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ABSTRACT 

Metabolic reprogramming has been observed in many types of cancer, and it is 

considered a hallmark of this heterogeneous multifactorial disease. Understanding the 

mechanisms leading to metabolic rewiring and how these activities promote the 

activation of cancer's malignant properties can help exploit metabolic alterations for 

therapeutic benefit. In solid tumors, cancer cells interact with the complex habitat of 

the tumor microenvironment (TME), which can modulate cancer cells' metabolism and 

their sensitivity or resistance to drug treatment. Three-dimensional (3D) models, such 

as spheroids, organoids, and organ-on-chips, are changing the paradigm of preclinical 

cancer research as they more closely resemble the complex tissue environment and 

architecture found in tumors in vivo than bidimensional (2D) cell cultures. Therefore, 

3D models could potentially improve the robustness and reliability of preclinical 

research data, reducing the need for animal testing and favoring their transition to 

clinical practice. 

Breast cancer is the most common cancer and the leading cause of cancer death for 

women worldwide. The therapeutic strategy for mammary carcinoma is guided by the 

histopathological and molecular classification, based on the expression of biomarkers 

such as hormone receptors (estrogen, ER, and progesterone, PR, receptors) and the 

human epidermal growth factor receptor-2 (HER2). Triple negative breast cancer is the 

most aggressive subtype and still lacks a targeted therapy. 

Bladder cancer is the 6th most common malignancy in men worldwide and one of the 

most expensive cancers to manage. Even though most patients are diagnosed with non-

muscle invasive bladder cancer, recurrences are frequent (50–70%), sometimes 

including progression to invasive tumors, which drastically reduce survival 

expectations. 

In this thesis, we performed a metabolic characterization of luminal (MCF7) and triple 

negative (MDA-MB-231 and SUM159PT) breast cancer cell lines and compared their 

different response to metabolic perturbations through the evaluation of cell 
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proliferation (in 2D) and spheroid formation ability. The main results of this work 

suggest that nutritional deprivations and pharmacological treatments targeting 

energetic metabolism have a more significant impact on the proliferation of cells 

growing in 2D than on spheroid formation (3D). Moreover, the perturbation of glucose 

metabolism by glucose deprivation and 2-deoxy-glucose treatment showed the most 

potent effect on the spheroid formation process, severely reducing spheroid vitality 

and morphology, especially on the highly glycolytic MDA-MB-231 cell line. 

Furthermore, we developed a reliable and reproducible workflow for the metabolic 

analysis of three-dimensional cultures by Seahorse XFe96 technology, an extracellular 

flux analyzer that simultaneously measures the Oxygen Consumption Rate (OCR) and 

the Extracellular Acidification Rate (ECAR) of living cells. The optimization of the 

spheroid formation protocol enabled the production of spheroids highly regular in 

shape and homogenous in size, dramatically reducing variability in the OCR and ECAR 

measurements among the experimental technical replicates, both under basal and drug 

treatment conditions. Furthermore, the normalization on a per-cell basis allowed us to 

directly compare these metabolic parameters between spheroids of different sizes and 

between 2D and 3D cultures, revealing that metabolic differences among the studied 

spheroids are mostly related to the cell line rather than to the size of the spheroid. 

Finally, we characterized energy metabolism and cellular properties associated with 

spreading and tumor progression of RT112 and 5637, two cell lines from Grade 2 

human bladder cancer. Although the two cell lines displayed distinct metabolic and 

invasive properties, both exhibited sizable respiration, and the metformin treatment 

gave a global downregulation of the proliferation, migration, and the ability to form 

spheroids.  

Altogether, the findings of this thesis open new research perspectives for identifying 

novel potential therapeutic targets against cancer, getting closer toward the 

understanding of cancer metabolic plasticity that can be exploited for developing 

efficient therapeutic strategies for the treatment of oncologic patients. 
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RIASSUNTO 

La riprogrammazione metabolica è stata osservata in molti tipi di cancro ed è 

considerata un tratto distintivi di questa malattia eterogenea multifattoriale. 

Comprendere i meccanismi che portano al riarrangiamento metabolico e come queste 

attività promuovono l’attivazione di proprietà maligne nel cancro può aiutare a 

sfruttare le alterazioni metaboliche a beneficio terapeutico. Nei tumori solidi le cellule 

tumorali interagiscono con il complesso habitat del microambiente tumorale (TME) che 

può modulare il metabolismo delle cellule tumorali e la loro sensibilità o resistenza al 

trattamento farmacologico. I modelli tridimensionali (3D), come gli sferoidi, gli 

organoidi e gli organ-on-chip stanno cambiando il paradigma della ricerca preclinica sul 

cancro poiché rappresentano più fedelmente la complessità dell’ambiente e 

dell’architettura tissutale che si trova nei tumori in vivo rispetto alle colture cellulari 

bidimensionali (2D). Perciò l’utilizzo dei modelli 3D potrebbe potenzialmente 

migliorare la robustezza e l’affidabilità dei dati della ricerca preclinica riducendo la 

necessità di test sugli animali e favorendone la traslazione alla pratica clinica. 

Il cancro al seno è il tumore più comune e la principale cause di morte legata al cancro 

nelle donne in tutto il mondo. La strategia terapeutica per il carcinoma mammario è 

guidata dalla classificazione istopatologica e molecolare, basata sull’espressione di 

biomarcatori come i recettori ormonali (recettore per gli estrogeni, ER, e recettore per 

il progesterone, PR) e il recettore per il fattore di crescita epidermico umano 2 (HER2). 

Il cancro al seno triplo negativo è il sottotipo più aggressivo e per il quale manca ancora 

una terapia mirata. 

Il cancro alla vescica è il sesto tumore maligno più comune al mondo negli uomini e uno 

dei tumori più costosi da gestire. Anche se la maggior parte dei tumori viene 

diagnosticato come cancro alla vescica non-muscolo invasivo, le recidive sono frequenti 

(50-70%) e possono includere la progressione a tumori invasivi, che riducono 

drasticamente le aspettative di sopravvivenza. 
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In questa tesi, abbiamo eseguito una caratterizzazione metabolica di linee cellulari di 

carcinoma mammario luminale (MCF7) e triplo negativo (SUM159PT e MDA-MB-231) e 

abbiamo confrontato la loro diversa risposta alle perturbazioni metaboliche attraverso 

la valutazione della proliferazione cellulare (in 2D) e della capacità di formare sferoidi. 

I principali risultati di questo capitolo suggeriscono che le deprivazioni nutrizionali e i 

trattamenti farmacologici contro il metabolismo energetico hanno un impatto 

maggiore sulla proliferazione delle cellule che crescono in 2D rispetto alla formazione 

di sferoidi (3D). Inoltre, la perturbazione del metabolismo del glucosio tramite 

deprivazione di glucosio e trattamento con 2-deossiglucosio ha mostrato l'effetto più 

forte sul processo di formazione degli sferoidi, riducendo gravemente la vitalità e la 

morfologia degli sferoidi, specialmente sulla linea cellulare altamente glicolitica MDA-

MB-231. 

Inoltre, abbiamo sviluppato un flusso di lavoro affidabile e riproducibile per l'analisi 

metabolica di colture tridimensionali mediante la tecnologia Seahorse XFe96, un 

analizzatore di flusso extracellulare che misura simultaneamente il tasso di consumo di 

ossigeno (OCR) e il tasso di acidificazione extracellulare (ECAR) delle cellule viventi. 

L'ottimizzazione del protocollo di formazione degli sferoidi ha consentito di produrre 

sferoidi di forma altamente regolare e di dimensioni omogenee, riducendo 

drasticamente la variabilità nelle misurazioni di OCR ed ECAR tra i replicati tecnici 

sperimentali, sia in condizioni basali che di trattamento farmacologico. La 

normalizzazione per cellula ci ha permesso di confrontare direttamente questi 

parametri metabolici tra sferoidi di diverse dimensioni e tra colture 2D e 3D, rivelando 

che le differenze metaboliche tra gli sferoidi studiati sono per lo più legate alla linea 

cellulare piuttosto che alla dimensione dello sferoide. 

Infine, abbiamo caratterizzato il metabolismo energetico e le proprietà cellulari 

associate alla diffusione e alla progressione del tumore nelle linee cellulari tumorali di 

Grado 2 derivanti da vescica umana, RT112 e 5637. Nonostante le due linee cellulari 

mostrassero proprietà metaboliche e invasive distinte, entrambe presentavano una 

respirazione considerevole e il trattamento con metformina ha causato una down-
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regolazione globale della proliferazione, della migrazione e della capacità di formare 

sferoidi. 

Complessivamente i risultati di questa tesi aprono nuove prospettive di ricerca per 

l'identificazione di nuovi potenziali bersagli terapeutici contro il cancro, avvicinandosi 

alla comprensione della plasticità metabolica del cancro che può essere sfruttata per 

sviluppare strategie terapeutiche efficienti per il trattamento di pazienti oncologici. 
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INTRODUCTION 

1.1 Cancer: an overview 

Cancer is the second leading cause of death worldwide (behind only cardiovascular 

diseases), according to a scientific study conducted among 22 groups of diseases and 

injuries in 2019 [1]. The Global Cancer Statistics 2020 estimated 19.3 million new cases 

and almost 10 million cancer deaths (+20.6% since 2010) worldwide in 2020. Female 

breast cancer has surpassed lung cancer as the most commonly diagnosed cancer, with 

an estimated 2.3 million new cases (11.7%), while lung cancer remains the first leading 

cause of cancer-related death (18%) in 2020 [2]. 

The challenge in finding a common effective strategy to treat cancer is in part due to 

the large heterogeneity across tumors: there are more than 100 types of cancer 

according to the National Cancer Institute (NCI), and cancer subtypes have been 

discovered for many of them. In order to consider these variations, there is increasing 

interest in the concept of personalized medicine, which is based on the stratification of 

patients into different molecularly defined groups and then using different treatments 

and/or interventions for each group [3]. This inter-tumor heterogeneity is classically 

recognized through different morphology traits, expression subtypes, or classes of 

genomic copy number patterns, among other differences. The genetic mutations that 

contribute to defining cancer subgroups, are usually those responsible for cancer 

initiation and progression and tend to affect two main types of genes: proto-oncogenes 

and tumor suppressor genes. Proto-oncogenes encode for proteins that function to 

stimulate cell division, inhibit cell differentiation, and halt cell death, such as RAS, PI3K, 

ERBB, EGFR, RAF, and MYC [4]. Tumor suppressor genes encode for proteins that 

regulate the cell cycle, apoptosis, and DNA repair mechanisms. The loss-of-function 

mutations in genes like TP53, RB, PTEN, BRCA, and APC can contribute to neoplastic 

transformation [5]. A useful tool to be exploited to better comprehend the complexity 
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of inter-tumor heterogeneity is multi-omics analysis, which can serve as a scaffold to 

identify a set of biomarkers that can be used for patients’ stratification in clinics [3]. 

Further complicating this scenario is the observation of intratumor heterogeneity, 

characterized by histopathological sectors of different morphology or staining behavior 

within a tumor, more recently defined as the molecular level by the genetic differences 

observed in tumor subpopulations even among individual malignant cells [6–8]. 

Intratumor heterogeneity has been explained using different plausible models of tumor 

progression, including the clonal evolution model [9] and the cancer stem cell model 

[10–12].  

The clonal evolution model suggests that tumors evolve by the expansion of one 

(monoclonal) or multiple (polyclonal) subpopulations to form the tumor mass. These 

subpopulations of cells can survive – if the acquired mutations are advantageous for 

tumor progression – or become extinct – if not – as in Darwinian selection. On the 

contrary, the cancer stem cells (CSCs) model states that cells within the tumor are 

hierarchically organized in much the same manner as normal tissues; cancer stem cells 

are rare precursors cells with self-renewal properties, that can give rise to different 

subpopulations. The extreme biological heterogeneity caused by the CSCs can lead to a 

lack of consistency in treatment planning, causing therapeutic resistance and the onset 

of relapses and metastasis [13,14]. 

To get closer to finding the best cancer treatment, inter- and intra-tumor heterogeneity 

should always be considered, but the main issue remains to understand what all these 

cancer types have in common and what distinguishes them from normal cells. For this 

purpose, Hanahan and Weinberg in 2000 stated that the vast catalogue of cancer cell 

genotypes is a manifestation of six essential alterations in cell physiology that 

collectively dictate malignant growth: self-sufficiency in growth signals, insensitivity to 

growth-inhibitory (antigrowth) signals, evasion of programmed cell death (apoptosis), 

limitless replicative potential, sustained angiogenesis, and tissue invasion and 

metastasis [15]. Later, in 2011, the same authors suggested that two additional 
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hallmarks of cancer are involved in the pathogenesis of some and perhaps all cancers: 

the ability of cancer cells to evade immunological destruction, and the capability to 

modify or reprogram, cellular metabolism in order to support neoplastic proliferation 

most effectively [16]. This latter characteristic of cancer cells is the central theme of this 

thesis, which has been studied in different models of breast and bladder cancer.  

Metabolic rewiring is essential for cancer cells because they need to satisfy the 

enhanced energy demand, generate the metabolic precursors for cell biosynthesis in 

order to expand and maintain the redox balance in the cell [17]. Cancer cell metabolic 

reprogramming is the combined result of signals deriving from intrinsic factors, such as 

oncogenic alterations (e.g. KRAS, MYC, PTEN) and epigenetic modulations, as well as 

extrinsic factors mediated by the tumor microenvironment (TME) [18]. The 

environment in which cancer cells establish can be hostile, especially during tumor 

initiation, and it can impose many challenges for the cancer cells: physical pressure, 

oxidative stress, nutrient deprivation and competition, hypoxia, and immune 

surveillance. Metabolic plasticity gives cancer cells the advantage to survive and adapt 

to these harsh environmental stresses. Interactions among the intrinsic metabolic 

network and the extrinsic signals from the TME drive cancer cells to exhibit varying 

metabolic requirements and properties [19], such as the ability to modify their 

metabolic pathways (e.g., aerobic glycolysis), to enhance the external metabolites 

uptake, and to maximize the efficiency of metabolic enzyme activities [20] (Figure 0.1). 

On the other hand, ones cancer cells have passed the restriction point of the primary 

overall anti-tumorigenic environment they must survive, they become able to 

reprogram the cells in their microenvironment (e.g. Cancer-Associated Fibroblasts, 

Tumor-Associated Macrophages), or even recruit cell types to aid their progression 

(these aspects are discussed more in detail in paragraph 1.4)[18,19,21]. 
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Figure 0.1. Metabolic pathways active in proliferating cells are directly controlled by signaling 

pathways involving known oncogenes and tumor suppressor genes. This schematic shows the 

interconnection of glycolysis, oxidative phosphorylation, the pentose phosphate pathway, and 

glutamine metabolism in proliferating cells (Heiden et al. [22]).  

Among the intrinsic factors driving cancer metabolic reprogramming, oncogenes and 

tumor suppressor genes play an essential role. For instance, oncogenic mutations of c-

MYC, KRAS, and YAP have been reported to upregulate glucose transporter (GLUT1) 

expression [23–27]. The oncogenic hyperactivation of the phosphoinositide 3-kinase 

(PI3K)/AKT pathway, along with mTOR, controls the uptake and utilization of multiple 

nutrients, including glucose, amino acids, nucleotides, and lipids [18,28]. It was 

demonstrated that its activation upregulates the activity of the glycolytic enzyme 

hexokinase (HK2) by increasing mitochondria-associated hexokinase activity [29]. In 

various cancer cell lines, HIF-1a induces the activation of lactate dehydrogenase in 

hypoxic tumor microenvironments, propelling the pyruvate to lactate conversion [30]. 

In cancer cells, hyperactive PI3K/AKT and oncogenic c-MYC upregulate pentose 
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phosphate pathway (PPP) influx [31,32], which is involved both in nucleotide 

biosynthesis and in redox homeostasis through NADPH production. 

Cancer is a complex disease in which both genetic defects and microenvironmental 

components contribute to the development, progression, and metastasization of 

disease, representing major hurdles in the identification of more effective and safer 

treatment regimens for patients. In vitro tumor models have provided important tools 

for cancer research and serve as low-cost screening platforms for drug therapies. 

However, classical bidimensional (2D) monocultures are a very simplistic model that 

does not fully consider the complexity of the neoplastic disease. Models such as cell co-

cultures, three-dimensional (3D) cultures (like spheroids), and patient-derived tumor 

organoids closely resemble tumor cytoarchitecture and also have the advantage of 

mimicking tumor behavior, which is heavily dependent on environmental signals, cell-

cell interactions, and the extracellular matrix [33]. 

In the following paragraphs, the topics of metabolic alterations in cancer and complex 

in vitro cancer models are deepening, with a particular focus on mammary carcinoma 

and bladder cancer.  

1.2 Targeting cancer metabolism 

The aberrant metabolism of proliferating cancer cells presents potential opportunities 

from a therapeutic perspective, and there has been a growing interest in studying the 

best way to target cancer metabolism [34,35]. Antimetabolites such as antifolate 

compounds (folic acid, methotrexate, aminopterin), and purines and pyrimidines 

analogues (6-mercaptopurine, 5-fluorouracil, capecitabine) are standards in many 

modern chemotherapy regimens that increase patient survival and, in some cases, help 

cure the disease [36]. However, targeting general proliferative metabolism may not 

offer an adequate therapeutic window since many non-malignant cells, including those 

in bone marrow, intestinal crypts, and hair follicles, are rapidly proliferating. Therefore, 

prominent side effects of antimetabolite chemotherapy are caused by the destruction 
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of normal rapidly proliferating cells. Therefore, finding non-toxic alternative metabolic 

therapeutic targets against cancer cells is urgent. The main metabolic pathways that 

have been considered attractive for this purpose are glucose, glutamine, and fatty acid 

pathways. 

1.2.1 Glucose metabolism 

Otto Warburg in the 1920s observed a phenomenon that became the foundation for 

the field of cancer metabolism. According to normal cellular respiration, glucose is 

converted to pyruvate, which then enters the tricarboxylic acid (TCA) cycle to undergo 

oxidative phosphorylation (OXPHOS) in the presence of oxygen, and there should be 

minimal lactate production. However, in his studies, Warburg observed an increased 

glucose uptake and increased lactic acid production in tumor cells as compared to 

normal cells, even in the presence of oxygen [37]. This phenomenon, the metabolism of 

glucose to lactate despite the presence of adequate oxygen, is called the Warburg effect 

or aerobic glycolysis [38,39]. Despite glycolysis produces at least 16-18 times less ATP 

per glucose molecule than the TCA cycle followed by OXPHOS, in the Warburg effect, 

the flux of glucose to lactate is up to 100 times faster than through the TCA cycle, 

resulting in similar amounts of ATP production over the same time  [40]. Tumor cells 

need not only ATP but also anabolic metabolism to accumulate a large amount of 

biomass to sustain their growth. The Warburg effect via multiple glycolytic 

intermediates provides a carbon source that contributes to the nucleotide, fatty acid, 

and amino acid synthesis pathways (Figure 0.2). One ubiquitous application of the 

Warburg effect is the use of positron-emission tomography (PET) imaging in oncology, 

which has become indispensable in the detection of tumors and the monitoring of the 

response of existing cancer to therapeutic intervention. PET is an exploitation of the 

high rate of glycolysis in cancer cells as it uses a radiolabeled glucose analogue, 

[18F]fluoro-2-deoxy-d-glucose (FDG), which accumulates in tumor cells due to their rapid 

uptake of glucose [41]. 
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Figure 0.2. Major alternative fates of glycolytic intermediates in biosynthetic pathways (Figure 

from Mathews and van Holde: Biochemistry). 

However, despite the Warburg effect was observed in many cancer types, more recent 

studies observed that subpopulations of cancer cells under hypoxia conditions still 

express genes related to mitochondrial function maintaining their tumorigenicity [42]. 

Moreover, considering intra-tumor heterogeneity, subpopulations of cancer cells can 

exhibit different metabolic phenotypes: indeed, it was observed that cancer stem cells 

have a lower glucose uptake and prefer OXPHOS rather than glycolysis to fulfil energy 

requirements [43]. 

Targeting glucose metabolism has been explored as a promising strategy. For example, 

using glucose analogues such as 2-Deoxy-Glucose (2DG), which binds and inhibits the 

first glycolytic enzyme hexokinase (HK2), can mimic a glucose deprivation condition, 

causing a decrease of glycolysis, and eventually induction of ROS-mediated apoptosis in 

multiple cancer types [44,45]. Drugs inhibiting Lactate dehydrogenase (LDH) enzymatic 
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activity, with the aim to block the regeneration of NAD+ (crucial in supporting the 

Warburg effect), have demonstrated anticancer effect in many cases. For instance, 1-

(phenylseleno)-4-(trifluoromethyl) benzene (PSTMB) induces apoptosis in lung cancer, 

breast cancer, colon cancer, and melanoma cells via LDH inhibition [46]. Moreover, the 

combination of metformin with MCT-1 inhibitor AZD3965 (MCT-1 is the transporter 

responsible for lactate secretion in the TME) blocks lactate-mediated tumor progression 

and has significant anticancer effects [47]. 

It was demonstrated that a potent drug targeting glucose metabolism, Glutor, induces 

cell death of monolayer and spheroid-cultured cancer cells, by inhibiting glucose 

transporters GLUT-1/-3. Moreover, a synergic effect in cancer cell growth inhibition was 

observed by combining Glutor and glutaminase inhibitor CB-839 [48]. 

1.2.2 Glutamine metabolism 

In addition to glucose, proliferating cancer cells also rely on glutamine as a major source 

of energy and building blocks. Glutamine is one of the most abundant non-essential 

amino acids in the bloodstream and it contributes not only carbon but also reduced 

nitrogen for the de novo biosynthesis of purine and pyrimidine nucleotides, other non-

essential amino acids and it is a precursor for protein and glutathione biosynthesis 

[49](Figure 0.3).  
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Figure 0.3. Main metabolic pathways of glutamine (Altman et al.[50]). 

 

Many tumor cells manifest ‘glutamine addiction’, meaning that they are reliant on 

exogenous glutamine so the depletion of this amino acid can lead to cancer cell death 

[51]. It was found that cancer cells rely on the reductive carboxylation of glutamine-

derived citrate to produce acetyl-CoA – necessary for lipids biosynthesis - and other TCA 

cycle intermediates, useful as cellular building blocks. Cells can become dependent 

upon glutaminolysis (the glutamine conversion to glutamate)  as a result of genetic 

alterations affecting oxidative mitochondrial function [52]. A recent computational 

study demonstrated that enhanced glutamine-dependent lactate production can 

promote cancer cell growth even when glutamine is the exclusive carbon source; this 

phenomenon is called the ‘WarburQ effect’ [53]. 

Blocking nutrient uptake or performing nutritional starvation is a powerful strategy for 

inhibiting specific metabolic pathways. The inhibition of glutamine transporter ASCT2 

with V-9302 was demonstrated to have anticancer effects in various cancer cell lines 

[54]. Similarly, by inhibiting glutaminase (GLS), the enzyme which catalyzes glutamine 
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conversion to glutamate, through the treatment with CB-839 and BPTES it is possible to 

obtain cytotoxic effects in triple-negative breast cancer [55]. 

A recent study revealed that combined treatment with the glutaminase inhibitor CB-

839 and the PI3K/aldolase inhibitor NVP-BKM120 more consistently reduces cell growth 

of tumor xenografts, in particular with effects on redox homeostasis and nucleic acid 

metabolism [56].  

1.2.3 Fatty acids metabolism 

The advent of advanced technology for the study of lipidomic in the last decade 

suggested that glycolysis and glutaminolysis are not the only pathways involved in 

cancer metabolic plasticity.  Indeed, also reprogramming of cellular lipid metabolism 

contributes directly to malignant transformation and progression [57]. To support 

enhanced growth, cancer cells need phospholipids to form plasma and organelle 

membranes for daughter cells, that can be supplied through de novo lipid synthesis. 

Moreover, the upregulation of mitochondrial β-oxidation can support tumor cell 

energetics and redox homeostasis [58]. It was discovered, therefore, that lipid 

metabolism has become implicated in a variety of oncogenic processes, including 

metastatic colonization, drug resistance, and cell differentiation [59–61]. 

Inhibitor agents directed against lipogenic enzymes such as fatty acids synthase (FASN), 

ATP citrate lyase (ACLY), and Acetyl-CoA carboxylase (ACC) have been the subject of 

numerous studies, and their efficacy as anticancer therapies have been proven in 

various preclinical models of carcinogenesis [62,63]. Recently was found that by 

combining pro-apoptotic agents with Carnitine palmitoyltransferase I inhibitors (e.g., 

etomoxir or ranolazine) it is possible to obtain beneficial anti-cancer effects in prostate 

cancer and human leukaemia [64,65]. 

1.2.4 Oxidative phosphorylation 

When Otto Warburg observed aerobic glycolysis in cancer cells, he also suggested that 

this behavior was usually connected with damage in mitochondria [39]. In contrast to 
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Warburg’s theory, more recent studies found that mitochondria are usually intact in 

cancer cells and that some types of cancers rely on OXPHOS for bioenergetics. 

Therefore, mitochondrial OXPHOS inhibition is a possible target for drug development 

[66]. For instance, mitochondrial respiration can be targeted using Oligomycin an ATP 

synthase inhibitor whose effect is to reduce mitochondrial ATP production. Oligomycin 

significantly decreases migration (70%) and invasiveness (25%) of triple-negative breast 

cancer cell lines in vitro [67] and reduces mammosphere formation more potently in a 

luminal breast cancer cell line than in triple-negative subtype [68].   

Another important drug targeting OXPHOS is the type 2 diabetes drug metformin. Low 

glucose concentrations were demonstrated to sensitize the triple-negative MDA-MB-

231 breast cancer cells to the anti-proliferative effect of metformin. This drug not only 

demonstrated preclinical anticancer activity in vitro [69]and in vivo but also biomarker 

evidence of antiproliferative effects in clinical trials [70,71]. By targeting OXPHOS, 

metformin is particularly cytotoxic to CSCs [72,73], cells with reduced glucose utilization 

[74,75], and cells with mutations in OXPHOS complex I [34]. However, the mechanistic 

effect of this drug is still controversial and seems to be pleiotropic [76–78]: Wang et al. 

show that pharmacological metformin concentration improves mitochondrial 

respiration by increasing mitochondrial fission through AMPK-Mff signaling; in contrast, 

supra-pharmacological metformin concentrations reduce mitochondrial respiration 

through decreasing adenine nucleotide levels [79]. Other findings suggest that by 

inhibiting mitochondria complex I, metformin induces OXPHOS inhibition-mediated 

energy stress that activates AMPK. The activation of the AMPK pathway leads to the 

inhibition of GLUT1 expression and the anabolic metabolism, including fatty acid 

synthesis [76]. Moreover, metabolic plasticity can compensate for metabolic restriction 

by upregulating other metabolic pathways to avoid stress responses. This issue can be 

overcome by combining metformin with intermittent fasting, a clinically feasible 

approach to reduce glucose availability, obtaining a synergistic anti-neoplastic effect 

[80]. 
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1.2.5 Redox homeostasis and ROS detoxification 

Reactive oxygen species (ROS) are by-products generated during the OXPHOS or by 

redox enzymes and metal catalyzed oxidations. The control of ROS levels is essential for 

cell survival because these molecules can cause direct damage to the cell membrane, 

proteins, lipids, and nucleic acids (e.g., DNA double-strand breaks), leading to cell death 

[81]. 

Compared to healthy cells, cancer cells have aberrant ROS homeostatic characteristics; 

in many types of tumors, cancer cells show higher ROS levels supporting their growth, 

proliferation, metastasis, and survival [82]. High ROS production in cancer cells can be 

driven by hypoxia [83] and by oncogenic K-RAS which produces a constitutively active 

RAS protein [84]. 

However, the increased production of ROS in many tumor cells occurs in parallel with 

increased antioxidant activity, such as the glutathione – glutathione-S-transferase 

system [85]. Indeed, although in normal cells it is crucial for the removal and 

detoxification of reactive oxygen species, elevated glutathione (GSH) levels in tumor 

cells are associated with tumor progression and increased resistance to 

chemotherapeutic drugs[86]. As a consequence, recent therapies have been developed 

to target the GSH antioxidant system in tumors in order to lower the therapeutic 

resistance. An example of this strategy is represented by the inhibition of 

cysteine/glutamate antiporter protein SLC7A11: cysteine, indeed, is a precursor for GSH 

biosynthesis and the blocking of its entrance in the cell can lead to GSH depletion and 

cell death through ferroptosis. This effect can be reached by treating cells with the drug 

erastin, which exhibits efficient anti-tumor properties without affecting their normal 

cell counterparts. Additionally, depletion of glutathione induced by erastin leads to 

significantly higher cisplatin’s cytotoxicity and reduced tumor resistance to this 

chemotherapy [87]. 
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1.3 Cancer stem cells metabolism 

Cancer stem cells (CSCs) are a subpopulation of cells within tumors, owing to the stem 

cell characteristics of self-renewal, quiescence, differentiation, and the ability to 

recapitulate the parental tumor when transplanted into a host. CSCs are correlated with 

the poor clinical outcome due to their contribution to chemotherapy resistance and 

metastasis [88]. 

Different reports about CSCs metabolism revealed contrasting results [14]: several 

studies performed on many tumor types suggest that CSCs are more glycolytic than 

other differentiated cancer cells [89–91], while many others demonstrate that they 

have a preference for mitochondrial oxidative metabolism [92–94]. A possible 

explanation of this discrepancy in literature is that cancer stem cells can adapt their 

metabolism to microenvironmental changes by conveniently shifting energy production 

from one pathway to another, or by acquiring intermediate metabolic phenotypes[95]. 

The observation of a particular phenotype instead of another can be due to the different 

conditions (e.g., glucose and oxygen concentration) in which experiments have been 

performed. Moreover, the metabolic phenotype of CSCs appears to be heterogeneous 

with distinct metabolic programs activated in different subpopulations of cancer cells 

[96]. These results suggest that the combinatory treatments blocking glycolysis and 

mitochondrial respiration at the same time may represent a good strategy to eradicate 

CSC heterogeneity than focusing exclusively on one of these pathways alone [97]. 

 

 

Currently, metabolic therapy against cancer presents several challenges for its efficient 

application in the clinic. The understanding of cancer metabolic heterogeneity and 

plasticity is still not completed. Moreover, the mechanisms underlying metabolic 

rewiring are revealed not to be the same in all cancer types: they can vary based on the 

tissue of origin, the tumor microenvironment, the phase of cancer progression (e.g., 
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primary vs metastatic tumor) and the genetic and epigenetic alterations. Another 

important challenge is the difficulty to translate the preclinical studies to the clinical 

ones, that mostly outcome as unsuccessful. Finally, the intrinsic ability of cancer cells, 

especially CSCs, to switch their metabolic phenotype in response to external stimuli, can 

lead to cancer cells adaptation and therapeutic resistance to targeted metabolic drugs. 

Although these potential obstacles can be tough to overcome, the importance of 

studying metabolism in cancer is evident; in many cases, a promising strategy was 

demonstrated opting for combinatory therapies in order to increase drug efficacy and 

reduce cancer resistance to them [98]. Moreover, the emerging power of multi-omics 

approaches and the development of integrated experimental and computational tools, 

able to dissect metabolic features at cellular and subcellular resolution, provide 

unprecedented opportunities for understanding design principles of metabolic 

(dis)regulation and for the development of precision therapies in multifactorial 

diseases, such as cancer [99]. 

 

1.4 The tumor microenvironment 

Tumors are not only composed of heterogeneous populations of cancer cells, but also 

non-malignant cells and non-cellular elements, such as extracellular matrix (ECM) and 

soluble factors secreted by the different cell types [100]. This dynamic environment 

composed of cancer cells, nonneoplastic host-tissue cells, stromal cells, blood and 

lymphatic vessels, and ECM, is defines as the tumor microenvironment (TME) [101] 

(Figure 0.4). As well as in normal organs and tissue the parenchymal cells are supported 

by connective tissue, the tumor stroma plays an important role in the sustainment of 

cancer cells. The tumor stroma is composed of abundant extracellular matrix and 

multiple support cells such as fibroblasts, endothelial cells, immune cells, and 

mesenchymal stem cells. In solid tumors, non-malignant cells can be recruited locally 

(tissue-resident) and systemically and comprise mainly fibroblasts, endothelial cells 

(EC), and innate and adaptive immune cells [102]. Cancer cells as well as fibroblasts, 
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macrophages, and various lymphocytes secrete cytokines that can accumulate in the 

tumor microenvironment and mediate communication between the various cell types 

in the tumor [103]. The tumor-derived cytokines, such as transforming growth factor β 

and tumor necrosis factor α, are also capable of modifying the protein expression 

pattern, metabolism, and acid-base regulatory function of fibroblasts, which become 

Cancer-Associated Fibroblasts (CAFs), and macrophages [104–106]. Moreover, direct 

cell–cell contacts between cancer cells and stromal cells may play a role, for instance, 

in metastasis and immune cell infiltration [104]. Among the infiltrated immune cells, 

Tumor-Associated Macrophages (TAMs) represent the most abundant in the TME 

[106]. Studies have demonstrated that the predominant population of TAMs manifest a 

M2-like phenotype, characterized by an immunosuppressor state and promotion of pro-

tumoral progression (as opposed to M1-like pro-inflammatory phenotype) [107]. 

Mesenchymal stromal cells (MSC), adipocytes and other bone marrow-derived cells 

have also been reported [108]. Cancer associated fibroblasts (CAFs) are believed to 

support the growth and invasion of cancer cells through multiple mechanisms, including 

metabolic crosstalk [105,109]. For instance, stromal fibroblasts that are deficient in 

Caveolin 1 (Cav-1) display enhanced catabolism and produce metabolites (lactate, 

glutamine and ketones) that are used by neighboring cancer cells to fuel oxidative 

energy production: this behavior is called reverse Warburg effect [110]. Moreover, 

there is evidence that CAFs can perform mitochondrial transfer toward cancer cells 

[111,112]. CAFs can also recruit immune cells through the release of growth factors and 

cytokines, causing the secretion of extracellular matrix remodeling factors by immune 

cells [19,106].  
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.  

Figure 0.4. Schematic representation of the tumor microenvironment (TME) describing the 
different elements interacting with cancer cells, such as fibroblasts, immune system cells, 
extracellular matrix, blood, and lymphatic vessels (Rodriguez et al., 2021 [101]).  

The composition of the tumor microenvironment is dynamic, with blood flow and 

metabolism varying both spatially and temporally during tumor expansion. The acidic 

tumor microenvironment generated by the metabolic waste products, such as CO2 from 

the TCA cycle and H+ from glycolysis, exported from the cancer cells and CAFs,  

represents one mechanism by which cancer cells modify the composition and function 

of the stroma [104]. 

The role of the TME in tumorigenesis, tumor progression, invasion and metastasis has 

been acknowledged over recent decades and is today unquestionable [113]. Moreover, 

the TME has been increasingly implicated in the modulation of drug response and 

resistance [102,114]. Therefore, the use of therapeutic agents targeting TME-mediated 

signaling or TME composition has been proposed, such as the drugs that inhibit matrix 
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metalloproteinase (MMP) activity [115], disrupt angiogenesis [116] or 

immunomodulators (e.g., immune checkpoint inhibitors) [117]. 

1.5 In vitro models of the tumor microenvironment 

As in many other fields of medical research, the process of drug discovery in cancer 

research needs preclinical studies on in vitro cell cultures. The most common model of 

cancer in vitro is represented by two-dimensional (2D) cultures, because of their cost-

effectiveness, simplicity to handle, rapidness of growth and high reproducibility. 

However, 2D cultures present many limitations, mainly due to their inaccurate 

representation of cancer tissue, leading to a vast gap between in vitro and in vivo animal 

studies that can easily fail due to this hurdle. On the other hand, three-dimensional (3D) 

cultures, such as spheroids and organoids, have the potential to provide alternative 

ways to reproduce in vitro organs and tissues more accurately in order to bridge the gap 

between conventional 2D culture models and in vivo animal models [33]. Moreover, 3D 

cultures can be exploited to better recapitulate the tumor microenvironment which 

comprehends the cell-cell interactions with the involvement of the extracellular matrix. 

Another way to get closer to model tumors in vitro is to grow more than one cell type 

in the same culture, using co-cultures: by adding elements of the TME it is possible to 

study the interactions between different cell types, to study the influence of stoma cell 

on cancer cells and vice-versa. Therefore, these models can represent in vitro a much 

greater similarity with the disease than conventional 2D models, with the outcome of 

becoming more and more complicated, and consequently needing more advanced 

instrumental equipment for their study [118,119]. 

1.5.1 3D cancer models 

The aim of studying 3D models in the field of anti-cancer drug discovery is to have a 

better resemblance of tumor-specific architecture than 2D culture models and to mimic 

the tumor pathophysiological microenvironment. In 3D cultures, cancer cells should 

ideally represent many of the characteristics of their in vivo counterparts such as 

proliferation, differentiation, motility and metabolic heterogeneity [33]. Table 0.1 
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compares 2D and 3D cell cultures, explaining the main advantages and disadvantages 

of both methods. 

Table 0.1. Description of the main characteristics of 2D and 3D cell culture models, highlighting 
pros and cons. The items reported in the table have been compiled using the reviews Jensen et 
al 2020, Langhans et al 2018 and Costas et al 2016 [120–122] as main sources.  

Characteristic 2D cell culture 3D cell culture 

Cell growth direction 
and shape 

Cells grow in monolayer, 
expanding in two directions, and 
their shape is flat and elongated 

Cells preserve their natural 
round shape and expand in 
three directions forming 
multiple layers 

Cell exposure to 
nutrients and oxygen 

All cells in the culture are 
exposed to the same amount of 
nutrients, growth factors and 
oxygen 

A gradient of nutrients, growth 
factors and oxygen are created 
inside the culture; the cells in 
the outer layers are more 
largely exposed to these 
molecules than the ones in the 
core 

Homogeneity/ 
Heterogeneity 

The cells are homogeneous in 
terms of proliferative status, cell 
cycle phase and death cells 
distribution inside the culture 
 

An intrinsic heterogeneity is 
created in the culture: the cells 
in the outer layers are more 
proliferative, while an 
enrichment in quiescent and 
necrotic cells occurs moving to 
the central core of the culture 

Cancer stem cells 
(CSCs) 

CSCs are usually less present 
An enrichment of CSCs may 
occur 

Cell-cell interactions 
and cell-ECM 
interactions 

Interactions between cells are 
less common and ECM is usually 
poorly developed 

Cell-cell communications are 
common, and the ECM is more 
developed 

Drug resistance 

Cells often have little resistance 
to drugs making it appear as 
though drugs administered to the 
cells were a successful treatment 

Cells are often more resistant to 
drug treatments, giving a more 
accurate representation of 
treatment success or failure 

Expression levels 
Gene and protein expression is 
often vastly different compared 
to in vivo models 

Gene and protein expression 
levels are usually more similar 
to those found from cells in vivo 

Cost and times 

For large-scale studies, are more 
cost-effective than 3D cultures 
and can give results in a shorter 
amount of time 

They are typically more 
expensive and require a larger 
amount of time for results, but 
they are still less expensive and 
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time-consuming than in vivo 
models 

Technical 
reproducibility and 
handling  

They are easier to handle and 
present high reproducibility; 
results are simpler to interpret 

Experimental reproducibility is 
lower and data interpretation 
can be more difficult 

 

According to a recent review [101], 3D culture models can be distinguished into four 

main groups: cell-based models, cell-ECM based models, microfluidic based models and 

organoids. 

Cell-based 3D models include well-organized cellular aggregates called tumor 

spheroids. Spheroids can be developed applying different approaches including the use 

of bioreactors (e.g., suspension/spinner flasks), the liquid overlay technique and the 

hanging drop technique. The liquid overlay culture is probably the simplest of all 3D cell 

culture techniques and can be obtained by covering the surface for cell culture with 

inert substrates (agar, agarose or Matrigel) or using ultra-low attachment plates that 

are coated with a layer of hydrophilic polymer on the surface that prevents cell 

attachment and promotes cell aggregation [123]. This technique is cost-effective and 

enables the formation of highly reproducible spheroids without the requirement of any 

specific equipment, and can also be applied for heterotypic spheroids [124,125].  

Cell-ECM based 3D models aim to mimic the interactions between cancer cells and the 

extracellular matrix by growing cells inside or upon a scaffold. An ideal scaffold should 

provide an appropriate environment for cell adhesion, proliferation/differentiation, and 

migration. For this purpose, cancer cells can be cultured within biomaterials, including 

decellularized native tissues, or in 3D scaffolds based on ceramics or synthetic and/or 

natural polymers. Hydrogels are particularly suitable for this purpose since they can be 

manipulated to modulate chemical-physical and mechanical properties to closely mimic 

the TME [126,127]. Natural biomaterials for scaffold-based 3D models that can be 

obtained from tissues and cells include collagen, fibrin, alginate, and chitosan that can 

be sourced from tissues and cells [128]. Other examples of scaffold mimicking ECM are 
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decellularized-ECM [129] and Matrigel, a mouse-derived ex vivo basement membrane 

substitute [130]. 

Another approach emerging in this field is 3D bioprinting: this technique refers to the 

construction of customized 3D structures under computational control using 

biocompatible materials to create a scaffold for 3D cellular models [127].  

The microfluidic based 3D models are formed of platforms called organ-on-chip 

devices, consisting of a network of microfluidic channels that allow the continuous 

perfusion of cells seeded inside. The main advantage of microfluidics is the ability to 

design complex 3D culture systems in which various parameters can be modified and 

controlled independently, such as chemical gradients, cellular localization into separate 

compartments, and the orientation of tissue interfaces [131]. These models also enable 

the modelling of vascular system, useful for studies about intra- and extravasation of 

cancer cells, to understand the mechanisms leading to the metastasization [132]. 

Moving to more complex and heterogeneous models, organoids represent organotypic 

structures generated by the proliferation and self-organization of a progenitor cell 

source and can closely mimic the 3D structure and architecture of the tissue from which 

they were derived [101]. Tumor organoids can be obtained from induced pluripotent 

stem cells (iPSCs) or patient/mouse-derived tumor xenografts (PDTX). PDTXs are 

generated by transplanting freshly derived patient material subcutaneously or 

orthotopically into immunodeficient mice. Currently, large collections of patient-

derived tumors and matching healthy organoids are generated and collected in 

biobanks [130,133,134]. 

1.5.2 Homotypic and heterotypic spheroids 

Within a properly formed spheroid structure, various proliferating cellular statuses are 

established: the external layers are typically composed of actively proliferating cells, the 

intermediate zone is composed of quiescent and senescent cells, while the central core 

is mainly composed of apoptotic and necrotic cells [135,136]. This spatial organization, 

which well reproduces the situation of tumor mass in vivo, is due to the presence of 
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gradients of nutrients and oxygen. Indeed, the cells forming the outer layers of the 

spheroids are exposed to sufficient amounts of nutrients and oxygen and can easily 

expulse metabolic wastes; on the contrary, the cells at the center of the spheroid 

experiment a lack of nutrient and growth factors, metabolic waste accumulation (e.g., 

lactic acid, causing lower pH) and hypoxic conditions [33,121,137]. Cells within 3D 

spheroids deposit ECM constituents such as collagen (e.g., collagen IV), laminin, 

fibronectin, proteoglycans, tenascin and other components [138]. Moreover, spheroids 

ECM-cell interactions (mediated by α5- and β1- integrin) and cell-cell interactions 

(mediated by E-cadherins and enforced by desmosomes and dermal junctions 

[139,140]) lead to increased interstitial fluid pressure, responsible for the impaired 

penetration of pharmaceuticals by convection [141]. The limited penetration of drugs 

into the tumor tissue is usually an underestimated aspect of the phenomenon of drug 

resistance that should be taken into consideration in preclinical modelling for drug 

screening [142] (Figure 0.5). It was observed that cancer cell resistance to drugs can be 

linked to the hypoxic condition of spheroids’ environment, since some 

chemotherapeutic compounds (e.g., 5‐fluorouracil, cisplatin, doxorubicin, and 

irinotecan) need oxygen to induce an effective anticancer effect through the formation 

of reactive oxygen species (ROS) that damage cell’s membrane and DNA [81,143]. The 

gradient of oxygen that occurs inside the spheroids is also responsible for the metabolic 

heterogeneity of this cancer model: the cells in the external region of the spheroid 

typically have enough oxygen to perform mitochondrial respiration, while cells of the 

inner region exhibit a more glycolytic metabolism with lactate accumulation due to the 

lack of oxygen. 
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Figure 0.5. Tumor spheroid schematic structure (adapted from Zanoni et al., 2020 [33]). 

It was reported that CSCs enriched spheroids can be produced from cancer cell lines 

through exogenous forced expression of specific sets of transcription factors (e.g., OCT-

4, c-Myc), by cell sorting cancer cells expressing CSCs markers or by applying specific 

culture conditions (e.g., repetitive cycles of hypoxia and reoxygenation, special cell 

culture media without serum and supplemented with growth factors) [144]. 

Generally, the term ‘homotypic spheroids’ refers to spheroids composed of a single cell 

type are, while those constituted by multiple cell types are called heterotypic spheroids. 

Since fibroblasts represent one of the most abundant populations of stromal cells in the 

TME, contributing to tumor initiation, progression, metastasis, and response to therapy 

[145], heterotypic spheroids composed of tumor cells and normal fibroblasts or CAFs 

(which can represent 40% – 60% of the many tumor’s cellular composition, including 

breast cancer [18]), are widely used in drug discovery studies. Therefore, it was 

observed that co-culturing with fibroblasts increases the proliferation of several types 

of cancer cells, such as lung, breast, and pancreatic tumor cells. Moreover, fibroblasts 

can influence the response to therapeutic agents in heterotypic spheroids in vitro 

[146,147]. 
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1.6 Breast cancer 

1.6.1 Breast anatomy 

The breasts are accessory sexual organs of the female reproductive system whose 

structure reflects its special function: the production and secretion of milk for lactation 

(breastfeeding) after the birth of a child. The external features of the breast include a 

nipple surrounded by a pigmented areola. The areolar region is characterized by small, 

raised areolar glands that secrete lubricating fluid during lactation to protect the nipple 

from chafing. Breast milk is produced by the mammary glands, which are modified 

sweat glands. The milk itself exits the breast through the nipple via 15 to 20 lactiferous 

ducts that open on the surface of the nipple. These lactiferous ducts each extend to a 

lactiferous sinus that connects to a glandular lobe within the breast itself that contains 

groups of milk-secreting cells in clusters called alveoli. The clusters can change in size 

depending on the amount of milk in the alveolar lumen. Once the milk is made in the 

alveoli, stimulated myoepithelial cells that surround the alveoli contract to push the milk 

to the lactiferous sinuses. The lobes themselves are surrounded by adipose (fat) tissue. 

Supporting the breasts are multiple bands of connective tissue called suspensory 

ligaments that connect the breast tissue to the dermis of the overlying skin (Figure 0.6) 

[148] 

 

Figure 0.6. Breast anatomy: front view (left) and side view (right). (Anatomy and Physiology 
Volume 3 [148]). 
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The vascularization of the breast is carried out by branches of the axillary artery and the 

internal thoracic artery. Lymph from the breast lobules, nipple and areola areas collect 

into the subareolar lymphatic plexus. From here, around 75% of lymph drains into the 

pectoral lymph nodes, and then into the axillary lymph nodes. 

Anatomically, the adult breast sits atop the pectoralis muscle, which is atop the ribcage. 

The breast tissue extends horizontally from the edge of the sternum out to the 

midaxillary line. The breast tissue is encircled by a thin layer of connective tissue called 

fascia. The deep layer of this fascia sits immediately atop the pectoralis muscle, and the 

superficial layer sits just under the skin [149]. 

In women, the breast develops approximately around the age of 12-13 years and its 

complete maturation occurs after pregnancy and breastfeeding. The non-pregnant and 

non-lactating female breast is primarily composed of adipose and collagenous tissue, 

while mammary glands represent a minor portion of breast volume. During the normal 

hormonal fluctuations in the menstrual cycle, breast tissue responds to changing levels 

of estrogen and progesterone, which can lead to swelling and breast tenderness in some 

individuals, especially during the secretory phase. If pregnancy occurs, the increase in 

hormones leads to further development of the mammary tissue and enlargement of the 

breasts. During menopause, when the regular activity of the ovaries is lacking, the 

phenomena of senile regression prevails [150]. 

The male breast structure is nearly identical to the female breast, except that the male 

breast tissue lacks the specialized lobules since there is no physiologic need for milk 

production by males [149]. 

 

1.6.2 Carcinogenesis and risk factors 

Breast carcinogenesis is a multistep, multipath, and multiyear disease of progressive 

genetic and associated tissue damage [151]. It occurs in the epithelial tissue of the 

mammary gland, in particular in the mammary ducts or lobules. The initiation of breast 
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cancer is due to transforming (genetic and epigenetic) events in a single cell [152]. The 

majority of invasive breast cancers are thought to develop from simple hyperplasia 

without atypical cells to benign lesions such as atypical ductal hyperplasia (ADH), 

atypical lobular hyperplasia (ALH), ductal carcinoma in situ (DCIS) and lobular carcinoma 

in situ (LCIS). These benign lesions are characterized by relative loss of growth control, 

but they lack the ability to invade and metastasize and, in this sense, are pre-malignant 

[153]. Subsequent tumor progression is driven by the accumulation of additional 

genetic changes combined with clonal expansion and selection, that lead to the 

acquisition of more malignancy features such as invasiveness and metastasis [151] 

(Figure 0.7). 

 

Figure 0.7. Hypothetical model of breast cancer progression: from normal tissue, to in situ 
carcinoma, to invasive and finally metastatic tumor. The figure shows a schematic section of a 
mammary duct. (Polyak, 2007 [152]). 

 

The reduction of modifiable risk factors is currently the preventive therapy for several 

kinds of cancer, including breast cancer. Identifying the individual risk and the 

modifiable factors is a preventive strategy to limit the development and progression of 

breast cancer [151]. Unless genetic alterations are thought to be at the basis of 

carcinogenesis, it was estimated that less than 10% of breast cancers can be attributed 

to an inherited genetic mutation [154]. This type of cancer is more commonly associated 
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with environmental, reproductive, and lifestyle factors, some of which are potentially 

modifiable. The main risks factors for breast cancer can be declined in the following 

categories: 

a) Hormonally mediated risk factors: Estrogen’s carcinogenetic effects have been 

proposed as two pathways: (1) the activation of estrogen receptor (ER) alters gene 

expression, increasing proliferation and therefore the probability of mutations; (2) 

The oxidative metabolism of estrogen into quinone metabolites can lead to the 

formation of depurination DNA adducts or create ROS, causing oxidative damage 

to DNA [155]. Despite the stimulating effects of estrogen on hormone receptor-

positive tumors being observed in the majority of breast cancers, more recent 

studies failed to show these associations and sometimes contradict prior 

assumptions [154]. Some examples of hormone-related risks factors are listed 

below [151]: 

• Age at menarche and age at menopause: early age at menarche and late age 

at menopause are known to increase women’s risk of developing breast 

cancer, but this effect might not be acting merely by lengthening women's 

total number of reproductive years [156]; 

• Oophorectomy: Bilateral surgical resection of ovaries reduces breast cancer 

risk, likely because of reductions in levels of circulating ovarian hormones 

[157]; 

• Pregnancy: parity and early age at first full-term pregnancy are associated 

with reduction of breast cancer risk [158]. The older a woman is when she has 

her first full-term pregnancy, the higher her risk of breast cancer; 

• Breastfeeding: the longer women breastfeed, the more they are protected 

against breast cancer [159]; 

• Oral contraceptives: the use of oral contraceptives is associated with an 

increased breast cancer risk, but it depends on the formulation. Any 

association was found for low-dose estrogen contraceptives [160]; 
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• Hormone replacement therapy: long-term use of combined hormone 

replacement therapy containing estrogen plus progestogen given to relieve 

the climacteric symptoms of menopause is associated with an increased risk 

of breast cancer [161]; 

b) Demographic and lifestyle factors 

• Height, obesity, Body Mass Index (BMI): increasing height or elevated BMI 

are associated with an increased risk of breast cancer in postmenopausal 

women, however, obesity is associated with poor prognosis in women 

diagnosed with early-stage breast cancer [162]; 

• Diet: based on an extensive review of the literature, the association of dietary 

fiber, vegetables and fruits, soy and soy products, meat, fish, milk and dairy 

products, folate, vitamin D, calcium, selenium glycemic index, dietary patterns 

with breast cancer was classified as “Limited evidence—no conclusion”. 

Moreover, the association for total fat and breast cancer was classified as  

“Limited—suggestive” for postmenopausal but not for premenopausal 

women [163]; 

• Physical activity: physical activity probably protects against breast cancer 

post-menopause, and there is limited evidence suggesting that it protects 

against this cancer diagnosed pre-menopause [163]; 

• Alcohol and tobacco: there is substantial evidence that alcohol consumption 

increases breast cancer risk, but weak association was found between 

smoking and breast cancer risk [164]; 

• Radiations: it was documented that exposure to radiations, especially during 

adolescence, increases breast cancer risk [165]. 

c) Genetic factors: individual risk for breast cancer is increased in individuals carrying 

a mutation in a predisposing gene and others with several affected relatives with 

early age of disease onset in whom no specific mutation has been identified [166]. 

The most frequent hereditary mutations associated with enhanced breast cancer 

risk can be divided in high-penetrance genes (e.g., BRCA1, BRCA2, TP53, CDH1, 
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PTEN, and STK11) and moderate-penetrance genes (e.g., ATM, CHEK2, PALB2, NF1, 

BARD1, BRIP1, MRE11A, NBN, RAD50, RAD51C, and RAD51D)[151]. Approximately 

25-28% of germline mutations responsible for breast cancer development are due 

to BRCA1 and BRCA2 mutations, that encode for proteins involved in DNA double-

strand break repair by homologous recombination. The risk in BRCA1 and BRCA2 

mutation carriers of developing breast cancer by the age of 70 is 45–87%[167]. It 

was reported that 78% of tumors arising in BRCA1 carriers are estrogen receptor 

(ER)-negative, while only 23% of tumors arising in BRCA2 mutation carriers are ER-

negative. Furthermore, Human Epidermal Growth Factor 2 (HER2)-overexpression 

was only observed in approximate 10% of the tumors from mutation carriers. 

Consequently, 69% of the BRCA1 tumors are triple-negative, which is true for only 

16% of the BRCA2 tumors [168]. 

1.6.3 Epidemiology 

Breast cancer was the first most diagnosed cancer worldwide in 2020, surpassing lung 

cancer, accounting for 2,261,419 new cases, that represent 11.7% of global cancer 

incidence in both sexes [2]. In female, mammary carcinoma not only represents the first 

cause of cancer diagnosis but also the first cancer-related death, with 24.5% of 

incidence and 15.5% of mortality. It was estimated that approximately 13% of women 

(1 in 8) will be diagnosed with invasive breast cancer in their lifetime [169]; this 

probability is lower in women younger than 40 years, increases with age but lowers 

after menopause, with a pick between 55 and 64 years [154].  

Although breast cancer is usually considered a female disease, since its insurgence is 

prevalent in women, actually approximately 1% of breast cancer occurs in males, and 

the lifetime risk of being diagnosed with breast cancer as a male is 1 in 1000 [154].  

Many studies have found that breast cancer incidence and mortality vary by 

geographical region, age groups and ethnicity. The highest incidence values are 

reported in high-income and high-middle income countries, which include North-

America, Australia/New Zealand and Europe, whereas breast cancer mortality registers 
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the highest ranges in low-income and low-middle income countries such as Africa and 

Oceania regions [170,171]. For what concerns the age, it was estimated that 82% of 

breast cancers are diagnosed among women aged over 50 years, with the median age 

of diagnosis around 62 years. There is a slight difference among ethnicity, indeed white 

women have a median age of diagnosis for breast cancer of 63 years, while in black 

women this parameter is 60 years. Similarly, for mortality the 90% of breast cancer 

deaths occur in over 50 years age group. The median age at breast cancer death is 68 

years overall, 70 years for white women, and 63 years for black women [172]. 

A recent study revealed that the incidence of breast cancer has increased not only in 

woman older than 50 years but also in women under 50 years across the globe from 

1998 to 2012 [173]. Therefore, since breast cancer incidence is increasing also in 

younger people, the global augmented risk for mammary carcinoma cannot fully 

explained by aging of population. Other risks factor associated with this cancer disease 

might be linked to changes in lifestyle, such as delayed and reduced childbirth [170,173]. 

According to Rojas et al. [154], less than 10% of breast cancers can be attributed to an 

inherited genetic mutation, while it is more commonly associated with environmental, 

reproductive, and lifestyle factors, some of which are potentially modifiable. 

1.6.4 Classification and staging 

Increased understanding of the intrinsic heterogeneity of breast cancer subtypes is 

essential to define a correct diagnosis, to predict the behavior of the tumor and so to 

define the prognosis and chose the most suitable treatment. The two main questions 

that breast cancer classification wants to answer are: (1) how ‘bad’ the tumor is (typing 

and grading)? and (2) how extensive the tumor (staging)? The response to the first 

question is based on the histologic subtypes and grade, which are detailed in the WHO 

tumor classification [174,175]. The stage of the tumor is based on the TNM staging, 

which is based on tumor size (T), nodal status (N) and distant metastasis (M). 

The various types of breast cancer classification follow different schemes criteria and 

serving a different purpose. The major categories are the histopathological type, the 
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molecular subtypes, grade of the tumor, the stage of the tumor, and the expression of 

proteins and genes.  

The histological classification of breast cancers is based on the pathologic growth 

pattern and divides them into two main groups: in situ carcinoma and invasive 

carcinoma. There are over 20 different histologic types of invasive breast cancers, while 

the in situ carcinoma have fewer subtypes. The main types and subtypes of breast 

cancer based on histological classification are listed below [176]: 

• In situ (pre-invasive) carcinoma: cancer cells are limited to basement membrane; 

it accounts for 25% of cases. It is further classified in: 

➢ Ductal carcinoma in situ (DCIS): represents 80% of in situ carcinomas, 

sub-classified in Comedo, Cribiform, Micropapillary, Papillary and Solid. 

➢ Lobular carcinoma in situ (LCIS): represents 20% of in situ carcinomas.  

• Invasive (infiltrating) carcinoma: it accounts for 75% of cases and it is characterized 

by cancer cell extension beyond basement membrane. They include: 

➢ Infiltrating ductal carcinoma (IDC): subclassified in well-differentiated, 

moderately-differentiated and poorly-differentiated basing on nuclear 

polymorphism, glandular/tubule formation and mitotic rate. They 

represent 70-80% of invasive lesions.  

➢ Infiltrating lobular carcinoma (ILC): it accounts for 10% of invasive 

lesions. 

➢ Ductal/lobular carcinoma 

➢ Mucinous (colloid) carcinoma 

➢ Tubular carcinoma 

➢ Medullary carcinoma 

➢ Papillary carcinoma 

The classification based on grading encompasses microscopic assessment of histologic 

differentiation in the form of tubule formation, nuclear pleomorphism, and 

proliferation as indicated by mitotic index. The grade assignment is given by the 
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summation score of each parameter, that are evaluated with a numerical scoring system 

of 1 to 3 [174]. 

The molecular classification of breast cancer subtypes is based on the expression of 

specific molecular markers. The intrinsic subtypes are based on a 50-gene expression 

signature (PAM50). The surrogate intrinsic subtypes are typically used clinically and are 

based on histology and immunohistochemistry expression of key proteins: estrogen 

receptor (ER), progesterone receptor (PR), human epidermal growth factor receptor 2 

(HER2) and the proliferation marker Ki67. Global gene expression profiling studies 

classified breast cancers into 5 subtypes by hierarchical clustering (Table 0.2 and Figure 

0.8). 

Table 0.2. Breast cancer molecular classification and main characteristics [177] 

INTRINSIC SUBTYPES SURROGATE INTRINSIC SUBTYPES 

Basal like 

• TP53 mutations 

• Genetic instability 

• BRCA mutations 

• Medullary-like histology 

• Poorly differentiated 

Triple-negative (TNBC) 

• ER– PR– HER2– 

• High grade 

• High Ki67 index 

• Poor prognosis 
• Metaplastic, adenoid cystic, medullary-

like and secretory 

Claudin-low 

• Largely triple-negative 

• Metaplastic 

[Normal-like subtype was an artefact: the expression 
of normal breast components is due to low tumor 
cellularity] 

HER2-enriched 

• HER2 amplification 

• GRB7 amplification 

• PIK3CA mutation 

• TOPO2 and/or MYC amplification 

• Pleiomorphic lobular and micropapillary 
histology 

HER2-enriched (non-luminal)  

• ER–, PR–, HER2+ 

• High grade 

• High Ki67 index 

• Aggressive but responds to targeted 
therapy 

• Intermediate prognosis 

• No special type of histology 

Luminal B 

• PI3KCA mutations (40%) 

• ESR1 mutations (30–40%) 

• ERBB2 and ERBB3 mutations 

• Micropapillary and atypical lobular histology 

Luminal B-like HER2+ 

• ER+ but lower ER and PR expression than 
luminal A-like 

• HER2+ 

• Higher grade 

• High Ki67 index 

• Responds to targeted therapy 
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• Intermediate prognosis 
• Pleiomorphic histology 

Luminal B-like HER2– 

Same as Luminal B-like HER2+ but: 

• HER2– 

• Micropapillary and lobular pleiomorphic 
histology 

Luminal A 

• Activation of ESR1, GATA3, FOXA1, XBP1 

• Tubular cribriform and classic lobular 
histology 

Luminal A-like 

• Strongly ER+ and PR+ 

• HER2– 

• Low proliferation rates 

• Low grade 

• Low Ki67 index 

• Good prognosis 
• Tubular cribriform and classic lobular 

histology 

 

According to a cross-sectional study including 320,124 women diagnosed with breast 

cancer from 2010 to 2016, the breast cancer molecular subtypes are distributed as 

follows [178]: 

➢ 72.6% luminal A 

➢ 11.2% luminal B 

➢ 4.8% HER2-enriched 

➢ 11.3% triple-negative 

A more simplified molecular classification that divides breast cancers only in 3 groups, 

i.e., luminal (hormone responsive: ER+PR+HER-/+), HER2+ (ER-PR-HER2+), and TNBC 

(ER-PR-HER2-), can be found in literature. 

The TNM staging system is applied for the classification of many types of tumors, with 

little variations.  For breast cancer, the TNM system describes the tumor as follows 

[179]: 

➢ Tumor (T). The size and location of the tumor. 

o TX: Primary tumor cannot be assessed 

o T0: No sign of a primary tumor in the breast 
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o Tis: Carcinoma in situ 

o T1: The tumor size is ≤ 20 mm. It includes 4 more subgroups basing on tumor 

size. 

o T2: The tumor size is > 20 mm but ≤ 50 mm 

o T3: The tumor is > 50 mm 

o T4: The tumor has grown into the chest wall and/or into the skin or an 

inflammatory breast cancer is present. It includes 4 subgroups basing on the 

inflammatory state. 

➢ Lymph Node (N). The size and location of lymph nodes where cancer has spread. 

o NX: The lymph nodes cannot be assessed 

o N0: No sign of cancer in the lymph nodes, or tiny clusters of cancer cells ≤ 0.2 

mm in the lymph nodes 

o N1: Cancer has spread to 1 to 3 lymph nodes (axillary, near the breastbone or 

sentinel), with dimensions ≤ 2 mm. It includes 4 subgroups. 

o N2: Cancer has spread to more than 3 lymph nodes and its dimension is > 2 mm. 

it includes 2 subgroups. 

o N3: Cancer spread to the lymph node is more severe (more lymph nodes 

involved, more distant to the primary tumor site, > 2 mm). It includes 4 

subgroups. 

➢ Metastasis (M). Cancer has spread to other parts of the body. 

o M0: There is no sign that cancer has spread to other parts of the body. 

o M1: Cancer has spread to other parts of the body, most often the bones (67%), 

lungs (37%), liver (41%), or brain (13%) [177]. 

Breast cancers that are diagnosed as metastatic at first presentation (de novo) account 

for 25–28% of metastatic breast cancers [180]. The intrinsic molecular classification of 

breast cancer influences the profile (timing, sites) of metastatic disease: Luminal A 

tumors tend to relapse late (after 5 years of first presentation) and have a tropism for 

bone and lymph nodes (as do luminal B, HER2-negative tumors). TNBCs are prone to 

early recurrences (within 2–3 years of first presentation) and tend to form visceral (lung) 
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and brain metastases. Since the era of anti-HER2 targeted therapy, HER2-positive breast 

cancers show better prognosis, but they escape therapy through brain metastasis [181]. 

 

Figure 0.8. Schematic representation of the main histologic and molecular subtypes of breast 
cancer and main characteristics (Wong and Rebelo [182]). 

  

1.6.5 Diagnosis and therapy 

Breast cancer can be diagnosed staring from a clinical breast exam, in which the doctor 

feels the breast and ascertains if something unusual is present. If something suspicious 

is detected, more accurate examinations can be performed, such as ultrasound exam, 

mammogram, and mammography (X-ray of the breast). In case these exams confirm the 

suspect of a tumor, a fine-needle aspiration (FNA) biopsy (i.e., removal of tissue or fluid, 

using a thin needle) or, if the latter is not sufficient for accurate diagnosis, a more 

invasive core biopsy (i.e., removal of tissue using a wide needle) or an excisional biopsy 

can be performed (i.e., removal of an entire lump of tissue) [179].  
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The breast biopsy is then subjected to a histologic exam for a more accurate diagnosis, 

in order to define the histological subtype, the molecular subtype, and the grading of 

the tumor. When a breast cancer has been diagnosed, to investigate the staging of the 

tumor and, more specifically if lymph nodes invasion or metastasis are present, a 

Magnetic Resonance Imaging (MRI) scan, a Computed Tomography (CT) scan, or a 

Positron Emission Tomography (PET) are performed. Moreover, genomic testing can be 

performed to identify the genetic mutations of the tumor for a more accurate 

classification and diagnosis. 

A correct diagnosis is essential to predict the prognosis and guide the most effective 

therapy. 

For non-metastatic breast cancer, the main goals of therapy are eradicating tumor from 

the breast and regional lymph nodes and preventing metastatic recurrence. A diagram 

of early breast cancer therapy approach based on molecular subtype is presented in 

Figure 0.9. The first line therapy for many breast cancers is the surgical remotion with 

or without local adjuvant radiotherapy (i.e., adjuvant therapy is administered post-

surgery, to remove eventually cancer cells not removed with surgery), and 

chemotherapy as adjuvant or neo-adjuvant (before surgery, to reduce the tumor size). 

The principal chemotherapeutic drugs are Adriamycin, cyclophosphamide, paclitaxel, 

and docetaxel. For hormone responsive breast cancers (luminal ER+PR+) and HER2+ 

subtypes but not for triple-negative breast cancers, a targeted therapy is available. For 

hormone responsive tumors, endocrine therapy targets ER signaling by inhibiting the 

production of hormones (aromatase inhibitors and gonadotropin-releasing hormone 

agonist (GnRH) agonists) or by interfering with the binding between estradiol and 

estrogen receptor (e.g., Tamoxifen and raloxifene are partial nonsteroidal estrogen 

agonists). Patients with ERBB2-amplified (HER2+) benefit from ERBB2-targeted therapy, 

including monoclonal anti-HER2 antibodies (such as trastuzumab and pertuzumab) and 

small-molecule tyrosine kinase inhibitors (such as lapatinib and neratinib) [183]. 
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Currently, metastatic breast cancer remains incurable in virtually all affected patients. 

The same basic categories of systemic therapy are used in metastatic breast cancer as 

in neoadjuvant/adjuvant approaches. Local therapy modalities (surgery and radiation) 

are typically used for palliation only in metastatic disease [183]. 

 

Figure 0.9. Flowchart of the main therapies for early-diagnosed breast cancers based on tumor 
burden or subtype. GnRH: gonadotropin- releasing hormone; HR: hormone receptor; PR: 
progesterone receptor; N: node status; T: tumor grade; T-DM: ado- trastuzumab emtansine; 
pCR: pathological complete response (Harbeck et al [177]). 

 

1.6.6 Breast cancer metabolism 

Breast cancer metabolism is characterized by wide heterogeneity since it changes 

dependently to the molecular subtype. Many triple-negative breast cancers display a 

classical Warburg metabolism with high glucose uptake and increased lactate secretion 

even in the presence of oxygen. In vivo measurements of glucose uptake rates using 

18FDG-PET demonstrated that the highly glycolytic phenotype of triple-negative breast 

cancers is not an artifact from cell culture conditions [184]. The same study also 

revealed a strong correlation between increased glucose uptake and the proliferation 

index (through Ki-67 nuclear staining), highlighting the evidence that this metabolic trait 
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of triple-negative breast cancers is linked with tumor aggressiveness. In line with the 

increased glucose uptake, several studies have shown an increased expression of 

glucose and lactate transporters (MCT), as well as lactate dehydrogenase, which 

interconverts pyruvate and lactate [185]. Moreover, it was observed that the activation 

of OXPHOS metabolism in TNBCs led to decreased metastasis and reduced tumor 

growth [186]. This activation was triggered by increasing the activity of complex I of the 

respiratory chain, which results in an increased NAD+/NADH ratio which decreases 

mTORC1 activity and subsequently leads to autophagy [187]. These data suggest that 

the combination of decreased oxidative phosphorylation with increased glycolysis 

allows fast proliferation in certain types of triple-negative breast cancers. 

Triple-negative breast cancers have been shown to display an increased uptake of 

glutamine and cholesterol, while the de novo synthesis of these metabolites was 

decreased [188,189]. Contrary to triple-negative breast cancer, estrogen receptor 

positive breast cancers have a high glutamine synthetase activity and increased 

glutamine secretion, indicating a less glutamine-dependent phenotype [189]. 

In contrast to triple-negative breast cancers, many estrogen receptor positive breast 

cancers display the so-called reverse Warburg effect: the phenomenon, whereby cancer 

associated fibroblasts (CAFs) take in glucose and release lactate and pyruvate to cancer 

cells. The cancer cells use the secreted lactate and pyruvate to fuel their TCA cycle [60]. 

Thus, in this complex interaction, the CAFs display a glycolytic metabolism, while the 

cancer cells rely on oxidative metabolism [190]. The interactions of cancer cells with the 

stroma in the TME is often bilateral: cancer cells promote the metabolic reprogramming 

of stromal cells (fibroblasts become CAFs) and CAFs interact with cancer cells in the 

reverse Warburg effect [110,191]. Figure 0.10 schematically represents the main active 

metabolic pathways in TNBC (A) an ER+ (B) breast cancer subtypes.  
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Figure 0.10. Schematic representation of (A) Triple-negative breast cancer and (B) Estrogen-
receptor positive breast cancer metabolism (Elia et al.[192]). 

 

1.7 Bladder cancer 

1.7.1 Bladder anatomy 

The bladder is a hollow muscular organ that functions as a temporary storage reservoir 

for urine. In sectional view, the mucosa lining the urinary bladder is usually thrown into 

folds, or rugae, that disappear as the bladder stretches and fills with urine. The 

triangular area bounded by the ureteral openings and the entrance to the urethra 

constitutes the trigone of the urinary bladder. The trigone acts as a funnel that channels 

urine into the urethra when the urinary bladder contracts [150](Figure 0.11). The wall 

of the bladder contains a mucosa of transitional epithelium, a submucosa, and 

muscularis layers. The muscularis layer consists of three layers: inner and outer 

longitudinal smooth muscle layers, with a layer of circular muscle sandwiched between. 

Collectively, these layers form the powerful detrusor muscle of the urinary bladder. 

Contraction of this muscle compresses the urinary bladder and expels its contents into 

the urethra. A layer of serosa covers the superior surface of the urinary bladder [150]. 
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Figure 0.11. Schematic representation of a male bladder section [150]. 

 

1.7.2 Classification, grading and staging 

The first classification of bladder cancer was proposed by Mostofi et al. in 1973 [193].  

In this study, the histological typing of urinary bladder tumors was based on the degree 

of anaplasia of tumor cells, defined as increased cellularity, nuclear crowding, 

disturbance of cellular polarity, failure of differentiation from the base to the surface, 

polymorphism, irregularity in cell size, variations of shape and chromatin pattern in 

nuclei, displaced or abnormal mitotic figures, and giant cells. The scale had three grades: 

grade 1 was defined as tumors with the lowest degree of anaplasia (well-differentiated), 

whether grade 3 had the most severe degree of anaplasia (poorly differentiated) and 

grade 2 is an intermediate condition (moderately differentiated). In 1998 WHO and the 

International Society of Urological Pathology (ISUP) introduced the term “papillary 

urothelial neoplasm of low malignant potential” (PUN-LMP) and the previous 

classification was reviewed and corrected with: PUNLMP (low malignancy potential), 

low-grade urothelial carcinoma, and high-grade carcinoma [194]. Low-grade urothelial 

carcinoma rarely invades the muscular wall of the bladder or spreads to other parts of 



 
50 

the body. Patients rarely die from low-grade bladder cancer. On the contrary, high-

grade has a strong tendency to invade the muscular wall of the bladder and spread to 

other parts of the body. High-grade bladder cancer is treated more aggressively than 

low-grade bladder cancer and is much more likely to result in death [195]. Later, in 2004 

another review by the WHO led to the publication of a new histological classification 

that provides different patient stratification between the grades of the older 1973 

classification. This 2004 grading scale has been again updated in 2016 by WHO [196]. 

Bladder cancer is also divided into muscle-invasive and non-muscle invasive disease, 

based on invasion of the muscularis propria (also referred to as the detrusor muscle), 

which is the thick muscle deep in the bladder wall: 

• Muscle-invasive bladder cancer (MIBC) is much more likely to spread to other parts 

of the body and is generally treated by either removing the bladder or treating the 

bladder with radiation and chemotherapy. As noted above, high-grade cancers are 

much more likely to be muscle-invasive than low-grade cancers. 

• Non-muscle invasive bladder cancer (NMIBC) can often be treated by removing the 

tumor(s) via a transurethral approach. Sometimes chemotherapy or other 

treatments are introduced into the bladder with a catheter to help fight the cancer 

[195]. 

From 2017, the updated TNM classification is the most recommended system for the 

classification of the depth of tumor invasion (staging) and along with the 2004/2016 

WHO grading system (which is used for histological classification) are the latest and 

most accurate guidelines at the time being. The current TNM staging classification of 

urothelial bladder cancer is reported in the following bulleted list [197]: 

➢ Tumor (T). The location of the primary tumor. 

o TX: Primary tumor cannot be assessed 

o T0: No sign of a primary tumor 

o Ta: Non-invasive papillary carcinoma 

o Tis: Carcinoma in situ (‘flat tumor’) 
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o T1: Tumor invades subepithelial connective tissue 

o T2: Tumor invades muscle 

▪ T2a: tumor invades superficial muscle (inner half) 

▪ T2b: tumor invades deep muscle (outer half) 

o T3: Tumor invades perivesical tissue 

▪ T3a: microscopically 

▪ T3b: macroscopically (extravesical mass) 

o T4: Tumor invades any of the following: prostate stroma, seminal vesicles, 

uterus, vagina, pelvic wall, abdominal wall. 

▪ T4a: tumor invades prostate stroma, seminal vesicles, uterus, or vagina 

▪ T4b: tumor invades pelvic wall or abdominal wall 

➢ Lymph Node (N). The location of lymph nodes where cancer has spread. 

o NX: regional lymph nodes cannot be assessed 

o N0: no sign of cancer spread in the lymph nodes 

o N1: metastasis in a single lymph node in the true pelvis (hypogastric, obturator, 

external iliac, or presacral). 

o N2: metastasis in multiple regional lymph nodes in the true pelvis (hypogastric, 

obturator, external iliac, or presacral) 

o N3: metastasis in common iliac lymph node(s). 

➢ Metastasis (M). Cancer has spread to other parts of the body. 

o M0: There is no sign of distant metastasis. 

o M1: there is sign of one or more distant metastasis 

▪ M1a: tumor has spread to non-local lymph nodes 

▪ M1b: tumor has spread to other distant metastatic sites 

Additional letters can be added to the TNM staging system, and they are reported 

before the letter T in lowercase: the letter m (multiple) indicates the presence of more 

than one primary tumor, the letter c means that the tumor was staged clinically, while 

the letter p means that the tumor was staged pathologically.  
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Figure 0.12 shows a schematic representation of the main types, grades, and stages of 

bladder cancer.  

 

Figure 0.12. Types, grades and stages of bladder cancer (Sanli et al.[198]). 

 

Heterogeneity in the clinical outcomes of patients suggests that biologically relevant 

subtypes might exist within and between NMBIC and MIBC. Transcriptional profiles 

currently provide the best-defined molecular subtypes. The initial Lund study of tumors 

of all grades and stages defined the following five subtypes: urobasal A, genomically 

unstable, (immune cell) infiltrated, squamous cell carcinoma-like and urobasal B 

[199].These subtype assignments did not absolutely correlate with tumor grade and 

stage. Subsequently, three major transcriptional profiling studies focused on MIBC and 

one focused on NMIBC. To date, these classifications have used different nomenclatures 

[198]. Figure 0.13 represent the overlapping between different nomenclatures of 

bladder cancer molecular subtypes. 
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Figure 0.13. Molecular subtypes of bladder cancer: a) Data from the UROMOL study[200]. b) 
Nomenclature and overlap of bladder cancer, expression subtypes defined by the University of 
North Carolina (UNC)[201], MD Anderson Cancer Center (MDA)[202], The Cancer Genome Atlas 
Network (TCGA), and Lund University (Lund) [199] project (Sanli et al. [198]). 

 

1.7.3 Epidemiology and risk factors 

Bladder cancer is the 10th most diagnosed cancer worldwide considering both sexes, 

and the 6th most common cancer in men. GLOBOCAN2020 estimates 573,278 new 

cases (3% of all sites of cancer) of bladder cancer worldwide in 2020, and 212,536 cancer 

of bladder cancer related deaths (2.1% of total cancer cases). The incidence of bladder 

cancer is higher in men than in women: 77% of bladder cancer incidence and 75% of 

bladder cancer related deaths occur in males [2]. Bladder cancer incidence is also 

influenced by geographical factors, with the highest frequency of cases in Southern 

Europe (Greece, Spain, and Italy), Western Europe (Belgium and the Netherlands), and 

Northern America, although the highest global rates are in Hungary among women 

[203]. The observed geographic patterns of bladder cancer incidence worldwide appear 

to reflect the prevalence of tobacco smoking, although infection with Schistosoma 

haematobium, and other risk factors such as occupational exposures to aromatic 

amines and other chemicals affecting workers in the painting, rubber, or aluminum 

industries and arsenic contamination in drinking water are major causes in selected 
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populations [203]. Other risk factor to develop bladder cancer are the family history of 

bladder cancer and the presence of genetic mutations in HRAS, Rb1, PTEN/MMAC1, 

NAT2, and GSTM1 [195].  

1.7.4 Carcinogenesis 

Bladder cancer generally originates from the epithelium (urothelium) that covers the 

inner surface of the bladder, and urothelial carcinomas represent the most common 

type of bladder cancer [198]. Pathological and clinical information from mouse models 

and human samples indicate that urothelial carcinoma develops via two distinct 

pathways, giving rise to papillary non-muscle invasive bladder cancers (NMIBCs) and 

non-papillary (solid) muscle-invasive bladder cancer (MIBCs). In humans, the predicted 

precursors of NMIBC are flat or papillary urothelial hyperplastic lesions. Two common 

alterations in NMIBC, deletion of chromosome 9 and a point mutation in FGFR3 (which 

encodes fibroblast growth factor receptor 3), are also evident in these hyperplastic 

precursors [204]. It has been documented a high risk of development of MIBC in patients 

with dysplasia or carcinoma in situ, and these lesions share features with high-grade 

and invasive bladder cancers. These features facilitate cell proliferation and include 

mutations in TP53 and stabilized TP53 expression [205]. Moreover, upregulated 

expression of CK20 and HER2, and reduced expression of PTEN with concomitant 

upregulation of the PI3K pathway are shared features [206]. 

1.7.5 Diagnosis and therapy 

The presence of blood in urine (hematuria) can be a sign of bladder cancer; it could 

change the color of urine ranging from pink to dark red or even orange. Sometimes 

there are not chromatic changes, but blood presence could be also found via urinalysis 

(urine testing) [207]. Bladder cancer may also cause the necessity to urinate more often 

or giving a sense of burning or even pain during micturition, even thou these symptoms 

are more likely to be caused by a urinary tract infection, bladder stones, an overactive 

bladder, or an enlarged prostate (in men) [207]. 
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There are different approaches to detect bladder cancer. If some of suspicious signs of 

bladder cancer are present, the doctor might do a digital rectal exam (DRE), during 

which a gloved, lubricated finger is put into the rectum, or, for female patients, a pelvic 

exam can be performed. During these exams, the doctor can sometimes feel a bladder 

tumor, determine its size, and feel if and how far it has spread. If some anomalies are 

detected, the urologist can prescribe urine tests such as urinalysis (to check the 

presence of blood in urine), a urine cytology (to check the presence of cancer or pre-

cancer cells in urine), a urine culture (to check the presence of urinal trait infections), or 

a urine tumor marker tests (to detect the presence of cancer biomarkers in urine) [207]. 

Evaluation of patients suspected of having bladder cancer is performed using 

cystoscopy, which is an endoscopic procedure performed with a flexible scope and with 

local anesthesia. Any abnormal finding, such as reddish flat, papillary, or solid lesions, 

requires histological evaluation because benign conditions, such as inflammatory 

diseases, can mimic bladder cancer. Histology can be obtained by Transurethral 

Resection of Bladder Tumor (TURBT), an endoscopic procedure that enables a thorough 

visualization of the bladder and appropriate resection with an attempt to include 

muscle for accurate staging [198].  TURBT is performed by passing a resectoscope 

through the urethra. Small tumors can be resected en bloc with the electrified wire loop 

of the resectoscope, whereas larger tumors are resected in multiple fractions. TURBT 

has not only a diagnostic role but also a therapeutic one and can be a sufficient and 

potentially curative therapy depending on the pathological features of the tumor. 

Other specific approaches for bladder cancer diagnoses can be imaging tests such as 

Intravenous pyelogram (IVP, an X-ray of all of the urinary system taken after injecting 

an intravenous dye), Retrograde pyelogram, Computed tomography (CT), Magnetic 

resonance imaging (MRI), ultrasound, chest x-ray (to detect eventual lung metastasis), 

and bone scan (to detect eventual bone metastasis) [208]. 

Stratification of patients into low-, intermediate-, and high-risk groups is essential for 

deciding appropriate use of adjuvant intravesical chemotherapy or bacillus Calmette-
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Guérin (BCG) instillations. Surgical removal of the bladder should be considered in case 

of BCG-unresponsive tumors or in NMIBCs with the highest risk of progression. Although 

TURB by itself can eradicate a Ta-T1 tumor completely, these tumors commonly recur 

and can progress to MIBC. It is therefore necessary to consider adjuvant therapy in all 

patients. Immediate single instillation (SI) has been shown to act by destroying 

circulating tumor cells after TURB, and by an ablative effect on residual tumor cells at 

the resection site and on small, overlooked tumors. An SI with mitomycin C (MMC), 

epirubicin, or pirarubicin has shown a beneficial effect. The need for further adjuvant 

intravesical therapy depends on prognosis. In low-risk patients an SI reduces the risk of 

recurrence and is considered the standard and complete treatment. For other patients, 

however, an SI remains an incomplete treatment because of the considerable likelihood 

of recurrence and/or progression[197]. A complete diagram showing the treatment 

approach to eradicate NMIBC after TURBT is represented in Figure 0.14. 

 

Figure 0.14. AUA/SUO treatment algorithm for Non-muscle invasive bladder cancer (Chang et al. 
[209]). 
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1.7.6 Bladder cancer metabolism 

Unlike other tumor types such as breast, melanoma, colorectal cancer, lung 

adenocarcinoma, no effective molecular targets for therapy and no biomarkers with a 

predictive value have yet been identified in bladder cancer. However, different 

molecularly targeted agents against EGFR (epidermal growth factor receptor), FGFR 

(Fibroblast Growth Factor Receptor), mTORc1 (mammalian target of rapamycin 

complex 1), PDGFR (Platelet-derived Growth Factor Receptor), VEGFR (Vascular 

Endothelial Growth Factor Receptor) and many others are under evaluation [210]. 

In the previous paragraphs was widely discussed about the importance of metabolic 

rewiring in cancer and in finding new therapeutic targets in this field. Recently, a 

complex analysis that integrated data of metabolic alterations (involving amino acid, 

nucleotides, lipids and glycolysis pathways) from targeted mass-spectrometry with 

transcriptome data, identified a molecular signature of 30 metabolic genes, whose the 

up-regulation was associated with tumor progression and poor prognosis [211]. 

Consistently, another study highlighted that bladder cancer progression is associated 

with alterations in cells glycolytic profile, namely the switch from glucose to pyruvate 

consumption in the more aggressive stage [212]. The first steps of glycolysis are linked 

to the Pentose Phosphate Pathway (PPP), which plays an important role in oxygen-

independent glucose conversion to ribose for nucleic acid synthesis and generation of 

reduced NADPH required for synthesis reactions in tumor cells. It was demonstrated 

that Zoledronic acid inhibits the prenylation of small guanosine‑5'-triphosphate 

(GTP)‑binding proteins, such as Ras, and thus inhibit Ras signaling in vitro. Mutations in 

the RAS oncogenes (HRAS, KRAS, NRAS) have been found in 13% of bladder tumors 

and occurred in all stages and grades [213]. Zoledronic acid can inhibit cell 

proliferation and the pentose phosphate pathway (PPP) in bladder cancer cells [214]. 

Another metabolic pathway that seems to be crucial for bladder cancer is fatty acids 

biosynthesis. High levels of fatty acids synthase (FASN) expression were observed in 

59% of non–muscle-invasive BTCC tissue specimens, and FASN expression was 
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associated with histologic grade and recurrence. Moreover, FASN inhibitors caused the 

increased apoptosis and decreased proliferation of bladder cancer cells [215]. 

The importance of Warburg effect and other glucose metabolism alterations in 

bladder cancer have been reported [210]. However, unlike numerous inhibitors of 

glucose uptake and glycolysis are currently available, very few have been tested in 

bladder cancer patients, and to date there is no evidence of a clinical benefit that 

supports their use in clinical practice. On the other hand, a recent study demonstrated 

the ability of metformin to reduce, although with different efficiency, cell 

proliferation, sphere formation and migration in grade 2 bladder cancer cell lines, 

suggesting that OXPHOS targeting could be an effective strategy to reduce the 

invasiveness of this subtype of bladder cancer [69]. 

 

References can be found after ‘General Discussion’ → REFERENCES 
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AIM OF THE THESIS 

Cancer research has seen a renewed interest in understanding metabolic 

reprogramming. Abnormal cancer metabolism, such as aerobic glycolysis and 

increased anabolic pathways, has important roles in tumorigenesis, metastasis, drug 

resistance, and cancer stem cells. Thus, understanding the mechanism underling these 

processes can lead to the identification of promising novel anticancer approaches. 

Since the tumor microenvironment (TME) has emerged to play an important role in 

metabolic rewiring, a detailed understanding of this process requires the development 

of models that can closely resemble the complexity of cancer cytoarchitecture and 

TME, such as three-dimensional (3D) models. Among 3D models, spheroids derived 

from cancer cell lines resemble the tumor scenario as they are composed of several 

specialized areas and layers where cells have different phenotypic, functional, and 

metabolic behaviors. Indeed, within a spheroid, nutrient and oxygen gradients concur 

to create a physiological cellular heterogeneity in which proliferative cells stay in the 

outer layers, and quiescent or necrotic cells stay within the central core of the 

spheroid. Therefore, the use of 3D models for the study of cancer metabolic 

reprogramming can potentially improve the reliability of preclinical research data 

favoring their application to find alternative clinical approaches. 

This thesis lays in the context of the shared scientific interest to dissect metabolic 

reprogramming occurring in different types of cancer cells with the aim to contribute 

to getting closer to finding novel therapeutic strategies against cancer.  

Considering this main objective as a guiding thread, this thesis can be divided into 

three specific aims: 

1. To unravel metabolic differences between luminal e triple negative breast 

cancer cell lines through the development and characterization of 2D and 3D 

models. Indeed, breast cancer is the most diagnosed cancer in women and the 

first cause of cancer-related deaths. Moreover, triple negative breast cancer is 

the most aggressive subtype and still lacking a targeted therapy. Exploring the 
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metabolic rewiring characterizing different subtypes of breast cancer using 

high-content imaging analysis on 3D cancer spheroids could help us to identify 

potential metabolic vulnerabilities that can be targeted for anticancer therapy. 

2. To develop a reliable and reproducible workflow optimized for the analysis of 

metabolic fluxes in three-dimensional cultures using Seahorse technology. 

Despite the employment of this Seahorse technology on monolayers cultures 

is widespread in the field of cancer research, its application on three-

dimensional cultures is still poorly optimized. The optimized workflow will be 

helpful in the high-resolution metabolic characterization of three-dimensional 

cultures, their comparison with monolayer cultures, and may aid in the design 

and interpretation of (multi)drug protocols. 

3. To characterize the energetic and redox metabolism of grade 2 bladder cancer 

cell lines exhibiting different invasiveness properties for the identification of 

metabolic vulnerabilities to be exploited for targeted therapy. Grade 2 bladder 

cancer represents a therapeutic window that strongly requires post-surgical 

resection pharmacological treatments that help to eliminate residual tumor 

cells and prevent the formation of tumor relapse. As the molecular and 

metabolic characterization of these cancers and derived cellular and animal 

models increase, we will be able to design ever more effective single and 

combinatorial anti-cancer regimens based on the detected metabolic 

fragilities.  
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2.1 Abstract 

Breast cancer (BC) is the first cause of cancer-related death in women, a pathology 

characterized by a high degree of heterogeneity, needing a tailored approach to 

improve treatment responses. Three major histological subtypes guide the clinical 

approach: luminal (ER and PR-positive); human epidermal growth factor receptor 2-

positive (HER2); triple-negative breast cancer (TNBC, not expressing any of these 

markers). TNBC is the most heterogeneous histological subtype and the most prone to 

relapses, metastases, and chemoresistance. It still lacks any targeted therapy. 

Metabolic rewiring in cancer cells is fundamental to maintain their transformed state 

and survive in the tumor milieu. Its study represents an opportunity to find new 

clinical approaches, using bi- and three-dimensional cancer models. 

We studied the metabolic profile of three immortalized BC cell lines cultured in 2D: 

SUM159PT, MDA-MB-231 (both TNBC), and MCF7 (luminal). Using Agilent Seahorse 

XFe96 technology, that measures bioenergetic parameters in real-time on living cells, 

we observe that the three cell lines present strong glucose dependency for 
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mitochondrial respiration. Moreover, glutamine deprivation and glucose metabolism 

inhibition (induced by 2DG treatment or its depletion) significantly reduce cell 

proliferation. The mitochondrial ATP synthesis inhibition by oligomycin strongly 

decreases proliferation of MCF7 and SUM159PT, consistently with their higher 

production of ATP by respiration. 

In vitro three-dimensional models (3D), such as spheroids derived from immortalized 

cell lines, can recapitulate the complexity and heterogeneity of the pathology. Glucose 

perturbation severely reduces spheroid vitality and morphology of the highly glycolytic 

MDA-MB-231 cell line. Glutamine deprivation slightly affects spheroid roundness or 

vitality. Consistently with their lower oxidative metabolism in 3D, oligomycin does not 

exhibit strong inhibitory effect on the formation of MDA-MB-231 and MCF7 spheroids. 

These results suggest that nutritional and pharmacological perturbations of energetic 

metabolism have a greater impact on proliferation of cells growing in 2D than on 

spheroid formation (3D). Since 3D structures present a rewired metabolic profile 

compared to the same cell lines grown in 2D, we propose in future to evaluate the 

effects of the different metabolic pathways’ inhibition in pre-formed spheroids and in 

more complex 3D cancer systems. 

 

2.2 Introduction 

In 2020 breast cancer has represented the 11.7% of global cancer incidence 

considering both sexes, becoming the first most diagnosed cancer worldwide. In 

female, mammary carcinoma is also the first cause of cancer death, with a mortality 

rate of 15.5%[2]. Breast cancer can be classified into molecular subtypes basing on the 

expression of estrogen (ER) and progesterone (PR) receptors, and human epidermal 

growth factor receptor-2 (HER2)[176]. Nowadays, hormone receptor positive (ER+PR+) 

and HER2-positive (HER2+) breast cancer subtypes have a relatively low mortality rate 

thanks to the availability of targeted treatment strategies, such as monoclonal 

antibodies or endocrine therapy. On the contrary, triple negative breast cancers 

(TNBCs, ER-PR-HER2-) have been studied more intensely for their higher mortality 
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rate, which is due to frequent metastasization[216] and the lack of specific therapeutic 

approaches [217][192][218]. Since metabolic rewiring has been recognized as one of 

the most important mechanisms that cancer cells can use to sustain their enhanced 

growth rate[16], exploiting this intrinsic characteristic of cancer to develop novel 

therapeutic strategies can be a useful approach, above all against those tumors that 

still lack a targeted therapy[34][35][36]. 

Breast cancer is a heterogeneous disease on multiple aspects, including metabolic 

phenotyping[192][219]. TNBCs show a classic Warburg metabolism: high glucose 

uptake and lactate production even in the presence of oxygen[39][220]. Their 

glycolytic phenotype is related to increased proliferation, which implies that glycolysis 

is important for fueling the energy, redox or biosynthetic needs of fast-growing 

tumors[192]. On the other hand, ER+ mammary tumors exhibit different metabolic 

phenotypes: cells classified in the histological luminal B subtype manifest a sustained 

proliferative rate and, rarely, a reverse Warburg metabolism, while luminal A tumors 

have a slower proliferation which is greatly addicted to oxidative 

phosphorylation[185]. Moreover, many estrogen receptor positive breast cancers are 

able to reprogram the surrounding fibroblasts into CAF (Cancer Associated Fibroblasts) 

displaying the so-called reverse Warburg effect: CAFs metabolism is induced by cancer 

cells toward aerobic glycolysis, which leads to the release of lactate and pyruvate that 

are uptaken and used by the cancer cell for the TCA cycle and oxidative 

phosphorylation [190][110]. To better comprehend the metabolic heterogeneity of 

breast cancer subtypes and find alternative metabolic targets for therapy against 

them, the optimization of reproducible, reliable, and representative models is 

required. Currently, adherent mammalian cells growing on two-dimensional (2D) 

platforms are still the most used in research to obtain information on cellular 

responses to treatments because they are easy to handle, cost-effective, and 

reproducible. However, these models do not allow to accurately reproduce the three-

dimensional (3D) environment in which cancer cells reside in vivo and can provide 

misleading results regarding the responses of cancer cells to drugs [221]. In general, 
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standard preclinical screening procedures for therapeutic agents include the following 

steps: (1) 2D cell culture system testing, (2) animal model testing, and finally (3) 

clinical studies. As the phases progress, the percentage of efficient agents decreases 

dramatically. Less than 5% of anticancer agents and cancer therapies have passed 

clinical trials and have approved for marketing by regulatory pharmaceutical agencies 

[222]. One possible cause of the failure to identify effective compounds is that the 

pharmacological responses of 2D cell culture systems do not consistently reflect the 

outcome of clinical studies [223]. The main limitation of traditional 2D culture is their 

inability to mimic the tumor architecture and microenvironment in vivo. Indeed, there 

are many characteristics in which 2D-grown cells differ compared to cells in vivo: 

morphological characteristics, proliferation and differentiation potentials, cell-cell 

interactions, cell-extracellular matrix interaction, and signal transduction systems 

[224]. These needs have inspired the development of 3D cell culture systems to 

overcome the inconsistency between in vitro cell-based testing and clinical studies. For 

these reasons, the experiments performed on 2D cultures allow preliminary and more 

generic studies of the disease, which subsequently must be further investigated on 

more complex and representative models of the pathology. 

In this work the metabolic phenotype of three breast cancer cell lines grown in 

adhesion (2D cultures) was correlated with their ability to form spheroids (3D 

cultures). For this purpose, we compared one hormone receptor positive metastatic 

cell line, MCF7, with two triple-negative breast cancer cell lines, MDA-MB-231 

(metastatic) and SUM159PT (primary tumor). The metabolic profile of 2D and 3D 

cultures was studied through the measurement of bioenergetic parameters by mean 

of Agilent Seahorse XFe96 analyzer and through proliferation (3D) and spheroid 

formation (3D) assays under nutritional deprivation or pharmacological treatments 

perturbing glucose, glutamine, fatty acids metabolism and oxidative phosphorylation. 

The aim of this study is to improve the comprehension of the metabolic phenotype 

that characterizes aggressive breast tumors in order to obtain information for the 

development of novel personalized therapeutic strategies. 
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2.3  Materials and methods 

2.3.1 Cell lines and culture media composition 

Three breast cancer cell lines has been studied in this work, whose main 

characteristics are reported in Table 3: MCF7, MDA-MB-231 and SUM159PT. MCF7 cell 

line was a generous gift from Dr. Luca Magnani (Imperial College London), while MDA-

MB-231 and SUM159PT cell lines were a generous gift from Dr. Lanfrancone 

(European Institute of Oncology).  

Table 3. Main characteristics of the BC cell lines studied in this work: tumor site, molecular 
classification, histology, and main mutations. 

Cell line Tumor site 
Molecular 

classification 
Histology Genetic alterations 

MCF7 
Metastasis, 

pleural 
effusion 

Luminal A 
(ER+ PR+ HER2-) 

Adenocarcinoma 
 

• PIK3CAE545K 
heterozygous (low AKT 
activation); 

• CDKN2A homozygous 
deletion 

MDA-MB-231 
Metastasis, 

pleural 
effusion 

TNBC 
(ER- PR- HER2-) 

Adenocarcinoma 

• BRAFG464V 
heterozygous 

• CDKN2A homozygous 
deletion 

• KRASG13D heterozygous 

• NFE231 homozygous 

• TP53R280K homozygous  

SUM159PT 
Primary 
tumor 

(localized) 

TNBC 
(ER- PR- HER2-) 

Anaplastic 
carcinoma 

• TP53V157R 
heterozygous  

• BRCA1Q356R 

homozygous  

• HRASG12D heterozygous  

• PIK3CAH1047L 

heterozygous 

 

MCF7 cell line was cultured in Dulbecco’s Modified Eagle Medium (DMEM, 11960-044, 

Gibco™-Thermo Fisher Scientific) supplemented with 10% fetal bovine serum (FBS, 

Gibco-ThermoFisher, Waltham, MA, USA), 4 mM glutamine, 1 mM Na-Pyruvate, and 
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10 nM β-estradiol (E2758, Merck Life Science), 100 U/mL penicillin and 100 mg/mL 

streptomycin. 

MDA-MB-231 cell line was grown in RPMI-1640 medium (R0883-Merck Life Science, 

Darmstadt, Germany) supplemented with 10% fetal bovine serum (FBS, Gibco-

ThermoFisher, Waltham, MA, USA), 4 mM glutamine, 1 mM Na-Pyruvate, 100 U/mL 

penicillin, and 100 mg/mL streptomycin. 

SUM159PT cells were cultured in Ham’s F-12 medium (11765-054, Gibco™-Thermo 

Fisher Scientific) supplemented with 10% fetal bovine serum (FBS, Gibco-

ThermoFisher, Waltham, MA, USA), 2 mM glutamine, 5 μg/ml insulin (I9278, Merck 

Life Science), 1 μg/ml Hydrocortisone (H0888-1G, Merck Life Science) and 10 mM 

Hepes, 100 U/mL penicillin, and 100 mg/mL streptomycin. 

To generate heterotypic spheroids, primary human normal mammary fibroblasts were 

used. Primary Human Normal Mammary Fibroblasts HMF8 were obtained in 

collaboration with Gade Laboratory for Pathology, Department of Clinical Medicine, 

Faculty of Medicine and Dentistry, University of Bergen, Bergen, Norway. Fibroblasts 

were isolated from a female donor. Cells were minced into small pieces in a tissue- 

treated 6 well plate, allowed to adhere, and cultured in FAD medium, which is a 1:1 

mixture of Dulbecco’s modified Eagle’s medium (DMEM, 11960-044, Gibco™-Thermo 

Fisher Scientific) and Ham’s F12 (11765-054, Gibco™-Thermo Fisher Scientific), 

supplemented with 10% fetal bovine serum (FBS, Gibco-ThermoFisher, Waltham, MA, 

USA), 0.4 µg/mL hydrocortisone (H0888-1G, Merck Life Science), 50 µg/mL Ascorbic 

acid (A4544, Merck Life Science), 0.05X Insulin-Transferrin-Selenium (41400-0045, 

Gibco™-Thermo Fisher Scientific), 2 mM glutamine and 100 U/mL penicillin and 100 

mg/mL streptomycin. The outgrowth of cells with fibroblast morphology was 

subsequently propagated on plastic surfaces in a 1:1 FAD medium and DMEM 

medium. 
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All the cell lines were cultured at 37 °C in a humidified atmosphere of 5% CO2. Cells 

were passaged when they reached sub-confluence (typically twice a week) using 

trypsin-ethylene-diamine-tetraacetic acid (EDTA). 

The experiments on monolayer cultures were performed 2D experimental medium, 

composed of DMEM w/o phenol red (Gibco™-Thermo Fisher Scientific), 10% FBS, 10 

mM glucose, 2 mM glutamine. The 2D experimental medium was supplied with 10 nM 

β-estradiol for MCF7 cell line and with 5μg/mL insulin and 1μg/mL hydrocortisone for 

SUM159PT cell line. These additives were added to the experimental medium of these 

cell lines to maintain their proliferative status similar to the condition in which they 

normally grow. The concentration of 2 mM glutamine was chosen (even though MDA-

MB-231 and MCF7 cell lines normally grow in 4 mM glutamine) to compare the 

metabolism of all three cell lines in the same conditions of nutrient supply.  

Spheroid formation was performed in 3D experimental medium DMEM w/o phenol 

red (Gibco™-Thermo Fisher Scientific), 1% BSA, 10 mM glucose, 2 mM glutamine, 10 

μg/mL Insulin (I9278, Merck Life Science), 0.5 μg/mL Hydrocortisone (H0888-1G, 

Merck Life Science), 20 ng/mL EGF (EGF Human Recombinant, Peprotech, London, UK) 

100 ng/mL Cholera Toxin (C8052, Merck Life Science), 1 mM Na-Pyruvate, 100 U/mL 

penicillin and 100 mg/mL streptomycin. The 3D experimental medium was supplied 

with 10 nM β-estradiol for MCF7 spheroids. 

2.3.2 Production of three-dimensional cultures 

To assess the propensity of the cells to form three-dimensional structures, the BC cell 

lines were plated on 12-well plates not-treated for tissue culture, in 3D experimental 

medium at density 100,000 – 150,000 cells/well. 

To obtain three-dimensional cultures, the monolayers cultures were detached using 

trypsin-EDTA as usual and resuspended in 3D experimental medium. The cells were 

counted using trypan-blue exclusion technique, and then seeded in 96-well plates at 

the desired density (from 5,000 cells/well to 20,000 cells/well). After that, the plate 
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centrifugation was performed at 325 g for 30 minutes. Two different supports were 

employed for spheroid formation:  

• Poly-Hema coated (ET3196, EuroClone) U-Bottom 96-well plates. For Poly-

Hema coating, the Poly-Hema powder was dissolved in ethanol at 

concentration 20 mg/mL, the solution was dispensed in the wells to cover the 

surface to be coated and then it was left to evaporate overnight. This 

approach was used to obtain spheroids for metabolic analysis by Seahorse 

XFe96 (Agilent) analyzer. 

• CellCarrier Ultra-low-attachment (ULA) 96-well CellCarrier-ULA 96-well U-

Bottom plates (PerkinElmer) were used for the spheroid formation assays, 

enabling high resolution analysis using Operetta CLSTM. 

For heterotypic spheroids’ formation, HMF8 and BC cell lines were grown in adhesion 

and harvested separately. After cell counting, the cells were properly diluted 1:1 and 

seeded in U-bottom CellCarrier Spheroid ULA 96-well Microplates (Perkin-Elmer) at 

the density of 2×105 cells/ml (5,000 cells BC + 5,000 cells HMF8/well) in 100 μL/well of 

3D experimental medium. 

2.3.3 Nutritional deprivation and drug treatment assay in 2D cultures 

Cell proliferation was evaluated after 72h of growth by imaging acquisition and 

analysis for cell counting by mean of Operetta CLSTM and the associated analysis 

software Harmony (PerkinElmer). The assays were performed in nutritional 

deprivation conditions or in the presence of pharmacological treatment with drugs 

targeting metabolic pathways, at different concentrations. The 2D experimental 

medium was completed without adding glucose (for glucose deprivation) or glutamine 

(for glutamine deprivation) or with the addition of the following drugs: 

• 2-deoxy-D-glucose (2-DG, D6134-1G, Sigma) at concentrations 0.625mM - 

1.25mM - 2.5mM - 5mM - 10mM - 20mM; 

• Oligomycin (75351, Sigma) at concentrations 0.0625µM - 0.125µM - 0.25µM - 

0.5µM - 1.5µM; 
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• BPTES (SML0601-5MG, Sigma) at concentrations 0.5µM - 2. µM - 5µM - 10µM 

- 20µM; 

• Etomoxir (Merck E1905-5MG) at concentrations 5µM - 25µM - 50µM - 100µM 

- 200µM. 

The cells were detached using trypsin-EDTA as usual, counted, and resuspended in 

complete 2D experimental medium. The cells were seeded in CellCarrier-96 Ultra 

Microplates 96-well plates (PerkinElmer) at 5,000 cells/cm2 (SUM159PT), 10,000 

cells/cm2 (MCF7) or 15,000 cells/cm2 (MDA-MB-231) seeding density. At time 0 (24 

hours after seeding) the cells were gently washed with D-PBS w/ Ca2+ and Mg2+, and 

the specific medium for pharmacological treatment or nutritional deprivation was 

added. Each condition was tested at least in triplicate, in at least two independent 

experiments. 

At time 0h some wells subjected to nuclear staining with Hoechst 33342 (0.5µg/mL), 

and fluorescence images were acquired by Operetta CLSTM. The dye was diluted in D-

PBS at 10X concentration and then directly added to the 2D experimental medium in 

the wells (dilution 1:10); no washing steps were performed to avoid any possible 

detachment of the cells before or after the staining. At time 24h and time 48h, 

brightfield images of each well were acquired using the same instrument. Finally, at 

time 72h, the cells were stained with Hoechst and fluorescence images were taken by 

Operetta CLSTM.  The analysis of the number of cells was performed using Harmony 

software. 

To evaluate the effect of metabolic drugs on cell proliferation, the amount of DMSO 

correspondent to the highest concentration of Oligomycin or BPTES (the only two 

drugs dissolved in a toxic vehicle among those tested) was added to the control 

condition. The anti-proliferative effect, evaluated 72 hours after treatment, was 

calculated with the following formula: 

𝐴𝑛𝑡𝑖𝑝𝑟𝑜𝑙𝑖𝑓𝑒𝑟𝑎𝑡𝑖𝑣𝑒 𝑒𝑓𝑓𝑒𝑐𝑡 % =  1 − 
𝑛 ° 𝑡𝑟𝑒𝑎𝑡𝑒𝑑 𝑐𝑒𝑙𝑙𝑠

𝑛 ° 𝑐𝑜𝑛𝑡𝑟𝑜𝑙 𝑜𝑟 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 𝑐𝑒𝑙𝑙𝑠
 ×  100 
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2.3.4 Spheroid formation assays under metabolic perturbation 

To perform the Spheroid formation assay, the day before seeding the cells for the 

experiment, the cells grown in monolayer culture were stained with CellTrackerTM 

Green CMFDA dye (C7025, Gibco-ThermoFisher, Waltham, MA, USA). Cells were 

washed with D-PBS w/ Ca2+ and Mg2+, then 10μM CellTrackerTM Green CMFDA dye 

diluted in DMEM w/o phenol red was added and incubated for 30 minutes at 37 °C 

and 5% CO2. The dye was removed, cells were washed with D-PBS w/ Ca2+ and Mg2+ 

and put in the incubator with their own maintenance medium until the next day. On 

the day of seeding, cells were detached with trypsin-EDTA as usual and centrifuged at 

290 g for 7 minutes. The pellet was resuspended in the 3D experimental medium w/o 

glucose and glutamine and cell counting was performed using a Burker chamber. 

Whereupon the cells were seeded in U-bottom CellCarrier Spheroid ULA 96-well 

Microplates (PerkinElmer), previously half filled with 3D experimental medium for 

drug treatment or nutritional deprivation (50 μL/well). The control condition and the 

conditions with drugs were supplemented with double amount of glucose and 

glutamine, while the nutritional perturbation conditions only one of the two nutrients 

was added at double concentration. The drug treatments were added at 2X 

concentration, too. Before seeding, 10μg/mL Propidium Iodide (PI) was added to the 

cell suspension (the final concentration of PI after seeding was 5 μg/mL). The final 

density of cell suspension for spheroid formation assay under metabolic perturbation 

was 1 × 104 cells/well in 100 μL/well. After seeding, the U-bottom CellCarrier Spheroid 

ULA 96-well Microplates was centrifuged at 340 g for 30 min to foster cell aggregation. 

The plates were incubated for 3 days (72h) at 37 °C in a humidified atmosphere of 5% 

CO2 during spheroid formation. 

Two concentrations of each drug were tested in spheroid formation assay under 

metabolic perturbations: 1.25mM - 10mM 2-DG, 62.5nM – 3µM Oligomycin, 2.5 µM – 

20µM BPTES, 25µM – 200µM Etomoxir. 
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Fluorescence and brightfield images of spheroid formation were acquired from T0 to 

T72 by Operetta CLSTM. The morphological and physiological analysis were performed 

after 72h of treatment by HarmonyTM software.  

 

2.3.5 High-content analysis of 2D and 3D cultures 

The high-throughput microplate confocal microscope for High-Content Analysis 

Operetta CLSTM was employed for the acquisition of brightfield and fluorescence 

images in the nutritional deprivation and pharmacological treatment assays in 2D and 

3D (spheroid formation assay). The integrated HarmonyTM software, was used for the 

images analysis. More precisely, Operetta CLS- Harmony system was applied for cell 

counting in adhesion dose-response experiments, for the normalization of Seahorse 

data (in 2D and in 3D), and the evaluation of spheroid morphological and physiological 

traits in the spheroid formation assays. 

The efficiency of spheroid formation was evaluated through two parameters:  

• The ratio between the sum of intensities of Propidium Iodide positive pixels 

(calculated on maximum intensity projection) and the footprint area of Cell 

Tracker Green positive pixels. This parameter, indicated as PI intensity/CT 

area, was chosen as an index of spheroid mortality (Figure 15).  

• The Roundness measured on CT area, indicating spheroid perimeter regularity 

and compactness. Its value varies from 0 to 1, where 1 is the roundness value 

of a fully filled perfect circle (Figure 16). 
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Figure 15 Exemplificative images of Propidium Iodide selection (used to calculate PI intensity) 
and Cell Tracker Green selection. In the maximum intensity projection, each pixel of the 
intensity image is set to the maximum intensity found in the corresponding pixels in the image 
stack. 

 

Figure 16 Formula of roundness calculated by Harmony software (above) and examples of 
roundness and width to length ratio values associated to objects with different shapes (below). 

 

2.3.6 Evaluation of metabolic parameters by Seahorse XFe96 analyzer 

Seahorse assays on 2D cultures were performed according to the manufacturer’s 

instructions. were seeded in Seahorse XF plates at a density of 2 × 104 cells/well (MDA-

MB-231 and MCF7 cell lines) or 5 × 104 cells/well (SUM159PT cell line) and cultured for 

24h. The next day medium was replaced with Seahorse XF DMEM Medium, pH 7.4 

supplemented with 10 mM D-Glucose and 2 mM L-Glutamine and cell cultures were 

allowed to equilibrate for 1h at 37 °C in a no-CO2 incubator. At the end of the Seahorse 

measurements, Hoechst 33342 was added to each well at the final working 
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concentration of 1 μg/mL and after 15 min incubation nuclei/well were imaged and 

counted by Operetta CLS™ software Harmony, and directly used to normalize the 

Seahorse parameters per cell number. 

For Mito stress test the following drug concentrations have been used: 1μM 

Oligomycin, 0.25μM FCCP (MDA-MB-231) or 0.5μM FCCP (MCF7) or 1μM SUM159PT, 

0.5μM Rotenone/Antimycin A. The concentration of FCCP for each cell line was chosen 

after a dose-response curve (the lowest concentration with the highest response was 

chosen). 

For ATP rate assay and Mito Fuel flex test we used the drugs concentration indicated 

in the manufacturer’s protocol.  

Seahorse assays on 3D cultures were performed in agreement to manufacturer’s 

instructions. More in detail, the day before the assay, all wells of XFe96 Spheroid 

Microplate were coated with the adhesive agent Collagen type I solution (3867, Merck 

Life Science) diluted in H2O at a concentration of 10 µg/cm2. On the day of the assay, 

the wells were rinsed with sterile H2O and left to air dry before use. Seahorse XF 

DMEM Medium, pH 7.4 was supplemented with 10 mM D-Glucose and 2 mM L-

Glutamine and dispensed 175 µL/well in the Collagen-coated XFe96 Spheroid 

Microplate before transferring the spheroids in the wells.  

The spheroids analyzed for Seahorse assays were freshly prepared 72h before the day 

of assay, as described in the section 2.3.2; the cells were stained with Cell tracker dye 

the day before seeding to obtain fluorescent spheroids (useful for normalization 

purposes, as indicated below). The medium used for spheroid formation in the U-

bottom microplates was half replaced with a complete Seahorse Assay medium to 

mitigate buffer presence in the final assay medium. The spheroids were gently 

transferred in the wells XFe96 Spheroid Microplate. The position of each spheroid was 

verified by microscope observation and eventually corrected to have one spheroid at 

the center of each well. After that, the XFe96 Spheroid Microplate was centrifuged at 

340 g for 15 minutes, low brake, to foster spheroids’ adhesion on the collagen coating. 

Before the assay started, brightfield and confocal fluorescence images of each well 
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were acquired by Operetta CLS to compare the position of each spheroid before and 

after the assay and to verify if any shift occurred.  

The sensor cartridge hydration and loading were performed according to 

manufacturer’s instructions.  

For Mito stress test the following drug concentrations have been used: 2μM 

Oligomycin, 2μM FCCP, 0.5μM Rotenone/Antimycin A. For Mito Fuel flex test, we used 

the drugs concentration indicated in the manufacturer’s protocol.  

For normalization, the area of each spheroid was determined by selecting the area of 

Cell tracker fluorescence using the images acquired by Operetta CLS (PerkinElmer) 

immediately after the Seahorse assay. A comparison between images acquired before 

and after the assay was performed to exclude from the analysis the spheroids that had 

eventually moved from the central position during the Seahorse assay due to mixing 

steps before each XF measurement. The conversion from spheroid area to cell number 

was obtained indirectly, thanks to the construction of a standard curve for each cell 

line that relates the area of the spheroid to the cell number (data not shown). These 

data were obtained in a parallel experiment in which different cell densities were used 

for spheroid formation and, after 72h, the spheroids of different dimensions were 

collected and trypsinized in bulk to determine the average number of live cells for 

each category of spheroid.   

Seahorse XF assays parameters calculation: 

ATP rate assay: the sequential injections of oligomycin and rotenone/antimycin A 

enable the calculation of total ATP production rate, which is the sum between 

mitochondrial ATP production rate (mitoATP) and glycolytic ATP production rate 

(glycoATP). The following formulas are applied by Seahorse analysis software (Wave) 

to calculate these parameters:  

𝐓𝐨𝐭𝐚𝐥 𝐀𝐓𝐏 𝐫𝐚𝐭𝐞 = mitoATP + glycoATP 

𝐦𝐢𝐭𝐨𝐀𝐓𝐏 =  (OCRBasal – OCROligo)  × 2 × P/O  

𝐠𝐥𝐲𝐜𝐨𝐀𝐓𝐏 =  ECARbasal × BF × Vol XFmc ×  Kvol − (OCRbasal – OCRRot/Ant) × CCF 
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Where OCRbasal is the 3rd OCR value before any injection, OCRoligo is the lowest value of 

OCR after oligomycin injection, P/O is a constant value equal to 2.75, BF is buffer 

factor and represents the buffering capacity of the system (in this case its value is 2.5), 

VolXFmc is the volume of the microchamber (whose value is 2.28), Kvol is a constant 

equal to 1.6, OCRRot/Ant is the lowest OCR value after rotenone/antimycinA injection, 

and CCF represents the CO2 contribution factor and has the value of 0.61. 

Mito stress test: the sequential injection of oligomycin, FCCP and Rot/Ant enables the 

calculation of a series of parameters, whose formulas are listed below. 

Basal respiration =  𝑂𝐶𝑅𝐵𝑎𝑠𝑎𝑙  – 𝑂𝐶𝑅𝑅𝑜𝑡/𝐴𝑛𝑡  

Maximal respiration =  𝑂𝐶𝑅𝐹𝐶𝐶𝑃  –  𝑂𝐶𝑅𝑅𝑜𝑡/𝐴𝑛𝑡 

Spare respiratory capacity =  𝑂𝐶𝑅𝐹𝐶𝐶𝑃  –  𝑂𝐶𝑅𝐵𝑎𝑠𝑎𝑙  

Where OCRFCCP is the highest value of OCR after FCCP injection. The other parameters 

are explained above. 

Mito fuel flex test: the sequential injection of a target drug followed by the injection of 

the other two drugs inhibitors (or vice-versa) enables the calculation of three 

parameters linked to glucose, glutamine and fatty acids utilization as respiratory fuels, 

whose formulas are listed below. The target drugs are: UK5099, which inhibits the 

utilization of glucose for OXPHOS by blocking the mitochondrial pyruvate transporter 

MPC, BPTES, which inhibits the utilization of glutamine for OXPHOS by blocking the 

enzyme glutaminase, and Etomoxir, that inhibits the utilization of fatty acids for 

OXPHOS by blocking carnitine palmitoil transferase. These drugs are injected alone as 

target inhibitor or in combination with one of the other inhibitors. 

𝐃𝐞𝐩𝐞𝐧𝐝𝐞𝐧𝐜𝐲% =  
𝑂𝐶𝑅𝐵𝑎𝑠𝑎𝑙 − 𝑂𝐶𝑅𝑡𝑎𝑟𝑔𝑒𝑡 𝑖𝑛ℎ𝑖𝑏𝑖𝑡𝑜𝑟

𝑂𝐶𝑅𝐵𝑎𝑠𝑎𝑙 − 𝑂𝐶𝑅𝑎𝑙𝑙 𝑖𝑛ℎ𝑖𝑏𝑖𝑡𝑜𝑟𝑠

× 100 

𝐂𝐚𝐩𝐚𝐜𝐢𝐭𝐲% = (1 −
𝑂𝐶𝑅𝐵𝑎𝑠𝑎𝑙 − 𝑂𝐶𝑅𝑜𝑡ℎ𝑒𝑟 2 𝑖𝑛ℎ𝑖𝑏𝑖𝑡𝑜𝑟𝑠

𝑂𝐶𝑅𝐵𝑎𝑠𝑎𝑙 − 𝑂𝐶𝑅𝑎𝑙𝑙 𝑖𝑛ℎ𝑖𝑏𝑖𝑡𝑜𝑟𝑠

) × 100 
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𝐅𝐥𝐞𝐱𝐢𝐛𝐢𝐥𝐢𝐭𝐲% = 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 − 𝐷𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑐𝑦 

The OCR and ECAR values obtained from Seahorse XF analysis have been normalized as 

reported previously [69][225]. Briefly, the Seahorse assays performed on 2D cultures were 

normalized on cell number: nuclei were stained with Hoechst 33342 at the end of the assay, 

images of each well were acquired by mean of Operetta CLS, and Harmony software was 

employed for the analysis of the images to determine the number of cells per well. The 

Seahorse assays performed on 3D cultures were normalized on the number of cells per 

spheroid determined indirectly: a standard curve was previously constructed to correlate the 

area of the spheroids with the number of live cells for each cell line. Then, the equations of 

these curves were applied to quantify each spheroid's number of cells in the Seahorse 

microplate from the measurement of their area (obtained using Operetta CLS and Harmony 

software). 

2.3.7 Statistical analysis 

All statistical analyses were performed using the GraphPad Prism and IBM SPSS 

Statistics 27 software. The significance of the observed variations was analyzed using 

the following statistical tests, evaluating the most appropriate to use: comparison of 

means with 2way ANOVA Test, one-way ANOVA test for repeated measures, or with 

non-parametric tests such as the Kruskal-Wallis test. A p-value < 0.05 was considered 

statistically significant. 

Every experimental condition was tested at least in triplicate and each experiment was 

performed at least twice using different biological replicates, except for the 

experiments with heterotypic spheroids (only one biological replicate).   
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2.4  Results 

2.4.1 Cell size and growth profile in adhesion (2D) 

In order to compare BC cell lines, we started with the analysis of their growth profile 

under standard conditions (i.e., not subjected to any treatment, Figure 17A) and their 

size (Figure 17B). The data presented in Figure 17A suggest that SUM159PT cells are the 

fastest to grow, followed by the MCF7 and then the MDA-MB-231 which are the 

slowest. Although reproducible, these differences are not statistically significant. On 

the other hand, the difference in cell size is significant (Figure 17B). MDA-MB-231 cells 

are 3.4 times bigger than the other two cell lines, whose size is extremely similar. Cell 

size was measured by selecting the perimeter of the cells carried out on images 

acquired with the phase contrast optical microscope and processed with the LCmicro 

software. 

 

Figure 17. (A) Growth kinetics at 72 hours, vital count performed with Trypan Blue (comparison 
of slopes calculated with linear regression p = 0.3524). (B) Box and whiskers plot of mean cell 
size obtained by optical phase contrast microscopy (MCF7 vs MDA-MB-231 p <0.001; MCF7 vs 
SUM159PT p> 0.99; MDA-MB-231 vs SUM159PT p <0.001). Comparison of means with 1way 
Anova test. The data reported in the graphs derive from three independent experiments. 

2.4.2 Characterization of the metabolic phenotype in 2D: assessment of basal 

respiration and glycolysis 

The Oxygen Consumption Rate (OCR), a parameter related to mitochondrial 

respiration, and the Extracellular Acidification Rate (ECAR), largely related to 

glycolysis, were measured using Seahorse XFe96 analyzer and normalized on cell 



 
78 

number, to compare the bioenergetic parameters between the different cell lines. 

Observing the basal metabolic parameters of the three BC lines, it emerged that MCF7 

cell line is the most aerobic, characterized way by a statistically significant higher basal 

OCR and lower ECAR than the other two cell lines. MDA-MB-231 cell line was the most 

glycolytic among the three BC cell lines, with the lowest OCR value and the highest 

ECAR recorded. SUM159PT cell line presented an intermediate metabolic phenotype 

between the two previously mentioned, since it is characterized by a lower oxygen 

consumption rate than MCF7 (but higher compared to MDA-MB-231) and a lower 

medium acidification rate than MDA-MB-231 (but higher than MCF7) (Figure 18). 

 

Figure 18. Basal metabolic parameters of BC lines grown in adhesion (2D). Statistically 
significant differences between cell lines are expressed as *= p <0.05; ***= p <0.001 applying 
the comparison of means with 2way Anova test. The data reported in the graph derive from 
two independent experiments. 

 

Total ATP production rate and its distribution between glycolysis production 

(glycoATP) and mitochondrial respiration production (mitoATP) were obtained with 

ATP Rate Assay (Figure 19). Consistent with the data presented above, MCF7 cells 

exhibit a half rate of ATP production by glycolysis compared to the other two cell lines 

and the highest production of ATP by respiration. On the other hand, MDA-MB-231 

and SUM159PT cells exhibit a similar behavior, with a comparable amount of total ATP 

production, principally linked to glycolytic activity (Figure 19). 
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Figure 19. Histogram of total ATP production rate, mitoATP and glycoATP production rate of BC 
cell lines grown in adhesion (2D). Mitochondrial ATP production rate (mitoATP) is shown in 
orange, the rate of ATP production by glycolysis (glycoATP) is indicated in brown. The 
statistically significant differences between the cell lines are indicated as *** = p <0.001, in 
orange for mitoATP and in brown for glycoATP. The comparison of means with the 2way Anova 
test was used for the statistics. The data reported in the graph derive from three independent 
experiments. 

 

2.4.3 Analysis of mitochondrial functionality in 2D 

Mito Stress Test allows to analyze respiratory function of cells through the sequential 

injection of drugs that modulate mitochondrial respiration. The results (Figure 20A, B) 

indicate that MCF7 cells not only have the greatest basal respiration, but also the 

greatest maximal respiration (p <0.001; 2way Anova test), calculated as reported in 

the paragraph 2.3.6. This cell line also presents the greatest spare respiratory capacity, 

highlighting their potential to better respond to an increased demand of energy or to a 

stressful condition. MDA-MB-231 cell line shows the lowest values of basal and 

maximal respiration and, therefore, of spare respiratory capacity. SUM159PT cell line 

presents an intermediate situation between the other two lines. The data were 

analyzed by comparing the means with the 2way Anova test, pointing out that the 

differences found between the tumor cell lines regarding basal and maximal 

respiration and spare respiratory capacity are highly statistically significant (p <0.001). 



 
80 

 

 

Figure 20 (A) Mito stress test OCR profile of BC cell lines grown in adhesion (2D). The arrows 
indicate the time point at which the drugs were injected (1μM Oligomycin, 0.25-1μM FCCP, 
0.5μM Rotenone/Antimycin A). (B) Mito stress test parameters of calculated as reported in 
Materials and Methods (paragraph 2.3.6): Basal respiration, Maximal respiration, and Spare 
respiratory capacity. The differences between BC cell lines are all statistically significant (p 
<0.001, not reported in the graph), calculated applying the comparison of means with 2way 
Anova test. The data reported in the graphs derive from two independent experiments. 

Mito Fuel Flex Test enables the measurement of the total mitochondrial oxidation 

capacity of three nutrients, i.e., glucose, glutamine, and fatty acids, that is represented 

by the sum of two parameters: the dependency and flexibility. Dependency indicates 

the measurement of cells’ reliance on a particular fuel pathway to maintain baseline 

respiration. Flexibility measures the ability of cells to increase oxidation of a particular 

fuel to compensate for inhibition of alternative fuel pathway(s). 

The analysis shows that MCF7 cell line is much more dependent on glucose than the 

glutamine and fatty acids for oxidative phosphorylation (p <0.001; 2way Anova test) 

and it has the flexibility to enhance its oxidation even in the absence of the other two 

nutrients (Figure 21). However, despite MCF7 cell line does not show any dependency 

on glutamine, it is able to use it as an alternative substrate in the absence of glucose 

and fatty acids. Likewise, its dependency on fatty acids is limited, while the flexibility in 

using them is greater. 
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MDA-MB-231 cell line is dependent on all three metabolic substrates, with a 

significantly higher dependency on glucose than on other nutrients (p <0.001). 

Furthermore, this cancer cell line is much less flexible than MCF7 cell line (p <0.001) to 

all the mitochondrial fuels, highlighting the need to have all the nutrients available for 

respiration (Figure 21). 

Finally, the respiration of the SUM159PT line is more dependent on glucose than the 

other two nutrients but compared to the other BC cell lines it remains the least 

dependent on this substrate (p <0.01). Furthermore, it shows to be very flexible in 

using glutamine and fatty acids, similarly to MCF7 (p> 0.05), but not glucose (p 

<0.001). Only the MDA-MB-231 cell line does not seem to be able to increase the 

oxidation of a substrate to compensate for the inhibition of the other pathways in 

accordance with the data of Mito stress test (Figure 21). 

 

Figure 21 Histogram showing dependency and flexibility to use glucose (GLC), glutamine (GLN) 
and fatty acids (FA) for OXPHOS measured in the three BC lines grown in adhesion (2D). 
Statistically significant differences are expressed as * = p <0.05; ** = p <0.01; *** = p <0.001 
applying the comparison of means with the 2way Anova test. The data reported in the graph 
derive from two independent experiments. 

 



 
82 

2.4.4 Metabolic perturbation assays in 2D: nutritional deprivation and 

pharmacological treatment 

To evaluate the impact of glucose, glutamine, fatty acids and mitochondrial respiration 

in supporting BC cells growth, proliferation assays were performed under nutritional 

deprivation or pharmacological treatments. The effects of these metabolic 

perturbations were tested on cell proliferation grown in adhesion (2D) after 72h of 

treatment. 

The proliferation of all three BC cell lines is significantly reduced under glucose 

deprivation and 2-deoxyglucose (2DG) treatment compared to the control condition 

(Figure 22A, B). 2DG is a structural analogue of glucose which differs from the latter by 

replacing the hydrogen at second carbon atom with a hydroxyl group; once in the cell, 

it is phosphorylated by the hexokinase to 2-deoxy-D-glucose-6-phosphate (2DG-6-P), 

which cannot be further metabolized by glucose-6-phosphate dehydrogenase or 

phosphoisomerase. Therefore, once formed, it accumulates in the cell and its high 

intracellular levels cause the allosteric and competitive inhibition of the hexokinase 

which results in the inhibition of glucose metabolism. 

The data show that the primary tumor line SUM159PT is the most sensitive to both 

glucose deprivation and pharmacological inhibition of glycolysis by 2DG, with a 

maximal inhibitory effect of 2DG around 80% and an EC50 under the lowest dose of 

2DG tested (EC50 = 0.3312 mM). MCF7 cell line is the least sensitive to both nutritional 

deprivation and drug treatment against glucose metabolism, with a maximal 2DG 

inhibitory effect of 65% reached at 10mM and an EC50 = 2.479 mM. MDA-MB-231 cell 

line displays an intermediate inhibitory effect of both nutritional deprivation and 

pharmacological treatment compared to the other two BC lines (max inhibitory effect 

of 2DG around 70% and EC50 =2.104 mM). 

The anti-proliferative effect of glucose deprivation and the EC50 of 2DG treatment fit a 

linear regression with a R2 = 0.9954, suggesting that these two metabolic 

perturbations have comparable effects on the BC cell lines. As expected, the relation 
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between them is inversely proportional: the higher the EC50 of the drug treatment, the 

lower the anti-proliferative effect of glucose deprivation (Figure 22C) . 

Summarily, there is a significant dependence on the carbohydrate metabolic axis by 

the three BC cell lines, which well correlates with the data obtained by Agilent 

Seahorse XFe96 technology in the previously described assays. 

 

 

Figure 22 (A) Anti-proliferative effect % of glucose deprivation and (B) 2DG treatment tested at 
concentrations 0.625mM - 1.25mM - 2.5mM - 5mM - 10mM - 20mM (expressed as 
Log[concentration]) compared to the control condition and related statistical significance of BC 
cell lines grown in adhesion (2D) The anti-proliferative effect was calculated at 72 hours as [1- 
(n° treated cells /n° control cells)]%. The count was performed with Hoechst staining and 
Operetta-Harmony acquisition and analysis. (C) Linear regression between the anti-proliferative 
effect of glucose deprivation and the EC50 of 2DG treatment obtained from the curves reported 
in panel (B). Statistical significance calculated with 2way Anova is expressed as * = p <0.05; ** = 
p <0.01; *** = p <0.001. The data reported in the graphs derive from three independent 
experiments. 

Glutamine deprivation has a significant impact on all BC cell lines growth too, with a 

slightly greater effect on SUM159PT (Figure 23A, B). To evaluate the effect of BPTES, a 
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glutaminase inhibitor that is solubilized in DMSO, the appropriate vehicle 

concentration was added to the control condition. SUM159PT cells are the most 

sensitive to BPTES treatment since the lowest concentration testd, followed by MDA-

MB-231. Only MCF7 cell line shows minimal sensitivity to treatment at all drug 

concentrations tested (unfortunately the low effect of this drug treatment cannot be 

completely attributed to BPTES because MCF7 proliferation revealed to be strongly 

inhibited by DMSO vehicle). Combining the results of nutritional and pharmacological 

perturbations, it emerges that SUM159PT cell line shows the greatest consistency 

between deprivation and BPTES treatment (p> 0.05; non-parametric Kruskal-Wallis 

test) with a maximal inhibitory effect of the drug above 80%, while MDA-MB-231 cell 

line and, especially, MCF7cell line are much less sensitive to the drug effect than 

glutamine deprivation. 

The anti-proliferative effect of glutamine deprivation and the EC50 of BPTES treatment 

do not fit a linear regression (R2 = 0.3663), suggesting that these two metabolic 

perturbations do not have comparable effects on all the BC cell lines. This could be 

partially due to the cytotoxic effect of DMSO (the vehicle used to resuspend BPTES 

powder) on MCF7 and on the other hand the discordant data of MDA-MB-231 cell line 

which shows a high anti-proliferative effect of glutamine deprivation but a relatively 

low effect of BPTES (higher EC50 values compared to the other two cell lines). We 
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propose to further investigate this aspect studying the effect of other inhibitors of 

glutamine metabolism. 

 

 

Figure 23 (A) Anti-proliferative effect % of glutamine deprivation and (B) BPTES treatment 
tested at concentrations 0.5µM - 2.5µM - 5µM - 10µM - 20µM (expressed as 
Log[concentration]) compared to the control condition and related statistical significance of BC 
cell lines grown in adhesion (2D) The anti-proliferative effect was calculated at 72 hours as [1- 
(n° treated cells /n° control cells)]%. The count was performed with Hoechst staining and 
Operetta-Harmony acquisition and analysis. (C) Linear regression between the anti-proliferative 
effect of glutamine deprivation and the EC50 of BPTES treatment obtained from the curves 
reported in panel (B). Statistical significance calculated with 2way Anova is expressed as * = p 
<0.05; ** = p <0.01; *** = p <0.001. The data reported in the graphs derive from three 
independent experiments. 

 

At this point, the inhibition of the fatty acids metabolic axis was tested using the drug 

Etomoxir, carnitine palmitoyl-transferase 1A (CPT1A) inhibitor, which blocks the 

transport of fatty acids from the cytoplasm to the mitochondrion. 
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The results in Figure 24 show that MDA-MB-231 cell line is the most sensitive to the 

treatment with Etomoxir, whose significant effect is evident at concentration 50µM (p 

= 0.014, Kruskal-Wallis non-parametric test). This data correlate with those obtained 

from Mito fuel flex test, which records the dependency of MDA-MB-231 cell line on all 

metabolic substrates and an absence of flexibility. On the other hand, MCF7 cell line 

shows to be affected by the drug treatment only at the highest concentration tested, 

200µM (p = 0.006; Kruskal-Wallis non-parametric test). However, this result has a poor 

biological value due to a possible pleiotropic effect of high-dose Etomoxir. Finally, 

SUM159PT cell line is not significantly affected by this treatment (at all concentrations 

used p> 0.05; non-parametric Kruskal-Wallis test). 
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Figure 24 Anti-proliferative effect % of Etomoxir treatment tested at concentrations 5µM – 
25µM – 50µM – 100µM – 200µM (expressed as Log[concentration]) compared to the control 
condition and related statistical significance of BC cell lines grown in adhesion (2D) The anti-
proliferative effect was calculated at 72 hours as [1- (n° treated cells /n° control cells)]%. The 
count was performed with Hoechst staining and Operetta-Harmony acquisition and analysis. 
Statistical significance calculated with 2way Anova is expressed as * = p <0.05; ** = p <0.01; 
*** = p <0.001. The data reported in the graphs derive from three independent experiments. 

 

The last drug tested was Oligomycin, an ATP-synthase inhibitor blocking the 

mitochondrial production of ATP. 
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Oligomycin treatment (Figure 25) have a significant impact on cell proliferation of all 

three BC cell lines even at the lowest concentration tested, with a greater effect on 

SUM159PT cell line, followed by MCF7 cell line and lastly, albeit significant, on MDA-

MB-231 cell line. These data are consistent with those obtained by the Seahorse 

assays demonstrating that MDA-MB-231 cell line has a less functional respiratory 

machinery. 

 

Figure 25 Anti-proliferative effect % of Oligomycin treatment tested at concentrations 
0.0625µM - 0.125µM - 0.25µM - 0.5µM - 1.5µM (expressed as Log[concentration]) compared to 
the control condition and related statistical significance of BC cell lines grown in adhesion (2D) 
The anti-proliferative effect was calculated at 72 hours as [1- (n° treated cells /n° control 
cells)]%. The count was performed with Hoechst staining and Operetta-Harmony acquisition 
and analysis. Statistical significance calculated with 2way ANOVA is expressed as ** = p <0.01; 
*** = p <0.001. The data reported in the graphs derive from three independent experiments. 

 

2.4.5 Propensity to form spheroids (3D) 

The propensity of BC cell lines to form spheroids was studied by seeding the cells 12-

wells plates not-treated for tissue culture (suspension plates) in 3D experimental 

medium as described in paragraph 2.3.2. The images in Figure 26 were obtained using 

a phase contrast microscope (Olympus CKX41). The images show that the MCF7 cell 

line does not adhere to the untreated plates and starts spontaneously forming small 

spheroids after 24 hours of seeding; in the following days of culture the major 
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observation is that these small spheroids tend to merge togeter, forming much larger 

structures with irregular shapes. 

Similarly, MDA-MB-231 cell line does not adhere to untreated plates but immediately 

tends to form aggregates in suspension. These aggregates become more compact over 

time, forming irregular spheroids. 

On the contrary, SUM159PT cell line adheres loosely to untreated plates; the 

spheroids are formed starting from the attached cells that migrate and aggregate one 

to each other, following a slower process compared to the other two cell lines. During 

the following days the spheroids grow in size and detach from the support. SUM159PT 

cell line forms spheroids with smaller dimensions but more regular shapes compared 

to MCF7 and MDA-MB-231 cell lines. 

 

Figure 26 Phase contrast microscope images of spontaneous spheroid formation of BC cell lines 
at 24h (1 day), 72h (3 days), and 168h (7 days) after seeding.  

In conclusion, all BC cell lines can form spheroids that progressively merge togeter.  

The following study is the application an optimized protocol of spheroid formation to 
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evaluate the ability of BC cells to form three-dimensional structures under the effects 

of pharmacological treatments and metabolic perturbations. 

2.4.6 Spheroid formation assays under metabolic perturbation by nutritional 

deprivation or pharmacological treatment 

For studying the effect of pharmacological treatments with metabolic drugs and 

nutritional perturbations on the spheroid formation capacity of the three BC cell lines, 

a more standardized protocol was applied for spheroid formation. The protocol 

described in material and  methods (paragraph Errore. L'origine riferimento non è stata t

rovata.) consists in seeding a specific number of cells per well (10,000 cells/well) on U-

bottom Ultra-low attachment 96-well plates, followed by plate centrifugation. This 

method enhables to obtain one single spheroid per well, with much higher 

reproducibility in terms of regulararity and morphology (i.e., shape and size). Each 

condition was evaluated through imaging analysis performed on the three-dimensional 

structures at 72 hours after seeding in presence or absence of the metabolic 

perturbation. 

Under glucose deprivation, MCF7 spheroids show an intensification of PI fluorescence 

(Figure 27), indicating a greater mortality induced by this metabolic perturbation that 

seems to be colocalized with the anoxic core (Figure 27A). The treatment with 2DG, 

especially at the highest drug concentration, favors the formation of spheroids showing 

a partial delocalization of dead cells, detected by PI staining; since the area of PI 

detection is larger, the intensity of its fluorescence does not increase. The spheroids 

also show substantially negligible effects on compactness and on the perimeter 

regularity (detected with Cell Tracker Green, indicated by roundess values), suggesting 

that even in the absence of glucose, MCF7 cells are able to form spheroids 

morphologically similar to those of control condition. 

MDA-MB-231 spheroids are the most impacted by glucose deprivation and 2DG 

treatment, which have lead to an increase in PI fluorescence in a dose-dependent 

manner (Figure 27B), indicating an overall increase in cell mortality. In addition, a 
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decrease in compactness also emerges from the detection in brightfield (Figure 27A) and 

from roundness values (Figure 27B): the spheroids are visibly more fragmented, lacking 

perimeter regularity.  The glucose perturbation through both nutritional deprivation 

and pharmacological treatment,  seems having impacted and therefore prevented 

spheroid formation of this cell line.  

In SUM159PT spheroids treated with 2DG we can observe both a loss of compactness 

of the necrotic core with a consequent increase in the PI area distribution and a loss of 

the perimeter regularity of the three-dimensional structure, in particular at the highest 

concentration of 2DG used (Figure 27A-B). Under glucose deprivation we also can 

observe a shrinkage of the spheroids, characterized by lower roundness and higer 

mortality (identified by an increased PI intensity, Figure 27B), demonstrating that 

glucose may have an important role in the spheroid formation process of SUM159PT 

cell line. 

Therefore, these data suggest that glucose deprivation and the treatment with 2DG 

have a particular impact on spheroid formation of MDA-MB-231 cells; in MCF7 and 
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SUM159PT cell lines the greatest effect on the spheroid formation is mainly found under 

the higher concentration of drug treatment. 

 

Figure 27 (A) Images of spheroid formation assay of the three BC cell lines in triplicate at 72 hours; 
comparison between control and glucose deprivation or treatment with 2DG at different 
concentrations (1.25mM - 10mM). The images show the merge of brightfield and Propidium 
Iodide (PI) fluorescence for a qualitative evaluation. Scale barr = 1 mm. (B) Scatter dot plot 
relating roundness (parameter measuring the compactness and perimeter regularity) and 
intensity detected by the fluorescence of Propidium Iodide normalized on the total area of the 
spheroid measured as a selection of the CellTracker Green fluorescence (measure of the quantity 
and distribution of cell mortality). The data reported in the graph derive from one experiment 
with four technical replicates for each condition. 
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Under glutamine deprivation we can notice a lowering of PI detection in MCF7 spheroids 

that can be explained by a spreading of PI signal within the spheroid, correlated to an 

initial loss of the levels of organization of the three-dimensional structure. Qualitatively 

similar but quantitatively milder effects of the reduced ability to form spheroids can be 

observed under BPTES treatment (Figure 28A-B). On the other hand, in MDA-MB-231 

spheroids, any significative change seems to occur under treatment with BPTES, while 

a slight reduction of perimeter regularity/roundness can be observed under glutamine 

deprivation (Figure 28B). Glutamine deprivation seem to cause a loss of perimeter 

regularity and an increased dispersion of PI signal in SUM159PT spheroids, while the 

treatment with BPTES seem to produce just a modest shrinkage of these 3D structures 

(Figure 28A-B).  
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Figure 28 (A) Images of spheroid formation assay of the three BC cell lines in triplicate at 72 hours; 
comparison between control and glutamine deprivation or treatment with BPTES at different 
concentrations (2.5μM - 20μM). The images show the merge of brightfield and Propidium Iodide 
(PI) fluorescence for a qualitative evaluation. Scale barr = 1 mm. (B Scatter dot plot relating 
roundness (parameter measuring the compactness and perimeter regularity) and intensity 
detected by the fluorescence of Propidium Iodide normalized on the total area of the spheroid 
measured as a selection of the CellTracker Green fluorescence (measure of the quantity and 
distribution of cell mortality). The data reported in the graph derive from one experiment with 
four technical replicates for each condition. 

 

On the contrary, the treatment with Etomoxir does not produce any significative 

variations in any of the lines examined; the spheroids form without undergoing any 
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impact due to the presence of the drug, not even at the highest concentration tested 

(Figure 29A-B). 

 

Figure 29 (A) Images of spheroid formation assay of the three BC cell lines in triplicate at 72 hours; 
comparison between control and treatment with Etomoxir at different concentrations (25μM - 
200μM). The images show the merge of brightfield and Propidium Iodide (PI) fluorescence for a 
qualitative evaluation. Scale barr = 1 mm. (B) Scatter dot plot relating roundness (parameter 
measuring the compactness and perimeter regularity) and intensity detected by the fluorescence 
of Propidium Iodide normalized on the total area of the spheroid measured as a selection of the 
CellTracker Green fluorescence (measure of the quantity and distribution of cell mortality). The 
data reported in the graph derive from one experiment with four technical replicates for each 
condition. 
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Oligomycin does not seem to have a substantial impact on the spheroid formation 

process of MCF7 and MDA-MB-231 cell lines. The only significative effect of this drug 

can be observed in SUM159PT spheroids, which show an increased intensity of PI signal, 

together with a larger area of the necrotic central core and a decreased perimeter 

regularity (Figure 30). 

 

Figure 30 (A) Images of spheroid formation assay of the three BC cell lines in triplicate at 72 hours; 
comparison between control and treatment with Oligomycin at different concentrations (62.5nM 
- 3μM). The images show the merge of brightfield and Propidium Iodide (PI) fluorescence for a 
qualitative evaluation. Scale barr = 1 mm. (B) Graphs relating PI intensity/CT area and roundness 
of the spheroids under respiratory metabolism perturbation, for a quantitative evaluation. 
Scatter dot plot relating roundness (parameter measuring the compactness and perimeter 
regularity) and intensity detected by the fluorescence of Propidium Iodide normalized on the total 
area of the spheroid measured as a selection of the CellTracker Green fluorescence (measure of 
the quantity and distribution of cell mortality). The data reported in the graph derive from one 
experiment with four technical replicates for each condition. 
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2.4.7 Preliminary metabolic characterization of homotypic and heterotypic three-

dimensional (3D) cultures: analysis of basal and perturbed respiration and 

acidification rate 

In order to compare the bioenergetic parameters of spheroids formed from BC cell 

lines, OCR and ECAR parameters are normalized on the number of cells per spheroid, 

calculated indirectly from spheroid area (for further details see paragraph 2.3.6 in 

Materials and Methods section). The measurement of the area of each spheroid was 

obtained from the analysis of Cell Tracker fluorescence by mean of Operetta CLSTM and 

Harmony software. 

The basal oxygen consumption rates of the spheroids are similar to those observed in 

2D (Figure 31): MCF7 cell line remains the most aerobic among the BC cell lines, MDA-

MB-231 cell line the one that less exploits mitochondrial respiration in basal 

conditions, while SUM159PT cell line shows an intermediate OCR (Figure 31). Contrarily 

to the data registered in the corresponding 2D cultures, MCF7 and SUM159PT 

spheroids exhibit higher extracellular acidification rates than MDA-MB-231 spheroids. 

Altogether these data show that MCF7 spheroids are the most energetic among the BC 

cell lines, MDA-MB-231 spheroids are the most quiescent ones, while SUM159PT 
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spheroids have an intermediate metabolism: more energetic than MDA-MB-231 

spheroids but less than MCF7 ones.  

 

Figure 31 Basal metabolic parameters of BC lines grown as spheroids for 72h (3D). Statistically 
significant differences between cell lines are expressed as *= p <0.05; **= p <0.01; ***= p 
<0.001 applying the comparison of means with 2way Anova test. The data reported in the 
graph derive from two independent experiments. 

 

These data are better highlighted by the Mito Stress Test (Figure 32A, B), 

demonstrating that the MCF7 spheroids also have the highest value of maximal 

respiration and spare respiratory capacity, suggesting their greater ability to respond 

to an increased demand for energy than the other two cell lines. Moreover, MDA-MB-

231 spheroids seem to have an enhanced response to FCCP that the adhesion 

counterpart: this indicates that, even though they are the most quiescent among BC 

spheroids, they are more flexible to increase mitochondrial respiration to respond to 

stressful conditions. 
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Figure 32 (A) Mito stress test OCR profile of BC cell lines grown as spheroids for 72h (3D). The 
arrows indicate the time point at which the drugs were injected (2μM Oligomycin, 2μM FCCP, 
0.5μM Rotenone/Antimycin A). (B) Mito stress test parameters of calculated as reported in 
Materials and Methods (paragraph 2.3.6): Basal respiration, Maximal respiration, and Spare 
respiratory capacity. Statistically significant differences between cell lines are expressed as *= p 
<0.05; ***= p <0.001 applying the comparison of means with 2way Anova test. The data 
reported in the graphs derive from two independent experiments. 

 

A preliminary characterization of heterotypic spheroids formed by MCF7 cell line and 

HMF8 primary human normal mammary fibroblasts was performed to investigate the 

metabolic interactions occurring between breast cancer cells and components of the 

TME. In Figure 33, the images of the heterotypic spheroids analyzed by Seahorse 

technology are represented: the breast cancer cell line MCF7 (stained with Cell Tracker 

red CMPTX) seems to localize in the outer layers of the heterotypic spheroid and to co-

localize with primary fibroblasts HMF8 (stained with Cell Tracker Green CMFDA) in the 

center of the 3D structure. This distribution between cancer cells and fibroblasts was 

already observed in similar models [226,227]. 
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Figure 33 Heterotypic spheroids obtained by the co-culture between 5,000 cells of MCF7 cell 
line (CellTrackerTM Red CMPTX) and 5,000 cells of fibroblasts HMF8 (CellTrackerTM Green 
CMFDA). Images represent CT red maximum intensity projection (left-top), CT green maximum 
intensity projection (left-middle), brightfield (left-bottom) and merges of CT green + CT red 
maximum intensity projections (right-top) and merge of all channels (right-bottom) acquired by 
Operetta CLSTM 72h after seeding. 

The results of basal and stressed energy map (Figure 34A) demonstrate that MCF7 and 

HMF8 spheroids present a similar use of glycolysis but the BC cell line has a 1.7 times 

greater oxygen consumption rate than fibroblasts in basal condition. On the other 

hand, the heterotypic spheroids are more energetic than both homotypic spheroids, 

with a 60% higher extracellular acidification rate than HMF8 (but similar to MCF7’s 

ECAR) and a 120% and 30% greater use of oxidative phosphorylation than HMF8 and 

MCF7, respectively. Under stressful conditions (induced by the treatment with 2μM 

FCCP), all the spheroids simultaneously enhance glycolysis and mitochondrial 

respiration. In particular, HMF8 spheroids present the highest metabolic potential 

(Figure 34B), showing the greatest ability to enhance both glycolysis (+3.1 times) and 

mitochondrial respiration (+2.2 times), while MCF7 spheroids and heterotypic 

spheroids show an increase of both parameters around 1.5-1.6 times. The energetic 

phenotype reached by heterotypic culture is not significatively different from that of 

HMF8 spheroids but significatively higher than MCF7 spheroids (statistical analysis is 

reported in Table 4).  
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Figure 34 (A) Energy phenotype of homotypic MCF7 and HMF8 and heterotypic HMF8+MCF7 
spheroids under basal and stressed conditions induced by the injection of 2μM FCCP. (B) 
Metabolic potential of the same cultures calculated as the ratio between basal and stressed 
OCR and ECAR%. The data reported in the graph derive from one experiment with MCF7 N=14, 
HMF8 N=13, HMF8+MCF7 N=28 technical replicates. 

Table 4 Table of statistical comparison between basal and stressed ECAR and OCR values of the 
data presented in Figure 34A. Statistically significant differences between cell lines are 
expressed as *= p <0.05; **= p <0.01; ***= p <0.001 applying the comparison of means with 
2way Anova test.  

 

 

These data suggest that the 3D co-culture stimulates a more energetic basal 

metabolism than the 3D mono-cultures and reaches a greater energetic state under 

stressful condition compared to the homotypic breast cancer spheroids. 
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It should be underlined that the Seahorse analysis on whole spheroids give 

information about the average metabolic state of all the cells in the spheroid, and the 

measured parameters (OCR and ECAR) can be partially influenced by the non-

homogeneous diffusion of oxygen and protons in the extracellular medium. This kind 

of analysis does not allow to discern the metabolic states of the single cells which 

compose the inner or the outern layers of the spheroid under study. Despite these 

limitations of Seahorse analysis, we believe that it is a valid technology to start 

exploring the global metabolic characteristics of three-dimensional cultures. 

 

2.5  Discussion 

It is known that tumor cells, in order to maintain their transformed state, support the 

high proliferative rate and survive in the tumor microenvironment, tend to remodel 

their metabolic network [22]. Starting from this assumption, we focused on the study 

of the cancer metabolic phenotype - which could represent, therefore, a real 

opportunity to find new therapeutic approaches - in three breast cancer cell lines: a 

hormone-sensitive cell line, MCF7, and two triple-negative cell lines, MDA-MB-231 and 

SUM159PT. For this purpose, we started by characterizing the metabolic and 

nutritional profiles of the three BC cell lines that grown in adhesion (2D), then moved 

to the qualitative and the preliminary quantitative analysis of the three-dimensional 

models, that are more representative of the pathology in vivo. The media 

compositions of the three BC cell lines had been previously optimized in order to 

evaluate the effects of deprivations and pharmacological treatments in the best 

possible growth conditions. The spheroids were obtained using U-bottom Ultra-Low 

Attachment plates which facilitate the generation of uniform spheroids and their high 

throughput analysis by brightfield and fluorescence microscopy. 

The three BC cell lines cultured in 2D exhibit distinct metabolic profiles. As expected, 

the hormone receptors positive cell line MCF7 is the most respiratory, so that the 

production of ATP largely (over 70%) due to respiration. MCF7 cells use almost 
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exclusively glucose as a respiratory substrate, and they have a high ability to increase 

respiration in conditions of nutritional stress, demonstrating to be flexible in the use of 

glutamine and fatty acids for respiration in the absence of glucose. Since MCF7 cells do 

not use this amino acid as a respiratory substrate, this effect probably depends on the 

use of glutamine for the synthesis of "building blocks" necessary for proliferation 

[228]. Consistently with its low glycolytic rate and high flexibility in fuels oxidation, 

glucose deprivation and the inhibition of its metabolism by 2DG have a minor impact 

on MCF7 cell proliferation than the other two cell lines. As expected, the inhibition of 

mitochondrial respiration by oligomycin reduces MCF7 cell proliferation much more 

than observed in MDA-MB-231 cells. 

Consistently with its molecular subtype (TNBC) [217,220,229], MDA-MB-231 cell line is 

the most glycolytic, with a respiratory contribution to the ATP production rate that 

does not exceed 30%. The main substrate of oxidative phosphorylation in this cell line 

is glucose, but these cells have no flexibility in responding to increased energy demand 

or to switch metabolic substrate oxidation under stressful condition.  Consistently with 

the limited role of mitochondria in the ATP production, the cell proliferation inhibition 

induced by oligomycin is significantly lower than in the other two cell lines. The 

inhibitory effect on proliferation induced by glutamine deprivation is lower than that 

observed in MCF7 and SUM159PT cells. 

SUM159PT cell line shows a glycolytic basal metabolism similar to MDA-MB-231 cell 

line but with a higher flexibility to respond to stressful conditions enhancing 

mitochondrial respiration. Mitochondrial respiration of SUM159PT cell line is more 

dependent on glucose than on glutamine or fatty acids. Consistently with its molecular 

subtype (TNBC)[220], the results of glucose deprivation and 2DG treatment assays 

demonstrates that SUM159PT cell line is the most sensitive to glucose perturbation 

(which have an impact on proliferation of about 80%). 

In all cell lines, the inhibition of fatty acid oxidation by Etomoxir has limited effects on 

cell proliferation, which appear only at drug concentrations above 200 µM, 
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concentrations at which notable off-target effects they have been reported [230]. For 

this reason, the effects of Etomoxir will not be considered further in this discussion.  

The results obtained in this work indicate that - in general - the impact of metabolic 

perturbations is greater on monolayer cell proliferation than on spheroid formation 

capacity of the BC cell lines. The nutritional or pharmacological perturbation of 

glucose metabolism is the one that has the most evident impact on the spheroid 

formation of all three BC cell lines, especially on cell MDA-MB-231 line, which is the 

most strongly glycolytic. Oligomycin, unlike the results obtained in 2D, appears to have 

just slight effects on the spheroids’ formation of SUM159PT cell line which presents a 

reduction in compactness and increased mortality. The comparative metabolic profile 

of pre-formed spheroids partially differs from 2D cultures: in particular, MDA-MB-231 

cell line becomes more quiescent in 3D and MCF7 spheroids are less dependent on 

respiration and slightly more glycolytic than its 2D counterpart. Therefore, the lower 

effect of oligomycin on MCF7 and MDA-MB-231 lines, could partially reflect a 

metabolic rearrangement that would occurring in 3D cultures [231]. 

Literature data show that, in the transition from two- to three-dimensional structure, 

other cancer cell lines undergo a reduction in glucose uptake, lactate secretion, 

cellular respiration and ATP synthesis in response to hypoxia. This could suggest, in 

addition to a reduced proliferation of cells aggregated into spheroids, a down-

regulation of respiration and, therefore, an adaptation of cellular metabolism may 

occur in order to better survive to non-permissive conditions [232]. In fact, it is known 

that tumors can undergo selection in response to therapies, generating 

chemoresistance and/or metastases, towards genetic and metabolic reprogramming 

with a worse prognosis [233]. 

Therefore, it will be of great interest to follow the time-dependent evolution of the 

metabolic rearrangement occurring in spheroids by means of expression analysis of 

the main molecular actors using immuno-histochemical or transcriptional analysis. To 

consolidate the assays presented in this work, it will be necessary to validate the 
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metabolic differences between adhesion cells and pre-formed spheroids through 

other metabolic assays such Mito fuel flex test to study the dependency and flexibility 

in the use of nutrients on pre-formed spheroids, and to test the effect of drugs 

targeting specific metabolic pathways in inducing cell death and disruption of 

spheroids. 

The layers of cell within the spheroids create gradients of oxygen, nutrients and 

metabolites and barriers that influence the transport of drugs and signaling, which 

have an important role in the study of pathologies [135]. To observe these 

phenomena on living cells, there are a wide variety of fluorescent probes that can be 

employed through confocal microscopy [119]. However, in using confocal microscopy, 

the loss of fluorescent signal must be considered moving to the innermost part of the 

spheroid. In 3D renderings in the absence of treatments that makes the cellular matrix 

more accessible to light, the spheroids appear as a bowl with a light signal around the 

edges and a muted signal inside. Therefore, the quantifications presented in the 

results of spheroid formation assays represent a – albeit useful - approximation, linked 

to the impossibility of reconstructing the complete three-dimensional structure in our 

analysis conditions. Indeed, the Roundness is calculated on the circumference of the 

two-dimensional projection of the spheroid and not on the sphericity and intensity of 

the PI is related to the area and not to the volume since this is not entirely detectable. 

The morphometric and functional study of the spheroids requires more complex 

experimental techniques (such as the fixation and / or clarification of the sample, 

which inevitably limits the spectrum of usable vital probes), and computational 

techniques. Taken together, these techniques allow to observe the spheroid in its 

entirety, to quantify the number of cells and their morphology, thus providing a more 

complex and more representative picture, which will be the subject of subsequent 

studies. 

Moreover, it should be underlined that the Seahorse analysis on whole spheroids give 

information about the average metabolic state of all the cells in the spheroid, and the 

measured parameters (OCR and ECAR) can be partially influenced by the non-
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homogeneous diffusion of oxygen and protons in the extracellular medium. This kind 

of analysis does not allow to discern the metabolic states of the single cells which 

compose the inner or the outern layers of the spheroid under study. Despite these 

limitations of Seahorse analysis, we believe that it is a valid technology to start 

exploring the global metabolic characteristics of three-dimensional cultures. As future 

perspective we propose to integrate the metabolic data obtained by mean of Seahorse 

technology with more sophisticated novel techniques enabling the metabolic analysis 

at single-cell level on tumor spheroids [234]. 

In conclusion, the breast cancer cell lines examined exhibit different metabolic profiles 

as 2D models and can spontaneously form spheroids in untreated and cell-repellent 

plates. This capacity is differentially modulated by nutritional and pharmacological 

perturbations, with an important role for glucose metabolism. Indeed, by analyzing 

the transition of cells from the adhesion status to the suspension and aggregation 

status in three-dimensional structures, it is possible to notice different responses to 

pharmacological treatments suggesting that changes are taking place at metabolic 

level. These alterations manifest as a greater resistance to equivalent concentrations 

of drugs to those tested in 2D; indeed, only modest morphological alterations or 

mortality occur during spheroid formation under metabolic perturbations compared 

to the control condition. Accordingly, the data obtained by Seahorse assays on pre-

formed spheroids show that the basal metabolism of BC cell lines has undergone a 

partial rearrangement compared to the 2D counterparts. The detected effects depend 

both on the initial metabolic state of the individual BC cell lines and on their flexibility 

to remodel their metabolism. In the future we propose to translate the here described 

methods developed for the study of the metabolism of three-dimensional models 

onto more complex cancer models. In particular, we are planning to deepen the effect 

of metabolic perturbations on pre-formed breast cancer spheroids, on patient derived 

breast organoids and on heterotypic spheroids. About the latter, a preliminary study 

on basal and stressed metabolic phenotype is reported in this work, but more in-depth 

analysis are required to dissect the heterotypic interactions between different cell 
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types of the TME, as well as the effects of these interactions on the response to 

therapies [235,236]. 

 

References can be found after ‘General Discussion’ → REFERENCES 
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CHAPTER 2: AN OPTIMIZED WORKFLOW FOR ANALYSIS OF METABOLIC 

FLUXES IN CANCER SPHEROIDS USING SEAHORSE TECHNOLOGY 
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CHAPTER 3: PROFILING AND TARGETING OF ENERGY AND REDOX METABOLISM OF 
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GENERAL DISCUSSION 

Cancer is one of the major contributors to disease burden worldwide. There were 23.6 

million new global cancer cases in 2019, 10.0 million cancer deaths, and 250 million 

disability-adjusted life years estimated to be due to cancer. Since 2010, these numbers 

have increased of 26.3%, 20.9% and 16.0%, respectively [1]. Moreover, the projections 

forecast that the global cancer burden will continue to grow for at least two decades 

[237]. The main causes of therapeutic failures in cancer treatment are the late stage at 

diagnosis, development of therapeutic resistance that can lead to spreading of 

metastasis, and formation of recurrence. The need to find novel therapeutic 

approaches is urgent, but the main challenge to achieving this goal is finding a 

universally efficient therapy against cancer. However, this is not considered the best 

approach in the era of personalized medicine. Cancer heterogeneity has been 

observed in many contexts, revealing the existence of numerous types and subtypes 

of cancer that differ for the tissue of origin and differ genetically, metabolically, 

pathologically, and clinically. Accordingly, exploring this biological diversity that 

characterizes tumors is crucial for finding new prognostic biomarkers for patients' 

stratification and identifying specific neoplastic disease vulnerabilities [3]. For this 

purpose, the aberrant metabolism of proliferating cancer cells presents potential 

opportunities, and there has been a growing interest in studying how best to target 

cancer metabolism [34]. 

Chapter 1 and Chapter 3 of this thesis report the metabolic characterization of three 

breast cancer cell lines (one hormone-responsive and two triple-negative) and two 

grade 2 bladder cancer cell lines. These works stress that even cancer cells derived 

from the same clinical cancer subtype of cancer, and so treated with similar 

approaches, can exhibit different invasiveness, migratory properties, metabolic 

plasticity, and response to pharmacological treatments nutritional perturbations. 

In considering these aspects, we observed that cancer cells' phenotypes in vitro can 

vary substantially from adhesion monolayer (2D) cultures and suspension three-
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dimensional (3D) cultures. Tumor spheroids are more complex in vitro models than 2D 

cultures, and they more closely resemble the pathophysiological features of clinical 

tumors. Indeed, although 2D culture models are still instrumental in many research 

fields, including high-throughput drug screening of human diseases, they present 

many drawbacks as tumor models. For instance, cancer cells proliferation in 

monolayer cultures is unnaturally fast compared to cancer growth in vivo, probably 

due to genetical modification that cell lines have acquired to adapt their survival in 

vitro and to the availability of nutrients, oxygen, and growth factors that are 

homogeneously distributed to all the cells of the culture [120]. On the contrary, three-

dimensional models of cancer, such as spheroids, present a more realistic condition of 

the tumor in patients, with gene expression levels that better resemble levels found 

from cells in vivo [238,239], more similar cell-cell and cell-ECM interactions, and a 

different distribution in gradients of metabolites, signaling small molecules, and gases 

[33,135]. 

Similarly, drugs penetration into the cells is differently modulated between 2D and 3D 

cultures, and this explains parts of our observation about the lower drug sensitivity of 

cancer cells to metabolic perturbations during spheroids formation. Another possible 

explanation of this aspect is that the re-arrangement of cancer cells into 3D structures 

creates a selection pressure on cells, where only those cells that undergo a favorable 

metabolic transformation survive, leading to the selection of more resistant cells, or in 

other terms, the enrichment of the so-called Cancer Stem Cells, that exhibit a less 

proliferative but more aggressive phenotype [14]. 

The research illustrated in Chapter 1 and Chapter 3 has been possible thanks to the 

development and the optimization of the protocols for the study of 3D cultures using 

advanced technologies (e.g., Seahorse XFe96 analyzer and Operetta CLSTM High-

content analysis system), a time-consuming but necessary process that has been 

partially shown in Chapter 2. The need to fine-tune these methods, which is still 

ongoing, was driven by the aim to apply advanced technologies available to the study 

of three-dimensional models avoiding misinterpretations of the data due to low 
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reproducibility or technical issues. For what concerns Operetta CLSTM, we explored 

different analytic approaches trying to find the morphological and physiological 

parameters enabling us to describe not only qualitatively (as shown in Chapter 3) but 

also quantitatively (as shown in Chapter 1), the effects of pharmacological or 

nutritional perturbations on the spheroid formation process. Indeed, while high-

resolution imaging quantifies aspects linked to energetic metabolic, migration, and 

proliferation relatively simply, its application to spheroids presents many hurdles. The 

high thickness and low transparency of three-dimensional cultures cause a light‐

scattering phenomenon that limits light penetration, inhibiting the complete digital 

reconstruction of the 3D structure in live imaging and, therefore, the correct 

evaluation of 3D parameters (e.g., volume, sphericity). Despite the development of 

many clearing techniques designed to overcome this problem [240], this approach is 

hard to apply on spheroid formation assays, in which the treatment can partially or 

fully disrupt the structures or if the process is intended to be observed in live imaging. 

Moreover, clearing strategies usually lead to phenomena of spheroid shrinkage or 

swelling so that the original morphological features of the spheroid can be lost. In 

Chapter 1, we applied the quantitative live imaging analysis of 3D cultures that we 

valuated to better correlate with the qualitative observation of spheroids formation 

(roundness) and variations on their vitality (P.I. intensity/C.T. area), even though it still 

requires to pay attention to data interpretation (in particular related to the use of the 

intensity of P.I. calculated on maximal intensity projection, which not always correlate 

proportionally with the mortality rate for instance due to dead cells disintegration that 

can lead to a lowering of this signal). 

The optimized workflow for Seahorse analysis of three-dimensional cultures that we 

illustrated in Chapter 2 offers a variety of implementation aspects potentially highly 

usable for the study of metabolic aspects in cancer spheroids. However, it is important 

to underline that Seahorse technology measures metabolic parameters deriving from 

the oxygen consumption and extracellular acidification occurring in the medium 

immediately surrounding the cells of the spheroid, so it gives information about the 
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average metabolic state of the three-dimensional structure. Considering that in cancer 

spheroids the proliferative state of the cells and their access to nutrients and oxygen 

varies depending on their position in the spheroid itself [33,241], the metabolic 

phenotype of these cells is not homogeneous like in monolayer cultures. It would be 

interesting to discern the metabolic differences among the cells residing in different 

layers of the cancer spheroid, but for this kind of single-cell analysis Seahorse 

technology is not adequate. A possible innovative technique that can supply for a 

similar analysis is SCENITH (SCENITH,  for Single Cell ENergetIc metabolism by profilIng 

Translation  inHibition): a flow cytometry-based method for functional profiling energy 

metabolism with single cell resolution [234]. SCENITH is a method that allows to 

simultaneously establish the phenotype and extract the global metabolic profile of 

multiple cell types in parallel, ex vivo. It can be used to monitor cellular responses to a 

combination of multiple metabolites and inhibitors in a way comparable to other 

techniques, including Seahorse XF analyzer. Another possible approach to study the 

metabolic phenotype of cells within a spheroid is to use genetically encoded 

fluorescent biosensors such as Fluorescence Resonance Energy Transfer (FRET) 

sensors and Single Fluorescent Protein (FP) sensors [242–244]. These biosensors are 

proteins capable of binding particular substrates or metabolites (e.g., NAD+/NADH, 

NADP+/NADPH, ATP) fused with fluorescent proteins. The binding causes structural 

changes that alter the spectra of the fluorescent protein that can be measured using 

flow cytometers and fluorescence microscopes. Since this system enables to measure 

metabolic processes occurring in living cells (so clearing strategies are not applicable in 

this context), a multiphoton microscope capable to improve spatial resolution for 3D 

cell models would be required for the analysis at single-cell level [245]. 

In the short term, we propose to deepen the observed aspects regarding metabolic 

perturbations not only on spheroids during formation but also on pre-formed 

spheroids, therefore going beyond the exploration of how metabolism influences the 

formation of new tumor masses and see how metabolic drugs act on pre-formed 

masses (which best represent the clinical situation at the time of cancer diagnosis). 
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The development of technologies providing detailed metabolic profiles, pathway 

identification and flux analysis, and genome-wide and focused constraint-based 

metabolic models are opening the way to systems metabolomics [3]. Therefore, we 

will integrate our studies on cancer metabolism using a multi-omics approach, 

including metabolomics and population and single-cell transcriptomics [246]. The 

collection of these data on 3D models will be applied for the construction of 

constraint-based computational models able to identify potential metabolic 

vulnerabilities of cancer cells and predict their response to pharmacological 

treatments [53,99,247]. As the final step of this process, the experimental validation of 

computer predictions by genetic and/or chemical silencing of the selected targets will 

be performed. For this purpose, we started the collection of transcriptomic and 

metabolomic samples of a panel of six bladder cancer cell lines classified as different 

grades and stages, grown as monolayer (2D) and spheroids (3D). The application of 

this workflow to patient-derived organoids can be useful for modeling preclinical 

avatars for personalized medicine [3,33,133], allowing to dissect the metabolic 

heterogeneity of breast cancer (especially the most aggressive subtype, TNBC) [248] 

and bladder cancer at different pathological grades [249]. 

The setting up of reliable protocols for studying cancer metabolism in advanced 3D 

cultures shown in this thesis and their characterization using metabolomics and 

Raman spectroscopy will be exploited for the ongoing H2020-funded project 

AMPLITUDE. The project aims to apply multi-modal imaging for biomarker 

identification in bladder cancer to improve the accuracy of diagnosis, reduce 

recurrence, and increase survival of this cancer type [250,251]. This would help 

clinicians to choose the most appropriate therapeutic approach earlier or efficiently 

and non-invasively monitor the effects of applied treatment.  

Cancer metabolic rewiring involves heterotypic crosstalk in the tumor 

microenvironment [19,101]. In particular, cancer-associated fibroblasts are believed to 

support the growth and invasion of cancer cells through multiple mechanisms, 

including the secretion of growth factors and pro-inflammatory mediators, cell-cell 
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interactions, and metabolic crosstalk with tumor cells [109]. Therefore, in the future, 

we propose to amplify our studies on heterotypic spheroids, which provide a more 

sophisticated model for the phenotypic and cellular heterogeneity of tumor 

metabolism. At the end of Chapter 1, we illustrated preliminary results about the 

metabolic characterization of multicellular spheroids made of breast cancer cells and 

normal mammary fibroblasts. The future aim of this study is to verify the protective or 

antagonist role of cancer-associated fibroblasts in response to drug treatments. 

Therefore, through these three chapters of the thesis, we highlighted that in targeting 

the spheroid formation process, the effects of metabolic perturbations are less 

efficient than those observed on monolayer cells proliferation. For this reason, 

developing accurate and reliable three-dimensional models for the study of metabolic 

plasticity in cancer is crucial to overcome the primary limits of bi-dimensional models 

in vitro. We also observed that targeting respiratory metabolism in grade 2 bladder 

cancers shows promising results despite differences in invasiveness properties.  

Though further investigations are needed to properly understand the full potential of 

these findings in the treatment of cancer patients, this thesis contributes to expanding 

our current understanding of cancer cell metabolism to design novel personalized 

therapies. 
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