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Abstract 
 

Quantitative risk management techniques should prove their efficacy when financially turbulent periods are about to occur. Along 

the common saying “who needs an umbrella on a sunny day?”, a theoretical model is really helpful when it carries the right 

suggestion at the proper time, that is when markets start behaving hecticly. The beginning of the third decade of the 21st century 

carried along a turmoil that severely affected worldwide economy and changed it, probably for good. A consequent and plausible 

research question could be this: which financial quantitative approaches can still be considered reliable? This article tries to partially 

answer this question by testing if the mean-variance selection model (Markowitz [16], [17]) and some of his refinements can 

provide some useful hints in terms of portfolio management. 

 

Key Words: Mean-Variance Portfolio Selection Models; Minimum Variance Portfolios; Risk Parity Approach, Black-Litterman 

model.  

 

1) Introduction and motivation 

It is well known that the mean-variance portfolio selection model proposed by Markowitz ([16], [17]) is one of the stepping-stones 

on which modern finance relies on. It is, unfortunately, also common knowledge that, when applied to real market data, optimal 

mean-variance portfolios suffer of a number of drawbacks. A relevant one, the extreme sensitiveness of portfolios’ weights to small 

variations of market data, has been clearly pinpointed, amongst many others, by Chopra and Ziemba [5]; these authors state: “small 

changes in the input parameters can result in large changes in composition of the optimal portfolio”. Further, in their article Chopra 

and Ziemba show that estimation errors in expected returns can be ten times more relevant, and therefore harmful, than an 

estimation error in variances. 

To overcome this and other issues, for instance the non-normal distribution of historically observed stock returns and the fact that 

some optimal portfolios have stocks with negative weights, especially when large expected returns are imposed, a relevant number 

of approaches have been presented. Roughly speaking, these enhancements can be divided in two groups. The first encompasses 

‘naïve’ procedures such as the equally weighted (EW) (tested, amongst others, by DeMiguel et al. [7]), minimum variance (MV) 

(see, for instance, Coqueret [6]), and equal risk contribution (ERC) (a detailed explanation on this topic can be found in Roncalli 

[19]) ones. If the EW approach is an elementary translation of ‘common sense’ portfolio diversification (“don’t put all your eggs in 

one basket”), the MV and ERC ones are based on a mathematical approach; here, optimal portfolios do not deal directly with 

returns, allowing to bypass, up to some extent, the negative feature identified by Chopra and Ziemba. 

The second family of models exploits a range of quantitative sophisticated concepts. A key contribution was proposed by Black and 

Litterman [4] (BL) where the effect on optimal portfolios of market observed data (the prior) is updated in Bayesian terms 

introducing the so-called `views' (the posterior), i.e. opinions on the future behaviour of the whole market or on one or more stocks, 

expressed by the investor or a financial expert. This blending procedure between estimated parameters obtained from observed data, 

that are inefficient but with a low bias, and a constant estimator that, conversely, is more efficient but with a large bias, is the base 

for the theory of shrinkage estimators (Meucci [18]). The crucial point in this approach is the determination of the influence to be 

attributed to the two classes of estimators on the resulting portfolio. 

Another approach deals with robustness of portfolios (see, for instance, Goldfarb and Iyengar, [10] and [11]); loosely speaking, a 

portfolio is robust when its weights are scarcely affected by changes in input parameters. To achieve this, actual values of the input 

parameters are assumed to belong to an uncertainty set whose shape allow to perform a ‘robust’, two-step optimization. Schöttle and 

Werner ([20], [21]) “robustify” the standard Markowitz model letting parameters abide in what these author name ‘confidence 

ellipsoids’. A different vein considers inserting in the original model some additional constraints, either ‘wrong’ (Jagannathan and 

Ma [13]) or ‘right’ (Behr et al. [3]). For instance, DeMiguel et al. [8] show that reliable optimal portfolios are identified imposing an 

additional constraint on the norm of the vector of portfolio weights. Finally, Fliege and Werner [9] revisit the Markowitz model in 

terms of multi-objective optimization solving a bi-objective problem. 

Needless to say, all these improvements come with a cost and are of difficult implementation on a practical basis. Managing a 

portfolio under their terms requires capabilities that could be either unfeasible or not economical. Still, the correct handling of 

financial portfolios is a relevant issue in risk management. Can an investor still safely trust non ‘highly sophisticated’ techniques? 

As an attempt to provide a partial answer to this question, in this article results obtained using EW, MV and ERC methodologies are 

discussed at first. Secondly, a BL version of these portfolios is obtained with the aim of testing how views can encompass highly 

stressed financial periods and if a more complex approach is worth applying. 

As said above, any risk-oriented portfolio management strategy should be helpful when needed the most, that is when financial 

markets face a strong turbulence. A perfect example of this is year 2020, when worldwide economy has been severely tackled. The 

Euro Stoxx 50 stock index, whose value encompasses stocks prices of 50 European companies chosen according to their size, 

dropped from a value of 3793.24 on January 2nd, 2020 to the yearly minimum level of 2385.82 on March 18th, 20201, right after the 

beginning of the spread of the first wave of the infamous COVID-19 pandemic, with a loss of 26.5%. 

Numerical results presented below show how supposedly risk reducing approaches might perform poorly when applied to heavily 

bearish financial markets. One of the reasons for this debacle can be attributed to the fact that when financial markets plummet, 

correlation between random returns increase, limiting or almost totally obliterating benefits of diversification.  

 

                                                           
1 Data retrieved from https://www.wsj.com/market-data/quotes/index/XX/SX5E/historical-prices website 
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A similar, negative result is obtained applying the BL approach. Pessimistic views reduce the values for expected returns and inflate 

variances and covariance. Correlations between random returns, though, do not change, leading MV and ERC portfolios to end up 

with the same weights. 

 

The structure of this article is as follows: Section 2 presents the theory and some naïve improvements of the standard portfolio 

selection model that will be used in Section 3 to verify the performance of the strategies under scrutiny. Section 4 eventually 

concludes. 

2) Markowitz’s model and some refinements 

The original portfolio selection model developed by Markowitz encompasses 𝑛 stocks whose random return 𝑅̃𝑖, 𝑖 = 1,… , 𝑛, are 

assumed to be fully represented in terms of the vector of expected returns 𝐫 = [𝑅𝑖̅] ∈ ℝ𝑛, and of the variance/covariance matrix Σ =

[𝜎𝑖,𝑗] ∈ 𝓜(𝑛, 𝑛), 𝑗 = 1,… , 𝑛, where 𝜎𝑖,𝑗 = 𝜎𝑗,𝑖 is the covariance between random returns 𝑅̃𝑖 and 𝑅̃𝑗 and 𝜎𝑖,𝑖 = 𝜎𝑖
2 the variance of 𝑅̃𝑖. 

Letting 𝐱 ∈ ℝ𝒏 be the vector portfolio weights, the optimal portfolio 𝐱∗ according to Markowitz results solving the constrained 

optimization problem 

 

𝑚𝑖𝑛
𝐱

𝜎𝑃
2 = 𝐱𝑇Σ𝐱

subject to 𝑟𝑃 = 𝐫𝑇𝐱 = 𝑟𝑃 expected return constraint

𝟏𝑇𝐱 = 1 budget constraint

 (1) 

 

with 𝟏 = [1] ∈ ℝ𝑛 the unity vector and where the required expected portfolio return 𝑟𝑃 is the only value an agent can choose (Szego 

[23]). Markowitz’s model assumes that the expected return of a portfolio plays the role of a measure of its performance while its 

variance (or standard deviation) can be considered as a risk measure so that problem (1) seeks the ‘best’ (in the sense of the less 

risky) portfolio amongst those with the same expected return.  

Additional constraints can be plugged into this model. For instance, vector 𝐱 may only hold only non-negative values, that is 𝑥𝑖 ≥
0, 𝑖 = 1,… , 𝑛. This imposition forbids to solve problem (1) by means of the usual Lagrange’s multipliers approach. No explicit 

solution for the optimal portfolio is available in this and similar cases. Jagannathan and Ma introduce an upper bound  𝑥𝑀𝐴𝑋 to 

weights so that 𝑥𝑖 ≤ 𝑥𝑀𝐴𝑋 , 𝑖 = 1, … , 𝑛. This forces portfolio to be sufficiently diversified as no weight can be excessively large. 

Behr et al. substitute the non-negativity constraint with 𝑥𝑖 ≥ 𝑥𝑀𝐼𝑁 , 𝑖 = 1, … , 𝑛, 𝑥𝑀𝐼𝑁 > 0. Schöttle and Werner, instead, include in 

the variance minimization a worst-case scenario so that the problem can be stated as 

 

𝑚𝑖𝑛
𝐱

 𝑚𝑎𝑥
(𝐫,Σ)∈𝑈

𝜎𝑃
2 = 𝐱𝑇Σ𝐱

subject to 𝑟𝑃 = 𝐫𝑇𝐱 = 𝑟𝑃 expected return constraint

𝟏𝑇𝐱 = 1 budget constraint

 

 

where set 𝑈 is “the (joint) uncertainty set for the unknown parameters (𝐫, Σ)” (see [20]) and whose shape relates to statistics 

confidence intervals (Meucci [18]). 

Going back to problem (1), the explicit formula for the optimal portfolio weights2, as a function of 𝑟𝑃 is 

 

𝐱∗(𝑟𝑃) =
(𝑐Σ−1𝐫−𝑏Σ−1𝟏)𝑟𝑃+(𝑎Σ−1𝟏−𝑏Σ−1𝐫)

Δ
 (2) 

 

where 𝑎 = 𝐫𝑇Σ−1𝐫, 𝑏 = 𝐫𝑇Σ−1𝟏, 𝑐 = 𝟏𝑇Σ−1𝟏, and under the assumption Δ = 𝑎𝑐 − 𝑏2 ≠ 0. Further, the set of these portfolio in the 

(𝑟𝑃; 𝜎𝑃
2) plane3 is the quadratic function 

 

𝜎2(𝑟𝑃) =
𝑐𝑟𝑃

2−2𝑏𝑟𝑃+𝑎

Δ
. 

 

A portfolio is efficient (according to the mean-variance dominance principle) if there is no other portfolio with the same expected 

return (variance) and smaller variance (larger expected return). The set of efficient portfolios is named efficient frontier. The choice 

of the preferred efficient portfolio is done by means of a mean-variance utility function that encompasses the agent’s risk aversion. 

As recalled in the Introduction, optimal portfolios are in many cases highly sensitive of changes in the input parameters. To try to 

overcome this drawback, a first attempt is to consider an equally weighted (EW) portfolio where 𝐱𝐸𝑊
∗ (𝑖) = 1/𝑛, 𝑖 = 1,… , 𝑛. 

Secondly, the minimum variance (MV) portfolio can be considered. Such portfolio results from a reduced version of (1) that reads 

 

𝑚𝑖𝑛
𝐱

𝜎𝑃
2 = 𝐱𝑇Σ𝐱

subject to 𝟏𝑇𝐱 = 1  

 

and whose explicit solution in vector form is 

                                                           
2 Expression (2) contains the inverse matrix Σ−1 of the variance/covariance matrix Σ. Determination of Σ−1 requires the reciprocal of the 

determinant of matrix Σ. It is easy to verify that larger size variance/covariance matrices have determinants very close to 0. For instance, this 

determinant for the Chopra and Ziemba [5] dataset, that contains ten stocks, is 2.34 ∙ 10−25 . Values of 𝐱∗ in (2) can consequently swing greatly 

even with a tiny change in some input parameter. 
3 It is usual to plot portfolios in the (𝜎𝑃; 𝑟𝑃) plane, where the standard deviation replaces variance. Under a geometrical point of view the set of 

such portfolios becomes a hyperbola rather than a parabola. 
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𝐱𝑀𝑉
∗ =

Σ−1𝟏

𝟏𝑇Σ−1𝟏
 

 

Another approach determines weights by means of the risk parity assumption (ERC): each stock in the portfolio contributes equally 

to its overall standard deviation σ𝑃(𝑥1, … , 𝑥𝑛) = √𝐱𝑻Σ𝐱. This result is obtained exploiting Euler’s homogeneous functions theorem4 

that allows to decompose function σ𝑃(𝐱), homogeneous of degree 1, as follows 

 

σ𝑃(𝐱) = ∑𝑥𝑖 ∙
𝜕

𝜕𝑥𝑖

σ𝑃(𝐱)

𝑛

𝑖=1

. 

 

Marginal contributions are expressed as 

 

∂

∂𝑥𝑖

𝜎𝑃(𝐱) =
∑ 𝜎𝑖,𝑘 ⋅ 𝑥𝑘

𝑛

𝑘=1

𝐱𝑇Σ𝐱
 

 

while product 𝑥𝑖 ∙
𝜕

𝜕𝑥𝑖
σ𝑃(𝐱) stands for the risk contribution of the 𝑖 −th stock. Imposing an equal contribution to the overall risk by 

each stock, that is, 

 

𝑥𝑖 ∙
𝜕

𝜕𝑥𝑖

σ𝑃(𝐱) = 𝑥𝑗 ∙
𝜕

𝜕𝑥𝑗

σ𝑃(𝐱),   ∀𝑖, 𝑗 = 1,… , 𝑛, 𝑖 ≠ 𝑗 

 

along with the usual budget constraint 𝟏𝑇𝐱 = 1 yields portfolio 𝐱𝐸𝑅𝑃
∗ .  

Unlike the EW and MV cases, there is no explicit expression for this portfolio when 𝑛 ≥ 3; its weights must be numerically 

determined by means of some constrained minimization algorithm5. An approach is by solving the optimization problem (see 

Maillard et al. [14]) 

 

arg 𝑚𝑖𝑛
𝐱

∑(
√𝐱𝑇Σ𝐱

𝑛
− 𝑥𝑖 ⋅

∑ 𝜎𝑖,𝑘 ⋅ 𝑥𝑖
𝑛

𝑘=1

√𝐱𝑇Σ𝐱
)

𝑛

𝑖=1

 

 

In the numerical part of this article, portfolio weights have been obtained exploiting Matlab’s website on-line resources6. 

An important departure from the above models is due to Black and Litterman (BL) [4]. Their approach considers a ‘prior’, that is a 

set of information merely subsumed from historical market data. A key point here is the reference portfolio, that, in the original BL 

setting, is the CAPM’s (Sharpe [22]) market one. Its weights are obtained by means of “reverse optimization”7 that considers also a 

risk aversion parameter 𝛿. Investors’ sentiments and knowledge (the ‘posterior’) are introduced by means of 𝑘 ‘views’ that can be 

either absolute or relative. An absolute view is a claim made on the future behaviour of a specific stock. A relative view allows, 

instead, to include an opinion on the relative performance on two or more stocks. The matrix that identifies such views is denoted by 

𝑃 ∈ 𝓜(𝑘, 𝑛) while 𝑄 ∈ ℝ𝑘 is the view vector. Each row in 𝑃 introduces a view whose numerical claim is an element in 𝑄. Vector 

Π ∈ ℝ𝑛 is the reference portfolio. Along with Bayesian decision theory, errors in judgement should be attached to predictions. The 

numerical measurements of these quantities are expressed in terms of variances of the views and contained into a diagonal matrix 

Ω = [𝜔𝑢,𝑣] ∈ 𝓜(𝑘, 𝑘), 𝑢, 𝑣 = 1,… , 𝑘 where 𝜔𝑢,𝑣 = 0 whenever 𝑢 ≠ 𝑣. A way to determine Ω is proposed by Meucci [18]: 

 

Ω = (
1

𝑐
− 1)𝑃Σ𝑃′  (3) 

 

where 𝑐 ∈ (0; 1) so that if 𝑐 → 0 views are not deemed informative while when 𝑐 → 1 views are entirely trusted. A final parameter 

needed is 𝜏, whose aim is to shift the model’s focus to either market portfolios or views. All these pieces of information lead to a 

view-corrected vector of expected returns (Meucci [18]) 

 

𝐫BL = 𝐫 − Σ𝑃′(𝑃Σ𝑃′ + Ω)−1(𝑄 − 𝑃𝐫)  (4) 
 

and a view corrected variance-covariance matrix 

 

Σ𝐵𝐿 = Σ − Σ𝑃′(𝑃Σ𝑃′ + Ω)−1𝑃Σ.  (5) 
 

                                                           
4 Let 𝑓(𝐱):ℝ+

𝑛 → ℝ be a 𝐶1 homogeneous function of degree 𝛾. Then, for all 𝐱 

𝑥1 ⋅
∂

∂𝑥1
𝑓(𝐱)+. . . 𝑥𝑛 ⋅

∂

∂𝑥𝑛
𝑓(𝐱) = 𝛾 ⋅ 𝑓(𝐱) 

5 In Appendix, a brief discussion of the 𝑛 = 2 case, that has an analytic solution, is presented. 
6 Refer to https://it.mathworks.com/matlabcentral/answers/278745-risk-parity-equal-risk-contribution-optimization, where MATLAB’s function 

fmincon is exploited. 
7 For the full mathematical description of the BL model, refer to (Idzorek [12]). 

https://it.mathworks.com/matlabcentral/answers/278745-risk-parity-equal-risk-contribution-optimization
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Having concluded the theoretical part and armed with all required formulas, the rest of this article tackles a real-market application 

and analyses its results. 

 

3) Data and numerical results 

In order to test the claim this article evaluating, historical weekly prices of five stocks8 (ENI, E.ON, Generali, SAP, and 

Volkswagen) have been considered. This choice has no specific reason but to encompass companies whose random returns can be 

considered sufficiently diversified. Correlations between random returns in Table 3a confirms this and hints that portfolios 

containing these stocks should allow for some degree of diversification. 

Overall data ranging from the beginning of 2016 to the end of 2020, for a total of 260 weekly log-returns, have been divided in two 

subgroups: the first 208 returns (years 2016-2019) are used to determine the historical vector of expected returns 𝐫 (Table 1, second 

column), the variance/covariance matrix Σ (Table 2a), and the correlation matrix (Table 3a). These are the input required to 

determine portfolio weights in the cases described before. Variance-covariance (Table 2b) and correlation (Table 3b) matrices come 

from the remaining 52 observations (year 2020). Table 1 also contains additional descriptive statistics; as a remark, excess kurtosis 

for all stocks is positive, suggesting that, as usual with stocks, historical returns show a leptokurtic (i.e. fat-tail) behaviour for which 

‘rare’ events occur with a frequency unattainable to phenomena described with the normal distribution. 

 

Table 1a – Descriptive Statistics for 2016-2019 weekly log-returns of companies E.On, ENI, Generali, SAP, and Volkswagen. (Total 

number of observations: 208) 

stock Mean (𝐫2015−2019) median min max st. dev. skewness exc. 

Kurtosis 

E.ON 0.0022 -0.0007 -0.1517 0.1161 0.0366 -0.1862 1.6377 

ENI 0.0016 0.0032 -0.0731 0.1127 0.0291 -0.0097 0.6887 

GEN 0.002 0.004 -0.1192 0.1301 0.0329 -0.1077 2.3352 

SAP 0.0028 0.0049 -0.0778 0.1292 0.028 0.3308 2.1864 

VW 0.0019 0.0005 -0.0779 0.1248 0.0343 0.391 0.5606 

 

Table 1b – Mean of weekly log-returns for companies under scrutiny for year 2020 - (a): Jan 1st-Jun 30th; (b): Jan 1st-Dec 31st 

(Total number of observations: 52) 

stock 6-month return (a) 12-month return (b) 

E.ON 0.2323 -0.00613 

ENI -0.82225 -0.41717 

GEN -0.50433 -0.22083 

SAP 0.15215 -0.09307 

VW -0.35566 0.00618 

 

Table 2a – Variance/Covariance matrix (Σ2015−2019) for observed weekly log-returns (2016-1019) 

 E.ON ENI GEN SAP VW 

E.ON 0.00134     

ENI 0.00045 0.00085    

GEN 0.00029 0.00044 0.00108   

SAP 0.00026 0.00027 0.00032 0.00078  

VW 0.00041 0.00038 0.00044 0.00038 0.00118 

 

Table 2b – Variance/Covariance matrix for observed weekly log-returns (2020) 

 E.ON ENI GEN SAP VW 

E.ON 0.00221     

ENI 0.00274 0.00677    

GEN 0.00225 0.00414 0.00304   

SAP 0.00202 0.00289 0.00246 0.00421  

VW 0.00241 0.00389 0.00336 0.00297 0.00436 

 

Table 3a – Correlation matrix for observed weekly log-returns (2016-2019) 

 E.ON ENI GEN SAP VW 

E.ON 1     

ENI 0.42174 1    

GEN 0.23997 0.46369 1   

SAP 0.2505 0.33118 0.34307 1  

VW 0.32716 0.37912 0.39445 0.392998 1 

 

A comparison between values in Tables 2a, 2b, 3a, and 3b clearly displays that, due to the COVID-19 induced financial crisis, all 

variances, covariances, and correlations in year 2020 substantially increase. This means that portfolios whose composition has been 

obtained using historical data from 2016 to 2019 (Table 4) might suffer of severe misspecification if applied to 2020 data, resulting 

in large, unexpected risk levels. 

                                                           
8 Data (adjusted closing prices) retrieved from https://it.finance.yahoo.com/ 
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Table 3b – Correlation matrix for observed weekly log-returns (2020) 

 E.ON ENI GEN SAP VW 

E.ON 1     

ENI 0.70728 1    

GEN 0.81096 0.85554 1   

SAP 0.66282 0.54573 0.64565 1  

VW 0.77441 0.72173 0.86674 0.69235 1 

 

Table 4 – Portfolio weights for the equally weighted (second column), minimum variance (third column) and equally risk 

contribution (fourth column) portfolios obtained using the 2016-2019 period data 

 EW MV ERC 

E.ON 0.2 0.1376 0.1847 

ENI 0.2 0.2433 0.206 

GEN 0.2 0.1534 0.193 

SAP 0.2 0.3656 0.2354 

VW 0.2 0.1003 0.1809 

 

A first remark that can be drawn looking at weights in Table 4 is that, according to the peculiar choice of stocks made here, the EW 

composition acts as a ‘continental divide’ between stocks whose relative quantities are smaller (larger) than 0.2. If the weight of a 

stock is less than the EW one in the MV portfolio it does not trespass this threshold in the ERC portfolio as well. A possible 

explanation to this fact is that the minimum variance and equal risk contribution approaches treat risky and less risky stocks alike, 

assigning them smaller or larger weights. 

Figure 1 represents the efficient frontier (continuous plot) in the usual standard deviation/expected return two-dimensional plane; the 

red point pinpoints the MV portfolio, the blue and green ones, respectively, the EW and ERC portfolios. For ease of display, returns 

and standard deviations have been transformed on a yearly basis. 

 

Figure 1 – efficient frontier (black continuous curve) in the (𝜎𝑃 , 𝑟𝑃) plane with dots depicting portfolios: EW (blue dot), MV (red 

dot) and ERC (green dot). Data have been annualized. 

 
 

It is interesting to notice (Table 5) that MV portfolio dominates, according to the mean-variance criterion, the ERC one and that EW 

portfolio is dominated by the other two. This result seems acceptable as the latter portfolio is determined without trying to actively 

manage its risk. 

 

Table 5 – realized yearly expected returns and standard deviations for portfolios under scrutiny (2016-2019) 

 expected return standard deviation 

MV 0.1161 0.1568 

EW 0.1105 0.1612 

ERC 0.1118 0.1596 

 

Efficient portfolios and their expected returns with the same standard deviation as the EW and ERC ones are reported in Table 6. 

Even if only two efficient portfolios are displayed, it seems evident that both assign a large weight to SAP stock. This result might 

derive to the fact that SAP Sharpe’s ratio is larger than the other ones. Even if this is a theoretically correct choice, such feature 

could deliver portfolios that are not well-balanced as they are exposed to any negative changes in the performance of SAP’s stock. 
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Table 6 – weights and expected returns of efficient portfolios with the same standard deviation of the EW and ERC ones (annualized 

data). 

 𝜎𝑃 = 0.1612 (EW) 𝜎𝑃 = 0.1596 (ERC) 

E.ON 0.17024 0.16351 

ENI 0.09708 0.12719 

GEN 0.15376 0.15368 

SAP 0.5278 0.49438 

VW 0.05112 0.06125 

𝑟𝑃 0.1266 0.12445 

 

The first result in the empirical analysis deals with the performance of ‘historically’ determined (i.e., based on 2016-2019 data) EW, 

MV, and ERC portfolios when applied to year 2020 values. This is achieved by computing the realized yearly return9 using data for 

time interval Jan 1st-June 30th, 2020 (interval a) and the realized yearly return and standard deviation for time interval Jan 1st-Dec 

31st, 2020 (interval b). Period Jan 1st – Mar 31st, 2020 cannot be unfortunately considered as its yearly log-returns show an abnormal 

behaviour as some returns are so negative that their transformation on an yearly basis makes them with no sensible financial 

meaning. Table 7 displays these values. 

 

Table 7: realized yearly returns and realized 12-month standard deviations for EW, MV, and ERC portfolios in 2020. Due to the 

negative dynamics of stock prices in 2020, losses occur in all cases. 

portfolios 6-month return (interval a) 12-month return (interval b) 12-month st dev (interval b) 

EW -0.2596 -0.1462 0.40605 

MV -0.2255 -0.1696 0.41346 

ERC -0.2524 -0.1505 0.40687 

 

A comparison between Tables 5 and 7 further shows how riskier and poorly performing portfolios made of the chosen stocks ended 

up being in 2020.  

Another benchmark is displayed in Table 8 where portfolio weights for the MV and ERC cases obtained using Table 2b data (year 

2020 variance/covariance matrix) are: 

 

Table 8 – Portfolio weights for the minimum variance (second column) and equally risk contribution (third column) portfolios 

obtained using variance/covariance matrix in Table 8. 

 MV ERC 

E.ON 0.9532 0.6589 

ENI -0.2569 -1.2909 

GEN 0.4165 0.7799 

SAP 0.1237 0.4065 

VW -0.2364 0.4455 

 

These weights produce abnormal portfolios with both short selling and large fractions invested in some stocks, features that can 

hardly be associated to proper risk reduction. 

The second analysis performed relies on the Black-Litterman version of EW, MV, and ERC portfolios. In the BL framework the 

starting portfolio is the implied equilibrium one, out of which excess equilibrium returns are obtained. Here, partially departing from 

the underlying theory, such returns are the historical ones (Table 1a, second column). Further, as risk-less rates during period 2015-

2020 have been very close to zero (or even negative), excess returns can be set equal to realized ones. Views are assumed to be 

pessimistic. In a first instance, all expected returns are obtained subtracting to each historical expected return a portion of the 

respective standard deviation. Matrix 𝑃 is 

 

𝑃 =

[
 
 
 
 
−1 0 0 0 0
0 −1 0 0 0
0 0 −1 0 0
0 0 0 −1 0
0 0 0 0 −1]

 
 
 
 

. 

 

The single, negative value in each of its rows translates the absolute view made on each stock: to the expected return of the 𝑖 −th 

stock (𝑖 −th element of the 𝑖 −th row) is assigned the 𝑖 −th element of view vector 

 

𝑄 =

[
 
 
 
 
0.00223 − 0.5 ⋅ 0.03661
0.0016 − 0.5 ⋅ 0.02913
0.00204 − 0.5 ⋅ 0.03285
0.00282 − 0.5 ⋅ 0.02797
0.00194 − 0.5 ⋅ 0.03432]

 
 
 
 

=

[
 
 
 
 
−0.01597
−0.012965
−0.014386
−0.011163
−0.015221]

 
 
 
 

 (6) 

 

                                                           
9 For the six-month interval, the number of available observations is deemed to be not sufficient to be safely trusted as standard deviations might 

end up with misleading results. 
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where 50% of the 2015-2019 standard deviation is assumed to be large enough to penalize historical expected returns. Diagonal 

matrix Ω is obtained according to (3), letting 𝑐 = 0.25  (views are mildly informative) and 𝑐 = 0.75 (views display a large degree of 

trustworthiness). Posterior estimates for the expected returns are, according to (4) 

 

𝐫̅𝐵𝐿 =

[
 
 
 
 
−0.00108
−0.00124
−0.00105
0.00073

−0.00138]
 
 
 
 

 when 𝑐 = 0.25 and 𝐫̅𝐵𝐿 =

[
 
 
 
 
−0.0079
−0.00692
−0.00722
−0.00344
−0.00802]

 
 
 
 

 when 𝑐 = 0.75. 

 

Needless to say, all estimates but the one for SAP in the first case, are smaller than historical returns. Posterior estimates of the 

variance-covariance matrices (see formula (5)) are 

ΣBL =

[
 
 
 
 
0.00168
0.00056 0.00106
0.00036 0.00055 0.00135
0.00032 0.00034 0.00039 0.00098
0.00051 0.00047 0.00056 0.00047 0.0015]

 
 
 
 

 (𝑐1 = 0.25), 

and Σ𝐵𝐿 =

[
 
 
 
 
0.00235
0.00079 0.00149
0.00051 0.00078 0.00189
0.00045 0.00047 0.00055 0.00137
0.00072 0.00066 0.00078 0.00066 0.00206]

 
 
 
 

 (𝑐1 = 0.75). 

 

Using these latter inputs, it results that MV and ERC portfolios are the same obtained above. This result is due to the fact that both 

matrices embed larger variances and covariances but correlations are the same. This particular instance shows that when all stocks 

share the same view, the Black-Litterman model correctly changes expected return vectors and variance-covariance matrices but is 

unable to adjust correlations. 

Secondly, absolute views are provided only for a stock at a time. Matrix 𝑃 shrinks to a row vector with all null elements but one, 

equal to −1, its position in 𝑃 identifying which stock the views relates to. The view value is corresponding value in 𝑄. If, for 

instance, the absolute negative view is about E.ON, the first stock in matrix 𝑄 (see (6)), posterior estimates for the expected returns 

are now 

 

𝐫̅𝐵𝐿 =

[
 
 
 
 
−0.00108
0.000455
0.001305
0.002167
0.000894]

 
 
 
 

 when 𝑐1 = 0.25 and 𝐫̅𝐵𝐿 =

[
 
 
 
 
−0.0079
−0.00183
−0.00016
0.00086
−0.0012 ]

 
 
 
 

 when 𝑐1 = 0.75 

 

while the variance-covariance matrices here read 

 

ΣBL =

[
 
 
 
 
0.00168
0.00056 0.00089
0.00036 0.00047 0.00109
0.00032 0.00029 0.00033 0.00079
0.00051 0.00041 0.00047 0.0004 0.00121]

 
 
 
 

 (𝑐 = 0.25), 

and Σ𝐵𝐿 =

[
 
 
 
 
0.00235
0.00079 0.00096
0.00051 0.00052 0.00112
0.00045 0.00033 0.00036 0.00082
0.00072 0.00048 0.00051 0.00044 0.00127]

 
 
 
 

 (𝑐 = 0.75). 

 

These results deserve some comments. Expected returns, variances and covariances of stocks unaffected by the view improve, in the 

sense that the BL adjustment leads to larger expected returns and smaller variances and covariances while data for E.ON remain 

unchanged. Remarkably, an absolute view does not directly affect the stock its posterior estimates but estimates of the other stock 

involved in the analysis. MV and ERC portfolios are 

 

Table 9 – Portfolio weights for minimum variance (second and third columns) and equally risk contribution (fourth and fifth 

columns) portfolios obtained using variance-covariance matrices encompassing a negative, absolute view on E.ON 

 MV (𝑐 = 0.25) MV (𝑐 = 0.75) ERC (𝑐 = 0.25) ERC (𝑐 = 0.75) 

E.ON 0.0721 -0.0161 -0.6623 -0.5802 

ENI 0.2617 0.2866 0.485 0.4682 

GEN 0.165 0.1807 0.3536 0.3351 

SAP 0.3933 0.4307 0.4483 0.4253 

VW 0.1079 0.1181 0.3754 0.357 

 

Weights in Table 9 reflect the absolute and pessimistic view attached to E.ON stock. Its contribution to the optimal portfolio 

decreases in all cases. On top of this, in three instances the optimal portfolios carry negative weights of E.ON stock. The level of its 

risk is deemed so large when compared to the ones of the other stocks that an advantage in short selling the stock appears. 
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Finally, Tables 10a and 10b display the view-adjusted correlation matrices. 

 

Table 10a – Correlation matrix for view-adjusted variance-covariance matrix (𝑐 = 0.25) 

 E.ON ENI GEN SAP VW 

E.ON 1     

ENI 0.5793 1    

GEN 0.46406 0.72662 1   

SAP 0.43745 0.57332 0.54819 1  

VW 0.55384 0.68308 0.65305 0.70684 1 

 

Table 10b – Correlation matrix for view-adjusted variance-covariance matrix (𝑐 = 0.75) 

 E.ON ENI GEN SAP VW 

E.ON 1     

ENI 0.5793 1    

GEN 0.46406 0.73273 1   

SAP 0.43745 0.58961 0.5628 1  

VW 0.55384 0.70831 0.67381 0.72985 1 

 

It is worth stressing that even if the view regards only one stock, correlations between the other stocks end up being affected by the 

view itself. 

Similar findings occur when applying an absolute view to one of the remaining stocks. For sake of paucity numerical results have 

been omitted. 

 

 

4) Conclusions 

Since finance started being, in the second half of the twentieth century, a topic of its own, risk management has strived to tackle real 

market problems under both a theoretical and a practical point of view. Among the tools that can be used in this context, mean-

variance portfolio analysis has been, by far, the most studied and investigated. Unfortunately, this methodology (at least in the range 

this article has dealt with) proves to be unsuccessful when markets are hit by crashes and severe turbulences. This article has also 

shown that the Black-Litterman approach, is uncapable of modifying correlations between random returns when views are absolute 

and share the same structure. This might mean that the application of the BL methodology, that confirms its importance when 

applied to the forecasted behaviour of single stocks, needs to be finely tuned when an overall drop in stock prices is expected. Even 

if Markowitz’s model provides some useful insights and the basis for more sophisticated approaches, up to the extent of stocks 

considered in this contribution its solid market application appears to be debatable.  

It might be interesting, and left for subsequent research, to perform a similar analysis where more recent risk measures, such as 

Value-At-Risk and Expected Shortfall (Artzner et al. [1], Bagnato et al. [2]) replace variance. With tools capable of detecting tail 

and non-normal shapes of risk an analysis similar to the one performed here might result with a more positive ending. 

 

Appendix 

In order to provide an intuition of the structure of these weights, consider case 𝑛 = 2 where an explicit expression for 𝐱𝐸𝑅𝑃
∗  exists. 

Starting from the risk contributions of stocks 1 and 2 

 

𝑥1
2𝜎1

2 + 𝑥1𝑥2𝜎1,2

𝑥1
2𝜎1

2 + 2𝑥1𝑥2𝜎1,2 + 𝑥2
2𝜎2

2 ,
𝑥1𝑥2𝜎1,2 + 𝑥2

2𝜎2
2

𝑥1
2𝜎1

2 + 2𝑥1𝑥2𝜎1,2 + 𝑥2
2𝜎2

2 

 

and recalling that 𝑥1+𝑥2 = 1, equating the two above quantities yields 

 

𝐱𝐸𝑅𝐶
∗ = [

𝜎2

𝜎1+𝜎2

,
𝜎1

𝜎1+𝜎2

] 

 

It is easy to verify that in this case portfolio weight of the first (second) stock is linearly dependant on standard deviation of the 

second (first) stock and that these weights do not depend on the correlation between random returns of the two stocks (Maillard et 

al. [15]). 
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