
Bond immunization and arbitrage in the
semi-deterministic setting?

Enrico Moretto

Dipartimento di Economia, Università di Parma,
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Abstract. Immunization is a widely used tool in bond portfolio man-
agement, capable of hedging interest rate risk. Its goal, the construction
of a portfolio whose value is not negatively affected by a change in the
term structure, can contradict no-arbitrage condition. This paper inves-
tigates the existence and functional form of shocks that do not lead to
arbitrage opportunities.
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1 Introduction and motivation

Duration and immunization are important topics in bond portfolio analysis from
both a theoretical and a practical point of view. Immunization yields the con-
struction of a portfolio of assets whose value, in case of unexpected changes,
usually called ‘shifts’ or ‘shocks’, in the interest rates term structure, is always
greater than the value of a given liability. Immunization is, then, a hedging
technique, useful for bondholders and portfolio managers.

The basic methodology underlying immunization is to assume some func-
tional form for the shift and to derive conditions a portfolio has to fulfill in order
to prevent it from losing too much value when the shock occurs. This explains
why the aim of most financial literature covering this topic is to provide lower
bounds for the value of an immunized portfolio in case the term structure is
affected by a shock.

Early important results were provided by Macaulay [20], Redington [26] and
Fisher and Weil [14]. Redington proved that a portfolio of bonds can be pro-
tected against an infinitesimal parallel change in the market term structure.
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Later, Fisher and Weil developed immunization conditions for a portfolio of as-
sets against a liability made of a single cash flow when the term structure shifts in
a parallel fashion. More recently, Fong and Vasicek [15] provided a lower bound
for the post-shift value of a bond when the first derivative of a differentiable shift
function is bounded while Shiu ([27] and [28]) extended Redington and Fisher
and Weil results providing immunization conditions when, respectively, the shock
has arbitrary magnitude and when it is convex. Montrucchio and Peccati [22]
and Uberti [29] further expanded these results by considering ‘α−convex’ and
‘convex−β’ shock functions. Finally, Hürlimann [16] rewrote immunization re-
sults by means of convex ordering and Courtois and Denuit [8] used ‘s−convex’
and ‘s−concave’ functions to achieve more general immunization conditions. For
detailed analyses and reviews of immunization theory the reader can refer to De
Felice and Moriconi [11], chapter three in Panjer [25], de La Grandville [12], and
chapter two, four and five in Nawalkha et al. [23].

Some scholars, for example Boyle [6], Ingersoll et al. [17], Milgrom [21], and
De Felice and Moriconi, noted that immunization contradicts the no-arbitrage
principle, whose vast exploitation provided many of the most important achieve-
ments in modern financial theory. As said above, if an immunized portfolio is
better off right after a shock, its value happens to face a sure positive change
with no chance of loss. This creates wealth out of nothing: an obvious financial
contradiction that seems to lead immunization into a lost cause. Recently, a rel-
evant argument against this conclusion has been raised by Barber and Copper
[2]. In their article the authors show that general no-arbitrage based stochastic
affine term structure models are not incompatible with immunization strategies,
the main reason being that cost of immunization over time is positive.

On the empirical side, many articles, among them the ones by Litterman and
Scheinkman [19], D’Ecclesia and Zenios [9], Barber and Copper [1], and Bliss [5],
reported that changes in the term structure can be almost entirely explained by a
limited number of factors, while Nelson and Siegel [24] proposed a parsimonious
functional form for modeling the instantaneous forward rate of return. Changes
in the market term structure should, therefore, be captured and represented by
relatively ‘simple’ shift functions.

This being said, the leading idea of this paper is an attempt to reconcile
immunization and no-arbitrage by detecting and investigating plausible shapes
in the changes of the term structure. The article provides, in a semi-deterministic
setting, a general condition for the existence of ‘arbitrage-free’ shift functions,
identifies an appropriate class of such functions and analyzes its impact on the
original term structure. The paper is organized as follows: Section two deploys
framework and notation so that key notions such as moments, immunization and
an applicable no-arbitrage definition are introduced. Section three reminds some
immunization results that will be then used in Section four where a sufficient
condition to determine a family of no-arbitrage additive shifts is found. Finally,
Section five concludes.
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2 Notation and basic definitions

2.1 Notation

Consider a market in which P bonds xi, i = 1, ..., P , are traded. Let 0 < t1 <
... < tN be the maturities in which at least one bond produces a cash flow. Each
bond is represented by a column vector xi ∈ RN of fixed and paid for sure cash
flows xi,j ≥ 0 at time tj , j = 1, ..., N . The entire market is encompassed into a
(P ×N) matrix X =

[
xT

i

]
that is assumed to contain no redundant bond, i.e.

rank(X) = min(P, N).
The market instantaneous forward rate

δ∗(s) = δt(s) + ε (s)1{s≥t∗} , s ≥ t

is composed of an observable, at time t, component δt(s) implied by X and by
the market prices of the bonds and of an additive shock ε (s) (Bierwag [3] and
[4]) that occurs in t∗ > t and perturbs the original term structure. For sake of
simplicity, and without losing generality, it is assumed that only one shock can
occur and, should this be the case, t∗ < t1. It is also assumed that both δt(s)
and ε(s) are Riemann-integrable functions for all s ≥ t. Interest rate risk is led
into the market by the functional form of ε(s) and t∗ as they both cannot be
predicted in advance.

In this paper, market is said to be deterministic (i.e. there is no interest rate
risk) if ε (s) = 0 for all s ≥ t or if t∗ > tN . If, instead, t∗ < tN and ε(s) 6= 0 for
some s ≤ tN , following De Felice [10], market is referred to as semi-deterministic.

The value at time t of one monetary unit due in s is

v∗ (t, s) = e
−

sR
t

δ∗(u)du
= v (t, s) f(t, s)

where v(t, s) = e
−

sR
t

δt(u)du
is the discount factor if no shift occurs while

f(t, s) = e
−

sR
t

ε(u)1{u≥t∗}du
= e

−
sR

t∗
ε(u)du

(1)

is the shift (or shock) factor.
The column vector v (t) = [v(t, tj)] ∈ RN , t ≤ t1, is commonly referred to

as the market term structure of spot prices. Similarly, column vector v∗ (t) =
[v∗(t, tj)] ∈ RN represents the ‘shifted’ term structure when a shock occurs.
It is handy to denote the ‘component-wise’ product between two vectors x,
y ∈ RN as vector 〈x,y〉 = [xj · yj ] ∈ RN . Accordingly, by letting column vector
f (t) = [f (t, tj)] ∈ RN ,

v∗ (t) = [v(t, tj)f(t, tj)] = 〈v (t) , f (t)〉 . (2)

Bond xi ‘pre-shift’ market price in t < t∗ is

W (t,xi) =
N∑

j=1

xi,jv(t, tj) = xT
i v(t) (3)
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and, if no shift happens, W (t̄,xi) = W (t,xi) /v(t, t̄) for t ≤ t̄ < t1. Bond xi

‘post-shift’ value in t′, t∗ ≤ t′ < t1, is

W∗ (t′,xi) =
N∑

j=1

xi,jv(t′, tj)f(t′, tj) = xT
i v∗(t′) = xT

i 〈v (t′) , f (t′)〉 . (4)

Such values are collected into two column vectors, both in RP ,

w(t) = Xv(t) and w∗(t′) = Xv∗(t′) . (5)

Assume now that δt (s) and ε(s) are not only integrable but, also, differ-
entiable a sufficient number of times for s ≥ t. Chambers and Carleton [7]
propose to measure the impact of a shock on the value of a bond by developing

g(t, s) =
s∫
t

δt (u) du and gε(t, s) =
s∫
t

ε(u)1{u≥t∗}du in a Taylor expansion

g (t, s) =
M∑

m=0

am(t)
m!

(s− t)m +
am+1(θ)
(m + 1)!

(s− t)m+1
, (6)

and

gε (t∗, s) =
M∑

m=0

aε
m(t∗)
m!

(s− t∗)
m +

aε
m+1(θ

ε)
(m + 1)!

(s− t∗)
m+1

,

where a0(t) = g (t, t) = 0, aε
0(t∗) = gε (t∗, t∗) = 0, a1(t) = δt(t), aε

1(t∗) = ε(t∗),
am(t) = dm−1

dsm−1 δt (s)
∣∣∣
s=t

, aε
m(t∗) = dm−1

dsm−1 ε (s)
∣∣∣
s=t∗

, m = 2, ..., M , t < θ < s, and

t∗ < θε < s. Letting, now, a(t) = [am(t)] and aε(t) = [aε
m(t)], m = 1, ...,M , be

two column vectors in RM , values (3) and (4) can be rewritten as

W (t,xi,a(t)) =
N∑

j=1

xi,je
−g(t,tj)

and

W∗ (t′,xi,a(t′),aε(t′)) =
N∑

j=1

xi,je
−[g(t′,tj)+gε(t′,tj)] . (7)

The effect of a shift that instantly changes the value W (t∗,xi,a(t)) into
W∗ (t′,xi,a(t′),aε(t′)) can be captured by developing (7) in a Taylor expansion

W∗ (t∗,xi,a(t∗),aε(t∗)) 'W (t∗,xi,a(t∗)) +
M∑

m=1

∂

∂am(t∗)
W (s,xi,a(t∗))

∣∣∣∣
s=t∗

·

· aε
m(t∗)

(8)

where the impact of the shock is represented by aε
m(t∗) depends on

∂

∂am(t∗)
W (t∗,xi,a(t∗)) =

N∑

j=1

xi,jv (t∗, tj)
(tj − t∗)m

m!
.
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Neglecting term 1/m!, these derivatives appear in the numerator of the m-th
order moment for bond xi defined as

Dm (t∗,xi) =

N∑
j=1

xi,j(tj − t∗)mv (t∗, tj)

N∑
j=1

xi,jv (t∗, tj)
=
〈τm (t∗) ,xi〉T v(t∗)

xT
i v(t∗)

,

being τm (t∗) = [(tj − t∗)
m] ∈ RN .

The first order moment D1 (t,xi) is the duration of bond xi while M2(t,xi) =
D2(t,xi) −D2

1(t,xi) is its convexity. In the following Section the centered 2ρ−
moment (ρ ∈ N), namely M2ρ (t,xi) = D2ρ (t,xi)−D2ρ

1 (t,xi), will be also used.
The first M moments are collected in a (P ×M) matrix D(t) = [Dm (t,xi)]

whose i−th row dT (t,xi) ∈ RM contains the moments of bond xi and is referred
to as ‘duration vector’ (Chambers and Carleton and de La Grandville [12]).
Expression (8) shows that the values of two bonds with the same duration vector
react in the same manner to a change in the term structure.

The reason why the term ‘moments’ is used is clear. Montrucchio and Peccati
[22] pointed out that any bond xi can be seen as a random variable

χi ∼




t1 − t ... tN − t

xi,1v(t;t1)
W (t,xi)

...
xi,N v(t;tN )

W (t,xi)

(9)

with Pr [χi = tj − t] = xi,jv(t;tj)
W (t,xi)

≥ 0, j = 1, ..., N and
N∑

j=1

xi,jv(t;tj)
W (t,xi)

= 1 so that

Dm (t,xi) = E [χm
i ] and Var [χi] = M2 (t,xi).

To conclude this section, consider a portfolio λ ∈ RP where λi denotes the
units of bond xi held. According to (5), the market values of this portfolio are

W (t, λ) = [Xv(t)]T λ for t < t∗ and
W∗ (t′, λ) = [Xv∗(t′)]

T
λ for t∗ ≤ t′ < t1

(10)

while, letting D(m)(t) the m-th column of D(t), the m-th moment of λ is

Dm (t,λ) =

〈
D(m)(t),w(t)

〉T
λ

W (t,λ)
.

2.2 Immunization

Loosely speaking, a bond or portfolio, is immune of interest rate risk when its
value right after a shock is greater or equal to its value right before the shock
itself. More formally, portfolio λ is immunized at time t∗ < t1 if

lim
t→t−∗

W (t, λ) = W (t∗, λ) ≤ W∗ (t∗, λ) . (11)
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Should this be the case, an investor can buy, in t, one unit of λ and, at
the same time, go short of the amount W (t,λ), so that the overall net invest-
ment is 0. Recalling that W (t∗,λ) = W (t,λ) /v(t, t∗), the net cash flow of this
investment at time t∗ is the random variable

W ∼
{

0 W∗ (t∗, λ)−W (t∗,λ)
p1 1− p1

where 0 ≤ p1 ≤ 1 is the probability that the shock does not happen in t∗.
Portfolio λ allows arbitrage opportunities as long as W∗ (t∗,λ) > W (t∗,λ)

because it ends up with a chance of making a positive sum out of a null in-
vestment with no possibility of losing money. The only case in which an im-
munized portfolio λ is compatible with absence of arbitrage is, therefore, when
W (t∗,λ) = W∗ (t∗, λ). Recalling (2) and (10), this is equivalent to write

[X 〈v(t∗), (f(t∗)− 1)〉]T λ = 0 (12)

where the unit vector 1 ∈ RN .
De La Grandville ([12] and [13]) provides the following general immunization

theorem:

Theorem 1. Consider a portfolio λ whose value in t is W (t, λ). Assume that
(6) holds, that a shock occurs in t∗, and let W (t∗, λ) = W (t,λ)/v(t, t∗) be the
value of λ in t∗ = t + h, with h ≥ 0, if no shock happens. To accomplish (11)
against any shock of the term structure, a sufficient condition, to be fulfilled in
t, is:

T1) any moment of order m of λ is equal to hm: Dm (t,λ) = hm, m = 1, ..., M ;
T2) the Hessian matrix

[
∂2

∂ai(t)∂aj(t)
W (t∗, λ)

]
, i, j = 0, ..., M , is positive-definite.

Proof : see de La Grandville [12], chapter 15.
To achieve immunization, theorem 1 applies unconstrained optimization stan-

dard methodology to function W (t∗,λ) where am(t) act as variables, being (T1)
the necessary condition while (T2) is the sufficient one. If there exists a portfolio
λ̄ that satisfies (T1) and (T2), then W (t∗, λ̄) is (at least) a (local) minimum
with respect to a(t) so that, in case a shock occurs, W∗(t∗, λ̄) ≥ W (t∗, λ̄).

Condition (T1) is fulfilled by solving, with respect to λ, the following system
of linear equations with P variables and M + 1 equations





wT (t)λ = 1〈
D(1)(t),w(t)

〉T
λ = h
... ... ...〈

D(M)(t),w(t)
〉T

λ = hM

(13)

where, without loss of generality and for sake of compactness, W (t, λ) = 1. The
conservation theorem proposed by De Felice and Moriconi [11] and De Felice
states that as moments decreases with respect to time, to keep λ immunized the
portfolio needs to be readjusted as frequently as possible by solving (13).



Bond immunization and arbitrage in the semi-deterministic setting 77

As it was assumed that the market does not carry redundant bonds, the
coefficient matrix of (13) has linearly independent columns so that its rank is
min (M + 1, P ). Three cases are possible:

C1 if M + 1 > P , (13) has no solution,1
C2 if M + 1 = P , (13), being not homogeneous, has unique solution

λT1 =




wT (t)〈
D(1)(t),w(t)

〉T

...〈
D(M)(t),w(t)

〉T




−1 


1
h
...
hM


 6= 0

C3 if M + 1 < P , (13) has an infinite number of solutions.

Under an immunization point of view, the ‘best’ portfolios are those hedged
against the widest set of shocks. This means that, according to (6), M should be
chosen as large as possible. On the other hand, such portfolios exist if (13) admits
at least one solution. These two conflicting requirements are contemporaneously
satisfied when case C2 (i.e. M = P − 1) applies. This leads to λT1 as the unique
relevant portfolio. The solutions, with respect to f(t∗), of equation

[X 〈v(t∗), (f(t∗))− 1〉]T λT1 = 0 ,

obtained by substituting λT1 into (12), should be intended as the general con-
dition for a shock factor to allow immunization while not violating no-arbitrage
condition.

Having set the basic framework, the following Section presents the results
that allow to detect these shifts.

3 Lower and upper bounds for bond values

3.1 Previous results

As seen in Section 2, immunization theory is mainly focused on finding lower
bounds for the value of bonds and portfolios in case a shift happens. Most of
the results discussed in the Introduction are, unfortunately, not appropriate to
tackle the main goal of this article as both a lower and an upper bounds are
required to determine post-shift values and to fulfill (12).

Luckily, Shiu [27], Montrucchio and Peccati [22], and Uberti [29] come up
with such bounds. Shiu assumes concavity and convexity of the shift factor and
considers a portfolio composed of two bonds, one of which is a zero-coupon.
Montrucchio and Peccati and Uberti extend this result by analyzing a portfolio
made of two generic bonds. To do this, the authors exploit a generalization of
the definition of convexity and concavity, namely the notion of α−convex and
convex−β functions.
1 To be precise, this case should be divided in two sub-cases: M > P and M = P .

The first carries no solution at all while the latter can yield either a unique solution
or no solution.
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Definition 1. Given α ∈ R, a real function φ(t) is said to be α−convex on the
interval I if φ(t)− 1

2αt2 is convex on I.

Definition 2. Given β ∈ R, a real function φ(t) is said to be convex−β on the
interval I if φ(t)− 1

2βt2 is concave on I.

Proposition 6 in Montrucchio and Peccati is presented below in a slightly sim-
plified version, more useful for the aim of this paper.

Theorem 2 (Montrucchio and Peccati, 1991). Given bonds x1 and x2 such
that W (t,x1) = W (t,x2), t < t1, if in t∗ > t a shift perturbs the term structure
so the shift factor f(t, s) is α−convex and convex−β for t∗ ≤ s ≤ tN , the
following bounds for the post-shift value ∆W∗ (t′) = W∗ (t′,x1) −W∗ (t′,x2) in
t′, t∗ ≤ t′ < t1, hold

∆D +
αM2 (t,x1)− βM2 (t,x2)

2
≤ ∆W∗ (t′)

W (t,x1)
≤ ∆D +

βM2 (t,x1)− αM2 (t,x2)
2

where ∆D = f (t,D1(t,x1))− f (t, D1(t,x2)).

Proof: see Montrucchio and Peccati.

3.2 An extension

The goal of this Subsection is to extend theorem 2. To do this a generalization
of definitions 1 and 2 is introduced.

Definition 3. Given α ∈ R and ρ ∈ N, a real function σ(t) is (α, ρ)−bounded
on I if σ(t)− αt2ρ

(2ρ)! is convex on I.

Definition 4. Given β ∈ R and ρ ∈ N, a real function σ(t) is bounded−(β, ρ)
on I if σ(t)− βt2ρ

(2ρ)! is concave on I.

Recalling (4) and (9), in case a shock occurs in t∗ the value in t < t1 of bond
xi can be written as

W∗ (t,xi) = W (t,xi)
N∑

j=1

f (t, tj)
xi,jv (t, tj)
W (t,xi)

= W (t,xi) E [f (t, χi)] . (14)

Letting once again that W (t,xi) = 1, if f(t, s) is (α, ρ)−bounded with respect
to s on t ≤ s ≤ TN , Jensen’s inequality allows to write

E

[
f (t, χi)− αχ2ρ

i

(2ρ)!

]
≥ f (t,E[χi])− αE2ρ[χi]

(2ρ)!
= f (t,D1(t,xi))− αD2ρ

1 (t,xi)
(2ρ)!

so that a lower bound for E [f (t, χi)] is

E [f (t, χi)] ≥f (t,D1 (t,xi)) +
α

[
D2ρ (t,xi)−D2ρ

1 (t,xi)
]

(2ρ)!
=

=f (t,D1 (t,xi)) +
αM2ρ (t,xi)

(2ρ)!

(15)
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If, instead, f(t, s) is bounded−(β, ρ) with respect to s on t ≤ s ≤ TN , Jensen’s
inequality yields

E

[
f (t, χi)− βχ2ρ

i

(2ρ)!

]
≤ f (t, D1(t,xi))− βD2ρ

1 (t,xi)
(2ρ)!

leading to an upper bound

E [f (t, χi)] ≤ f (t,D1 (t,xi)) +
βM2ρ (t,xi)

(2ρ)!
(16)

Consider now bonds x1 and x2 so that W (t,x1) = W (t,x2). If f(t, s) is
both (α, ρ)−bounded and bounded−(β, ρ) with respect to s when t ≤ s ≤ tN
then, according to (14), (15), and (16), the post-shift value in t∗ of ∆W∗ (t∗) =
W∗ (t∗,x1)−W∗ (t∗,x2) can be written as

∆W∗ (t∗)
W (t,x1)

=W (t∗,x1) E [f (t, χ1)]−W (t∗,x2) E [f (t, χ2)] =

=W (t∗,x1) {E [f (t, χ1)]− E [f (t, χ2)]}

so that, mimicking the proof of theorem 2, ∆W∗(t∗)
W (t,x1)

has bounds

∆D +
αM2ρ (t,x1)− βM2ρ (t,x2)

(2ρ)!
≤ ∆W∗ (t∗)

W (t,x1)
≤

≤ ∆D +
βM2ρ (t,x1)− αM2ρ (t,x2)

(2ρ)!

(17)

where, again, ∆D = f (t, D1(t,x1))− f (t,D1(t,x2)).
While theorem 2 determines bounds for the post-shift bonds value in terms of

their first two moments, definitions 3 and 4 allows to identify bounds expressed
in terms of duration and even moments of the bonds.

Armed with these bounds, the following Section finally presents a family of
no-arbitrage compatible shifts.

4 A sufficient condition for immunization and
no-arbitrage

Consider two portfolios λ1 and λ2 composed so that their values are the same(
W

(
t,λ1

)
= W

(
t,λ2

))
and their durations match

(
D1

(
t, λ1

)
= D1

(
t,λ2

))
.

According to (17), if the shift factor is both (α, ρ)−bounded and bounded−(β, ρ)
the post-shift value ∆W∗(t∗) = W∗

(
t∗, λ1

)−W∗
(
t∗, λ2

)
has bounds

αM2ρ(t, λ1)− βM2ρ(t,λ2)
(2ρ)!

≤ ∆W∗(t∗) ≤ βM2ρ(t,λ1)− αM2ρ(t,λ2)
(2ρ)!

.
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As ∆W (t) = W
(
t,λ1

)−W
(
t,λ2

)
= 0, ∆W (t∗) = 0 as well and (12) states

that a shock carries no arbitrage opportunity if ∆W∗(t∗) = 0. This occurs when

αM2ρ(t, λ1)− βM2ρ(t,λ2) = βM2ρ(t,λ1)− αM2ρ(t, λ2) = 0 .

If M2ρ(t, λ1) = M2ρ(t,λ2), ∆W∗(t∗) = 0 when α = β = q, q ∈ R\ {0}. If,
instead, M2ρ(t, λ1) 6= M2ρ(t, λ2), ∆W∗(t∗) = 0 only when α = 0 and β = 0.

For the first case, definitions 3 and 4 say that a shift factor is contemporane-
ously (q, ρ)−bounded and bounded−(q, ρ), with respect to s for all s ≥ t, when
f(t, s) − q(s−t∗)2ρ

(2ρ)! is both concave and convex or, in other words, affine. This
means that

f(t, s) =
[
q(s− t)2ρ

(2ρ)!
+ c1(s− t) + c2

]
1{s≥t∗}

with c1, c2 ∈ R so that q(s−t)2ρ

(2ρ)! + c1(s − t) + c2 > 0 for t∗ ≤ s ≤ tN . Recalling
(1), a family of no-arbitrage shifts is, then, the class of hyperbolic functions

ε1(s) = −
q(s−t)2ρ−1

(2ρ−1)! + c1

q(s−t)2ρ

2ρ! + c1(s− t) + c2

· 1{s≥t∗}

that, multiplying both numerator and denominator by ((2ρ)!)/q and letting d1 =
[c1(2ρ)!] /q and d2 = [c2(2ρ)!] /q, ε1(s) can be written as

ε1(s) = − 2ρ(s− t)2ρ−1 + d1

(s− t)2ρ + d1(s− t) + d2
· 1{s≥t∗} . (18)

In the second case (M2ρ(t,λ1) 6= M2ρ(t, λ2)), instead, ∆W∗(t∗) = 0 only when
α = 0 and β = 0 so that the shift is (c1 6= 0)

ε2(s) = − c1

c1(s− t) + c2
· 1{s≥t∗} ,

The initial amplitude of both shifts in t∗ is ε1(t∗) = ε2(t∗) = −c1/c2, c2 6= 0.
Before analyzing the impact of the shocks on the term structure it is necessary

to establish under which conditions ε1(s) and ε2(s) are continuous function for
s ≥ t∗. This is true when their denominators are not equal to 0 for all s ≥ t∗,
i.e. when equation

(s− t∗)2ρ + d1(s− t∗) + d2 = 0 (19)

has either no real root or when all its real roots are strictly negative and when
c1(s− t∗) + c2 = 0 as a strictly negative root.

The following proposition gives conditions on d1 and d2 for existence and
sign of roots of equation (19).

Proposition 1. Equation (19) has at most two real roots. Further,

1 (19) has no real roots when d2 > (2ρ− 1)
(

d1
2ρ

) 2ρ
2ρ−1 ≥ 0,
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2 (19) has a unique real root s∗ = t∗+ 2ρ−1

√
−d1

2ρ when d2 = (2ρ−1)
(

d1
2ρ

) 2ρ
2ρ−1

.
Further, s∗ < t∗ when d1 > 0,

3a (19) has two strictly negative roots when d2 < (2ρ − 1)
(

d1
2ρ

) 2ρ
2ρ−1

, d1 > 0,
and d2 > 0,

3b (19) has a strictly positive and a strictly negative roots when d2 < (2ρ −
1)

(
d1
2ρ

) 2ρ
2ρ−1

, d1 6= 0, and d2 < 0,

3c (19) has two strictly positive roots when d2 < (2ρ−1)
(

d1
2ρ

) 2ρ
2ρ−1

, d1 < 0, and
d2 > 0.

Proof: see Appendix.
Equation (19) is not verified for s ≥ t∗ when cases 1, 2, and 3a of proposition 1

apply while the denominator of ε2(s) is not equal to 0 for s ≥ t∗ when−c1/c2 < 0,
c2 6= 0. The initial amplitude ε1(t∗) can be any number (case 1 of proposition 1),
either positive or negative (case 2 as long as d2 6= 0) or strictly negative (case
3a). The initial amplitude ε2(t∗) is, instead, strictly negative.

This being said it is now possible to analyze the effect of ε1(s) and ε2(s) on
the term structure.

Continuity of ε1(s) and ε2(s), coupled with the fact that lim
s→+∞

ε1(s) =

lim
s→+∞

ε2(s) = 0, allow to conclude that the effect of the shifts vanishes with

respect to time; after a sufficiently long period of time since t∗, the shifted term
structure returns back to its pristine shape. No-arbitrage conditions drive, then,
the market back to its original status.

The impact of the shift can be ascertained by studying the first derivative of
ε1(s) and ε2(s). As

ε′1(s) =
2ρ (s− t∗)

4ρ−2 +
(
6ρ− 4ρ2

)
d1 (s− t∗)

2ρ−1

[
2ρ (s− t∗)

2ρ + d1 (s− t∗) + d2

]2 +

+

(
2ρ− 4ρ2

)
d2 (s− t∗)

2ρ−2 + d2
1[

2ρ (s− t∗)
2ρ + d1 (s− t∗) + d2

]2 ,

it is possible to determine analytically if and for which values ε1(s) has extrema
only when ρ = 1. The shift function becomes

ε′1(s) =
2 (s− t∗)

2 + 2d1 (s− t∗) + d2
1 − 2d2[

2 (s− t∗)
2 + d1 (s− t∗) + d2

]2 .

and the necessary condition ε′1(s) = 0 admits real roots s∗1 = t∗ + −d1−
√

4d2−d2
1

2

and s∗2 = t∗ + −d1+
√

4d2−d2
1

2 , s∗1 < s∗2, when d2 ≥ d2
1/4. It is evident that s∗1 < t∗

while s∗2 ≥ t∗ when d2 ≥ d2
1/2 so that, in this case, ε1(s) has a stationary
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point at s∗2. Analysis of ε′1(s) returns that ε1(s∗2) is (at least) a local minimum.
Substituting ρ = 1 into proposition 1 yields that cases 1 (d2 > d2

1/2) and 2
(d2 = d2

1/2 along with d1 > 0) are compatible with the existence of the local
minimum in s∗2. Case 3a, instead imposes ε1(s) to be monotonic for s ≥ t∗.

In the general case ρ ≥ 2, existence of stationary points can be inferred by
exploiting proposition 1 again. Let ε(s) be the numerator of ε′1(s) so that

ε′(s) =
(
4ρ2 − 2ρ

)
(s− t∗)

2ρ−3

[
(s− t∗)

2ρ +
3− 2ρ

2
d1 (s− t∗) + (1− ρ) d2

]
.

A stationary point for ε(s) is s = t∗. The term in square brackets could have
one (case 3b in proposition 1) or two (case 3c) roots greater than t∗ so that the
shift can have one or two extrema when s > t∗. To have only one critical point
greater than t∗ case 3b requires

(1− ρ) d2 < (2ρ− 1)
(

3− 2ρ

4ρ
d1

) 2ρ
2ρ−1

(20)

along with [(3− 2ρ)d1] /2 6= 0 (that is equivalent to d1 6= 0) and (1− ρ) d2 < 0
(i.e. d2 > 0). To allow for two critical points for s > t∗, case 3c imposes condition
(20) along with [(3− 2ρ)d1] /2 < 0 (i.e. d1 > 0) and, again, (1− ρ) d2 < 0.

The first derivative of ε2(s) is

ε′2(s) =
c2
1

[c1(s− t∗) + c2]
2 > 0

for all s, to that shift ε2(s) is, unlike ε1(s), an always increasing function.
To conclude, ε2(s) resembles the shift proposed by Khang [18]

ζ(s) =
λ

1 + a (s− t∗)

whose aim was to give some immunization condition when short-term rates are
more volatile than long-term ones, as can often be the case. Shock ε2(s) belongs
to the class proposed by Khang when λ = −c1/c2 and a = c1/c2.

5 Conclusions

This work has presented a theoretical framework capable of detecting the exis-
tence of shifts consistent with no-arbitrage condition and has determined explic-
itly a class of such shocks. To achieve this, immunization results that provide
lower and upper bounds for post-shift bond and portfolio values have been ex-
ploited and extended. What, at first hand, seemed a sheer contradiction between
immunization, viewed as a bond portfolio management technique, and the re-
quirement of absence of arbitrage, as the main pillar of quantitative finance,
finds here a plausible reconciliation.
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This theoretic result can also be seen as a stepping stone for subsequent em-
pirical research answering the following questions: how does a ‘real market’ shift
look like? Does the economic forces that drive the market allow ‘non arbitrage-
tight’ shifts?

Answers to these questions are left for further research.

Appendix

Proof of proposition 1

Consider p(x) = x2n + d1x + d2, n ∈ N. First of all, lim
x→+∞

p(x) = lim
x→−∞

p(x) =

+∞. Secondly, as the first order condition p′(x) = 2nx2n−1+d1 = 0 has a unique

solution x∗ = 2n−1

√
− d1

2n and p′′(x) = (4n2 − 2n)x2n−2 ≥ 0 for all x ∈ R, x∗ is
the global minimum for p(x). In fact, if d1 6= 0 then x∗ 6= 0 and p′′(x∗) > 0 while

if d1 = 0 then p(2n)(x∗) =
2n−1∏
s=0

(2n− s) > 0. Further

p(x∗) =
(
− d1

2n

) 2n
2n−1

+ d1

(
− d1

2n

) 1
2n−1

+ d2 = −
(

d1

2n

) 2n
2n−1

(2n− 1) + d2

is the global minimum point. Three cases are possible:

1: p(x) has no real roots when d2 > (2n− 1)
(

d1
2n

) 2n
2n−1 (i.e. when p(x∗) > 0),

2: p(x) has one real root x∗ = 2n−1

√
− d1

2n when d2 = (2n−1)
(

d1
2n

) 2n
2n−1 (p(x∗) =

0) and

3: p(x) has two real roots when d2 < (2n− 1)
(

d1
2n

) 2n
2n−1 (p(x∗) < 0).

If case 2 applies, x∗ < 0 when d1 > 0 and, from this, it results that d2 > 0.
Recalling that x∗ > (<)0 when d1 > (<)0 and noting that p(0) = d2, case 3 can
be divided in three sub-cases:

3a: p(x) has two strictly negative roots when d1 > 0 and d2 > 0,
3b: p(x) has one strictly negative and one strictly positive roots when d1 6= 0

and d2 < 0,
3c: p(x) has two strictly positive roots when d1 < 0 and d2 > 0.
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