded on the adaptive
expectations [25,14,18,19] of the classic single phase cobweb framework, for
which the next period expected price is adapted from the last period one on
the basis of the last expectation error, i.e. the difference between the last
expected and realized price. In a double-phase setting, information come from
both in-phase and out-of-phase past market realizations. Even if last in-phase
information is indeed the most significant (as demand/supply functions at
time τ + 1 will be the same as those at phase τ − 1, and not as those at time
τ), last out-of-phase prices provide the latest price information, which might
signal particular demand/supply conditions that are expected to last for some
times τ8. We then assume that expected price πτ+1 is formed anchoring to the
previous in-phase expected price πτ−1 and adapting it on the basis of the past

7 Phase-time and period-time levels are indeed linked and we can unambiguously move
from τ to t and vice-versa. The ith phase of period-time t corresponds to phase-time τ =
2(t− 1) + i. Conversely, from phase-time τ, we can unequivocally obtain the corresponding
period-time t = ⌊(τ − 1)/2⌋ + 1 and phase i = τ − 2(t − 1), where ⌊z⌋ stands for largest
integer not greater than z.

8 Such a possibility is not just a merely theoretical chance. Successfully attempts to pro-
vide, through econometric approaches, predictive techniques for the price dynamics in mul-
tiphase markets (like those pursued for instance in [20,21]) make use of data coming from
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expectation errors. In particular, agents can take into account both in-phase,
pτ−1−πτ−1, and out-of-phase pτ −πτ expectation errors. The resulting double
phase adaptive expectation formation mechanism is then

πτ+1 = πτ−1 + ω [ν(pτ−1 − πτ−1) + (1− ν)(pτ − πτ )] , (2)

where ω ∈ (0, 1] is the expectation weight and 0 ≤ ν ≤ 1 is the phase-weight,
which specifies the relevance given by the agents to phase errors. We stress
that as ω increases, more relevance is given to expectation errors, while, as it
decreases, the anchoring bias to the previous in-phase expected price becomes
more significant. Since in-phase error pτ+1 − πτ+1 is the most significant for
the determination of πτ+1, we assume that ν > 1 − ν, i.e. ν > 1/2. We
underline that phase-weight ν is (inversely) related to the degree of coupling
of the different market phases, which is null when ν = 1 (since no relevance is
given to out-of-phase errors) and maximum when ν ≈ 1/2 (since in-phase and
out-of-phase error approximatively have the same relevance). In the former
case, phases are independent, in the sense that the expectation errors at odd
phase times have no influence on expected prices for even times, and vice-
versa. If ν < 1 but still close to 1 (ν . 1), we have that out-of-phase errors
have a small influence on πt+1, and so in this case we can speak of a weak
coupling of phases. As ν decreases, out-of-phase errors becomes more and more
relevant, and the coupling degree increases. Finally, we note that for ω = 0,
as in classic adaptive expectations, we would have no dynamical adjustment,
as πτ+1 = πτ−1.

Imposing temporary equilibrium condition D(pτ , τ) = S(πτ , τ), we obtain
pτ = D−1(S(πτ , τ), τ), where D−1(qτ , τ) is

D−1(qτ , τ) =

{

D−1
1 (qτ ) τ is odd,

D−1
2 (qτ ) τ is even.

Combining (2) and temporary equilibrium condition we obtain the double
phase cobweb model for the phase-time level, represented by the second order
non-autonomous difference equation

πτ+1 = πτ−1+νω
(

D−1(S(πτ−1, τ−1), τ−1)−πτ−1

)

+(1−ν)ω
(

D−1(S(πτ , τ), τ)−πτ

)

,

(3)
for given initial expected prices π0 and π−1.We stress that the non-autonomous
nature of the present model is intrinsically connected with the seasonality of
demand/supply functions characterizing the market itself, which in turn in-
duces the peculiar form of adaptive expectations.

In general, the non-autonomous equation (3) does not possess a steady
state, because of the cyclic nature of the demand and supply functions. In
single phase markets, a temporary equilibrium is a steady state when it clears

both in-phase and out-of-phase market realizations. The effectiveness of such approaches
is a hint of the fact that agents, in order to make their decisions, really take into account
prices of different market phases.
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the market and it is constant in time. In this sense, we can speak of a steady
state equilibrium. For a double phase market, assuming that phase-time τ
corresponds to the ith phase of the market, we can only require that pτ is a
market clearing price for phase i (i.e. Di(pτ ) = Si(pτ )) and that pτ+2n = pτ
for any n ∈ N. From a dynamical viewpoint, this corresponds to a steady
cycle9 of period 2.

To be able to introduce a definition of steady state equilibrium for double
phase markets, we need to consider model (3) at the period-time level t (see the
upper part of Figure 1), at which we study the evolution of vectors πt ∈ R

2,
consisting of a whole cycle of 2 expected prices. From πt we can then obtain
the corresponding vectors of realized prices and of traded quantities. From the
previous considerations and assumptions on functions Di and Si, we have that
there exists a unique vector p∗ = (p1,∗, p2,∗) that realizes

D(pi,∗, i) = S(pi,∗, i), i = 1, 2. (4)

This allows introducing the following definition.

Definition 1 We say that p∗ is a period steady state equilibrium if it fulfills
(4). We define each pi,∗ as the ith phase steady state equilibrium.

The dual time representation of double phase markets in terms of phase-
time and period-time is intimately related to the representation of the proposed
model in terms of a non-autonomous and autonomous dynamical system. Non-
autonomous dynamical equation (3) was obtained at the phase-time level τ ;
to rewrite it at the period-time level t, we consider functions εi : J → R

for i = 1, 2 defined by εi(x) =
(

D−1
i (Si(x))− x

)

, i = 1, 2, which allows
introducing the autonomous dynamical system

{

π1
t+1 = F 1(π1

t , π
2
t ) = π1

t + νωε1(π
1
t ) + ω(1− ν)ε2(π

2
t ),

π2
t+1 = F 2(π1

t , π
2
t ) = π2

t + νωε2(π
2
t ) + ω(1− ν)ε1(F

1(π1
t , π

2
t )),

(5)

where functions F i : J2 → R, i = 1, 2 are defined by the right hand sides of
the previous equations. The autonomous system (5) can be rewritten in the
compact vector form as πt+1 = F(πt) where, setting πt = (π1

t , π
2
t ) for t ≥ 0,

function F : J2 → R
2 is defined by F (πt) = (F1(π

1
t , π

2
t ), F2(π

1
t , π

2
t )). The way

the autonomous system (5) is linked to the non-autonomous equation (3) is
clarified by the following Proposition.

Proposition 1 If π−1, π0 are initial data of the non-autonomous equation
(3) and we take (π1

0 , π
2
0) = (π−1, π0) as the initial datum of the autonomous

system (5), then πi
t = π2(t−1)+1 for any t ≥ 0.

We recall that the existence of two different time levels is a consequence of
the double phase framework. However, it is also significantly connected the
mathematical characterization of the model. In fact, the model is introduced

9 We highlight that, due to the double phase nature of the market, classic adaptive ex-
pectations πτ+1 = πτ + ω(pτ − πτ ) are not consistent with such a “cyclical” steady state.
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in a more straightforward way at the phase-time level but it can be more easily
studied at the period-time level (e.g. its stability can be suitably investigated
by means of the wide literature concerning autonomous systems). Expectation
formation mechanism (2), which is grounded on the sequence of market phases,
is more naturally introduced at the phase-time level. In (5), each element πi

t of
vector πt+1 represents the expected price of a distinct phase, and consequently,
each equation of System (5) describes the evolution of single phase’s prices.

We note that System (5) consists of 2 coupled equations, in general depend-
ing on some or all the components πi of vector π. However, in the extreme
case of ν = 1, expectation mechanism (2) simplifies into

πτ+1 = πτ−1 + ω(pτ−1 − πτ−1), (6)

and model (5) reduces to the diagonal system

πi
t+1 = πi

t + ω
(

D−1
i (Si(π

i
t))− πi

t

)

, i = 1, 2. (7)

In this case (6) is close to the classic adaptive expectation formation mech-
anism and each πi

τ+1 in (7) only depends on the in-phase previous expected
price, so we actually have 2 distinct, independent equations (which provide
independent dynamics). In this case the model can then be assimilated to 2
independent classic single phase cobweb models with adaptive expectations.
For this reason, in what follows we consider the case of ν = 1 as modeled by 2
independent equations (and not by a single diagonal system), while we consider
all the remaining cases of ν 6= 1 as represented by a single two-dimensional
system. We will respectively refer to (5) for ν < 1 and to (7) as coupled and
uncoupled model and by saying uncoupled (respectively coupled) phases we
will refer to each phase of the coupled (respectively uncoupled) model. We
will be mainly interested in studying the behavior of the coupled model, while
the uncoupled model will be treated as an intermediate situation between the
classic single phase and the coupled double phase cobweb models.

3 Analysis of the model

We start studying the possible steady states of system (5) in the following
proposition, which guarantees that the expectation formation mechanism pre-
serves the steady state equilibrium.

Proposition 2 The only10 steady state of system (5) is the period steady state
equilibrium p∗ = (p1,∗, p2,∗).

Since the expectation mechanism (2) is a generalization of classic adaptive
expectations, we can compare the resulting dynamics with those of the single
phase setting and understand what effects are introduced when agents act in

10 We note that for the previous result we need ν 6= 1/2. If we allowed for ν = 1/2 (namely,
if we consider the arithmetic mean of errors), system (5) would have additional, spurious,
steady states.
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a double phase setting. From the stability results of the single phase cobweb
model with adaptive expectations11 we have that a steady state equilibrium
p∗ is locally asymptotically stable provided that

1−
2

ω
<

S′(p∗)

D′(p∗)
= s (< 1) ⇔ ω > ω̄ =

2

1− s
, (8)

namely if, at p∗, the slope of the supply function is sufficiently small with
respect to the absolute value of the slope of the demand function (the rightmost
inequality in (8) is automatically fulfilled since S′/D′ is negative). We recall
that |s| corresponds to the ratio between the elasticities of supply and of
demand, while ω̄, when belonging to (0, 1), is the stability threshold on ω
above which the equilibrium becomes unstable. Along the lines of (8), we can
introduce the relative slopes of functions Si with respect to Di at p

i,∗, defined
by si = S′

i(p
i,∗)/D′

i(p
i,∗), i = 1, 2, and thresholds ω̄i = 2/(1 − si) i = 1, 2.

In what follows we will simply refer to each si as to relative slope or relative
elasticity.

The remainder of this section is devoted to the study of the local stability
of equilibrium with respect to expectation weight, phase weight and relative
slopes. To describe the possible dynamical behaviors on varying a parameter
ξ (which will be either ω, ν or si) inside an interval I = (ξa, ξb)

12 we introduce
the following scenarios, which are sketched in Figure 2:
• flip (FD) and Neimark-Sacker (NSD) destabilizing scenarios, if there exists
ξ1 ∈ (ξa, ξb) such that p∗ is stable on (ξa, ξ1) and unstable for ξ ∈ (ξ1, ξb) and
for ξ = ξ1 stability is respectively lost through a flip and a Neimark-Sacker
bifurcation;
• mixed scenario (M), if there exist ξ1 < ξ2, with ξi ∈ (ξa, ξb) such that p∗ is
stable on (ξa, ξ1) ∪ (ξ2, ξb) and unstable on (ξ1, ξ2);
• mixed-destabilizing scenario (MD), if there exist ξ1 < ξ2 < ξ3, with ξi ∈
(ξa, ξb), i = 1, 2, 3, such that p∗ is stable on (ξa, ξ1) ∪ (ξ2, ξ3) and unstable on
(ξ1, ξ2) ∪ (ξ3, ξb);
• unconditionally stable scenario (US), if p∗ is stable on (ξa, ξb). Finally, we
remark that, in the following propositions, we avoid to detail situations in
which stability or instability occur only at the boundary of parameter sets, as
they can be qualitatively encompassed into the other scenarios.

The role of ω and ν on the local asymptotic stability of p∗ is studied in
the following proposition.

Proposition 3 Period steady state equilibrium p∗ is locally asymptotically
stable provided that

2ων − (ω̄1 + ω̄2) < 0, (9a)

(2ν2 − 2ν + 1)ω2 − 2ν
ω̄1 + ω̄2

2
ω + ω̄1ω̄2 > 0. (9b)

11 For seminal results about the possible dynamical behaviors of linear and nonlinear cob-
web models, we refer to [15,25,14,18,19].
12 We describe scenarios for the case of an open interval (ξa, ξb); the same definitions can
be easily adapted to include one or both extrema, too.
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Fig. 2 Possible stability scenarios with respect to a parameter ξ. A solid (respectively
dotted) line is used for stability (respectively instability) intervals.

If the steady state loses its stability through a Neimark-Sacker (resp. period
doubling) bifurcation (see [30]), then condition (9a) (respectively (9b)) is vio-
lated.

The previous proposition is actually the generalization of the stability condi-
tion (8) to double phase markets. In agreement with the classic cobweb model,
local stability depends on the expectation weight ω and on the relative slopes
at the steady state. We note that stability conditions (9) are symmetric with
respect to ω̄i, i.e. with respect to the relative slopes si, so we can assume
|s1| ≥ |s2|.

Due to the linear (9a) and quadratic (9b) conditions in both ω and ν, we
can have up to three stability thresholds. To obtain a relevant characterization
of local stability on varying ω and ν, we proceed as follows. Assuming a fixed
economic setting at the equilibrium (described by s1, s2), we investigate how
increasing the degree of coupling between phases (namely, decreasing ν from
ν = 1 to ν → 1/2) affects the possible scenarios on varying the expectation
weight. To foster understanding of the results, it’s worth focusing on the very
simple situation in which the two phases are uncoupled (ν = 1). As we are
going to show, the dynamical behavior of the coupled model is strongly influ-
enced by that of the uncoupled one, so in the next Proposition we summarize
the possible stability scenarios for the uncoupled model. The proof is omitted,
since it can be easily inferred by (8).

Proposition 4 Let ν = 1. Then

(I) if maxi=1,2 |si| < 1, both phase steady state equilibria pi,∗ are stable for any
ω ∈ (0, 1];

(II) if |s1| = |s2| > 1, both phase steady state equilibria pi,∗ are stable for
ω < ω̄1 = ω̄2 and unstable for ω > ω̄1 = ω̄2.

(III) if |s1| > 1 > |s2|, both phase steady state equilibria pi,∗ are stable for
ω < ω̄1, while for ω > ω̄1 we have that p1,∗ is unstable and p2,∗ is stable;

(IV) if |s1| > |s2| > 1, both phase steady state equilibria pi,∗ are stable for
ω < ω̄1, while for ω̄1 < ω < ω̄2 we have that p1,∗ is unstable and p2,∗ is
stable and for ω > ω̄2 both pi,∗ are unstable.

Stability is always lost through a flip bifurcation.
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Fig. 3 Stability scenarios of the uncoupled model (ν = 1). A solid (respectively dotted)
horizontal line is used for stability (respectively instability) intervals. Vertical dotted lines
subdivide (0, 1) into intervals in which, for any ω, pi,∗ are both stable (ω ∈ Iss), p1,∗ is
unstable and p2,∗ is stable (ω ∈ Isu) and pi,∗ are both unstable (ω ∈ Iuu).

The four situations described in Propositions 4 are depicted in Figure 3. Only
when both |si| < 1 (case I) or |s1| = |s2| > 1 (case II) phase steady state
equilibria p1,∗ and p2,∗ are either both locally stable or both unstable for each
expectation weight. Conversely, if we have different relative slopes at each pi,∗

and |s1| > 1, for some values of ω only one phase steady state equilibrium is
stable.

What happens when agents, through their expectation mechanism, intro-
duce a coupling between the dynamics of different phases? Firstly, due to the
strongly coupled nature of the dynamical system (5), a whatever weak cou-
pling (ν . 1) causes pi,∗ to be necessarily either both locally asymptotically
stable or both unstable. However, the phase coupling does not completely can-
cel out the dynamics of the uncoupled phases, from which, as we are going to
show, it is still possible to infer and understand the behavior of the coupled
model. Observing Figure 3, we can always subdivide interval (0, 1] into three
(possibly empty) subintervals:

– Iss = (0,min{ω̄1, 1}), in which pi,∗ are both stable;
– Isu = (min{ω̄1, 1},min{ω̄2, 1}), in which p2,∗ is stable while p1,∗ is unstable;
– Iuu = (min{ω̄2, 1}, 1), in which pi,∗ are both unstable.

In the next Propositions we study the possible scenarios as ω increases on
either ω ∈ Iss, ω ∈ Isu or ω ∈ Iuu. We start considering the simplest situation,
in which both phase steady stable equilibria are stable for ν = 1.

Proposition 5 Let ω ∈ Iss, then p∗ is stable for any ν ∈ (1/2, 1).

The previous proposition predictably says that coupling stable uncoupled dy-
namics we always obtain stable dynamics. When instead only one phase steady
stable equilibrium is stable for ν = 1, results become more articulated.

Proposition 6 Let ω̄1 < 1 and ω ∈ Isu, then there exist ν2 ≤ ν1, with νi ∈
[1/2, 1) depending on si, such that

– if ν ∈ (ν1, 1), we have a flip destabilizing scenario for ω ∈ Isu;
– if ν ∈ (ν2, ν1), we have mixed scenario for ω ∈ Isu;
– if ν ∈ (1/2, ν2), we have an unconditionally stable scenario for ω ∈ Isu.

Moreover, the set of values of ω for which the period steady state is locally
asymptotically stable becomes increasingly large as ν decreases.
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Before commenting Proposition 6, we investigate what happens when both
uncoupled phase steady state equilibria are unstable.

Proposition 7 Let ω̄2 < 1 and ω ∈ Iuu, then there exist ν2 < ν1, with ν1 ∈
(1/2, 1] and ν2 ∈ [1/2, 1) depending on si, such that

– if ν ∈ (ν1, 1), we have an unconditionally unstable scenario for ω ∈ Iuu;
– if ν ∈ (ν2, ν1), a Neimark-Sacker destabilizing scenario occurs for ω ∈ Iuu;
– if ν ∈ (1/2, ν2), we have an unconditionally stable scenario for ω ∈ Iuu.

In particular, we have that ν1 = 1 if and only if |s1| = |s2|. Moreover, the set
of values of ω for which the period steady state is locally asymptotically stable
grows as the coupling become increasingly stronger.

Propositions 6 and 7 deserve several comments. The possible stability loss
through either a flip or a Neimark-Sacker bifurcation is uniquely determined
by the dynamical behavior of the uncoupled model. Period steady state equi-
librium loses stability at some ω̄ through a period doubling bifurcation only if,
for that ω̄, pi,∗ are one stable and the other unstable for ν = 1, while Neimark-
Sacker bifurcation can occur at some ω̄ only if both pi,∗ are simultaneously
unstable for that ω̄ in the uncoupled model. The other remarkable result is that
the expectation weight can have a stabilizing effect, in the sense that increasing
ω may lead dynamics from instability to stability. This is possible only when
p∗ loses stability through a period doubling bifurcation. Conversely, when sta-
bility is lost at some ω̄ through a Neimark-Sacker bifurcation, Proposition 7
shows that p∗ can not be locally asymptotically stable for any ω > ω̄. The
emergence of different kinds of unstable dynamics and the possibly ambiguous
role of the expectation weight are two of the most significant dynamical nov-
elties introduced by the double phase framework. We will come back on the
interpretation of such important results in Section 4.

Focusing on Proposition 6, we have that if the coupling degree is sufficiently
small and p1,∗ and p2,∗ are respectively locally asymptotically unstable and
stable in the uncoupled model, a flip bifurcation always occurs as ω varies
in Isu. Accordingly to Propositions 6, as ν decreases, the flip destabilizing
scenario can evolve in different ways, depending on the relative slopes |si|.
Increasing the coupling degree we may have that p∗ becomes unconditionally
stable for any ω ∈ Isu or a mixed scenario can occur, with the consequent
return to stability as ω increases. In this last case, suitably decreasing ν we
may also have an unconditionally stable scenario as ω varies in Isu.

Concerning Proposition 7, the remarkable aspect is that when neither p1,∗

nor p2,∗ are locally asymptotically stable for ν = 1, on varying ω ∈ Iuu a
Neimark-Sacker bifurcation always occurs for a suitable coupling degree. In
general, we also have that instability is preserved under too weak couplings,
while, depending on |si| and if the coupling is sufficiently strong, we may have
an unconditionally stable scenario as ω varies in Iuu.

Juxtaposing the cases studied in Propositions 5, 6 and 7, we are able to
obtain stability regions in (ω, ν) planes, for given slopes s1 and s2. We stress
that as s1 and s2 change, stability regions change as well and some of the
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(A) (B) (C)

Fig. 4 Possible stability regions in the (ω, ν)-plane when ω̄1 = ω̄2 < 1 (panel A), when
ω̄1 < 1 < ω̄2 (panel B) and when ω̄1 < ω̄2 < 1 (panel C). Red color is used for instability
regions. Blue line N is the stability threshold curve, crossing which p∗ loses stability through
a Neimark-Sacker bifurcation. As a comparison, we plot a vertical dashed line representing
the stability thresholds of the uncoupled (ν = 1) model. Horizontal dotted lines show the
possible scenarios on varying ω for fixed ν.

scenarios depicted in the next figures can disappear. In Figure 4 we always
focus on slopes configurations that provide the maximum possible number
of scenarios simultaneously occurring. For synthetic exposition of the results,
we limit to a graphical representation, plotting in the (ω, ν)-plane different
stability regions corresponding to cases (II), (III) and (IV), avoiding to depict
the unconditionally stable case (I)13.

In Figure 4 (A) we consider case (II), namely the very special situation of
|s1| = |s2| > 1. In this case, for each ω ∈ (0, 1], pi,∗ are either both stable or
both unstable for ν = 1. Destabilization can only occur though a Neimark-
Sacker bifurcation, and, for a suitably strong phase coupling, dynamics be-
come unconditionally stable. In Figure 4 (B) we consider case (III), in which
|s1| > 1 > |s2|. When s1 6= s2, for a weak coupling the dynamics inherit
instability of p∗1 in the uncoupled model. As the coupling strength increases,
the stability interval becomes larger, and can eventually coincide with (0, 1].
Finally, in Figure 4 (C) we consider case (IV), in which both pi,∗ become un-
stable but for different expectation weights (ω̄1 < ω̄2). For a sufficiently weak
coupling, instability always occurs through a flip bifurcation, with the stability
threshold that is increasingly close to ω̄1 as ν → 1. Increasing the coupling
strength, the flip destabilizing scenario is replaced by that mixed destabilizing,
which is obtained putting side by side the mixed scenario for ω ∈ Isu and the
Neimark-Sacker destabilizing scenario for ω ∈ Iuu. In this case both stabil-
ity and instability regions are unconnected. Further increasing the coupling
degree, the mixed destabilizing scenario reduces to a Neimark-Sacker desta-

13 We stress that for case (II) the possible scenarios are obtained juxtaposing the results
of Propositions 5 and 7 (this last restricted to the particular case |s1| = |s2|), for case (III)
possible scenarios come from Propositions 5 and Proposition 6, while those of case (IV)
can be obtained juxtaposing “matching” scenarios resulting from Propositions 6 and 7 (for
example it is not possible to have a flip destabilizing scenario for ω ∈ Isu followed by an
unconditionally stable for ω ∈ Iuu).
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bilizing one. Finally we have a complete stabilization with respect to ω for
sufficiently strong coupling degrees.

Before focusing on the role of the phase weight and the relative elasticity,
we simply stress how the range of possible scenarios obtained on varying the ex-
pectation weight in a double phase cobweb model (i.e. unconditionally stable,
flip destabilizing, Neimark-Sacker destabilizing, mixed and mixed-destabilizing
scenarios) is by far wider than those obtained in a single phase cobweb model
(i.e. unconditionally stable and flip destabilizing).

From the previous analysis, it is possible to infer the local stability behavior
with respect to the phase weight. We can have up to three thresholds which
can affect stability, two of them (νF,i, i = 1, 2) coming from the solution of (9b)
and the last one (νNS) from (9a). Depending on ω and si, by investigating the
reciprocal positions of νF,i and νNS as well as their belonging to (1/2, 1), it
is possible to show the scenarios arising on varying ν, which can be inferred
considering vertical sections of the stability regions reported in Figure 4. We
stress that it is possible to prove that the portrayed situations cover all the
possible behaviors with respect to ν. We just briefly summarize the possible
stability scenarios in the following proposition, omitting the proof.

Proposition 8 For suitable values of expectation weight ω ∈ (0, 1] and rela-
tive slopes at the phase steady state equilibria, on varying ν we can have an
unconditionally stable, flip destabilizing, Neimark-Sacker destabilizing, uncon-
ditionally unstable scenarios.

Proposition 8 says that, keeping the remaining parameters fixed, increasing ν
has in general a destabilizing effect. This is in agreement with what suggested
by the previous comments from which, recalling the results of Propositions 6
and 7, the stability regions with respect to ω becomes larger as ν decreases.

Apart from unconditional scenarios, increasing ν has the sole effect of intro-
ducing instability in the dynamics, which can occur by either flip or Neimark-
Sacker bifurcations. In particular, on varying the phase-weight, no mixed sce-
nario is possible. The dual possible route toward instability is determined by
the joint effect of ω and si. Firstly, as noticeable looking at vertical sections of
Figure 4 (B), when we are in case (III) of Proposition 4, only unconditionally
stable/unstable and flip destabilizing scenarios with respect to ν can occur.
Conversely, when we are in case (IV), all the scenarios predicted by Proposi-
tion 8 can arise (see Figure 4 (C)). However, in both cases, keeping si fixed but
considering different the expectation weights, stability with respect to ν can
exhibit a quite ambiguous behavior. To this end, we can focus on the stability
regions reported in Figure 4 (C), considering a phase-weight ν which is slightly
smaller than that at the intersection between stability curves N and F (e.g.,
in the first plot, for ν ≈ 0.72). If the expectation weight is close to ω̄2, a slight
perturbation on it can lead instability to either occur through either a flip (for
ω . ω̄2) or a Neimark-Sacker (ω & ω̄2) bifurcation.

In the remainder of this Section we briefly turn our attention to the role
of the relative slopes. Firstly, we note that, for a single phase cobweb with
adaptive expectations, we may rewrite the stability condition as −1/ω <
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Fig. 5 Stability regions (yellow) with respect to ki for different values of ν.

1/2 (S′(p∗)/D′(p∗)− 1) . Mimicking the right hand side of the previous in-
equality, we can introduce ki = 1/(2(si − 1)), i = 1, 2 and rewrite stability
conditions (9a) and (9b) as

{

(k1 + k2) + 2νωk1k2 < 0,

ωk1k2(2ν
2 − 2ν + 1) + ν(k1 + k2) + 1 > 0,

(10)

whose graphical solution in (k1, k2)-plane for ω = 1 is reported in Figure 5 for
some values of ν14 . As we can see, the stability region becomes larger as ν
decreases, in agreement with the previous results about ν.

4 Discussion of the results

In this section we investigate the conclusions of the analytical investigations of
Section 3 from dynamical and economic perspectives, focusing on the most rel-
evant deviations from the results obtained in the classical cobweb framework.
In particular, with the help of numerical experiments, we aim at providing an
explanation of the following new facts:

a) stabilization can be possible if the agents form their expectations suitably
taking into account out-of-phase price dynamics;

b) dynamics arising when phases are uncoupled can significantly change when
the agents form their expectations learning from both phases; both peri-
odic, chaotic and quasi-periodic dynamics can emerge, even for the same
given market configuration;

c) a more cautious updating of expected prices by the agents can be the source
of instability in the dynamics.

Accordingly to the theoretical analysis of Section 3, all the previous evidences
occur for different market’s configuration and agents’ behavior settings. In
what follows, we focus on just a few scenarios, in order to put in evidence the
economic driving forces that are responsible of the new dynamical phenomena.

14 We remark that it is possible to show that the region defined by (10) is bounded for any
ν ∈ (1/2, 1), even if it becomes increasingly large as ν → 1/2.



16 Fausto Cavalli et al.

All the remaining situations can be explained adopting similar arguments.
We recall that the emergence of instability in the double phase setting can

be ascribed to two sources, being related either to the market configuration
(encompassed in relative slopes si) or to the agents’ behavior (encompassed
in expectation weight ω and phase weight ν). The former one is the unique
possible source of instability in a classic cobweb model with static expectations,
as adaptive expectations can just lead unstable dynamics to become eventually
stable as the expectation weight decreases15.

Concerning the role of the market constituents, we stress that the market
outcome pτ , i.e. the price determined by temporary equilibrium condition, lies
above (resp. below) the equilibrium price pi,∗ of the corresponding phase if
the expected price for phase time τ is below (resp. above) pi,∗. If the relative
elasticity of demand with respect to supply function is small, pτ is closer to
pi,∗ than the expected price for phase time τ, while, conversely, in the presence
of a large relative elasticity, imposing temporary equilibrium condition, price
pτ would be farther to pi,∗ than expected price for phase time τ. In a single
phase cobweb model, if the agents adopt static expectations, pτ is assumed
as the next period expected price, while under adaptive expectations, the
previous expected price is just partially adjusted toward pτ , and its relevance
is softened as the expectation weight decreases. In a double phase framework,
such two mechanisms act exactly in the same way in each phase, but the
agents, making use of information coming from different phases, foster the
emergence of scenarios that are completely different from those obtained in
uncoupled phases.

In what follows, we focus on a specific example in which, without loss
of generality, we encompass seasonality only in the demand function, setting
S(π) = S1(π) = S2(π). We consider the same demand and supply function
shapes used in [18,19], namely S(π) = b+ tanh(λ(π − c)), where b ≥ 1, λ > 0
and c ≥ 0, and Di(p) = ai − dip, i = 1, 2, where both ai and di are strictly
positive. Moreover, in all simulations we set b = 1, c = 6 and λ = 10.

Even if the results are more effectively represented at period time level
t, their explanation is more evident when investigated at the corresponding
phase time level τ. To help in this, we report the expected price adjustment
equations for a couple of consecutive phase times, assuming, without loss of
generality, that τ + 1 is odd. Setting gi(x) = D−1

i (Si(x)) we have

πτ+1 = π1
t = πτ−1 + νω

(

g1(πτ−1)− πτ−1

)

+ (1− ν)ω
(

g2(πτ )− πτ

)

πτ+2 = π2
t = πτ + νω

(

g2(πτ )− πτ

)

+ (1− ν)ω
(

g1(πτ+1)− πτ+1

)

.
(11)

In Figure 6 we report a first family of simulations that are closely related to the
stability scenario of Figure 4 (B). We obtained them setting a1 = 8.15, a2 =

15 In [18] it was shown that in a nonlinear (single phase) framework, chaos can emerge as
ω decreases, in a framework in which static expectations lead dynamics toward a period-2
cycle. However, the equilibrium is constantly unstable for the involved values of ω and such
“qualitative” stabilization is strictly related to the particular shape of demand and supply
functions, and not just to the cobweb model with adaptive expectations itself.
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7.55 and d1 = d2 = 1, from which, by numerical estimation, the period steady
state equilibrium results (π1,∗, π2,∗) ≈ (6.1920, 6.0544), with equilibrium rel-
ative elasticities given by |s1| ≈ 7.5 and |s2| ≈ 0.82. The two-dimensional
bifurcation diagram16 casts a first glance on the dynamical behavior as the ex-
pectation weight and the coupling among phases increase. Since in the present
setting we have |s2| < 1 < |s1|, just the elements characterizing the market
at odd phase times are possible sources of instability. This is evident looking
at the couple of bifurcation diagrams in Figure 6 (B), obtained on increas-
ing the expectation weight and in which phases are uncoupled (ν = 1). The
black diagram shows the unconditional stability of π2,∗, while the blue bifur-
cation diagram resembles that in [18], with a stability loss occurring through
a flip bifurcation, leading to chaotic dynamics that qualitatively simplify into
a period-2 cycle for sufficiently large values of ω, when adaptive expectations
become close to those static (ω = 1). We note that when the agents form their
expectation on the basis of information coming from both market phases, the
period-2 cycle for ω ≈ 1 can be replaced by more complex dynamical behav-
iors17. As ν decreases, we have a firstly partial and then complete stabilization
of dynamics, with respectively a mixed and unconditionally stable scenarios
on varying ω.

To address the element of novelty we reported at point (a) at the beginning
of this section, we focus on the role of ν, so we set ω = 0.5 and we look at the
bifurcation diagrams reported in Figure 6 (C), studying them as ν decreases.
In this scenario, the relevance given by the agents to expectation errors is
kept fixed, while they form expectations taking into account more and more
out-of-phase price information as ν decreases. We can observe a progressive
stabilization of price dynamics at odd phase times (blue diagram), while prices
π2
t (black diagram) undergo an initial increase in oscillations amplitude, which

is then replaced by a decrease of them and finally by a gradual stabilization.
This can be understood with the help of the sequence of time series reported
in Figures 6 (D)-(I), obtained for decreasing values of ν. We recall that, at
odd phase times, the relative elasticity s1 is large, and this is the source of
chaotic behavior of price π1

t when the two phases are uncoupled (blue line in
Figure 6 (D)). Conversely, the small relative elasticity s2 allows for quickly
convergent price dynamics (black line). In the latter case, taking into account
the information encompassed in the expectation error, the agents are able to
gradually correct wrong price forecasts, while in the former situation erratic
price trajectories last, sustained by market outcomes that are far from π1,∗

when the expected price is close to it.
Now we focus on what happens when agents try to learn from both in-phase

16 In two-dimensional bifurcation diagrams, for each different combination of parameters,
we ran a simulation with initial datum suitably close to the equilibrium values and we
depicted the corresponding point on (ω, ν) plane using a color that represents the number
of points of which the reached attractor consists, for variable π1

t (e.g. white color points
out convergence toward π1,∗, red color toward a period-2 cycle, while cyan color toward an
attractor consisting of more than 32 points).
17 From Figure 6 (A), when ν ≈ 0.85, for suitably large values of ω the attractor consists of
more than 32 points (cyan region), pointing out possible chaotic or quasi-periodic dynamics.
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Fig. 6 (A) Two-dimensional bifurcation diagram in (ω, ν) plane. (B) Bifurcation diagrams
as ω increases for the uncoupled. (C) Bifurcation diagrams as ν increases. (D)-(I): Time
series for π1

t (blue) and π2
t (black) for different values of ν and ω = 0.5.

and out-of-phase price information (Figures 6 (E)-(I)). If the agents base their
learning process mostly on in-phase information (i.e. when the phase weight is
close to 1), at odd phase times τ +1 (see also the the former equation in (11))
they will give a great relevance to turbulent price dynamics characterizing the
previous odd phase times τ−1. Out-of-phase information is marginally used to
form expected price at τ + 1, so the overall effect is narrow and the turbulent
trajectories of π1

t are essentially the same both for ν = 1 and for ν = 0.99
(blue lines in Figures 6 (D-E)).

At an even phase time τ + 2 (see also the the latter equation in (11))
agents mostly rely on price information related to previous even phase time
τ. In this case, the market outcome would be closer to the corresponding
phase equilibrium price than the previous expected price, allowing the agents
to learn the correct equilibrium price. However, this does not occur as the
effect of learning from out-of-phase expectation error leads to a spread of the
turbulence from π1

t to π2
t . The consequence of this is evident in the time series

related to ν = 0.99, in which π2
t exhibits small, endogenous and non-periodic

oscillations around π2,∗ (black line in Figure 6 (E)).
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When the agents start giving more relevance to out-of-phase information
(ν = 0.8, Figure 6 (F)), the role of in-phase and out-of-phase expectation er-
rors is more balanced being the former still the dominant ones. Expected price
πτ+1 is mainly affected by the expectation error at τ − 1, but the agents give
to it a reduced relevance with respect to the previous cases. The consequence
is a decrease in the price oscillations (blue line in Figure 6 (F)). Conversely,
dynamics of π2

t (black line) now exhibit evident chaotic oscillations around
π2,∗, since, as the coupling degree increases, the agents form expected prices
more and more relying on turbulent out-of-phase expectation errors.

Up to now, the most evident effect is the instability transmission. The
agents at even phase times try to learn from odd phase times, and their capa-
bility to correct odd phases expectation errors is impeded by the transmission
of the errors they make at even phase times. However, price volatility at odd
phase times reduces as well, so we could say that the agents “transfer” also the
stability characterizing a market phase to the order. Such effects are even more
evident if we observe the “parallel” price dynamics in time series of Figure 6,
namely price growths, peaks and falls simultaneously occur in both phases,
so that phase synchronization does not just consist in the occurrence of the
same (stable/unstable) dynamics. More precisely, the intuition of this is that
when agents form their expectations on the basis of both out-of-phase and
in-phase information, they actually alter price dynamics of a phase introduc-
ing elements related to the dynamics of the other phase. In this sense, as the
coupling degree increases, the dynamics of a given phase more and more bear
information about what is going on in the whole market, and not only inside
that phase. It could seem paradoxical that to correct the forecasting errors in
a phase, the agents should give more relevance to the information related to
the “wrong” phase, but actually the expectation errors related to such out-of-
phase times bear information about both market phases. For this reason, if the
coupling degree further increases, oscillations amplitude and/or complexity in
the dynamics of π1

t declines, while the opposite occurs at even phase times. It
is easy to understand that we come to a situation in which the price volatility
is approximatively comparable in both phases (Figure 6 (G)). From here on,
oscillations at odd phase times decrease (Figure 6 (I)) as well as time series at
both phases start exhibiting smaller oscillations with a consequent dynamical
simplification leading to convergence (Figure 6 (I)).

As the coupling degree increases, the couple of expectation errors are less
and less a couple of in-phase and out-of-phase information, and increasingly
become a couple of whole market related knowledge. It is then evident that
the agents, when this happens, giving relevance to both expectations errors,
have more chances to correct a wrong expectation about price grounding on
two reliable information than on just one. The relevant economic result is that,
by mixing information from both phases, agents can be able to learn how to
correct a turbulent market outcome taking into account information coming
from the other market phase. In this sense, since the expectation formation
mechanism at even phase times allows for a correction of expectation errors,
the more such errors bears “memory” of what happened at the other phase
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Fig. 7 (A) Two-dimensional bifurcation diagram in (ω, ν) plane. Bifurcation diagrams as
ω increases when ν = 0.52 (panel B) and ν = 0.68 (panel C). (D)-(F): Time series for π1

t

(blue) and π2
t (black) for different values of ω and ν = 0.52, related to bifurcation diagrams

in panel (B).

(as remarked also by qualitative synchronization of price dynamics), the more
the agents will be able to learn how to adjust expectation errors in such other
phase, and this will lead to an overall and gradual reduction of errors.

The previous rationale explains the stabilization phenomenon occurring
when a “stable” phase is coupled to an “unstable” one. However, accordingly
to Figure 4 (C), stabilization is possible even when two unstable phases are cou-
pled. The phenomenon can be explained again with similar arguments, even if
some of the underlying mechanisms basically change, leading to the emergence
of quasi-periodic trajectories. To this end, we consider in Figure 7 a second
family of simulations related to the stability scenario of Figure 4 (C), in which
we set a1 = 7.6, a2 = 7.2 and d1 = d2 = 1. In this case, by numerical esti-
mation, the period steady state equilibrium results (π1,∗, π2,∗) ≈ (6.06, 6.13).
and we have 1 < 2.22 ≈ |s2| < |s1| ≈ 7.08, so both phases are unstable when
uncoupled and ω = 1. The two-dimensional bifurcation diagram reports a sce-
nario characterized by the highest level of ambiguity, among those analytically
proved in Section 3, and instability can occur by means of either a flip bifur-
cation (when entering a red region from a white one) or a Neimark-Sacker
bifurcation (when entering a cyan region from a white one, see also Figure 7
(C)). Increasing the expectation weight can give rise to a mixed-destabilizing
scenario (see also see also Figure 7 (B)), as well as, when the equilibrium loses
instability, quasi-periodic dynamics can occur.

In the present setting, when ω = 1, both the uncoupled phases exhibit
dynamics that do not converge toward the equilibrium and, hence, temporary
equilibrium condition has an effect that is partially different from that occur-
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ring in the scenario reported in Figure 6. In the present scenario both relative
elasticities s1 and s2 are large, so also at even phase times the temporary
equilibrium condition drives an expected price that is close to the equilibrium
away from it. The overall outcome of coupling phases is that in this case prices
dynamics are just synchronized with respect to the kind of dynamics (being
both convergent, periodic, quasi-periodic and so on), but when at a phase
time agents overestimate the equilibrium price, in the subsequent phase time
they underestimate it. Accordingly to the literature about oscillators, in what
follows we refer to this phenomenon as anti-phase synchronization. To explain
this, let us assume for example that agents, in forming their expectations, give
a nearly uniform relevance18 to both in-phase and out-of-phase expectation
errors and consider, for both phases, an initial datum that is slightly above
the corresponding phase equilibrium (first couple of black and blue circles in
Figure 6 (D)). Since agents overestimate both in-phase and out-of-phase equi-
librium prices, the corresponding expectation errors are both negative and
price π1

1 decreases below the steady state value (second blue circle in Figure
6 (D)). For τ = 2, agents form their expectation also on the basis of this new
price information, so they get opposing information from in-phase and out-
of-phase expectation errors. The actual strongest effect is that corresponding
to the market outcome at out-of-phase time τ = 1, so the out-of-phase ex-
pectation error is larger in absolute value, and π1

2 is further pushed above the
steady state value (second black circle in Figure 6 (D)). The consequence is
that at period time t = 1, expected prices π1

1 and π2
1 are respectively an un-

derestimation and an overestimation of the correspondent component of the
period steady state equilibrium. The anti-phase synchronization of expected
price immediately occurred after just one period, even starting from a quali-
tatively synchronized initial datum. At this point, two subsequent temporary
equilibrium conditions produce opposite price mechanisms: if two subsequent
expected prices are respectively below and above the corresponding phase
equilibrium, the market outcomes are respectively above and below the corre-
sponding phase equilibrium. Due to the effect of the nonlinearity in demand
and supply functions, the deviation from the equilibrium price πi,∗ is strong
when the expected price is close to πi,∗ , while it becomes weaker and weaker
as the expected price significantly departs from it. Assume for example that
at phase times τ − 1 and τ the expectation error are respectively negative and
positive, as a consequence of a slight overestimation and underestimation of
the equilibrium price, respectively. In this case, the most recent expectation
error is then that largest in absolute value and this means that the agents’ will
be mostly influenced by the last out-of-phase market outcome, so they correct
the previous in phase expected price pushing it further up. The opposite oc-
curs at the next phase time, so expected prices increasingly deviate from the
corresponding equilibria, until it becomes no more sustainable. In this case,
the agents’ will be mostly influenced by the last in-phase market outcome, and

18 We assume this just for the sake of simplicity of the subsequent explanation. Using
similar arguments it is possible to explain the occurrence of the same phenomenon also for
non-uniform phase weight distributions.
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this slows down or reverses the expected price movement. The above described
interaction provides the explanation of the emergence of a Neimark-Sacker bi-
furcation in double phases cobweb model, as shown in Figure 7 (D). In such
scenario, the expectation weight acts as in a single phase market. Decreasing
ω, the possible overreactive price variations due to extreme deviation between
expected and realized price can be reduced (Figure 7 (E)) and even canceled
(Figure 7 (F)) by a suitably cautious agents’ behavior.

We stress that also in the present market configuration, the agents can be
able to progressively correct their expectations errors by taking into account
both in-phase and out-of-phase information. To explain this, we note that the
expectation formation mechanism described by (11) can be rewritten as

πτ+1 = ν
[

πτ−1 + ω
(

g1(πτ−1)− πτ−1

)]

+ (1− ν)
[

πτ−1 + ω
(

g2(πτ )− πτ

)]

= νπ̃1
τ+1 + (1− ν)π̃2

τ+1,

πτ+2 = ν
[

πτ + ω
(

g2(πτ )− πτ

)]

+ (1− ν)
[

πτ + ω
(

g1(πτ+1)− πτ+1

)]

= νπ̃2
τ+2 + (1 − ν)π̃1

τ+2,

(12)

from which the double phase mechanism can be seen as the average of two
single phase adaptive expectation mechanisms19 π̃i

τ and π̃j
τ . For instance, to

form expectations about price at τ+1, the agents obtain two guesses π̃1
τ+1 and

π̃2
τ+1, both based on a correction of the previous in-phase expected price πτ−1,

but with the former that is based on the last in-phase expectation error and
the latter that is based on the last out-of–phase expectation error. Then, they
consider a weighted average of them. If the expectation weight is suitably large,
on the basis of the previous explanation of the mechanism leading to the anti-
phase synchronization of prices, it is easy to show that such two guesses are an
overestimation and an underestimation of the corresponding phase equilibrium
prices. We already noted that, as ν decreases, the expectation error at a given
phase encompasses an increasingly large amount of information related to both
odd and even phases, spread by the agents expectation formation mechanisms,
so that they become reliable for learning about the whole market behavior,
and not just about a single phase of it. When this occur, the agents, looking
at two wrong opposite guesses, are able to progressively correct the expected
price by averaging out to a middling estimate which is increasingly precise. In
this situation, we can again say that as the phases are more and more coupled,
the errors of a phase increasingly bears “memory” of what happened at the
other phase (in this case, in the form of a anti-phase synchronized error), and
this again allows for an overall correction of errors.

Up to now, we gave evidence of the new facts reported at points (a) and (b)
at the beginning of this section. Concerning point (c), ω can have a counterin-
tuitive role on stability, as evident looking at the bifurcation diagrams reported
in Figure 7 (C), in which, as ω decreases, a stable equilibrium can become un-

19 To be precise, the expectation formation mechanism related to out-of-phase times is
phase shifted, but, even if unusual, it is equally an adaptive expectation mechanism.
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stable20. This is the most ambiguous result arising in a double phase cobweb
model, and it is the effect of a quite complicated superimposition of market
outcomes and agents’ behavior. Reasoning as before, it would be easy to see
that the two single phase adaptive mechanisms produce expected prices that
are oscillating around the equilibrium price and that stay anti-phase synchro-
nized21. We have explained how such anti-phase synchronization allows the
agents to learn how to correct the in-phase expected price from two consecu-
tive wrong (respectively underestimated and overestimated) expected prices.
If ω is too large, both single phase adaptive mechanisms provide too erratic
prices, and this prevents error correction. If ω is reduced, the agents aver-
age out two opposite estimations of equilibrium price, and errors cancel out.
But for such an outcome, it is necessary that the two single phase adaptive
mechanisms are “strong enough” to provide conflicting estimations. Since the
two markets are characterized by different relative elasticities, as ω decreases,
one of the two single phase adaptive mechanisms will start stabilizing, while
the other will again exhibit persistent oscillations. If ω further decreases, the
agents will average out π̃t

i, which is still characterized by erratic dynamics,
and π̃t

j , which is now slowly converging and no more counter balancing the
over/underestimation of previous phase price, so that the dominating behavior
is that of π̃t

i, and oscillations are now persistent22. If then ω is again reduced,
also non convergent phase will enter a stabilization process and once again
trajectories start to converge.

5 Conclusions and future perspectives

In this paper we have introduced and studied a cobweb model for double
phase markets. The resulting model exhibit an high degree of complexity in
price dynamics, which grounds on the intrinsic peculiarity of the exchanged
good, whose market curves are time-varying, and on the consequent possi-
bility for the agents to use and mix information coming from different past
market phases in order to form their expectations. This aspect introduces
mutual interdependence between dynamics of different market phases, foster-
ing the emergence of a vast variety of dynamical scenarios. In contrast to
the classic single-phase framework, we can have multiple stability/instability
thresholds, and dynamics can substantially change (begin periodic, chaotic or
quasi-periodic) depending on both the relevance the agents give to the expec-
tation errors and to each phase prices. The key element to understand the new

20 A similar situation occurs also in the simulation reported in Figure 6 (A), when we have
a mixed scenario. The explanation is in line with the intuition provided in what follows for
the mixed-destabilizing scenario.
21 We stress that due to the phase shift in the single phase adaptive mechanisms within
brackets in (12), this actually happens in at least one phase also when just one relative
elasticity is large, even if expected prices are synchronized.
22 As a confirmation of the proposed intuition, if the two relative elasticities are identical,
the return to instability is not possible, while the instability interval is increasingly large as
s1 and s2 are more and more heterogeneous.
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phenomena is the learning mechanism of the agents, which is strictly related
to the double phase nature of the market. If agents form their expectations
about future prices observing both in-phase and out-of-phase price dynamics,
they inherently convey dynamical elements from one phase to the other, so
that, as the coupling degree increases, the observed price trajectories of each
single phase are more and more explanatory of what happens in both phases,
characterizing the market as a whole. Against this background, it is possi-
ble to understand the mechanisms leading to the emergence of quasi-periodic
dynamics, or the possible ambiguous role of the expectation weight. In par-
ticular, it allows explaining why the agents are more able to correct expected
prices if they take into account both in-phase and out-of-phase price dynam-
ics. The double phase approach has very interesting policy implications for
markets characterized by known periodicities. We refer in particular to power
exchanges, where demand and supply are collected by market operators on
hourly basis. Electricity prices are formed independently for each hour, but
the whole series of prices is influenced by firms’ bidding strategies that are
based on expectations formed on the whole price realizations, not only on a
single hour. The multiphase expectation mechanism introduced in this pa-
per may explain this phenomenon and can become a tool for regulators and
market operators, especially when reasoning on a market reform suitable for
accommodating a high share of renewable energy sources, which are known to
increase variability of equilibrium prices.
The extent of the foundational elements of the double phase cobweb model re-
quired comprehensive analytical and interpretative investigations, which left
no space for dealing with other facets of multiphase markets modelling. In
future researches we aim to extend the investigations in several directions.
Firstly, we want to deepen the mathematical analysis of the global dynamical
properties the model, which, due to the length of the local stability analysis
and to the need of economic explanation of the many phenomena arising, we
decided to postpone to a future work. A second improvement can be the endo-
genization of the phase weight choice, in order to understand how the agents
can refine their learning strategy by choosing to what extent take into account
the observed price dynamics of each phase. Moreover, we want to generalize
the proposed modelling approach to multiphase markets, taking into account
high period cyclicity. Finally, we aim at applying the modelling approach to
the description of real markets affected by seasonality, as energy and electricity
markets, in order to check if the elements of complexity and ambiguity arising
in a double phase framework are able to explain the occurrence of stylized
facts characterizing economic observables of such markets.
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Appendix

Proof (Proof of Proposition 1) Without loss of generality, let us assume that
τ is odd. Recalling the definition of functions εi we can rewrite (3) as πτ+1 =
πτ−1 + νωε1(πτ−1) + (1 − ν)ωε2(πτ ) while considering (3) at the even phase
time τ + 1 we have

πτ+2 = πτ + νω(D−1(S(πτ , τ), τ) − πτ ) + (1− ν)ω(D−1(S(πτ+1, τ + 1), τ + 1)− πτ+1)

= πτ + νωε2(πτ ) + (1− ν)ωε1(πτ+1))

= πτ + νωε2(πτ ) + (1− ν)ωε1(πτ−1 + νωε1(πτ−1) + (1 − ν)ωε2(πτ ))

Recalling the definition of functions F i we have (π1
t+1, π

2
t+1) = (πτ+1, πτ+2),

for any t, τ , which allows us to conclude the proof.

Proof (Proof of Proposition 2) Identity p∗ = F(p∗) is a straightforward con-
sequence of (4). Now we need to show that if p = F(p), then p = p∗. From (5)
we immediately obtain

{

νωε1(p
1) + ω(1− ν)ε2(p

2) = 0,

νωε2(p
2) + ω(1− ν)ε1(F

1(p1, p2)) = νωε2(p
2) + ω(1− ν)ε1(p

1) = 0,

which is which an homogeneous square linear system, whose unknown vector
is (ε1(p

1), ε2(p
2))T and the coefficient matrix is A = (1 − ν, ν; ν, 1 − ν). We

have det(A) 6= 0, since ν 6= 1/2. This means that its unique solution is the
null vector. Recalling (4), we have that the unique solutions of εi(p

i) = 0 are
pi = pi,∗, for i = 1, 2.

Proof (Proof of Proposition 3) Let JF (π) be the Jacobian matrix of map F

defined by (5) and let J∗
F = JF (p

∗). By direct computation we have

J∗ =

(

νω(s1 − 1) + ω2(s1 − 1)(s2 − 1)(ν − 1)2 + 1 −ω(s2 − 1)(ν − 1)
−ω(s1 − 1)(ν − 1)(s2νω − νω + 1) νω(s2 − 1) + 1

)

.

In a two-dimensional difference equation a steady state is locally asymptoti-
cally stable provided that







1− Tr(J∗) + det(J∗) > 0,
1− det(J∗) > 0,
1 + Tr(J∗) + det(J∗) > 0.

(13)

Using Tr(J∗) = νω(s1+ s2− 2)+ω2(s1− 1)(s2− 1)(ν− 1)2+2 and det(J∗) =
(νω(s1 − 1) + 1)(νω(s2 − 1) + 1) in system (13) and recalling the definition of
ω̄1 and ω̄2, it is easy to see that the first condition in (13) is unconditionally
fulfilled, while the second and the third one provide (9).
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Let us introduce

ϕ2(ω, ν) = ων−
ω̄1 + ω̄2

2
, ϕ3(ω, ν) = (2ν2−2ν+1)ω2−2ν

ω̄1 + ω̄2

2
ω+ ω̄1ω̄2.

Proof (Proof of Proposition 5) We need to show that if 0 < ω ≤ ω̄1, then
ϕ3(ω, ν) > 0 for any ν ∈ (1/2, 1]. We indeed have ϕ3(0, ν) > 0, while

ϕ3(ω̄1, ν) ≥ (2ν2 − 3ν + 1)ω̄2
1 + (1− ν)ω̄2ω̄1 ≥ 2(ν − 1)2ω̄2

1 > 0

where we used ω̄2 ≥ ω̄1. From ∂ωϕ3(ω, ν) = 2ω(2ν2 − 2ν + 1)− ν(ω̄1 + ω̄2) we
have ∂ωϕ3(ω̄1, ν) = (4ν2 − 5ν + 2)ω̄1 − νω̄2 ≤ 2ω̄2(2ν

2 − 3ν + 1) < 0, where
we used ω̄2 ≥ ω̄1 and that 2ν2 − 3ν + 1 < 0 for ν ∈ (1/2, 1). The previous
considerations prove that ϕ3(ω, ν) is positive at the ending points of [0, ω̄1] and
strictly decreasing, independently of ν. Noting that ϕ2(ω, ν) > 0 for ω ∈ Iss
allows concluding.

The (possible) solutions of ϕ3(ω, ν) = 0 with respect to ω are given by

ωF,i =
ν

2ν2 − 2ν + 1

ω̄1 + ω̄2

2
±

√

ν2ω̄2
1 − 6ν2ω̄1ω̄2 + ν2ω̄2

2 + 8νω̄1ω̄2 − 4ω̄1ω̄2

2(2ν2 − 2ν + 1)
,

(14)
for i = 1, 2, as well as the (possible) solution of ϕ2(ω, ν) = 0, defined by

ωNS =
1

ν
·
ω̄1 + ω̄2

2
. (15)

To prove Propositions 6 and 7, we start considering conditions (9) on larger
sets than Isu and Iuu. Firstly we prove some preliminary Lemmas, in which
we assume ω̄1 < ω̄2.

Lemma 1 Let us consider the curve defined by Γ = {(ω, ν) ∈ [ω̄1,+∞) ×
[0, 1] : ϕ3(ω, ν) = 0}. For (ω, ν) ∈ [ω̄1, ω̄2)× [0, 1], we then have that
1) Γ can be explicitly represented a through function g : [ω̄1, ω̄2) → [0, 1],
which is strictly decreasing in [ω̄1, ωm) and strictly increasing in (ωm, ω̄2),
where ωm ∈ (ω̄1, ω̄2);
2) the solution(s) of g(ω) = ν̂ is ωF,1(ν) for ν̂ ≥ (ω̄1 + ω̄2)/(2ω̄2) and are
ωF,1(ν) ≤ ωF,2(ν) for g(ωm) ≤ ν̂ < (ω̄1 + ω̄2)/(2ω̄2), while for ν̂ < g(ωm) we
have no solutions.
Conversely, for (ω, ν) ∈ [ω̄2,+∞)× [(ω̄1 + ω̄2)/(2ω̄2), 1], we have that
3) Γ can be explicitly represented through a function h : [(ω̄1+ ω̄2)/(2ω̄2), 1] →
[ω̄2,+∞) which is strictly increasing in [(ω̄1 + ω̄2)/(2ω̄2), νM ) and strictly de-
creasing in (νM , 1], where νM ∈ ((ω̄1 + ω̄2)/(2ω̄2), 1).

Proof Firstly we note that since ϕ3(ω, ν) is a second degree polynomial with
respect to both ω and ν, we have that intersecting Γ with either ω = k or
ν = k we find at most two solutions. Now we prove each point.

1) We start considering Γ on the subset (ω, ν) ∈ [ω̄1, ω̄2] × [0, 1]. In par-
ticular, solving ϕ3(ω, ν) = 0 with respect to ν we find

ν±(ω) =
2ω + ω̄1 + ω̄2 ±

√

∆(ω)

4ω
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provided that ∆(ω) = −4ω2+4ω(ω̄1+ω̄2)+ω̄2
1−6ω̄1ω̄2+ω̄2

2 ≥ 0. Since ∆(ω) is
a concave parabola and ∆(ω̄1) = ∆(ω̄2) = (ω̄1 − ω̄2)

2, we have that ∆(ω) > 0
for ω ∈ [ω̄1, ω̄2] and both ν+(ω) and ν−(ω) are well-defined. Moreover, a simple
direct check shows that ν−(ω) > 0 for each ω ∈ [ω̄1, ω̄2].

We have that ν+(ω) ≥ 1 for ω ∈ [ω̄1, ω̄2]. In fact, noting that ν+(ω̄1) =
(ω̄1+ ω̄2)/(2ω̄1) > 1, ν−(ω̄1) = 1, ν+(ω̄2) = 1 and ν−(ω̄2) = (ω̄1+ ω̄2)/(2ω̄2) <
1, if there existed some ω̃ ∈ (ω̄1, ω̄2) such that ν+(ω̃) ≤ 1, then ϕ3(ω, 1) = 0
would necessarily have more than two solutions. Similar arguments show that
if ω ∈ [ω̄1, ω̄2] we have ν−(ω) ∈ [0, 1]. This means on [ω̄1, ω̄2) curve Γ coincides
with function g = ν−|[ω̄1,ω̄2).

Since ν′−(ω̄1) = −1/ω̄1 < 0 and ν′−(ω̄2) = (ω̄2 − ω̄1)/(2ω̄
2
2) > 0, thanks to

the regularity of ν−, from the intermediate value theorem we have at least an
ωm ∈ (ω̄1, ω̄2) such that ν′−(ωm) = 0. Moreover, ωm is the unique stationary
point of ν−, as, otherwise, ϕ3(ω, k) = 0 would have more than two solutions
(possibly considered with their own multiplicity) for some k ∈ [0, 1]. This
means that ν−(ω) is strictly decreasing for ω ∈ [ω̄1, ωm) and strictly increasing
for ω ∈ (ωm, ω̄2], and attains its minimum at (ωm, νm = ν−(ωm)). Recalling
that g = ν−|[ω̄1,ω̄2) concludes the proof.

2) If we set ν̂ ∈ [0, 1] and we solve ϕ3(ω, ν̂) = 0 for ω ∈ R we either find two
solutions ωF,1(ν) ≤ ωF,2(ν) or no solutions. If ωF,i(ν) ∈ [ω̄1, ω̄2), we indeed
must have g(ωF,i(ν)) = ν̂. Noting that ν−(ω̄2) < 1, we can conclude the proof
of this point using the monotonicity properties of ν− shown at point 2).

3) We consider Γ on the subset (ω, ν) ∈ [ω̄2,+∞)× [0, 1]. In this case, we
could show that ϕ3(ω, ν) = 0 does not implicitly define a function ν = f(ω),
so we solve ϕ3(ω, ν) = 0 with respect to ω. We start noting that ϕ3(ω, ν) = 0
does not have any solution in [ω̄2,+∞) × [0, ν−(ω̄2) = (ω̄1 + ω̄2)/(2ω̄2)).
If fact, from the monotonicity considerations on ν−(ω), ϕ3(ω, ν) = 0 al-
ready has two solutions in [ω̄1, ω̄2) × [νm, (ω̄1 + ω̄2)/(2ω̄2)), while if (ω, ν) ∈
[ω̄1,+∞) × [0, νm) we have no solutions, as otherwise, from the intermedi-
ate value theorem, we should have at least another solution of ϕ3(ω, ν) = 0
in (ω̄2,+∞) × [νm, (ω̄1 + ω̄2)/(2ω̄2)). So we restrict to [ω̄2,+∞) × [(ω̄1 +
ω̄2)/(2ω̄2), 1]. From the monotonicity considerations on ν−(ω), ϕ3(ω, ν) = 0
has just one solution in [ω̄1, ω̄2)× [(ω̄1 + ω̄2)/(2ω̄2), 1], so the other one must
be in [ω̄2,+∞) × [(ω̄1 + ω̄2)/(2ω̄2), 1]. Such solution, recalling (14), coincides
with ω = ωF,2(ν). So we define h = ωF,2(ν).

It is sufficient to note that h′(1) = −ω̄2 < 0 and h′((ω̄1 + ω̄2)/(2ω̄2)) =
(2ω̄2

2)/(ω̄2 − ω̄1) > 0. Thanks to the regularity of h, proceeding as in the
proof of 2), from the intermediate value theorem we have a unique νM ∈
((ω̄1 + ω̄2)/(2ω̄2), 1) such that h′(νM ) = 0. This concludes the proof.

Lemma 2 Let (ω, ν) ∈ [ω̄1, ω̄2)× [0, 1). Then conditions (9) are fulfilled if






















ω̄1 ≤ ω < ωF,1(ν) for ν ≥
ω̄1 + ω̄2

2ω̄2
(16a)

ω̄1 ≤ ω < ωF,1(ν) ∨ ωF,2(ν) < ω < ω̄2 for g(ωm) ≤ ν <
ω̄1 + ω̄2

2ω̄2
(16b)

ω̄1 ≤ ω < ω̄2 for 0 ≤ ν < g(ωm) (16c)
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Let (ω, ν) ∈ [ω̄2,+∞) × [0, 1]. Then conditions (9) are no fulfilled if ν ∈
[(ω̄1+ ω̄2)/2ω̄2, 1] and are satisfied if ω < ωNS(ν) when ν ∈ [0, (ω̄1+ ω̄2)/2ω̄2).

Proof We start proving that for (ω, ν) ∈ [ω̄1, ω̄2)× [0, 1] conditions (9) reduce
to ϕ3(ω, ν) > 0. It is evident that ϕ3(ω, ν) > 0 is necessary. To prove that it is
also sufficient, we start noting that if (ω, ν) ∈ A1 = [ω̄1, ω̄2)×[0, (ω̄1+ω̄2)/2ω̄2),
then ϕ2(ω, ν) < 0 and condition (9a) is fulfilled, so (9) reduces to ϕ3(ω, ν) > 0.
Conversely, if (ω, ν) ∈ s2 = [ω̄1, ω̄2) × [(ω̄1 + ω̄2)/2ω̄2, 1], from point 2) of
Lemma 1, we have that ϕ3(ω, ν) > 0 is equivalent to ω < ωF,1(ν). Condition
ϕ2(ω, ν) < 0 is equivalent to ω < ωNS(ν), so conditions (9) reduce to ω <
min{ωF,1(ν), ωNS(ν)}. To conclude, it is sufficient to show that ωF,1(ν) <
ωNS(ν), which is proved by noting that, from ν/(2ν2 − 2ν + 1) < 1/ν, we can
write ωF,1(ν) <

ν
2ν2−2ν+1

ω̄1+ω̄2

2 < 1
ν
ω̄1+ω̄2

2 < ωNS(ν). Recalling that ϕ3(ω, ν)

is a second degree polynomial with respect to ω and that the coefficient of ω2

is strictly positive, point 2) of Lemma 1 straightforwardly leads to conclusion.

For the last part of the Lemma, we note that if ν ∈ [(ω̄1 + ω̄2)/2ω̄2, 1)
and ω > ω̄2, then condition (9b) is not satisfied. Conversely, if ν ∈ (0, (ω̄1 +
ω̄2)/2ω̄2), from the first part of this Lemma, we have that condition (9b) is
satisfied. Solving ϕ2(ω, ν) < 0 concludes the proof.

Proof (Proof of Proposition 6) Since ω̄1 < 1, interval Isu is not empty. To
specify ν1 and ν2, we need to restrict the results of Lemma 2 to Isu×(1/2, 1). In
particular, we consider the four possible situations depending on whether ωm <
min{ω̄2, 1} and on whether νm > 1/2. In what follows we set ωSU = min{ω̄2, 1}
so that we have Isu = (ω̄1, ωSU ). Similarly, we define νSU = limω→ωSU

g(ω).
We remark that when ω̄2 > 1, the previous limit can be replaced by the
function evaluation g(ωSU ) = g(1). Finally, both ωm and νm = g(ωm) are
those defined in Lemmas 1 and 2.

Case (1): ωm < ωSU and νm > 1/2. In this case, recalling point 2)
of Lemma 1, g is strictly decreasing in [ω̄1, ωm) and strictly increasing in
(ωm, ωSU ) and we take ν1 = νSU and ν2 = νm. If ν ∈ (ν1, 1), the flip destabi-
lizing scenario is a consequence of (16a), if ν ∈ (ν2, ν1) the mixed scenario is a
consequence of (16b) and if ν ∈ (1/2, ν2) the unconditionally stable scenario
is a consequence of (16c).

Case (2): ωm ≥ ωSU and νm > 1/2. In this case g is decreasing in Isu
and we take ν1 = ν2 = νSU . If ν ∈ (ν1, 1) = (g(ωSU ), 1), the flip destabilizing
scenario is a consequence of (16a), interval (ν2, ν1) is empty and if ν ∈ (1/2, ν2)
the unconditionally stable scenario is a consequence of (16c).

Case (3): ωm < ωSU and νm ≤ 1/2. This means that g is strictly decreas-
ing in [ω̄1, ωm) and strictly increasing in (ωm, ωSU ). We need to distinguish
between two situations. If νSU > 1/2, there exist ωA, ωB ∈ Isu such that
for ω ∈ [ωA, ωB] we have g(ω) ≤ 1/2. In this case we choose ν1 = νSU and
ν2 = 1/2, so that if ν ∈ (ν1, 1), the flip destabilizing scenario is a consequence
of (16a), if ν ∈ (ν2, ν1) the mixed scenario is a consequence of (16b) and inter-
val (1/2, ν2) is empty. Conversely, if g(1) ≤ 1/2, there exists ωA ∈ Isu such that
for ω ∈ [ωA, ωSU ) we have g(ω) ≤ 1/2. In this case we choose ν1 = ν2 = 1/2,
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so if ν ∈ (ν1, 1) = (1/2, 1), the flip destabilizing scenario is a consequence of
(16a) while intervals (ν2, ν1) and (1/2, ν2) are both empty.

Case (4): ωm ≥ 1 and νm ≤ 1/2. In this case g is strictly decreasing in Isu.
We need to distinguish between two situations. If νSU > 1/2, then g(ω) > 1/2
for any ω ∈ Isu, so we choose ν1 = ν2 = νSU as in Case (2). Conversely,
if νSU ≤ 1/2, there exists ωA ∈ Isu such that for ω ∈ [ωA, ωSU ) we have
g(ω) ≤ 1/2. In this case we choose ν1 = ν2 = 1/2 as in the latter situation
of Case (3). The actual occurrence of each situation is proved by Figures 4
(B)-(C). Finally, the last part of the Proposition is a consequence of point
1) of Lemma 1. In fact since ν = g(ω) is strictly decreasing on [ω̄1, ωm), we
have that ω = g−1(ν) = ωF,1(ν) is strictly decreasing on (νm, 1], too, and then
ωF,1(ν) increases as ν decreases. Similarly proceeding, we obtain that ωF,2(ν)
is strictly decreasing. Hence interval (ωF,1(ν),min{ωF,1(ν), 1}) reduces as ν
decreases.

Proof (Proof of Proposition 7) Since ω̄2 < 1, interval Iuu is not empty. As
in the Proof of Proposition 6, we need to restrict the results of Lemma 2 to
Iuu × (1/2, 1) in order to provide explicit expressions for ν1 and ν2. From the
second part of Lemma 2, we have that the only significant stability condition
is ϕ2(ω, ν) < 0. Moreover, since from Lemma 2 stability conditions are not
satisfied if and only if ν ≥ (ω̄1 + ω̄2)/2ω̄2, we can take ν1 = (ω̄1 + ω̄2)/2ω̄2.
We stress that ν1 = 1 if and only if ω̄1 = ω̄2, in which case we do not have
unconditional instability.

For ν2, we consider two possible situations depending on whether (ω̄1 +
ω̄2)/2 ≤ 1/2 or not.

Case (1): (ω̄1 + ω̄2)/2 ≤ 1/2. In this case we have ωNS(ν) < 1 for any
ν ∈ (1/2, (ω̄1 + ω̄2)/(2ω̄2)) and we set ν2 = 1/2.

Case (2): (ω̄1 + ω̄2)/2 > 1/2. In this case we have ωNS(ν) ≤ 1 if ν ∈
[(ω̄1 + ω̄2)/2, (ω̄1 + ω̄2)/(2ω̄2)) and ωNS(ν) > 1 if ν ∈ (1/2, (ω̄1 + ω̄2)/2), so
we set ν2 = (ω̄1 + ω̄2)/2.

Finally, the last part of the Proposition can be proved using monotonicity
considerations, as in the proof of Proposition 6.
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