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CHAPTER  1 

 

 

 

 

 

INTRODUCTION 

 

 

Many of the biological mechanisms that regulate the life of living organisms involve 

“molecular recognition (MR)”1,2 processes in which small molecules (ligands) bind a 

specific region (binding site) of targeted macromolecules, such as proteins, through 

non-covalent interactions to form a complex. Knowledge of ligand-protein interaction 

mechanisms is an essential prerequisite in the design, discovery, and development of 

new drugs, by helping to determine when a molecule has the potential to become a 

drug3,4. Two different aspects need to be taken into account when studying the ligand 

binding process and designing new drugs: the thermodynamic one, which involves 

identification of the correct binding mode and estimation of the binding free energy 

(associated to binding-affinity), and the kinetic one, i.e. determination of the kinetic 

constants for binding and unbinding as well as of the activation barriers and the rate 

determining step. A new drug should be designed to improve interactions with the 

binding site and to have, at the same time, a good kinetic binding profile5.  

 



 

 

 

2 

1.1 Thermodynamics and kinetics of ligand-protein binding 

The ligand-protein binding event is governed by the rules of a simple reversible 

reaction5, in which a protein (P) and a ligand (L) in their free form in solution bind 

and form the PL complex in solution. 

When the equilibrium state is reached the association (Ka and the dissociation (Kd) 

constants can be calculated from the ratio: 

𝐾! =	
[𝑃𝐿]
[𝑃][𝐿] = 	

1
𝐾"

 

where [PL], [P] and [L] are the equilibrium concentrations of the three components. 

At equilibrium, the rates of the forward (binding) and the reverse (unbinding) 

reactions are balanced, and the association constant (Ka) can be expressed as the ratio 

of the kinetic constants: 

𝐾! =	
𝑘#$
𝑘#%%

	 

Likewise, from a thermodynamic point of view, at constant temperature and 

pressure (as in biological systems), a spontaneous process (such as ligand binding) 

takes place only if a negative change in the Gibbs free energy occurs. Under standard 

conditions, the relationship between Ka and the difference in Gibbs free energy of the 

system between the unbound and bound state (ΔGbind, binding free energy), is given 

by: 

∆𝐺&'$" =	−𝑅𝑇𝑙𝑛(𝐾!) 

where R is the universal gas constant and T is the temperature. The complex will 

be more stable when the ΔGbind
 is more negative.  

The binding free energy can also be expressed as a function of the changes in 

enthalpy (ΔH) and entropy (ΔS) on formation of the complex: 

∆𝐺 = 	∆𝐻 − 𝑇∆𝑆 

Changes in enthalpy arise from the breaking or the formation of non-covalent 

interactions between the protein, the ligand, and the solvent molecules, and from 
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conformational changes of protein and ligand upon complexation. On the other hand, 

changes in entropy reflects the change in translational and rotational degrees of 

freedom for the ligand, protein and solvent molecules, and the loss of conformational 

entropy of P and L on binding. From a thermodynamic point of view, the free-energy 

is a state function, implying that the variation of free-energy in the process depends 

only on the free-energy of the two states considered and not on the path taken to 

connect them. This implies that the energy of the bound and unbound states are 

sufficient for the calculation of binding thermodynamic quantities. The kinetics of a 

process, on the other side, is related to the height of the energy barrier to overcome 

according to the Eyring equation: 

𝑘 =
𝑘&𝑇
ℎ 𝑒(

∆*‡
+,  

Where k is the velocity constant, ∆𝐺‡ is the free energy of activation, i.e. the 

difference between the free energy of the transitions state and that of the reacting 

systems, 𝑘" is the Boltzmann’s constant, ℎ is the Planck’s constant and 𝑇 the absolute 

temperature. Higher is the energy barrier to overcome, less frequently a transition is 

observed. The study of ligand binding kinetics has become of particular interest, since 

often drug efficacy correlates better with binding kinetics than with the binding affinity 

alone6. 
 

1.2 Molecular modelling for studying ligand-protein interactions 

 Over the years, many computational methods7 have been developed to address the 

study of ligand-protein binding, ranging from simple molecular docking procedures to 

computationally demanding but more accurate methods based on both classical- and 

quantum-mechanics. Thanks to the development of new computer technologies and of 

new computational techniques, in silico methods are becoming increasingly effective 

for calculating the thermodynamic and kinetic properties underlying ligand-protein 

interaction mechanisms by providing insights of the process at the atomistic level.  
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Computational methods based on molecular mechanics (MM) 

Ligand-binding can be described by using methods based on Molecular Mechanics 

(MM). Among these, Molecular Docking estimates the binding free energy of the 

binding poses by means of scoring functions mostly derived from MM potentials. The 

first model to describe ligand-protein binding was the lock and key model proposed by 

Fisher and based on the perfect matching of the binding surfaces of the ligand and the 

protein, which are considered to be rigid bodies. This model was adopted in the first 

molecular docking approaches,8 in which both the ligand and the protein structures 

are kept rigid during sampling of the conformational space of the system to predict the 

correct binding mode.9. The power of using such simple docking techniques is the 

speed of the calculation that allows the screening of millions of compounds with an 

affordable computational cost10. However, they provide a static representation of the 

system and are neither able to provide mechanistic information nor to explain the 

transmission of the effects caused by binding. Proteins are dynamic objects and the 

protein flexibility associated with ligand binding plays a crucial role in the correct 

prediction of the binding mechanism and the related kinetic and thermodynamic 

properties. Different models were proposed to explain the role of protein 

conformational dynamics in these processes. The induced fit model relies on the 

hypothesis that binding of a ligand to the protein binding site induces a change in the 

shape of the protein for a reciprocal structural adaptation. In the conformational 

selection model, the ligand selects the most complementary protein conformation from 

an ensemble of pre-existing metastable states, which in turn shifts the dynamic 

population equilibrium toward the conformation adopted in the bound state 11. The 

above models have been used by a number of computational strategies. Some of them, 

related to the induced-fit model, include the effects of conformational variation of the 

protein in docking calculations: soft-docking, in which the repulsion terms between 

the binding site of the protein and the ligand are attenuated; treatment of the 

conformational freedom of sidechains at the binding site during sampling; refinement 

of the docking poses by Molecular Dynamics (MD) simulations. A method that relies 

on the conformational selection model is ensemble docking, in which docking is not 
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performed to a single protein conformation but to a set of conformations that can be 

derived either from experimental structures (obtained with X-ray or NMR) or from MD 

simulations12,13.   

Looking over the use of MD to include flexibility in docking calculations, nowadays 

it is possible to perform MD simulations to explore the free energy landscape and the 

kinetic profile associated with the investigated process, thus obtaining a complete 

dynamic description of the ligand-protein binding event. With the current 

computational power, it is possible to produce atomistic simulations up to milliseconds 

on specialized architectures such as the Anton supercomputer, or tens/hundreds of 

microseconds on standard high performance computing (HPC) facilities. This means 

that nowadays it is even possible to observe rare events (such as ligand binding) that 

happen on the micro/millisecond timescales using MD. Helped by the exponential 

increase in the computational power, in recent years several methods based on MD 

simulations have become increasingly popular for describing the ligand-protein 

binding. These methods can be classified in two categories: those aimed at estimating 

the ligand-protein binding affinity by providing information about thermodynamic 

properties; and those focused on a clearer understanding of the complete process by 

providing information about the ligand binding (and/or unbinding) pathways14. The 

first category includes end-state methods, based on the property of free energy to be a 

state function, and thus focused on characterization of the bound and unbound states. 

These methods are usually used in a post-processing manner, where the free energy is 

estimated based on MD simulations.  Examples are: Linear Interaction Energy (LIE)15; 

Molecular Mechanics Poisson-Boltzmann Surface Area (MM-PBSA)16 and Molecular 

Mechanics Generalized Born Surface Area (MM-GBSA)17; alchemical free-energy 

perturbation methods, such as Thermodynamic Integration (TI)18 and Free Energy 

Perturbation (FEP)19. Methods that fall in the second category are defined physical 

pathway (PP) methods and enable the simulation of the complete binding and/or 

unbinding events, which can lead to calculation of both thermodynamic and kinetic 

properties, and to characterization of energy barriers and relevant intermediate states 

along the pathways. As mentioned above, with MD it is now possible to observe ligand 
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binding event. However, computation of key thermodynamic quantities requires the 

observation of multiple binding events to obtain reliable statistics on the process, thus 

increasing the computation time. To this aim, enhanced sampling methods need to be 

employed; 7,20 they are based on innovative algorithms to overcome the sampling issue 

by speeding up the description of slow processes. Examples of these methods are 

Steered Molecular Dynamics (sMD)21,22, Umbrella Sampling (US)23,24, Metadynamics 

(MetaD)25 and its different variations25–28, Gaussian accelerated MD (GaMD)29, scaled 

MD30,31, τ-RAMD32, MD Binding33,34 and CG-MD35. 

The methods discussed up to now, from molecular docking to MD with enhanced 

sampling techniques, are based on molecular mechanics, whereby electrons are not 

explicitly included in the calculations, and the energy of molecules is calculated using 

parametrized classical potentials (force fields, FFs). The advantage is that this speeds 

up the calculations considerably, allowing extended MD simulations of large 

biomolecular systems. On the other hand, there are several limitations to the use of 

classical FFs in MD simulations. For example, in most of the force-field, the continuous 

electron distribution is usually approximated with fixed point charges centered on the 

atomic nuclei. Only few FFs include a description based on dipoles or multipoles36 

and/or allow the atomic charge to be modified as a result of polarization or charge-

transfer effects occurring during the process37,38. Another limitation is the impossibility 

of correctly studying chemical reactivity since chemical bonds break or formation 

cannot be described in a classical MD simulation7. To address these issues, methods 

based on quantum mechanics (QM) can be used.  

 

Computational methods based on quantum mechanics (QM) 

QM methods are based on first principles and explicitly consider both nuclei and 

electrons. For these reasons, they are more accurate for studying properties, 

interactions and processes in biomolecular systems39. These methods aim to solve the 

electronic Schrödinger equation given fixed positions of the nuclei in order to obtain 

useful information about a molecular system, such as electron densities and related 

electronic properties, equilibrium geometries and energies. Moreover, they allow a 
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realistic description of the intermolecular interactions and reactivity of the systems40.  

To achieve this, different methods which differ in computational cost and accuracy can 

be used, such as Hartree-Fock (HF), Density Functional Theory (DFT) and semi-

empirical (SE) methods41,42. Nowadays, QM approaches can be used also to perform 

molecular simulations, allowing the treatment of systems with appreciable size and 

complexity over ps time scale, but they require much more computational resources 

than MM approaches. This is why QM models are mostly applied to static structures 

and the inclusion of sampling of dynamic processes is still an open and ongoing 

challenge39,43. On the other side, as outlined above, classical MD simulations allow very 

long MD trajectories to be calculated for millions of atoms, but the quality of the 

simulation depends on the accuracy of the empirical function used and many 

important properties such as polarization, charge transfer and bond 

breaking/formation cannot be described. A valid strategy to perform sampling of the 

ligand-binding process and to achieve a good level of accuracy with acceptable 

computational costs is to use multiscale hybrid approaches combining different levels 

of theory44,45. In particular, these methods take advantage of the mixed ability of the 

selected methods to treat a specific region: usually the ligand or the binding site are 

treated at a high level of theory (QM) in order to get a more accurate description of 

the most interesting part of the system, while the remaining part is treated at a lower 

level (MM). Currently, thanks to the improvement of the computational power, hybrid 

QM/MM MD simulations are being employed to study biomolecular systems46,47 and 

the application of QM/MM approaches for drug design is a wide and rapidly growing 

field. 

 

1.3 Motivation and thesis outline 

From what has been discussed above, it emerges that computational methods based 

on molecular dynamics are becoming attracting for the description of the ligand 

binding event. However, some major problems have to be taken into consideration. 
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Physical pathway methods allow the simulation of the complete binding and/or 

unbinding process and may lead to calculation of the related thermodynamic and 

kinetic properties. However, ligand binding events occur in time scales inaccessible by 

conventional molecular dynamics and therefore computational approaches based on 

enhanced-sampling methods have to be used to speed up the simulation. The large 

amount of data generated by extensive sampling requires appropriate tools to analyze 

the simulated events and to provide a clearly interpretable picture. 

While simulations based on classical MM potentials suffer from some limitations, 

the introduction of a higher level of theory such as QM allows to describe some 

important features of molecular interactions. Hybrid QM/MM methods allow to 

combine the advantages of both methods, namely to obtain a more accurate 

description of the process and to retain low computational costs. 

In this PhD thesis, several issues related to the above topics are addressed.  

In Chapter 2 (Theoretical basis of Molecular Dynamics Simulations), a theoretical 

introduction to molecular dynamics simulations at both the MM and QM/MM levels is 

given. In addition, a more extensive description of the methods used in the PhD project 

for both levels of theory is given. The computational details related to the approaches 

used for the different studies are presented and discussed in the corresponding 

chapters. 

In Chapter 3 (Metadynamics-Based Approaches for Modeling the Hypoxia-Inducible 

Factor 2α Ligand Binding Process), advantages and limitations of using several 

enhanced sampling methods for the description of ligand-binding are analyzed. An 

approach based on the combination of the more efficient methods is proposed to 

investigate and predict the possible binding/unbinding pathways of the ligand and to 

obtain a correct estimation of the binding free energy.  

In Chapter 4 (PathDetect-SOM: A Neural Network Approach for the Identification 

of Pathways in Ligand Binding Simulations), the difficulty of analyzing large amounts 

of data from several replicas or from a single simulation describing several re-crossing 

events obtained by enhanced sampling methods is addressed. Hence a tool based on 
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Neural Networks is proposed to analyze all simulated events at the same time and to 

provide a clearly interpretable overview of the differences in the sampled pathways. 

In Chapter 5 (Investigation of ligand-protein interaction through highly scalable 

QM/MM MD simulations), the advantages of introducing QM approaches for the 

description of the ligand and its interactions are analyzed. In particular, the 

improvement in the description of key properties such as polarization of the electron 

density using mixed QM/MM approaches via the MiMiC interface is explored. 

Finally, in Chapter 6 (Conclusions), some conclusive remarks related to the 

application of different computational methods for the study of ligand-protein binding 

are reported, and the main results deduced from the complete PhD project are 

summarized. 
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CHAPTER  2 

 

 

 

 

 

THEORETICAL BASIS OF MOLECULAR 

DYNAMICS SIMULATIONS 

 

 

MD simulations provide an opportunity to study the dynamics behaviour of proteins 

at an atomistic level, thereby helping to understand biological mechanisms. A 

description of the chemical and physical ligand-protein interactions can be obtained 

using different approaches, on the basis of the dimension of the biomolecular system 

to be investigated and of the accuracy required: classical MD, hybrid QM/MM MD or 

QM MD.  

This chapter presents the theoretical basis of the main computational methods used 

in the thesis. In particular, the first part focuses on: the fundamentals of the molecular 

mechanics (MM) approximation; the theory of classical MD simulations; and some 

enhanced sampling methods used in this PhD project, such as steered molecular 

dynamics (sMD) and metadynamics (MetaD) with the Path Collective Variables (PCVs) 

formalism. The second part provides the theoretical background to carry out a 

QM/MM study of a ligand-protein system and to perform MD simulations at this level 

of theory. 
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2.1 Classical approach for MD simulations  

Molecular Mechanics (MM) 

Molecular mechanics (MM)48 is based on a “sphere and spring” model of a molecule, 

in which atoms are treated as spheres connected by springs that represent the bonds. 

The electronic structure of the molecule is neglected, and the energy of the molecule 

is approximated by the terms of a force field. The force field is an empirical potential 

energy function that describes the energy of a molecule as a function of the Cartesian 

coordinates of all atoms. A standard force field for biomolecular simulations usually 

consists of a sum of different terms: 

𝑈 =	𝑈&#$"- +	𝑈!$./0- +	𝑈1#2-'#$- +	𝑈0/ +	𝑈3"4 

The first three terms describe the internal energy of the molecule, coming from all 

bonds, angles, and dihedrals present in the molecule, whereas the last two terms are 

the non-bonded terms. In most variants of MM, covalent bonds are represented by 

springs, so the first term, 𝑈&#$"-, uses the harmonic potential to describe covalent bond 

stretching around the equilibrium bond length, req: 

𝑈&#$"- =	9𝑘&:𝑟 − 𝑟05<
6 

where 𝑘& is the spring force constant for a given bond type b. Similarly, the bond 

angle term, 𝑈!$./0-, is also described by a harmonic potential: 

𝑈!$./0- =	9𝑘! :𝜃 − 𝜃05<
6 

where 𝑘! is the angle force constant for angle a involving three bonded atoms, and 

𝜃05 	is the equilibrium angle. The dihedral term, 𝑈1#2-'#$-, usually describes the torsion 

angle rotation around a bond with a periodic function: 

𝑈1#2-'#$- =	9
𝑉$
2 @1 + cos:𝑛𝜙 −	𝜙05<E 

where, 𝑉$ is the corresponding force constant, n is the periodicity of the rotation, 

and 𝜙05 is the equilibrium angle. 
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The non-bonded terms are usually computed between atoms separated by more 

than three bonds, to exclude from the computation the pairs of atoms included in the 

internal terms. 

The Coulomb electrostatic interaction energy between two atoms i and j with partial 

atomic charges 𝑞' and 𝑞7 is computed as: 

𝑈0/ = 𝑓
𝑞'𝑞7
𝜀2𝑟'7

 

where 𝑓 is the electric conversion factor I 8
9:;"

J,  𝜀2 is the dielectric constant of the 

given medium, and 𝑟'7 	is the interatomic distance between atoms i and j. 

The other non-bonded term is the van der Waals (vdW) potential, that describes the 

dipole–dipole interactions, including the dispersive interactions between 

instantaneous dipoles (London forces). At large interatomic distances, this term should 

be equal to zero, whereas at very short distances it should be strongly repulsive. 

However, at intermediate distances, where atoms are close to each other, but their 

electron clouds are not overlapping, this term should be slightly negative. This 

behaviour is well described by the Lennard-Jones (LJ) potential, which consists of two 

parts, a short-range repulsive term, and a long-range attractive term: 

𝑈3"4 =	94𝜀'7 LM
𝜎'7
𝑟'7
O
86

− M
𝜎'7
𝑟'7
O
<

P
'=7

 

where 𝜀'7 corresponds to the depth of the potential energy curve, 𝜎'7 is the finite 

distance between two atoms at which 𝑈3"4	is zero, and 𝑟'7 is the distance between the 

two atoms (Figure 2.1).  
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Figure 2.1 Shape of the Lennard Jones potential function. 

 

Classical molecular dynamics (MD) 

Molecular dynamics (MD) is a computer simulation technique that describes the 

evolution of a system over the time using the force field equation, discussed in the 

previous section. This method plays an important role in drug design and discovery 

because it allows processes involving very complex systems to be studied at the atomic 

level starting from a static structure produced by X-ray crystallography, nuclear 

magnetic resonance (NMR), Cryogenic electron microscopy (Cryo-EM) or homology 

modeling. Indeed, it is known that considering the flexibility of the protein, and thus 

its constant movement, rather than a single frozen structure allows a better 

understanding of the ligand-protein binding process49,50.  

In MD simulations, the trajectory is obtained by solving the differential equation 

derived from the Newton’s second law: 

𝑑6𝑥'
𝑑𝑡6 =	

𝐹>#
𝑚'
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where 𝐹># is the force acting on the particle i with mass 𝑚' moving along one 

coordinate 𝑥'. MD simulations start by assigning initial positions 𝑟(𝑡)	and velocities 

𝑣(𝑡) (the first derivative of the positions with respect to time) to all particles in the 

system. By integrating the Newton’s equations of motion, it is possible to calculate the 

corresponding positions and velocities at time 𝑡 +	∆𝑡, where ∆𝑡 is the time step used 

in the simulations. For a small time step, forces may be considered constant and it is 

possible to solve the equations of motion, where the positions of the particles in the 

system can be approximated by a Taylor series expansion: 

𝑟(𝑡 + ∆𝑡) = 𝑟(𝑡) + 𝑣(𝑡)(∆𝑡) +	
1
2 𝑎
(𝑡)(∆𝑡)6 +

1
6𝑏
(𝑡)(∆𝑡)? +⋯ 

𝑣(𝑡 + ∆𝑡) = 𝑣(𝑡) + 𝑎(𝑡)(∆𝑡) +	
1
2 𝑏
(𝑡)(∆𝑡)6 +

1
6 𝑐
(𝑡)(∆𝑡)? +⋯ 

𝑎(𝑡 + ∆𝑡) = 𝑎(𝑡) + 𝑏(𝑡)(∆𝑡) +	
1
2 𝑐
(𝑡)(∆𝑡)6 +⋯ 

where r is the position, v is the velocity, 𝑎 is acceleration (the second derivative of 

the positions with respect to time) obtained from the calculated force acting on each 

atom, and b and c respectively the third and fourth derivative. After calculating the 

new positions of all atoms, it is possible to update the energy and forces and iterate 

the procedure as many times as needed. This way, an MD simulation produces a 

trajectory, which shows how positions and velocities of all atoms vary with time. As 

discussed before, the forces may only be considered constant if the time step used is 

small. Special attention must be paid to the time step used: if it is too small, the 

trajectory will progress slowly, thus covering only a limited region of the phase space, 

while if it is too large high energy atoms may overlap causing instability in the 

integration algorithm. A useful rule for establishing the time step to be used is that it 

should be one-tenth the time of the shortest period of motion. In MD simulations of 

biomolecular systems, the highest frequency motion is the stretching of bonds 

involving hydrogen atoms which vibrates with a period of about 10 fs. Accordingly, 

the recommended time step is 1 fs. A possible strategy to allow the use of larger time 

step is to constrain bonds involving hydrogen atoms to their equilibrium values using 

the SHAKE51 or LINCS52 algorithms.  
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Given that the size of the system to simulate cannot be infinite, usually the 

molecules of interest are embedded in a box of finite size. In order to be able to 

calculate macroscopic properties from a MD simulation, it is necessary to treat the 

boundaries and boundary effects correctly. This becomes particularly important when 

simulations are performed by explicitly treating solvent molecules. Considering a finite 

system during simulation, it is necessary to use walls that limit the diffusion of 

molecules; artefacts can be observed in proximity to these walls. A method to 

overcome this problem is the use of the periodic boundary condition (PBC) approach 

(Figure 2.2).  

 
Figure 2.2 Schematic representation of periodic boundary conditions. 

With this approach, a unit box of the system is replicated in all directions forming 

periodic images of the same box; the particles in the adjacent boxes will move in the 

same way as those in the original box. During the simulation, all boxes are identical 

and when a particle leaves the original box, a particle enters the box from the opposite 

side, ensuring that the total number of particles in the original box is preserved. The 

unit cell must have a shape that can be replicated in 3D space by forming a lattice 



 

 

 

16 

without holes. If periodic boundary conditions are used, interactions between the 

system in the central box and its periodic images should also be taken into account.  

The number of non-bonded interactions exhibit a quadratic growth with the number 

of atoms. This mean that for very large systems, the number of interactions to be 

computed become prohibitive. VdW interactions decay very quickly and therefore can 

be cut to a certain cutoff (typically 9-12 Å) reducing the number of interactions to be 

considered. However, for electrostatic interactions ignoring interaction between atoms 

beyond the cutoff value is not appropriate as it introduces serious errors in the force 

calculation.  Indeed, given that the energy of these interactions at the cut-off distance 

are not completely negligible, methods to overcome this issue should be used such as 

the Particle Mesh Ewald (PME)53 approach. The PME method uses a summation in the 

Fourier space for the long-range part which quickly converges in the Fourier reciprocal 

space. 

 

2.2 Enhanced Sampling Methods 

Enhanced sampling methods aim to improve the sampling of classical MD 

simulations for biomolecular system. Some events involving this type of systems, such 

as ligand binding, occur in time scales not accessible with classical MD simulations. In 

fact, the integration time step is limited to femtoseconds and therefore, to observe 

events in micro/milliseconds timescale, computations of billions or trillions of steps 

are required. An important bottleneck for an efficient exploration of the phase space 

during MD simulations is the presence of high energy barriers separating different 

conformations leading to the rare observation of transitions between them. Therefore, 

simulations of complex systems require high computational costs. For this reason, 

enhanced sampling methods are required to accelerate the sampling of the 

conformational space. Using these approaches, it is possible to calculate 

thermodynamic and/or kinetic properties associated with the process of interest. The 

central idea of most of the enhanced sampling methods is to add a bias potential to 

the Hamiltonian of the system, to allow it to overcome the free energy barrier and 
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consequently to sample new regions. Many of these methods use predefined reaction 

coordinates or collective variables (CVs) to guide simulations effectively54,20,55,56.  

In the following paragraphs the enhanced sampling methods used in this work are 

discussed in detail, in particular steered MD and Metadynamics with the Path 

Collective Variables formalism. 

Steered molecular dynamics (sMD) 

Steered molecular dynamics (sMD)21,57,58,59 is a non-equilibrium method in which a 

time-dependent external force is applied to a specific set of atoms and pulls the system 

along the reaction coordinate (or collective variable, CV) to facilitate the sampling 

(Figure 2.3).  

 
Figure 2.3 Schematic explanation of steered MD in which the bias is moved along a specific reaction coordinate. 

In other terms, sMD acts by pulling the system along one or more CVs to guide the 

system from an initial configuration to a final one (for ligand binding from the bound 

state to the unbound state). In particular, at the beginning of the simulation a 

harmonic time dependent potential 𝑈 acting on a selected CV, is added to the standard 

Hamiltonian: 

En
er
gy

Reaction Coordinate

Steered MD



 

 

 

18 

𝑈 =
𝐾
2
(𝑥 −	𝑥@)6 

where 𝐾 is the strength of the external force applied (spring constant) and 𝑥@ is the 

initial value of the CV. The force F applied to the system during the simulation can be 

expressed as: 

𝐹 = 	𝐾(𝑥@ + 𝑣𝑡 − 𝑥) 

where v is the pulling velocity. Finally, the external work ∆𝑊 performed on the 

system is derived from the 𝐹 by integrating the force over the pulled trajectory: 

∆𝑊 = 𝑣] 𝐹(𝑡)	𝑑𝑡
1$

1"
 

∆𝑊 represents the cumulative change of the Hamiltonian in time and it is related 

to the change in energy of the system. With the Jarkzynski equality it is possible to 

connect the free energy difference between two states with the ensemble average of 

work obtained with sMD simulations: 

∆𝐺 = −
1
𝛽 𝑙𝑛

〈𝑒(A4〉 

where 𝛽 = 8
B%,

, with T and 𝑘C being the temperature of the system and the 

Boltzmann constant, respectively. 

In summary, in sMD simulations the equilibrium free energy of the system is 

obtained from the average of the irreversible works. Consequently, it is necessary to 

perform a large number of independent replicas to provide a statistically significant 

calculation of W and in turn a reliable estimate of the free energy. However, given that 

Jarkzynski equality involves the average of a noisy quantity (the work) that appears in 

the exponential, calculation of 〈𝑒(A4〉 leads to large errors. It is possible to observe 

that a higher irreversible work is associated with a higher variance, consequently, the 

optimization of the force applied to the ligand along its unbinding, or the application 

of different pulling velocities, leads to an improvement of the convergence of the 

results14. 

Metadynamics (MetaD) 
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Metadynamics (MetaD)60,26,61, is a well-known enhanced sampling method for 

studying rare events. In MetaD simulations a history-dependent bias potential is added 

in order to enhance the sampling by depositing a bias with a Gaussian shape 

distribution, at regular time intervals on the current position of the selected CVs 

(Figure 2.4).  

 
Figure 2.4 Schematic explanation of metadynamics in which an history-dependent bias is added to discourage re-

sampling. (Image modified from ref 20) 

The bias potential acting on the system at time t is expressed by means of the 

following function: 

𝑉*(𝑆(𝑥), 𝑡) = 𝑤	 9 𝑒
D(

EF(>)(-I1&JK
'

6L-' M

1&N	P(,6P(,…
1&=1

 

where w is the Gaussian height, 𝜏* is the frequency of the Gaussian deposition along 

the CV, 𝛿- is the Gaussian width and 𝑠(𝑡) = 𝑆:𝑥(𝑡)< is the value taken by the CV at 

time t. These parameters determine the accuracy and efficiency of the free energy 

reconstruction. If the Gaussians are large, the free energy surface (FES) will be 

explored at a fast pace, but the reconstructed profile will be affected by large errors. 

Instead, if the Gaussian are small or are placed infrequently the reconstruction will be 

more accurate, but it will take a longer time. During the simulation, the bias potential 

fills the the FES minima, allowing the system to efficiently explore the space defined 

by the CVs. The choice of CVs is very important since the efficiency of the method 

scales exponentially with the number of dimensions involved. Ideally the CVs should 

satisfy three properties60: the first is that they should clearly distinguish between the 

initial state, the final state, and the intermediates state; the second is that they should 
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describe all the slow motion relevant for the process and the last one is that their 

number should not be too large, otherwise it will take a very long time to fill the FES. 

The main drawback of using MetaD is related to assessing the convergence of the 

simulation. Once all the basins are visited, and while the simulation keeps running, 

the bias continues being deposited. This has the effect of overfilling a minimum and 

the height of the accumulated Gaussians will largely exceed the true barrier height 

(hysteresis). Thus, for a reliable FES estimate, the simulation should be stopped as 

soon as the system starts diffusing in the CVs space. A solution to this problem is 

provided by well-tempered metadynamics (WT-MetaD)62. While in standard MetaD 

Gaussians of constant height are deposited over time, in WT-MetaD the Gaussian 

height becomes a function of the simulation time and it is scaled by a factor: 

𝑒(
S(-(1),1)
B%∆,  

where the bias potential has been evaluated at the same point where the Gaussian 

is centered and ∆T is the range of the temperature at which the CVs are sampled. When 

the system reaches a new basin, the initial Gaussian height is reset, and the scaling of 

the hills starts again. As a consequence, the bias potential tends to converge smoothly 

in the long time limit. The choice of the entity of Gaussian height decrease per unit 

time is very important. However, the Gaussian height should not become too small 

before a basin is completely filled, otherwise the system would be trapped inside the 

basin with no possibility of overcoming the barriers. This can be monitored by setting 

a specific parameter for the simulation, the biasfactor, defined as: 

𝛾 =
𝑇 + ∆𝑇
𝑇  

where ∆𝑇 is the upper limit of the temperature range to which the sampling of the 

CVs is confined. Thus, in the long-time limit, the system will explore the biased 

canonical distribution: 

𝑃(𝑠) ∝ 	 𝑒(
T(-)US(-,1)

B%, ∝ 	𝑒(
T(-)

B%(,U∆,) 
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where 𝐹(𝑠) is the free energy. Due to the bias potential, CVs explore the canonical 

ensemble at an effective temperature T+ΔT. WT-MetaD is therefore of great advantage 

because it allows the exploration of CV space to be confined only to regions of 

reasonable free energy. 

As previously explained, another important issue encountered when using MetaD is 

the identification of an appropriate set of CVs, else the simulation will not converge 

and the system will remain stuck in a certain position until the rare event involving 

the hidden CV eventually occurs. In order to reduce the possibility of neglecting 

relevant degrees of freedom, several strategies can be applied. Among those relying 

on the use of CVs, one is using path collective variables (PCVs). 

Path Collective Variables (PCVs) 

The idea of approximating the reaction coordinate with a path connecting two 

stable basins in energy or free energy space is useful in clarifying reaction mechanisms. 

Path variables can be used in metadynamics to effectively overcome the difficulty of 

managing highly dimensional phase spaces and reduce the choice between multiple 

possible CVs.  

Path Collective Variables (PCVs) formalism, proposed by Branduardi et al28, involves 

a set of path variables that have been successfully used to investigate complex chemical 

and biological processes and compute their associated free energy surfaces and 

kinetics63,64,65,66,67. The idea behind this approach is the possibility of describing a 

transition between state A and B with a series of frames (frameset) capturing the 

system at intermediate states along the reaction coordinate (Figure 2.5).  
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Figure 2.5 Schematic explanation of path collective variables in which sampling along the path is guided by s(X) 

and z(X). 

This frameset can be used to guide the sampling along the path by two different 

CVs: the first one, s(X) describes the progression along the path, while the second one, 

z(X), is orthogonal to s(X) and expresses the distance from the path. While s(X) 

describes the evolution along the pathway, z(X) allows to explore adjacent regions of 

the phase space. The formalism of the two CVs can be expressed as:  

𝑠(𝑋) =
∑ 𝑖	𝑒((V+[X(X#])Z
'N8

∑ 𝑒((V+[X(X#])Z
'N8

 

𝑧(𝑋) = −
1
𝜆 𝑙𝑛 m9𝑒((V+[X(X#])

Z

'N8

n 

where X represent the atomic coordinates at the current simulation time step, while 

Xi denotes those of the i-th frame with N the total number of frames comprised in the 

frameset. The difference 𝑋 − 𝑋' is the distance between configuration X and the one 

adopted in frame i. The function R is the chosen metric which measures this distance. 

The 𝜆 parameter serves to smooth the variation of the variables and obtain a 

continuous collective variable. A good starting value for the tuning of its value can be 

obtained with the following formula: 

𝜆 =
2.3(𝑁 − 1)

∑ |𝑋' − 𝑥'U8|Z(8
'N8

 

Path Collective Variables

s(X) z(X)



 

 

 

23 

which imply that the average distance between consecutive frames composing the 

path is calculated. As mentioned above, different metrics can be used for calculating 

distances. In the original implementation of PCVs, the Root Mean Square Deviation 

(RMSD) was the chosen metric, requiring the alignment of structures to the reference 

path at each time step. An interesting alternative is to use the distance-RMSD, or 

dRMSD, which measures the differences between atomic distances within structures. 

The dRMSD metric avoids the problem of structure alignment. In summary, the highly 

dimensional space is reduced to a description exploiting the progression along the 

pathway as CV. The main advantage from combining s(X) to z(X) is a more complete 

exploration of the conformational space. There is no general rule to obtain the required 

frameset which provides the reference path, but it is necessary to consider some crucial 

aspects: first of all, consecutive frames need to describe unidirectional progression 

towards the final state; secondly, equal spacing between frames is required; and 

finally, an appropriate number of frames should be chosen, so that the distance 

between subsequent frames should not be excessive68. Finally, it should be considered 

that it is difficult to distinguish conformations that are similarly "distant" from 

conformations that are dissimilar to the reference structure. A good path, thus, should 

provide a free-energy surface with the deepest minima not too distant from the 

reference path in z(X); going too far from the reference path increases the probability 

of finding different states with the same CVs values. 

 

2.2 QM/MM approach for MD simulations  

Molecular mechanics methods have the advantage of being computationally 

accessible but also have some limitations as they completely ignore the electronic 

structure and describe the molecule by treating atoms as spheres and bonds between 

them as springs. In contrast, quantum mechanical methods explicitly include electronic 

treatment, thus enabling the processes under investigation to be studied more 

accurately; however, the major limitation is that they are computationally onerous, 

and it is therefore difficult to study large biomolecular systems, such as ligand-protein 

complexes, at this level of theory. A solution to this problem are the hybrid QM/MM 
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methods. The original QM/MM method was implemented by Warshel and Levitt to 

explore the catalytic mechanism of an enzyme69. The QM/MM approach regained 

interest in 1990 thanks to application and validation work by Field, Bash and Karplus 

and the basic QM/MM application to chemical problems70. Nowadays, QM/MM 

approaches have proven useful to accurately study reaction mechanisms in a protein 

environment using molecular dynamics and for ligand-protein binding 

studies71,72,46,47,39. 

The idea behind QM/MM methods71 is that a small part of the system, usually 

containing the ligand and/or the binding site, is treated at the QM level, whereas the 

rest of the protein and solvent are treated at the MM level. In this way, the system is 

divided into a small QM part and large MM part as shown in Figure 2.6. 

 
Figure 2.6 Schematic illustration of the QM/MM approach.(Image taken from ref 71) 

The total QM/MM potential energy of the system includes three classes of 

interactions: between atoms in the QM region, between atoms in the MM region, and 

between QM and MM atoms.  Interactions within the QM region are described at the 

QM level and those within the MM region are described at the MM level. Interactions 

between the two subsystems, on the other side, are more difficult to describe.  

To study these types of interactions several approaches have been proposed, and 

they can be divided into two categories: subtractive and additive coupling schemes. In 

the subtractive scheme, different parts of the system undergo independent calculations 

at different levels of theory. The QM/MM energy of the total system is given by the 
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energy of the QM subsystem, calculated at the QM level, plus the energy of the 

complete system, evaluated at MM level, minus the energy of the QM subsystem, 

evaluated at the MM level.  

𝐸1#1 = 𝐸[\(𝑄𝑀) + 𝐸\\(𝑄𝑀 +𝑀𝑀) − 𝐸\\(𝑄𝑀) 

The last term is subtracted to correct for double counting of the contribution of the 

QM subsystem to the total energy. The main advantage of this scheme is that no 

explicit QM/MM coupling terms are needed due to the coupling between subsystems 

is handled at the MM level of theory. On the other hand, a disadvantage is that a force 

field is required for the QM subsystem; it also need to be flexible enough to describe 

the effect of chemical changes when a reaction occurs. One additional drawback of 

this method is the lack of polarization of the QM electronic density by the MM 

environment. 

Instead, the additive scheme which is the most adopted approach for QM/MM 

calculations, adds the explicit treatment of the interactions between the QM and MM 

subsystems. Indeed, its main advantage is that the energy calculation of the QM region 

can be performed directly in the presence of the classical environment so that the 

electronic density of the QM region is optimized in the external electrostatic field of 

the environment. In the additive QM/MM scheme, the total energy of the system is 

equal to the sum of QM energy terms, MM energy terms and QM/MM coupling term: 

𝐸1#1 = 𝐸[\(𝑄𝑀) + 𝐸\\(𝑀𝑀) + 𝐸[\/\\(𝑄𝑀 +𝑀𝑀) 

The last term, the interactions between the two subsystems, can be treated with 

several available models: mechanical embedding, electrostatic embedding, and 

polarized embedding. They differ in the degree of polarization between the QM and 

MM regions.  

• Mechanical embedding is equivalent to the QM/MM subtractive scheme 

outlined above, as it deals with QM/MM electrostatic interactions at the MM 

level (typically between rigid atomic charges). With this model both the QM 

and MM regions are not polarized.  
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• Electrostatic embedding allows for the polarization of the QM region since 

the QM calculation is performed in the presence of the MM charge model, 

typically by including the MM point charges as one-electron terms in the QM 

Hamiltonian. Therefore, the electronic structure of the QM subsystem can be 

adapted to the environment and the resulting QM density should be much 

closer to reality than that obtained from the mechanical embedding. 

• In the polarization embedding scheme, both regions can polarize each other. 

Thus, not only the QM region is polarized by MM atoms, but the QM region 

can also induce polarization in the MM system. To obtain the total QM/MM 

energy, the MM polarizations need to be calculated at each step of the 

iteration of the self-consistent field of the QM wave function. Since the 

polarization is also calculated in a self-consistent manner, the QM/MM 

calculation can become very expensive. 

The boundary between the QM and MM regions must be chosen meticulously, 

because if the QM and MM subsystems are connected by chemical bonds, it is necessary 

to be careful when making a cut. Covalent bonds often end up being cut by the 

QM/MM boundary, especially for systems such as proteins, but direct cutting of the 

bond will cause one or more unpaired electrons in the QM subsystem. However, these 

electrons are paired in bonding orbitals with the electrons that bind to the atom on 

the MM region. There are several approaches to overcome this artefact and saturate, 

or cap, the bond: link atom, capping potential or hybrid orbital.  

• The link atom approach is the most widely used. It is based on replacing the 

MM part of the bond by an atom (link atom), usually a hydrogen atom, that 

is not used in QM/MM forces calculation and is not propagated during the 

MD simulation. In principle, each link atom provides three additional 

degrees of freedom to the system. In practice, the link atom is put in a fixed 

position along the bond at each step of the simulation, in order to remove 

these additional degrees of freedom. At each step, the force acting on the 

link atom is distributed over the QM and MM atoms of the bond.  
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• An alternative to the link atom approach is to replace a chemical bond 

between the QM and MM subsystem with a double occupied molecular 

orbital. This can be achieved either by the hybrid localized orbitals method, 

which introduces orbitals to the QM atom, or by the hybrid generalized 

orbitals approach, which places additional orbitals on the MM atom.  

• The last approach that can be used to deal with the boundary between the 

QM and MM region is to replace the MM atom with a specifically designed 

pseudopotential73 that mimics the real atom. In this approach the capping 

atom is included in the MD providing a more complete description of the 

system. 

When performing a QM/MM simulation the classical MD part is driven by 

parameterized potentials (force fields), whereas in the QM region it is necessary to 

select a method to calculate the forces acting on the nuclei from the electronic 

structure calculations.  

Given the non-relativistic Hamiltonian describing the many-body system consisting 

on interacting electrons and nuclei: 

𝐻v	 = 	𝑇wZ	 + 	𝑇w0 	 + 	𝑉wZ0 	 + 	𝑉w00 	 + 	𝑉wZZ 

(where 𝑇wZ	and		, 	𝑇w0 are the operators of the kinetic energy of nuclei and electrons, 

respectively, 	𝑉wZ0 is the electron-nuclei attractive potential, 𝑉w00 		the electron-electron  

potential and 𝑉wZZ the inter-nuclear repulsion potential), the application of the Born-

Oppenheimer approximation allows to decouple the motion of nuclei from that of 

electrons. This allows to split the many-body wavefunction into the electronic and 

nuclear parts:  

Y = Y0 ∙ 	Y$ 

With this approximation, nuclei can be described as moving on the potential energy 

surface (PES) defined by the electronic potential. Therefore, it is possible to apply the 

same algorithms to propagate the system in time as discussed in classical MD. Usually, 

within the Born-Oppenheimer-based MD (BOMD)72 one first solves the time-

independent electronic Schrodinger equation for the electronic wave function 𝜓0  
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𝐻v0(𝑟, 𝑅)	𝜓0(r, R) = 	𝐸0 	𝜓0(r, R) 

where 

𝐻v0 =	𝑇w0 + 𝑉wZ0 + 𝑉w00 

and time dependence is injected through the parametric dependence on R, i.e. the 

classical dynamics of nuclei. Then, one uses 𝜓0 to get the instantaneous potential 

energy for the nuclei and to evolve the nuclear position as mentioned above. Forces 

acting on the nuclei are defined as the gradient of the expectation value of the 

electronic Hamiltonian with respect to the nuclear positions. The dynamics can be 

generated by integrating the Hamilton’s or Newton’s equations of motion.  

A number of methods were derived to obtain the approximate solution to the 

electronic Schrodinger equation. The choice of a suitable QM method for performing 

QM/MM MD follows the same criteria as for pure QM studies, i.e. the ratio of accuracy 

and reliability to computational cost. Traditionally, semi-empirical QM methods have 

been the most popular, and remain important for QM/MM molecular dynamics 

simulations. Nowadays, with the increase in computational power, ab initio Hartree-

Fock or density functional theory (DFT) are being widely used72,46. The applicability of 

HF method to biochemical problems is rather limited due to the lack of the electronic 

correlation; post-HF approaches, that mitigate this issue, are in most cases 

computationally expensive and this prevents their usage for significantly large systems 

such as those that are studied in biophysics. On the contrary, the DFT theory takes into 

account electronic correlation effects at the cost of Hartree-Fock calculations. DFT is 

built around the Hohenberg-Kohn theorem which states that the electron density of 

the non-degenerate ground state makes it possible to univocally determine all the 

properties of the ground state. Hence any observable physical quantity of the ground 

state, such as the total energy, can be expressed as a functional of the electron density. 

The energy functional is minimal when the density is a true ground state density. Using 

the variational approach, minimization of the energy functional leads to single-particle 

Schrodinger equations, called Kohn-Sham equations (the formalism based on them is 

thus called Kohn-Sham DFT (KS-DFT)). The solution of these equations yields a set of 
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KS orbitals which are not real orbitals of the physical system, but they can be used to 

compute the ground state density of the system. KS equations cannot be solved 

analytically, but numerically, in a self-consistent way. In the implementation of DFT 

codes, KS orbitals can be expanded as a linear combination of a finite basis set. In 

contrast to localized basis sets, such as Gaussian, the use of a plane waves basis set 

allows to greatly simplify the computations. The main disadvantage of plane waves is 

the need of a large amount of basis functions. However, the problem can be alleviated 

by the introduction of pseudopotentials replacing the explicit treatment of core 

electrons. Exclusion of core electrons reduces the number of orbitals to expand; in 

addition, valence orbitals are smoother compared to core ones, which reduces the 

minimal required size of the basis set.  

Alternatively, ab initio MD can be performed without solving KS equations explicitly 

during each time step. A computational strategy to do this was proposed by Car and 

Parrinello (CP-MD)74,72. Within this approach, a quantum-classical problem (electron-

nuclear system in BO approximation) is reformulated in terms of a two-component 

purely classical system. This is done by providing electrons with a fictitious mass. This 

choice allows to propagate the whole two-component classical system using a chosen 

classical integrator. After an initial standard electronic minimization, as done in 

BOMD, the fictitious dynamics of the electrons keeps them on the electronic ground 

state corresponding to each new ionic configuration visited during the MD, thus 

yielding accurate ionic forces. Due to the much smaller mass of electrons one needs to 

choose much smaller time step for integration (typically of around 0.12 fs) than the 

one usually employed in the force field-bases (usually 2 fs) or BOMD (usually 0.48 fs).  

Nowadays, QM/MM simulations can be performed using many different programs, 

there are quantum chemistry codes that have incorporated some molecular mechanics 

features or the contrary. Moreover, interfaces that links two different software (one 

from molecular mechanics and one from quantum chemistry) have been developed. 

The QM software takes care of calculating the properties related to the QM region 

while the MM software is responsible for computing the MM properties and usually 

conducts the molecular dynamics simulation. The interface module ensures the 



 

 

 

30 

transfer of data between the QM and MM programs and usually compute the hybrid 

interaction between the MM and QM subsystem. This makes it possible to carry out 

hybrid QM/MM simulations even of large and complex systems, overcoming the 

limitations associated with using the two levels of theory separately.  
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CHAPTER  3 

 

 

 

 

 

METADYNAMICS-BASED APPROACHES FOR 

MODELING THE HYPOXIA-INDUCIBLE FACTOR 

2α LIGAND BINDING PROCESS 

 

 

3.1 Introduction 

As discussed in Chapter 1 - Introduction, recently MD simulations are being used 

increasingly in the study of processes happening on timescales that range from 

nanoseconds to milliseconds and beyond,75 making them attractive for the study of 

ligand binding. However, computation of key thermodynamic quantities requires the 

observation of multiple binding events to obtain reliable statistics on the process, thus 

increasing the computation time. Therefore, enhanced sampling techniques are used 

to speed-up the simulation of the binding/unbinding events20,76. Most of these 

techniques, presented in Chapter 2 - Methods, make use of a bias potential that forces 

the system to sample higher energy regions, speeding up the crossing of energy 

barriers. 
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Among the methods for studying ligand binding based on enhanced sampling 

MD7,33,77–81, in this work we focused on steered MD82 (sMD) and Metadynamics25 

(MetaD). SMD was inspired by single-molecule pulling experiments and applies a 

moving restraint bias that pulls the system along a selected variable. Despite its wide 

applications to the study of (un)folding mechanisms of proteins83,84 and transportation 

of ions and other molecules across membrane channels85,86, sMD has also emerged as 

a method for studying ligand (un)binding22,58,87,88, given that it is particularly well 

designed for the investigation of entry and exit pathways. Its points of strength are the 

easy setup and the shortness of simulations14. On the other hand, sMD still suffers from 

several limitations, in particular regarding the calculation of the potential of mean 

force (PMF)14. As already discussed in the Chapter 2, during the pulling, a part of the 

work is spent as dissipative work and convergence can be difficult to reach. In theory, 

the Jarzynski's equality may account for the dissipative part of the work; however, 

when the range of work obtained in multiple replicas is broad, simulations with the 

lowest work contribute most to the calculation of the average work89. These limitations 

may be overcome by performing a large number of replicas and reducing the pulling 

speed, but for some complex systems this is often not enough. 

As presented in Chapter 2, MetaD is a method based on the introduction of a history-

dependent bias potential applied to a small number of suitably-chosen collective 

variables (CVs)25,90,91. The choice of the CVs is the most critical aspect in MetaD, and 

results can be seriously affected by the omission of important degrees of freedom 

(hysteresis).90 Given that the computational cost to reconstruct the free-energy surface 

exponentially grows with the number of CVs, Branduardi et al.28 developed the Path 

Collective Variable (PCVs) method, which allows exploration of complex 

multidimensional processes along a predefined pathway described by a single CV. An 

additional CV, that describes the distance from the reference path, usually completes 

the set of CVs necessary to efficiently sample the process of interest.  

Here, we investigate the ligand binding process to the Hypoxia Inducible Factor 2α 

(HIF-2α), a pharmaceutically relevant system widely recognized as a target for cancer 

therapy92. HIF-2α mediates the physiological responses to hypoxia through 
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heterodimerization with the Aryl hydrocarbon Receptor Nuclear Translocator 

(ARNT)93,94. Under normoxia conditions (adequate oxygen levels), HIF-2α is 

hydroxylated by PDH (propyl-4-hydrolase), recognized by a second protein (VHL, von 

Hippel-Lindau) and finally degraded by the ubiquitin system (regulatory protein 

required for protein degradation in the ubiquitination process). In contrast, under 

hypoxic, oxygen-deficient conditions, hydroxylation cannot occur and HIF-2α 

accumulates in the cytoplasm; it is then transported into the nucleus where it 

dimerizes with ARNT to form the transcriptionally active heterodimer95 (Figure 3.1).  

 
Figure 3.1 Mechanism of hypoxia-induced gene expression mediated by the HIF transcription factor. (Image from 

ref95). 

Activated genes are involved in glycolysis, erythropoiesis and angiogenesis; the 

gene products include erythropoietin, that stimulates the production of red blood cells, 

and vascular endothelial growth factor (VEGF), a regulator of blood vessel growth94. 

In tumor masses, the abnormal vasculature creates hypoxic regions that activate HIFs 

to promote angiogenesis and to switch to anaerobic metabolism, sustaining cell 

viability under hypoxic conditions96. For this reason, targeting the HIF-2α:ARNT 
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interface with ligands has gained increasing attention as a therapeutical anticancer 

strategy. 

Both HIF-2α and ARNT belong to the mammalian basic helix–loop–helix-PER-

ARNT-SIM (bHLH-PAS) family of proteins, which members modulate transcriptional 

responses to environmental and cellular signals and are involved in a variety of 

physiological processes and diseases in humans92,97. Members of the bHLH-PAS family 

present an N-terminal bHLH region for DNA binding, two PAS domains (PAS-A and 

PAS-B) with the role of both sensing external signals and recognize the dimerization 

partner and a transactivation domain. For a long time, only another bHLH-PAS 

protein, the Aryl hydrocarbon Receptor (AhR), was known to be activated by binding 

to a wide range of ligands within its PAS-B cavity98,99. More recently, following the 

discovery of a buried cavity within the HIF-2α PAS-B domain100, several artificial small 

molecules were identified as HIF-2α ligands and potential inhibitors of the HIF-

2α:ARNT dimerization101–106. The structural determination of the HIF-2α:ARNT dimer 

encompassing the whole bHLH-PAS region, in the unbound, DNA-bound, and 

inhibitor-bound forms93, recently allowed us to investigate the inhibition mechanism 

of the 0X3 antagonist and to shed light on pharmacophoric features required for the 

development of new inhibitors.107  

In this work, we combined sMD and PCVs MetaD simulations to investigate the 

binding process of two known ligands to the HIF-2α PAS-B domain (Figure 3.2).  
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Figure 3.2 The 3D structure of the PAS-B domain of HIF2a is shown in grey and in cartoon, the ligand binding 

cavity is shown as surface in blue. 

We were aimed at both investigating the ligand entrance pathway into the binding 

cavity and assessing the validity of the selected methods for such a complex system. In 

fact, the buried nature of the cavity makes it difficult to imagine the entry or exit route 

of the ligand and, despite a previous MD investigation identified probable pathways 

for water exchange with the bulk solvent,103 the access of larger organic molecules to 

the cavity has never been studied. Moreover, it is conceivable that ligand entrance into 

this cavity may involve significant protein conformational rearrangements. The above 

features of the system make simulation of the ligand binding process a non-trivial task 

and required the development of specific methodological approaches. In the light of 

the obtained results, these methods appear to be suitable also for the elucidation of 

other ligand binding processes with similar characteristics. 

The main results of the work reported is this Chapter were published in ref108. 

 

3.2 Methods 

System preparation and molecular dynamics simulation 

Crystal structures of HIF-2α in its bound state with the THS-020 ligand (PDB ID: 

3H82103) were obtained from the Protein Data Bank (PDB)109. The PAS-B of the ARNT 
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protein partner, included in the X-ray deposition, was removed. This does not induce 

perturbations in the structure of the HIF-2α PAS-B, as shown by the RMSD plot (Figure 

3.3) that highlights the stability of the HIF-2α domain during the MD simulation.  

 
Figure 3.3 Plot of the RMSD values computed on Cα atoms for the HIF-2α PAS-B domain during the unbiased MD 

simulation. 

The KG-721 bound form was obtained with molecular docking calculations (see the 

next sub-section).  Protein was prepared with the Protein Preparation Wizard110 

included in Maestro: hydrogen atoms were added, all water molecules removed, C- 

and N-terminal cappings were added, disulphide bonds were assigned, and residue 

protonation states were determined by PROPKA111 at pH = 7.0.  The ligands were 

prepared using the LigPrep112 tool included in Maestro in order to optimize the 

structures. The partial charges of ligands were calculated using the RESP113 method at 

AM1-BCC114 level of theory in Antechamber115, while a GAFF116 parametrization was 

used to achieve the complete topological description of each ligand. The unbiased MD 

simulations were performed using GROMACS 2018.6117. The protein was solvated in 

an orthorhombic box with TIP3P118 water molecules, ad neutralized with Na+/Cl− ions. 

The minimal distance between the protein and the box boundaries was set to 20 Å. 

The Amber ff14SB force field119 was used for the protein and a multistage equilibration 

protocol was applied: the system was first subjected to 2000 steps of steepest descent 

energy minimization, with positional restraints (239 kcal mol-1 nm-2) for backbone and 
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ligand. Subsequently, a 200 ps NVT MD simulation was used to heat the system from 

0 to 100 K with restraints lowered to 96 kcal mol-1 nm-2; then the system was heated 

up to 300 K in 400 ps during an NPT simulation with further lowered restraints (48 

kcal mol-1 nm-2). Finally, the system was equilibrated during an NPT simulation for 2 

ns with backbone restraints lowered to 12 kcal mol-1 nm-2. In the NVT simulations 

temperature was controlled by the Berendsen thermostat120 with coupling constant of 

0.2 ps, while in the NPT simulations the V-rescale thermostat121 (coupling constant of 

0.1 ps) was used and the pressure was set to 1 bar with the Parrinello-Rahman 

barostat122 (coupling constant of 2 ps). A time step of 2.0 fs was used, together with 

the LINCS52 algorithm to constrain all the bonds. The particle-mesh-Ewald method123 

was used to treat the long-range electrostatic interactions with the cutoff distance set 

at 11 Å. Short-range repulsive and attractive dispersion interactions were 

simultaneously described by a Lennard-Jones potential, with a cut-off at 11 Å. Finally, 

a 20 ns production run was performed without the constraints.  

Molecular docking of the KG-721 ligand  

Conformational analysis of the ligand structure was performed using Macromodel124 

with the OPLS_2005125 force field. The obtained global minimum was used as starting 

point for molecular docking calculations using Glide126 XP127 (Extra Precision). In 

particular, Glide uses a flexible ligand-rigid protein approach, in which a series of 

hierarchical filters are applied to find the possible positions and conformations of the 

ligand in the binding cavity (poses). The properties of the protein are represented on 

a grid of points on which the contributions that each protein atom gives to the 

interaction energy are pre-calculated and stored, in order to reduce computing time 

and cost, and to provide gradually more accurate scores. The initial screenings are 

deterministically performed over the complete phase space of the ligand to identify 

the most promising poses. From the selected poses, the ligand is then refined in the 

torsional space in the receptor field. To take into account the flexibility of the protein, 

the ensemble-docking approach was used, that involves ligand docking to multiple 

receptor conformations. These can be derived either experimentally or 

computationally (e.g. by MD simulations)128. The conformational ensemble here 
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selected consisted of the crystallographic structures of the HIF-2α PAS-B in complex 

with artificial ligands available in PDB (3F1O100, 3H82103, 3H7W103, 4GS9101, and 

4GHI102).  The results showed that the best XP score is the one related to the KG-721 

ligand in the 4GHI structure. 

Steered MD simulations (sMD)  

All the sMD simulations were performed using the PLUMED 2.4.6129,130 plugin 

integrated in GROMACS 2018.6117. We chose the ligand-protein distance as the pulling 

variable. This was defined as the distance between the center of mass of selected atoms 

at the bottom of the binding cavity (different for the 2 pathways, see Figure 3.4) and 

the center of mass of the ligand heavy atoms.  

 
Figure 3.4 Representation of the pulling variable for the two paths (path 1 on the left, path 2 on the right). In 

cartoon, the PAS-B domain of HIF2α; in gray sphere, the center of mass of the heavy atoms of the ligand (THS-020); 
in cyan (orange) sphere, the center of mass of N, Cα, C and O atoms of selected reference residues: for path 1, L245, 

S246, R247, F254, T255, Y256, C257, D258, D259; for path 2: L245, E320, T321, Q322, G323, C339, V340, 
N341, Y342. 

The spring constant was set to the value of 10.0 kcal/mol·Å2 and the ligand was 

pulled from the initial value of CV to 35 Å in 25 ns with a resulting pulling velocity of 
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0.984 Å/ns. We ran 50 independent replicas and the time length for each simulation 

was 25 ns, which ensured the achievement of a complete solvation of the ligand in the 

unbound state. The starting point of each replica was derived from an ensemble of 

states extrapolated at regular time intervals of 0.2 ns from the last 10 ns of the 

unbiased simulation.  

Metadynamics (MetaD) and Path Collective Variables (PCVs) 

The Metadynamics method with PCVs formalism has been widely used to 

investigate biological processes, to compute their free-energy surfaces, and 

characterize their kinetic behavior131,132. In this work, PCVs were used to study the 

transition between the bound and the unbound states in the unbinding process of some 

HIF2-α ligands. The reference path for MetaD-PCVs simulations was created for each 

ligand starting from the sMD simulation with the lowest value of the unbinding work. 

Using an in-house developed script implemented in VMD133, the RMSD matrix was 

calculated for a selection of protein atoms (Figure 3.5) and all the ligand heavy atoms.  

 
Figure 3.5 Selection of protein atoms for RMSD calculations. In green spheres, the Cα atoms; in blue spheres, some 

sidechain atoms. 

The optimal reference path should have a regular symmetric matrix (with a typical 

gull-wing shape)28. Anyway, in sMD simulations, when the ligand reaches the unbound 
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state, it freely moves in the solvent thus providing an inhomogeneous frame-to-frame 

distance, and an irregular matrix. To avoid this problem, only the frames belonging to 

the first part of the path (ligand in contact with the protein) were extracted from the 

sMD simulations. Starting from the first frame (F, ligand in the bound state), equally 

spaced frames with a distance of 2 Å from the previous one were selected. In the last 

frame of this part (M) the ligand is located near to the mouth of the cavity. The ligand 

was then translated in the bulk solvent (frame L) and the second part of the path was 

obtained by a 2 Å linear interpolation between frames M and L. The combination of 

the frames selected from the sMD simulation and those obtained with linear 

interpolation provided the reference path. In particular, 12 frames were used for the 

THS-020 ligand and 11 frames for the KG-721 ligand. For the first part of the path, the 

frames (from 1 to 7 for THS-020 and from 1 to 6 for KG-721) were obtained from the 

sMD simulations. For the second part of the path, the frames were obtained with linear 

interpolation, as described above. Following the procedure proposed by Branduardi et 

al.,28 we introduced the two collective variables: s(R), the progress along the reference 

path; and z(R), the distance orthogonal to the reference path. The λ value was set to 

33.0 nm2. The distance between the instantaneous conformational state during the 

simulation and the reference coordinates in the path was evaluated by the RMSD 

metric68. In all simulations, the Gaussian-shaped potentials were deposited every 500 

simulation steps, the initial height was set to 1 kJ/mol and the decay corresponding to 

a bias factor of 10 was chosen. The Gaussian widths (σ) for the s(R) and z(R) variables 

were set to 0.05 and 0.007, respectively. Widths were set so that they are about 1/3 

of the CVs standard deviations observed in the unbiased MD simulation. The two 

variables, s(R) and z(R), were constrained to be less than 12 and 0.2 nm2 respectively.  

Extraction of minima and cluster analysis  

To characterize the different minima identified on the final free-energy surface 

(FES), we extracted a group of frames belonging to each minima hole. To obtain a 

representative structure of the complex in each minimum, a cluster analysis on the 

metadynamics trajectory frames with a stride of 10 ps was performed. The GROMOS134 

clustering algorithm was applied, with a 2 Å RMSD cut-off on the heavy atoms of the 
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ligands. The centroid of the most populated cluster was then defined as the 

representative structure in that minimum. 

 

3.3 Results  

The analysis of the unbinding pathways was performed for two of the HIF-2α 

ligands identified in the study of Key et al103. The THS-020 ligand (Figure 3.6A) has a 

good binding affinity for the protein (ΔGexp = -7.9 ± 0.5 kcal/mol) and the ligand-

protein bound structure, determined by X-ray crystallography103, is available. The KG-

721 ligand (Figure 3.6B) is a less affine ligand (ΔGexp = -6.9 ± 0.1 kcal/mol) identified 

in the same work103. We choose it among the other HIF-2α ligands100–103,135,104–106,136,137, 

not only for the different binding affinity, but also to deal with a molecule not 

congeneric to THS-020103,101, with different physico-chemical properties and with 

lower size.  Moreover, for this ligand no experimental structures of the ligand-protein 

complex are available, thus offering us the opportunity to study a system where the 

starting conformation, obtained by docking, could not take into account the induced 

fit effects on the protein.  

 
Figure 3.6 The 2D structure of THS-020 (A) and KG_721 (B). 

In the following two sub-sections we present the application of a specific sMD-

MetaD protocol on the THS-020. We first used sMD to identify the unbinding pathway, 

and then we applied PCV-MetaD simulations to characterize the relevant states in the 

binding/unbinding process and to obtain a reliable estimate of the binding affinity. In 

the third sub-section we present the results obtained with the same protocol for KG-

721. 
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Identification of unbinding pathways for the THS-020 ligand by the sMD 

method. 

Starting from the X-ray structure for the HIF-2α PAS-B domain in complex with 

THS-020, the possible ligand unbinding pathways were investigated using the sMD 

approach. Steered molecular dynamics is a popular method for studying ligand-protein 

unbinding events138–140 and can provide both a qualitative description of the pathways 

and a quantitative estimate of the free-energy difference between the bound and 

unbound states. To calculate the free-energy difference using the Jarzynski equality it 

is necessary to have a high number of sMD replica. To this aim, a 20 ns unbiased MD 

simulation was performed starting from the X-ray structure, generating an ensemble 

of 50 slightly different states of the complex (Figure 3.7a), extracted from the last 10 

ns. These were then used as starting points for the sMD simulations. The structural 

convergence of the unbiased simulation was assessed by calculating the RMSD matrix 

on the protein Cα atoms and on the ligand heavy atoms (Figure 3.7b).  

 
Figure 3.7 Monitoring of the conformational changes during unbiased MD simulation of the HIF-2α PAS-B with 

the THS-020 ligand. a) Representation of the ensemble of 50 ligand conformations in the last 10 ns of simulation. 
The protein structure is represented as cartoons and the different states of the ligand as sticks. b) RMSD matrix 

computed on Cα atoms (upper half) and on ligand heavy atoms (lower half). 

Other authors identified two entry/exit pathways for solvent water by MD 

simulations of the apo HIF-2α PAS-B103: path 1 get through the Fα helix and the Gβ 

strand, while path 2 through the Fα helix, the short Eα helix and the AB loop (Figure 

3.8). On this basis, for each of these two pathways we calculated a CV allowing to pull 
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the ligand out of the binding cavity, by selecting an appropriate set of residues at the 

bottom of the binding cavity (see paragraph 3.2 Methods).  

 

 
Figure 3.8 THS-020 unbinding pathways. In pathway 1 (left) the ligand passes through Fα and Gβ, while in 

pathway 2 (right) through Fα, Eα, and the AB loop. The starting protein structure is represented as grey cartoons, the 
ligand conformations in the first and last frames of the of the trajectory as blue sticks, and the conformations of the 

ligand in the intermediate frames as transparent sticks. 

Before running the sMD simulations, it was necessary to define optimal values of 

various parameters such as the spring constant, the pulling velocity and, consequently, 

the time length for each simulation. As a first step, several spring constant values were 

tested: 0.1, 1.0 and 10.0 kcal/mol· Å2. The results showed that the lowest values (0.1 

and 1.0 kcal/mol· Å2) were not sufficient to achieve the unbinding of the ligand since 

it remains significantly behind the bias position. For this reason, the chosen value for 

the spring constant was 10.0 kcal/mol· Å2. 

The choice of pulling velocity value is related to the time length of the simulation. 

We decided to perform tests on simulations of reasonable computational cost for this 

phase of the protocol, and to adapt the pulling speed accordingly. We compared 50 

replicas of 5 ns, 50 replicas of 25 ns and 20 replicas of 200 ns. Given that the initial 

position of the CV is 10.4 Å and we set the end of the simulation when the ligand 

reaches the distance of 35 Å, the pulling velocity for the three sets of simulations were 
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set, respectively, to: 4.92 Å/ns, 0.984 Å/ns and 0.123 Å/ns. All simulations were 

performed either for pathway 1 or pathway 2. The work profiles resulting from the 

different replicas (in Figure 3.9) consistently show an increase of the work value 

during the initial part of the unbinding process followed by relatively settled work 

values, indicating the absence of interaction between the ligand and the protein. All 

the curves show a similar profile, but a qualitative comparison of the total work reveals 

that less work is required for unbinding following pathway 1. Moreover, a broader 

range of values is observed for the replicas following pathway 2, indicating that higher 

barriers can occur in some of the replicas associated to this pathway. 
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Figure 3.9 Work profiles for the two unbinding pathways of THS-020 obtained from sMD simulation with 

different time length: A) 50 replicas of 5 ns, B) 50 replicas of 25 ns, C) 20 replicas of 200 ns. The 50 curves of the 
work exerted on the system to pull the ligand along path 1, on the left, and along path 2, on the right. 

A preliminary comparative analysis on the effects of using different pulling speed 

can be achieved by calculating the value of the minimum work required to pull the 

ligand outside the binding cavity (Table 3.1).  
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Table 3.1 Comparison of miminum work values obtained from sMD simulations with different time length. 

 sMD of 5 ns sMD of 25 ns sMD of 200 ns 

Pathway Wmin (kcal/mol) Wmin (kcal/mol) Wmin (kcal/mol) 

1 37.35 28.19 25.46 

2 44.92 38.16 33.77 

The results confirmed a clear preference of the pathway 1 over pathway 2 in all the 

cases tested. Furthermore, it is possible to highlight that the values obtained for the 5 

ns replicas are higher than those obtained for the longer replicas. This suggests that 

the parameters set for the 5 ns replicas are not appropriate for describing the 

unbinding of the THS-020 ligand. On the other hand, comparing the values obtained 

from the 25 ns and 200 ns simulations, there are small differences, also considering 

the much higher computational effort required to complete the 200 ns replicas. In 

addition, a geometric comparison on the bound portion of the unbinding pathways 

sampled with sMD simulations of 25 ns and 200 ns was performed, by computing the 

RMSD values (on ligand heavy atoms) between pairs of frames belonging to replicas 

of pathway 1. All the trajectories were aligned to the same reference structure (on Cα 

atom) and sub-sampled obtaining trajectories of 500 frames (stride=50ps for 25ns 

replicas and stride=400ps in the 200ns replicas). The application of the stride to the 

simulations allows a comparison between the frames obtained from the 25 ns and 200 

ns replicas because the sMD bias is always at the same value. The RMSD was then 

computed among all pairs of frames in the same position of the trajectory in the 

different replicas and the results are shown in Figure 3.10.  

 
Figure 3.10 The boxplot of RMSD values between pairs of 25 ns replicas (blue boxplot), 200 ns replicas (cyan 

boxplot) and mixed 25 ns and 200 ns replicas (red boxplot). Computations of RMSD were performed on the first 40% 
(bound portion) of the sMD replicas. 
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The results show that the distribution of the RMSD values computed between 

frames coming from replicas at the same pulling speed (blue and cyan boxplots) is 

comparable to the one obtained comparing frames from replicas at different pulling 

speed (red boxplot).  This means that the pathways sampled using a higher pulling 

speed are geometrically comparable to those produced at lower pulling speed. With 

the aim of employing the sMD to identify the preferred pathway and to use the results 

obtained as a basis for the construction of the reference path for the MetaD 

simulations, the 25 ns replicas were used, as they are less computationally demanding. 

Further analyses were conducted in order to verify that the values chosen for the 

sMD simulation parameters were appropriate. In particular, the RMSD plot on Cα 

atoms, in Figure 3.11, and the secondary structure conservation graphs, in Figure 3.12, 

were calculated for the 50 replicas of 25 ns along path 1 and they revealed that no 

significant distortions of the protein structure (except for a slight deformation of Fα 

helix upon ligand unbinding) were observed during simulations. This is a further 

validation of the proposed protocol. 

 
Figure 3.11 Plots of the RMSD values computed on Cα atoms for the THS-020 sMD replicas along path 1. 
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Figure 3.12 Plot of the secondary structure assignment for the HIF-2α PAS-B domain during the THS-020 sMD 

replicas along path 1. Secondary structures were assigned according to DSSP. 

A more detailed analysis was performed for the 25 ns sMD replicas; the minimum 

and maximum work values (Wmin, Wmax), the minimum value of the maximal force 

(Fmax) among the replicas, and the free-energy difference between the unbound and 

the bound states (ΔFunbind) were extracted for each pathway (Table 3.2). The results 

show that the Wmin necessary to pull the ligand outside the cavity along path 1 is about 

10 kcal/mol less than that required for path 2; a similar trend is observed for the values 

of Wmax and ΔFunbind. A difference of 75.59 pN between the Fmax values in the two paths 

is observed, which confirms a clear preference of path 1 over path 2. 
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Table 3.2 Results of sMD simulations for the THS-020 ligand. 

Pathway Wmin (kcal/mol) Wmax (kcal/mol) Fmax (pN) ΔFunbind (kcal/mol) st.dev. 

1 28.19 55.17 1013.77 30.55 16.80 

2 38.16 66.42 1089.36 40.25 13.10 

Therefore, steered MD allowed us to compare the two unbinding pathways of THS-

020 and to select the preferred one by identified a higher energy barrier along pathway 

2. However, sMD provided a value for the ΔFunbind, estimated by means of Jarzinsky 

equality, that was about 4 times higher than the experimental value. It is indeed known 

that these non-equilibrium simulations generally undersample the relevant 

protein−ligand states across the unbinding pathway, leading to errors in the computed 

binding free-energy141. Moreover, replicas with lower work done on the system have 

an enormous weight compared to all the other trajectories, which makes the method 

extremely sensitive to insufficient sampling21. For this reason, we then applied the 

PCVs MetaD approach that was recently proposed as a valuable method to compute 

absolute binding free-energies in ligand binding132,131,142. 

Metadynamics simulations and Free-Energy Profiles with Path-CVs for THS-020. 

For a detailed mechanistic interpretation of the ligand binding/unbinding process, 

we used well-tempered metadynamics simulations with the PCVs approach143,142,144. 

This allowed us to characterize the relevant states along the preferred path obtained 

with sMD simulations (the one with lower values of total work obtained from the sMD 

simulation, path 1), as well as to estimate the binding free-energy value. The key 

points of this method are the choice of appropriate CVs and the construction of a set 

of equally spaced frames along the CVs in terms of RMSD between adjacent snapshots. 

This frameset represents a reference path for investigating the process. As CVs we 

used: the progress along the path, s(R); and the distance orthogonal to the reference 

path, z(R). We want to underline the importance of the path construction phase, 

especially in a case with a buried binding site like the one presented in this work. Here 

we decided to include both ligand and protein atoms in the frameset that represents 

the path to better describe the protein conformational changes during the process 
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(mouth opening through sidechain conformational changes and small backbone 

adjustment). Only protein atoms involved in the conformational changes, highlighted 

by sMD simulations, were included. Moreover, a hybrid approach that combines 

frames from sMD simulations and linear interpolation was used for the inner and outer 

parts of the path, respectively, as discussed in paragraph 3.2 Methods. The reference 

path obtained with this approach is represented in Figure 11. The RMSD matrix of the 

frameset (Figure 3.13) is a symmetric matrix with a typical gull-wings shape, 

indicating that the frames are correctly equally spaced. 

 
Figure 3.13 Resulting reference path for PCVs for the THS-020 ligand. Protein is represented in the bound 

conformation as dark grey cartoons, the ligand in the first part of the path (frames from sMD) as sticks from orange 
to olive, and the ligand in the second part of the path (frames extrapolated from linear interpolation) as light grey 

sticks. 2D (left) and 3D (right) representation of the RMSD matrix obtained from the frameset built for the THS-020 
ligand. 

We collected a total of 1.8 μs of metadynamics simulation in which we observed 

several binding/unbinding events, as shown in Figure 3.14A. The binding free-energy 

(DFbind), calculated as the free-energy difference between the deepest minima in the 

bound state and the flat plateau in the unbound state, turns out to be equal to -11.8 

kcal/mol. The free-energy profile during the simulation, shown in Figure 3.14B, 

indicates that the simulation reaches a constant value of DFbind after about 1200 ns.  
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Figure 3.14 A) Plot of the CV1 (s(R)) against simulation time during THS-020 MetaD simulation: the lowest 

values of s(R) correspond to the bound state, while the highest to the unbound ones; B) one-dimensional projection of 
the binding free-energy values associated to the path 1 during the metadynamics simulation. 

The convergence was also monitored by plotting the hill heights as a function of the 

simulation time, Figure 3.15. 

 
Figure 3.15 Plot of the hill heights during the metadynamics simulation for the THS-020 ligand. 

The free-energy surface (FES) for the binding/unbinding process, as a function of 

CV1 (s(R)) and CV2 (z(R)) is shown in  Figure 3.16 together with the relevant minima 

found along the pathway (labeled as A to G). The coordinates and the binding free-

energy values of each minimum are reported in Table 3.3.  
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Table 3.3 Coordinates and binding free-energy values of the relevant minima along the CV1 (s(R)) and CV2 
(z(R)) for the THS-020 ligand. 

Minimum s(R) z(R) ΔF (kcal/mol) 

A 
1.214 

1.360 

-0.003 

0.017 
0.00 

B 
2.691 

3.019 

0.042 

0.056 
5.65 

C 
1.922 

2.146 

0.124 

0.136 
2.50 

D 
3.006 

3.209 

0.088 

0.111 
5.78 

E 
4.872 

5.583 

0.136 

0.165 
4.57 

F 
5.262 

5.411 

0.024 

0.029 
6.91 

G 
6.694 

6.772 

0.084 

0.098 
7.63 

A cluster analysis of the conformations belonging to each minimum hole was then 

performed. In each minimum, the centroid of the most populated cluster (the first one) 

was used as the representative structure for that minimum. Looking at the FES (Figure 

3.16), three different regions can be identified following CV1: the bound state, with 

s(R) values between 1 and 3 (minima A-C); the intermediate states, with s(R) values 

between 3 and 7 (minima D-G); and the unbound state, with s(R) values from 7 

onwards. In the deepest minimum (A), the ligand is oriented in the same way as in the 

X-ray structure (ligand RMSD=1.36 Å). This geometry is stabilized by a hydrogen-

bond between the NH group of the ligand and the H248 residue as well as by a 

transient hydrogen-bond between the oxygen atom of furan and the S246 residue. 

Moving up to higher CV2 values, alternative binding geometries can be detected. In 

the minimum B, the ligand is shifted towards the exit of the cavity and breaking of the 

hydrogen-bonds that stabilize minimum A causes a lower stability. Instead, in 
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minimum C the ligand is located on the mouth of the binding cavity and is even turned 

of 180°, with the CF3 group oriented towards the bottom of the cavity. Also, in this 

minimum, the amino group of the ligand forms a hydrogen-bond, with the S292 

residue. This last conformation represents the second minimum in energy.  

 
Figure 3.16 Free-energy surface obtained from the PCVs approach for the binding/unbinding of the THS-020 

ligand. The isolines are drawn using 1.5 kcal∕mol spacing. The 3D structures of the centroids of the main minima are 
reported with different colors: the protein is represented as cartoons and the ligand as sticks. The black lines indicate 

the corresponding minima in the FES. 

 

Unbinding pathway for the KG-721 ligand 

Following the encouraging results on THS-020, for which the selected methods 

were able to identify the experimental binding geometry as the most stable among all 

the possible bound states, we extended the study to the lower affinity KG-721 ligand. 

Given the lack of an experimental structure, we obtained the starting geometry for our 

calculations by molecular docking, using the ensemble-docking technique128 (details 

are reported in paragraph 3.2 Methods). This technique has led to improve the 

description of ligand-induced protein conformational changes in many systems128,145–

147 but it may be not sufficient in some particularly challenging cases. These include 
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docking studies of ligands different from the ones co-crystallized in the protein 

structures of the ensemble (if any), like in our case.  

As for the THS-020 ligand, 50 independent replicas of sMD simulations (each of 25 

ns) were performed for the two possible pathways. 

 
Figure 3.17 KG-721 unbinding pathways. In pathway 1 (above) the ligand passes through Fα and Gβ, while in 

pathway 2 (below) through Fα, Eα and the AB loop. The starting protein structure is represented as grey cartoons, the 
ligand conformations in the first and last frames of the trajectory as blue sticks, and the conformations of the ligand 
in the intermediate frames as transparent sticks. On the top left, the 2D structure of the ligand is reported. On the 

right, the work profiles for the two paths. 

The resulting work profiles (Figure 3.17) are similar to those obtained for THS-020 

But, at difference with that ligand, they show a similar range of work values for path 

1 and path 2 and do not suggest any preference for one path over the other. This is 

also confirmed by negligible differences between the values of Wmin, Wmax and ΔFunbind 

(Table 3.4) in the two paths. This result suggests that for a small ligand the two 

pathways may have a similar probability. This hypothesis is consistent with the 

findings of Key et al103, which observed a similar percentage of transferring of the small 

water molecules in the two paths. However, the observed difference of 105.08 pN 
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between the Fmax values of the two paths of KG-721 suggests that a higher barrier for 

unbinding exists along path 2, similarly to what was observed for the THS-020 ligand. 
Table 3.4 Results of sMD simulations for the KG-721 ligand. 

Pathway Wmin (kcal/mol) Wmax (kcal/mol) Fmax (pN) ΔFunbind (kcal/mol) st.dev. 

1 28,46 54,45 851,21 30,55 13,04 

2 27,47 59,13 956,29 27,12 16,60 

Based on the results obtained with the Steered MD simulations, 11 frames along 

path 1 were used to build the reference path for metadynamics simulations.  The 

resulting RMSD matrix of the frameset and a representation of the reference path are 

shown in Figure 3.18. 

 
Figure 3.18 Resulting reference path for PCVs for the KG-721 ligand. Protein is represented in the bound 

conformation as dark grey cartoons, the ligand in the first part of the path (frames from sMD) as sticks from green to 
limon, and the ligand in the second part of the path (frames extrapolated from linear interpolation) as light grey 

sticks. 2D (left) and 3D (right) representation of the RMSD matrix obtained from the frameset built for the KG-721 
ligand. 

After 3 μs of metadynamics simulation, we reconstructed the free-energy profile 

(Figure 3.19a). Starting from 2200 ns the free-energy difference between the bound 

and the unbound states fluctuates around a value of -8.0 kcal/mol with a variation of 

±1 kcal/mol. The calculated binding free-energy revealed that the KG-721 ligand has 

a lower binding affinity than THS-020 (-11.8 kcal/mol), in agreement with the 

experimental data: ΔGexp (KG-721) = -6.9 ± 0.1 kcal/mol, ΔGexp (THS-020)= -7.9 ± 

0.5 kcal/mol. During the simulation, we observed multiple binding and unbinding 

events and the hill heights decrease toward 0 (Figure 3.19 b and c).  
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Figure 3.19 Results of KG-721 MetaD simulation. a) one-dimensional projection of the binding free-energy values 

associated to the path 1; b) instantaneous values of CV1 (s(R)); c) plot of the hill heights during the simulation time. 

The final FES obtained for this system is shown in Figure 3.20. Even in this case, we 

identified several minima, in Table 3.5, and we used the centroid of the most 

populated cluster in each minimum, as the representative structure of that minimum. 
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Table 3.5 Coordinates and binding free-energy values of the relevant minima along the CV1 (s(R)) and CV2 
(z(R)) for the KG-721 ligand. 

Minimum s(R) z(R) ΔF (kcal/mol) 

A 
1.566 

1.699 

0.032 

0.038 
1.15 

B 
2.421 

2.553 

0.040 

0.046 
0.00 

C 
1.978 

2.089 

0.115 

0.129 
2.83 

D 
1.511 

1.699 

0.168 

0.175 
1.18 

E 
4.097 

4.752 

0.134 

0.153 
5.20 

F 
4.244 

4.401 

0.015 

0.021 
4.40 

G 
6.815 

7.008 

0.124 

0.143 
6.15 
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Figure 3.20 Free-energy surface obtained from the PCVs approach for the binding/unbinding of the KG-721 

ligand. The isolines are drawn using 1.5 kcal∕mol spacing. The 3D structures of the centroids of the main minima are 
reported with different colors: the protein is represented as cartoons and the ligand as sticks. The black lines indicate 

the corresponding minima in the FES. 

Again, following the CV1, three regions can be distinguished: the bound state, 

between 1 and 3; the intermediate states, between 3 and 7; and the unbound state, 

from 7 and on. The region around the bound state displays a multiplicity of alternative 

binding geometries and does not allow to distinguish a favorite bound minimum. 

Minima from A to D can be associated to alternative bound states in which the ligand 

rotates within the binding cavity. In particular, in minimum A the ligand is oriented 

with NO2 towards the most polar part of the cavity (S292, S304, and Y307 residues, 

at the entrance of the cavity) and the phenyl ring towards the apolar part (F244, F254, 

I261 residues, at the bottom of the cavity), as expected (Figure 19, right panel). Even 

in minimum B, NO2 is oriented towards the polar region but the phenyl ring is lightly 

bent with respect to the other ring. Moving up to higher CV2 values, minima present 

different orientations of the ligand inside the cavity:  minimum C is stabilized by a 

hydrogen-bond between NO2 and the Y281 residue; in minimum D, ligand is rotated 

180° with respect to minimum A and does not show stable hydrogen-bonds with the 

protein.  
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While we previously observed that, in the deepest minimum (A), THS-020 well 

overlaps the experimental binding geometry (Figure 3.21, left panel), the minimum A 

of KG-721 (Figure 3.21, right panel) is the most similar to the starting docking pose 

(which values in the CVs subspace are s(R)=1.3 and z(R)=0). Indeed, the RMSD 

between the centroid of minimum A and the docked pose is 2.45 Å, indicating that the 

two conformations are quite different. 

 
Figure 3.21 Comparison between minimum A and the starting structure for the two ligands. On the left: for the 

THS-020 ligand, the overlay of minimum A, in orange, with the crystallographic structure of the complex, in grey. On 
the right: for the KG-721 ligand, the overlay of minimum A, in green, with the docking pose, in grey. 

In the case of KG-721, that is not congeneric with any of the co-crystallized HIF-2α 

ligands100,101,103, the ensemble-docking strategy was not sufficient for the correct 

definition of the binding mode. In light of our results, we underline the importance of 

including protein flexibility more completely. Our results indicate that MetaD 

calculations are not influenced by the inaccurate starting conformation of the complex 

but lead the system to evolve to a more stable conformation. Therefore, this technique 

appears a promising tool in cases where structural information for congeneric ligands 

is not available. 
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3.4 Conclusions 

Modeling the pathways for ligand binding to the HIF-2α PAS-B domain represents 

a non-trivial task due to the buried nature of the binding cavity that suggests 

significant protein conformational changes may occur upon ligand access. The 

computational protocol here proposed effectively combines two promising methods 

based on enhanced-sampling MD. Steered MD simulations are used to identify the 

preferred unbinding pathway among alternative ones and to guide the construction of 

the reference path for the subsequent step. On the other side, Metadynamics, with the 

Path Collective Variables formalism, is used to obtain a more rigorous characterization 

of the free-energy surface and to calculate the binding free-energy value. 

By applying this approach to elucidate the binding process of two different ligands 

of HIF-2α, we obtained the correct binding affinity scale, according to the experimental 

data available, and we identified minima in the FES that clearly depict the bound 

state(s) and the intermediate states characteristic of each ligand. Moreover, the 

method was effective in leading the system to evolve to the most stable binding 

conformation, starting either from an X-ray structure of the ligand-protein complex or 

from a docking pose. Therefore, it appears a promising tool also in cases where 

reference structural information is lacking.  

Given the recent discovery of HIF-2α as a pharmaceutical target for cancer therapy, 

the proposed computational approach based on enhanced-sampling MD appear to be 

an invaluable tool to investigate the binding process of different ligands, thus 

contributing to the development of successful drug design projects. The results 

obtained here also encourage us to extend applications to other binding mechanisms 

of bHLH-PAS proteins, including significant targets, such as the AhR, for which no 

experimental structural information on the ligand-bound states is available. 
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CHAPTER  4 

 

 

 

 

 

PATHDETECT-SOM: A NEURAL NETWORK 

APPROACH FOR THE IDENTIFICATION OF 

PATHWAYS IN LIGAND BINDING SIMULATIONS 

 

 

4.1 Introduction 

As discussed in chapter 1, enhanced sampling methods are now routinely used to 

simulate the complete binding and/or unbinding events. In particular, PP methods, 

presented in chapter 2, have the advantage of explicitly simulating key molecular 

events, such as the protein conformational changes that facilitate ligand access to the 

binding cavity, and the formation of intermediate states. All the above information is 

fundamental to suggest appropriate modifications of hit compounds in drug-design 

studies. However, PP methods generally require an extensive sampling of 

binding/unbinding events to obtain an accurate description of the energy landscape of 

the process based on reliable statistics. It follows that many events have to be analyzed 

through several simulation replicas, or with a single simulation that describes several 

re-crossing events. The large amount of data from different replicas or events calls for 

better automated tools to analyze all the simulated events at once and to provide a 
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clearly interpretable summary picture of the differences in the sampled pathways. We 

suggest the use of Self-Organizing Maps (SOMs)148 to handle such complex sets of 

data. A SOM is a type of artificial neural networks useful for effective identification of 

patterns in the data149,150,151 and has been widely used in many fields152,153. The most 

interesting property of a SOM is that it performs a dimensionality reduction by 

mapping multidimensional data on the SOM grid, retaining topological relationships 

between neurons, i.e., keeping similar input data close to each other on the map149. 

Several applications of SOMs to the analysis of biomolecular simulations can be found 

in the literature154,155,156, ranging from comparison of the dynamics of different 

mutants157, clustering of ligand poses in virtual screening158, binding site 

identification159, identification of blocks for structural alphabets160,161,162 and 

conformational analysis of loop opening163. More recently, we applied SOMs to the 

reconstruction of protein unfolding pathways on the basis of several sMD simulation 

replicas164. 

During the PhD project we designed, implemented and tested PathDetect-SOM 

(Pathways detection on SOM), a SOM-based protocol for the analysis of ligand 

binding/unbinding pathways derived from MD simulations with PP methods. Taking 

advantage of the properties of SOMs, the tool is able to generate a model that clearly 

highlights differences in the pathways sampled along a simulation or in different 

replicas. The protocol makes it possible to obtain a synthetic view of the sampled 

conformational space by highlighting the relevant states, to trace the pathways 

followed by the system on the SOM, and to derive a network model that provides a 

meaningful representation of the binding/unbinding pathways.  

We applied this protocol to three study cases selected to represent PP simulations 

with different characteristics. The three study-cases are briefly presented in the 

following: 

The first case regards the unbinding of the THS-020 ligand from the HIF-2α PAS-B 

domain, studied through sMD simulations as reported in chapter 3. The simultaneous 

evolution of the replicas (due to the constant velocity of the bias) and the use of a 
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directional Collective Variable (CV) make this study-case simple and optimal for the 

initial testing of some parameters of the tool (tests are discussed in paragraph 4.3).  

The second study-case refers to the unbinding of the GC7 ligand from the 

Deoxyhypusine synthase (DHS). DHS is an enzyme responsible for the post-

translational hypusination of the eukariotic initiation factor 5A (eIF5A) that controls 

cell proliferation and it has been linked to cancer165. The involvement in pathogenesis 

together with the high specificity and functional relevance of the hypusination reaction 

have made this system an important and promising therapeutic target, stimulating the 

design and development of inhibitors able to target the hypusination process, 

including the GC7 ligand. In particular, GC7 interacts in a specific binding pocket of 

the DHS and completely blocks its activity; however, its therapeutic use is limited by 

poor selectivity and restricted bioavailability. In a recent work166, a comparative study 

has been performed between the unbinding pathways in the human DHS (hDHS) 

and in the archaeal DHS from crenarchaeon Sulfolobus solfataricus (aDHS), by using 

an approach inspired to Infrequent MetaD. As in the previous study case, several 

replicas are performed but, differently from sMD, the system evolves along the selected 

CV with a series of small forth and back movements that fill the free-energy basin. As 

a result, there is no correspondence between the simulation times of different replicas. 

Moreover, the type of CV chosen in this case is non-directional and may provide very 

different unbinding paths.  

The third study-case still concerns the THS-020-HIF-2α complex, but the 

binding/unbinding of the ligand is studied through a single long MetaD simulation, in 

which several binding and unbinding events are sampled (as already reported in 

chapter 3). In this case, the simulation evolves in all the directions according to two 

selected CVs and the ligand has greater freedom than in the previous cases. 

For all the processes, the results provided not only a simple schematic 

representation of the ligand binding/unbinding pathways, but also hints about the 

thermodynamics and/or kinetics of the process. 
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4.2 Methods 

Overview of the protocol  

PathDetect-SOM is a modular command-line tool based on a three-step protocol 

(see Figure 4.1): 

 
Figure 4.1 Flowchart of the PathDetect-SOM protocol for ligand binding studies. Data preparation (a); map 

training and analysis (b) and pathways analysis (c). 

a) The user selects a set of features best describing ligand conformations along 

the process. If a set of protein and ligand atoms is provided, the tool will 

automatically compute the intermolecular distances.  

b) SOM is initialized and trained with the input vectors containing the values 

of the selected features for all the simulation frames. Each frame is 

considered as a data point and assigned to the neuron with most similar 

feature values. During the training process the feature values of a neuron 

and its neighbors are adjusted toward the values in the input vector assigned 

to that neuron. The final prototype vector of each output neuron summarizes 
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the conformations associated to the neuron and groups of similar 

conformations are mapped to neighboring neurons. In addition, to offer a 

more concise picture of the map, after training the neurons are also grouped 

to a relatively small number of clusters and the representative conformation 

of each cluster is saved. Population analysis and average properties can then 

be visualized on the trained SOM. 

c) The pathways followed during the simulation can be directly traced on the 

SOM, reconstructing the binding/unbinding pathway. This representation 

facilitates the identification of regions of the map exclusively sampled by 

specific simulations. In turn pathways can be clustered to recover dominant 

binding events. Finally, a graph-based representation of transitions can be 

built from the transition matrix calculated at the neuron level. Community 

detection on this graph can highlight putative macrostates. 

PathDetect-SOM is distributed as an R script available under GNU General Public 

License at https://github.com/MottaStefano/PathDetect-SOM. The repository 

includes a brief guide and tutorial material based on sample trajectories from the first 

study case. 

Data preparation 

The feature selection is a key step for SOM training. Several features can be used to 

train the SOM (for example the simple cartesian coordinates of a set of atoms, more 

details are discussed in paragraph 4.3). However, the intermolecular distances are the 

most suitable choice to accurately describe the ligand-receptor reciprocal orientation. 

A set of receptor and ligand atoms is chosen for the computation of intermolecular 

distances.  Selected atoms should describe both the binding site and the mouth at the 

entrance of the binding site. Ideally, both atoms from backbone and from large or 

polar/charged sidechains should be included when the side chain dynamics and 

interactions are relevant for binding. Similarly, selected ligand atoms should well 

describe the core molecular structure and all the relevant lateral groups. The user can 

provide the filtered trajectory with the coordinates of the chosen atoms in the form of 

an xvg file, easily obtained using the GROMACS gmx traj command. A capping value 
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is applied to the distances to avoid that training is dominated by information on the 

unbound states (more details are discussed in paragraph 4.3). Details on the atom 

selection and capping values for the study-cases here presented are summarized in 

Table 4.1. 
Table 4.1 : Details for feature calculations of each system 

System Atom selection Capping 
value (nm) 

HIF-2α – 
THS-020 

S246 - OG; H248 - NE2; H248 - CA; M252 - CE; M252 - 
CA; F254 - CZ; F254 - CA; A277 - CB; F280 - CA;   Y281 
- OH; Y281 - CA; N288 - CG; N288 - CA; M289 - CE; 
M289 - CA; K291 - NZ; K291 - CA; S292 - OG; H293 - 
NE2; H293 - CA; N295 - CG; N295 - CA; L296 - CG; L296 
- CA;  V302 - CB; V303 - CA; S304 - OG; G305 - CA; Q306 
- CA; Y307 - OH; Y307 - CA; M309 - CE; M309 - CA; 
T321 - OG1; T321 - CA; I337 - CB; C339 - SG; C339 - 
CA; N341 - CG; N341 - CA 

1.2 

System Atom selection Capping 
value (nm) 

DHS – GC7 Chain A: 

K260 - CA; H261 - CA; H261 - NE2; N265 - CA; L268 - 
CA; L268 - CG; M269 - CA; E284 - CA; E284 - CD; G287 
- CA; S288 - CA; D289 - CA; D289 - CG; A292 - CA; E296 
- CA; E296 - CD; W300 - CH2; K302 - NZ 

Chain B: 

N79 - CA; N79 - CG; G106 - CA; E109 - CD; E110 - CD; 
N137 - CA; R138 - CA; I139 - CA; G140 - CA; Y149 - CA; 
D211 - CA; S213 - CA; S213 - OG; D216 - CA; D216 - CG 

1.6 

Map training 

The selected features are used to train the SOM using an iterative approach. The 

map is initialized by assigning random values of the feature vectors to each neuron. In 

each training cycle the input vectors representing the single conformations are 

presented in random order to the map and assigned to the neuron with closer feature 

values, also called best matching unit (BMU). The feature values of the BMU and its 

neighbors are modified to be closer to the values of the input vector. The magnitude 
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of the modification decreases with the distance from the BMU and along the training. 

At the end of the iterative process the resulting SOM preserves topological relationship 

between neurons, keeping similar original input data close on the map. In a second 

step, the neurons are further grouped in a small, but representative, number of clusters 

by agglomerative hierarchical clustering using Euclidean distances and complete 

linkage. For each system, the optimal number of clusters can be selected on the basis 

of silhouette profiles as show inFigure 4.2. 

 
Figure 4.2 Silhouette profiles for the three study cases. The optimal number of clusters (red) was chosen as the one 

with the highest silhouette score in the range 9-15. 

 A representative structure for each neuron is saved; this is defined as the structure 

with the feature vector closest to the neuron vector. For each cluster, a representative 

neuron is also chosen as the one with the feature values closest to the weighted-

average feature vector of the neurons belonging to that cluster. In the latter case, the 

average was performed using the population of each neuron as weight. 

In the present work 10x10 sheet-shaped SOMs with hexagonal lattice shape and 

without periodic boundary conditions were trained over 5000 training cycles. The 

neurons were further grouped in a small, but representative, number of clusters, 

different for each study-case, using the cluster analysis approach outlined above.  

Path analysis 

The trained SOM captures the conformational space of several trajectories in a 

topological map. Therefore, it is possible to reconstruct the path explored by each 

simulation on the map. Pathways are traced on the SOM based on the annotation of 

the BMU associated to each frame of the simulation. The resulting SOM pathways were 

also clustered by agglomerative hierarchical clustering using average linkage. Two 

different distance metrics are implemented in the PathDetect-SOM tool: a time-



 

 

 

68 

dependent and a time-independent distance. In the time-dependent version the 

distance between the SOM pathway of two simulations is defined as the average 

distance of the BMUs of each couple of frames. The distance between two BMUs is 

defined as the Euclidean distance between the position of the neurons on the map. 

This distance was used also in a previous work by the authors164. In the time-

independent version, for each frame of the simulation, the minimum distance between 

the BMU of the first and the second simulation is computed and averaged over the 

number of frames. This approach provides a framework to compare simulations 

evolving at different speeds such as those presented in study-case 2. For this type of 

simulation, indeed, frames to be compared are not at the same position along the 

replicas, due to the different evolution of the simulations. Comparing each frame with 

the closest frame of the second replica, is a time-independent way of performing a 

distance calculation between two pathways. 

An approximate transition matrix between each pair of neurons can be computed 

from the time-dependent distance approach. The matrix is then transformed into a 

row stochastic matrix and a graph is built with nodes representing the neurons and 

edges with weight proportional to the negative logarithm of the transition probability 

between the corresponding neurons. Communities of nodes can be detected and in the 

present work we used the walktrap algorithm167, but other methods can easily be 

applied. A neuron representative of each community is selected as the one with the 

highest eigenvector centrality score in the subgraph which only contains nodes 

belonging to the community. 

In this work, for the third study-case, a commitor analysis was performed using the 

R library markovchain168,169. This analysis computes the probability of hitting a set of 

states A before the set B starting from different initial states. In this case the two 

extremes were the bound and unbound states. All the analyses were performed in the 

R statistical environment using the kohonen package170,171 for the SOM training and 

igraph package172 for graph construction and analysis. 

The main results of the work reported is this Chapter are reported in ref173. 
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4.3 Results  

The PathDetect-SOM protocol, developed for the analysis of ligand 

binding/unbinding pathways, is implemented into a command-line tool with the 

capability to build a SOM representation of the conformations sampled during the MD 

simulations. Taking advantage of the SOM topological ordering, the tool offers the 

possibility to visually represent pathways sampled during different events/replicas in 

a clear 2D representation. Finally, the geometric microstates identified by the SOM 

(neurons) can be represented as a graph model, built from their transition 

probabilities. The graph provides a clear representation of the pathways followed 

during the simulations, facilitating the identification of alternative routes. Community 

detection on the graph generates a state model analogous to kinetic partitioning.  

In the following sections, we present details regarding the selection of parameters 

for the SOM training, and the application of the protocol to the three study-cases 

introduced in paragraph 4.1.  

Selection of optimal parameter values for SOM training 

The application of the PathDetect-SOM tool requires the choice of a series of 

parameters for the initial training of the SOM. Therefore, some tests were performed 

to select the optimal parameters, based on preliminary analyses of the sMD simulations 

of THS-020 unbinding from HIF-2α (the first study-case). Here, details concerning the 

choice of features describing the conformations and the associated distance measures, 

the choice of a capping value for the distances, and the type of periodic boundary 

conditions are discussed. 

Features: The PathDetect-SOM tool can train the map according to different 

features representing the input conformations from MD trajectories. As each feature 

has a specific relevant distance measure, user options are based on the type of distance 

measure: the RMSD (Root Mean Square Deviation) or the dRMSD (distance RMSD). 

In the case of the RMSD, the SOM is directly trained with atomic coordinates (in the 

case under study, the coordinates of the ligand heavy atoms). This means that 

simulation frames should be pre-aligned (in this case, on protein Cα atoms). In the 
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case of the dRMSD, the SOM is trained with a set of distances (in this case, the 

intermolecular distances). Results from each measure are reported in Figure 4.3.  

 
Figure 4.3 SOM trained using RMSD. (a) clustering of neurons; (b) protein-ligand contacts plotted on SOM. Each 

neuron is colored according to the average number of contacts in the frames belonging to it. High number of contacts 
are depicted in red and assigned to neurons describing the bound state. 

The choice of the RMSD (Figure 4.3a) generates a large cluster (C) whose neurons 

describe both bound and pre-bound states. This becomes evident by mapping the 

protein-ligand contacts on the SOM (contacts were considered when two atoms are 

closer than 4.0 Å, Figure 4.3b) and observing that cluster C includes neurons that 

exhibit both high and low numbers of contacts. When the ligand is outside the cavity 

(low number of contacts, blue neurons in Figure 4.3b), the variability of its 

conformations is so wide that it hides the changes in the ligand-protein distances that 

occur along the binding pathways. The results shown in the main text were obtained 

using dRMSD as distance type and generated a more consistent and informative 

description of the pathways. When studying a protein-ligand binding process, the 

intermolecular distances (dRMSD) are the best choice, because the SOM is directly 

trained on the information relevant for the process as recorded by the changes in 

intermolecular interactions and, in addition, there is no requirement for preliminary 

structural superposition. 

Capping value: This parameter may be used to assign a given fixed value to all the 

distances between the selected ligand and protein atoms that are greater than a user-

specified value. SOMs were trained with different capping values: no capping, 8 Å and 
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12 Å. To understand how this parameter affects the assignment of simulation frames 

to the neurons, and consequently the pathway description, the number of ligand-

protein contacts was calculated for every frame of the simulation (contacts were 

considered when two atoms are closer than 4.0 Å, Figure 4.4).  

 
Figure 4.4 SOMs trained with different capping values for the distances. Number of protein-ligand contacts are 

plotted on the SOMs: each neuron is colored according to the average number of contacts in the frames belonging to 
it; high number of contacts are depicted in red and assigned to neurons describing the bound state. (a) SOM trained 

with 8 Å as capping value, (b) SOM trained with 12 Å as capping value, (c) SOM trained without capping value. 

Using the lowest capping value, 8 Å (Figure 4.4a), the neurons describing the bound 

state cover most of the map, and only few neurons describe the last portion of the 

unbinding process. Indeed, a jump in the number of contacts between the neuron 

containing the unbound state (bottom left corner of the map) and its neighbors is 

visible. Without the use of capping (Figure 4.4c), the neurons describing the unbound 

state cover more than 50% of the map, with poor description of the recognition 

process. On the contrary, using a value of 12 Å (Figure 4.4b), a balanced description 

of all steps of the binding/unbinding process is observed, and the number of contacts 

gradually changes across the neurons. Given that the map is sensitive to the number 

of distances reaching the capping value when the ligand gets in the unbound state, it 

is advisable to adjust the capping value based on the length of the binding pathway 

within the cavity. A good starting value for the capping could be the distance between 

residues lying at the bottom and at the mouth of the cavity.   

Periodic boundary conditions: Another parameter that can be chosen by the user 

is the periodicity of the SOM. If the SOM grid is periodic across the boundaries, the 

neurons at the right boundary will be neighbors of neurons at the left boundary, as 

well as those on the top and bottom boundaries. The SOM was trained with and 

without periodic boundary conditions. The main difference is evident when pathways 
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are traced on the SOM. The binding pathways pass through the boundary when 

training is done with periodic boundary conditions (Figure 4.5) leading to difficulties 

in interpreting the time evolution of the process.  

 
Figure 4.5 An example of pathways traced on a SOM trained using periodic boundary condition. 

In addition, the neuron clusters become fragmented across the map, making it 

difficult to interpret the distribution of the different conformational states in the 

clusters. The results shown in the main text were obtained without periodic boundary 

conditions; this choice led to consistent pathways more clearly traceable on the SOM 

and to easier identification of the different states across the neuron clustering. 

Ligand unbinding through multiple replicas with constant velocity pulling 

As discussed in chapter 3, we investigated the unbinding of the THS-020 ligand 

from the HIF-2α PAS-B domain through sMD simulations. 50 constant velocity sMD 

replicas of 25 ns each were used to pull the ligand along the selected CV, namely, the 

distance between the center of mass of the aminoacid atoms lining the cavity and the 

center of mass of the ligand. The simulations analyzed in this chapter are those along 

the preferred pathway (path 1) identified in the previous work108  (discussed in chapter 

3). All replicas evolved simultaneously, due to the constant velocity of the bias, and 

along a directional CV. The trained SOM (Figure 4.6 and details in paragraph 4.2) 

shows a distribution of states that ranges from the initial bound state (top right of the 

map) to the unbound state (top left).  
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Figure 4.6 SOM analysis of sMD simulations of THS-020 unbinding from HIF-2α: (a) Neighbor distance plot. (b) 

Clustering of the neurons. The representative conformation of each cluster is depicted in cartoons with ligand in sticks. 

The neighbor distance plot (Figure 4.6a) represents the average similarity of a 

neuron with its neighbors. This map shows a compact group of neurons in 

correspondence of the bound state and along the right and bottom border of the map. 

On the contrary, neurons lying at the center of the map displays more heterogeneity. 

In the cluster analysis of SOM neurons (see paragraph 4.2) we identified 9 clusters 

that represent the binding geometries explored by the system following the distance 

CV used for the sMD simulations (Figure 4.6b). The representative conformations 

extracted from the different clusters help to visualize the relevant states sampled.   

The pathways followed by each replica were then mapped on the SOM (Figure 4.7).  
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Figure 4.7 Tracing of the pathways on the trained SOM for the sMD replicas of THS-020 unbinding from HIF-2α. 

They are quite consistent, since they roughly evolve through the same sequence of 

clusters, in agreement with the high directionality imposed by the method. However, 

some recurrent unbinding pathways can be identified with slight differences from each 

other, as also emerges from the dendrogram in Figure 4.8.  
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Figure 4.8 Dendrogram of hierarchical clustering of the pathways followed by different replicas for the study case 

1 (HIF-2α sMD simulations). 

An overview of these pathways is provided by the network graph derived from the 

transition matrix (see paragraph 4.2), reported in Figure 4.9Figure 4.9a.  

 
Figure 4.9 Transition network for the sMD simulations of THS-020 unbinding from HIF-2α. a) Transition 

network with its main ramifications explicitly indicated by black arrows (nodes are colored according to the SOM 
clusters). The representative conformations of neurons that characterize each branch (red circles in the network) and 

of the bound state (in yellow), are depicted in cartoons with ligand in sticks. b) Network colored according to the 
average sMD force of its frames (from blue to red, increasing values of this property), and the representative 

conformations of the neurons with the maximum forces, superimposed to the bound state (in grey). 

All the simulations start from the bound state (top right), in which the ligand 

presents the nitrobenzene ring parallel to the main helix, with the nitro group pointing 

toward the lower-side of the cavity. Then some replicas evolve through neurons at the 

bottom-right of the map (branch 1 of the graph), while others follow pathways closer 

to the center of the map (branch 2 of the graph). While simulations following branch 
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1, that was sampled in most of the replicas (34 out of 50), show the ligand slightly 

rotated along its principal axis, those along branch 2 maintain the ligand in an 

orientation similar to the bound state, and rigidly translate it along the pathway. When 

the nitro group reaches the solvent, however, the two branches merge, before a second 

ramification in the graph appears (branches 3 and 4). Replicas in branch 3 describes 

a rigid transition of the ligand that maintains the initial bound orientation, while those 

in branch 4 sample conformations with the ligand rotated and bound to the mouth of 

the cavity. The two final branches appear equally probable (22 replicas though branch 

3 and 28 through branch 4). 

Finally, we colored neurons according to the average sMD pulling forces applied to 

the frames belonging to that neuron (Figure 4.9b). Results show that the pulling of 

the ligand out of its initial bound state requires the maximum of the force, while the 

remaining part of the pathway requires less force. We interpreted the peaks of 

maximum forces as the approximate location of the highest energy barrier to be 

crossed during unbinding, which corresponds to the energy necessary to pull out the 

ligand from its initial state. 

Ligand unbinding through multiple replicas with a bidirectional sampling  

As anticipated in paragraph 4.1, the unbinding pathways of the of GC7 ligand from 

the Deoxyhypusine synthase (DHS) was previously simulated by using an approach 

inspired to Infrequent MetaD55. The number of contacts between the ligand and the 

protein binding site atoms was used as a single CV in 30 replicas of infrequent MetaD 

that were stopped when the ligand reached an unbound state.  

By applying the PathDetect-SOM approach to the above simulations, we obtained 

the trained SOM shown inFigure 4.10. The neighbor distance plot (Figure 4.10a) 

displays a very compact region on the left side, corresponding to different bound 

states. All these neurons were grouped together in the neuron clustering phase (cluster 

A), while the diverse unbound conformations are segregated to the opposite side 

(Figure 4.10b). 
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Figure 4.10 SOM analysis of simulations of GC7 unbinding from DHS. (a) Neighbor distance plot. (b) Clustering 
of the neurons. The representative conformation of each cluster is depicted in cartoons with ligand in sticks. 

Due to the nature of these MetaD simulations, where the system evolves along the 

CV with a series of small forth and back movements, the direct tracing of the pathways 

on the map may result a little bit confusing (Figure 4.11).  
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Figure 4.11 Tracing of the pathways on the trained SOM for the MetaD replicas of GC7 unbinding from DHS. 

Moreover, given the lack of correspondence between simulation times of different 

replicas, we needed to perform a time-independent clustering of pathways (see 

paragraph 4.2), that allows to compare replicas of different length (dendrogram in 

Figure 4.12).  
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Figure 4.12 Dendrogram of hierarchical clustering of the pathways followed by different replicas for the study case 

2 (DHS MetaD simulations). Replicas can be assigned to branch 1 or branch 2 of the network, in good agreement 
with the clustering, except for four replicas indicated with (*) in the dendrograms. Most of these replicas did not reach 

a completely unbound state. 

Two distinct types of pathways arise from this analysis. Building a network from the 

transition matrix, as in the previous study-case, made the differences between the two 

pathways more evident (Figure 4.13a).  

 
Figure 4.13 Transition network for the simulations of GC7 unbinding from DHS. a) Transition network with its 

ramification explicitly indicated by black arrows (nodes are colored according to the SOM clusters). The representative 
conformations of neurons that characterize each branch (red circles in the network) are depicted in cartoons with 

ligand in sticks. b) Network colored according to the node betweenness centrality (from white to red, increasing values 
of this property), and the representative conformations of neuron 17, bottleneck for pathway 1. 
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The two pathways (branch 1 and 2 of the network, in Figure 4.13a), lead to different 

neurons, all describing unbound states. The separation of the unbound states in 

different neurons is due to the ligand exiting from the two opposite sides of the binding 

site. Compared to the previous case, this graph is more densely connected due to the 

bidirectionality of the sampling during the MetaD simulation. Most of the simulations 

(70%) evolve through branch 1 (Pathway A in the original work166) in which the ligand 

escapes from the side of its guanidine group. The remaining replicas (30%) proceed 

through an opposite pathway, indicated as branch 2 in the graph, in which the ligand 

exits from the side of its ammino-group (Pathway B in the original work166). 

Interestingly, most of the simulations following branch 1 pass through neuron 17, a 

node with a high value of betweenness centrality (Figure 4.13b).  As betweenness is 

calculated as the number of shortest paths through a node174, neuron 17 is a critical 

conformation to observe the bound/unbound transition. The representative 

conformation of this neuron shows the characteristic of the intermediate state 

hypothesized in the original work174, namely, a stable salt bridge of the ligand primary 

ammine group with Glu137. 

Ligand binding/unbinding through a single metadynamic simulation 

As a third study-case, we applied the PathDetect-SOM protocol to a single MetaD 

simulation of ligand binding. The system under investigation is the same as in the first 

study-case: the THS-020 binding to HIF-2α. As presented in chapter 3, starting from 

the sMD simulations, we built a path CV and used well-tempered MetaD to enhance 

the sampling along the selected CV and to reconstruct the free-energy landscape of the 

process108. During the 1.8 μs of MetaD simulation, we observed a high number of 

binding and unbinding events (Figure 3.14A). 

The trained SOM (Figure 4.14 and details in paragraph 4.2) presents the starting 

bound conformation in the top-left corner (cluster L), and the completely unbound 

conformation in the top-right corner (cluster G).  
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Figure 4.14 SOM trained with MetaD simulations of THS-020 binding to HIF-2α. (a) Neighbor distance plot. (b) 

Clustering of the neuron vectors. The representative conformation of each cluster is depicted in cartoons with ligand in 
sticks. 

Due to the conformational freedom along the z(r) CV of the path CV (that represent 

the distance from the reference path), the ligand can also rotate and sample alternative 

bound conformations. This is the case of cluster I, that contains conformations in which 

the ligand is rotated of 180° with respect of the X-ray starting structure. 

For the sake of comparison with the free-energy landscape previously identified by 

the MetaD calculation108 (discussed in chapter 3, Figure 3.16),we mapped the frames 

belonging to each free-energy basin on the SOM (Figure 4.15).  
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Figure 4.15 Mapping of frames belonging to each free-energy basin on the SOM for the study-case 3. Letters in 

squares correspond to the free energy states identified in the original work108 (see Figure 3.16). Cluster I (top left, 
grey) do not correspond to any of the original lowest free-energy states of the map.  

We found that conformations belonging to each of these basins generally map in 

few close neurons, belonging to a same cluster on the map.  

In this study-case, the direct tracing of pathways on the SOM is difficult due to the 

unique long simulation that samples multiple binding/unbinding events 

However, the transition network analysis proposed in the PathDetect-SOM protocol 

is capable of providing a clear representation of the pathways sampled during the 

MetaD simulation (Figure 4.16a).  
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Figure 4.16 Transition network for the MetaD simulation of THS-020 binding to HIF-2α. a) Transition network 

with main pathways indicated by black arrows (nodes are colored according to the SOM clustering). b) Communities 
identified by the walktrap method represented on the network (nodes are colored according to the different 

communities). The representative conformations of the communities are depicted in cartoons with ligand in sticks. c) 
Committor probability analysis. The representative conformations of neurons with committor probability of about 0.5 

are reported in red stick and X-ray starting conformation in grey sticks. 

As shown in Figure 4.16a, there are two main branches: branch 1 connects the 

crystallographic-like bound conformation to the unbound state, while branch 2 follows 

the unbinding of an alternative binding mode (cluster I). Only a small number of 

connections between the two branches is present, indicating that the ligand cannot 

freely rotate within the binding site, and it preferentially unbinds and rebinds to 

interconvert between the two bound states.  

The previous study-cases sampled only one unbinding event for each replica and, 

for this reason, the graph model only describes the interconnection between states 

along the unbinding pathway. In this last case, due to the MetaD sampling of several 

binding/unbinding events, the obtained graph takes into account connections along 

both directions, and thus contains more information about the kinetic of the process. 

Indeed, assuming that (in the limit of a quasi-equilibrium process) the ligand remains 

trapped for a sufficient time inside an energy minimum, the communities identified 

with the walktrap method exhibits the properties of kinetic clustering (Figure 4.16b). 

The identified communities well represent the ensemble of metastable states sampled 

along the process. Along both branches it is possible to identify: a small community 

for the bound state (communities E and G); a community in which the ligand is still 

completely inside the binding cavity and did not reach the unbound state (C and A); 
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a community in which the ligand is located at the mouth of the cavity, but it is already 

partially immersed in the solvent (B and D); a community for the completely unbound 

state (F). Moreover, the transitions between communities may be associated to 

conformational changes with high energy barriers. Focusing on transitions between 

communities B and C, and between communities A and D, it seems that they are 

associated to the conformational changes necessary to observe ligand binding. Indeed, 

nodes at the boundary of these two pairs of communities display higher average RMSD 

values for residues at the mouth of the cavity involved in the recognition process 

(Figure 4.17). 

 
Figure 4.17 Transition network for the MetaD simulation of THS-020 binding to HIF-2α. Nodes are colored 

according to the average RMSD value of residues belonging to the mouth of the cavity (computed on backbone atoms 
of residues 288-293 and residues 302-306). The circle around each node is colored according to the community it 

belongs to. 

Finally, we performed a committor analysis: we computed the probability of ending 

in the crystallographic-like bound conformation (neuron 91, in the community E) 

before reaching the unbound conformation (neuron 100, community F) starting from 

each neuron (Figure 4.16c). Given that the transition state is expected to have an equal 
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chance of going to either states, configurations with a committor of approximately 

0.50 can be considered at the transition state. In the present case, the energetic barrier 

seems to be located around conformations close to neurons 63, 72, 73 and 82 (in the 

community C, Figure 7c). These conformations are located at the boundaries between 

communities E and C and are near to the bound state, in agreement with the 

conclusions drawn from the sMD simulations. 

 

4.5 Conclusions 

Data from MD simulations can contain extremely useful information on molecular 

processes, but it does not lead to simple canonical analysis protocols: system-specific 

and problem-specific strategies are often required to extract information from 

increasingly large trajectory files. Planning and designing appropriate strategies can 

be a very difficult task, and it often requires the development of ad-hoc scripts for 

advanced analysis and the use of dedicated analysis tools.  

Several general-purpose tools for the analysis of MD trajectories are available, 

including GROMACS analysis tools175, CPPTRAJ176, VMD133, MDAnalysis177, Bio3D178 

and MDTraj179. All these tools provide basic post-processing analysis such as RMSD, 

RMSF, radius of gyration, hbond and contact maps. Some of them are built-in tools 

distributed along with the main simulation engine (GROMACS analysis tools and 

CPPTRAJ), while others are python or R libraries that provide a flexible framework for 

complex analysis (MDAnalysis, Bio3D and MDTraj), but require the user to develop 

ad-hoc code. 

Among the most advanced post-processing methods, Markov State Models (MSMs) 

are often used to develop a complete kinetic model of the process under 

investigation142,180. These types of analysis are often complex and require a high level 

of expertise by the user to obtain reliable results. For this reason, they are difficult to 

implement as an automated user-friendly protocol. Moreover, effective use of MSMs 

requires that simulated data meet strict sampling conditions, such as a lag time 

sufficiently long to produce a Markovian state decomposition181. This implies that this 
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method can only be used when the aggregate simulation time is in the order of 

hundreds of microseconds or more. Moreover, development of MSMs using enhanced 

sampling MD requires reweighting procedures that nowadays are still at an early stage 

of development182. 

Here we presented a tool based on SOMs specifically designed for the analysis of 

ligand binding pathways sampled in simulations by means of an automated protocol. 

Our development takes inspiration from other tools based on SOMs already developed 

by our group and others31, some of which with fast implementation on GPU30. These 

tools have been successfully applied to MD data, but they were mainly focused on 

clustering of macromolecular conformations and not on pathway analysis.  

The PathDetect-SOM tool does not have any sampling condition and can be applied 

to MD simulations that sample multiple ligand-binding events. While it cannot be 

directly used to compute stationary quantities and long-time kinetics (unless one 

demonstrates that the criteria for MSMs are met), it provides an immediate 

interpretation of the pathways sampled during the simulation, and can give hints about 

the thermodynamics and kinetics of the process. 

In this work, we tested the tool on a range of ligand binding/unbinding simulations 

with different features. In all cases the pathways were successfully characterized and 

mapped over an intuitive 2D map, thus confirming the general applicability of the 

protocol. Moreover, depending on the simulation type, several hints regarding the 

energetics of the process were obtained. In the first study-case, we exploited the 

possibility of re-mapping a property, the sMD pulling forces, on the SOM neurons in 

order to identify the location of the highest unbinding energy barrier along the 

simulation (corresponding to the frames with the largest values of the pulling forces). 

In the second study-case, the transition graph and the betweenness centrality score of 

the nodes suggested the obligate transition across a neuron for the unbinding across 

pathway 1. Finally, in the third study-case, we treated the simulation as a quasi-

equilibrium simulation and computed some interesting properties starting from the 

approximate transition matrix. The committor analysis suggested the location of the 

energy barrier on the SOM, while determination of the communities in the transition 
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graph led to the identification of kinetic macrostates. As the above properties were 

computed from the approximate transition matrix, their accuracy strictly depends on 

the extension of the sampling. 

PathDetect-SOM has been implemented in the form of an R batch script with an 

easy command line interface. While the tool was primarily designed for ligand binding 

studies, it can be applied to many other types of simulations (unfolding, protein-

protein or protein-peptide binding) by appropriate choice arguments on the command 

line input. The batch script format offers easiness of use with flexibility of 

customization through simple command line options. As future development the tool 

can be extended and included in an R package to offer expert users the possibility to 

develop ad-hoc extensions to the analyses. The tool is open source and freely available 

with a brief guide and tutorials at https://github.com/MottaStefano/PathDetect-SOM. 
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CHAPTER  5 

 

 

 

 

 

INVESTIGATION OF LIGAND-PROTEIN 

INTERACTION THROUGH HIGHLY SCALABLE 

QM/MM MD SIMULATIONS  

 

 

5.1 Introduction 

Predicting energetics and kinetics of ligand-protein interactions is crucial for both 

basic science and applications. From a biophysical perspective, the molecular 

recognition process of small molecules interacting with protein is one of the 

fundamental biochemical processes such as metabolic pathways and 

neurotransmission. In drug design, the affinity183 and the residence time184 are key 

quantity that define the efficiency of a drug binding to its target protein. While the 

calculation of the first is well established and it benefits to a plethora of powerful 

approaches (including those discussed in Chapters 1 and 2), the prediction of kinetics 

quantities (in particular of ligands’ koff values) still poses challenges. Important studies 

from the Parrinello’s64,185,25,62,131 186 and Noe’s187,188,189 groups have shown the feasibility 

of advanced computational methods such as Infrequent Metadynamics26 (InMetaD) 

and Markov State Models180,181 (MSMs) to calculate koff values (or residence times). 
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Unfortunately, however, while in some cases such predictions have been relatively 

accurate131, in other cases190 significant discrepancies with experiment have been 

found. This has been ascribed, at least in part, to errors of the force field in describing 

the energetics of the transitions state of the binding/unbinding events190. This is not 

surprising, as force fields have been not parametrized so as to reproduce structure and 

energetics of such transition states. 

First principles based QM/MM approaches to ligand unbinding could help address 

this issue. Here, a part of the system is treated at the quantum level (QM part), for 

instance using density functional theory (DFT) while the rest of the system is handled 

by a classical force field (MM part). These approaches  allow for a dramatical decrease 

in the size of the computationally expensive QM part, while retaining the ability to 

describe specific quantum mechanical processes (such as enzymatic reactions191,47, 

proton transfer phenomena192) using quantum chemical methods such as density 

functional theory (DFT). In the context of ligand unbinding, QM/MM might be able to 

describe with not too dissimilar accuracy all the configurations explored by ligand 

binding (including the transition state).  Machine learning approaches such as those 

developed in ref193 could then be used to greatly enhance the convergence of the 

QM/MM calculations. 

Recently, the Carloni’s group in Jülich, in collaboration with an European network 

including EPFL, proposed a flexible and efficient QM/MM that aims to achieve 

unprecedented scaling in QM/MM simulations194.  This scheme is called MiMiC:  

multiscale modeling in computational chemistry and it can cover subns timescales 

using DFT for the quantum part195.  Here I explored the use of such massively parallel 

QM/MM simulations to investigate ligand binding/unbinding events. Because of 

restrictions of time, we focused on the first step of the latter, namely dynamics of the 

ligand bound to its binding site.  

We performed as many as 40.3 ps of QM/MM simulations the ligand 2g (Figure 

5.4a) bound to the mitogen-activated protein kinase p38 (Figure 5.3). The latter is a 

very important pharmaceutical target for which excellent computational kinetic 
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studies have been already performed65,196,197,198,199 . The QM part consisted of the ligand 

and was treated at the DFT-BLYP level.  

Here we derive some key electronic properties of ligand/protein dynamics, such as 

the electronic polarization of the ligand. These properties are impossible to obtain by 

standard, force field-based MD simulations. To the best of our knowledge, this is the 

first time that a ligand-protein system is studied by MiMiC QM/MM MD. Indeed, while 

simulations on simple systems200,194,201 and membrane proteins (anion channels)192,195 

have already appeared (showing the impressive scaling of the code202), QM/MM 

simulations of ligand/protein complexes have been limited to single point 

calculations203. Thus, although I focus on only one step of the unbinding process, I do 

provide here the first dynamics study of a protein in complex with its ligand using this 

new, powerful QM/MM code.  

MiMiC: Multiscale Modeling in Computational Chemistry 

MiMiC is based on a multiple-program multiple-data (MPMD) model with loosely 

coupled programs (Figure 5.1): a main driver running molecular dynamics simulations 

coupled to a set of external programs, each of which computes contributions that are 

relevant to a specific subsystem using their optimal parallelization strategies. This 

strategy allows the use of different models such as QM, MM, CG (coarse-grained), CM 

(continuum mechanics). Communication between programs is possible by using a 

lightweight communication library (CommLib)200.  

 
Figure 5.1 Schematic representation of the strategy used in the MiMiC framework (Image from ref 200) 

In the present implementation, MiMiC201 couples two highly efficient programs 

CPMD204 that serves ad main driver and also computes the QM contribution, and 
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GROMACS117 that provides the MM contribution. The CPMD program uses a plane 

wave/pseudopotential implementation of DFT, and it allows to perform both Born-

Oppenheimer (BO) and Car-Parrinello (CP) QM/MM MD simulations. The workflow 

of a simulation employing the MiMiC framework is illustrated in Figure 5.2. Both 

programs are run independently and simultaneously using MiMiC both to 

communicate and to calculate QM/MM contributions. In the initialization phase, 

GROMACS and CPMD read their respective input files, and MiMiC collects data from 

both and sends the necessary data to CPMD, e.g. coordinates, atom types, etc. At this 

point, the QM/MM-MD cycle is entered; it consists of several steps: the first is to send 

the coordinates to GROMACS which then proceeds to calculate the energy and MM 

forces. At the same time, CPMD calculates the corresponding QM contributions subject 

to the electrostatic potential calculated by MiMiC on the QM grid. MiMiC also 

calculates the QM/MM energy and forces. Finally, all force contributions are collected, 

and CPMD integrates the equations of motion and continues to the next iteration of 

the MD loop200. 

 
Figure 5.2 Schematic representation of QM/MM MD workflow using the MiMiC framework (Image from ref 200). 

 



 

 

 

92 

Study-case: Mitogen-activated protein kinase p38 in complex with 2g ligand 

The mitogen-activated protein kinase p38 is a member of the mitogen-activated 

protein kinase (MAPK) family. It is a serine/threonine kinase that controls cytokine 

biosynthesis and is involved in the initiation of chronic inflammation processes, 

development of cancer, heart disease, and many others205,206. Four different isoforms 

(α, β, γ, δ) of p38 MAPK family have been identified. Several genes encode them: p38α 

(MAPK14), p38β (MAPK11), p38γ (MAPK12, and p38δ (MAPK13). P38 MAPK adopts 

a typical kinase fold, including N-terminal lobe, rich in β -sheet (blue in Figure 5.3), 

and C-terminal lobe (grey in Figure 5.3), rich in α-helix, that are connected via a hinge 

region (light green in Figure 5.3). The catalytic site of the protein is placed between 

the two lobes, where ATP molecules bind. The ATP binding site of p38 is composed by 

the hinge region, the glycine-rich loop (orange in Figure 5.3), the activation loop 

(magenta in Figure 5.3), the Asp168-Phe169-Gly170 amino acids which compose the 

DFG motif (yellow and cyano in Figure 5.3), and the αC-helix (dark green in Figure 

5.3). Between the two lobes there is also an allosteric site207 (AS) that is created by the 

movement of the DFG motif between two conformations: the active conformation 

(DFG-in, cyano in Figure 5.3) and the inactive conformation (DFG-out, yellow in 

Figure 5.3). When the DFG motif is in its “in” conformation, the AS is filled by the 

Phe169 side chain, while, when the DFG is in the “out” conformation the Phe169 is 

placed on the opposite site preventing the ATP binding206.  
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Figure 5.3 3D structure of p38 MAPK: protein is shown as cartoon, the N-terminal lobe in blue, the C-terminal in 

grey, the glycine-rich loop in orange, the activation loop in magenta, the αC-helix in dark green. The DFG motif is 
shown in sticks: DFG in its “in” conformation in cyano and DFG in its “out” conformation in yellow. 

All the isoforms contain a conserved dual phosphorylation motif and both 

phosphorylations are necessary to fully activate the kinase. Dual phosphorylation at 

these sites alters the folding of p38 by stabilizing the activation loop in a more open 

conformation and causing rotation between the two lobes, which allows substrate 

recognition and increases the activity of the kinase. The p38α isoform is one of the 

most studied kinases as it has been identified as a drug target for various diseases and 

several inhibitors have been proposed over the years206. Among all available inhibitors 

for the α isoform of p38, the 2g ligand ((6-(2-fluorophenoxy)-8-methyl-2-(tetrahydro-

2H-pyran-4-ylamino)pyrido[2,3-d]pyrimidin-7(8H)-one), in Error! Reference source 

not found.a) was chosen for this work. The structure of a very close analogue, ligand 

2a, (6-(2,4-difluorophenoxy)-8-methyl-2-(tetrahydro-2H-pyran-4-

ylamino)pyrido[2,3-d]pyrimidin-7(8H)-one, in Figure 5.4b) in complex with the p38 

protein has been determined by X-ray crystallography. 
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Figure 5.4 2D structure of the 2g (a) and 2a (b) ligands The ligands are the same except that a hydrogen is 

replaced by a fluorine. 

The p38-2g complex is part of a dataset208 published in conjunction with the results 

of a high-throughput FEP workflow developed by Gapsys and coworkers209.  

 

5.2 Methods 

Force field based MD simulations on the complex in aqueous solution were carried 

out by my colleague Katya Ahmad in Jūlich and they are summarized in Appendix at 

the end of this chapter. 

The QM/MM MD simulations were performed using the snapshot obtained after the 

150 ns of NPT equilibration from the force field-based simulations. We used the MiMiC 

framework, coupling the CPMD204 4.3 version and the GROMACS117 2019.4 version. 

The code ran on the clusters hosted by Jülich Supercomputing Center namely 

JURECA210 and JUWELS211. Within MiMiC, a generalized version of the electrostatic 

embedding scheme introduced by Laio et al212 was used, in which the total energy of 

the system is calculated following an additive scheme. The QM/MM simulations were 

performed with a DFT approaches based on the use of plane wave as basis set and 

pseudopotentials. Specifically, all the simulations were performed using Troullier-

Martins norm-conserving pseudopotentials212. The system consists of 169,550 atoms, 

were 46 atoms (i.e. the atoms of the ligand) were selected to represent the QM 

subsystem. This was treated at the BLYP213,214 level, while the MM is described by the 

Amber99SB*-ILDN215,216 force field. 40.3 ps of Born-Oppenheimer MD/force field 

based MD NVT simulations were carried out using a time step of 0.48 fs. Constant 
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temperature simulations were achieved using  the Nose-Hoover thermostat217,218 with 

a coupling frequency of 5000 cm-1. 

Analysis 

The final frames of the ten production mode MM simulations and nine snapshots 

(one every 5 ps plus the initial one) from the QM/MM simulation were extracted for 

analysis. 

Structural features: A visual analysis of H-bonds and hydrophobic interactions 

were performed with Protein-Ligand Interaction Profiler219, comparing the frames 

derived from the simulations and the X-ray structure of the analogous ligand, 2a, 

which replaces a hydrogen atom with a fluorine (see Figure 5.4).  

Electronic properties: The electronic density of the ligand (both in vacuo and in 

the bound state) was calculated at the BLYP level using 6-31G(d,p)220,221 as basis set 

for each QM/MM snapshot, using the Gaussian222 program. The electric field of the 

protein and of the solvent was introduced in some of the calculations.  

The change in electron density was computed as: 

∆𝜌 = 	𝜌/'.
^#_`/0> −	𝜌/'.3!^a# 

The density of the complex is obtained by performing the calculation in the presence 

of the electric field of the surrounding protein and the aqueous solvent. By integrating 

the ∆𝜌 it is possible to monitor the change in atomic charge for each ligand atom (i): 

Δ𝑄(𝑖) = 	]∆𝜌(𝑟)𝑑𝑟 

The integral is solved numerically over the grid points within the Voronoi223 

partition of atomi i (VPi) using the code from ref190. An estimation of the change in 

charge distribution is given by electric polarization as: 

∆𝑄b#/ =	 |∆𝑄(+)| +	|∆𝑄(−)| 

where: 

∆𝑄(+) = 	∑ ∆𝑄(𝑖)' , 𝑖 ∈ 	 {∆𝑄(𝑖) > 0} and ∆𝑄(−) = 	∑ ∆𝑄(𝑖)' , 𝑖 ∈ 	 {∆𝑄(𝑖) < 0} 
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5.3 Results  

In this work, the classical MD simulations are solely used to equilibrate the system 

before performing the QM/MM calculations. Selected results are reported in Appendix 

at the end of this chapter. 

Structural analysis.  Our QM/MM simulations are consistent with the experimental 

structural information and provide insight on the interaction of the ligand with the 

solvent in the complex in aqueous solution.  

The H-bonds formed by the protein with the ligand are reproduced (Table 5.1). 

Novel insight is obtained on the hydration of the ligand: the atoms O1 and O2 form 

H-bonds with water, while the H-bond of the water molecule bridging the water and 

the protein is still present. However, this water interacts here also with another water 

molecule from the solvent, at variance of the crystal structure. The hydrophobic 

interactions are also maintained, and, in some cases, strengthened (Figure 5.5 and 

Table 5.2) 

 
Figure 5.5 3D representation of selected ligand-protein interactions. Top: 3D representation of the ligand with 

atom labelling. Bottom, left: ligand-protein interactions observed in the X-ray structure; bottom, right: ligand-protein 
interactions observed across nine QM/MM snapshots.  The ligand is shown in sticks and the residues involved in the 
interactions in lines. H-bonds are described by solid blue lines, interaction with water molecules by dashed yellow 

lines, and hydrophobic interactions by dashed grey lines. 
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Table 5.1 H-bonds and water interactions observed in the X-ray structure and across the nine snapshots derived 
from QM/MM simulation (see Figure 5.5). Errors reported as the standard deviation of donor-acceptor distances. 

  X-ray distances (Å)  QM/MM-MD mean 
distances (Å) 

Donor Acceptor D-A  D-A  D-H-A  

N@M109 N@ligand 3.0  2.8 ± 0.1 1.8  ± 0.1  

N3@ligand O2@M109 2.9  3 ± 0.1 2.0  ± 0.1  

N@A34/H2O O2@ligand 2.8 2.8  3.0 ± 0.2  3.6 ± 0.5  

NZ@K53 H2O 2.8 3.1 2.9 ± 0.1  2.8 ± 0.1 

H2O O1@ligand - 2.9 ± 0.6 

H2O O1@ligand - 2.5 ± 0.4  
 

Table 5.2 Hydrophobic interactions observed in the X-ray structure and the nine snapshots derived from QM/MM 
simulation (see Figure 5.1). Errors reported as the standard deviation of donor-acceptor distances. 

  X-ray QM/MM-MD 

Ligand atom Protein atom Distance (Å) Mean Distance (Å) 

C2 CB@A51 3.7 3.7 ± 0.2 

C14 CB@K53 3.9 3.6 ± 0.2 

C18 CD2@L75 3.8 3.8 ± 0.2 

C17 CG2@I84 3.9 3.7 ± 0.2 

C13 CD2@L86 7.1 3.7 ± 0.2 

C13 CB@L104 4.8 3.8 ± 0.1 

C14 CG2@T106 3.8 3.4 ± 0.2 

C2 CD2@L167 4.0 3.7 ± 0.1 

 

Electronic Properties. We computed, using QM/MM, the rearrangement of the 

electronic density of the ligand as it passes from vacuo to the bound state. The 

calculations are carried out using the Voronoi partition199 of the atomic charges. 

The Figure 5.6 shows the change in electronic density of the ligand on passing from 

in vacuo to the bound state for selected QM/MM snapshots. The Figure 5.7 plots the 

corresponding change in electronic charge, ΔQ(i) for each atom of the ligand during 
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the 40.3 ps QM/MM dynamics. Here, ΔQ(+) and ΔQ(-) which are the polarizations of 

the ligand contributed by atoms with positive and negative ΔQ(i), respectively. They 

range from -0.064 to 0.056 electrons. Thus, polarization effects are small but not 

negligible. A similar conclusions was reached by  Capelli et al190 for a ligand-receptor 

complex, although in that case only single points were calculated. Importantly, the 

values were not constant over time (Figure 5.7); this confirms the importance of 

conformational fluctuations for accurately describing ligand/protein electrostatic 

interactions. The values of the charges and their fluctuations are expected to change 

during the unbinding process. Including these variations of the charges might be very 

important to describe protein/ligand interactions, cannot be captured by standard 

force field-based MD simulations.  

The largest variation observed (in absolute value) is that of the pyrimidine nitrogen 

(N, Figure 5.5) which forms an H-bond as acceptor (Table 5.1). Several other atoms 

forming H-bonds either with the protein or the solvent experience sizeable polarization 

effects. Not unsurprisingly, the latter are far less pronounced in  the   hydrophobic 

portion of the ligand (Figure 5.5, bottom right), which establishes hydrophobic 

interactions within the binding cavity with residues A51, K53, L75, I84, L86, L104, 

T106, and L167 (Table 5.2).  

 
Figure 5.6 Change of electronic density of the ligand on passing from vacuo to bound state (Dr) for 9 different 

snapshots (from 0 (a.) to 40 (i) ps every 5 ps) during the QM/MM simulations. The ligand atoms are displayed as 
stick, the electronic difference as isosurface, blue Dr >0 and red Dr <0. 
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Figure 5.7 Change in atomic charge for each ligand atom (DQ(i), i=0-45) across the nine QM/MM snapshots. 

  

5.4 Conclusions 

Our QM/MM calculations reproduce the pose of the X-ray structure and provide 

insights on polarization effects of the protein electric field onto the ligand. These 

effects are small albeit significant. They are mostly pronounced on the pyrimidine 

nitrogen, which forms H-bond as an acceptor. Interestingly, they vary significantly 

during the dynamics, pointing of the relevance of conformational fluctuations for 

ligand/protein electrostatic interactions. We can expect that overall, these effects may 

vary during the unbinding process as the ligand interact with different groups in the 

process. The energetics associated with these small albeit significant changes of 

interactions cannot be captured by standard biomolecular force fields. Also charge 

transfer effects, not investigated here, could play a role for ligand/protein 

interactions190. 
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Appendix: Force field based MD simulations 

Methods 

The initial structure and the topology file of p38-2g complex were taken from ref208. 

The topology contained Amber99SB*-ILDN force field parameters for the protein and 

GAFF parameters for the ligand. The initial structure of the protein-ligand (2g) 

complex from the dataset208 was stripped of the pre-existing water and ions and 

solvated in a 12x12x12 nm cubic box of TIP3P water and neutralized with Na+ and Cl- 

ions corresponding to a concentration of 0.033 mol dm-3 of NaCl. The final system was 

subjected to 3000 steps of energy minimization through the steepest descent algorithm 

implemented in GROMACS117 2020.4. All further equilibration and production 

simulations were conducted using a 2 fs time step, P-LINCS224 algorithm for imposing 

constraints, the Bussi velocity-rescaling thermostat225 with a time constant of 0.1 ps, 

and PME123 electrostatics with a 1 nm cutoff and a Fourier grid spacing of 0.12 nm. 

After energy minimization, the system was equilibrated for 1 ns in the NVT ensemble 

with the temperature maintained at 300K. This was followed by 1 ns of NPT 

equilibration at 1 bar with the Berendsen barostat120 with a time constant of 2 ps for 

the initial relaxation of the box volume, followed by a further 150 ns of equilibration 

at 1 bar with the Parrinello-Rahman barostat122, with a time constant of 2 ps. The 

duration of this equilibration phase was sufficient for the RMSD of the protein to 

converge at 0.208 ± 0.027 nm. An ensemble of ten production mode force field MD 

simulations of 50 ns duration were then conducted. 

Selected results 

In this work, the classical MD simulations are solely used to equilibrate the system 

before performing the QM/MM calculations. Selected results from MD, provided by 

my colleagues Katya Ahamad, suggest that the MD reproduces the ligand binding pose. 

Indeed, (i) The main H-bonds interactions of the ligand with the protein are fully 

maintained during the dynamics (Table 5.3); (ii) the hydrophobic interactions are also 

rather well maintained.  
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Figure 5.8 3D representation of selected ligand-protein interactions. Bottom, left: ligand-protein interactions 

observed in the X-ray structure; bottom, right: ligand-protein interactions observed across the final frame of the MD 
simulation.  The ligand is shown in sticks and the residues involved in the interactions in lines. H-bonds are described 

by solid blue lines and hydrophobic interactions by dashed grey lines. Labelling of ligand atoms as in Figure 5.5. 

 

Table 5.3 H-bonds observed in the X-ray structure and across the final frames of ten replicas of MM production 
(see Figure 5.8). Errors reported as the standard deviation of donor-acceptor distances. 

  X-ray MM-MD 

Donor Acceptor D-A distance 
(Å) 

Mean D-A 
distance (Å) 

Mean D-H-A 
distance (Å) 

N@M109 N@ligand 3.1 3.1 ± 0.1  2.1  ± 0.2 

N3@ligand O2@M109 2.9  3.0 ± 0.2  3.0  ± 0.3 
 

Table 5.4 Hydrophobic interactions observed in the X-ray structure and across the final frames of ten replicas of 
MM production (Figure 5.8). Errors reported as the standard deviation of donor-acceptor distances. 

  X-ray MM-MD 

Ligand atom Protein atom Distance (Å) Mean Distance (Å) 

C2 CB@A51 3.8 3.7 ± 0.1  

C14 CB@K53 3.9  3.7 ± 0.2 

C18 CD2@L75 3.8 3.7 ± 0.2 

C17 CG2@I84 3.9  3.7  ± 0.2 

C13 CD2@L86 7.1 3.8 ± 0.1 

C13 CB@L104 3.8 3.6  ± 0.2 

C14 CG2@T106 3.8 3.5  ± 0.1 

C2 CD2@L167 3.9  7.8 ± 0.1 
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CHAPTER  6 

 

 

 

 

 

CONCLUSIONS 

 

 

In this PhD thesis I focused on modeling of ligand-protein binding with 

computational methods based on molecular dynamics. Understanding this process is 

crucial for the design and discovery of new drugs and the use of computational 

methods to support experimental research in this field is constantly growing.  

Over the years, many computational methods7 have been developed to address the 

study of ligand-protein binding. Nowadays, methods based on classical molecular 

dynamics have become central to this field thanks to the increase in computing power. 

In particular, in this thesis I made use of physical pathways (PP) methods based on 

enhanced sampling techniques14. This type of methods enables the simulation of the 

complete binding and/or unbinding events, allowing not only to estimate the ligand-

protein binding affinity, but also to obtain information about the ligand binding  

pathways14. However, the use of these methods requires the production of several 

replicas or long simulations to sample the binding/unbinding event several times in 

order to obtain a reliable statistics of the process. This produces the need of methods 

able to analyze all the simulated events at once and to provide a clearly interpretable 

picture of the differences in the sampled pathways. On the other hand, the use of 
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methods based on MM still suffer from several limitations due to the limited accuracy 

of force-fields in the description of ligand-protein interactions. QM approaches can 

indeed provide a better description of the system; however, as well known, performing 

QM simulations on large biomolecular systems requires prohibitive computational 

costs. Hybrid QM/MM approaches are useful in this perspective, given that they allow 

to obtain a more accurate description of the process while retaining low computational 

costs47.  

In this thesis, an approach based on the combination of some efficient enhanced 

sampling methods, the steered MD (sMD) and the Metadynamics (MetaD), was 

proposed108. It was applied to predict the possible binding/unbinding pathways of 

some ligands to the HIF-2α PAS-B domain and to obtain a correct estimation of their 

binding free energy (chapter 3).  Modeling these processes represents a non-trivial 

task due to the buried nature of the binding cavity that suggests significant protein 

conformational changes may occur upon ligand access. Indeed, the proposed 

computational protocol was successful in modeling these events. In fact, with sMD it 

was possible to select the preferred unbinding pathway, by performing multiple 

replicas in parallel and thus comparing different pathways with relatively low 

computational costs. In addition, the use of MetaD simulations allowed to overcome 

some sMD limitations regarding the correct estimation of the binding free-energy. 

Some critical points in using MetaD simulations needed to be addressed: the first one 

concerns the choice of collective variables suitable to correctly describe the process, 

the second one is the construction of a correct reference path. The first point was 

addressed by employing the Path Collective Variables approach, while, for the second 

point, simulations obtained with sMD were adopted to derive the reference path. In 

this way it was possible to estimate the correct binding free-energy values for the 

analyzed ligands as well as to characterize the relevant states along their unbinding 

pathways. The protocol here proposed appears to be an invaluable tool to investigate 

the binding process of different ligands, using simulations performed both on a known 

ligand-protein X-ray structure and on a docking pose, thus contributing to the 

development of successful drug design campaigns. In addition, the results obtained 
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encourages to extend its application to other binding mechanisms involving systems 

with characteristics similar to those of our study-case. 

As mentioned above, to address the difficulty of analyzing large amounts of data 

derived from several replicas (as in the case of sMD) or from a single long simulation 

(like in MetaD), a tool based on the self-organizing maps (SOMs) was proposed173 

(chapter 4). The PathDetect-SOM (Pathway Detection on SOM) tool, has proved to be 

effective in the analysis of ligand binding/unbinding pathways derived from MD 

simulations with PP methods. Its general applicability was demonstrated by addressing 

some study-cases whose simulations had been performed with different methods and 

thus exhibit different characteristics. In particular, the first study-case (sMD) explored 

the simultaneous evolution of the replicas (due to the constant velocity of the bias) 

and the use of a directional Collective Variable (CV). Differently, the method used for 

the second study-case (Infrequent Metadynamics) involves a type of non-directional 

CV and may provide very different unbinding paths. Finally, in the third study-case the 

MetaD simulation evolves in all the directions along two selected CVs and the ligand 

has greater freedom than in the previous cases. The tool made it possible to analyze 

multiple simulated events at the same time and to provide a clearly interpretable 

overview of the differences in the sampled pathways. In addition, hints on the kinetic 

and thermodynamic properties of the analyzed processes were derived. While the tool 

was here designed for ligand binding studies, it can be applied to many other types of 

simulations (unfolding, protein-protein or protein-peptide binding) by appropriate 

choice of input arguments. 

Finally, as part of a project in collaboration with the Prof. Paolo Carloni, the first 

step of the study of the unbinding process of the mitogen-activated protein kinase p38 

in complex with the 2g ligand was explored through the use of QM/MM simulations 

with the MiMiC interface. Our DFT-based QM/MM simulations, carried out for a 

relatively long trajectory (more than 40 ps) exploiting a highly scalable interface, 

allowed us to describe the dynamics and the electronic properties of the p38-2g 

complex. Our calculations suggest that polarization effects are small, although 

significant. They are expected to change during the dynamics, as observed in the case 
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of another receptor/ligand complex (although in that case only static calculations were 

carried out)190. In the latter system, these effects turned out to be relevant for the 

energetics of protein/ligand interactions. They are therefore expected to impact on the 

energetics of the unbinding process (and thus on the kinetics) also in the enzymatic 

system investigated in this thesis. Of course, running QM/MM simulations for the 

entire unbinding process is unfeasible with current resources, even exploiting an 

extremely scalable code as that used here and large supercomputers such as those in 

Jūlich. However, recent advances in machine learning-based predictions of free energy 

calculations based on QM and QM/MM methods193 suggest that in a not too distant 

future, highly scalable QM/MM simulations, along with machine learning approaches, 

contribute to accurate descriptions of unbinding processes towards the quantitative 

prediction of ligand residence times across a wide variety of systems. 

In conclusion, in this thesis I faced the problem of the computational study of ligand-

binding from several perspectives. The definition of an enhanced sampling protocols 

for the study of the binding pathways, the development of a tools for the analysis of 

PP simulations, and an improved description of protein-ligand interactions though 

QM/MM approaches, are all open challenges that aim to increase the accuracy of 

calculations. With the increasing computational power, such methods will become 

routinely used and could be determinant in the success of a drug design campaigns. 
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