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A B S T R A C T

One of the critical steps to characterize metabolic alterations in multifactorial diseases, as well as their
heterogeneity across different patients, is the identification of reactions that exhibit significantly different usage
(or flux) between cohorts. However, since metabolic fluxes cannot be determined directly, researchers typically
use constraint-based metabolic network models, customized on post-genomics datasets. The use of random
sampling within the feasible region of metabolic networks is becoming more prevalent for comparing these
networks. While many algorithms have been proposed and compared for efficiently and uniformly sampling
the feasible region of metabolic networks, their impact on the risk of making false discoveries when comparing
different samples has not been investigated yet, and no sampling strategy has been so far specifically designed
to mitigate the problem.

To be able to precisely assess the False Discovery Rate (FDR), in this work we compared different samples
obtained from the very same metabolic model. We compared the FDR obtained for different model scales,
sample sizes, parameters of the sampling algorithm, and strategies to filter out non-significant variations. To
be able to compare the largely used hit-and-run strategy with the much less investigated corner-based strategy,
we first assessed the intrinsic capability of current corner-based algorithms and of a newly proposed one to
visit all vertices of a constraint-based region.

We show that false discoveries can occur at high rates even for large samples of small-scale networks.
However, we demonstrate that a statistical test based on the empirical null distribution of Kullback–Leibler
divergence can effectively correct for false discoveries. We also show that our proposed corner-based algorithm
is more efficient than state-of-the-art alternatives and much less prone to false discoveries than hit-and-run
strategies. We report that the differences in the marginal distributions obtained with the two strategies are
related to but not fully explained by differences in sample standard deviation, as previously thought. Overall,
our study provides insights into the impact of sampling strategies on FDR in metabolic network analysis and
offers new guidelines for more robust and reproducible analyses.
1. Introduction

Multi-factorial diseases, such as obesity, diabetes, cardiovascular
disease, and cancer, are influenced by a variety of factors, including
genetics, lifestyle choices, and environmental factors. However, recent
research has shown that metabolic alterations play a significant role
in the development and progression of these diseases [1–3]. Moreover,
different patients or diseased cells can display heterogeneous metabolic
properties. Understanding the role and the heterogeneity of metabolic
alterations in multi-factorial diseases is essential for the development of
effective treatments and prevention strategies. By targeting metabolic
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pathways, it may be possible to slow or even reverse the progression
of these diseases.

This is why there is a growing focus on identifying variations in
the usage of metabolic pathways between different cohorts. The usage
of metabolic pathways is determined by the turnover of metabolites
through the reactions involving them, that is, the metabolic fluxes.

Current fluxomics techniques allow intracellular fluxes to be de-
termined only indirectly, by coupling C-isotope tracer experiments
with mathematical models that describe isotope propagation through
the metabolic network. Yet, these techniques are still far from being
regarded as high-throughput. For this reason, many attempts have
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been put forward to predict metabolic fluxes numerically, via the
integration of multiple-omics data (e.g., transcriptomics, proteomics,
and metabolomics) into metabolic models [4,5]. Such models are gen-
erally studied with COnstraint-Based Reconstruction and Analysis (CO-
BRA) methods [6]. The most established COBRA method is Flux Bal-
ance Analysis (FBA), which identifies a flux distribution that is opti-
mal with respect to an assumed metabolic objective, such as biomass
accumulation.

Given the impossibility of determining a plausible objective func-
tion for the cell of a multi-cellular organism, the stringency of the
optimality criteria, and the possibly large cardinality of the set of
alternate solutions, the exploration of the entire feasible region with
Flux Sampling (FS) strategies is becoming increasingly common in the
study of metabolic networks for health sciences. While FS is computa-
tionally more demanding than Flux Variability Analysis (FVA) [7], a
well-established method not reliant on an objective function, it offers
the distinct advantage of generating a comprehensive set of solutions
representing various metabolic states consistent with mass balance and
capacity constraints, as opposed to simply computing individual flux
ranges. Hence, it enables the assessment of frequency distributions and
other statistical properties of feasible solutions.

The sampling algorithms more typically used are Hit-and-Run (HR)
strategies [8–12], which generate a sequence of feasible solutions,
satisfying the network constraints, with the aim of covering the entire
solution space uniformly. With this procedure, one can obtain informa-
tion on the range of feasible flux solutions, as well as on the statistical
properties of the network.

However, HR sampling algorithms can suffer from convergence
problems, i.e. the number of samples could be insufficient to describe
the entire solution space, or could explore only a subset of the en-
tire solution space. Hence, when performing differential metabolic
flux analysis, by comparing two samples of feasible flux distributions
obtained from two patient-specific or tissue-specific models, false dis-
coveries can occur, unless this effect is properly taken into account.
For example, one could erroneously reject the null hypothesis that two
reactions have the same metabolic flux (type I error) in the two models,
only because the sampling is biased.

In a preliminary version of this work presented at the 8th In-
ternational Conference on Machine Learning, Optimization, and Data
Science [13], we performed several experiments on the small metabolic
model ENGRO1 [14], with different HR sampling strategies. Our results
indicated that Coordinate Hit and Round with Sampling (CHRR) [15]
represents the most promising MC sampling algorithm compared to
Artificial Centering Hit-and-Run sampler (ACHR) [16] and OPTimized
General Parallel sampler (OPTGP) [17], and that, among the possible
configurations of MC sampling parameters, the use of a high thinning
value is important to reduce the false discovery rate. Moreover, we
also showed that performing standard diagnostic analyses such as the
Geweke diagnostic does not exclude the risk of high FDR values.

In this work, we deepen the investigation, by better analyzing the
relationship between the thinning parameter and the sampling size, and
by analyzing a larger-scale model (ENGRO2 [4]), to study the false
discoveries rate in a more complex feasible region. We propose and test
a new solution to filter out false discoveries, which relies on a statistical
hypothesis testing based on Kullback-Leiber (KL) divergence.

We also investigate the possibility of using corner-based (CB) sam-
pling strategies, based on exploring the corners of the feasible region
rather than the internal part, to reduce the incidence of false discover-
ies. To this aim, we introduce a modification to current CB algorithms,
to more efficiently sample the corners of the feasible regions.

2. Materials and methods

2.1. Constraint-based metabolic models

The information embedded in the metabolic network can be repre-
2

sented with a stoichiometric matrix 𝑀 ×𝑅, namely 𝑆, where 𝑀 is the r
number of metabolites and 𝑅 is the number of reactions. The entries
in each column are the stoichiometric coefficients of the metabolites
participating in a reaction. In order to predict the fluxes of a metabolic
network, constraint-based modeling assumes a steady-state condition
for internal metabolites. Let the flux through all of the reactions in a
network be the vector 𝑣. Then, all the possible flux distributions that
can be achieved by a given metabolic network, correspond with the set
of vectors for which

𝑆 ⋅ 𝑣 = 0⃗ (1)

𝐿⃗ ≤ 𝑣 ≤ 𝑣𝑈

𝐿⃗ and 𝑣𝑈 represent the possible bounds used to mimic as closely as
possible the biological process in the analysis.

Two metabolic models were used in this study: ENGRO1 [14] and
ENGRO2 [4]. ENGRO1 is a metabolic model of human cells, that was
developed to evaluate the contribution of glucose and glutamine in
the biomass formation. The model includes the catabolic pathways
of glucose and glutamine and the anabolic reactions necessary for
the production of biomass. It is composed of 84 reactions (62 irre-
versible and 22 reversible), and 67 metabolites. When enumerating
optimal solutions [14], the authors found 44 alternative solutions, 12 of
them representing vertices of the feasible region, which have the same
boundary conditions, and the same maximal growth rate. We set the
flux boundaries as in [14] for the exchange reactions, to [0, 1000] for
the internal irreversible reaction, and to [−1000, 1000] for the internal
reversible reactions.

ENGRO2 is an extension of the model ENGRO1 that focuses on
central carbon metabolism and essential amino acid metabolism. It has
been used recently to obtain information regarding the metabolic repro-
gramming rationale for cell proliferation [4,5]. The ENGRO2 network
encompasses 494 reactions (375 irreversible and 120 reversible), and 410

etabolites. For both exchange and internal reactions, we set the flux
oundaries to [0, 1000] for irreversible reactions, and to [−1000, 1000]

for reversible reactions.

2.2. Hit-and-run sampling

In this study, we made use of two different families of sampling
algorithms to collect a sample of feasible flux distributions of the
constraint-based metabolic models described above. The first is based
on sampling the inside of the feasible region, generating a Monte Carlo
Markov chain (MCMC), with a Hit-and-Run approach. The second one
is based on sampling the corners of the feasible region using random
objective functions and will be described in the next subsection.

2.2.1. CHRR
The original HR algorithm collects samples from a given 𝑁-

imensional convex set 𝑃 ⊂ R𝑁 by choosing an arbitrary starting point
𝑣0 ∈ 𝑃 . Setting 𝑖 = 0, where 𝑖 is the iteration number, the algorithm
epeats iteratively the following three steps:

1. choosing an arbitrary direction 𝜃𝑖 uniformly distributed on the
boundary of the unit sphere in R𝑁 .

2. finding the minimum 𝜆min and maximum 𝜆max values such that
𝑣𝑖 + 𝜆min𝜃𝑖 ∈ 𝑃 and 𝑣𝑖 + 𝜆max

⃗⃗𝜃𝑖 ∈ 𝑃 .
3. generating a new sample 𝑣𝑖+1 = 𝑣𝑖 + 𝜆𝑖𝜃𝑖 such that 𝑣𝑖+1 ∈ 𝑃 and

𝜆𝑖 ∈
[

𝜆min, 𝜆max
]

.

Although this algorithm guarantees convergence to the target dis-
ribution, it is not widely used in its original form because of the
low-mixing effect. This effect occurs when an HR algorithm is trying
o explore areas of the target distribution, which has regions that are
arrow or constrained in some dimensions. In this case, the algorithm
ends to take small steps in these regions, which leads to the generation
f samples that are very similar or close to the previous ones. As a

esult, it takes a long time for the algorithm to effectively explore and
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cover the entire target distribution, making it slow to converge to a
representative sample from that distribution.

To remove this caveat, the recently proposed CHRR [15] sampling
strategy consists of two steps: rounding and sampling. In the rounding
phase, a maximum volume inscribed ellipsoid is built to match closely
the polytope 𝑃 . Then, the polytope is rounded by transforming the
inscribed ellipsoid to a unit ball. In the sampling phase, a variant of
the HR algorithm known as Coordinate Hit-and-Run (CHR) is used
to sample from the rounded polytope. In the CHRR algorithm the
direction 𝜃𝑎 is selected randomly among the coordinate directions.
After running the CHRR algorithm, the sampled points are transformed
back to the original space through an inverse transformation. To reduce
the possible auto-correlation of the chain, it is possible to select a
sample at each 𝑘 iterates, where 𝑘 is called the thinning parameter. As
pposed to other HR algorithms, such as ACHR [16] and OPTGP [17],
HRR guarantees convergence to the target distribution.

.2.2. Convergence diagnostic
To assess the convergence of chains generated by the MCMC algo-

ithms, we made use of the Gekewe diagnostics. The Geweke diagnostic
ompares the mean value of the first and last segments of an MCMC
hain. If we denote 𝐵1 the first 10% of the samples, and 𝐵2 the last
0%, then the Geweke diagnostic computes the following quantity:

=
𝜇1 − 𝜇2

√

𝜎21 + 𝜎22

, (2)

where 𝜇1 and 𝜇2 are the mean of the two sub-chains, and 𝜎1 and 𝜎2 are
the associated standard deviations. The idea of this test is that when the
sample size increases, then 𝜇1 ≈ 𝜇2, and thus 𝑍 will follow a standard
normal distribution, with |𝑍| ≈ 0. It is common to assume convergence
if |𝑍| ≤ 1.28. We remark that the computation of such diagnostic is
usually verified only after the generation of the sample. Therefore, the
sampling of the feasible region of a metabolic model is not formulated
as an optimization problem in which some convergence diagnostic is
optimized.

2.3. Corner-based sampling

We exploited also an alternative sampling approach based on ex-
ploring the corners of the feasible region [14,18]. In particular, we
explored two existing algorithms and a newly proposed one.

2.3.1. 𝐶𝐵1
In the original work of Bordel et al. [18] exploring this approach,

random objective functions are generated by selecting random pairs of
reactions and assigning them random weights

𝑍 = 𝑤𝑖𝑣𝑖 +𝑤𝑗𝑣𝑗 , (3)

here the weights 𝑤𝑖 and 𝑤𝑗 are generated by dividing a random
umber between 0 and 1, by the maximal flux for this reaction obtained
sing FVA. This normalization was made to account for the different
ize orders of the different reactions. These random objective functions
re maximized. We refer to this algorithm as 𝐶𝐵1.

Note that for the CB algorithms, it is not necessary to use a thinning
alue different from 1, to generate the samples, since there is no
orrelation between consecutive random objective functions.

.3.2. 𝐶𝐵2
In this variant, Damiani et al. [19] let any number of reactions take

art in the objective function 𝑍, to maximize the variability of sampled
olutions. The fraction 𝜏 of considered reactions is randomly drawn
ith uniform probability in [0, 1]. Any selected reaction is then assigned
random weight 𝑤𝑖 uniformly drawn from the interval [0, 1]. We refer

o this last algorithm as 𝐶𝐵 .
3

2 f
.3.3. 𝐶𝐵3
A good sampling method should be able to explore the feasible

egion fully. Considering only positive coefficients in the objective
unction, as well as considering only flux distributions that maximize a
inear combination of fluxes might leave some corners of the region
nexplored. Indeed, some feasible flux distributions might minimize
he consumption of nutrients and others might be the result of a trade-
ff between favored reactions (positive coefficients) and penalized ones
negative coefficients).

To account for this phenomena, in the variant of CB that we are
roposing, named 𝐶𝐵3, we let any number of reactions take part in
he objective function 𝑍 as in 𝐶𝐵2 [19], but the random weights 𝑤𝑖

are uniformly drawn from the interval [−1, 1]. The weights are then
divided by the maximal flux obtained using FVA, as in 𝐶𝐵1. Finally,
each objective function is either maximized or minimized with equal
probability 0.5.

2.4. Differential flux analysis

To evaluate whether the flux values of a reaction significantly
differ between two distinct samples it is necessary to compare the
associated marginal flux distributions, i.e. the statistical distributions
obtained by considering only the values associated with that reaction
in each sample, independently from other reactions. To this aim, we
performed the Mann–Whitney U hypothesis testing with a significant
threshold 𝛼 of 0.01 on the 𝑝-value adjusted according to the Benjamini
and Hochberg procedure, named 𝑝𝑎𝑑𝑗 . We also tried to couple this
significance threshold with a threshold on the fold-change (FC) defined
as:

𝐹𝐶𝑖,𝑗 (𝑙) =
|

|

|

|

|

|

𝑣𝑙,𝑖 − 𝑣𝑙,𝑗

𝑣𝑙,𝑗

|

|

|

|

|

|

, (4)

where 𝑣𝑙,𝑖 is the sample mean for the 𝑙−flux and sample 𝑖, and 𝑣𝑙,𝑗 is
the sample mean for the 𝑙−flux and sample 𝑗. This value can be used
to filter out all statistical tests for which the FC value results less than
a certain threshold.

2.5. Kullback–Leibler divergence

As an alternative to the filters described above, we propose a statis-
tical test based on the Kullback–Leibler (KL) divergence. We formally
define the KL divergence below, while we will present the proposed
statistical test in the Results Section.

Given two samples 𝑖 and 𝑗, if we consider the two marginal dis-
tributions 𝑝𝑖(𝑣𝑟) and 𝑝𝑗 (𝑣𝑟) of a specific reaction 𝑟, then the Kullback–
Leibler divergence represents a measure of dissimilarity between two
distributions and is defined as

𝐾𝐿𝐷
(

𝑝𝑖|𝑝𝑗
)

= ∫

∞

−∞
ln
(

𝑝𝑖(𝑣𝑟)
𝑝𝑗 (𝑣𝑟)

)

𝑝𝑖(𝑣𝑟)𝑑𝑣𝑟. (5)

The KL value is zero only if 𝑝𝑖 and 𝑝𝑗 are identical distributions.

2.6. Metrics to assess the differences between the marginal flux distributions
produced by CHRR and CB

To measure the difference between the marginal flux distributions
generated by CHRR and CB, we introduced three specific metrics. The
first is related to their sample means and is defined as

|𝑣𝐶𝐻𝑅𝑅
𝑚𝑒𝑎𝑛,𝑟 − 𝑣𝐶𝐵

𝑚𝑒𝑎𝑛,𝑟|

max {|𝑣𝐿𝑟 |, |𝑣𝑈𝑟 |}
, (6)

here 𝑣𝐶𝐻𝑅𝑅
𝑚𝑒𝑎𝑛,𝑟 and 𝑣𝐶𝐵

𝑚𝑒𝑎𝑛,𝑟 represent the means of the marginal flux
istributions of reaction 𝑟 for CHRR and CBS, respectively, and 𝑣𝑟𝐿 and
𝑟
𝑈 and the minimum and maximum flux values for reaction 𝑟 obtained
rom the Flux Variability Analysis [7].
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The second one is related to their standard deviations and is defined
as
|𝑣𝐶𝐻𝑅𝑅

𝑠𝑡𝑑,𝑟 − 𝑣𝐶𝐵
𝑠𝑡𝑑,𝑟|

max {|𝑣𝐿𝑟 |, |𝑣𝑈𝑟 |}
, (7)

where 𝑣𝐶𝐻𝑅𝑅
𝑠𝑡𝑑,𝑟 and 𝑣𝐶𝐵

𝑠𝑡𝑑,𝑟 represent the standard deviations of the
marginal flux distributions of reaction 𝑟 for CHRR and CB, respectively.

Finally, to assess the variability of the flux distributions generated
by CHRR and CB, we considered, for a given flux distribution {𝑣𝑟}, with
𝑟 = 1,… , 𝑅, its flux mode, obtained substituting the flux value of a
reaction with its sign: 1 if 𝑣𝑟 is non-negative, −1 otherwise. Therefore,
we measure the differences between the number of different modes
obtained from CHRR and CB.

3. Results

We evaluated the propensity to generate false discoveries of dif-
ferent sampling strategies, where a sampling strategy is defined by
the sample size, the sampling algorithm and their eventual sampling
parameters.

To this aim, given a sampling strategy, we collected 20 different
samples of the same size from the very same feasible region and
performed a flux differential analysis for each model reaction 𝑟𝑖, where
𝑟𝑖 = 1,… , 𝑅, between each pair of the 20 samples (190 in total). The
differential flux analysis assigns a value ℎ1 to reaction 𝑟𝑖, which takes
value 1 if the null hypothesis that the two marginal distributions come
from the same distribution is rejected, 0 otherwise. To test the null
hypothesis, we evaluated different methods that we will detail when
presenting the relative results. Hence, for a given sampling strategy, we
obtained 190 × 𝑅 results of tests, where 𝑅 is the number of reactions.

Given that we are comparing samples obtained from the very same
feasible region, each time ℎ1 takes value 1 represents a false discovery.
Hereinafter, we refer to the fraction of tests for which ℎ1 = 1, as the
False Discovery Rate (FDR) of the sampling strategy under study.

3.1. The thinning value has a higher impact on FDR than the sample size,
in CHRR sampling

In our previous work [13], we observed that CHRR represents the
best sampling strategy, compared to other internal sampling strategies.
Additionally, we identified the thinning value 𝑘 as one of the sampling
parameters that strongly affects the FDR for an internal (Markovian)
sampling algorithm. Here, focusing on CHRR, we aimed at evaluating
more systematically the effect of varying 𝑘 or the sample size 𝑛 on
the FDR. We remark that, when 𝑘 > 1, the cardinality of the set of
sampled solutions corresponds to an effective sample size (i.e. length of
the Markov chain) of 𝑛×𝑘. Hence, to make the two effects comparable,
we compared the FDR obtained with 20 sets of increasing cardinality
(1000, 5000, 10 000, 30 000) generated by sampling with 𝑘 = 1, with
the FDR obtained when using 20 sets of fixed cardinality (1000) but
generated with increasing thinning values (𝑘 = 1, 𝑘 = 5, 𝑘 = 10, 𝑘 = 30).

For this analysis, we used as a statistical test the Mann–Whitney U
test, rejecting the null hypothesis (i.e. ℎ1 = 1) if 𝑝𝑎𝑑𝑗 < 0.01.

Fig. 1 illustrates, for both ENGRO1 and ENGRO2 models, the ob-
served variation in the mean and standard deviation of the FDR. In
accordance with our previous work, we obtained high values of the
FDR when 𝑘 = 1, whereas no significant variation was observed in
FDR values as a function of sample size. On the contrary, the FDR
decreased considerably with increasing thinning values. This behavior
is not model-dependent. Indeed, we observed it for both ENGRO1 and
ENGRO2 models. The phenomenon reasonably relates to the particular
nature of the sampling strategy. Indeed, if the Markovian algorithm is
exploring, at a certain iteration, a narrow sub-region, there is the risk
that the algorithm gets stuck for several iterations, oversampling the
information of this part of the network, especially for low values of the
thinning parameter. Another contributing factor might be the higher
sensitivity of statistical tests when the dimension of the sample size
gets larger.
4

Fig. 1. Mean and standard deviation of the FDR across the 20 samples for the
ENGRO1 (a) and ENGRO2 (b) metabolic models, considering 1000, 5000, 10 000 and
30 000 elements, without applying any thinning (i.e. 𝑘 = 1) or with thinning 𝑘 = 𝑛∕1000,
where 𝑛 is the dimension of the sample size.

3.2. Different samples of the same feasible region using CHRR can produce
different marginal flux distributions

To investigate the possible causes of false discoveries, we assessed
whether the marginal flux distributions, coming from two different
samples, present a similar mean. We fixed the thinning value to 1, and
we computed the FDR at different sample sizes from 1000 to 30 000
with step 1000 filtering out all statistical tests (Mann–Whitney U test
with 𝑝𝑎𝑑𝑗 < 0.01) for which the FC value (Eq. (4)) is less than 0.2.
We reported the filtered FDR in Fig. 2a and b for the ENGRO1 and
ENGRO2, respectively. One can notice a clear decreasing trend of the
mean FDR passing from 0.6, when 𝑛 = 1000, to 0.1, when 𝑛 = 30 000,
for the ENGRO1 model, and from 0.7 when 𝑛 = 1000 to 0.5 when
𝑛 = 30 000, for the ENGRO2 model. As further evidence of what was
discussed above, the FDR does not display any significant trend as
a function of the sample size, when the FC filter is removed (see
Fig. 2c and d). Therefore, increasing the sample size is not sufficient
to the remove the false discoveries, unless a filter of FC is applied.
Remarkably, even when a filter based on FC is applied, the FDR still
remains high, especially for the ENGRO2 model.

This set of results indicates that the use of a FC filter softens but does
not remove the presence of false discoveries. Moreover, by considering
only the means of the marginal distributions, the FC filter entails the
risk of filtering out also cases in which two marginal distributions
present very similar means but largely different standard deviations.

As a second possible cause of false discoveries, we analyzed the
level of the convergence of the sample, using the Geweke diagnostic
(Eq. (2)). We generated 20 different samples of size 1000, with thinning
𝑘 = 1, and we computed, for each reaction 𝑟, the FDR associated to that
reaction, 𝐹𝐷𝑅𝑟, and the Geweke rejection rate (𝐺𝑅𝑟), as the fraction
of non passed Geweke diagnostic tests for that reaction over the 20
samples.

In Fig. 2e and f, we reported the scatter-plot between the values
of 𝐹𝐷𝑅𝑟 and the 𝐺𝑅𝑟 for the ENGRO1 and ENGRO2, respectively. We
observed that there are reactions for which a high FDR also corresponds
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Fig. 2. (a) Bar plots representing the FDR of CHRR as a function of the sample size (𝑘 = 1) with the application of an FC filter, for the ENGRO1 model. (b) Bar plots representing
the FDR of CHRR as a function of the sample size (𝑘 = 1) with the application of the FC filter, for the ENGRO2 model. (c) Bar plots representing the FDR of CHRR as a function
of the sample size (𝑘 = 1) without the application of an FC filter, for the ENGRO1 model. (d) Bar plots representing the FDR of CHRR as a function of the sample size (𝑘 = 1)
without the application of the FC filter, for the ENGRO2 model. (e) Scatter-plot between the FDR of each reaction and the corresponding Geweke rejection rate obtained with
CHRR (𝑛 = 1000, 𝑘 = 1) for the ENGRO1 model. (f) Scatter-plot between the FDR of each reaction and the corresponding Geweke rejection rate obtained with CHRR (𝑛 = 1000,
𝑘 = 1), for the ENGRO2 model.

Fig. 3. (a) Box plots representing the FDR of ENGRO1 reactions with 𝑘 = 1 amongst all the sample sizes (from 1000 to 30 000 with a step size of 1000 samples) ordered by
decreasing median value. (b)–(d) Bar plots representing the FDR of ENGRO1 reactions with 𝑘 = 1 using 𝑛 = 1000 (b), 𝑛 = 5000 (c) and 𝑛 = 3000 (d).
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Fig. 4. (a) FDR for the hypothesis test based on KL-divergence for different sampling configurations of the ENGRO1 model. (b) FDR for the hypothesis test based on KL-divergence
for different sampling configurations of the ENGRO2 model.
to a high Geweke rejection rate. In these cases, the use of the Geweke
diagnostic could be useful to remove some false discoveries. However,
there are also cases for which a high FDR is not associated with a high
Geweke rejection rate. In these cases, we have a situation in which
different samples of the very same feasible region reached the con-
vergence without obtaining the same marginal flux distribution. These
results confirm that, as expected, the use of standard diagnostics is not
sufficient to remove the FDs. The same conclusions hold also when
using a different thinning value (𝑘 = 100), as reported in Supplementary
Fig. A2.

3.3. Few model reactions are more prone to FDs

We investigated whether some reactions are more prone to FDR
than others. To this aim, we analyzed the distribution of the FDR value
of each reaction of the ENGRO1 model across 30 samples of different
sizes (𝑛 = 1000, 2000,… , 30 000), using CHRR, with thinning 𝑘 = 1.
Each FDR is computed across the 190 pairs of sample batches of size 𝑘,
considering both the threshold on 𝑝𝑣𝑎𝑙𝑢𝑒 and FC. Observing the box plots
reported in Fig. 3, it is noticeable that a group of reactions tend to have
negligible FDRs, regardless of the sample size, such as the secretion
of lactate (𝐷𝑀_𝐿𝐴𝐶𝑇 ) whereas a few reactions are significantly more
prone to FDR, such as the Aconitase reaction, which displays high FDRs
regardless of the samples size. Many reactions display a large dispersion
of the FDR values suggesting that they are highly sensitive to sample
size. Indeed, if we fix the sample size (see Fig. 3) it can be noticed that,
for large sample sizes, the FDR tends to vanish for all reactions except
for the Aconitase. It is interesting to investigate why some reactions
are more prone to FDR. In the first instance, we investigated whether
some correlation exists between the dispersion of the flux values of a
reaction (coefficient of variation) and its FDR. The analysis reported in
Supplementary Fig. A3 suggests that high FDRs can be at least partially
explained by high variability.
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3.4. Hypothesis test on KL-divergence fully corrects for false discoveries

The results presented so far indicate that the use of large sample
sizes, the FC threshold, high thinning values, and convergence diag-
nostics may reduce the observed FDR down to an acceptable level,
that is, 0.01 (see Supplementary Fig. A2) when using a significant
threshold of 0.01 for the 𝑝𝑎𝑑𝑗 . However, we have shown so far that
the optimal sampling configuration depends on the degrees of freedom
of the model under study, which is determined by the network and
constraints and therefore cannot be established a priori. Moreover, it
can be too demanding in terms of computational resources, especially
for genome-wide models like Recon3d [20].

To solve this problem, we propose a model-independent method
to automatically remove from the analysis false discoveries due to
the under-sampling of the feasible region. The main idea is that, for
truly differentially used fluxes, the KL divergence between the marginal
distributions of the solutions sampled from two different models should
not belong to the probability distribution of the KL values between
marginal distributions coming from samples of the same model, that
is, the null distribution of KL values.

To test this idea, given a certain number of samples of the same
feasible region, we computed, for each reaction, the symmetric KL
divergence for all the possible pairs (190 in our case). We built the
empirical null distribution of the KL divergence for each reaction using
only 150 of the 190 pairs, as a training set. We used this distribution
to compute the 𝑝𝑣𝑎𝑙𝑢𝑒 associated with each of the 40 unseen pairs, as
a test set. If 𝑝𝑣𝑎𝑙𝑢𝑒 < 0.01, then 𝑝𝑣𝑎𝑙𝑢𝑒 is again associated with a false
discovery. We repeated this procedure dividing the dataset in training
and test set ten times, randomly.

In Fig. 4, we reported the mean FDR for this new statistical test for
different sampling configurations of the ENGRO1 model (a) and EN-
GRO2 model (b), respectively. We can note that the FDR for this statisti-
cal test remains approximately 0.01 and 0.03 for ENGRO1 and ENGRO2
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Fig. 5. (a) Performances of 𝐶𝐵1, 𝐶𝐵2, and 𝐶𝐵3 in terms of vertices of ENGRO1 optimal region visited at least once. The results are reported in terms of maximum, minimum
(shaded area) and mean (line), over 20 different runs, as a function of the sample size. (b) Performances of 𝐶𝐵1, 𝐶𝐵2, and 𝐶𝐵3 in terms of vertices of ENGRO1 feasible region
visited at least once. (c) Heat map indicating the sampling frequency for the 12 vertices of the ENGRO1 optimal region as a function of the sample size for 𝐶𝐵1. (d) Heat map
indicating the sampling frequency for the 12 vertices of the ENGRO1 optimal region as a function of the sample size for 𝐶𝐵2. (e) Heat-map indicating the sampling frequency for
the 12 vertices as a function of the sample size for 𝐶𝐵3. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
models, respectively, for any sampling configurations,consistently with
the significance threshold that we used for the test.

3.5. 𝐶𝐵3 is more efficient in sampling the corners

Given that CB sampling has been less investigated in the literature,
before comparing it with HR methods with regard to FDR, we wanted
to assess which is the more efficient algorithm for implementing this
strategy.

For a small and quite simple metabolic network, an efficient CB
algorithm should be able to explore all the corners of the feasible
region with a reasonable sample size. To evaluate this capability, we
tested three variants of the CB algorithms illustrated in Section 2.3,
by searching all the 12 vertices of the optimal region of the ENGRO1
metabolic model. More in detail, we measured how many different solu-
tions (i.e. vertices) are obtained as a function of the sample size for the
three algorithms. Note that we indicate with the term optimal region, the
subset of the feasible region having the very same optimal value where
the objective function, in this case, is the biomass reaction. Virtually,
7

using a high number of random functions, it would be possible to obtain
all the 12 vertices, each one with a specific probability to be obtained.

In Fig. 5a, we reported the mean (line) and the maximum and
minimum (shaded area), over 20 different runs, of vertices obtained
at least once as a function of the sample size, for the three different
variants of CB. The plot indicates that 𝐶𝐵1 is not able to visit all the
vertices at least once. Indeed, the mean + std remains always below
9 also after 500 iterations. A possible reason why 𝐶𝐵1 visits fewer
vertices on average is that some of them cannot be reached simply by
maximizing an objective function with exclusively positive coefficients
(Eq. (3)). 𝐶𝐵2 and 𝐶𝐵3 are able to visit all the vertices but we can note
𝐶𝐵3 is the fastest because the shadow red area indicating the mean ∓
std of the visited vertices collapses in a single line before 𝐶𝐵2. This
suggests that the mean and std become 12 and 0, respectively.

To demonstrate this, in Fig. 5c–e, we report three heat-maps, one for
each CB strategy, with the sample size on the 𝑥-axis, the 12 vertices on
the 𝑦-axis, and where the color indicates the sampling frequency over
the 20 experiments. If this number is 0, we assign the white color. From
this plot, we can conclude that for 𝐶𝐵 there is a strong imbalance
1
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Fig. 6. (a) Comparison between the marginal flux distributions of CHRR (𝑛 = 1000, 𝑘 = 1) and 𝐶𝐵𝑆3 (𝑛 = 1000) for the reaction aldolase of the ENGRO1 model. (b) Comparison
between the marginal flux distributions of CHRR (𝑛 = 1000, 𝑘 = 1) and 𝐶𝐵𝑆3 (𝑛 = 1000) for the reaction ALATA_L of the ENGRO1 model. (c) Comparison between the means
of the ENGRO1 marginal flux distributions of CHRR and 𝐶𝐵3, sorted as a function of the normalized difference (Eq. (6)). (d) Comparison between the means of the ENGRO2
marginal flux distributions of CHRR and 𝐶𝐵3, sorted as a function of the normalized difference (Eq. (6)). (e) Comparison between the standard deviations of the ENGRO1 marginal
flux distributions of CHRR and 𝐶𝐵3, sorted as a function of the normalized difference (Eq. (7)). (f) Comparison between the standard deviations of the ENGRO1 marginal flux
distributions of CHRR and 𝐶𝐵3, sorted as a function the normalized difference (Eq. (7)). (g) Comparison between the number of different metabolic modes of ENGRO1, for CHRR
and 𝐶𝐵3, obtained as a function of the sample size. (h) Comparison between the number of metabolic modes of ENGRO2, for CHRR and 𝐶𝐵3, as a function of the sample size.
between the number of times the first vertex is found (about 90% of
the time) and the other vertices. In particular, some vertices are visited
rarely, whereas other vertices could be over-sampled. Conversely, for
𝐶𝐵2 and 𝐶𝐵3, the vertices are all visited already with low sample size,
and in a more homogeneous way.

Taken together, these results suggest that 𝐶𝐵3 can visit more ver-
tices of the feasible region and more uniformly as compared to 𝐶𝐵2 and
𝐶𝐵1. To confirm this hypothesis, in Fig. 5b, we reported the number of
vertices obtained by sampling the entire ENGRO1 feasible region, for
the three different variants of CB. From this plot, we can observe that
𝐶𝐵3 visits more vertices as compared to 𝐶𝐵2 and 𝐶𝐵1.

3.6. Sampling the corners of a feasible region with random functions is less
prone to false discoveries

We evaluated the propensity to generate false discoveries also for
the 𝐶𝐵3 strategy. To this aim, similarly to what we did for the CHRR
algorithm, we collected 20 different samples of size 1000, and we
performed a flux differential analysis for each model reaction and com-
puted the associated FDR. Surprisingly, the FDR values obtained from
this sampling strategy are very low. Indeed, the FDR is approximately
0.014 and 0.010 for ENGRO1 and ENGRO2 models, respectively. These
values are consistent with the expected level of tolerance when using
a significance threshold of 0.01 for the 𝑝𝑎𝑑𝑗 . To explain this strong
difference between CHRR and CB strategies, we investigated whether,
although the flux distributions of CHRR and CB have the same support,
their mean and standard deviations may differ substantially. To this
aim, we compared each of the 20 different samples generated with
CHRR (𝑛 = 1000, 𝑘 = 100) against each of the 20 samples generated
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with CBS (𝑛 = 1000). More in detail, we computed, for each model
reaction, the relative differences between means (Eq. (6)) and between
standard deviations (Eq. (7)). The box-plots of the obtained values are
reported for each reaction in Fig. 6, for the ENGRO1 (panels c and e,
for means and standard deviations, respectively) and ENGRO2 model
(panels d and f, for means and standard deviations, respectively). It
can be observed that, in both models, the means obtained by the two
sampling methods are very similar only for a subset of reactions, while
there are many cases in which the relative difference between means
is not negligible. On the contrary, the standard deviations of the two
algorithms generally tend to largely differ.

The high differences between standard deviations are expected and
were reported before [18]. Indeed, CHRR generates a Markov chain of
elements, all different from each other, of the internal feasible region.
The empirical flux marginal distributions approximate the probability
density function, whereas its extreme values (i.e. the values provided
by the FVA) tend to not be included in the sample, as can be observed
in the examples in Fig. 6a and b. On the other hand, CB generates a
sequence of vertices of the feasible region and, some of these vertices
can be visited more than once if they are the optimal values of different
random objective functions. The final marginal distributions approxi-
mate a discrete probability distribution because the vertices are finite,
and the extreme values are usually included in the sample (see Fig. 6a
and b).

On the contrary, the possible high differences in the means had
not been reported before and therefore were less expected. This result
suggests that differences between the marginal distributions generated
by CB and HR strategies cannot be explained simply by the fact that the
former approximates wider and discrete probability distributions. We
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hypothesized that another possible reason is that the elements of a CB
sample are qualitatively more heterogeneous since they represent the
vertices of the feasible region. Therefore, the sampled flux distributions
tend to differ in terms of flux modes, i.e. zero flux, positive flux
(forward direction), or negative flux (backward direction). On the other
hand, the elements of CHRR also when we used a high thinning value,
are more homogeneous, and with a few different flux modes.

To investigate our hypothesis, we compared the number of different
flux modes for CHRR and 𝐶𝐵3, reporting in Fig. 6g and h, the mean
(line) and the maximum and minimum (shaded area), over 20 different
runs, for the ENGRO1 and ENGRO2 models, respectively. We can note
that 𝐶𝐵3 has a higher number of different modes as compared to CHRR,
for both models, already for a low dimension of the sample size.

Taken together, these results suggest that sampling the corners of
a feasible region with random functions is less prone to false dis-
coveries because it captures flux distributions both qualitatively and
quantitatively more heterogeneous.

4. Discussion and conclusions

Our study aimed to evaluate the propensity to generate false dis-
coveries of different sampling strategies in constraint-based models.
We performed a flux differential analysis for each model reaction be-
tween samples collected from the same feasible region, using different
sampling strategies. The differential flux analysis was performed by
performing a statistical test and adjusting the 𝑝𝑣𝑎𝑙𝑢𝑒 in order to have
a theoretical FDR (False Discovery Rate) of 0.01. The fraction of tests
for which the null hypothesis is rejected was considered the true FDR.
We showed that the true FDR is substantially much greater than the
theoretical one.

We showed that the thinning value has a higher impact on FDR than
the sample size in CHRR sampling, and increasing the thinning value
reduces the FDR significantly. Additionally, we found that different
samples of the same feasible region using CHRR can produce different
marginal flux distributions, and the use of a fold-change-based filter
softens but does not remove the presence of false discoveries. This first
set of results demonstrated the need for statistical methods to correct
false discoveries, which must be independent of the dimensions and
shape of the constraint-based region to be sampled, the sample size,
the sampling algorithm, and the sampling parameters. To this aim, we
proposed a statistical test based on the empirical probability of observ-
ing a given distance between the marginal frequency distributions of
a reaction’s flux in two different samples. We demonstrated, with an
independent dataset, that this approach fully removes false discoveries.
Regarding this proposed approach, we verified that the computational
time scales linearly with the sample size (see Supplementary Fig. A4)

However, besides being able to remove false discoveries, one wants
their incidence to be small while setting a sample size that is not
excessively computationally expensive. In this regard, even though Hit-
and-Run strategies (CHRR, ACHR, and OPTGP) are usually more used
to study metabolic networks than corner-based ones, we showed that
the incidence of false discovery is negligible in corner-based strategies,
whereas for the same sample size, it can reach rates up to 8% in CHRR
(see Fig. 2, 𝑛 = 30 000).

In light of these results, we investigated in-depth the differences
between HR and CB strategies. We observed that sampling the corners
of a feasible region with random functions captures flux distributions
both qualitatively and quantitatively more heterogeneous. On the other
hand, HR better approximates the probability density function of flux
value around the central value, without including extreme values.
This second set of results indicates that the two approaches provide
complementary information and should perhaps be used in combina-
tion to better explore the feasible region of metabolic networks. As a
preliminary result, we created 20 different samples for the ENGRO1
model, each of them obtained by the combination of two samples:
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CHRR, with thinning 𝑘 = 100 and sample size 1000, and CBS3 with
sample size 1000. Therefore, we computed the FDR between the 190
pairs as previously done. We reported in Supplementary Table A1, the
FDR of any reaction. From these preliminary results, we can note that
the FDR is reduced considerably.

A collateral but important result of this study is that the inclusion
of negative coefficients and minimization problems in the generation of
the random objective functions makes CB sampling significantly more
efficient. Regarding this approach, given that CB sampling is based
on linear optimization, the computational complexity of sampling is
linear concerning the model size and the sample size. For example,
in this work, we collected samples of sizes up to 20 000 in a rea-
sonable time (less than 1 h for ENGRO2 on a personal workstation,
with no parallelization). One can take a smaller sample for bigger
networks, up to genome-scale Recon3D, in the same amount of time.
Also, we remark that the hypothesis testing that we are proposing
based on KL-divergence corrects for the presence of false discoveries
due to under-sampling, hence losing the requirement for large samples
for high precision. Large samples are still required for high speci-
ficity. However, given the optimization of each random linear objective
function is independent of the others, and hence parallelizable, one
can exploit High Performance Computing to significantly reduce the
computation time.

Overall, our findings highlight the importance of carefully selecting
the sampling strategy and its parameters to ensure reliable statistical
results when performing differential flux analysis and provide new
guidelines that can make the results of the COBRA research community
more reliable and reproducible.
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