
Circulation Journal  Vol.78,  May  2014

1216 MAGRÌ D et al.
Circulation Journal
Official Journal of the Japanese Circulation Society
http://www.j-circ.or.jp

mogenic substrate in HCM, there has been growing interest in 
investigating a possible association between arrhythmic risk and 
late gadolinium enhancement (LGE) at contrast-enhanced car-
diac magnetic resonance (CMR). Indeed, the ability of LGE to 
detect, non-invasively, the presence of myocardial fibrosis is 
well known,11 and several investigations have already reported 
a significant relationship between this radiological feature and 
the occurrence of ventricular arrhythmias in HCM patients.7,11–13 
The usefulness of LGE as a marker of disease severity and, 
specifically, of arrhythmic risk, however still remains as a mat-
ter for debate.14,15 In this context, a somewhat unexplored but 

ypertrophic cardiomyopathy (HCM), the most com-
mon inherited heart disease, still represents one of the 
leading cause of sudden cardiac death (SCD) in young 

people and athletes.1,2 Indeed, despite a number of useful clin-
ical variables currently adopted,2–4 further improvement in risk 
stratification in this specific patient setting remains challeng-
ing.2,5–7

In HCM, as well as in many other cardiomyopathies, most 
malignant ventricular arrhythmias are thought to emanate from 
regions of structurally abnormal myocardium.8–10 Given that 
myocardial fibrosis represents an important underlying arrhyth-
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Background:  Growing evidence suggests that late gadolinium enhancement (LGE) at cardiac magnetic resonance 
(CMR) is an additive marker of disease severity, and possibly of arrhythmic risk, in hypertrophic cardiomyopathy 
(HCM). We investigated the possible relationship between LGE and markers of myocardial repolarization dispersion 
in HCM.

Methods and Results:  Eighty-five HCM outpatients underwent CMR and short-period electrocardiogram analysis 
to calculate the temporal myocardial repolarization dispersion through the QT variance normalized for QT mean 
(QTVN) and the QT variability index (QTVI). The QT dispersion in the spatial domain was also obtained. Patients 
with LGE (62%) had higher left atrial volume, maximum wall thickness, and left ventricular mass (P<0.0001), as well 
as a greater prevalence of non-sustained ventricular tachycardia (P<0.0001) and hypotensive blood pressure re-
sponse (P=0.044). Both QTVN and QTVI were higher in the group with LGE (P<0.0001). At multivariate analysis, using 
QTVI as the dependent variable, %LGE (P<0.0001), age (P<0.0001), left ventricular outflow obstruction (P=0.038), 
and sudden cardiac death risk factor burden (P=0.020) reached statistical significance. Otherwise, only %LGE 
(P=0.005) and left ventricular mass index (P=0.015) remained associated with QTVN.

Conclusions:  Temporal myocardial repolarization dispersion correlates with LGE extent. Whether these variables 
could be useful in HCM clinical management warrants confirmation by larger prospective studies.    (Circ J  2014; 78: 
1216 – 1223)
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lected cohort of HCM outpatients, mainly focusing on the LGE 
presence and extent. Moreover, all aforementioned experimen-
tal variables were challenged with standard clinical and instru-
mental data widely accepted as predictors of poor outcome and, 
overall, of arrhythmia risk in HCM.

Methods
Subjects
We evaluated 108 consecutive outpatients diagnosed with HCM 

intriguing aspect is represented by the relationship of LGE to 
temporal myocardial repolarization dispersion markers, predic-
tors of arrhythmic risk in cardiovascular16–20 and non-cardio-
vascular disease.21–23 Specifically, to our knowledge no study 
has investigated the behavior of the QT variance indexed for 
the QT mean (QTVN) and the QT variability index (QTVI) in 
HCM patients and its possible link to LGE presence and extent.

Therefore, the present study analyzed the possible relation-
ships between some markers of spatial and temporal myocar-
dial repolarization dispersion and CMR-derived data in a se-

Figure 1.    (Right) Representative 
short-term beat-to-beat RR and QT 
electrocardiogram recordings cou-
pled with (Left) cardiac magnetic 
resonance imaging in (A,B) 2 mid-
dle-aged and (C,D) 2 young HCM 
patients. (A) Man, 52 years old, 
without risk factor for sudden car-
diac death (SCD) and no late gad-
olinium enhancement (LGE). Both 
QT variance normalized for QT 
mean (QTVN) and QT variability 
index (QTVI) appeared normal due 
to a good RR variability (high RR 
variance, RRv) and QT variability 
(low QT variance, QTv). (B) Man, 
59 years old, with 1 SCD risk factor 
(recent unexplained syncope) and 
a large percentage of LGE. Both 
QTVN and QTVI were significantly 
worse than those in (A) due to lower 
RRv and higher QTv. (C) Man, 18 
years old, with 1 SCD risk factor 
(hypotensive blood pressure re-
sponse during exercise test) and 
without LGE. RRv and QTv were 
normal, leading to normal QTVN 
and QTVI. (D) Woman, 22 years 
old, with 2 SCD risk factors (non-
sustained ventricular tachycardia 
and hypotensive blood pressure 
response during exercise test) and 
diffuse LGE. Both QTVN and QTVI 
appeared significantly worse than 
those in (C). LVEF, left ventricular 
ejection fraction; MWT, maximum 
wall thickness.
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beat-to-beat fluctuations in QT interval variability proposed by 
Berger et al.26 To avoid probable confounding from the influ-
ence of respiration on RR interval and QT variables,24,25 we 
analyzed RR and QT intervals only from the last 5-min beat 
segments recorded during the controlled breathing. QT and RR 
mean (QTm and RRm), as well as their variances (QTv and RRv), 
were automatically calculated in order to obtain QTv normal-
ized for QTm (QTVN) and QTVI according to the following 2 
standard formulas (Figure 1):17,26 QTVN=log10 (QTv)/(QTm)2; 
QTVI=log10{[(QTv)/(QTm)2]/[(RRv)/(RRm)2]}.

Last, a standard 12-lead surface ECG at 50 mm/s was used to 
manually measure the QT interval length in every lead with a 
digital caliper. In accordance with previously published work, 
a single physician (F.M.C.), blinded to patient characteristics, 
measured the QT interval from the onset of the QRS complex 
to the end of the T wave and, when the latter was unclear, the 
QT interval was defined as the intersection of the isoelectric 
baseline and the maximum tangent line of the T-wave terminal 
limb.22,27,28 To minimize the possible confounder of different 
heart rates, the corrected QT interval (QTc) was also obtained 
according to Bazett’s classic formula (QT/RR0.5). Thereafter 
the maximum and the minimum QT and QTc were deter-
mined, defining their difference as QT dispersion (QTd) and 
QTc dispersion (QTcd), respectively. A minimum of 8 leads 
was required for these two markers of spatial myocardial re-
polarization.

CMR
All HCM patients underwent CMR with a 1.5-T MRI scanner 
(Sonata and Avanto; Siemens Healthcare, Erlangen, Germany) 
within 6 months of enrollment in the study (111±53 days). CMR 
was performed using steady-state, free-precession breath-hold 
cines in 3 long-axis planes and sequential short-axis slices 
from atrioventricular ring to apex. LGE images were acquired 
10–20 min after i.v. injection of 0.1 mmol/kg gadolinium 
(Gadovist; Bayer Schering Pharma, Berlin, Germany) with 
breath-hold 2-D segmented inversion-recovery turbo-FLASH 
sequence (TR, 8 ms; TE, 4 ms; T1, 250–320 ms; slice thickness, 
8 mm).29 Inversion time was optimized to null normal myocar-
dial signal. In case of uncertainty or artifacts, LGE sequences 
were acquired twice using 2 different phase-encoding direc-
tions. A 90° presaturation pulse was also placed along the phase-
encoding direction to avoid ghosting artifacts.

CMR data were transferred to a dedicated workstation and 
2 experienced cardiovascular radiologists (C.N.D.C. and G.M.) 
analyzed the images in consensus, blinded to clinical param-
eters. LV volumes, ejection fraction, and mass were measured 
using a standard volumetric technique and analyzed with com-
mercially available software (Syngo; Siemens Healthcare, 
Germany). LV epicardial and endocardial borders on cine im-
ages were manually planimetered to define the myocardium, 
taking care to exclude papillary muscles.

The LV short-axis stack of LGE images was initially assessed 
visually for the presence of LGE according to the American 
Heart Association 17-segment model. Subsequently, LGE 
quantification was performed by 1 expert reader (G.M.) on 
all LGE-positive scans using commercial available software 
(Syngo, Siemens Healthcare). Signal intensity ≥6 SD from the 
mean of normal myocardium was used to define LGE areas, 
which were manually traced on all short-axis slices, from base 
to apex, in the end-diastolic phase (Figure 1).13 Small LGE areas 
(total LGE volume <1 g) located in the right ventricular and 
LV hingepoint in the absence of other LGE were not consid-
ered for the analysis, because they do not necessarily represent 
fibrosis and they are also frequently found in healthy sub-

who were referred to the HCM Center of Sant’Andrea Hospital, 
“Sapienza” University of Rome, between January and April 
2013. The diagnosis of HCM was derived from 2-D echocar-
diographic demonstration of hypertrophied, non-dilated left 
ventricle (LV) in the absence of any other cardiac or systemic 
disease capable of producing a similar magnitude of wall thick-
ening.2 Left ventricular outflow tract (LVOT) obstruction was 
considered present when the peak instantaneous outflow gra-
dient estimated on continuous-wave Doppler was ≥30 mmHg 
under baseline conditions.2,24

Patients with a history of septal myectomy were a priori ex-
cluded from the current analysis, as well as those patients who 
were receiving any anti-arrhythmic therapy. Other exclusion 
criteria were: history and/or clinical documentation of signifi-
cant comorbidity, such as known coronary artery disease, pul-
monary embolism or valvular heart disease, pericardial dis-
ease, primary pulmonary hypertension, moderate–severe renal 
failure (serum creatinine >2 mg/dl), moderate–severe anemia 
(hemoglobin <11 g/dl), and severe obstructive lung disease. All 
patients with complete left bundle branch block, atrial fibrilla-
tion, pacemaker-dependent atrial rhythm, frequent extrasystoles 
(1 extrasystole/min was permitted) or other arrhythmias likely 
to interfere with assessment were also excluded. 

Each HCM patient who fulfilled the initial inclusion criteria 
underwent complete clinical assessment, including New York 
Heart Association (NYHA) classification, systemic blood pres-
sure measurement, CMR, standard 12-lead surface electrocar-
diogram (ECG) at 25 mm/s, and conventional Doppler echocar-
diography. Furthermore, SCD risk stratification was performed 
according to the established risk factors:2,4 (1) history of HCM-
related SCD in at least 1 first-degree relative or other relative 
younger than 50 years old; (2) massive LV hypertrophy (LVH; 
maximum wall thickness ≥30 mm); (3) at least 1 run of non-
sustained ventricular tachycardia on 24-h Holter ECG monitor-
ing; (4) unexplained syncope judged inconsistent with neurocar-
diogenic origin; and (5) hypotensive blood pressure response 
to exercise test. A variable was obtained by adding 1 point for 
each of the aforementioned SCD risk factors (SCD risk factor 
burden, from 0 to 5). With the exception of CMR, all sessions of 
the present research protocol were performed with HCM pa-
tients off β-blocker and/or calcium channel blocker treatment 
for at least 72 h.

All participants gave informed written consent and the study 
was approved by the internal review board of the S. Andrea 
Hospital – “Sapienza” University of Rome. The authors had 
full access to and took full responsibility for data integrity. 

RR and QT Interval Data Analysis
After a 15-min rest in the supine position, each HCM patient 
underwent a 15-min simultaneous recording of a single ECG 
lead and respiratory rate (strain-gauge belt). During the last 
5 min of this recording, subjects were required to breathe at 
15 breaths/min (0.25 Hz) in time with a metronome. The 2 
analog signals (ECG and respiratory rate) were acquired simul-
taneously and digitally converted with a custom-designed card 
(Keithley Metrabyte – DAS 1200 Series; Keithley Instruments, 
Munich, Germany) at a sampling frequency of 500 Hz per chan-
nel. All digitalized ECG recordings were analyzed by a single 
physician (D.M.) blind to patient clinical features. Software for 
data acquisition, storage, and analysis were designed and pro-
duced by our research group and are described in detail else-
where.19–22,24,25

To calculate the RR and QT intervals and to make the end 
of the T wave easier to identify, we used software that our labo-
ratory developed based on the algorithm for quantification of 
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mial regression is based on the same principles as basic linear 
regression, except that the relationship between the indepen-
dent and dependent variables is non-linear. It is used to fit non-
linear (eg, curvilinear) data into a least-squares linear regression 
model. It is a form of linear regression that allows prediction of 
an outcome by decomposing the effect of independent variables 
into a higher-order polynomial. Different powers of independent 
variables can be added to capture non-linearities. Categorical 
variables have been included in the linear regression analysis 
using dummy coding, which assigns “1” and “0” to reflect the 
presence and absence, respectively, of a specific category level, 
that is, each dummy is compared to the benchmark level, coded 
as “0” for dummy variables. The fit of the regression model was 
measured using the adjusted-R2 index and by performing an 
analysis of residuals, where normality of these residuals is an 
indication of the correct specification of the considered model. 

Statistical analysis was performed using R (R Development 
Core Team, 2009). P≤0.05 was considered as statistically sig-
nificant.

jects.30 Summation of the planimetered areas yielded the total 
volume of LGE (g), also expressed as a proportion of total LV 
myocardial mass (%LGE). 

Statistical Analysis
Unless otherwise indicated, all data are expressed as mean ± SD. 
As a preliminary analysis, an extension of the Shapiro-Wilk 
test of normality was done. Categorical variables were compared 
using a difference in proportions test; a 2-sample t-test was used 
to compare the general characteristics, and other continuous 
data, between study groups. 

In order to identify variables associated with QTVI and 
QTVN, we first adopted a regression approach including all pos-
sible confounders known to be associated with the outcomes. 
Nevertheless, most of these confounders (eg, gender, pattern 
of LVH, etc.) were not significant. Thus, to provide a parsimo-
nious model, much easier to interpret, a forward–backward step-
wise polynomial multivariate regression analysis was performed 
in order to select the final model. Variable selection was per-
formed according to the Akaike information criterion. Polyno-

Table 1.  Subject Characteristics vs. Presence of LGE

HCM without LGE
(n=32)

HCM with LGE
(n=53) P-value

General characteristics 

    Age (years) 45±17 47±15 NS

    Male 18 (56) 34 (64) NS

    Body surface area (g/m2) 1.9±0.2 1.9±0.2 NS

    NYHA class I 17 (53) 24 (47) NS

    NYHA class II 14 (44) 26 (49) Ns

    NYHA class III 1 (3) 2 (4) NS

    LVOTO   8 (25) 14 (27) NS

    Systolic BP (mmHg) 125±13　　 126±15　　 NS

    Diastolic BP (mmHg) 76±9　　 76±10 NS

    HR (beats/min) 65±16 70±13 NS

    QRS (ms) 86±14 91±18 NS

    QTc (ms) 406±19　　 431±28　　 NS

    QTd (ms) 48±26 59±27 NS

    QTcd (ms) 50±27 62±27 0.053

SCD risk factors,

    Non-sustained VT   5 (16) 28 (53) 0.000

    SCD family history 3 (9) 5 (9) NS

    Massive LVH 1 (3)   9 (17) NS

    Unexplained syncope 1 (3) 1 (2) NS

    Hypotensive blood pressure response 2 (6)   7 (13) 0.041

    SCD risk factors burden (n) 0.38±0.71 0.94±0.82 0.001

Comorbidity

    Systemic hypertension   5 (16) 11 (21) NS

    Dyslipidemia   5 (16)   8 (15) NS

    Diabetes 2 (6) 2 (4) NS

Drugs

    ACEI/ARBs 13 (41) 22 (43) NS

    β-blockers 21 (66) 40 (75) NS

    CCB 3 (9) 4 (9) NS

    Diuretics 2 (6)   9 (17) NS

Data given as mean ± SD or n (%). 
ACEI, angiotensin-converting enzyme inhibitor; ARB, angiotensin receptor blocker; BP, blood pressure; CCL, calcium 
channel blocker; HCM, hypertrophic cardiomyopathy; HR, heart rate; LGE, late gadolinium enhancement; LVH, left 
ventricular hypertrophy; LVOTO, left ventricular outflow tract obstruction; NYHA, New York Heart Association; QTc, 
QT interval corrected; QTd, QT interval dispersion; SCD, sudden cardiac death; VT, ventricular tachycardia.
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tween the 2 HCM subgroups (Table 1). Conversely, the prev-
alence of non-sustained ventricular tachycardia (P<0.0001), 
hypotensive blood pressure response at exercise test (P=0.044), 
as well as of the SCD risk factor burden (P=0.000) was sig-
nificantly higher for the HCM group with LGE than for the 
respective group without LGE (Table 1). 

At CMR analysis the HCM group with LGE had significantly 
higher left atrial volume index (LAVI), maximum wall thick-
ness, and LV mass index (LVMI) than those in the HCM group 
without LGE (P<0.0001), whereas no difference between groups 
was found in LV end-diastolic volume index and LV ejection 
fraction (Table 2). QTVN and QTVI were significantly high-
er in the group with LGE (P<0.0001), as was QTv (P=0.012), 
whereas all other short-term single-lead ECG variables were 
not significantly different between groups (Table 2; Figure 1).

At univariate analysis, QTVI was significantly associated with 
%LGE (r=0.54; P=0.000) and SCD risk factor burden (r=0.37; 
P=0.000); similarly, QTVN was associated with LGE% (r=0.45; 
P=0.000) and SCD risk factor burden (r=0.13; P=0.021); finally, 
%LGE, besides its relationship with both QTVI and QTVN, 
correlated per se with the SCD risk factor burden (r=0.37; 
P=0.000). Moreover, we looked for possible differences in QTVI 
and QTVN according to the presence of each of the SCD risk 
factors and found that the patients with non-sustained ventricu-
lar tachycardia had higher QTVI (+0.34, P=0.000) and QTVN 
(+0.12, P=0.022), while those with a family history of SCD 

Results
Of the 108 HCM patients initially screened, only 90 patients met 
the initial inclusion criteria. Thirteen patients were excluded 
due to permanent atrial fibrillation (n=7) or because of docu-
mented history of coronary artery disease (n=6); 3 patients were 
excluded due to evidence of left bundle branch block at stan-
dard 12-lead surface ECG; and 2 patients were unwilling to 
participate in this study. Three additional patients were excluded 
from the analysis after frequent premature ventricular beats 
occurred during the short-term ECG recording; 2 patients were 
excluded due to uninterpretable CMR data. A total of 85 HCM 
patients were considered and analyzed in this study and LGE 
was found in 53 patients, corresponding to a prevalence of 
62% in the study cohort. In all cases, LGE was located in the 
mid-basal septum and anterior wall with a prevalent patchy 
intramural distribution.

Age, gender distribution, body surface area, functional ca-
pacity (NYHA class), LVOT obstruction presence, and systolic 
and diastolic blood pressure did not differ significantly between 
HCM patients with and without LGE (Table 1). Concerning 
standard 12-lead surface ECG data, again there was no signifi-
cant difference between study groups with respect to heart rate, 
QTc, QTd, and QTcd, although the latter variable showed a trend 
to significance (P=0.053; Table 1). Similarly, distribution of 
comorbidities and pharmacological treatment were similar be-

Table 2.  CMR and ECG Characteristics vs. Presence of LGE

HCM without LGE
(n=32)

HCM with LGE
(n=53) P-value

CMR data

    LAVI (ml/m2) 46±18 59±22 0.000

    LVEDVI (ml) 61±16 63±19 NS

    LVEF (%) 76±9　　 73±9　　 NS

    MWT (mm) 16±3　　 21±5　　 0.000

    LVMI (g/m2) 77±24 102±33　　 0.000

    %LGE (% of LVM) –   4.2 [6.8] –

Short-term (5-min) ECG data

    RR mean (ms) 893±120 891±143 NS

    RR variance (ms2)   1188 [1414]     738 [1008] NS

    QT mean (ms) 400±41　　 399±35　　 NS

    QT variance (ms2)   26.9 [13.5]   35.0 [27.0] 0.011

    QTVN   0.181 [0.131]   0.275 [0.197] 0.000

    QTVI –0.865 [0.623] –0.570 [0.462] 0.000

Data given as mean ± SD or median [75th–25th percentile]. 
CMR, cardiac magnetic resonance; ECG, electrocardiogram; LAVI, left atrial volume index; LVEDVI, left ventricular end-
diastolic volume index; LVEF, left ventricular ejection fraction; LVMI, left ventricular mass index; MWT, maximum wall 
thickness; QTVI, QT variability index; QTVN, QT variance normalized for QT mean. Other abbreviations as in Table 1.

Table 3.  Significant Predictors of Temporal Myocardial Repolarization Dispersion

QTVI QTVN

β SE P-value β SE P-value

Age 0.011 0.002 0.000 – – –

%LGE 0.069 0.015 0.000 0.019 0.007 0.005

%LGE2 –0.002　　 0.001 0.009 –0.001　　 0.000 0.030

LVOTO presence 0.160 0.076 0.038 – – –

SCD risk factor burden 0.097 0.041 0.020 – – –

LVMI – – – 0.001 0.000 0.015

LGE and LGE2, linear and quadratic late gadolinium enhancement, respectively. Other abbreviations as in Tables 1,2.
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structural abnormalities, such as disarray and fibrosis, affect the 
beat-to-beat variation of cardiac action potential.16,21,26 None-
theless, myocardial repolarization is a highly complex electro-
physiological phenomenon that involves ventricular myocar-
dial ion channel function and, indirectly, reflects autonomic 
nervous system balance, the latter highly susceptible to many 
other factors. Last, experimental studies reported that myocar-
dial cell electrophysiological activity may change, thus alter-
ing the action potential phase, even before myocyte hypertrophy 
and fibrosis develop.36 Hence, as well as LGE, it is reasonable 
that also QTVN and, mainly, QTVI might be interpreted as 
multidimensional indexes of disease severity. Conversely, none 
of the QT indices derived from the spatial domain approach 
(ie, QTd and QTcd) correlated with LGE, a possible explana-
tion being the great influence of the altered ventricular hyper-
trophy geometry on these variables.28,37 It should be noted, how-

had only higher QTVI (+0.31; P=0.000).
At multiple regression analysis, using QTVI as the depen-

dent variable, %LGE (β=0.069; standard error, 0.015; P<0.0001), 
age (β=0.011; standard error, 0.002; P<0.0001), LVOT ob-
struction presence (β=0.160; standard error, 0.076; P=0.038), 
and SCD risk factor burden (β=0.097; standard error, 0.041; 
P=0.020) reached statistical significance (Table 3). Otherwise, 
only %LGE (β=0.019; standard error, 0.007; P=0.005) and 
LVMI (β=0.001; standard error, 0.000; P=0.015) remained 
significantly associated when QTVN was used as the dependent 
variable (Table 3). Coefficients of the squared term in both 
equations for %LGE were also significant, suggesting that the 
quadratic model more closely fitted the data (Figure 2). A para-
metric approach (ie, a quadratic polynomial) has been consid-
ered to model the non-linear relationship between %LGE and 
the analyzed outcomes. Of course, more complex approaches 
(eg, based on non-parametric methods) can be used if such a 
relationship cannot be easily approximated by a polynomial 
curve.

Discussion
Detailed exploration of non-invasive spatial and temporal myo-
cardial repolarization dispersion and its possible relationship 
with the extent of myocardial LGE at CMR has not previously 
been done in HCM patients. The present data show a correlation 
between a worsening of temporal myocardial repolarization 
dispersion and LGE extent, thus supporting LGE presence as 
a reliable marker of disease severity and, possibly, of arrhyth-
mic risk in HCM. 

Postmortem studies in young HCM patients who experienced 
SCD reported large areas of myocardial disarray and intra-
myocardial fibrosis,8,9 thus supporting an arrhythmogenic na-
ture of these cardiac lesions.8–10 Accordingly, during the last 
decade some authors suggested LGE per se as a useful tool in 
the SCD risk stratification in addition to the other established 
risk factors. In line with this proposal, several papers found a 
significant relationship between LGE and the standard SCD 
risk factors.7,11–14,31,32 Likewise, the present HCM patients with 
LGE had a greater prevalence of non-sustained ventricular 
tachycardia, hypotensive blood pressure response to exercise, 
as well as a higher SCD risk factor burden than those without 
LGE. It is of note, however, that the present investigation found 
a nearly two-thirds prevalence of LGE at CMR analysis, a re-
sult that is in line with that reported in other series.14,15,31–34 
Moreover, many other variables have been correlated with 
presence of LGE and, for most of them, an association with a 
significant arrhythmic risk has not been found (ie, LAVI, 
LVMI, maximum wall thickness, age, etc.).12,15,31–35 Hence, 
owing to its high prevalence and multiple confounders, LGE 
presence per se is considered as a composite predictor of poor 
outcome without specifically predicting SCD.15 

In the present study there was a significant relationship be-
tween increase in LGE extent and temporal myocardial repo-
larization worsening, thus suggesting a quantitative (ie, %LGE) 
rather than a qualitative (ie, LGE presence/absence) approach 
in interpreting LGE in this setting. The underlying mechanisms 
of this novel finding could be only hypothesized. One possible 
explanation, albeit merely speculative, could be that large areas 
of fibrosis not homogeneously distributed within the 3 myo-
cardial layers (epicardial, M-cell, endocardial) directly lead to 
a greater beat-to-beat myocardial repolarization lability, thus 
increasing risk of arrhythmia. Indeed, given that the duration 
of a single QT-interval represents the sum of the duration of 
myocardial cell repolarizations, it is likely that the myocardial 

Figure 2.    Relationship of proportion of late gadolinium en-
hancement (%LGE) to (Upper) QT variance normalized for QT 
mean (QTVN) and left ventricular mass index (LVMI), and to 
(Lower) QT variability index (QTVI) and age (the data refer to 
the covariate profile with sudden cardiac death risk burden 
equal to zero and an absence of left ventricular outflow ob-
struction). Both panels show a significant flattening of the re-
lationship between %LGE and QT indices beginning at 
%LGE=18–20% (see Table 3 for all regression analysis data). 
Note that plots are obtained from the multivariate parameters 
estimates. For each combination of %LGE and AGE/LVMI, the 
value of QTVI and QTVN are predicted (not simply described).
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lem that hampers more widespread use of QT, namely the 
difficulty in computing the end of the T wave. Many studies, 
however, have examined beat-to-beat QT variability, and new 
methodology26 has enabled investigators to better assess ven-
tricular repolarization lability.16–22,27 Unfortunately, none of the 
commercially available software guarantees reliable estimates 
in this ECG zone and evaluation errors (also lasting few thou-
sandths of a second) tend exponentially to increase QTv. Not-
withstanding, our expertise allows us to recommend the use of 
the method based on the template of Berger, possibly on short-
term ECG recording. 

Finally, we should acknowledge the lack of data on the pos-
sible relationship between the present study variables and the 
presence of a midventricular obstruction, a distinct HCM phe-
notype recently shown to be associated with unfavorable prog-
nosis in terms of lethal arrhythmic events.49

Conclusions
Temporal myocardial repolarization dispersion independently 
correlates with LGE presence and extent. The present findings 
warrant prospective and, most likely, multicenter studies to 
investigate a possible role of these non-invasive variables in 
clinical management of HCM and, possibly, to identify those 
patients with a significantly increased risk of arrhythmia, al-
though not yet considered eligible for cardioverter defibrillator 
implantation. 
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