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Abstract

The aim of the present thesis is to discuss the results obtained during my PhD studies,
mainly devoted to nonlocal issues. We first deal with strong unique continuation principles
and local asymptotic expansions at certain boundary points for solutions of two different
classes of elliptic equations. We start the investigation by the following class of fractional

elliptic equations
(—A)’u = hu (1)

in a bounded domain under some outer homogeneous Dirichlet boundary condition, with
s € (0,1). More precisely, we are interested in proving the strong unique continuation
property and local asymptotics of solutions at those boundary points where the domain
is locally of class C1'. In order to do this, we exploit the Caffarelli-Silvestre extension
procedure developed in [§], which allows us to get an equivalent formulation of the non-
local problem as a local problem in one dimension more, consisting in a mixed Dirichlet-
Neumann boundary value problem. Then, we use a classical idea by Garofalo and Lin [48]
to obtain a doubling-type condition via a monotonicity formula for a suitable Almgren-
type frequency function. To overcome the difficulties related to the lack of regularity at
the Dirichlet-Neumann junction, we introduce a new technique based on an approxima-
tion argument, which leads us to derive a Pohozaev-type identity needed to estimate the
derivative of the Almgren function. Thus we gain a strong unique continuation result
in the local context, which is in turn combined with blow-up arguments to deduce local
asymptotics and, consequently, a strong unique continuation result in the nonlocal setting
as well.

We also provide a strong unique continuation result from the edge of a crack for the
solutions to a specific class of second order elliptic equations in an open bounded domain
with a fracture, on which a homogeneous Dirichlet boundary condition is prescribed, in the
presence of potentials satisfying either a negligibility condition with respect to the inverse-
square weight or some suitable integrability properties. This local problem is related to
a particular case of the setting described above when s = 1/2, by virtue of a strong
connection between this type of problems and the mixed Dirichlet-Neumann boundary
value problems resulting from the Caffarelli-Silvestre extension associated to ([I).

We also treat a capillarity theory of nonlocal type, inspired by the study performed
in [60]. In our setting, we consider more general interaction kernels that are possibly
anisotropic and not necessarily invariant under scaling. In particular, the lack of scale
invariance is modeled via two different fractional exponents in order to take into account



the possibility that the container and the environment present different features with
respect to particle interactions. We determine a nonlocal Young’s law for the contact angle
between the droplet and the surface of the container and discuss the unique solvability of
the corresponding equation in terms of the interaction kernels and of the relative adhesion
coefficient.



Chapter 1

Introduction

1.1 Motivations

The study of unique continuation from the boundary has been widely treated in litera-
ture. We refer to papers [3, [4, 38, 57, [77] for unique continuation at the boundary for
solutions to elliptic equations under homogeneous Dirichlet conditions, to [76] for unique
continuation at the boundary under zero Neumann conditions, and also to [26] for a strong
unique continuation property from the vertex of a cone under non-homogeneous Neumann
conditions. Once a strong unique continuation property is proved, infinite vanishing order
for non-trivial solutions can be excluded. The problem of estimating and explicitely pro-
viding all possible vanishing orders is then naturally related to unique continuation; we
quote e.g. [56] for quantitative uniqueness and bounds for the maximal order of vanishing
and [38], 39], 44], [42, [43] for a precise description of the asymptotic behavior together with
a classification of possible vanishing orders of solutions for several classes of problems,
obtained by combining monotonicity methods with blow-up analysis for scaled solutions.
Furthermore, we cite [36] for a unique continuation result and asymptotic expansions of
solutions to fractional elliptic equations at interior points of the domain, achieved by
Almgren type monotonicity formulas combined with blow-up arguments. We mention
also [68] for quantitative unique continuation for fractional Schrédinger equations de-
rived by Carleman estimates, [81] for fractional operators with variable coefficients, and
[40, 4T, [47, [70] [71], 72, [80] for higher order fractional problems.

The issue of unique continuation from the boundary turns out to be particularly hard
to study since a series of difficulties due to the geometry of the domain arise in the
derivation of suitable monotonicity formulas and in the investigation of the asymptotic
behavior of solutions. Indeed the regularity of the domain plays a crucial role in the
behaviour of solutions at the boundary; for instance in [38] the asymptotic behavior at
conical singularities of the boundary is proved to depend on the opening of the vertex of
the cone.

In particular, concerning problem , our main goal consists in extending the results
contained in [36] to boundary points of the domain, thus establishing sharp asymptotics
and unique continuation from the boundary. A related problem is the regularity of so-



lutions up to the boundary. Within this framework, we mention [64] [66] for regularity
results at the boundary for solutions to fractional elliptic problems and also to [6], where
quantitative upper and lower estimates at the boundary are exihibited for nonnegative
solutions to semilinear nonlocal elliptic equations.

In connection with problem , we investigate also a class of second order elliptic
problems in a domain with a crack, which are in fact related to mixed Dirichlet/Neumann
boundary value problems. Indeed, if we consider an elliptic equation with mixed bound-
ary conditions, in particular a homogeneous Dirichlet condition on a flat portion of the
boundary and a homogeneous Neumann condition on the complement, applying an even
reflection through the flat boundary we obtain an elliptic equation satisfied in the com-
plement of the Dirichlet region as well. Then the Dirichlet portion becomes a crack (see
Figure below) and the edge of the crack corresponds to the Dirichlet-Neumann junc-
tion of the original mixed boundary value problem. We cite [37] for a unique continuation
result and asymptotic expansions of solutions to planar mixed boundary value problems at
Dirichlet-Neumann junctions. Our idea is to extend the monotonicity method developed
in [37] to dimensions bigger than 2, with the aim of proving a strong unique continu-
ation result. We refer to [54] [69] and references therein for some regularity results for
second-order elliptic problems with mixed Dirichlet-Neumann type boundary conditions.

Neumann Dirichlet

(a) Mixed Dirich-
let/Neumann boundary
conditions on a flat portion
of the boundary

(b) After an even reflection
the Dirichlet region becomes
a crack

Figure 1.1: A relation between problems in domains with a crack and mixed Dirich-
let/Neumann boundary value problems

Moreover, the study of second order elliptic problems in a domain with a crack is of
particular interest itself since they occur in elasticity theory, see e.g. [I8, b5, [58]. The
non-smoothness of domains having slits produces strong singularities of solutions at edges
of cracks; with regards to the structure of such singularities, we cite e.g. [12 [15] [32], and
references therein. In particular, asymptotic expansions of solutions at edges of cracks
play a crucial role in these problems, since the coefficients of such expansions are related
to the so called stress intensity factor, see e.g. [18].



Concerning the nonlocal capillarity problem, it is well-known that in the classical
capillarity theory (see e.g. [21], [22]) the contact angle is defined as the angle ¥ at which a
liquid interface meets a solid surface. At the equilibrium, this angle is expressed by the
Young’s law equation in terms of the relative adhesion coefficient o as the classical formula

cos(m — V) = o.

The contact angle plays also an important role in the fluid spreading on a solid surface,
determining also the velocity of the moving contact lines (see e.g. [20] and the references
therein). The contact angle is certainly the “macroscopic” outcome of several complex
“microscopic” phenomena, involving physical chemistry, statistical physics and fluid dy-
namics, and ultimately relying on the effect of long-range and distance-dependent interac-
tions between atoms or molecules (such as van der Waals forces). It is therefore of great
interest to understand how the interplay between different microscopic effects generates
an effective contact angle at a macroscopic scale, and to detect the proximal regions of the
interfaces (likely, at a very small distance from the contact line) in which the effect of the
singular long-range potentials may produce a significant effect, see e.g. [33, B3]. To fur-
ther understand the role of long-range particle interactions in models related to capillarity
theory, a modification of the classical Gaufl free energy functional has been introduced
in [60] that took into account surface tension energies of nonlocal type and modeled on
the fractional perimeter presented in [9]. These new variational principles led to suitable
equilibrium conditions that determine a specific contact angle depending on the relative
adhesion coefficient and on the properties of the interaction kernel. The classical limit
angle was then obtained from this long-range prescription via a limit procedure, and pre-
cise asymptotics have been provided in [27]. Local minimizers in the fractional capillarity
model have been studied in [28], where their blow-up limits at boundary points have been
considered, showing, by means of a new monotonicity formula, that these blow-up limits
are cones, and giving a complete characterization of such cones in the planar case.

In our dissertation we present a capillarity theory of nonlocal type in which the long-
range particle interactions are possibly anisotropic and not necessarily invariant under
scaling. This setting is specifically motivated by the twofold objective to initiate and
consolidate a nonlocal capillarity theory in an anisotropic scenario, and to model the case
where the potential interactions of the droplet with the container and those with the
environment are subject to different van der Waals forces.

In this setting, we determine a nonlocal Young’s law for the contact angle, which
extends the known one in the nonlocal isotropic setting and recovers the classical one as
a limit case.

1.2 Organization of the thesis and main results

The first chapter of the present thesis is devoted to derive strong unique continuation
results and local asymptotics at boundary points for solutions of two classes of elliptic
equations. In particular, in Section we recall some basic definitions related to the



unique continuation property. In Section we consider the following class of fractional
elliptic equations
(—A)°u = hu in (1.2.1)

where s € (0,1), Q@ € RV is a bounded domain, N > 2 and
he WHP(Q)  with p > N/2s. (1.2.2)

More precisely, we are interested in a strong unique continuation property and local asymp-
totics of solutions at those boundary points where the domain is locally C'! and some
outer homogeneous Dirichlet boundary condition is prescribed. To this purpose, we as-
sume there exists g € 9Q such that 99 is of class C'! in a neighbourhood of g, i.e.
there exist a suitable radius R > 0 and a function g € C'(RY~1) such that, choosing a
proper coordinate system (z/,zx) € R¥~! x R, it holds that

BR(zo) NQ = {(2',zn) € Br(xo) : zn < g(2')} (1.2.3)
Bp(zo) N0Q = {(2/,xn) € Bi(wo) : n = g(a')}

(see Section , and we prescribe for u the following local outer homogeneous Dirichlet
boundary condition
u=0 a.e. in Q°N By(zo). (1.2.4)

In order to give a suitable weak formulation of (1.2.1]), we introduce the functional space
D*2(RY) defined as the completion of C°(RY) with respect to the scalar product

g M Ja LGL (1.2:5)

and the associated norm ||u||%s,2(RN) = (u, u)ps2(mn), where @ denotes the unitary Fourier

transform of u in RV, i.e.
1 .
o~ _ L _Zr.s
u(§) = Fu(§) :== 7(271_)]\[/2 /RN e u(x) dx.

The fractional Laplacian (—A)® can be defined as the Riesz isomorphism of D*?(R") with
respect to the scalar product defined in ((1.2.5)), i.e.

(Ds,2(RN))*<(—A)SU,’U>DS,2(RN) = (U,U)DS,Q(RN)

for all u,v € D>2(RM). A weak solution to (1.2.1)) is any function u € D*2(R") satisfying

(U, @) ps.2@mry = / h(z)u(z)p(x)dr  for all ¢ € C°(RQ). (1.2.6)
Q
We observe that the right hand side of ([1.2.6)) is well defined in view of assumption
(1.2.2), by the Holder’s inequality and the following well-known Sobolev-type inequality

Sl 2o vy < e ngamy: (1.2.7)



where Sy s is a positive constant depending only on /N and s and

2N

2% = —
(5) N —2s’

(1.2.8)

see [I6]. By the extension technique introduced in [§], by adding an additional space
variable ¢t € [0, +00), we can reformulate the nonlocal problem ((1.2.1]) as a local degenerate
or singular problem on the half space Rf *1. For this, taking z = (z,t) € Rf +1 we define

Dl’Z(RfH, t1=2% dz) as the completion of CEO(RJXH) with respect to the norm

HU”DL?(Rf*'l,tl*?S dz) = \//R$+1 t172S|VU(SU, t)|2 dx dt.

It is well-known that there exists a continuous trace map
Tr: DRARYH 1725 d2) — D3(RY)

(see e.g. [13]), which is onto, see [7]. By [§], for every u € D*2(R"), the minimization
problem

min {HI/VH2 : We DMERYT 42 dz), T W = u}

D1’2(Rf+1,t1*25 dz)

admits a unique minimizer U = H(u) € DH2(RY !, #1725 dz), which can be obtained by
convoluting v with the Poisson kernel of the half-space Rf 1 and weakly solves

—div(t!=2*VU) = 0 in RY
— lim '"20,U = ks(—A)*u in RN x {0},
t—0t
where (L)
-5
Rg = m > 0,

that is, for all W € DLQ(RJI“,H*?S dz)

/ o ATEVH) ) - YW (1) didt = (0, T W ) e,
R+

As a relevant consequence, a function v € D*?(RY) satisfies (1.2.6) if and only if its
extension U = H(u) weakly solves

—div (t!7%#VU) =0 in RYT,

TU =u in RY x {0}, (1.2.9)
— 11%1-&- tH1720,U = kshu  in Q x {0},
t—



i.e

/ VU (2,t) - Vo(x,t) do dt = kg / huTr ¢ dz (1.2.10)
Rf+l Q

for every ¢ € C°(RY ™) with Tr¢ € C2(Q).

After describing a more detailed functional setting for the extended problem
at the beginning of Section [2.3] in Subsection we introduce the auxiliary problem
obtained by applying a diffeomorphism, inspired by [3], which straightens the
boundary of the domain 2. This deformation is thought to ensure that the extended
equation is preserved by reflection through a straightened vertical boundary. In Sub-
section first we provide some coercivity-type inequalities, and then we develop an
approximation procedure in order to overcome the difficulties related to the lack of regu-
larity at Dirichlet-Neumann junctions. Specifically, we approximate the potential h with
potentials vanishing close to the boundary and the Dirichlet N-dimensional region with
smooth (NN + 1)-dimensional sets having a straight vertical boundary. Then we construct
a sequence of solutions to certain boundary value problems on the approximating domains
which enjoy enough regularity to derive Pohozaev-type identities and, once we prove that
such a sequence converges in the H!'-norm to the solution of , passing to the
limit, we achieve a Pohozaev-type identity even for solutions to the straightened problem

(2.3.11)), see Subsection for details. Subsection [2.3.4] is devoted to the proof of a

monotonicity formula for the Almgren frequency function @D, which in turn is used
to perform a blow-up analysis in Subsection [2.3.5] Here, the asymptotic behaviour at
xg € 0N of solutions to , and consequently of solutions to , turn out to be
related to the eigenvalues and the eigenfunctions of the following weighted spherical eigen-
value problem with mixed Dirichlet-Neumann boundary conditions on the unit half-sphere

—divgy (05 2 Veny) = 05 %y in SY,

=0 on SN n {6y > 0}, (1.2.11)
lim H}V_ffvgsz v=0 on SN 1N {Oy < 0},
9]\r+1—>07L

where v = (0,...,0,—1) (see Section . In order to give the variational formulation
of (1.2.11), we define H(SY, G}V*_fde) as the completion of C*°(S}) with respect to the

norm

1/2
10l 11 g2-20a) = (/SN 0% 2 (IVsn d(0) 2 + 42(0)) dS> .

N+1
+

Let Ho be the closure of 030(@\ S1) in Hl(Sﬂ\r],H}V—fde’). We say that p € R is an
eigenvalue of ((1.2.11]) if there exists ¥ € Hp \ {0} such that

/SN ONLI Vvt - VenddS = ”/sw ONiivpdS for any ¢ € Ho. (1.2.12)
+

+

By classical spectral theory, problem (|1.2.11f) admits a diverging sequence of real eigen-
values with finite multiplicity {p}x>0. In Appendix we derive the following explicit



formula for such eigenvalues
pe = (k+s)(k+N—s), keN. (1.2.13)

Forall k € N, let M}, € N\{0} be the multiplicity of the eigenvalue py and {Yj, 1 }m=1,2, .0,
be a L*(SY, Q}V*ff dS)-orthonormal basis of the eigenspace of problem associated
to pg. In particular,

(Yim k€N, m=1,.., M} (1.2.14)

is an orthonormal basis of L2(SY, 63 %dS).

A first result involving problem is a sharp description of the asymptotic be-
haviour of solutions to around xg € 0f), contained in Theorem More
precisely, we prove that there exist kg € N and an eigenfunction Y of problem
associated to the eigenvalue p, = (ko + s)(ko + N — s) such that, letting zp = (z0,0),

U(Zo + )\Z)

o ts %VW“Y<Z> in HY(B;f,t172%dz) as A — 07,

2|

where H'(Bi,t172dz) is the weighted Sobolev space defined at the beginning of Section
Actually in the proof of Theorem we give a more precise characterization of
the angular limit profile Y as a linear combination of the orthonormalized eigenfunctions
{Yiomtm=12,.., My, of associated to the eigenvalue j, with coefficients explicitely
given by formula ([2.3.176)).

Then we are able to derive also a similar sharp description of the asymptotic behaviour
of solutions to at zg € 092 (we refer to Theorem , i.e. we infer that there
exist kg € N and an eigenfunction Y of problem associated to the eigenvalue
ke = (ko + s)(ko + N — s) such that

u(zo + Az)
)\ko-f—s

— |z[Fotsy (ﬁ,()) in H*(B}) as A — 07,
where H*(B]) is the usual fractional Sobolev space on the N-dimensional unit ball Bj,
see e.g. [52].

As a consequence of the above asymptotic expansions, we deduce the following strong
unique continuation principles for problems (1.2.9) and (1.2.1)) (see Theorem [2.3.32)), that

is, respectively:

(i) if U is a weal solution to (1.2.9) such that U(z) = O(|z — 20|*) as z — 2o for any
k € N, then U =0 in RY™;

(ii) if u is a weak solution to (1.2.1]) such that u(z) = O(|Jz — z0|*) as © — z for any
k€N, then u =0 in RY.

Finally, in Appendix we present some boundary regularity results for singu-
lar/degenerate equations in cylinders, while in Appendix we prove (|1.2.13]), through
a classification of possible homogeneity degrees of homogeneous solutions to (A.2.1]).



In Section we develop a monotonicity approach to the study of the asymptotic
behavior and unique continuation from the edge of a crack for solutions to the following
class of Dirichlet boundary value problems

{—Au(z) = f(2)u(z) in Q\T,

(1.2.15)
u=20 on I,

where Q € RV*! is a bounded open domain, N > 2, I' ¢ R¥ is a closed set defined as
I ={(,zn) = (z1,...,2ny_1,2n8) € RN : 2y > g(2)}, (1.2.16)

for some function g € C2(RN~1). In order to do this, we fix a point on the edge of I" and,
without loss of generality, we may select our coordinate system in such a way that the
origin coincides with this point, and

g(0) =0, Vg(0)=0, (1.2.17)
namely the boundary of I" is tangent to the hyperplane z = 0 at 0, thus having that
lg(2)| = O(|2'*) as |2/| — OF. (1.2.18)
Moreover we assume that there exists a suitable radius R > 0 such that
g(z') —2'-Vg(2') >0 for any 2’ € B}%. (1.2.19)

We observe that this assumption can be removed arguing as in the fractional case, that
is applying a suitable diffeomorphism to straighten the boundary before carrying out the
approximation procedure.

In the setting described above, we are interested in studying local asymptotics and
strong unique continuation property at the origin for solutions to the following boundary
value problem

{_Au =fu in By \T, (1.2.20)

u=0 on I’
where f: By — R is measurable and bounded in B, \ Bs for every § € (0, R).

We contemplate two alternative sets of assumptions on f, namely we assume either
that

li =0, H1-1
lim, &4(r) (H1-1)
A 1 [" A
&(r) c LYo, R), / &1(8) 4 c LYo, R), (H1-2)
r rJo s
where the function ¢ is defined as
(r) := sup |z|*|f(2)| for any r € (0, R), (H1-3)
2€B,

10



or that

T (r, ) =0, (H2-1)
?7(?;,f) e 110, R), i/OT@ds e L'(0, R), (H2-2)
and
V/ € Lis(By\ {0}), (H2-3)
W e 110, ), i/OTWdS e LY0, R), (H2-4)
where
Brh) = sup Jo, P (H25)

wermn (Bo\(o} Jp, [Vul?dz + 252 [ Juf?dS
for every r € (0, R) and h € L (B 7 \10}). We refer to Section [2.4| for some examples of

loc
functions verifying the above assumptions.
In order to give a weak formulation of problem ({1.2.20]), we introduce for every R > 0

the space H}:(Bpg) defined as the closure in H'(Bpg) of the subspace
Co¢(Br) == {u € C*(Bg) : u = 0 in a neighborhood of T'}. (1.2.21)
It actually holds that
H}(Bg) = {u € H'(Bg) : mr(u) =0},

where 71 denotes the trace operator on I', see Lemma in Section [2.4}
Hence we say that u € H'(Bjp) is a weak solution to (1.2.20) if

u € HA(Bp),

/ Vu(z) - Vo(z)dz — / F(2)u(z)p(z)dz =0 for any p € C°(B, \T). (1.2.22)
By B

Since our domain is highly non-smooth due to the presence of the crack, as in the above
case we use an approximation argument to derive a monotonicity formula. Specifically, the
proof of the monotonicity formula is based on the differentiation of the Almgren quotient
defined in , which in turn requires a Pohozaev-type identity formally obtained by
testing the equation with the function Vu-z; however our domain with crack doesn’t verify
the exterior ball condition (which ensures L2-integrability of second order derivatives, see
[2]), thus Vu - z could be not sufficiently regular to be an admissible test function. Hence,
in order to overcome this difficulty, in Subsection we construct first a sequence of
regular sets which approximate our cracked domain with the twofold features of satisfying
the exterior ball condition and being star-shaped with respect to the origin, and then a
sequence of solutions of some approximating problems on such domains, converging to
the solution of the original problem with crack. Thus for each approximating problem we
have enough regularity to derive a Pohozaev-type identity with some remainder terms,

11



due to interference with the boundary, whose sign can nevertheless be established thanks
to star-shapeness conditions (see Subsection . Then, passing to the limit in the
resulting Pohozaev-type inequalities for the approximating problems, we obtain inequality
, which allows us in Subsection to estimate from below the derivative of the
Almgren quotient and to prove that it has a finite limit at 0 (Lemma . Then, in
Subsection we perform a blow-up analysis for scaled solution: in particular, in the
classification of possible vanishing orders and blow-up profiles of solutions, the following
eigenvalue problem

{_Asw =pt onSV\ ST, (1.2.23)

=0 on Sf ,
on the unit N-dimensional sphere with an half-equator cut plays a crucial role.

We say that p € R is an eigenvalue of (|1.2.23)) if there exists an eigenfunction ¢ €
HE(SN\ S]), ¥ # 0, such that

| Vovv-Voxods = [ woas

for all ¢ € H}(SV\ ). By classical spectral theory, (1.2.23)) admits a diverging sequence

of real eigenvalues with finite multiplicity {u}x>1; these eigenvalues are explicitly given

by the formula

k(k+ 2N —2)
4 Y

see Lemma[2.4.30] For all k € N\ {0}, let M}, € N\ {0} be the multiplicity of the eigenvalue

. and

iy = ke N\ {0}, (1.2.24)

{Yiem}m=12.. M, bea L2(SN)—orth0n0rmal basis
of the eigenspace of ([1.2.23)) associated to .

In particular {Yim : k € N\ {0},m = 1,2,..., My} is an orthonormal basis of L?(S").
In Subsection by means of an auxiliary problem obtained by straightening the

crack, a first result consists in proving that scaled solutions of problem converge

to a homogeneous limit profile, whose homogeneity order is related to the eigenvalues of

problem (|1.2.23]). More precisely, we prove that

(1.2.25)

u(Az) ko /2 2 S N
Neor2 2]/ %4 T in H'(B1) as A —» 07, (1.2.26)

for some ky € N\ {0} and some eigenfunction 1) of problem associated with the
eigenvalue py,. A strongest version of the above result can be found in Theorem
where we actually give a more precise description of the limit angular profile ¢: indeed,
if My, > 1 is the multiplicity of the eigenvalue py, and {Yj,; : 1 < i < My} is as in
, then the eigenfunction v in can be written as

mko

P(0) = ZBiYko,ia (1.2.27)
=1

12



where the coefficients 3; are given by the integral Cauchy-type formula .

A relevant consequence of our asymptotic analysis is the following strong unique contin-
uation principle, whose proof follows straightforwardly from (see Theorem:
if u is a weak solution to such that u(z) = O(]z|¥) as |z| — 0 for any k € N, then
u=0in Bp.

Finally, in Chapter [3| we present a capillarity theory of nonlocal type in which the
long-range particle interactions are possibly anisotropic and not necessarily invariant un-
der scaling. In particular, the lack of scale invariance will be modeled via two different
fractional exponents s1,s2 € (0,1) which take into account the possibility that the con-
tainer and the environment present different features with respect to particle interactions.
In order to describe in more details our setting, we first discuss the type of particle in-
teractions that we take into account and the variational structure of the corresponding
anisotropic nonlocal capillarity theory. Owing to [9], the most widely studied interaction
kernel of singular type in problems related to nonlocal surface tension is

Ko(C) = C\}HS for all ¢ € R\ {0}, (1.2.28)

with s € (0,1). We aim at considering more general kernels than the one in ,
with a twofold objective: on the one hand, we wish to initiate and consolidate a nonlocal
capillarity theory in an anisotropic scenario; on the other hand, we want to also model
the case in which the particle interaction of the container has a different structure with
respect to the one of the external environment. The first of these two goals will be pursued
by considering interaction kernels that are not necessarily invariant under rotation, the
second by taking into account interactions with different homogeneity inside the container
and in the external environment.

More specifically, givenn > 2, s € (0,1), A > 1 and ¢ € (0, 00|, we consider the family of
interaction kernels, denoted by K(n, s, A, ), containing the even functions K: R™\ {0} —
[0, +00) such that, for all ¢ € R™\ {0},

XB,(0)(C) A
At < K(Q) < KRG

(1.2.29)

We use the notation B,(0) = R"™ when p = oo. Also, for every h € N, we consider the
class K"(n, s, A, o) of all the kernels K € K(n,s, ), 0) N C*(R™ \ {0}) such that, for all
¢ e R™\ {0}, \

DK < e

forall 1 <j <h. (1.2.30)

We also say that the kernel K admits a blow-up limit if for every ¢ € R™\ {0} the following
limit exists:
K*(¢) := lim """ K(r¢). (1.2.31)

r—0t
For each kernel K we consider the interaction induced by K between any two disjoint
(measurable) subsets E, F' of R defined by

Ix(E,F) ::/E/FK(x—y)dmdy. (1.2.32)
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For instance, with this definition, the so-called K-nonlocal perimeter of a set E associated
to K is given by the quantity Ix(F, E), which is the interaction of the set E with its
complement with respect to R™ (here, as usual, we use the notation £ := R"\ E). See [14]
for several results on the K-nonlocal perimeter. In particular, if K is the fractional kernel
in , then the notion of K-perimeter boils down to the one introduced by Caffarelli,
Roquejofire and Savin in [9].

Given an open set  C R", 51, so € (0,1) and o € R, for every K; € K(n,s1, A\, 0)
and Ky € K(n, s2, A, 0) and every set E C ) we define the functional

E(E) :=I1,(E,E°NQ) + 0 I1(E, Q). (1.2.33)

Throughout all Chapter |3, we will use the short notation I := Ik, and I := I,.

We observe that when o > 0, one could reabsorb it into the second interaction kernel
up to redefining Ko into oKs. In general, one can think that ¢ “simply plays the role
of a sign”, say it suffices to understand the matter for o € {—1,41}, up to changing K,
into |o] K2. However, we thought it was convenient to consider o as an “independent
parameter”, since this makes it easier to compare with the classical case.

Moreover, given a function g € L*(Q2), we let

C(E):=&(F)+ /Eg(x) dx. (1.2.34)

The setting that we take into account is general enough to include anisotropic nonlocal
perimeter functionals as in [59) [14], which, in turn, can be seen as nonlocal modifications of
the classical anisotropic perimeter functional. In this spirit, the functional in can
be seen as a nonlocal generalization of classical anisotropic capillarity problems, such as
the ones in [63]. As customary in the analysis of nonlocal problems arising from geometric
functionals, the long-range interactions involved in produce significant energy
contributions which will give rise to structural differences with respect to the classical
case.

In this context, our goal is to study the minimizers of the nonlocal capillarity func-
tional C among all the sets E with a given volume. The case in which K;({) = K2(¢) =
K(¢) as in has been studied in [60, 27, 28]. Here instead we are specifically inter-
ested in the nonlocal capillarity energy in with two different types of interactions
between E and 2N E° and between E and Q€ as modeled in ([1.2.33).

Notice that the volume constrained minimization of the functional in is well-
posed, according to Proposition [3.1.2] in Section [3.1] In particular, we give a formulation
of Proposition which is new in literature, though its proof relies on an appropriate
variation of standard techniques, see e.g. [9, [60].

In Section we show that the volume constrained minimizers (and, more generally,
the volume constrained critical points) obtained in Proposition satisfy a suitable
Euler-Lagrange equation (under reasonable regularity assumptions on the domain and on
the interaction kernels), according to Proposition

A crucial step of any capillarity theory is the determination of the contact angle be-
tween the droplet and the container (in jargon, the Young’s law), which relies on a delicate
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cancellation of the singular kernel contributions, which requires the determination of an
auxiliary angle which is “symmetric” (in a suitable sense of “measuring singular inter-
actions”) with respect to the contact angle itself. For this, in Section we establish
a cancellation property which has been thought in order to reproduce a cancellation of
terms as in [60], highlighting that in this context a new construction is needed due to the
fact that the function a; is anisotropic.

Then in Section we present two versions of the nonlocal Young’s law depending on
whether s; # s9 or s1 = s9, since in our setting the Young’s law is very sensitive to the
relative homogeneity of the interacting kernels. Loosely speaking, when s; < so, at small
scales (which are the ones which we believe are more significant in the local determination
of the contact angle), the interaction between the droplet and the exterior of the container
prevails with respect to the one between the droplet and the interior of the container. Thus,
in this situation, the sign of the relative adhesion coefficient o becomes determinant: in the
hydrophilic regime o < 0 the droplet is “absorbed” by the boundary of the container, thus
producing a zero contact angle; instead, in the hydrorepellent regime o > 0 the droplet is
“held off” the boundary of the container, thus producing a contact angle equal to 7; finally,
in the neutral case o = 0 the behavior of the second interaction kernel becomes irrelevant.
When ¢ = 0 and additionally the problem is isotropic, the contact angle becomes /2.
Conversely, when s; > so, the interaction between the droplet and the interior of the
container is, at small scales, significantly stronger than that between the droplet and the
exterior of the container. In this situation, the relative adhesion coefficient o does not play
any role and the contact angle is determined by an integral cancellation condition (that
will be explicitly provided in (3.3.6)). When the first kernel is isotropic, this condition
simplifies and the contact angle is proved to be /2.

Section deals with the possible complete stickiness or detachment of the nonlocal
droplets. Indeed, we think that the detection of a contact angle in a nonlocal capillarity
setting is an interesting feature in itself, especially when we compare this situation with
the stickiness phenomenon for the nonlocal minimal surfaces, as discovered in [29]. More
specifically, for nonlocal minimal surfaces, the long-range interactions make it possible
for the surface to stick to a domain (even if the domain is smooth and convex), thus
changing dramatically the boundary analysis (moreover, this phenomenon is essentially
“generic”, see [31]). The possible detection of the contact angle for the nonlocal capillarity
theory instead highlights the fact that the boundary analysis of this theory is somewhat
“sufficiently robust” with respect to the classical case. Roughly speaking, we believe
that this important difference between nonlocal minimal surfaces and nonlocal capillarity
theory is due to the fact that in the latter the mass is always placed in a bounded region,
whence the energy contributions coming from infinity have a different nature than the
ones occurring for nonlocal perimeter functionals.

We also stress that conditions (3.4.2)) and (3.4.4) basically state that if the kernel Ky
is “too strong”, then one cannot expect nontrivial minimizers. Roughly speaking, while
Proposition always guarantees the existence of a minimizer, when conditions
and are violated the minimizer can “detach from the boundary” (or “completely
stick to the boundary”), hence the notion of contact angle becomes degenerate or void.
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That is, while for the existence of minimizers we do not need to require any bound on
the relative adhesion coefficient ¢ in dependence of the interaction kernels, to speak about
a contact angle some quantitative condition is in order (roughly speaking, otherwise the
droplet does not meet the boundary of the container with a nontrivial angle, rather prefer-
ring to either detach from the container and float, or to completely stick at the boundary
by surrounding it). The configuration in which the droplet tends to be squashed on the
container, thus producing a contact angle ¥ close to zero, is sketched in Figure [1.2

Figure 1.2: The configuration in which the droplet tends to stick to the container.

The opposite situation in which the droplet tends to detach from the container, thus
producing a contact angle ¢ close to 7, is depicted in Figure [1.3]

Figure 1.3: The configuration in which the droplet tends to detach from the container.

These concepts are made explicit in Theorems and

Section is devoted to discuss the existence and uniqueness theory for the equation
prescribing the nonlocal angle of contact between the droplet and the container. Addi-
tionally, in Remark at the end of Section [3.6] we will point out that the uniqueness
statement in Theorem heavily depends on the strict positivity of the kernel and it
fails for kernels that are merely nonnegative.
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Chapter 2

Some strong unique continuation
results from the boundary

2.1

Notations

We list below some symbols used throughout Chapter [2| and the relative description.

Symbol Description

Rf“ The half-space RY x (0, 4+00)
SN The unit sphere {(¢',0x,0n+1) € RN T2 |0/)2 + 6% + 6%, =1}
Sﬂ\_f The unit half-sphere {(#',0y,0n11) € SV : On 41 > 0}
Sh-1 The boundary of S¥, i.e. S¥=1 x {0} identified with SN¥~1
sV The set {(01,...,0y) €SV "1: 0y <0}
Sf_ The set {(0’,6N,0N+1) S SN : 0N+1 =0 and 9]\[ > O}
ds The volume element on N-dimensional spheres
B, The ball in R¥+! centered at 0 with radius r, i.e. {z € RVl |z| <7}
B The half-ball in RN*! given by B, NRY ™!
Ot B The spherical shell given by 9B, NRY ™!
Bl.(x0) The ball in RY centered at x¢ with radius r, i.e. {x € RN : |z —zo| <7}
Bl The ball in RY centered at 0 with radius 7, i.e. B.(0)
2.2 An introduction to the unique continuation property

In this section we exhibit a brief introduction to the unique continuation principle. With
regard to this property, three different notions are available in the literature.

The strong unique continuation property is said to hold for a family of functions,
e.g. the set of solutions to a certain partial differential equation, if no solution in
the family, except for the zero function, has a zero of infinite order. We notice that
the sentence has a zero of infinite order acquires a different meaning depending on
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the context. In the case of a C*°-function, we will say it has a zero of infinite order
at some point xg if all its derivatives at xg are zero. For example, the set of analytic
functions trivially satisfies the strong unique continuation principle. Instead, in the
case of a non-smooth function, we will assert it has a zero of infinite order at some
point z if

u(z) = O(|x — x0|¥) as & — xq for all k € N,

e A weaker version of the strong unique continuation property is the following one:
we say that the set of solutions to a certain partial differential equation satisties
the so-called weak unique continuation property if no solution, except for the zero
function, vanishes on some non-empty open set. We remark that if a family of
solutions satisfies the strong unique continuation principle then it trivially verifies
the weak unique continuation property.

e Finally, we assert that a family of functions enjoys the unique continuation property
from sets of positive measure if no function, besides possibly the zero function,
vanishes on a set of positive Lebesgue measure. In other words, if a function in the
family is non-trivial then its nodal set has zero Lebesgue measure.

A way to obtain the strong unique continuation property for solutions to some linear
second order elliptic equation on an open subset of RY is to prove their analyticity, since
in that case the strong unique continuation property would trivially follow. Hilbert’s
nineteenth problem asks whether the solutions to linear second order elliptic equations
with analytic coefficients are themselves analytic. Several contributions occured over the
years in order to give an answer to this problem. The first one was by Bernstein who
proved in 1904 the analyticity of solutions of class C® in dimension 2; then Petrowsky
improved this result in 1939 requiring less regularity for solutions.

When coeflicients are not analytic, there is no hope for solutions to be analytic; thus
in this case the strong unique continuation principle is not trivial to be proved, hence one
should use different methods. For instance, if we consider a linear second order elliptic

operator
N

Lu=— Z_ 88% (aijgj) + W - -Vu+Vu (2.2.1)

7,7=1
for some vector field W and for some potential V', where a;; are the components of some
matrix-valued function A(z), an approach to study the unique continuation property in
the presence of non-analytic coefficients is the Carleman method, based on some weighted
a priori estimates (see [I1]); indeed, Carleman proved the strong unique continuation
property in the case where N = 2, a;; € C?,V and W belong to L>®. Other contributions
in this field were later given by Aronszajn, Jerison-Kenig and Sogge. In 1992 Wolff proved
the weak unique continuation principle for N > 3, a;; € COl Ve LN/2 and W e LV,
Under the same hypotheses, Koch and Tataru (2001) were able to prove the strong unique
continuation principle using the Carleman estimates. We observe that in the context of
Lebesgue spaces, the assumption V € LV/? is sharp. In order to show this, we exhibit a
counterexample provided by Jerison and Kenig in 1985.
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Example 2.2.1. We consider

1 1+€
f(z) =exp ( (log> ) for every |x| < 1, with € > 0. (2.2.2)

|z
Then by direct calculations, Af =V f in By, with

1\* 1
V(z) ~ (1+¢)? <10g |x|> Fe as |z| — 0. (2.2.3)

From this, we deduce that V € LP(By) if and only if
1
/ N (= logr)* P+~ dr < 400,
0

thus if and only if 2p — N + 1 < 1, that is p < N/2. We conclude by observing that f is
non-trivial and for all k € N it holds that

lim f(r)r—* =0,

r—0

namely f has infinite order of vanishing at the origin. Thus the family of solutions to
Af =V f withV as in (2.2.3) does not satisfy the strong unique continuation principle.

Another approach to get unique continuation results for solutions to elliptic equations
has been developed by Garofalo and Lin, based on some local doubling properties obtained
via the so-called monotonicity formula for the Almgren frequency function, which is defined
as the local energy over the mass of non-trivial solutions near a fixed point xg. To be more
clear, we show the monotonicity formula in a simple case.

Example 2.2.2. Using the same notation as in (2.2.1), the frequency function associated
to a non-trivial solution of Lu = 0 in By, with A = Idy and W = 0, around xog = 0 is
given by

r/ [|[Vul® + Vu?] dz
B,

/ lu|? dS
OBy

Once the boundedness of (2.2.4) is proved, it is possible to derive a doubling type condition,

that is
/ w?de < C’doub/ u? de,
Boy B

T

N(r) = (2.2.4)

for some positive constant Cyoup and then to prove the strong unique continuation property.
To this goal, let us suppose that u(x) = O(|z|¥) as x — 0 for all k € N and let ko € N be

C
such that 22]30(??\[ < 1. In particular, we have that
1 2ko+N
/ u?dr < C’doub/ wrdr < ... < Cgoub/ wrde < C% ..Co <2k>
B By /2 B1/2k k large
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which implies that uw =0 in By, as desired.

In 1986 Garofalo and Lin proved the strong unique continuation principle for solutions
to a perturbed problem in the presence of variable coefficients. In particular, they consider
a class of potentials that are allowed to be very singular, namely V(z) = ¢/|z|™ with c € R
and 0 < m < 2. If m > 2 the strong unique continuation property fails. Furthermore, in
1990 Fabes, Garofal and Lin proved the weak unique continuation principle for V' in some
Kato class, see [34].

2.3 A fractional elliptic problem

In this part of the thesis we present the results contained in [25]. In particular, we
investigate fractional elliptic equations of type in a bounded domain Q c RY,
where N > 2, s € (0,1), and the potential h satisfies , alming to prove the strong
unique continuation property and local asymptotics of solutions at any fixed point xg € OS2
where the boundary of € is locally of class C'' and some outer homogeneous Dirichlet
boundary condition is assigned. These two assumptions are made explicit in and
for some suitable R > 0 and function g € CHH(RY~1). Without loss of generality,
up to translation and rotation, we can assume that ¢ = 0 and

g(0)=0 and Vg(0)=0. (2.3.1)

We recall that a weak solution to is any function u € D*2(R") such that
holds true, where the space D%2?(RY) is defined in Section

In order to remedy the difficulty of defining a suitable Almgren’s type frequency func-
tion in a non-local setting, we apply the Caffarelli-Silvestre extension technique to trans-
form the non-local problem in the local problem performed in , see Section for
the contruction of the local problem. Thus, under assumptions ([1.2.3) and , the
extension U = H(u) solves

—div (t'"*VU) =0 in B},

—tl_i}(])aJr t'1=29,U = kshu in F;R ={(2',zn,0) € By : xy < g(a')}, (2.3.2)
U=0 in I‘;R ={(2/,zn,0) € By : xn > g(2)}.

In this new local context, we define for all 7 > 0 the weighted Sobolev space H'(B;", 172 dz)
as the completion of C°°(B;") with respect to the norm

10135 11200y = \/ [ o= U 9UP) de
By

It is well known, see e.g. [52, Proposition 2.1], that there exists a well-defined continuous
trace operator
Tr: HY(B}, t'7% dz) — L¥ ) (B);
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in particular there exists a positive constant C'y s depending only on /N and s such that,
for all 7 > 0 and U € HY(B;", #1725 dz),

1T ()17 2+ o

By < Cn,s /B+ 12 (r2|U(2) > + |VU(2)?) dz, (2.3.3)

where 2*(s) is given in (|1.2.8)).
The suitable weighted Sobolev space for energy solutions to (2.3.2)) is H 1£+R (BE, 1725 dz),
g,

defined as the closure of C2° (FE\F;R) in H'(B},t'7?% dz). By energy solution to (2.3.2)
we mean a function U € th (Bj,t'72° dz) such that
g, R

/+ 2V (0, t) - V(x, t) dz — Hs/ hTrUTr¢dr =0 forall ¢ € C2°(Bf U L' R)
Bg ’

FmR

2.3.1 A diffeomorphism to straighten the boundary

In this section we exhibit a similar construction as in [3] in order to obtain the auxiliary
problem (2.3.11)) where the Dirichlet-Neumann junction coincides with the hyperplane
xy = 0. For this, we consider the set of variables (y,t) € RY x [0,4+00), with y =
(v, yn) = (Y1, -, yn—1,YN)- Let p € C°(RN~1) be such that p > 0, supp(p) C B} and

p(y)dy’ = 1. For every § > 0 we define

RN-1

N . s—N+1 y/
psly) =0""""p (5 )

Let us define also, for every j =1,..., N — 1,

(PyN * ang) (y/) if y/ € RN?l? YN > 07

Gy yn) =
0y, 9(y") if y/ € RN=1, yn =0,
where * denotes the convolution product.
It is easy to verify that, forallj =1,...,N—-1,G; € C"’O(Rf), G is Lipschitz continous
in Rﬁ, and %—ij € L°(RY) for every i € {1,...,N}. Moreover, for all j =1,...,N —1
andi=1,..., N,

G‘
yNaj

is Lipschitz continuous in ]Rf .
i

As a consequence, we have that, letting
G] : RN — Ru G](ylayN) = Gj(y/’ ’yND

and
Vi RY =R, (v, yn) = y; — ynGi (¥ yn),
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CNJJ- is Lipschitz continuous in RY and ¢; € CLH(RY) (i.e. 9; is continuously differentiable
with Lipschitz gradient) for all j =1,..., N — 1. Let

G yn) = (G1(y, un), Ga (v, un)s -, Gn (Y uw)

and denote as Jz(y', yn) the Jacobian matrix of G at (/, yn). Then Jg € L®(RY, RNWV-1))
and

G(y,yn) = V()| < Clyn| for all (v/,yn) € RY, (2.3.4)
for some constant C' > 0 independent of (v, yn).
Let us consider the local diffeomorphism F: RVt — RN+ defined as
F(ylv YN, t) = (¢1(y/7 yN)v sy ¢N—1(y/7 yN)) YN + g(y/)) t) (235)

We observe that F is of class C1! and F(y/,0,0) = (v/,g(y'),0), namely F~! is straight-
ening the boundary of the set {(z/,2n,0) : znx < g(2)}.
Direct computations and (2.3.4)) yield that

Jac F(y,yn,t) = Jac F(y', yn) (2.3.6)
- Z/N%%f —yN%%; —YN 3'3&1 -G1 —yn 25’; 0
B 8GN _ OGN _ OGN _ =~ OGN_
TUNTa YN TGy L=unGno —Gna—uv T O
o 0 o
o W) 7 W) g (Y) 1 0
0 0 0 0 1
Idyv-1 —ynJg | =Vag(y') +O(yn) | O
= (Vo))" 1 0l
o’ 0 1

where Vg(y/') is meant as a column vector in R¥~!, 0 is the null column vector in RY~1!
and (Vg(y'))T,07 are their transpose; from now on, the notation O(yy) will be used to
denote blocks of matrices with all entries being O(yy) as yy — 0 uniformly with respect
to ¢ and t.
Setting J(v',yn) = Jac F(y',yn), from and the fact that ¢ € CHH(RN1) it
follows that Vg(y') = O(|¢/|) as |y/| — 0, then
det J(y',yn) = 1+ [Vg(y)* + Olyn) = 1+ O(ly/*) + O(yw) (2.3.7)

as yy — 0 and |y/| — 0.
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In particular we have that det Jp(0) = 1 # 0; therefore, by the Inverse Function
Theorem, F' is invertible in a neighbourhood of the origin, i.e. there exists R; > 0 such

that, from ([2.3.7)
oy, yn) :=det J(y',yn) >0 in Bp, (2.3.8)

and F is a diffeomorphism of class Cb! from By, to U = F(Bg,) for some U open
neighbourhood of 0 such that i C Bg. Furthermore

F'UNT, p) =Ty and F'UNT, ) =TF,
where, for all » > 0, we denote
I :={(,yn,0) € B, :yny <0}, T :={(y,yn,0) € By :yn > 0}.
Since
F~tec™U,Bg,), FecC“Y(Bg,,U), FO)=F10)=0 Jpr0)=Jp1(0)=Tdny1,
we have that

Jp-1(z) =Idny1 +O(Jz|) and F~Yz) =z 4+ O(|z]?) as |z| — 0, (2.3.9)
Jr(y) =Idy11 +O(y)) and F(y) =y +O0(lyl*) as |yl = 0. (2.3.10)

If U is a solution to (2.3.2), then W = U o F solves

—div (t'"#AVW) =0 in Bf; ,
lim (t'1"2AVW -v) = ksh TTW  in T |
Jim ( v) =ksh TTW  in 7 (2.3.11)
W=0 inl'} .
1

where v = (0,0, ...,0,—1) is the vertical downward unit vector, A is the (N +1) x (N +1)
variable coefficient matrix (not depending on t) given by

Ay) = (W) ((T )™ | det J(y)l, (2.3.12)

and

h(y) = a(y)h(F(y,0)), y €Ty, .
Equation ([2.3.11)) is meant in a weak sense, i.e. W belongs to HI{JF (B}Jg1 , 11725 dz) (defined
Ry

as the closure of C’éx’(Bj.g1 \I‘El) in Hl(Bgl,tl_zs dz)) and satisfies

J

for all ¢ € CSO(BEI UTl'g ).

=2 A(y) VW (y, ) - Vo(y, t) dz — /is/ AT W Tr¢dy = 0 (2.3.13)

T
Rq FRl
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We observe that A is symmetric and, in view of (2.3.9)—(2.3.10)), uniformly elliptic if
Ry is chosen sufficiently small; furthermore A has C%! coefficients. We also remark that,

under assumption (|1.2.2)), 5
he WHP(Ty ). (2.3.14)

From (2.3.6) it follows that
(M(y'.yn))~" | 0
Iy yn) = ( | !

where 0 is the null column vector in RY and

Idy—1 —ynJgz | =Vg(y') + O
M(y',yn) = AL 94/) + Oluw) : (2.3.15)
(V)" ‘ 1
From ([2.3.6) and (2.3.8)) one can deduce that
det M(y',yn) = a(y',yn) >0 in Bjy,. (2.3.16)

Let us define
B(y',yn) := det M(y',yn) (M (y',yn))
By (2.3.15)) and a direct calculation we have that

eSO GO i+ 0w
—5—;5—;+0<ym 1+ 3 |ag| +O0(yn) - g ayN.1+O<yN) Vgt Olun)
B= : :
ay?vg 1 5@/91 +0(yn) 3y?vg 1 <9y2 > TON) e Lt ,;éz |89 | +O0(yn)
J
—(Vg)" +O(yn) 1+ O(yw)
(2.3.17)
Then (J(y',yn)) "' can be rewritten as follows
sy B |0
('](y,ayN))_l = : )
o’ 1
thus from (2.3.12)) it turns out that
D 0
Aly) = ) : (2.3.18)
0 Ja(y)
where D = IBBT From , -, and (| it follows that
ldy_1 + O(ly'|?) + Oluw) \ Olyy)
D(y',yn) = 5 : (2.3.19)
Oyw) 1 O() + Olyw)
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where here O(yy), respectively O(|y|?), denote blocks of matrices with all entries being
O(yn) as yn — 0, respectively O(|y/|?) as |y'| — 0. In particular we have that

A(y) = Idn+1 +O(Jyl) as Jy| = 0. (2.3.20)
We set A(y)
Y)z -2
w(z) == T (2.3.21)

observing that p(z) > 0 in Bpg,, possibly choosing R; smaller, thanks to (2.3.20). Thus
we are allowed to define the vector

_ Aly)z
B(z) = ER (2.3.22)
having that
B(2) = (8(2), B () = (Z wy, ‘;((y;;) , (23.23)

since the matrix A is of the form (2.3.18)). Furthermore, up to choosing R; smaller, we
have that
HA(:I/)Hﬁ(RN+17RN+1) <2 forallye B;ﬁ‘ (2.3.24)

Moreover, for every & = (£1,...,6n,&nv11) € RV and y € Bj,, we define a further vector
in RN+ denoted with the symbol dA(y) & € such that for every i = 1,..., N + 1 the i-th
component of this vector is given by

N+1
(dAW)EE)i= > Dauly) §én- (2.3.25)
k=1
Lemma 2.3.1. Let p be as in (2.3.21) and A as in (2.3.12). Then
wz) =1+0(z]) as|z| = 0" (2.3.26)
and
Vu(z) =0(1) as|z| = 0F. (2.3.27)

Proof. Estimate (2.3.26) follows directly from (2.3.21) and (2.3.20). In order to prove
(2.3.27)), we differentiate (2.3.21), obtaining that, for all z = (y,t) € Bg,,

(AW)z-2)z | dA)zz  ZAW)z __,pz)z  dA)zz | Aly)z
|2[* |22 |22 |22 |22 |22

Vu(z) = -2

Noting that dA(y)zz = O(|z|?) as |z| — 0T since the matrix A has Lipschitz coefficients,

and using (|2.3.26]) and ([2.3.20)), we deduce that

Vi(z) = —éfg[l +0(2)] + 0(1) + 2|[ +0(2%)] = 0(1)

as |z| — 0T, thus proving (2.3.27). O
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Lemma 2.3.2. Let 8 be as in (2.3.22) and A as in (2.3.12). Then we have that, as

|z] = 07,
B(2) = 2+ O(2]2) = O(2]), (2.3.28)
Jac B(2) = A(y) + O(I2]) = Tdy41 + O(|:]), (2.3.29)
divg(z) = N + 1+ O(]z]). (2.3.30)
Proof. The result follows by combining (2.3.26)), (2.3.27)) and (2.3.20)). O

2.3.2 Approximating domains

In this section we provide some important inequalities that will be pivotal throughout our
discussion in Section[2.3] and then we construct some regular sets approximating the region
on which an homogeneous Dirichlet boundary condition is prescribed. Then we build up a
sequence of solutions to certain boundary value problems on such approximating domains
converging in the H 1(BEO,t1_25dz)—norm to the solution of (2.3.11)), for some suitable
radius Ry.

We start by recalling from [36, Lemma 2.4] the following Hardy type inequality with
boundary terms, which will be used throughout the paper.

Lemma 2.3.3. For all r >0 and w € H'(B;5,t172% d2)
2
N —2s / t1—25w2(2) dz
2 Bf |2
2
N -2
< / 2 (Vw(z) - Z> dz + < S) / t17252dS.
B ] 2r o+ B

We refer to Section for the definition of 9" B;F. In order to prove the coercivity-
type inequality (2.3.32)), we provide the following Sobolev-type inequality with boundary
terms (see Lemma 2.6 in [36]).

Lemma 2.3.4. There exists a positive constant SN,S > 0 depending on N and s such that,

for allr >0 and V € HY( B, t'7%dz),
/ t'72V2ds + / t128|VV|2dz] :
2r JotB) B

()
(2.3.31)

Lemma 2.3.5. For every a > 0, there exists r(a) € (0, Ry) such that, for any 0 < r <
r(@), ¢ € LP(By,) such that ||||r(p, ) < @ and V € HY (B}, t17dz),
1

[N—Qs

!
r

2
ERO
|TTV|2*(S)d?/) < Sn.s

N -2
/ PRAVY WV dz — kg | (| TeVPdy + 5 / 1uvids  (23.32)
B B 2r Jot+pi

2

> Cns / =2\ VV |2 dz + / e VIZ &)y ,
B B!

r
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for some positive constant C’N,S > 0 depending only on N and s.

Proof. Let us estimate from below each term on the left hand side of (2.3.32)). To this
aim, exploiting (2.3.20)), we can choose r; € (0, R;) such that, for all 0 < r < r; and
V e HY B, t'72% dz),

1
/ tH=BAVYV - VV dz > / =21V |2 dz. (2.3.33)
B 2 /Bt
Furthermore, thanks to (2.3.26)), we can assert that p > 1/4 in B, if 0 < r

<
some r9 € (0,R;). Hence, exploiting (12.3.31)), we deduce that, for all 0 < r < ro and
V e HY B, t1728 dz),

N —2s / 125,124 > ~1 /
2r Jo+pt 4Sns \/B
(2.3.34)

Let @ > 0 and let us observe that by (2.3.31) TrV € L?"(®)(B’). Hence applying the
Holder’s inequality, we infer that for all » € (0,Ry), V € HY(B},t172%dz), and ( €
LP(B%I) such that ||C||Lp(Bk1) < a,

4

/
T

2
2% (s) R 1-2s 2
| Tr V| ¥ dy — = +t IVV]©dz.
B;

2
— * 25(s)
L/ C ‘ Tr V’2dy S EN,s,p ’I“EHC HLp(Bhl) (/B/ ’TI‘ V’z (S)dy> (2335)

< 5]V}57p(i re d/f
B

for some positive constant ¢y s, > 0 (depending only on p, N, s), where

2
2%(s)
| Tr V\T(s)dy)

!
T

2sp — N
e==P~" 1 5. (2.3.36)
p
Selecting r3 = r3(a) € (0, R1) such that
= 1
KsCN s par” < — forall 0 <r <rg (2.3.37)
é;DLs

and combining ([2.3.33)), (2.3.34)), and (2.3.35]), we obtain that, for all 0 < r < r(a@) =
min{ry,ro, 3} and V € HY(B;, 1725 dz),

N -2
/+ =AY - VVdz — ks | ¢ TeV[2dy + 5 ° / . =25,V dS
B} B, o+ B

1 1-2 2 < 1 ~ _ ) /
> - t 3| VV|“dz + —— — KgC art
= AHIVVP (v ;

2
5 . 2%(s)
> Cys / 12| VV|2dz + /|TW|2 ) dy ,
B B!

2%(s)

| Tr V]2*<8>dy>

r
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SN & B | :
where Cy s := min {Z’ m}, thus proving (2.3.32)). O
For purposes that will be clear in the sequel we provide the following remark.

Remark 2.3.6. For a > 0, let r(&) and ¢y, be as in Lemma and let ¢ € LP(BY,)
be such that HCHLP(B}QI) < a. Then, for every r € (0,7(a)] and V € HY( B}, t172%dz), we
have that
(| TrV[2dy < S’N’séN,&prg&M / 25 v2dS + = / 2|\ VV)? dz.
B T o+ B 8ks J Bt
(2.3.38)

Proof. Applying (2.3.35)) and (2.3.31)), we obtain ([2.3.38)), taking into account that, for all
0 <r<r(a), (2.3.37) holds and x> 1/4. O

The main difficulty in the proof of a Pohozaev type identity for problem , which
is needed to differentiate the Almgren quotient, relies in a substancial lack of regularity at
Dirichlet-Neumann junctions. We face this difficulty by a double approximation procedure,
involving both the potential h and the N-dimensional region Fjgl where the solution to
is forced to vanish. In order to construct our approximation procedure, let n €
C*°([0,400)) be such that

n=1in[0,1/2], n=0in[l,+<), 0<n<1 and 7 <O. (2.3.39)

Let
f]0,400) = R, f(t) = n(t) + (1 — ()™,

We observe that

feC>®([0,+x)), f(t)=1forallte[0,1/2], and f(t)—4tf'(t) >0 for all t > 0.

(2.3.40)
Furthermore )
f#)>5 and f(t)> Y4 for all t > 0. (2.3.41)
For every n € N\ {0}, we introduce the sequence of functions
f(nt)
fult) = nl/8

Then, ([2.3.40) implies that

fn € C2([0,+00)), folt)=n"YE forall t € [0,1/2n], fo(t)—4t f'(t) >0 for all t > 0,
(2.3.42)

whereas ([2.3.41)) yields

1
fu(t) > in_l/S and  f,(t) > n'/3tY/* for all t > 0. (2.3.43)
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By (2.3.14]) and density of smooth functions in Sobolev spaces, there exists a sequence of
potential terms h,, € C*° (F;h) such that

hn —h in WHY(Ty). (2.3.44)
Let
Qg = Slrle ||hnHLp(r1—21) (2.3.45)
and set
Ry = T(@Q) (2.3.46)

according to the notation introduced in Lemma

Remark 2.3.7. Because of the above choice of Ry, we have that (2.3.32)) holds with any
¢ € LP(By,) such that |C| < |hy| a.e. (being hy, trivially extended in By \T'g ), for any
n € N\ {0}, r < Ry, and for all V € HY (B}, t'72 dz).

Let us define, for all n € N'\ {0},
 ={( yn,t) € B, yn = fu(D)}, (2.3.47)
with Ry as in (2.3.46)). If (v, yn,t) € yn, then from (2.3.43)) it follows that
!Bt < fu(t) = yn < Ro,
thus obtaining that

R4
t < 7% if (v, yn,t) € Yn. (2.3.48)

The approximating domains are defined as

U = {1, yn,t) € BEO cyn < fu(t)} (2.3.49)

with topological boundary
MUy, = 05 Uyp U Ty,

where v, has been defined in (2.3.47)) and
1
On = {(ylvyN) € B;%O YN < nl/g} ) Tn = {(y/ayN7t) € aBRO it > Oa yn < fn(t)}v

see Figure 2:1]

Functions f,, have been constructed with the precise aim to have that U, satisfy the
following geometric property, which will be used to estimate some boundary terms in the
Pohozaev-type identity.

Lemma 2.3.8. There exists i € N\ {0} such that, for alln > n and z = (y,t) € ’ynﬂBEO,
Aly)z-v>0 on g, (2.3.50)

where 7, has been defined in (2.3.47) and v = v(z) is the outward unit normal vector at
z € OU,.
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Tn

Tn

> YN
On nfl/s

Figure 2.1: Section of the approximating domain U,,.
Proof. For all z = (y,t) € v, N BEO we have that v = v(z) = |—2|, where n = (0,1, —f/(t)).
Hence, from ([2.3.18) and (2.3.19) it follows that

Ay)(y,t) -n = (D(y)y, a(y)t) - ((0,1), = f,(t)) = yn (1 + O(|y']) + O(yn)) — a(y)tf,(1).

Therefore, possibly choosing R; (and consequently Ry) smaller from the beginning and

recalling (2.3.7)—(2.3.8)), we obtain that

UN ot f! (1) = L(fu(t) — AtfL () if fL(H) >0
A(y)(y,t) n>9q 2 (t) = 3(fn(?) ®) i /()

2 if fr(t) <0
thus concluding that A(y)(y,?) -n > 0 in view of (2.3.42)). —

Now we construct a sequence U, of solutions to some suitable approximating problems
on U, that converges strongly to W in the weighted Sobolev space Hl(BEO,tPZS dz).
Functions U, will be sufficiently regular to satisfy a Rellich-Necas identity and make it
integrable on U,,, thus allowing us to obtain a Pohozaev type identity for U,, with some
remainder terms produced by the transition of the boundary conditions, whose sign can
anyway be understood thanks to the geometric property ; therefore, passing to
the limit in the Pohozaev identity satisfied by U, we end up with inequality for
W, which will be used to estimate from below the derivative of the Almgren frequency
function and then to prove that such frequency has a finite limit at 0 (Proposition
23.19).

Let W € H! (BEl,thS dz) be a non-trivial energy solution to , in the sense
clarified in (2.3.13). By density, there exists a sequence of functions Gy, € C’(‘:’O(BE1 \FEI)
such that G,, — W strongly in Hl(Bgl,tl_Qs dz). Thanks to , without loss of
generality we can assume that G, = 0 on ~,.

We construct a sequence of cut-off functions letting n € C°°([0,+00)) as in ([2.3.39)
and defining

] (2.3.51)
0 if yv > 0.

M RY =R, (v, yn) = {
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For any fixed n € N, we consider the following boundary value problem

—div (' AVU,) =0 in Up,

lim (tl_QsAVUn . 1/) = KsMnhy Tr Uy, in oy, (2.3.52)
t—0+

U, =G, in 7, UYn,

in a weak sense, i.e.

Un_Gn G/Hna

2.3.53
/ H=25AVU,, - VO dz — KJS/ Mnhn, Tr U, Tr® dy =0 for all & € H,, ( )

n

where H,, is defined as the closure of C°(U, U c,) in HY (U, t'7% dz).
We aim to prove that for any fixed n € N problem (2.3.53) admits a unique weak
solution. To this purpose, we premise the Urysohn’s subsequence principle.

Lemma 2.3.9. Let X be a topological space and let us consider a sequence {xy}nen of
elements of X. We suppose that

(i) every subsequence of {x,}nen admits a convergent subsequence in X,

(ii) all convergent subsequences of {xy}nen have the same limit & € X.
Then it holds that {z,}nen converges to T in X.

Proof. We assume by contradiction that {z,},en does not converge to . Hence there
exists a neighbourhood W of Z such that for all n € N there exists 7 > n such that
xp ¢ W. In this way we are able to costruct a subsequence {zy, }ren such that z,, ¢ W.
In virtue of (i), there exists a subsequence {zn, }nren and y € X such that 2, — yin
X. Therefore, by (ii), it follows that y = Z and this implies that for every neighbourhood
V of z there exists v € N such that Ty, € V for all h > v. Thus if we choose V =W we
obtain that Ty, € W definitely and this is a contradiction since Try, is a subsequence of
Zn,, thus completing the proof. ]

In the following proposition we establish the existence of a unique solution U, of
(2.3.53)) for every n € N and we also show the convergence of such sequence to W.

Proposition 2.3.10. For any fized n € N, there exists a unique solution U, to ([2.3.53).
Moreover U,, — W strongly in Hl(BEO, t1725d2) (where U, is extended trivially to zero in

BEO \Uy,) and Ry is taken as in (2.3.46]).
Proof. For any fixed n > 1, U, solves (2.3.53)) if and only if V,, = U,, — G,, satisfies

Vi € Hy and by (V,, @) = (F,,®) forall ® € H,, (2.3.54)

where

by : My xHp — R, bn(V,rb):/ tl_QSAVV~V<I>dz—/£S/ Nnhn Te V Tr & dy (2.3.55)

n
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and

Fp:H,—R, (F,®) = —/ 7254V G, - VO dz+/<;5/ Nphy Tr Gy, Tr ® dy. (2.3.56)
n On
From Hoélder’s inequality, (2.3.31)), and the boundedness of {h;,},>1 and {G,,},>1 respec-
tively in LP(T'; ) and in H'(Bj, ,#'7>* dz), it follows that

[(Fpn, ®)| < c||®]|y, forall®eH, (2.3.57)

for some constant ¢ > 0 which does not depend on n. In particular F,, € H}, being H
the dual space of H,,, and || F,||3; < c uniformly in n.

The idea is to apply the Lax-Milgram Theorem. In order to do this, we remark that,
using the Hardy inequality in Lemma after extending functions V,, trivially to zero
in BEO \ Uy, the weighted L2-norm of the gradient

1/2
< / t1—28|vvn2dz>

turns out to be an equivalent norm in the space #,, that will be still denoted as || - ||7,,-
It follows that b,, is coercive: indeed, for every V € H,,, we have that

bn(V,V):/ tl_QSAVV-Vde—HS/ Nnho| Te V 2dy (2.3.58)
:/ =B AVY . VV dz—/@s/ Nnhn| Tr V 2dy
Bgo Bp,
>y, [ VYR =C, [ 67 (9VEE: = Cn VI,
Bf, Un,

as a consequence of Lemma with ¢ = n,h,, see Remark Furthermore, from
(2.3.24]) and (2.3.38) it follows that

1
bV, )] < (2 ; 8) IVl IW e < 31V, W 0, (2.3.50)

for all VW € H,,. In particular b, is continuous.

Hence, from ([2.3.58)), (2.3.59)) and the Lax-Milgram Theorem we can conclude that
there exists a unique V,, € H, solving , which implies also the existence and
uniqueness of a solution U, to . Moreover, combining and we also

obtain that, extending V,, trivially to zero in BEO \ Uy,

Cc
HVTLHHI(BEO 4125 dz) < C'N“g for all n,

thus V,, is bounded in HI(BJ'.EO,tl_25 dz). From this, it follows that there exist V €
Hl(BEO,tl_QS dz) and a subsequence {V},, } of {V;,} such that

Vo, =V weakly in H'(Bf ,t'" dz). (2.3.60)
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From the fact that V,, € H,, we easily deduce that V has null trace on 6+BEO and on
FEO. Hence it can be taken as a test function in (2.3.13)) yielding

J

Since G, — W strongly in Hl(BEI,thS dz), from (2.3.3) we deduce that TrG,, = Tr W
in L*')(B}, ). By (2:3.3) and (2:3.60) we have that Tr V,,, — TrV weakly in L*'()(B}, ).
Furthermore n,h, — h in L%(Fl_ﬁ)' Hence from ([2.3.61)) it follows that

=B AVW - VV dz — ns/ ATeW TtV dy = 0. (2.3.61)
+ T
Ro Ro

o:/ H2AVIV - VV dz — kg AT W TrV dy
Bgo L=
= lim t1_2SAVGnk -VV,, dz — Iis/ My Fny, Tr G, Tr'Vy,, dy

k——+o0 B?{
0

=— lim (F, ,V,,) = —klirgo b, Vs Vi)

k—4o00

Ro

thus obtaining that ”VnkHHl(B; pi-2s4; — 0 as k — +oo in view of (2.3.58). Hence
07

Vo, — 0 strongly in H 1(B§0,t1*25 dz). By Lemma we can deduce that actually
V., — 0 strongly in H 1(3?%_0’ t1725 dz). Indeed assumption (i) of Lemma is a trivial
consequence of the boundedness of V,, in H 1(BE07 t1725dz), and, as far as assumption (ii)
is concerned, if V},, is any other convergent subsequence of V;,, namely such that V,,, — V
for some V € Hl(BEO,thS dz), repeating the same argument as above, we are able to
prove that V,, — 0 in H 1(Bgo,t1_2s dz) as well. Then also assumption (ii) is proved.
Therefore, by Lemma we can conclude that V;, — 0 strongly in H 1(3;50, 1725 dz)
and, consequently, it holds that U, = V,, + G, — W in H! (Bgo,tl_% dz)asn — +oo. O

2.3.3 Pohozaev-type inequality for the extended problem

The aim of this section is to prove a Pohozaev-type inequality for the energy solution
W e Hl(Bgl,tl_gs dz) to ; in this situation we have to settle for an inequality
instead of a classical Pohozev-type identity because of the mixed boundary conditions,
which produce some extra singular terms with a recognizable sign when integrating the
Rellich-Necas identity.

The idea is to obtain the inequality as limit of ones for the approximating sequence
U,. For every r € (0, Ry), n € N such that n > =8 and § € (0, ﬁ), we consider the
following domain

Orns =U,N{(y,t) € B, : t > 6}.

We note that, if § € (0, ﬁ), then f,,(t) = n='/® for 0 < t < 26, see ([2.3.42). We can split
its topological boundary as follows

9015 = Orns U Vrns U Trins (2.3.62)
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with

1
Orm,é * { y YN, 1 Yy~ < 1/8’ t= 5}5 (2363)
Vs = { )€ B tyn = falt), t > 5}, (2.3.64)
Trms = { (Y €ItB} tyn < falt), t > 6}, (2.3.65)

see Figure 2.2

ta

Vrn,é
+ > YN
n-1/8
Figure 2.2: Section of O, ,, 5.
We define also the set
S ={(,yn,t) € 9B, : t =0 and yy < 0}. (2.3.66)

Proposition 2.3.11 (Pohozaev-type inequality). Let W € H 1(3;51,151*25 dz) weakly solve
(2.3.11). Then, for almost every r € (0, Ry),

. 2
r / 2 AVW - VW dS — 7 / po2s AVIV Vo (2.3.67)
2 Jot+Bi o+ B Iz

KRgT

40 (vﬁ-5’+ﬁdiv5’) hITeW 2ds’
2 Jry Sy

1
> = / 172 AVW - VW divBdz — / 172 JacB(AVW) - VIV dz
2 )+ B}

1 12
42 / 12 (AVW VW) - Bdz + ———
2 B;r

/ . tl_QS%AVW VW dz
B}

and

/ AV - VW dz = / tI2(AVW - v) W dS + ks / h|TeW Pdy.  (2.3.68)
Bt 8+ B;"

Remark 2.3.12. The term fs; A TeW |2dS’ is understood for a.e. r € (0,Rp) as the
L-function given by the weak derivative of the WH1(0, Ry)-function r fr: h| T W |2dy.
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Likewise, the two terms

AVIV - o2
/ H2AVW . YW S and / po2  AVIV Vg
otBf o+ B H

are understood for a.e. r € (0, Rg) as the L'-functions given by the weak derivative of the
2
W0, Ro)-functions r +— [p+ AVW - VW dz and r — [5+ tsz% dz respectively.

Proof. Since the matrix A has Lipschitz coefficients and being the equation satisfied in
a smooth domain containing O, 5, by classical elliptic regularity theory (see e.g. [51],
Theorem 2.2.2.3]) we have that

Up € H*(Op i s). (2.3.69)

Hence from (2.3.69)) the following Rellich-Necas identity holds in a distributional sense in
Or,n,éz

div (([NUn VU —2(8 - VUn)flVUn)
= (AVU, - VU,)divB — 2(8 - VU,)div(AVU,,) + (dAVU,VU,) - (2.3.70)
— 2JacB(AVU,,) - VU,,
where A(z) = t'72*A(y) and $ has been defined in (2.3.22). Moreover we have that
(AVU,-VU,)B — 2(8-VU,)AVU,, € W' (O, . 5),

as a consequence of (2.3.69) and that A and § have Lipschitz components.
Thus we can use the integration by parts formula for Sobolev functions on the Lipschitz
domain O,.,, 5, obtaining that

/80 ((AVUn -VU,)B —2(8- VUn)AVUn) v dS

= / t'"#AVU,, - VU, divBdz — 2 / ' JacB(AVU,) - VU, dz (2.3.71)
Or,n,&

O'r,n,5
+ /
Or,n,é

by (2.3.25) and (2.3.52)). Taking into account (2.3.62), (2.3.63)), (2.3.64), (2.3.65), we
estimate each term on the left hand side of (2.3.71)). For this, by (2.3.22), (2.3.21)), using
that A is symmetric and observing that on 7, , s the outward unit normal vector v can be

written as z/r, we have that

AR AVU,VU,) Bz + (1= 25) 1AV, - VU, d.
Or,n,é

A
/ (t”SAVUn.VUn)ﬁ.ydz—/ (=2 Ay, - vu,) A2 2 g,
Tr,n,s Tr,n,s H r
1
= / (t'"**AVU, - VU, )ur*— dz
Tr,n,s 'LLT

=r / 1725 AVU,, - VU, dz,

Tn,8
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and

2

rn,5

t'=%(B - VU,)AVU, - vdS = —2/ f1-2s (A(j)z -VUn> AVU, - vdS
Tr,n,s

= —2/ th—2s (AVUn '7“1/> AVU, -vdS
. u

n,8

L2
. [

r,m,0

oU,
As far as the integral on v, , s is concerned, since VU, boils down to 8—” on Yrp.s, it
v
holds that

/

(=2 AVU,, - VU (B - v) dz — 2/ t'7>*(B - VUL)(AVU, - v) dS

Yrn,s

251—25
_ [y -

r,n,d

rn,s

2

U (Av-v)(Az -v)dS.

ov

Finally, we notice that on 0,55, ¥ = (0,...,0,—1) , hence

/

12 (AVU, - VUL (B - v) dy = / 125 (AVD, - VU, (A(y)z .V> dy

rn,8 Or.n,s§ ILI/
- / 5222 AU, - VU, dy,
Or.n,s ’LL
and
A
—2/ 723 - VU, (AVU, - v) dy = 2/ s (%)Z'VUO (a0, Uy,) dy
Ormn,s Orn,s
o[ P () dy
Orn,s

2 / 51_25%8tUn(DVyUn -y) dy

rn,§

2
+ 2/ 52—28%yatUn12 dy.

rn,8
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Putting together all the above computations, (2.3.71)) can be rewritten as follows

g

rmn,s

AVU, - |2
=25 AU, - VU, dS — 2r / p1-2s [ AVUn V7 o

Tr,n,§

751—23
— / 10,Un*(Av - v)(Az - v) dS — / 62_25%AVUR-VUndy
Yron,&

Tr,n,s
ag

= / =2 AVU, - VU, divBdz — 2 / 172 JacB(AVU,) - VU, dz
Or,n,zs

CT,n,§
/
(@)

From Lemma and uniform ellipticity of A it follows that

2
(51728%atUn(Dvan . y) dy + 2/ (52*25%‘6151]”’2 dy

7,m,0 Ormn,s

=2 (dAVU,VU,) - Bdz + (1 — 25) / t1_28%AVUn VU, dz.
Or,n,é

7,0

t1—2$
/ 10,Un|?(Av - v)(Az - v) dS > 0.
Yr,n,s

Hence, from this we get the following inequality

A n " 2
7,/ tlfQSAVUn . VUn dS _ 27,/ t172sM dS
Tr,n,s Trn,s 'LL
_ / (52_QS%AVU77, . VUn dy + 2/ 51_QS%atUn(Dvan . y) dy
Ormn,s Or.n,s

2
52—25% \8tUn|2 dy

+2/
g

> / t'=2AVU, - VU, divBdz — 2/ 12 J3(AVUy) - VU, dz
O'r',n,5

B O'r',n,&
+ /
O

At this point, we want to pass to the limit as 6 — 0. We denote as O, the limit domain
whose boundary is given by 00, , = 0rn U Yrn U Ty, ie.

r,n,s

t1=2(dAVU,VU,,) - Bdz + (1 — 2s) / tl‘QS%AVUn VU, dz.
Or,n,§

rn,§

(2.3.72)

Orn =Un N By, Trp={ yn.t) €9B; 1 yn < fult), t >0},
Yrn = {(y/,yNyt) S Bi;'— YN = fn(t)}’ Orn = {(y/>yN) € B;' yn < n71/8}~

We claim that, for every fixed r € (0, Rg) and n > 8, there exists a sequence 6, — 0"
such that

¥

2
AV U - VU, dy + 2/ 0 QU Pdy = 0 as k= o,

7,0 Or,n,8, ]
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Using that a defined in (2.3.8) is bounded by (2.3.7), © > 1/4 in Bg,, and A has
bounded coefficients, it is enough to prove that there exists a sequence &, — 0 such

that lim 5i_25\VUn\2 dy = 0. To prove this, we argue by contradiction and as-

k—o0 Trin,s),

sume that there exist a positive constant ¢ > 0 and Jp > 0 such that, for any § € (0, dy),

< / §17%|VU,(y, 0)|? dy,

7,m,0

STl leY

which, after integration over (0,dg), gives a contradiction, since it holds

do c do
1-2s 2 2
Fa< [T ( [ IVt dy> 45 < [Unlagsy oo iy

where the first integral diverges.
In order to prove the convergence

)

we exploit a continuity result for t1=259,U,, and VU, over U, N B;., which allows us to
pass to the limit by the Dominated Convergence Theorem. More precisely we claim that,
for all 7 € (0, Rg) and n > r—%,

1
61_25%8tUn(DVyUn -y) dym—zms / —1nhy TeUy, (DY, TYU,, - y) dy,

r,n,s Or.n

t'=20,U, € C°U, N B,), V,U, € C°(U, N B,). (2.3.73)

The continuity of t!72*9,U,, and V,U, away from {t = 0} easily follows from classical
elliptic regularity theory, since U, is solution of an uniformly elliptic equation (we refer to
[50, Corollary 8.36]). Nevertheless, Lemma 3.3 in [36] allows us to prove the continuity of
t'=259,U,, and V,U, up to {t = 0} when we stay away from the corner between o,,, and
Yrm, i-e. away from the edge {(v/,yn,t) € B, : t = 0 and yy = n~"/®}: to this aim it is
enough to apply [36, Lemma 3.3] to the function U, o F~!. Eventually, we can deduce the
continuity of t!=29,U,, and V,U, also in the set

{(/,yn,t) € By : t € [0,1/2n] and yy € [0,n~ %]}

as a consequence of the regularity result given in Lemma applied to the function
Uyo L.

We remark that for all 7 € (0, Rg) and n > 78, the terms integrated over Trn,s belong
to LY(7,,) in view of and the terms integrated over O, s belong to LU, N B;)
since U, € H'(U,,t'72*dz). These facts allow us passing to the limit in along
0 = 0 as k — 400 by absolute continuity of the Lebesgue integral, thus ending up with
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the following inequality

AV, - V]2
7'/ =% AV, - VU, dS—2r/ p-2sAVUn V7 o
Tr,n Tr,n M

1
— 2&3/ —Nnhn TrUp (DY, TrU,, - y) dy

> / t1=% AVU,, - VU, divB dz — 2 / 72 JacB(AVU,) - VU, dz  (2.3.74)
Or.n o)

™n

+ / t=2(dAVU,VU,,) - B dz
Or,n

+ (1 — 2s) / =22 AV, - VU, dz,
Or,n lU/

for all 7 € (0, Rg) and n > r—5.

Now for r € (0, Ry) fixed, we aim to pass to the limit in (2.3.74]) as n — +o0. Therefore,
we extend the functions U, to be zero in B, \ U,. By the strong convergence U,, — W in

HI(BEO,tPQSdz) (see Proposition [2.3.10)), it follows that

Ro
/ </ 2 (VU — W) + U, — W?) dS> dr — 0,
0 o+Bt
i.e. the sequence of functions
Un(r) = / 1725 (19(U, — W2 + [Un — W) dS
o+ B;F

converges to 0 in L(0, Ry) and hence a.e. along a subsequence u,,,. In particular we have
that
Upn, — W as k — oo in H' (9" B, t172dS) for a.e. € (0, Rp), (2.3.75)

where H' (0% B;f, 1725 dS) is the completion of C*(9+B;") with respect to the norm
1/2
11l 1o+ By 4120 a5y = </ 172 (IVy]? +¢?) dS) .
’ o+ B,

1
Let us now discuss the behavior of the term — N TrUp (DY TrU,, - y) dy as n — oo.

Or.n
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Since 0, (v, yn) = 0 if yy > —%, by the Divergence Theorem we have that

1 1
/ —1phy TrU, (DV,TrU,, - y) dy = / ;nnhnTrUn(DVyTrUn -y) dy (2.3.76)

Iy
1 e ) 1 o (1
== divy { =nmnhn|TeU, "Dy | dy — = |TrUp|“divy | —=nnhnDy | dy
2 Jry 7 2 Jry 7
1

1 1
/ b | TeU, |2 Dy - vdS' — = / ITxU, |*divy (nuhaf8') dy
2 )5 1 2 Jry

1
— g / Db | TrU,|? dS" — 3 / ITxUpn |? (12 gl - B+ nbndiv, 8) dy
Sr ry

1
-3 /F YU *haNVyny - B dy,

where S, has been introduced in (2.3.66)) and 3’ has been defined in (2.3.23). From the

strong convergence of U,, to W in HI(BEO, t1=25dz) proved in Proposition 2.3.1()|, (2.3.44)
and (2.3.3), it follows that

Ro B
/ </ (nnhn\TrUnP - h\TrW|2) ds/> dr — 0,
0 Sy

i.e. the sequence of functions r — / (nnhn\TrUn\Q - B\TIWF) dS’" converges to 0 in
Sy

L'(0, Rg) and hence a.e. along a further subsequence, which we still index by nj. In
particular we deduce that

/ Ny by | TeUp, |2 dS” — / R TeW |2 dS" as k — oo for a.e. 7 € (0,Ry).  (2.3.77)
Sy S

The strong convergence of U, to W in Hl(BEO,thSdz) implies that TrU, — TrW in

LQ*(S)(B}%) by (2.3.3). Combining this fact with (2.3.44) and that 7, — 1 a.e. in I'p , we
obtain that

/ T U (12 Vyhn - 8" + 1inhadivy 8" dy
r; ~ ) (2.3.78)
5 / WP (Vyh- 8+ frdivy ') dy
r,

as n — oo for all r € (0, Rp). Finally, we observe that, by (2.3.51)) and ([2.3.23]),

vy77n ' B/ =

By (2.3.19) we have that (D(y)y)ny = O
2

(yn) as yy — 0 and ([2.3.39) allows us to assert
that 7/( — ™4~) # 0 only for yy € (— 1

). Hence we can conclude that

Vynn - 8 is bounded in I, uniformly with respect to n.
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Therefore, by the Holder’s inequality,

/F |TrUn|2hnvy77n : /3/ dy‘

< TeU, ||? h LR
< const || TrU, || )H n||Lp(r;) }N

L2 () (I {(W,yn) €Ty 1 =2 <yy < -1

where |-| y stands for the N-dimensional Lebesgue measure; hence, since {TrU, } is bounded
in L2"()(T;7) and the same hols true for {h,} in LP(I';), we infer that

lim I TxUy |21V i, - B dy = 0. (2.3.79)

n—oo T
T

Combining (2.3.77)), (2.3.78]) and (2.3.79)), passing to the limit in (2.3.76)) along the sub-

sequence, we obtain that

. 1
lim — 1y oon,, TrUy, (DV TrU,, - y) dy
k—o00 Tryny,

~ 1 B ~
_ 7'/ h\TrW]zdS’—/ W2 (V- B+ hiv, @) dy. (2.3.80)
2 Sy 2 ry

In virtue of (2.3.75)), (2.3.80) and the strong convergence of Uy, to W in HI(BEO, t1725dz),
we can pass to the limit as n = ng — oo in obtaining the desired Pohozaev-type
inequality for the solution W.

Finally, to prove , we first multiply equation by U, itself and integrate
by parts over O, 5; then we pass to the limit as § — 07 using and asn = ng — o0,

taking into account ([2.3.75]). O

2.3.4 The Almgren frequency function for the extended problem

In this section we analyze the properties of the Almgren frequency function A/ (r) associated
to (2.3.11)), defined in (2.3.89)): in particular we will prove the boundedness of the frequency
and that N possesses a nonnegative finite limit as r — 0.
To this aim, let W € H%E (B];l,tl_zs dz) be a nontrivial weak solution to (2.3.11)).
1

For all r € (0, Ry), we define

1 N
E(r) = w5 (/B+ =B AVW - VW dz — K;s/_ h| Tr W2 dy) (2.3.81)
and .
_ 1—2s 2
H(r) = s /<9+Bfft 1(2)W2(z) dS. (2.3.82)

Let us first estimate the derivative of H.
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Lemma 2.3.13. Let E and H be the functions defined as in (2.3.81) and (2.3.82). Then
He Wl 0,Ry)) and

loc

2 1-2s ow +
in a distributional sense and for a.e. r € (0, Ry), where v = v(z) = é denotes the unit

outer normal vector to T B;Y. Moreover

2

i
H(r) = FN+1-2s

/ tHI=2(AVW - )W dS + H(r)O(1) (2.3.84)
o+ B

and

H(r) = %E(r) + H(mO(1) (2.3.85)
asr — 0.

Proof. We observe that H € L{ (0, Ry) by definition and it can be rewritten as
/ ONs(ro)W?(rf) ds.
Thus, for all test functions ¢ € C2°(0, R;), we have that
Rl Rl
/ H(r)¢ (r)dr = / </ 0]1\/+1,LL(T9)W2(T(9) dS) o' (r) dr
0 0 s¥
Ry
=— / ON i (rO)W3(ro)Ve(ro) - 6 dS dr
0 S

_ _/BJr tl_QSH(Z)WQ(Z)V@(Z) .2 dz

’Z‘N+2_25

(B u()W2(2)2
:/BE le( EREERr ><,0(z)dz
1

_ s (2M()W(2) VW (2) + W2(2)Vu(z) )
_/B+ 12 < z)gp(z)dz

|2’N+2—25

Ry
= /0 ( /S N Oy [20(rO)W (rO)VW (r6) - 6 + W2(r0)V u(r6) - ] dS> o(r) dr,

where we set ¢(r0) := ¢(r) for every r € (0, Ry) and § € S¥, having that ¢'(r) = V@(rf)-0
and that ¢(R10) = 0. Hence the distributional derivative of H in (0, R;) is given by

1 2 1-2s 1 OW 1 1-2s7772
H(r) = PN [ W By as + NI 8+B+t WVpu-vdS. (2.3.86)

42



Since W, VW € L2(B§1,t1_25dz), from ([2.3.26) and (2.3.27) we easily infer that H €

VVli’Cl(O,Rl) and ([2.3.86) also holds for a.e. r € (0,R;). Moreover, combining ([2.3.26)),
(2.3.27)), (2.3.82) and ([2.3.86)), we obtain ([2.3.83)).
In order to prove (22.3.84)), we introduce v(z) := pu(2)(8(z) — 2)/|z|, observing that

2(2)-2 =0,
div(t1=25y) = t1725divy + (1 — 28)yn1t ™2,
wi1(2) =tO(1)  as |z| = 0T,

and

divy = (V“(z) "(Z)Z) B) = 2)+ " (ivg — (N +1)) = 0(1) as |2] — 0%,

2] Kk 2|

as a consequence of (2.3.26)), (2.3.27)), (2.3.28)), (2.3.30). From all these facts, we deduce
that for a.e. r € (0, Ry),

1
/ 172 (AVW - )W dS = tl_zs,u,Wa—WdS—i—f / 1725 .V (W?) dS
oW 1
e t1*28 7d _ / d tl*QS 2d
/8+BT+ uWw 5 S 2 Sy i iv( ~)W=dS
i
_ / 172 S5 dS o+ H(r)O(r V),
o+ BT v

(2.3.87)

using (2.3.82)) and (2.3.26)). Hence, from (2.3.83)) and ([2.3.87)), it follows (2.3.84)). From
(2.3.81)), (2.3.68) and ([2.3.84)) we infer that

N+1-2s
PV E(r) = / 2 (AVW - )W dS = " H'(r) + H(r)O(rVT172),
o+ B 2
as 7 — 0T, which gives (2.3.85)), thus proving the lemma. O

Lemma 2.3.14. The function H defined as in (2.3.82) is strictly positive for every 0 <
r < Ry, with Ry being defined in (2.3.46)).

Proof. We prove the statement arguing by contradiction. To this aim, we suppose that

there exists R < Ry such that H(R) = 0. Then, using that u > 1/4 in B, for every
r < Ry, we obtain that faﬂ%tl_?sWQ dS = 0, hence W =0 on 9" B. From (2.3.83) it

follows that H is differentiable in a classical sense in R and H'(R) = R 'E (R); on the

other hand, H(r) > 0 = H(R) implies that 0 = H'(R) = 2?71E(R) and hence E(R) = 0.
Then from ([2.3.32)) it follows that

0= /+t1_28AVW-VWdz— ns/ h| Te W |2 dy > CN75/+t1_25|VW]2dz. (2.3.88)
BX — BX
R R
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By (2.3.88) and Lemma , we can deduce that W =0 in B%, which in turn leads to

W =0 in BEI N {t > 0} from classical unique continuation principles for second order
elliptic equations with Lipschitz coefficients (see [48]). Since § > 0 can be taken arbitrarily
small, we end up with W =0 in BEI, which is a contradiction. O

As a consequence of Lemma the Almgren type frequency function
E(r)
H(r)

is well defined in (0, Ry, with Ry as in (12.3.46)).
In the following lemma we provide an estimate for the derivative of the function FE.

Lemma 2.3.15. Let E be the function defined as in (2.3.81). Then E € Wl’l(O,Rl) and

loc

N(r) = (2.3.89)

. 2 = —
E'(r) > 2 / . tl_QSi‘Avw d +O0(r Y E(r) + N 2SH(7“) asr— 0"
ot B}

— pN=-2s 1 2
(2.3.90)
for a.e. r € (0,Ry), where
§ = min{z, 1} € (0, 1] (2.3.91)

and g is defined as in (2.3.36)).

Proof. From ([2.3.81]) we deduce that F € L%OC(O, R;1). Using the coarea formula we obtain
that
/ 2s — N 1-2s 7 2

Iy

1 ~
+ 5 (/ t'AVIV - VIV dS — ns/ h| T W2 dS’)
r o+ B -

T

in a distributional sense and a.e. in (0, Ry), thus having that E € VVlf)’l(O,Rl). Using

C
(2.3.67), Lemma and Lemma we infer that

2 o |[AVW - p? O(r) _
/ > 1-2s 1-2s . 3
E(r) 2~y /a +mt p dS + —rim /B rt AVW - VW dz (2.3.93)

00) [ it io
+ g R+ V,AD T R dy

asr — 0T, for a.e. 7 € (0, Ryp). We can estimate the last two terms on the right hand side

in (2.3.93) exploiting (2.3.32)). Indeed, observing that

O(r) O(r)

1-2s —
FN+1-2s /B+ tTRAVIV - VWdz = e

/+ 72|V 2 dz,
By

as a consequence of ([2.3.20)), we obtain that

O(r)
Y

N — 2s

/ =2 AVW - VW dz = O(1) [E(r) + H(r)] (2.3.94)
B

44



and, taking into account (|2.3.35]), we also derive that

o(1) ~ - O(r%) . 2/2%(s)
TN+(1_25 /F_(|h| + |V Te W2 dy = TN+(1_2 (/F_ | Te W2 () dy) (2.3.95)
= N -2
= O(r~) [E(r) + SH(T)].
Estimate (2.3.90)) follows from ([2.3.93)), (2.3.94) and (2.3.95)). O
Lemma 2.3.16. Let N be the function defined in (2.3.89). Then, for every 0 < r < Ry,
N -2

N(r) > - ° (2.3.96)

and
lim inf A/ (r) > 0. (2.3.97)

r—0t

Proof. We deduce (2.3.96) from ([2.3.32)). By (2.3.81), (2.3.82)), (2.3.38) and (2.3.33)), we

obtain that for all 0 < r < Ry

N2 E(r) = /+t1_2SAVW-VWdz—/<;S/ h| Te W |2 dy
B} ry
2(N — 2s)

3 - _
> / t1_2s|VW]2dz — KSSN,SEMS,pran/ 25 W2 ds
8 /Bt T ot B

> —C'Tg"'N_QsH(r),

with @g as in (2.3.45|) and C = 2(N — 28)H55N755N757p@0 > 0. From this and (2.3.89) it
follows that, for every 0 < r < Ry,

N(r) > —-Cr®,

which in turn leads to (2.3.97). O
Lemma 2.3.17. Let N be the function defined in (2.3.89)). Then N € VVI})’Cl((O,RO]).

Proof. Let us consider any interval [a,b] with 0 < a < b < Ry and notice that N €
L1([a,b]) trivially since E and H are continuous functions by Lemma [2.3.15 and Lemma
2.3.13] A bit more difficult is to show that also N7 € L([a,b]). In order to do this, we

prove two statements:
1) if f € Whi([a,b]) and f > 0, then 1/f € Whi([a,b]);
2) if f,g € W([a,b]), then fg € W ([a,b]).
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Then it will be sufficient to apply the above results with f = E and g = 1/H to prove the
thesis, taking into account Lemmas [2.3.13] [2.3.14} and [2.3.15]

As far as 1) is concerned, we first observe that f > C' > 0 for some positive constant
C > 0 by assumption and then we introduce a real-valued function G € C'*(R) as in Figure
such that G(t) = 1/t for every t > C.

-

C

Figure 2.3: The graph of the function G

Thus, using that f > C and f is continuous, it follows that G o f = 1/f € L([a, b]).
Moreover it holds that |G’(t)| < const. Hence,

1 /
<f) =(Go f) =(G"of)f € L([a,b])
since f’ € L*([a,b]) by assumption, thus obtaining that 1/f € Wt([a,b]).

Now let us move on to prove 2). For this, we observe that there exist {f,}n, {gn}n C
C*([a, b]) such that

fo—f and g, —g in Whi((a,b)). (2.3.98)
From this, it also follows that
fo—f and ¢, —g in L*((a,b)), (2.3.99)

in virtue of the Sobolev embedding W'1((a,b)) «— L*((a,b)), which allows us also to
conclude that fg € L'((a,b)). Thus, expoliting (2.3.98) and (2.3.99), we deduce that

(fagn)' = fagn + fngn = f'g+ fg' in L'((a,b)). (23.100)

Neverthless, since f,g, — fg in L'((a,b)) as a consequence of (2.3.98) and (2.3.99)), then
it follows that f,gn, — fg in D'((a,b)) as well. This leads to

(fagn) = (f9)" n D'((a,b)). (2.3.101)

Therefore, combining (2.3.100) and (2.3.101)) and by the uniqueness of limits in the
distributional sense, we obtain that (fg)' = f'g + fg' € L'((a,b)), thus proving that

fg € Whi((a,b)). -
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Lemma 2.3.18. Let N be the function defined in . Then
N'(r) = Va(r) + Va(r)

for almost every r € (0, Ry), where

Vi(r)

(2.3.102)

2r [(faﬂgi (12 WL 46 ([ e 1250028 ) = (fy e 6125 (AVIV 1) W dS)Q]

(S 2228 i
and

5 N -2
Valr) = 009 (Wi + 5

with § as in (2.3.91)).
Proof. Exploiting ([2.3.84)), (2.3.85)) and (2.3.90), we obtain that

> asr — 0T,

N 2r [(ﬁ%B;r tlfzswds) (fa+B;+ tlf?g,uW2dS> - (fz%B,T =25 (AVIV - V)st) 2]

(s e t1-2epm2a5) i

11 s

+O(r 1) <N(7~) N 3 25

(2.3.103)
asr — 0T, for a.e. 7 € (0, Rg). In order to estimate the last term in (2.3.103)), we observe
that

L ] H'(r)
1)—— 1-2s A i _

Wiy s /(%BT+ AV )W dS = T 000 + 0()

— N(10(1) + O(r).

as T — 01, by (2.3.84) and (2.3.85)). Inserting (2.3.104) into ([2.3.103)), we obtain that

N'(r)

(2.3.104)

- 2r [(fa+3jtl—2S|AV‘;VV|2ds> (fwB;-tl_%qudS) — (me?—ytl_zs(AVW ) V)st)2]

(S tl—QSuW2d5>2

+N(r)O(1) + O(r) + O(FHS) (N(r) + N ; 25 asr — 07,

which yields (2.3.102]) in view of (2.3.97)).
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Proposition 2.3.19. Let N be the function defined in (2.3.89). Then there exists C1 > 0
such that, for every r € (0, Ry,

N(r) < Ch. (2.3.105)
Moreover the limit
v := lim N(r) (2.3.106)
r—0t

exists, is finite and nonnegative.

Proof. From Lemma [2.3.18 we deduce that N”(r) > Va(r) a.e. in (0, Ry), since Vi(r) > 0
as a consequence of Schwarz’s inequality. Hence there exist 0 < R < Rg and Cs > 0 such
that

N'(r) > —Cor™1+ <N "+ 5 28) : (2.3.107)

for a.e. r € (0, R). Then

% [log (./\/(7“) + N ; 28)] > —Cyr "0 ae. in (0,R),

and, integrating the above inequality between (r, R) with r < }?, we obtain the upper
bound

for all r € (0, R),

Ny < (Wi + B2 ety L E22

which yields ([2.3.105)), in view of the continuity of N on (0, Rp]. From (2.3.107)), we deduce

that J ] N9
p [602% (./\/'(r) + ; sﬂ >0 ae. in (0,R),
,

(N(r)+ N_28>

hence

w‘ o

Co

rTe
2

is a monotonically increasing function on the interval (O,R), thus its limit as r — 0T

does exist, and the same holds true for the limit of the function A/. From ([2.3.105)) we can

conclude that the limit v := lim+ N (r) is finite and it is nonnegative by Lemma[2.3.16, [
r—0

Lemma 2.3.20. Let v = lim N (r). Then:

r—0+t

(i) there exists k1 > 0 such that, for all r € (0, Rp],

H(r) < kyr?; (2.3.108)

(ii) for any o > 0, there exists ko(o) > 0 such that, for all r € (0, Ryp),

H(r) > ka(o)r?7te.
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Proof. To prove (i), we write

N'(r) = Bi(r) + Ba2(r), (2.3.109)
where
Bi(r) == N'(r) + Cor 10 (Cy + 852¢) > 0 for ae. € (0, R), (2.3.110)
as a consequence of and , and
Ba(r) = —Cor™ 9 (O + ¥52¢) ¢ L1(0, R). (2.3.111)

Since N € WI};((O Ry]) and by (2.3.109), it holds that

/N’ ds_/ﬂl ds+/ﬁz
_/O ET/Bl()der/ (e Ba(5) ds

for every r € (O,I:Z). Passing to the limit as ¢ — 07 into (2.3.112)), taking into account
(2.3.106)), (2.3.110) and (2.3.111]), we obtain that

(2.3.112)

= / N'(s)ds for all 7 € (0, R). (2.3.113)
0
From this, by (2.3.110)), we easily deduce that
5
N(r) —q > —Cy (Cy + ¥5%) % for all r € (0, R). (2.3.114)

By (2.3.85) we have that there exist a positive constant C' > 0 and a suitable radius Ry > 0

such that 15
H'(r) _ 2N (r) N— 2 -
> > N—2s _
H(T) = . -C — 20y (Cl + ) 3 C

for all r € gO,I{lin{RO,R}). Integrating the above estimate we gain ([2.3.108) for all
r € (0, min{ Ry, R}). Taking into account that H is continuous and positive on (0, Ry], we
obtain (2.3.108) for all r € (0, Ry], since
H H
gr) < max gr)
r=7 r€[min{Ro,R},Ro] T v

Now we move on to prove (ii). Since v = lim+ N(r), for any o > 0 there exists 7, > 0
r—0
such that, for any r € (0,r,),

N(r) <y+3,

and hence by
H'(r)  2N(r)
H(r) r
up to taking r, smaller arguing as above. Integrating over the interval (r,r,) and taking

into account that H is continuous and positive in (0, Ry], we also complete the proof of
the second statement. O

2
+0(1) < yto + const,
r
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2.3.5 Blow-up analysis and local asymptotics

Let W € HlJr (BE (128 dz) be a nontrivial weak solution to (2.3.11). For every A\ €
(0, Ry), with RO being as in , let us define

wh(z) = T (2.3.115)
H(N)
We have that w” is a weak solution to
—div (172 A(X)Vu?t) =0 in BE e
: 1-2s A 28Ty, A
lim (t AN )V - y) = £ AZR(O) Trw on Ty (2.3.116)
w? =0 on I‘; I
Moreover we have that
a}wlﬂ(w)ywk(e)y? ds =1. (2.3.117)

+

Lemma 2.3.21. The family of functions {w/\}Ae(o,Ro) is bounded in H' (B ,t'72%dz).

Proof. By (2.3.89) and using ([2.3.33)), (2.3.37) and (2.3.38)), we obtain that, for every
AE (0, Ro),

2s—N B
N\ = o / =2 AVW - VW dz — ns/ h| Te W |* dy
H(A) \Jpt Ty
A\2s—=N 13 1o 9 ~ - 2(N—28)
> 2 —2s _ = e 24UV —25) 1-2s, 1772
Z =N [8 /Bjt VW dz — kSN sCN,s pA° Q0 y /a+3+t pW=ds
>3 / 1725V |? dz — 2(N — 28)ks SN s, pAEa0
8 B;r
N -2
8 Bii' 4
which together with (2.3.105)) implies that {HVw’\HLQ(BT tl_Qst)}/\ 0.1 is bounded.
I’ 6 s 0
From this and (2.3.117), the boundedness of {w*} g (o,r,) in H* (B, t'"23dz) follows by
Lemma 2.3.3 O

We aim to prove strong convergence in H'(B; ,t'72%dz) of {w’} along a proper van-
ishing sequence of \’s; to this purpose, we first need to establish the following doubling
properties.

Lemma 2.3.22. There exists C3 > 0 such that

C{P)H(A) < H(RA) < C3H(N), (23.118)
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/ tl—QS‘Vw)\‘QdZ < 032]\7—25/ t1_28]VwR)‘\2dz, (23119)
B}, iy
and

/ 2w ?dz < 032N+2—25/ 125w 2z, (2.3.120)
Bf B

for any A < Ry/2 and R € [1,2].

Proof. From (2.3.85)) we deduce that, for a.e. r € (0, Ry),

H'(r)  2N(r) . n
o)~ v +0(1) —0".

Hence for all r € (0, Ro),

N—-2s H'(r) 2C4
_C — < < e
¢ r ~ H(r) sC+ r’

with C' > 0 and Ry as in the proof of Lemma [2.3.20, in virtue of (2.3.96) and (2.3.105)).
Integrating the above inequalities over the interval (A, R\), with R € (1,2] and A\ < Ry/R,
we obtain that

9~ (N=29),~CTe(R-1) H(RN) < 401 CR (R, (2.3.121)

The above chain of inequalities trivially extends to the case R = 1. Estimate (2.3.118))
follows from ([2.3.121)) and the fact that H is continuous and strictly positive on (0, Ry

(Lemmas|[2.3.13|and [2.3.14)). By scaling and ([2.3.118)), we easily deduce (2.3.119) as follows

)\25—N
=%Vt P dz = / 12| VW (2)]* dz
J e =y [ e
)\2R225+N/ 1o RN725H(R)\)
= — t = |IVW (R\z 2dz:/ 72|V (2))? dz
Oy oy UV 70y Jpy 1T
<RNEC [ FTu )P de
Bt
1
With a similar argument we obtain also (2.3.120)). O

Lemma 2.3.23. Let w” be as in (2.3.115)), with X\ € (0, Ry). Then there exist M > 0 and
Ao > 0 such that, for any A € (0, o), there exists Ry € [1,2] such that

/ t1_2s|Vw>‘|2 dsS < M/ 751_2‘(”|Vw>‘|2 dz.
otBt Bt
Ry Ry

Proof. We recall that, by Lemma [2.3.21] the family {w/\}Ae(O,Ro) is bounded in the space
HY(Bf,t172%dz) and trivially

wt € HL (Bf ,#'7%*dz) for all A € (0, Ry). (2.3.122)
1
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Moreover, by Lemma [2.3.22, we have that {wA}Ae(O7RO/2) is bounded in H(B; ,t'7%%dz),
hence

lim sup/+ 72| Vw2 dz < +o0. (2.3.123)
BQ

A—0t

For every A € (0, Ry/2), let
a(r) ::/ 1725 Vw2 dz.
B
Then f) is absolutely continuous in [0, 2] with distributional derivative given by
() = / 72| Vuw? > dS  for almost every 7 € (0,2).
o+Bf

Let us suppose by contradiction that for any M > 0 there exists a sequence \,, — 07 such
that

/ 72|V dS > M/ |Vt P dz
ot Bt B

for all € [1,2] and n € N, i.e.

I, (1) > M fy, (1) (2.3.124)
for a.e. r € (1,2) and any n € N. Integrating ([2.3.124)) over [1, 2], we obtain that, for any
n €N, fy, (2) >eMfy, (1), and hence

liminf fy, (1) < limsup fy, (1) < e limsup £y, (2),
n—-+00

n—-+o0o n—-+o0o

which implies that
liminf f(1) < e limsup £1(2), (2.3.125)

A—0t A—0+

for all M > 0. From ([2.3.125)) and ({2.3.123)), letting M — +oo we deduce that
liminf f\(1) = 0.
im inf f3(1)

Then there exist a sequence A, — 07 and some w € H L(Bf,t'725dz) such that whn =
in HY(B,t'72%dz) with

lim =25Vt 2dz = 0.
n—-+00 Bik

However, by compactness of trace map H' (B, t172dz) —— L?(0" B}, #'725dS), (2.3.117),
(2.3.26]), and weak lower semicontinuity of norms, we necessarily have that

/ 72| Vw|?dz=0  and / 7250248 = 1.
B o+ B

Hence there exists ¢ € R such that w = ¢ in B} and ¢ # 0. Since th(Bf,tl_QS dz) is
1
weakly closed in Hl(BIr7 t1725 dz), from (2.3.122)) we deduce that

w=cé€ H%T(Bf,tlf% dz),

so that 0 = Trw‘FJr = ¢, a contradiction. ]
1
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Lemma 2.3.24. Let w® and Ry be as in the statement of Lemma |2.3.23. Then there
exists M > 0 such that

tl—ZS’vw)\R,\IQ ds < M
o+ B

for any A € (0, min{ A, Ro/2}).
Proof. We observe that, by scaling and ([2.3.115)),

1-N+2s
/ t172s‘vw)\R>\‘2 ds = R)\ H()\) / t172s‘vw)\‘2 dS,
o+ B HQARN)  Jory

so that, in view of Lemmas [2.3.22] [2.3.23] and [2.3.21] we have that

[ v pas <acam [ 0o ve P
o+ Bf Bf,

< 21+N—25MC32/ 72| VM 2 dz < M < +o0,
+

Bl
for any A € (0, min{\g, Ro/2}). The proof is thereby complete. O

Proposition 2.3.25. Let W € HILr (BEl,tl_% dz), W #£0, be a nontrivial weak solution
Rq
to (2.3.11). Let v be as in Proposition|2.3.19. Then
(i) there exists ko € N such that v = s + ko;

(ii) for any sequence A, — 0T, there ezist a subsequence {\,,} and an eigenfunction 1
of problem (1.2.11)) associated to the eigenvalue pg, = (ko + s)(ko + N —s) such that
||7/’||L2(sf,91—23d3) =1 and

w)‘”k 2) = W(Ankz) P 2
(=) H(\n,) =AM (Iz\>

strongly in HY(B; ,t172%dz).

Proof. Let w* € H1£+(Bfr,tl_25 dz) be as in (2.3.115) and Ry as in Lemma [2.3.23] From
1

Lemma [2.3.21| we deduce that the set {w*Fx Fa€(0,min{ro,Ro/2}) 18 bounded in the space
HY(Bj,t172%dz). Let us consider a sequence A\, — 0. Then there exist a subsequence
{An, }r and w € H%T(Bfr, 1725 dz) such that w e s weakly in HY (B, t17%dz).

Moreover we have that

/ tH72w2dS =1 (2.3.126)
o+By

by compactness of trace map Hl(BfL,tl_Qsdz) e L2(8+Bf,t1_25d3), (2.3.117)), and
(2.3.26)). This allows us to conclude that w is non-trivial.
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We now claim strong convergence
w5y in HY(Bf,t'7%%dz). (2.3.127)
We note that w weakly solves (2.3.116) with A = )\nkR)\nk‘ Since
+ +
B C BRy/(an, Ran)

for sufficiently large k, we then have that

| ARy, ) V0 ) - VO (2) s (2.3.128)
Bl

= fis(Any R, ) /F oAy Ry, ) Trw™™s o () Tr @ (y) dy

1

+ / (172 A(Any Ry, y) Vs P (2) - ) 0(2) dS
o+ By i

for sufficiently large k£ and for every ® € C*° (Ff\ I‘f), hence by density for every & €
HIL (Bf“, t1725dz). We want to pass to the limit in (2.3.128). To this aim, we observe that

(2.3.20) implies that

‘ / 2 (A Vur (2) — Vw(z)) - VO(2) dz (2.3.129)
Bt

<

/ 72V (0t —w) - VO dz
Bf

+C’)\/ 1725 V||V ®| dz
B

1/2 1/2
+ O / 1728 | V| dz /t1—28|vq>\2dz
B B

1

<

/ BV (wt —w) - VO dz
Bf

for some C' > 0 and for sufficiently small X, and

J:
<A (/B

=0(1) (/F Ih(y)lévsdy> =o(1) asA—0",

A

)\25

h(Ay) Trw (y) Tr (y) dy‘ (2.3.130)

1 2s

1
2%(s) 2%(s) N N
[ Trw () dy) ( JRERE dy> ( [ how dy)
1

/!
1 1

2s

from Holder’s inequality, Lemma Lemma [2.3.21] and (2.3.117), using that p(\y) >
1/4 for all A < Ry. Taking A\ = )\nkR)\nk in (2.3.129)) and (2.3.130]), and recalling that

w R gy weakly in H'(Bj,t'72%dz) as k — +00, we obtain that

lim 72 ANy Ry, y) Vs Do (2) - VB(2) dz = / t1"2Vw - Vo dz (2.3.131)
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and

lim (Ap Ry, )28/ h(An, Ry, y) Tr w e (y) Tr ®(y) dy = 0. (2.3.132)
k—+o00 k Iy k

Thanks to (2.3.20]), we also have that
/ $1=2s (A()\y)Vw’\(z) : V) B(z)dS (2.3.133)
ao+Bt

_/ tl_Qsaw)\@dS+/ $l=2s ((A(/\y)—IdN)VwA(z)-u> ®(z)dS
o+ B ov o+ B

ow 1/2 1/2
= / 129 5 45 + O(N) / #1723\ W? 2 dS / 29295 |
o+ By ov o+ By o+ B

Moreover, from Lemma up to a further subsequence, we have that

ok any,
ov

for some f € L*(0" By, t'72*dS). Then, taking A = A, Ry, in (2.3.133) and passing to
the limit as k — 400, we obtain that

— f weakly in L?(0" B, t'7%dS) (2.3.134)

li 1-2s 4 Ang R, AT _ 1-2s £,
[ AR, )V B ) )@Y S = | RS,

(2.3.135)
as a consequence of Lemma [2.3.24] and ([2.3.134]). Hence, passing to the limit as £k — 400

in (2.3.128)) and combining (2.3.131), (2.3.132)) and (2.3.135]), we find that

BV - Vo dz = 172 fddS for any ® € HL, (B, t'7%dz). (2.3.136)
B;r 04—5;r Iy

On the other hand, if we take ® = w ey in (2.3.128]), we have that
/+ 72 AN, Ry, ) Vs Do (2) - Vs e (2) dz
Bl
ry

—I-/ (#1725 A\, R, 2) Ve () I/)w/\"kR*"k (2)dS.
o+ By r

From this, by (23-20), using (2:3.132) with & = w ™ (23133) with A = Ay, Ry, .
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we obtain that

AE& ngwM“%%P:kEExlﬁf“%AQMRM%wVwM“%%@%VMf%R“Mddz
1 1
(2.3.137)
An R)\n
= lim t1_2578w B w g g9

k—+oo Jo+ g ov

:/ tlZwadS:/ 72| Vw|?,
a+Bf B

where we used also that the trace operator from H(B,t'72%dz) to L?(0* B ,t'725dS)
is compact, (2.3.134]) and ([2.3.136]) with ® = w. The weak convergence w e e s in

HY(B,t172%dz) together with (2.3.137)) imply (2-3.127).

For every k € N and r € (0, 1], let us define

1

Bi(r) = N—2s {/B+ t! 2SA()‘"kR>\nky)vw R VA T e

- K/S)\%i Rg\ik A il(Aﬂk R)\nk y)| Tr wA”k R)\nk |2dy

T

and
1

9 Any Ry,
Hy(r) = TN+1-25/B+B+ E2 Oy B, 2) w2 (2) S,

We also define, for any r € (0, 1],

_ 1 1-2s 2
Fulr) =~y /B V() (2.3.138)
and .
_ 1-2s,,2
Hy(r) = N1 /8+BT+ t " “w*(z) dS. (2.3.139)

By scaling, one can easily verify that

 EBy(r)  EQw R, T)
Ni(r) = Hy(r) ~ BB, 1) N Ry, ) forallr e (0,1]. (2.3.140)

From (2.3.127), (2.3.20)), and ([2.3.130)), it follows that, for any fixed r € (0, 1],

Ep(r) — Ey(r). (2.3.141)

On the other hand, by compactness of the trace operator and ([2.3.26)), we also have, for
any fixed r € (0, 1],
Hy(r) — Hy(r). (2.3.142)
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In order to prove that H,, is strictly positive, we argue by contradiction and assume that
there exists r € (0, 1] such that H,(r) = 0; then r is a minimum point for H,, and hence,
arguing as in Lemma [2.3.13] we obtain that necessarily

0= H, (r)=2r*N-1 /+ 72| Vw(2) [2dz

r

and hence w is constant in B;". From Lemma we conclude that w = 0 in B;F, which
implies that w = 0 in Bf from classical unique continuation principles for second order

elliptic equations, thus contradicting (2.3.126)).
Hence H,,(r) > 0 for all r € (0, 1], thus the function

Nw : (0, 1] — ]R, Nw(r) =

is well defined and, arguing as in Lemma [2.3.17] one can easily prove that N, belongs to
W,o((0,1]), since E,, and H,, belong to W, . ((0,1]). From (2.3.140), ([2:3.141), (2-3.142)

loc

and Proposition [2.3.19, we deduce that

Nuw(r) = lim N(Ay Ry, 1) =" (2.3.143)

k—+o00

for all r € (0,1]. Therefore N,, is constant in (0, 1], hence
N/ (r)=0 for any r € (0,1). (2.3.144)

Recalling the equation satisfied by w, i.e. (2.3.1306)), and arguing as in Lemma [2.3.18 with
A =1Idy and h = 0, we can prove that, for a.e. r € (0,1),

21 | (Jpe 2 0012 ) (e st 210%4S) = (#2000 S |
(fa+B:r t1*25w2ds)2
(2.3.145)

Combining (2.3.144)) and (2.3.145) with Schwarz’s inequality, we obtain that, for a.e.
re (0,1),

2
/ 172519, w|* dS / 1 2w?dS ) — / = B9,wwdS ) =0.
o+ B o+ B ot BY

Therefore, for a.e. r € (0,1), w and J,w have the same direction as vectors in the space
L2(0T B}, t1725dS), so that there exists a function 7 = n(r), defined a.e. in (0,1), such
that d,w(rd) = n(r)w(rd) for a.e. r € (0,1) and for all § € SY. It is easy to verify

that n(r) = 2?{%“({2) for a.e 7 € (0,1), so that n € LL ((0,1]), by Lemma [2.3.17, After

integration we obtain that

Ny (r) >

w(rf) = et 19)%50,(0) = g(r)p(8), r e (0,1), 6 € sy, (2.3.146)
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where g(r) = eJi 193 and ¢ = w!SN. We observe that (2.3.126) implies that
+

191 sy p1-2as) = 1 (2.3.147)

N+1

From the fact that w € H#(Bf‘ , 1725 dz) it follows that ¢ € Ho, where Hy is defined in
1

Section moreover, plugging (2.3.146)) into (2.3.136) we obtain that v satisfies
for some p € R, so that 1) is an eigenfunction of . Recalling and letting
ko € N be such that u = ug, = (ko + s)(ko + N — s), we can rewrite the equation
—div (tl_Qst) = 0 in polar coordinates exploiting [36, Lemma 2.1], thus obtaining, for
all 7 € (0,1) and 0 € SY,

1
0= TN(TN T2 g ON T (0) + 7 P g(r)diven (5 Ven v (6))
1 —2s —2s —1-2s —2s
= TN(TN*1 29 ) O () — g (r)ON 1k (0).

Then g(r) solves the equation

1 _ 1 .
_TW(TN+1 ng/)/ + ko™ 1 289(7,,) =0 in (0’ 1)
Le N+1-2
— 48 M .
—g"(r) = = ——g/(") + T2 g(r) =0 in (0,1).

Hence g(r) is of the form
§(r) = cxphots 4 eV
for some ¢, co € R. Since w € HY(B;,t7%%dz) and the function |z|_1]z\5_N_k0¢(é) 4

L*(Bj #1725 dz), from Lemma we deduce that necessarily ca = 0 and g(r) = cyrkoTs.
Moreover, from ¢g(1) = 1, we obtain that ¢; = 1 and then

w(rf) = roTsy(0), for all v € (0,1) and 0 € SY. (2.3.148)

Let us now consider the sequence {w)‘”k}. Up to a further subsequence still denoted
by {w*}, we may suppose that w*» — W weakly in HY(Bj, #1725 dz) for some w €
HY(Bf,t'72% dz) and that Ry, — R for some R € [1,2].

Strong convergence of w e iy [ LB, t172dz) implies that, up to a subsequence,
both w™ s and |Vw s ™| are a.e. dominated by a L2(Bi,t'72%dz)-function uni-
formly with respect to k. Moreover, by , up to a further subsequence, we may

assume that the limit
{:= lim ————%~
k—+o0 H()\nk)
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exists and is finite, with £ > 0. Then, by the Dominated Convergence Theorem, we have
that

. 1-2s, A o N+42-2 1-2s, A
kgrfoo B+t Swke (z)v(2)dz = kgrfoo R)\nk ‘(”/B+ t " wimk (Ry, 2)v(Ry,, 2)d2
1 VR,
H(X R>\n
= lim Ry™27% i 34 =25y (2) w ey (2)v(Ry,, z)dz
k—+oco "k B 1 /R, k

k

:]\/4_2—25\/2/+ tl_zstﬁf(z)w(Z)Q}(EZ)dz
B1 1/R

o AN 120w ()o(Re)dz = VI | 72w (z/R)v(z)dz
Bt Bt
1/R 1
for any v € CM(E). By density, the above convergence actually holds for all v €
L2(Bf,t'72%dz). This proves that w** — /fw(-/R) weakly in L?(B},t'72°dz). Since
we know that w" — @ weakly in H'(Bj, #1724 dz), we conclude that @ = v/fw(-/R) and
then w™ — /lw(-/R) in H'(B;,#'72% dz). Moreover

lim 72|Vt e (2)2dz = lim RY T2 25/ 1725 Ve (RAnkz)\de
+

k—+oco BF k——+oco A”k
1 VR,

H()\n R ) An, R
— 1 RN_2S k nE / t1_28 ngAtn 2d
kaufoo Any H(Ank) B XBI"/R . ’vw k(z)’ z

SEVE [ 0y () Vele)Pde = B2 / 125V (2) 2
1/R Bt _

BY
— / tl—QS
Bf

Vv (u(z))| @

This shows that w* — @ = v/fw(-/R) strongly in H'(B]",t'7%%dz).
By (2.3.148) w is homogeneous of degree ko + s, hence w = /¢ R 75, Furthermore
([2-3:117)), (2.3.26)) and the strong convergence w"x — @ in L(0% B}, t'72%dS) imply that

1= / {12552 4§ — g R 2R3 / 117252 4§ — g R ko2
o+Bt o+B+

in view of (2.3.126)), thus implying that w = w.
It remains to prove part (i). By (2.3.148)), (2.3.147) and the fact that ) is an eigen-
function of ([1.2.11)) with associated eigenvalue px, = (ko + s)(ko + N — s), we have that

1-2s 2 N+ 2ko 2 N+2ko
Lt IVw(z)|2dz = m((/m +8)% + ) = (ko + s)r

T

and
/ ' 2u?ds = PN / ONiw? (rf) dS = pN TRt
o+Bf s¥
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Therefore, by (2.3.138]), (2.3.139)) and (2.3.143)), it follows that

r/ 72| Vw(2)|?dz
Ew(T) B
Y= Noo(r) = =5 = ko +s.

Hy(r) / 1-25,20¢
o+ Bt

This completes the proof. O

To complete the blow-up analysis and detect the sharp asymptotic behaviour of W at
0, it remains to describe the behavior of H(\) as A — 0*.

Lemma 2.3.26. Let v = lin(l)./\/'(r) be as in Proposition |2.3.19. Then the limit
r—

lim =2 H(r)

r—0t

exists and is finite.

Proof. Thanks to (2.3.108)), it is enough to show that the limit exists. From ([2.3.85)) and
(2.3.113), we deduce that, a.e. in (0, R),

dH(r) H'(r) o H(r) 2 (E(r) + H(r)O(r) — vH(r)] (2.3.149)

dr v~ 2y P2yl T 2yl
= 200 V() — 5+ 0y = 220 ( /0 N(s) ds + om)

asr — 0T. Using the same notation as in the proof of Lemma [2.3.20 we write N/ = 51432

n (0,R), with 81 and By defined as in (2.3.110) and (2.3.111). Integrating (2.3.149)
between (7, R), we obtain that

0 " ([ o) [ [ 00)
+/R ) 0(1) dp

-/ "oy ( JAET dT> dp / Hip (204 1+5+0(1>) dp,

where Cy := Cy (C1 + %) By (2.3.110)) we have that
R
2H P
lim / # </ a1 (T) dT) dp exists.
r—0t S p2T g
On the other hand, estimate (2.3.108]) ensures that

H(p) 2Cy —1+44 1 >
p = p27 <—5p +O(1) el (O,R),
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r—0t )
is thereby proved. O

R
H 2 5
so that the limit lim / gi}) (—@p1+5 + O(l)> dp exists and is finite. The lemma
r P

The next step is to prove that the limit lim r~27H (r) is actually strictly positive. To

r—0t
this aim, we first define the Fourier coefficients associated with W, with respect to the

orthonormal basis (1.2.14]) of LQ(Sf, O}V*fde), as

Orm(N) —/ ONCIW (NO)Yim(0)dS, A€ (0,Ri], keN, m=1,..., M. (2.3.150)
s

We also define

Vsn Yim(2/2])
]

Tim(\) = —/B+ tH72(A — Idny ) VIV (2) - dz (2.3.151)
A

+ “s/ h(y) TeW (y) T Y <y> dy +/ 1725 (A = Idy 4 ) VIV - iYk,m (Z> ds,
Iy Y o+ Bf |2| ||

for a.e. A € (0,Ry], k € Nand m € {1,2,..., My}.

Lemma 2.3.27. Let ko be as in Proposition [2.3.25. Then, for all m € {1,2,..., My, }
and R € (0, Ro],

(k}o + S)R_N_Qko
N + 2k

R
rym(N) = Ao+ (R-ko-sgoko,mm i /0 FHIT ) d

N—S+k0
N + 2kg

where § is defined in (2.3.91)).

Proof. Let k € N and m € {1,2,..., M}. Testing (2.3.11)) with ¢ = M%L%Q%Ykm(zﬂﬂ)
for any test function w € C:°(0, R1) and using (1.2.12)), we can easily verify that ¢y,
solves the following second order differential equation

R —
/ pN”S’“O’rko,m<p>dp>+0<x“°“”> as A= 07, (23152)
A

N+1-2s .
— kN + S okmN) = Gm(V) i (O,R) (23153)

in a distributional sense, with py, as in (1.2.13), where the distribution (., € D'(0, R1) is
defined by

1/ (A)

- (pk,m

LENATON -
(0.1 (G @) D0,y ) = KS/O Az(z)s (/SN_l h(A0') Tr W()\Q/)Ykm(eQO)dS/) X

_ / 2 (A = Ty ) VIV -V (w(|2) |22 (2/12))) dz
B

+
Ry
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for any w € C2°(0, R1) (we refer to Section for the definition of S¥~1).
Letting Y, be as in (2.3.151)), by direct calculations we have that Yy, € L(0, Ry)
and
emA) = ANTLZZ5¢ () in D/(0, Ry). (2.3.154)

k,m

In view of (2.3.154) and (1.2.13]), we have that (2.3.153)) is equivalent to

’ /
- (e () ) =X, 0 )

Integrating the above equation, we obtain that, for every R € (0,R1], kK € N and m €
{1,2,..., My}, there exists a real number ¢y, ,,(R) (depending also on R) such that

()\_k_s@k,m()‘))/ - 7)\_N_1+s_krrk,m()‘)
_ (k_i_s))\folka (Ck,m(R) +/}\

in the sense of distributions in (0, R). From (2.3.155)) we infer that ¢y, € VVl})Cl((Q Ry)),
thus a new integration leads to

_ \k+s SDkJ,m(R) (k; + S)Ck:,m(R) N + k—s R —N—k+s—1
ka,m()‘) =A ( RFk+s - (N + 2k)RN+2k + N + 2k \ P Tk:,m(p) dp

k+ s)A~N—hts R
( N)+ 2k <ck,m(R) + /A P (p) Clp) (2.3.156)

for all A € (0, R;]. From now on, we fix kg as in Proposition [2.3.25] Ry as in (2.3.46|), and
m e {1,2,..., My, }. We prove that

R
AT (o) dp) . (23.155)

Ro
/ p N TR ()] dp < o0 (2.3.157)
0

To this purpose, exploiting (2.3.20) and using Holder’s inequality, one can estimate the
first term in ([2.3.151)) for all p € (0, Ry) as follows

Y;
/‘+ t1728(A _ IN+1)VW(Z) . VSN kO,m(Z/|Z|)
BP

" dz' (2.3.158)

< const / =2 VIV |2z - / 72|V Yio m(2/12])[2d2
B} By
=: const I1(p) - I2(p),

where

Li(p) = \/pN+2‘25/+tl‘QSIVW(pz)lzdz = pN225\/H(p)\//+tl‘%!Vw”(Z)sz
Bl Bl

(2.3.159)

N—2s
<constp 2 +/H(p),
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as a consequence of Lemma, [2 and

. ME N+2-2s
\// N4 23 / 911V+21|VSNYk07m(9)|2dS) dfzmp el
(2.3.160)

due to (1.2.12) and taking into account that elements of (1.2.14) have L3(SY, 0y +2de)
norm equals 1. Combining ([2.3.158)), (2.3.159), (2.3.160]), and ([2.3.108) we obtain that,
for every R € (0, Ry,

2]

R
/ = N=T+s—ko
0
R
< const/ p* ko /H(p)ds < const R. (2.3.161)
0

Moreover, as regards the second term in ([2.3.151)), Holder’s inequality implies that

@) T ) T Vi () d| < \// Rl Te W Pdy - \// )| T Vi (1) Py

(2.3.162)
Arguing as in (2.3.35]) and using homogeneity of the function Yy, ,,(y/|y|), we have that,
for all p € (0, Rp),

Ven Yio.m(2/12)

/ N t172(A = Iny ) VIV (2) - dz‘ dp
BP

1
2% (s)
\// I T Yeom (1) Pdy < V/nsp HhHW </F | Tr Yieg,m () [ dy)
P

- \FN,S,pnhH”? T (/ i

2%(s)
| T Yy (1) 17 dy) :
1

Furthermore, using (2.3.32)), and (2.3.105)), we deduce that, for all p € (0, Ry),

2/2*(s)
\/ [T Wiy <\ gl wa(/ |TrW|2*<s>dy>
r, 1 r;

P

CN,s _ N — 2s
\/ 2Ly 070 () (W) 25 )

N,s

IN

N—2s4%

< constp 2 H(p).

Putting the above estimates together and recalling (2.3.108]), we conclude that, for every
R e (0, Ro],

R
/ p—N—k0+s—1
0

/ R TW () TrYeg m (1) dy'dp

R p—
< const/ p~HHERo=s JH (p)dp < const R°.  (2.3.163)
0
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In order to estimate the last term in (2.3.151f), we observe that

A
/B T Wi (1) e = / TN+1—2S< /S Ohfflyko,mw)l’zds) dr
A

0

(2.3.164)
)\N+2—25

Hence, thanks to (2.3.20)), Holder inequality, (2.3.159)), (2.3.164) and (2.3.108|), integrating
by parts, we have that, for every R € (0, Ry,

R
/ pr+8717k0
0

/ t1723(A . IdNJrl)VW . ZYko,m(é)dS‘dp (23165)
a+Bf

E

R
Sconst/ p~NHs—ko / t1_2S\VW||YkO7m(é)|dS dp
0 o+ Bf

= const <RN+Sk° /+ 12| VW) ‘Yko,m(ﬁ) | dz
B

R

R
+ (N 4 ko — 8)/ pNs—1—ko </+ 2 W Yig,m (1) dz> dp)
0 B

P

R
< const <R18k0\/H(R) + / p* ko /H(p) dp) < const R.
0

Thus from (2.3.151)), (2.3.161]), (2.3.163]) and (2.3.165]) it follows that, for every R € (0, Ry,

R _
/ p~N=kots=lr, o (p)] dp < const R (2.3.166)
0

where § is defined in (2.3.91)). From (2.3.166)), it immediately follows (2.3.157)).
From (2.3.157)) we infer that, for every R € (0, Ro],

Rko+s (N + QkO)RNJr%o N + 2kg
= O(NFoFs) = oA Nhots) as X 0t (2.3.167)

m m ko — "
)\k0+s <80k207 (R) (k‘0+8)0k0, (R) N + 0 5/)\ kao+SlTk0’m(p)dp>

Now we prove that, for every R € (0, Ro],

R
Cho,m(R) + /0 PO () dp = 0. (2.3.168)

To this aim, first we observe that

Ro
/ pFOTs T Yy () |dp < oo, (2.3.169)
0
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as a direct consequence of (2.3.157)), since kg +s—1 > —N — kg + s — 1. Suppose by
contradiction that (2.3.168) does not hold true for some R € (0, Ro); then from (2.3.156)),

(2.3.167)) and (2.3.169)), we would have that

(ko+8)AN’“°+S< /R ko+s—1 ) +
Cro.m(R) + 0TS Y m(p) d as A — 0",
N + 2 ko,m (1) P ko,m(P) dp

(pko,m(/\) ~
and hence
Ro
| A ()P = .
0
On the other hand, by (2.3.150f), we have that

RD RO
/0 AN-1=2510 (P < / AN-1-28 (/S e}vfﬂwue)?ds) dx

+
W2
Bf, ||

as a consequence of Lemmam giving rise to a contradiction. Hence (2.3.168)) is proved.
From ([2.3.168) and (2.3.166]) we deduce that, for every R € (0, Ry,

A
/ prots =iy (p) dp

R
’A—N—’W <ck0,m<R>+ / P kg m () dp)] = AT
A 0

A
< [ e ol

A —
< Aot / p TR Y i (p) dp = O(NOTF0) as A = 07
0

Combining this last information with (2.3.168)) and (2.3.156)), we finally obtain (2.3.152)).

O
Using Lemma [2.3.27, we now prove that lim r~2YH(r) = lim r~2*0+s) [ (r) > 0.
r—0+ r—0+
Lemma 2.3.28. Let v = hII(l)N( r) be as in Proposition|2.3.19. Then
r—
lim =2 H(r) > 0.
r—0+t
Proof. By (2.3.26]) and using the Parseval identity we have that
H(\) = / ONT(AO) W (A0)[*dS (2.3.170)
s¥
oo My
= (1+0W) [ OEWOO RS = (1+00) Y 3 lonn(
+ k=0 m=1
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Let kg € N be as in Proposition [2.3.25] thus v = kg + s. We argue by contradiction,
assuming that
lim A" H()\) = 0. (2.3.171)

A—=07F
Hence from ([2.3.170)) it follows that /\lim+ )\_(k°+5)<pk07m()\) =0foranym € {1,2,..., My, }.
—0
This, together with (2.3.157) and Lemma leads to

o ko_i_S)RfoWco R 3
R ko—s m R +( / ko+s 1T m d
Pro,m(R) N ok L7 ko,m () dp

N—S+l€0
N + 2k

R
/ p N-lrs—koy, - (p)dp =0, (2.3.172)
0

for all m € {1,2,..., My, } and for every R € (0,Rp]. From (2.3.172), (2.3.152) and
(2.3.166)) it follows that

SN—S+]€0 )‘__ o 513 oi5
@ko,m(A) = 7)\ko+ ]V—{_Qko/(; p N—1+ kOTko,m(p) dp+0(>\k0+ +6) — O()\k0+ +6)

as A — 07" for all m € {1,2,..., My, }. Hence

HN) (W) 2y g12a5) = ONFT519) ag X — 0T (2.3.173)

N+1

for every ¢ € span{Yy,; : m = 1,...,My,}. From Lemma [2.3.20(ii), /H(\) >
kg(g))\k0+s+% for A small, so that (2.3.173)) yields

(W) Laey g1-2as) = O?) as A= 0F (2.3.174)

for every ¢ € span{Yj, ., : m = 1,..., Mg }. On the other hand, by Proposition
and continuity of the trace map from H*(Bj,t72%dz) into L?(0" By, t1725dS), for any se-
quence A\, — 0T, there exist a subsequence {\,, } and vg € span{Yi,m :m =1,..., My, }
such that

‘|¢0’|L2(Sf,611\,’+2fd5) =1 and w™k — 1y in L2(Sf,0]1\,;215d5’). (2.3.175)

From (2.3.174)) and (2.3.175)) we deduce that

— o An — 2 —
0= kgl—‘,r-loo(w k7w0)L2(Sf7011Vf15d5) - HwOHLQ(Sﬁ’g}VfISds) =1,

thus reaching a contradiction. O

Theorem 2.3.29. Let kg € N be as in Proposition [2.3.25.  Let My, € N\ {0} be
the multiplicity of the eigenvalue pg, = (ko + s)(ko + N — s) and let {Yko,m}m=1,..-,Mk0
be a LQ(SJX,H}V__Ede)—orthonormal basis of the eigenspace of (1.2.11) associated to i, .
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Then, for every m € {1,2,..., My, }, there exists B, € R such that (Bl,ﬁg,...,BMko) +
0,0,...,0),

My,
W(/\Z) s 2 . —2s
ot || Fo+ Zlﬁmyko,m(z/\zn in HY(B,t'72%dz) as A — 01,

and

—N—2kg
— —(ko+s) (k?[) + S)R
R
N —s+ k‘()

N + 2k

R
/0 PPy (p) dp

R
/ pN-ts—koy, (p)dp for all R € (0, Ro], (2.3.176)
0

with @rym and Yi, m given by (2.3.150) and (2.3.151)) respectively.

Proof. If we consider any sequence of strictly positive real numbers )\, — 0T, then from
Proposition [2.3.25 and Lemmas [2.3.26]and 2.3.28] we deduce that there exist a subsequence
{An, }ken and real numbers (1, fa, .. '/BMkO not all equal to 0 such that

My,
W()‘n Z) s 2 . —28
T,ﬁz — |z|kot z_:lﬁmyko,m(z/pp in HY(B,#'7%dz) as k — oo, (2.3.177)

We claim that the coefficients 3, depend neither on the sequence {\, },cn, nor on its sub-
sequence {A,, }ken. To this aim, we observe that (2.3.150]), (2.3.177)), and the continuity
of the trace map from H'(Bi,t172%dz) into L2(* B} ,#'725dS) imply that

i —(ko+s _ 1 1-2sy —(ko+s
Jim Aot ) o (Any ) = Jim s 04 2N R W (A, ) Yig i (6)dS
Mko
- Z 5’ /SN ejlviffykoi(e)yko,m(e)ds = ﬁma
i=1 +

for all m € {1,2,..., My, }. At the same time, after fixing R < Ry, by (2.3.152]) we have
that

(ko + s)R™N—2ko /R ko+s—1
s=ly, (p)d
N 1 2o 7 ko,m (P) dp

N—s+ko [ N iren
S B T d
+ N T 2k /0 p ko,m (P) dp,

klggo )\?;xg(k0+8)¢ko,m()‘nk) :R_(k0+8)¢ko,m(R) +

hence, by uniqueness of the limit, we can deduce that, for all m € {1,2,..., My},

(ko + s) R~ =2k
N + 2k

R
/0 p~ NSk (o) dp.

B =R~k (R) +

R
| o) do

N—S-i-k‘()
N + 2kg
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This is enough to conclude that the coefficients (,, depend neither on the sequence
{An}nen, nor on its subsequence {\,, }ren. Lemma allows us to conclude that the
convergence in (2.3.177)) holds as A\ — 0T, thus completing the proof. O

We are now in position to prove the following convergence result for scaled solutions

to (CZ9).

Theorem 2.3.30. Let Q be a bounded domain in RY such that there exist g € CHH RN,

xo € 00 and R > 0 satisfying (1.2.3). Let h satisfy (1.2.2) and U € DLQ(RfH,tl_QS dz)
be a weak solution to (1.2.9) in the sense of (1.2.10), with U # 0 and TrU = u satisfying
(1.2.4)). Then there exist kg € N and an eigenfunction Y of problem (1.2.11)) associated to

the eigenvalue py, = (ko + s)(ko + N — s) such that, letting zo = (xo,0),

U(Zo + )\Z)

o = ety <Z> in H'(Bf , #'72dz) as A — 0. (2.3.178)

E

Proof. Up to a translation, we can assume that zg = 0. If U is as in the assumptions of
Theorem [2.3.30, then, letting F' as in Subsection [2.3.1 W =U o F € H# (B, t' 7% dz)
R

1

is a nontrivial weak solution to (2.3.11). We notice that the nontriviality of U in any
neighbourhood of 0, and consequently of W in BEI, can be easily deduced from nontriv-

iality of U in ]Rf *1 and classical unique continuation principles for second order elliptic
equations with Lipschitz coefficients [48].

Then, by Proposition and Theorem [2.3.29] there exist kg € N and an eigenfunc-
tion Y of problem associated to the eigenvalue pg, = (ko + $)(ko + N — s) such

that
W (Az)

)\k0+5
We observe that

— [PV (2/]2]) in HY(B;,t'7%dz) as A — 0T (2.3.179)

l)/\'lgjfg _ W(jgis(z))7 v (g,foiz) (2) =V (M) (GA(2)) Jac Gr(2),  (2.3.180)
where

Gx(z) = ;P (02).
From (2.3.9) we have that
Ga(z) =24+ 0(N) and JacGy(z) =Idy4+1 +O(N) (2.3.181)

as A — 0" uniformly with respect to z € Bfr . From ([2.3.181)) one can easily deduce that,
if £\ — fin L?(B{,t172%dz), then fy o G\ — f in L?(B{,t'72%dz). In view of (2.3.179)
and (2.3.180)), this yields the conclusion. ]

As a direct consequence of Theorem [2.3.30|and of the equivalent formulation of problem
(1.2.1)) given in ((1.2.9)), we obtain also a convergence result for scaled solutions to ([1.2.1)).
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Theorem 2.3.31. Let Q be a bounded domain in RY such that there exist g € CHH (RN,

xo € O and R > 0 satisfying (1.2.3)). Let h satisfy (1.2.2) and u € DS2(RYN), u # 0,

be a weak solution to (1.2.1)) in the sense of (1.2.6)), satisfying (1.2.4). Then there exist
ko € N and an eigenfunction Y of problem (1.2.11)) associated to the eigenvalue pp, =

(ko + s)(ko + N — s) such that

u(zo + Ax)

e lalfY ( z 0) in H*(B)) as A — 0, (2.3.182)

ma
where H*(BY) is the usual fractional Sobolev space on the N-dimensional unit ball B .

Proof. If u € D*2(RN), u # 0, is a nontrivial weak solution to , then its extension
U= Hu) € Dl’Q(RfH,tl*Qs dz) weakly solves in the weak sense specified in
, see [8] and Section Then the conclusion follows from Theorem applied
to U and the continuity of the trace map from H' (B, t!72%dz) into H*(BY), see e.g. [52,
Proposition 2.1]. O

The salient consequence of the precise asymptotic expansions given in Theorem [2.3.30
and Theorem [2.3.31] is the following strong unique continuation principle for problems

[C21) and (T29).
Theorem 2.3.32.

(i) Under the same assumptions as in Theorems letU e DI’Q(RfH, t1725d2) be
a weak solution to (1.2.9) (in the sense of (1.2.10])) with TrU = u satisfying (1.2.4))
and such that U(z) = O(|z — z|*) as z — 29, for any k € N. Then U =0 in R .

(ii) Under the same assumptions as in Theorems |2.8.31], let u € D>2(RY) be a weak
solution to (1.2.1) (in the sense of (1.2.6))) satisfying (1.2.4) and such that u(x) =

O(|x — x0|*) as x — o, for any k € N. Then u =0 in RV,
In order to prove it we premise the following remark.

Remark 2.3.33. It is worth highlighting the fact that eigenfunctions of problem
cannot vanish identically on SN~ N {0x < 0}, i.e. on the boundary portion where a
Neumann homogeneous condition is assigned. Indeed, if an eigenfunction 1 associated to
the eigenvalue py, = (k + s)(k + N — s) vanishes on SN=1 N {Ox < 0}, then the function
U (ph) = pF+54(0) would be a weak solution to the equation div(t'=2V¥) = 0 in RN~! x
(—00,0) x (0, +00) satisfying both Dirichlet and weighted Neumann homogeneous boundary
conditions on RV~1 x (—00,0) x {0}; then its trivial extension to RN~ x (—00,0) x R
would violate the unique continuation principle for elliptic equations with Muckenhoupt
weights proved in [T7] (see also [48], [73, Corollary 3.3], and [67, Proposition 2.2]).

Proof of Theorem[2.53.3% In order to prove (i), let U € DLQ(RJXH,tl*QS dz) be a non-
trivial weak solution to (1.2.9). Exploiting that by assumption U(z) = O(]z — 2z0|*) as
z — zg for any k € N, we have that for any fixed k € N

‘U(zo +A2)

Viors | < constAFTRO (2.3.183)
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for A sufficiently small. Taking k > kg + s, from il follows that Uw
to 0 in L2(By,t172%dz) as A — 0, thus contradicting the assumption that U is non trivial
and . As far as the proof of (ii) is concerned, we argue by combining a similar
argument to the one used for the proof of (i) with Remark which ensures that the

right hand side on (2.3.182)) is non trivial. O

tends

2.4 Second order elliptic equations in a domain with a crack

In this section we present the results contained in [24]. Specifically, we carry out the
study of local asymptotics and the strong unique continuation property from the edge
of a crack for solutions to the class of boundary value problems of type (1.2.15)), where
N > 2, Q c RV¥*! is a bounded open domain, I' C R is a closed set defined as in
(1.2.16). The function ¢ that parametrizes the edge of I is assumed to be of class C? and,
without loss of generality, we suppose holds true after fixing at the origin of our
coordinate system a point of the edge of the crack. Then in particular we focus on the
study of the strong unique continuation principle at the origin for solutions to problem
(1.2.20]), where the radius R is choosen in assumption and the potential f satisfies
either (HI-1)-(HI-3) or (H2-1)-(H2-5). We recall that a weak solution to (L.2.20) is a
function v € H'(Bjp) satisfying (1.2.22)), where the space H}.(Bjp) is defined as the closure
with respect to the H'-norm of the subspace defined in . The above space can be

explicitly characterized as follows.

Lemma 2.4.1. The space HL(Bp) coincides with the subset of H'(Bp) of those functions
with null trace on I'.

The proof is based on the following Hardy-type inequality with boundary terms, due
to Wang and Zhu [78§].

Lemma 2.4.2 ([78], Theorem 1.1). For every r >0 and u € H*(B,),

/ V=) + /{m ()2 dS > (N2_1>2/B ‘@‘2 de. (2.41)

r

T

It is also useful to give an adapted version of [5, Theorem 3.1] to our setting in order

to prove Lemma

Theorem 2.4.3. Let I be the interior of the crack I'. Then the space of all smooth
Junctions defined in the closure of the ball By vanishing in a neighbourhood of I' is dense

in the set of functions in Hl(BR) having null trace on T.
Now we can move on to prove Lemma [2.4.1

Proof of Lemma[241). 1t is sufficient to prove that any function in H'(Bp) having null
trace on I' can be approximated by smooth functions defined in the closure of the ball
By, vanishing in a neighbourhood of T'. In order to do this, we exploit Theorem [2.4.3]
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taking into account that OI" has zero capacity in Bj, being contained in a 2-codimensional
manifold (see [49]). For this, we recall that the capacity of a compact set K contained in
an open set Q C RV is defined as

capoK := inf {/RNH |Vu|?dz - u € D(K, Q)} ,

where D(K,Q) :={ue C*(Q):0<u <1, u=1in a neighbourhood of K}.
Let u be any function in Hl(BR) with null trace on I" and let ¢ > 0. By Theoremm

we deduce that there exists a function g. € C°°(Bp) such that
ge = 0 in a neighbourhood of I" and |ju — 9ellm(s,) <e/2.

Furthermore, since JI" has zero capacity in Bj, there exists a sequence of functions
{Mn}neny C D(IT, BR) such that

/ |Vnn|?>dz — 0 as n — oc. (2.4.2)
B

R

We claim that g.(1 — n,) — g in H' (Bg) as m — oo. In order to show it, we first
prove that
/ lge — g-(1 — nn)|2dz —0 asn — oo.
B

Indeed, since g — g-(1 — my) = g1, it is sufficient to observe that g. is bounded and

2
/ 2 dz < RQ/ T g, < const R2/ |Vnu|?dz — 0 asn — oo, (2.4.3)
B; B Bj

. |2
3 R R

where we used (2.4.1]) and (2.4.2)). Moreover, we have that Vg. —V (ge(1 — n,,)) = 7 Vge +
9V, and

/ |77an5 +95V77n|2d2 <2 (/ ‘Uanz-:PdZ +/ |gev"7n’2dz>
B B B

R R R

< 2 const / |77n|2dz+/ IVia|?dz | — 0
Bg Br

as n — oo, exploiting the boundedness of Vg., (2.4.3) and (2.4.2). Hence there exists
v =v(e) € N such that

”.95(1 - 771/(6)) - gE”Hl(BR) < 8/2.

Putting together all the above information we achieve the desired convergence because
ge(1 = 1ny(c)) vanishes in a neighbourhood of I" and

19e(L = o) — ullmsy) < 91 = M) = gellm sy +119e —ullms,) <e/2+e/2=c¢,

thus completing the proof. d
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We provide some examples of functions satisfying our assumptions on potential f.

Remark 2.4.4. Conditions (HI-1)-(H1-3) are satisfied e.g. if |f(2)] = O(|z|7**°) as
|z| = 0" for some & > 0, whereas assumptions (H2-1)-(H2-5|) hold e.g. if f € I/Vlifo( 5\

{0}) and f,Vf € LP(By) for some p > N+1. We also observe that condition (H2-1)) is
satisfied if f belongs to the Kato class Kn+1, see [34)].

We make also some observations on assumption (|1.2.19)).

Remark 2.4.5. Assumption says that the complement of I' is star-shaped with
respect to the origin in a neighbourood of 0. This fact can be easily seen taking into
account that if x = (2/,xn) € OIC, then xn = g(2’) and the outward unit normal vector
at x denoted with v(x) is given by

(-Vgla),1)
T+ V@l

In particular, we observe that is satisfied for instance if the function g is concave
in a neighbourood of the origin, see Figure[2.4 Indeed, under this assumption the Hessian
matriz is negative semi-definite for any point in a neighbourood of the origin; in particular,
using condition and considering the asymptotic expansions of g and Vg around 0
we deduce that

2
]Zl 8:16181'] fUiij +o(|2'*) as|2'| — 0T (2.4.4)
N-1
d%9(0
Vole') o' = 3 G, olla)as ] =0
i,j=1
hence
N-1
1 9%9(0
9(') = V(') -2’ = 2 ijzzl zega(xi Tij + o|2'?) as |2'| = 07, (2.4.5)
thus implying (1.2.19)).
Bp

)
re j T

Figure 2.4: An example of g satistying (|1.2.19)
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2.4.1 Approximation argument

In this section we carry out an approximation argument based on the construction of
a sequence of domains approximating our cracked domain with the twofold features of
satisfying the exterior ball condition and being star-shaped with respect to the origin. In
order to have the latter property, condition turns out to be crucial (see the proof
of Lemma [2.4.8)).

Consequently, we consider a sequence of solutions of some boundary value problems
on such domains converging to the solution of the original problem with crack.

We start by providing a coercivity type result for the quadratic form associated to
problem in small neighbourhoods of the origin.

Lemma 2.4.6. Let f satisfy either (HI-1) or (H2-1). Then there exists ro € (0, R) such
that for every r € (0,70 and u € H*(B,)

1
/ (|IVul? — | f|u?) dz > / |Vul|? dz — w(r)/ u*dS (2.4.6)
B, 2 /B, 0B,
where )
75]0(7")’ under assumption (HI1-1]),
N-1 r
w(r) = (2.4.7)
N -1 77(7“7 f) :
T under assumption (H2-1)),
,
and N1
rw(r) < T_ (2.4.8)
Remark 2.4.7. For future use, we notice that (2.4.6|) can be rewritten as follows
2 1 2 2
|flu“dz < - |Vul”dz + w(r) u”dS (2.4.9)
B, 2 /B, OB,

for all w € HY(B,) and r € (0,70).

Proof of Lemma[2.4.6. We first prove the lemma under assumption (H1-1)). Using (H1-3)
and (2.4.1)), we infer that for any r € (0, R) and v € H'(B,)

2
[ iz <5ty [ B

i) Vo (2.4.10)
AT 2 - 2
< 2 dz + —— ds|.
_(N_l)Q[/BTWu| i+ aBTu S]
From (HI-1) we can deduce that there exists ro € (0, R) such that
4ff(7“) 1
m < 5 for all r € (O,TO]. (2411)
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Thus, for every r € (0,7¢], combining (2.4.11)) and (2.4.10)), we obtain that

2 2 4&s(r) 2 2 &) 2
/B7. (]Vu| — | flu )dzZ (1— (N_1)2>/BT\VU| dz—iN_1 " /63,.u ds
1 2 2 &(r) 2
22/;T|VU’ dz]\f—lr/aBru dS

and this completes the proof of (2.4.6) under assumption (H1-1J).

Now we move on to prove the lemma under assumption (H2-1). Then by (H2-5), it
follows that for every r € (0, R) and u € H'(B,)

N -1
/r |Flu? dz < n(r, f) [/B Vul? dz + 2 /aBr u? dS} (2.4.12)

From (H2-1)) we can deduct that there exists 7o € (0, R) be such that

1
n(r, f) < 3 for all r € (0,79]. (2.4.13)

Hence, for every r € (0, 7], putting together (2.4.13) and (2.4.12)) we deduce that

) ) ) N —1n(r, f) 2
/ (IVul® = | f|u )dzz(l—n(Taf))/BTW“’ dZ_Q/BBTu 4

r

1 N —1
> / |Vu|*dz — N=Lnlrf) / u?ds,
2 B, 2 T OB,

T

hence concluding the proof of (2.4.6) under assumption (H2-1)). Estimate (2.4.8) follows
from the definition of w in (2.4.7)), (2.4.11)), and (2.4.13). O

Now we construct suitable regular sets approximating our cracked domain which are
star-shaped with respect to the origin and satisfy the exterior ball condition. In order to
do this, for any n € N\ {0} let f,,: R — R be defined as

2n2|t|
Fult) = nlt| + Len?i=2if |t] < 2/n?,
(1) =
nlt|, if [t| > 2/n?,

so that f, € C?(R), f,(t) > n|t| for all t € R, and f/,(t) < n for every t > 0 and f, > —n
for every t < 0; from these information, we can easily deduce that

fu(t) =t fL(t) >0 for every t € R. (2.4.14)

This condition reveals to be fundamental to obtain domains that are star-shaped with
respect to the origin (see Lemma below). Then for all r > 0, we define

B ={z=(2,xn,t) € B, : xy < g(z') + fu(t)}, (2.4.15)
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see Figure [2.5
-~

(a) The set B,., (b) Section of B,.,,

Figure 2.5: Approximating domains

Let 4, that part of the boundary of Br,n contained in B, given by the set
{z=(@" an.t) € B, : an = g(2)) + fu(t)}

and S’nn denote its complement with respect to (‘H?T?n. For any fixed r > 0, the set 7;.,, is
not empty and, consequently, B, , # B,, provided that n is sufficiently large.

Lemma 2.4.8. Let 0 < r < R. Then, for all n € N\ {0}, the set By, is star-shaped
with respect to the origin, i.e. z-v(z) >0 for a.e. z € OB, ,, where v is the outward unit
normal vector.

Proof. 1f #4,,, is empty, then Br,n = B, and the conclusion is obvious. Let 7, , be not
empty.

The thesis is trivial if one considers a point z € 8]_@?@ \ Ar.n-

If 2 € Yp, then z = (2, g(2') + fn(t),t) and the outward unit normal vector at this

point is given by
V(Z) — (_Vg(x/)vla_f;z(t))
VIHOP + Ve

hence

9(z') = Vg(@') 2"+ fult) =t fu(D) _
VI+I®P + V(a2 a
as a consequence of assumption (1.2.19)) and by (2.4.14)). O
We fix once and for all u € H'(B ) @ non-trivial weak solution to problem (1.2.20), as

clarified in ([1.2.22)). Hence there exists a sequence of functions G, € Cgt (Bj) such that

G, — uin H'(B 7). Starting from the functions G,,, we can easily construct a sequence
of functions g, such that

z-v(z) =

gn(@,zn,t) =0 if (2',2n) €T and |t| <

3“‘ (@}

(2.4.16)

with

C > 1\/2(r3 + M?), where M :=max{|g(z’)| : |2/| < ro}. (2.4.17)
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Indeed, since G1 vanishes in a neighbourhood of I', then G vanishes on a set of type

I' x (—n%, n%) for sufficiently large n; € N*. Thus, choosing g; = G for every 1 < i < ny,
we will have _ N
/ . / C C
gi(x',zn,t) =0 if (2',zy) €T and |t| < — < —
n

1

for every 1 < ¢ < nq, which implies property (2.4.16)), as desired. We proceed by selecting

ng > nq such that Go =0 on I' x (—Q Q) and letting g; = G2 for every n1 +1 < j < no.

n2’ n2
In this way, (2.4.16)) holds true also for g;, with n14+1 < j < no. Via an iteration argument,
as shown below

gl g2 DRI gnlgn1+1 DR gn2 DR
Gl Gy -Gy Gy - Gog -

we obtain a sequence of functions g, satisfying (2.4.16|).

Remark 2.4.9. It holds that g, =0 in By, \Bm,n. Indeed, if z = (¢/,xN,t) € By, \Bro,n,
then
xn > g(@') + fult) > g(2'),

and hence (z',xn) € T. Moreover
an > fo(t) +g(z') = nlt| - M,

with M defined as in (2.4.17). Thus either |t| < % orrd > a% > (n|t|-M)? > %zltIQ—MQ,

/ 2 = ~
implying that |t| < 2(T++M2) < %, if we take C as in (2.4.17). Then g,(z) = 0 in view
of RA10).

We go ahead with our construction by considering a sequence of solutions {uy, }nen to
some boundary value problems on the approximating domains Bro’n. Therefore, for every
n € N, we claim that there exists a unique weak solution u, to the following boundary
value problem

{—Aun = fu, in Bro,n, (2.4.18)

Up = gn  ON Oéro’n.
Letting v, := 4y, — gn, we have that u,, weakly solves (2.4.18)) if and only if v, € H* (Bm’n)

is a weak solution to the homogeneous boundary value problem

{_Avn — fon = fogn + Agn in Bro,na

- (2.4.19)
v =10 on 0B, n,

that is equivalent to assert that
Up € H&(Bm,n)a

/ (Von -V — fund)dz = / (Fgu + Aga) dd= for any ¢ € HY (Bry).
Bry,n

Bro,n
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Lemma 2.4.10. Let rg be as in Lemma . Then, f0~7“ all n € N, problem (2.4.19) has
one and only one weak solution v, € H& (Bro,n), where By p is defined as in (2.4.15)).

Proof. For every v,w € H}(Byy.n) we introduce the bilinear form
a(v,w) = / (Vo - Vw — fow)dz
BTO,n

and by Lemma “ we deduce that a is coercive on H{ (BT0 n), namely there exists a
positive constant 8 > 0 such that for every v € Hg (B, )

a(v U) = ﬁH,UHHI Br )’

Indeed, observing that the boundary term in vanishes since v € H} (Bm,n), we have
that

1
a(v,v) :/B (Vo] = fo?] dz > 2[ |Vo|? dz = f||v||H1 (Bro ) (2.4.20)

70,1 0>

Furthermore, from estimate we easily infer that a is continuous, i.e. there exists a
positive constant C' > 0 such that for every v,w € H{} (Bm,n)

la(v, w)| < Clloll gy s, wlg1s,,.-

In order to show this we introduce

4€s(ro) ,
—1>—= under assumption (HI-I),
a(r) =4 (N=1)? (2.4.21)

n(r, f), under assumption (H2-1)),
obtaining that by (2.4.11]) and (2.4.13)

1

(:J(’r’o) < 5

Then applying the Holder inequality and proceeding as in the proof of Lemma [2.4.6

la(v, w)| < / Vv - Vuw dz+/ | fow| dz
B

QM Bro ,n

1/2 1/2 1/2 1/2
< / IVo|? dz / |Vw|? dz + / | fv? dz / | flw? dz
Bro,n Bro,n Bro,n BTO,n
< (14 6(r0) [0l gy o lollizyes,
§§||U”H5(BT07,1)||w||H5(1§TO,n)-
The thesis follows from the Lax-Milgram Theorem. O
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Proposition 2.4.11. Under the same assumptions of Lemma there exists a posi-
tive constant C > 0 such that HUNHH&(BTO) < C for everyn € N, after extending v, trivially

to zero in By, \ By n.

Proof. First we observe that fg, and —Ag, interpreted as linear and continuous operators
on H}(B,,) are bounded in H!(B,,): indeed, by the Hélder inequality and (2.4.9), for

any ¢ € H&(BTO),
1/2 1/2
< ( / |f|gidz> ( / |f|¢2dz)
By, By,
1 1 1/2
< = / |Vgn]2dz—|—w(r0)/ g2 ds / Vo|?dz
2\2 /g, 0B, By,

0 0
< const|gn | 11(B,.) |19l 2 (B,,) < const]|d] gy, ),

Jano dz

Brg

1/2

where we used also the continuity of the trace map from H'(B,,) to L?(0B,,) and the
boundedness of functions g, in H'(B,,); moreover we have also

Agnd dz Vg, -Vodz

Br,

< const||¢]| g1, -

< const|gnl| 15, 191l 22 (B,

’ Bry

Thus exploiting the equation (2.4.19) and Lemma [2.4.6} it follows that

loliigny) = [ 1VonPdz<z [ (VP pidyde=2 [ (fon+ Aga)undz

0 BT‘O BT‘O

< constHUnHH(}(Bro)’

thus completing the proof. O

Proposition 2.4.12. Under the same assumptions of Lemma it holds that u, — u
weakly in H'(B,,), after extending u,, trivially to zero in By, \ Bryn-

Proof. We observe that the trivial extension to zero of u,, in By, \BTO,n belongs to H'(B,,)
since the trace of u, on %, is null in view of Remark

From Proposition it follows that there exist © € H}(B,,) and a subsequence
{vn, } of {v,} such that v,, — o weakly in HJ(By,). Then u,, = vy, + gn, — @ weakly
in H(B,,), where 4=+ u. Let ¢ € C2°(By, \ I'). Arguing as in Remark we can

prove that ¢ € H&(Bro,nk) for all sufficiently large k. Hence, from ([2.4.18]) it follows that,
for all sufficiently large k,

Vg, -Vodz = / fun, @ dz, (2.4.22)
Bry Brg
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where u,,, is extended trivially to zero in B, \B’ro’nk. Passing to the limit into ,
we obtain that
V&-V(bdz:/ fupdz
Brg Brg
for every ¢ € C°(By, \T'). Furthermore & = w on 0B, in the trace sense: indeed, due to
compactness of the trace map vy : H'(B,,) — L?(0B,,), we have that v(u,,) — (%) in
L*(8By,) and Y(un,) = v(gn,) = Y(u) in L2(B,,), since g, — u in HY(B,,).

Finally, we prove that @ € Hy(By,). To this aim, for every 6 > 0 let 'y := {(2/,zy) €
RN : xy > g(a') + §}. For every § > 0 we have that T's N B,, C By, \ Byy.n provided n is
sufficiently large. Hence, since u,, is extended trivially to zero in B, \Bro’n, we have that,
for every 6 > 0, u,, € H%é (By,) provided n is sufficiently large. Since H%é(BTO) is weakly
closed in H'(B,,), it follows that @ € H%é(BTO) for every § > 0, and hence i € HE(By,).

Thus u weakly solves

~Aii = fii in By \T,
on 0B,

u
0 on I'.

=41
Il

=41
Il

Now we consider the function U := @ — u: it weakly solves the following problem

—AU = fU in B,, \T,
U=0 ondB,, (2.4.23)
U=0 on I

Testing equation (2.4.23)) with U itself and using Lemma we obtain that

1
/ |VU2dz§/ (VU - fU?)dz = 0,
B

2 JB,, By,

so that U = 0, hence u = 4. We observe that, since v, is bounded, then assumption (i)
of Lemma is trivially satisfied and if vy, is any subsequence of v, such that v,, — v
for some v € H&(BTO), then w,, = v, + gn, = ¥ +u =: u. Arguing as above we are
able to prove that 4 = w, thus having that ¥ = 0 hence the limit does not depend on
the specific subsequence and also assumption (ii) holds true. Therefore, by Lemma [2.3.9
we can conclude that v, — 0 weakly in H'(B,,) and, consequently, u, — u weakly in
HY(B,,). O

We are now able to prove that actually there is strong convergence of the sequence
{tn}nen to u in HY(B,,).

Proposition 2.4.13. Under the same assumptions of Lemma it holds that u, — u
strongly in H'(B,,).
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Proof. From Proposition [2.4.12| it follows that v, — 0 in H!(B,,), hence testing ([2.4.19)
with v, itself, we have that

[ Vol = pidyde= [ (Tul - pid)a:
T B

0 QM

:/~ (fgnvn—Vgn-an)dz:/ (fgnvn — Vgn - Vu,)dz — 0
B'ro,n BTO

as n — oo. Thus, by Lemma we deduce that ”UHHH(%(BTO) — 0 as n — oo, therefore
vp — 0 in H'(B,,). This yields that u, = g, + v, — u in H'(B,,). O

2.4.2 Pohozaev-type inequality

In the present section we provide a Pohozaev-type inequality for problem @D in order
to estimate the derivative of the Almgren function in Section @ In particular,
in this case due to the high non-smoothness of the domain, it is not possible directly to
infer a Pohozaev-type identity for problem . Then the idea is to derive Pohozaev-
type identities for problems exploiting the higher regularity of the approximating
domains. Thus, using the star-shapeness of such domains exhibited in Lemma we
are able to estimate some boundary terms appearing in the above identities. Then, passing
to the limit in the resulting inequalities, thanks to the convergence shown in Proposition

2.4.13| we obtain inequality (2.4.34]).

To this aim, for every r € (0,79) and v € H'(B,), we define

/ fo(z - Vv)dz, if f satisfies (H1-1|)-(H1-3)),
— BT'

R(r,v)
’ 1
g fv?dS — 2/ (Vf-z4+ (N+1)f)v?dz, if f satisfies (H2-1)-(H2-5).
OBy r
Lemma 2.4.14. Let r € (0,r9). Then there exists no = no(r) € N\ {0} such that, for all
n = no,
N-—-1

—/ |Vun|2dz+r/ V|2 dS
2 Br,n 2 Sr,n

1 A |
— / Ul vdS — 7“/
2 Z/r,n Sr,n

where uy, is a weak solution to problem (2.4.18)) for each fized n € N\ {0}.

ov
Proof. Since uy solves ([2.4.18) in Bgm,n that satisfies the exterior ball condition, and
fun € L} (Brom \ {0}), by elliptic regularity theory (see [2]), we can conclude that
Uy € H2(Bm~t \ Bj) for all r € (0,79), n sufficiently large and all § < r,,, where 7, is such

that B,, C B,,. Furthermore from the fact that

/rn [/ ([Vun|* + | fluz) dS] dt = / (IVun|? + | flu2) dz < +oo0,
0 OBt

™

2

Oun ™ 16— R(run) =0, (2.4.24)

14
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we deduce that there exists a sequence {dx }ren C (0,7,,) such that k]im 0 = 0 and
—00

5k/ |V, |*dS — 0, 5k/ |flu2dS — 0 ask — oco. (2.4.25)
0Bs,, 0B;s

k

Thus testing (2.4.18)) with z - Vu,, and integrating over Bnn \ Bs,,, we obtain that

- / Aup(z - Vuy)dz = /~ fun(z - Vuy)dz. (2.4.26)
B n\Bék Br,n\Bék

Integration by parts allows us to rewrite the first term in (2.4.26]) as follows

2
—/ Auy(z - Vuy) dz:/ Vun~V(z-Vun)dz—r/ % dS
Br,n\B6k Br,n\Bék g'r,n 81/
, ) (2.4.27)
ouy, Oouy,
- —| z-vdS + & — 1 dS,

where we used that z = rv on Sr,’m 2 = —0rv on 0Bs, and the gradient Vu,, is orthogonal
to Ypn, ie. Vu, = %LV"V on %,,. Furthermore, by direct calculations, the first term on
the right hand side in (2.4.27]) can be rewritten as

[ Vuy, - V(z-Vuy,)dz
B, n\B(;k

7 By, 0205\ ) T £ gy, O 020777V 0%
2 1o~ Oy 2
= Vun|® dz 4+ = / < ”> dz
/év'm\Bék | | 2]21 B, n\Bé 82] [ 822
N +1
:/~ |V |* dz — +/ |Vu,|? dz
Br.n\Be), 2 Br,n\Bs,,
N+1 2
1/ oun,
+ = B - ZjVj ds
2 a(Br,n\B%)g_:1 0z;
N -1 1 . 2
Z/ \Vun\QdHT/ IVunIQdS+/ Qun |y as
2 By.n\Bs, 2)5.., 2 /5., ov
)
~- IV, |2 ds.
2 JoB;,

(2.4.28)
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Putting together (2.4.26]), (2.4.27)) and (2.4.28), we obtain that

N-1 1
—/ |Vun|2dz+r/ |Vun|2dS—/
2 Br,n\Bék 2 S’",n 2 :7’",”

J n
_% [\ Guds 4o [ |2
2 Jos, 0B;,

2

Oun s

ov

Oun
ov

2
Z-I/dS—T/
Sr.m

2
as — / fun(z-Vuy)dz =0. (2.4.29)
Br,n\B5k

ov

Under assumptions (HI-1)-(HI-3)), we have that fu,(z - Vu,) € L*(B,), indeed by the
Hardy inequality (2.4.1)

un(2)|
/BT |fun(z - Vuy,)|dz < §f(7")/B T|Vun|dz

T

coio (], 5] (] )

N1 1/2 1/2
< const &¢(r) </ |V, |? dz + / |un|2dS) </ ]Vunlzdz> < 00,
B, 2r Jom, B,

since ¢(r) is bounded thus finite for sufficiently small r, as a consequence of assumption
(H1-1f). Hence we use the Lebesgue’s dominated convergence theorem to conclude that

lim fun(z - Vuy,)dz = lim fun(z - Vuy)dz
k—o0 Br,n\Bék k—oo BT\Bék

:/ fun(z - Vuy)dz.

T

On the other hand, if (H2-1)-(H2-5|) hold, we can use the Divergence Theorem to obtain
that

(2.4.30)

[ fun(z - Vuy)dz = 1 /~ fz-V(u2)dz
Br,n\Bék 2

Br,n\Bs,,
1
=2 fu2ds-—- /

(Vf-z+ (N +1)f)usdz — 5’“/ fu?ds
2 Sr,n 2 Br,n\Bék 2 8B5k

r

= - fu?dS — 1/ (Vf-z4+ (N +1)f)udz — 5’“/ fu?dS. (2.4.31)
2 JoB, 2 JB,\Bs, 2 JoBs,

Under assumptions (H2-1)-(H2-5), it holds that (V f-z+(N+1) f)u? € L'(B,), indeed

/Vf~z+(N+1)f|uidz§/ |Vf.zuidz+(N+1)/ | f|u? dz
B,

T T

<. 9f 2+ O+ 00t ) ([ VP e+ N2 [ as) <o

T
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since n(r,Vf - z) is finite a.e. by assumption (H2-4) and n(r, f) is finite for sufficiently
small 7 in virtue of (H2-2)). Then passing to the limit as k — oo in (2.4.31]), taking into
account also (2.4.25)), we deduce that

lim fun(z-Vuy,)dz = z fuidS—l/ (Vfz4+(N+1)f)ul dz. (2.4.32)
k—o0 Bnn\B% 2 OB, 2 r

Letting k — 400 in (2.4.29), by (2.4.25)), (2.4.30)), and (2.4.32)), we attain (2.4.24)). O

Exploiting Lemma, [2.4.14) and the fact that the domains énn (defined as in ([2.4.15))
are star-shaped with respect to the origin, we deduct the following inequality.

Corollary 2.4.15. Let 0 < r < rg. Then there exists ng = no(r) € N\ {0} such that, for
all n > ng,

N-1
—/ \vunPdHT/ ywny?ds_r/
2 Jben 28 Srom

where uy, is a weak solution to problem (2.4.18) for each fixred n € N\ {0}.

2

Oun|” g R(r,up) >0, (2.4.33)

ov

2

1 1%}
Proof. In view of (2.4.24]), the left-hand side of (2.4.33)) is equal to 2/ % vdS,
. v
Yr,n
which is in fact non-negative since z - v > 0 on 4., by Lemma [2.4.8 O

Passing to the limit into (2.4.33)) as n — oo, a similar inequality can be derived for a
weak solution to ([1.2.20)]).

Proposition 2.4.16. Let u be a weak solution to ((1.2.20)), with f satisfying either (H1-1)-
(H1-3) or (H2-1)-(H2-5)). Then, for a.e. r € (0,7¢), we have that

2

N -1
- / |Vu|* dz + T/ |Vul|® dS — r/ Oul g — R(r,u) >0  (2.4.34)
2 - 2 o8B, o8B, 81/
and 5
/ \Vul? dz = fu*dz + / uZt ds. (2.4.35)
. B, oB, OV

Proof. In order to prove ([2.4.34]), we pass to the limit inside inequality (2.4.33)). As regards
the first term, it is sufficient to observe that

/ |V, |?dz = / \Vu,|?dz — |Vul|?dz  as n — oo,
Br,n I3 By

for each fixed r € (0,79), as a consequence of Proposition [2.4.13| Dealing with the second
term, we observe that, by strong H'-convergence of u, to u,

0
lim </ IV (up, — u)]? dS) dr = 0. (2.4.36)
0 0By

n—-+o00
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Letting
F,(r)= / \V (upn, — u)|? dS,
0B

(2.4.36) implies that F;,, — 0 in L'(0,79). Then we can deduce that there exists a subse-
quence Fy, such that F,, (r) — 0 for a.e. 7 € (0,79), hence having that

/ yvunkyzdsz/ ]Vunk|2dS—>/ |Vul|?dS as k — oo
Srny, OB, OB,

for a.e. 7 € (0,79). Arguing in a similar way, we obtain that

2
/ ds — /
Sr.ny, 3B,

for a.e. r € (0,7r9). It remains to prove the convergence of R(r,uy) to R(r,u). Under the

set of assumptions (H1-1f)-(H1-3)), we notice that

2

Ou dS ask— o

ov

O,

ov

/ |fun(z-Vun)—fu(z-Vu)|dz:/ |f(up —u)(z - Vuy) — fuz - V(u—uy)| dz

T T

§/ |f(unu)(z-Vun)]dz+/B |fuz - V(u—uy)|dz.

T

(2.4.37)

The Hélder inequality, (2.4.1]), and Proposition [2.4.13|imply that

2 N -1 1/2 1/2
< ——=¢&(r) (/ IV (uy, — u)|? dz + / [, — U\QdS) (/ |V, | dz) -0
-1 B, 2r Jom, B,

and

/T |fuz - V(uy, —u)|dz < Ef(r) </T |U(Z,Tg|2 dz) 1/2 </T —— u)|2dz> 1/2

2 N-1 1/2 1/2
< &) (/ |Vul? dz + / ]u\2d5> (/ IV (ty, — u)|? dz> —0
-1 B, 2r Jop, B,

as n — oo, for all 7 € (0,rp), since {¢(r) is bounded thus finite for sufficiently small r, as
a consequence of assumption (HI1-1)). Hence, from (2.4.37)) we deduce that

lim R(r,uy) = R(r,u) (2.4.38)

n—o0
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under assumptions (HI1-1))-(H1-3)). In order to prove (2.4.38) under assumptions (H2-1))-
(H2-5|), we first use Proposition [2.4.13| and the Holder inequality to observe that

‘/T[Vf-z—i-(]\f—{—l)f](ui—u2)dz

1/2

< </T(|Vf A+ OV DD — w02 v (/Bruw A OV DD+l 02

r

B 1/2
<(r,Vf-z)+(N+1)n(rf)) (/ |V (uy, — u)]2dz + N2 L /GB |t — u\2 dS)

, N1 , 1/2
. IV (up, + u)|*dz + ——— |un + ul”dS — 0,
- 2r OB,

as n — oo, for a.e. 7 € (0,7p), since n(r, Vf - z) is finite a.e. by assumption (H2-4), n(r, f)
is finite for sufficiently small 7 in virtue of and {u, + u}, is bounded in H!(B,)
for every r € (0,7¢). Furthermore, by the fact that f is bounded far from the origin and
using the compactness of the trace map from H'(B,) to L?(0B,), it follows that

/ fu?dS — fu?ds,
0B, 0B,

for a.e. 7 € (0,79). Hence, passing to the limit in R(r,u,) we conclude the first part of
the proof.

Finally (2.4.35) follows by testing (2.4.18)) with w,, itself and passing to the limit arguing
as above. O

2.4.3 The Almgren frequency function
Let u € H{(Bp) be a non trivial solution to (L.2.20). For every r € (0, R) we define

D(r) = rl_N/ (IVul* = fu?) dz (2.4.39)
Br
and
H(r)=rN / u*dsS. (2.4.40)
0B

In the following lemma we compute the derivative of the function H.

emma 2.4.17. It holds that H € W21 (0, R) an
L 7. It holds that H € W10, R) and

loc

H’(r):QrN/ W2 s (2.4.41)
OB, 8V

in a distributional sense and for a.e. r € (0, R) Furthermore

A

H (r) = %D(T‘) for a.e. r € (0, R). (2.4.42)
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Proof. First we observe that

H(r) = /S N lu(r8)|? dS. (2.4.43)

Let ¢ € C°(0, R). If we set ¢(r) = v(rf) with § € SV, we deduce that ¢/(r) = Vo(rf) - 0

A~

and v(R) = 0 since ¢ is null at 0 and R. Then, exploiting all these information

— /ORH(T)¢'(T) dr = — /Oé &' (r) /831 uQ(TG) dSdr = — /OR /SN uz(T’H)V’U(TQ) -0dS dr
:_/A 2 N2 () V(z) - 2 dz

By

= —/ (v(z)\er*luz(z)z) -vdS + 2/ v(2)u(2)|z| N IVu(z) - zdz
a8, Bp

—N-L - zdz
2/3 v(z)u(z)|z| Vu(z) - zd

R

2/0R (r) (/SN u(r@)Vu(r9)~9dS> dr,

by the divergence Theorem. Thus we proved (2.4.41) in a distributional sense and a.e.
Furthermore, using that u, Vu € L?(B ), we easily obtain that H € VVI})C1 (0, R). Identity

(2.4.42)) follows from ([2.4.41)) and (2.4.35|). O

In order to define a suitable Almgren-type frequency function we show that the function
‘H is strictly positive in a neighbourhood of 0.

Lemma 2.4.18. For any r € (0,79 it holds that H(r) > 0.

Proof. Assume by contradiction that there exists r1 € (0, 7] such that H(r;) = 0, thus
the trace of u on 9B, is null and hence u € H}(B,, \ T'). Then, testing (1.2.20)) with u,
we obtain that

Ja

Therefore, from Lemma [2.4.6| and (2.4.44)) it follows that

|Vul? dz — / fu*dz = 0. (2.4.44)
Bry

1
0 :/ [[Vul? — fu?]dz > 2/ |Vul? dz,

1 Bl

which, together with Lemma implies that v = 0 in B,,. From classical unique
continuation principles for second order elliptic equations with locally bounded coefficients
(see e.g. [79]), we can conclude that u = 0 a.e. in B}, a contradiction. O

The following lemma contains an estimate from below for the derivative of the function
D, making use of the Pohozaev-type inequality found in Section [2.4.2
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Lemma 2.4.19. The function D defined in (3.3.1) belongs to Wi)’cl(O,]:Z) and
2
dS + (N —1)r = fu?dz + 2r "NR(r,u)
Br (2.4.45)

D'(r) > 2T1_N/ a—u

OB, 8u

— N / fu*ds
OBy

for a.e. m € (0,79).

Proof. By direct calculations, we deduce that

D'(r)=(1- N)T_N/ (|Vu]2 - fuz) dz + rl_N/ (\Vu|2 - fu2) as (2.4.46)

By 0B,

in the distributional sense and for a.e. r € (O,R). This allows us to conclude that

D € W,oH(0, R). Tnserting (2.4.34) into ([2.4.46)), we obtain (2-4.45). O
Thanks to Lemma the Almgren frequency function

D(r)
H(r)

is well defined. As a consequence of Lemmas [2.4.6] 2.4.177] and [2.4.19] we provide the
following estimates from below of the Almgren function A and its derivative.

N: (0,?"0] — R, N(r) =

(2.4.47)

Lemma 2.4.20. The function N defined in (2.4.47) belongs to W]})’j((O,ro]) and
N'(r) > vi(r) + va(r) (2.4.48)

for a.e. v € (0,70), where

_ 2r [(faBr

8412 dS) ([yp, ul?dS) — ([, ude dS)?]
(fyp, lul?dS)*

vi(r)

and
o[N—-L u?dz + R(r,u) — L u?dS
vo(r) = et ( . ) = & Jop, fu2d5] (2.4.49)
faBr |ul?2dS
Furthermore,
N -1
N(r) > 1 for every r € (0,719) (2.4.50)

and, for every e > 0, there exists r. > 0 such that
N(r) > —e  for every r € (0,r.), (2.4.51)

i.e. iminf N'(r) > 0.

r—0+t
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Proof. We can easily obtain that N € W,2'((0,r0]), arguing as in Lemma [2.3.17, by

loc

Lemmas [2.4.17) |2.4.18] and [2.4.19} Using (2.4.42)) we have that

D'(r)H(r) = D(r)H'(r) _ D'(mH(r) — 5[H'()]
[H(r))? [H(r))?

for a.e. r € (0,r9) and the proof of (2.4.48)) easily follows from ({2.4.41)) and (2.4.45)). To

prove (2.4.50) and (2.4.51)), we observe that (3.3.1) and (2.4.40)), together with Lemma
2.4.6, imply that

N (r) =

r[% fBr \Vul? dz — w(r) faBr lu|?dS] -
faBr |ul? dS -

for every r € (0,rg), where w is defined in (2.4.7). Then (2.4.50) follows directly from
(2.4.8)). From either assumption (H1-1|) or (H2-1)) it follows that lim+ rw(r) = 0; hence
r—0

—rw(r) (2.4.52)

>

(2.4.52) implies (2.4.51)). O
Lemma 2.4.21. Let vy be as in (2.4.49)). There exists a positive constant C7p > 0 such
that
N-1
[pa(r)] < Cra(r) (N'(r) + —5— (2.4.53)
for all v € (0,719), where
r) =i (r), under assumptions (H1-1|)-(H1-3)), (2.4.50)
a(r) = 4.
L, £) + 0,V f - 2)), under assumptions (F21)-(H25).
Proof. From Lemma we deduce that for all r € (0,r9),
/ \Vul? dz < 2(rN1D(r) + w(r)rVH(r)), (2.4.55)

T

where w(r) is defined in (2.4.7)).
Let us first suppose to be under assumptions (H1-1)-(H1-3). Estimating the first term

in the numerator of vs(r) we obtain that

§ 4 N-1

. e M)

fu?dz
B

(2.4.56)
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where we used (H1-3|), Lemma (2.4.55) and (2.4.11). Using Holder inequality,
(2.4.56)), (2.4.11]), and (2.4.55)), the second term can be estimated as follows

< &(r) (/ '“‘f';'z dz> v (/ |Vu|2dz> v

_ 1/2 1/2
D(r) + N217-l(r)) (D(r) + N2_1§f(7“)7-[(7‘)>

/ fuz - Vudz

< E5(r) N

"
(

4 N N-1
< -
e T GRS B)
(2.4.57)
For the last term we have that
r fu? dS‘ < 5f(r)/ u?dS = & (r)rN T H(r). (2.4.58)
OB, rJon,
Combining (2.4.56)), (2.4.57)), and (2.4.58)), we obtain that, for all r € (0, 7o),
N -1
() < €y N + 25

for some positive constant C'y > 0 which does not depend on 7.
Now let us suppose to be under assumptions (H2-1|)-(H2-5)). In this case, the definition
of R(r,u) allows us to rewrite v, as

fBT(Qf +Vf-2)u?dz
faBT u?dS
From (H2-5|), (2.4.55) and ([2.4.13)) it follows that

/ (2f + V[ - 2)u*dz| < (277(r,f)+n(r,Vf-x))</

T B’r

1/2(7") = —

N -1
|Vu|2dz+/ |ul? dS>
2r OB,

<20t ) 400V 0N (B0 + S5 Rt ) + G )

< 22(r )+ 1091 (D) 4 )

Therefore, we have that

v (r)] <

e f b otn Ty o) (Nm " N2‘1>

and estimate (2.4.53)) is proved also under assumptions (H2-1)-(H2-5)), with Cy, =4. [

Lemma 2.4.22. Letting ro be as in Lemma and N as in (2.4.47)), there exists a
positive constant Cy > 0 such that

N(r) < Cy  for allr € (0,r9). (2.4.59)
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Proof. By Lemma Schwarz’s inequality, and Lemma we obtain

N 1] (2.4.60)

N-1Y
<N+ > (r) > va(r) = —Cra(r) [N(r) +
for a.e. 7 € (0,rp), where « is defined in (2.4.54)). Taking into account that N(r)—i—% >0

for all r € (0,7) in view of (2.4.50) and o € L'(0, r¢) thanks to assumptions (H1-2)), (H2-2)
and (H2-4)), after integration over (r,r) it follows that

N(r) < —% + (N('ro) + N2_1> exp (01 /O " a(s)ds)

for any r € (0,rg), thus proving estimate (2.4.59)). O

Lemma 2.4.23. The limit
v = lim N(r)

r—0+t

exists and is finite. Moreover v > 0.

Proof. Since N'(r) > —Cya(r) [N (r) + &) for a.e. r € (0,70) in view of (2.4.60) and
a € LY0,79) by assumptions (H1-2), (H2-2) and (f2-4)), we have that
d N -1

— [601 Jo al(s)ds (/\/(r) + 2)] >0 fora.e. re(0,mg),

therefore the limit of r — ¢C1 Jo o(s)ds (NV(r) + &) as r — 0% exists; hence the function
N has a limit as r — 07.

From (2.4.59) and ([2.4.51)) it follows that Co > v := lim N(r) = liminf A'(r) > 0; in

r—0t r—0t
particular + is finite. O

A first consequence of the above analysis on the Almgren’s frequency function is the
following estimate of H(r).

Lemma 2.4.24. Let vy be as in Lemma[2.4.23 and ro be as in Lemma[2.4.6, Then there
exists a constant K1 > 0 such that

H(r) < Kir?' for allr € (0,70). (2.4.61)

On the other hand, for any o > 0 there exists a constant Ky(o) > 0 depending on o such
that
H(r) > Ko(o)r®’™  for all r € (0,79). (2.4.62)

Proof. By (2.4.60) and (2.4.59) we have that
N -1

N'(r) > -C4 <CQ + )a(r) a.e. in (0,79). (2.4.63)
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Moreover, it holds that for all r € (0,7)
N(r)—~ :/ N'(s)ds. (2.4.64)
0
Indeed, for any fixed r € (0,79)

N(T)—N(E):/:N’(s)ds:/Eral(s)ds—k/:ag(s)ds

) ) (2.4.65)
= / X(e,r)X1 (8) ds + / X(s,r)QQ(S) dS,
0 0
with
, N-1

a1(s) :=N"+Cy [ Cy+ 5 a(s) (2.4.66)

and N1
as(s) :=—C1 (02 + ;) a(s). (2.4.67)

Then, passing to the limit as ¢ — 0 into (2.4.65|), we obtain that the left hand side tends to

T

N (r)—~ by Lemma [2.4.23 and, on the right hand side, the first term tends to / a1(s)ds

0
as a consequence of the monotone convergence theorem since a1 (s) > 0 a.e. in s € (0,7) by
T

(2.4.63]) and the second term goes to / as(s) ds by the Lebesgue’s dominated convergence
0

theorem, using that as € L(0,rg) since a € L(0,79) due to assumptions (H1-2)), (H2-2)
and (H2-4)). Therefore from (2.4.64) and (2.4.63), it follows that

N(r)—~v=>-C (C’Q + N2_1> /07" a(s)ds = —CsrF(r), (2.4.68)

where C3 := C; (C’g + %) and

We observe that, thanks to assumptions (H1-2)), (H2-2)) and (H2-4),

F e L'Y0,79). (2.4.69)

From (2.4.42)) and (2.4.68) we deduce that, for a.e. r € (0,79),

H(r)  2N(r) _ 2y
o)~ = XGE),

which, thanks to (2.4.69)), after integration over the interval (r, ), yields (2.4.61)).
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Let us prove ([2.4.62). Since 7 := limJr N (r), for any o > 0 there exists r, > 0 such
r—0
that N'(r) < v+ /2 for any r € (0,7,) and hence
H(r) 2N(r) 2v+o
= <
H(r) r
Integrating over the interval (r,r,), we then obtain that

Hr)  Hlro)

r2yto — TCZr'era

for all r € (0,74).

for all r € (0,75). (2.4.70)

Neverthless, by the continuity of H outside 0, we can assert that

M) A

r2yto = r€fromo] r2vto >0 forallre [Tda TO]~ (2471)
Combining (2.4.70|) and (2.4.71)), we derive (2.4.62)) for some positive constant Ko(o) > 0
depending on o. O

2.4.4 The blow-up argument

let u be a non trivial weak H'(B )-solution to equation (1.2.20) with f satisfying either

H1-1)-(H1-3|) or (H2-1)-(H2-5). Let D and H be the functions defined in (3.3.1) and
2.4.40) and ro be as in Lemma We define the following scaled function

A
Mz = 422 (2.4.72)
H(A)
with A € (0,79). We notice that w* € H%‘A(BR/A)’ where

/

and
/ Vu(z) - Vo(z) dz — )\2/ fOA2)w(2)v(z)dz=0 forallve CSO(BR/A \T)),
BR/,\ BR/A

A

i.e. w” weakly solves

{—AwA(z) =N f(A2)w(z) in By, \Ta, (2.4.73)

w =0 on I'y.

Remark 2.4.25. From assumptions (1.2.17) we easily deduce that RNFTIN\ T converges
in the sense of Mosco (see [19, [61]) to the set RN\ T', where

I ={(,zy) e RY : 2y >0}. (2.4.74)

In particular, for every R > 0, the weak limit points in H'(Bg) as A\ — 0 of the family
of functions {w*}y belong to H%(BR).
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Lemma 2.4.26. Let w* be defined in (2.4.72) with A\ € (0,r¢). Then {w’\}Ae(om) 18
bounded in H*(By).

Proof. From ([2.4.43)) we deduce that
/1|wﬂ%5:1. (2.4.75)
0B

By scaling and using (2.4.6|) we have that

AN 1
N (A 2(/ Vu2dz:—w)\/ u2dS>:/ Vut(2)]? dz — Aw(N).
N2 5y (5, 190z = [ 5 [, IV o)
(2.4.76)
Combining (2.4.76)), (2.4.59), and (2.4.8) we infer that for every A € (0,rg)
1 N-—-1
/wa@ng@+. (2.4.77)
2 /5, 1
After applying suitable changes of variable to inequality (2.4.1]), we obtain that
N—1)2 N-—1
<2> )\N‘I’H(A)/ A dz < AN TH()
B (2.4.78)

AN / IV (2)|2 d,
B

where we used (2.4.75). Dividing each member of ([2.4.78) by AN~1%(\) and exploiting
(2.4.77)), we achieve

| WP <
By

thus concluding the proof. d

N -1

+/yw&@ﬁmgmz+NL (2.4.79)
By

In the following we exhibit a doubling type result.

Lemma 2.4.27. There exists a positive constant Cy > 0 such that

61,47-[()\) < H(RN) < CyH(A)  for any X € (0,r9/2) and R € [1,2], (2.4.80)

/ |V (2)? dz < 2NlC4/ \VwT™(2)[>dz  for any X € (0,70/2) and R € [1,2],
Br

By
(2.4.81)
and

/ lw(2)]? dz < 2V Ly lwf(2)[>dz  for any X € (0,70/2) and R € [1,2],
Bgr

By
(2.4.82)
where w* is defined in ([2.4.72).
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Proof. By ([2.4.42), (2.4.50) and ([2.4.59)), it follows that

N—-1 _H(r) 2N(r) _ 2C,
_ < — < .e. .
o = H) = for a.e. € (0,79)

Let R € (1,2]. Integrating over (A, R\) for A < ro/R the above inequality and taking into
account that R < 2, we obtain

20=MN/291(\) < H(RA) < 4“2H()) for every A € (0,79/R).
The above estimates trivially hold also for R = 1, hence (2.4.80)) with
Cy := max {42 2N-1)/2}

is established. For every A € (0,7r/2) and R € [1,2], (2.4.80)) yields

A 2 _)\I_N UZ2Z
/BRIVw ()P dz = 3 /erv (2)2d

:RN_IH(R)\)/ |VwRA(z)2dz§RN_1C’4/ VR ()2 dz,
H()\) B1 B1

thus proving (2.4.81). A similar argument allows deducing (2.4.82)) from ([2.4.80)). 0

Lemma 2.4.28. For every A € (0,7¢), let w? be as in (2.4.72)). Then there exist M > 0
and \g > 0 such that, for any A € (0, \g), there exists Ry € [1,2] such that

/ |Vur|>dS < M |V (2))? dz.
8Bp, B,

Proof. From Lemma [2.4.26] we know that the family {w’\})\e(am) is bounded in H'(B).

Moreover Lemma [2.4.27) implies that the set {w*} (0, 2) is bounded in H'(By) and
hence

A—0t

lim sup / |V (2))? dz < +o0. (2.4.83)
Bs

For every A € (0,79/2) the function fy(r) = / |Vw?(2)|% dz is absolutely continuous in
By

[0,2] and its distributional derivative is given by
) = / IVw?|?dS  for a.e. r € (0,2).
OB,

We argue by contradiction and assume that for any M > 0 there exists a sequence A\, — 0T
such that

/ \Vw|2dS > M/ IVw (2)|?dz  for all 7 € [1,2] and n € N,
OB, B
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ie.
I, (1) > Mfx,(r) forae. r e [l1,2] and for every n € N. (2.4.84)

Integration of (2.4.84) over [1,2] yields f,(2) > e fy, (1) for every n € N and conse-
quently

limsup fy, (1) < e ™ -limsup fy, (2).

n—-+40o n—-+o0o

It follows that
liminf f(1) < e™™ -limsup fy(2) for all M > 0.

A—01 A—07t

Therefore, letting M — +oo and taking into account (2.4.83)), we obtain that li)\m ief i) =
—0
0i.e.

liminf [ |Vw(2)|?dz = 0. (2.4.85)
B

A—0t

From ([2.4.85) and boundedness of {wA}Ae(O,ro) in H'(B;) we have that there exist a
sequence A, — 0 and some w € H'(Bj) such that w* — w in H'(B;) and

lim [ |Vu™(2)2dz = 0. (2.4.86)

n—-+o00 B

The compactness of the trace map from H'(B;) to L?(0B;) and (2.4.75)) imply that

/ jw|?dS = 1. (2.4.87)
0B1
Moreover, by weak lower semicontinuity and ([2.4.86|),

/ Vw(z)?dz < lim [ |Vw(2)[2dz = 0.
B1 1

n—-+o0o B

Hence w = const in B;. On the other hand, in view of Remark [2.4.25, w € H%(Bl) SO
that w = 0 in By, thus contradicting ((2.4.87)). O

In the following lemma we show that the L?-norm of the gradient of w** on the
boundary of the unit ball is bounded from above. It will be crucial to prove a convergence

result for scaled solutions ([2.4.72)).

Lemma 2.4.29. Let w* be as in [2.4.72) and Ry be as in Lemma |2.4.28 Then there
exists M such that

/ |Vur2dS <M for any 0 < /\<min{>\o,io}'
0B ?

Proof. Since

A2R2-N R2NH(N)
VM2 ds = A / Vu(Az)?dS(z) = A/ vuw|?ds,
1748 = s s o vV R
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from (2.4.80)), (2.4.81), Lemma [2.4.28, Lemma [2.4.26, and the fact that 1 < Ry < 2, we
deduce that for every 0 < A < min{Ao, %},

/ |VwrMir2dS < CyM IVt (2)Pdz <2V 71CIM | |V ()2 dz < M < +o0,
0B, BR/\ By

thus completing the proof. O

In the following lemma, we derive the explicit formula (|1.2.24]) for the eigenvalues of
problem (|1.2.23)).

Lemma 2.4.30. The set of all eigenvalues of problem (1.2.23) is

{k(kJriN—Q) | k:eN\{O}}

and all eigenfunctions belong to L>(SN).

Proof. Let us start by observing that, if u is an eigenvalue of (|1.2.23]) with an associated
eigenfunction 1, then, letting

N—1+ N -1 2+
o= —
5 5 14y

the function W (p#) = p?1)(0) belongs to H%(Bl) and is harmonic in By \ T'. From [I5] it
follows that there exists k € N\ {0} such that o = %, so that u = % (k+2N —2). Moreover,
from [15] we also deduce that W € L°°(B;), thus implying that ¢ € L>®(SV).

Viceversa, let us prove that all numbers of the form p = & (k+2N —2) with k € N\ {0}
are eigenvalues of (1.2.23). Let us fix k € N\ {0} and consider the function W defined, in
cylindrical coordinates, as

k
W (2!, rcost,rsint) = r*/% sin <2 t>, ' eRNTL r >0, teo,27].

We have that W belongs to H%(Bl) and is harmonic in By \ T'; furthermore W is homo-

geneous of degree k/2, so that, letting ¢ := W‘SN’ we have that 1 € H} (SN \ S]), ¢ # 0,
and

W (ph) = p*?p(0), p>0, SV, (2.4.88)
Plugging (2.4.88) into the equation AW =0 in B; \ T, we obtain that

p§_2<§(§—1+N)¢(9)+ASW) =0, p>0.0€8TAST,

so that %(k + 2N —2) is an eigenvalue of ([1.2.23)).
The lemma is thereby proved. O
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Lemma 2.4.31. Let u € Hl(BR) \ {0} be a non-trivial weak solution to (1.2.20)) with f
satisfying either (H1-1)-(H1-3)) or (H2-1)-(H2-5). Let v be as in Lemma|2.4.25 Then

(1) there exists ko € N\ {0} such that v = %;

(it) for every sequence A, — 07, there exist a subsequence {\n, }ken and an eigenfunction
Y of problem (1.2.23)) associated with the eigenvalue pig, such that [|¢||r2vy =1 and

u(Any 2)
H(Any)

z

- !zW( ) strongly in H(By). (2.4.89)

E

Proof. For A € (0,min{rg, \g}), let w* be as in (2.4.72) and Ry be as in Lemma [2.4.28

Let A\, — 07. By Lemma [2.4.26, we have that the set {w*® : XA € (0,min{ro/2, A\o})}

is bounded in H!(B;). Then there exists a subsequence {\,, }x such that w g gy

weakly in H'(B;) for some function w € H'(Bj). The compactness of the trace map from
HY(B) into L?(0B;) and (2.4.75) ensure that

/ lw|?dS =1 (2.4.90)
0B,

and, consequently, w # 0. Furthermore, in view of Remark [2.4.25 we infer that w €
H%(Bl), where T is the set defined in ([2-4.74).

Let ¢ € C°(By\T). It is easy to verify that ¢ € C°(By \T'y) provided ) is sufficiently
small. Indeed, we notice that a neighbourhood of T is of type

U.:={z=(2,2n,t) e RN | 2y > —¢},

with € > 0. By assumption ¢ vanishes on By N U, for some £ > 0. Then, it is sufficient
to show that By N U, is a neighbourhood of By NTI"y for sufficiently small . To this aim,

/ )\ /
we observe that by (1.2.18)), for X\ sufficiently small g())\\x) 9 )\a:) >

—const A > —e if we choose A sufficiently small, thus having that By NI'y € B; N U, and
¢ € C°(B1 \T')) provided A is sufficiently small.

Therefore, since w e o, weakly satisfies equation with A = )\”kR)\nk and,
for sufficiently large k, By C B, /O By )’ we have that

< const A. Hence

VB Vg dz = (A Ra, ) | fOu By, 2w g dz =0 (2.4.91)
B By

for k sufficiently large. Under the set of assumptions (H1-1)-(H1-3|), from ([2.4.1)) it follows
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that

N F2)u (2)¢(2) dz

By

) <A2 /B |f(AZ)”wA(Z)'2dz)m <A2 /B |f(>\z)||¢(z)!2d2> :
<&r(N) (/31 ‘wiz(;ﬂ? dz) 1/2 (/Bl |(]5|27;|2dz>1/2

_1\ /2 _ 1/2
g(i9032</vaﬂau+ﬁv21> </|V¢P&H¥N21 ﬁdS)
- .

Bl 8Bl
o(1)

(2.4.92)

as A — 0T, using (2.4.75) and Lemma [2.4.26
In order to make a similar estimate in the case where f satisfies (H2-1)-(H2-5)), we

notice that from (H2-5)), for any r € (0, R) and v € H'(B,)

[ 1w i < ) ( [ wupass St | |u12ds).
B, B, 2r Jam,

Then by the change of variable 2/ = Az, setting w(z’) = u(\z) and, consequently, taking
into account that Vw(z') = AVu(Az), it holds that

AN+ / £ [w() 2 d’
BT/A

<n(r, f)

N -1
)\N_l/ |Vw(2')|*d2’ + )\N_l/ ]w(z')|2dS] ,
BT/A 2 aBr/A

with w € H'(B,;y). Dividing each member by A¥~!, we obtain that for any r €
(0,R), A>0and w € HY(B,)))

22 /B 0N

N (2.4.93)
<n(r. 1) [/B Vu) P+ 5= [ \w(z'>|2dS].
/A /A

Thus, under assumptions ([2-1))-(H2-5), applying estimate (2.4.93) to w? and ¢ with
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r = A\, using (2.4.75)) and Lemma [2.4.26] we deduce that as A — 0,

N ) uN2)e(z) dz

B

< (% [ ool era:) - (2 [ 1r0aeta)a:) " 2490

N -1 1/2 N -1 1/2
<n(\ f) (/B \Vw’\\2d2+2> (/B Nqﬁ\de—i—T . ¢2d5)
1 1 1

=o(1).

The weak convergence of w™s ™ to w in H!(By), (2.4.92) and (2.4.94)) allow passing to
the limit in (2.4.91)) thus yielding that w € H%(Bl) satisfies the equation

/ Vuw(z)-Vé(z)dz =0 forall ¢ € C°(B;\ ),
By

i.e. w weakly solves

{_Aw(z) =0 in By \T, (2.4.95)

w=0 onT.
We observe that, by classical regularity theory, w is smooth in By \f From Lemma|2.4.29
and the density of C*°(B; \T') in H%(Bl), it follows that
Ang R 2 p2 Ang R Bk g
Vw2 .Vodz = AnkR)\nk/ f()\nkRAnkz)w Ay gbdz—i—/ ——¢dS
By 1o}

B, ov
(2.4.96)
(B1). From Lemma [2.4.29| it

B

for every ¢ € H%(Bl) as well as for every ¢ € Hll*nkank

follows that, up to a subsequence still denoted as {\,, }, there exists g € L?(0B;) such
that

Ok any,
ov

Passing to the limit in (2.4.96) and taking into account (2.4.92)-(2.4.94)), we then obtain
that

— g weakly in L*(0B). (2.4.97)

Vw- -Vodz = / g¢ds for every ¢ € Hi(B).

B1 8Bl

In particular, taking ¢ = w above, we have that

/ |Vwl|? dz:/ gwdsS. (2.4.98)
Bl aBl

On the other hand, from (2.4.96) with ¢ = w™ . ([@2.4.92)-([2.4.94), [2.4.97), the weak
convergence of u))\"kR’\”k to w in H! (Bl) (Wthh implies the strong convergence of the
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traces in L?(0B;) by compactness of the trace map from H'(B;) into L?(0B;)), and
(2.4.98) it follows that

. An, R . An, R
lim Vw2 2dz = lim | A2 R3 FOn Ry, 2) w22 dz
k—+oo J, k—+o0 o g k
An,. R
Ow" "k A
+ / = M gs
8B, 01/

:/ gwdS = \Vwl|* da
0B1 By

which implies that
w e sy strongly in HY(By). (2.4.99)

For every k € N and r € (0,1], let

Dulr) =N [ (190 @) =02 B, T B, 2l o (27 ds

N
and

Hi(r) = TN/ ]w)‘"kR*”k | ds.
0By

We also define, for all r € (0, 1],

Dy(r) :rlN/ |Vw|?dz and Ho(T) :T‘N/ lw|? dS.
OBy

T

A change of variables directly gives

_ Di(r) DRy, T)
Ni(r) := Helr) H o, B, 1) =N(An Ry, ) forallre(0,1]. (2.4.100)

From (2.4.99), (2.4.92)-([2.4.94) and compactness of the trace map from H'(B,) into
L?(0B,), it follows that, for every fixed r € (0, 1],

Di(r) = Dy(r) and Hg(r) — Hw(r). (2.4.101)

We observe that H,,(r) > 0 for all » € (0, 1]; indeed if, for some r € (0, 1], H(r) = 0, then
w = 0 on dB, and, testing with w € H} (B, \TI'), we would obtain Iz, |Vw|?dz =0
and hence w = 0 in B,, thus contradicting classical unique continuation principles for
second order elliptic equations (see e.g. [79]). Therefore the function

Doy (r)
Ho(7)

is well defined. Moreover (2.4.100), (2.4.101)), and Lemma [2.4.23| imply that, for all
r e (0,1],

Nw : (0, 1] — R, Nw(r) =

Ny(r) = lim N(A, Ry, 7)="1. (2.4.102)

k——+o0
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Therefore N, is constant in (0, 1] and hence N ,(r) = 0 for any r € (0,1). Hence, from
(2.4.95) and Lemma [2.4.20[ with f = 0, we deduce that, for a.e. r € (0,1),

_ ZT[(faBT %‘2‘15) (faB,« |w|2d5) - (faBT w%dsﬁ >0
(Jop, lwl?ds)’ -

so that (faBr}%—f‘QdS) (faBT lw|?dS) — (faBT w%’j d5)2 = 0. This implies that w and %—f
have the same direction as vectors in L?(0B,) for a.e. r € (0,1). Then there exists a
function ¢ = ((r), defined a.e. in (0, 1), such that

0
T r0) = ¢(r)yw(ro) (2.4.103)
v

for a.e. 7 € (0,1) and for all # € SV \ S;. Multiplying by w(rf) and integrating over S

we obtain that

0= Ny (r) = n(r)

O (1) w(rg) dS = ¢(r) / w?(r6) dS

SN 81/ sN

and hence, in view of the definition of H,,, (2.4.41) and (2.4.43), {(r) = 2?;2“;(8) for a.e
r € (0,1). This in particular implies that ¢ € L{ _((0,1]), exploiting 1)-2) of Lemma|2.3.17,
using that H,(r) > 0 and H,, € WH1((0,1]). Moreover, after integrating (2.4.103)), we

obtain

w(rf) = eli €& du,(10) = o(r)(0) for all r € (0,1), § € SV \ Sf,
where ¢(r) = /i ¢(5)ds and ) = w‘SN. The fact that w € H%(Bl) implies that ¢ €
HE (SN \ Sf); moreover (2.4.90) yields that

$*(0)dS = 1. (2.4.104)

SN

Equation (2.4.95)) rewritten in polar coordinates r, 6 becomes

r2

(-0 - Yo ue) - 2 agw0) =0 ons¥\st.

The above equation for a fixed r implies that v is an eigenfunction of problem (|1.2.23)).

ko(ko+2N—2)
1

Letting pg, = be the corresponding eigenvalue, ¢ solves

N W
—¢'(r) = —¢/(r) + "3 (r) = 0.

Integrating the last equation we obtain that there exist c1,cy € R such that

+ —
p(r) = c1r%% + cor’ro,

N N-1 N —1\2 ko
=TTy T\ T2 ) THeT Y

where
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and

. N-1 N—1)? N
%2‘2‘\/<2> o= —(N=1+3).

Since the function |z|a’;01p(é) ¢ L% (By) (where 2* = 2(N + 1)/(N — 1)), we have that

]z\a’“—ow(ﬁ) does not belong to H'(By); then necessarily ¢z = 0 and ¢(r) = ¢;r%0/2. Since
(1) = 1, we obtain that ¢; = 1 and then

w(rf) = rko/2y(9), for all € (0,1) and 6 € SV \ S . (2.4.105)

Let us now consider the sequence {w/\"k }k. Up to a further subsequence still denoted
by w*"k, we may suppose that w’* — @ weakly in H'(B;) for some w € H'(B;) and
that Ry, — R for some R € [1,2]. Strong convergence of w e i H'(B;) implies
that, up to a subsequence, both w s and |Vw/\"’fR*"k\ are dominated a.e. by a

L?(By)-function uniformly with respect to k. Furthermore, in view of (2.4.80), up to a
subsequence we can assume that the limit

H(An, R
{:= lim 7( )

exists and is finite. The Dominated Convergence Theorem then implies

k——+o0 B k——+o0 /\"k

lim w s (2)v(z)dz = lim RYT! /B wn (R, 2)v(Ry,, 2) dz
1/R)

)\n R)m . R
kel XBl/RA (2)w™ Pk (2)v(Ry,,, 2) dz
nE

SN+l I+ =
=R \/Z/BlXB _(2)w(z)v(Rz)dz = R \[/UR v(Rz)dz

for any v € C°(By). By density it is easy to verify that the previous convergence also
holds for all v € L?(B;). We conclude that w*» — Zw(-/R) weakly in L?(B;); as
a consequence we have that w = \/Zw(ﬁ) and w** — lw(-/R) weakly in H'(B).
Moreover

lim |wa(z)12dz_ lim Ry / |Vwr™ (Ry, 2)|?dz
k—+o0 JB, —+oo Tk Bi/r, k
H(An, Ry, )
_ : N-1 Kk "k An R>\n 2
o kgrfoo R)\nk fH()\nk) /B1 XBl/R)\nk (Z)|VU) F k (Z)| dz

_ pN-1 5 wZQZ:fN—l w22z: wzi 22‘
=R E/BIXBI/R(”V(NCZ R E/BI/RW()M /BIMV((/R))M
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Therefore we conclude that w’* — @ = v/fw(-/R) strongly in H'(B;). Furthermore, by
(2.4.108)) and the fact that [, [@[*dS = [, |w[*dS =1, we deduce that @ = w.

It remains to prove part (i). From (2.4.105) and (2.4.104) it follows that H,,(r) = r*o.
Therefore (2.4.102)) and Lemma [2.4.17| applied to w imply that

_I'HQU(T)_CkorkO_I_kO
T () 2 iR 27

thus completing the proof. O

In order to make more explicit the blow-up result proved in Lemma we describe
the asymptotic behavior of H(r) as r — 0.

Lemma 2.4.32. Let v be as in Lemma |2.4.25 The limit lim+ 2V (r) exists and is
r—0

finite.

Proof. Thanks to estimate ([2.4.61]), it is enough to prove that the limit exists. By ([2.4.42))

and (2.4.64]) we have

d H(r)

dr r2v

= 2r" 271 (D(r) — yH(r)) = 2r 2 () /OT N'(s)ds. (2.4.106)

Let us write N7 = a1 + g, with a1 and as defined as in ([2.4.66]) and (2.4.67)) respectively.
From ([2.4.63)) it holds that

ai(r) >0 for a.e. € (0,79). (2.4.107)
Moreover assumptions (H1-2), (H2-2) and (H2-4) ensure that not only as € L(0,7), but
also
1 S
/ ao(t) dt € L*(0,79). (2.4.108)
§Jo

Integration of (2.4.106) over (r,rg) yields

#ro) —%:) _ / " s 1) ( / ) al(t)dt> ds + / " s 2 1y(s) ( / ) ag(t)dt> ds.
K T O ' " (24100)

70 s
In virtue of (2.4.107) we deduce that lim 25 21 H () (/ al(t)dt) ds exists. On
0

r—0t

the other hand, (Z4.61) and (2.4.108) imply that

sTH 19 (s) </Os a2(t)dt> ds

for all s € (0,7), thus proving that s~27~1#(s) </ as(t) dt) € L'(0,7g). Then we may

0
conclude that both terms on the right hand side of (2.4.109) admit a limit as » — 0T and
at least one of such limits is finite, thus completing the proof of the lemma. O

< Klsl/ Ckg(t) dt € Ll(O,rg),
0
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2.4.5 Local asymptotics

In order to detect the sharp vanishing order of the function H and to give a more explicit
blow-up result, in this subsection we construct an auxiliary equivalent problem by a diffeo-
morphic deformation of the domain, inspired by [38], see also [3] and [77]. The purpose of
such deformation is to straighten the crack; the advantage of working in a domain with a
straight crack will then rely in the possibility of separating radial and angular coordinates

in the Fourier expansion of solutions (see (2.4.141)).
Lemma 2.4.33. There exists 7 € (0,79) such that the function

(', 2n — g(a'). 1)
\/1 L @) =29y

! 2_;'_3:2 +t2
N

(1]

(2) =Z(2', 2N, t) =

1

1s tnwvertible from Br to Br. Furthermore, setting ® = =7+, we have that

d71(2) =2+ 0(z]?), Jac® l(2) =Idny1 +O(z]) as|z| =0, (2.4.110)
det Jac® 1(2) =1+ O(|z]) as|z| — 0, (2.4.111)
d(y) =y +O(|y)?), Jac®(y) =Idns1 +O(y|) as|y| — 0, (2.4.112)
det Jac®(y) =14+ O(ly|]) as |y| = 0, (2.4.113)
®(B,\T)=B,\T, & YB\I)=B,\T forallre(0,7. (2.4.114)

Proof. We can immediately deduce (2.4.110)) and (2.4.111)) from (1.2.17)) and (1.2.18]). In

particular, det Jac Z(0) = 1 # 0, then by the local inversion theorem, there exists a suitable
0 < 7 < ro such that Z is invertible from B; to itself. Thus, setting ® = =21, by
and we obtain and . To conclude, properties (2.4.114]) hold
true since |=(2)|? = |2|? and if z € T, i.e. xx < g(z'), then, setting y = Z(z), we have
that yy = zx — g(2’) < 0, which is equivalent to prove that y € I'°. O

Let u € H'(Bp) be a weak solution to (L.2.20). Then
v=uo®dc H'(B;) (2.4.115)

is a weak solution to

{—div(A(y)VU(y)) = flyoly) in By \ r, (2.4.116)
v=20 on I,
with
A(y) = |det Jac ®(y)|(Jac @(y))_l((Jac ‘I)(y))_l)Tv (2.4.117)

f(y) = |det Jac (y)| f((y)).
Indeed v € H%(B;) thanks to (1.2.22) and ([2.4.114)). Moreover it holds that

| AW)Vuly) Vel dy - | Fywly)(y)dy =0 for any ¢ € C°(B-\I). (2.4.118)
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Indeed, by we have that
. Vu(z) - Vo(z)dz — . f()u(z)p(z)dz =0 for any ¢ € C°(Br \T).
Thus, setting z = ®(y), we obtain that for any ¢ € C°(By \ I
. Vu(®(y)) - V(@ (y))|det Jac 2 (y)| dy

-/ F(@(y))u(®(y))p(®(y))|det Jac @ (y)| dy = 0.

From this, by (2.4.115)), letting ¢ = ¢ o @ and taking into account (2.4.114)), we deduce
that for any ¢ € C°(Br \ I

. Vo(y)(Jac®(y)) ™ - Vi (y) (Jac D(y)) " |det Jac ®(y)| dy

-/ f(@)v(y)¥(y)|det Jac @(y)| dy = 0,

thus obtaining (2.4.118) with A(y) and f(y) as in ([2.4.117).
By Lemma [2.4.33] (2.4.117)) and direct calculations, we obtain that

A(y) =Idyy1 +O(lyl) as|y| — 0. (2.4.119)
Lemma 2.4.34. Letting H be as in (2.4.40) and v =uo ® as in (2.4.115)), we have that
HN) = (1+ O()\))/ v*(N0)dS as A — 07, (2.4.120)
SN
™M y)|? d
M =(1+ O()\))/ lw*(2)|?dz = O(1) as A — 0T, (2.4.121)
H(A) B
and
Vit (y) |2 d
I, VW) dy =(1+ O(A))/ IVt (2)|?dz = 0(1) as X\ — 07, (2.4.122)
H(A) B

where w is defined in (2.4.72) and ™ (y) := v(\y).
Proof. From ([2.4.114)) and a change of variable it follows that

/ u?(2)dz = / v (y)|det Jac ®(y)|dy for all A € (0,7).
By By
Differentiating the above identity with respect to A we obtain that

/ u?dS = v?|det Jac ®|dS for a.e. A € (0,7).
9By, 9By
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Hence, by the continuity of H, we deduce that

H(N) = )\N/ v?|det Jac ®| dS = / (A0)|det Jac ®(A0)|dS for all X € (0,7),
OBy,

which yields (2.4.120)) in view of (2.4.113)). Furthermore, from (2.4.114)) and a change of

variable it also follows that
fBl |92 (y)|? dy fB1 lu(®(A\y))|* dy fBl lu(A2)|?|det Jac @~ (\2)| dz
H(N) H(/\) H(A)

:/ [0 (2) 2|det Jac D1 (Az)| d=
By

and
[, VWP dy [ N[Vu(@(y)) Jac @(Ay)|* dy
H(A) H(A)
[5, M’IVu(Az) Jac ®(@1 (A2))|?|det Jac @~ (Az)| dz
- HOV)

= / |Vu (2) Jac (D1 (A2))[?|det Jac D~ H(\z2)| dz
By

for all A € (0,7). The above identities, together with (2.4.110), (2.4.111)), (2.4.112)) and the
boundedness in H'(B;) of {w*} established in Lemma [2.4.26] imply respectively estimates

@A121) and (2.4.129). O
Lemma 2.4.35. Let v =uo® be as in (2.4.115) and let ky and v be as in Lemma|2.4.31

(i). Then, for every sequence A, — 07, there exist a subsequence {\n, }ren and an eigen-
function i of problem (|1.2.23]) assoczated with the eigenvalue iy, such that [[1||2gny =1,
the convergence m ) holds and

v()\nk)

\/ Jon v2(An, 0) dS

Proof. From Lemma there exist a subsequence \,,, and an eigenfunction ¢ of prob-
lem ([1.2.23)) associated with the eigenvalue jiy, such that [|¢)|| 2gvy = 1 and (2.4.89)) holds.

From (|2.4.89) it follows that, up to passing to a further subsequence, w ‘ op, converges to

in L?(SV) and almost everywhere on SV, where w” is defined in ([2.4.72)). From Lemma
it follows that {0*/y/H(\)} is bounded in H'(B;) and hence, up to a further

subsequence still denoted by )\nk, there exists ¢ € H'(B;) such that {v)‘”k/\/ Any ) Hi

weakly converges to w in H'(B;). From this, in view of (| m, we have that up to a
further subsequence,

v(An,)
\//SN v?(\n,.0) dS

— 1 strongly in L*(SV).

— ¢ strongly in L*(SV) and almost everywhere on SV. (2.4.123)
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To conclude it is enough to show that ¢ = 1. To this aim we observe that, for every
@0 € CX(SN), from (2.4.115), (2.4.120)), and a change of variable, arguing as in the proof

of Lemma it follows that

/S T A”ke —p(0)dS

— (14+0(\,)) /S e (@) (P20 det o (0, )] S, (2.4.124)

In view of (2.4.110) and (2.4.111)) we have that, for all § € SV,

lim ¢ ((7A> |det Jac ®71(\,,0)] = ©(6),
Nk

k—+o00
so that, by the Dominated Convergence Theorem, the right hand side of (2.4.124)) con-
verges to / »(0)p(0) dS. On the other hand (2.4.123)) implies that the left hand side of
§N

(2.4.124) converges to / @(0%0(0) dS. Therefore, passing to the limit in (2.4.124)), we
SN

obtain that

V(0)(0)dS = | (0)p(0)dS for all o € C(SN)
SN SN

thus implying that ¢ = 1/; O

Lemma 2.4.36. Let ko be as in Lemma |2.4.31] and let My, € N\ {0} be the multiplicity
of pk, as an eigenvalue of (2.3.18]). Let {Yko,m}mzlygwyMko be as in (2.3.131). Then, for

any sequence A, — 01, there exists m € {1,2,..., My, } such that

An0) Yo m(0) dS
i sup L5 PO Vi (6) S|

Proof. We argue by contradiction and assume that, along a sequence A\, — 0T,

An0) Y, m(0)dS
i sup ey PO Viom(8)dS|
n—-+o0o H()\n)

(2.4.125)

for all m € {1,2,..., My, }. From Lemma [2.4.35 and (2.4.120)) it follows that there ex-
ist a subsequence {\,, } and an eigenfunction ¢ of problem ([2.3.18)) associated with the
eigenvalue fi, such that [[¢]|p2gny =1 and

An,. 0
0w b) — 1(0) strongly in L?(SV).
H(Any)
Furthermore, from (2.4.125) we have that, for every m € {1,2,..., My, }

(/\nke)

lim
k—+o0 JsN /H(An,) Yeom

m(0)dS = 0.
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Therefore / Y Yiom dS = 0 for all m € {1,2,..., My, }, thus implying that ¢» = 0 and
SN

giving rise to a contradiction. O

For all k e N\ {0}, m € {1,2,..., My}, and X € (0,7), we define

Prm(A) = /S L VA0)Ykm(0) dS (2.4.126)

and

Ver YimW/1y1) 4 1 F@)o)Yim(y/lyl) dy

Tmmm:—AgA—mmﬂvuw- " [

+/ (A~ Tdn41)Vo(y) - 2 Yiem(y/ly]) dS,
OB, [y

(2.4.127)

where the functions {Y m }m=12,.. M, are introduced in ([1.2.25]).
In the following lemma we provide an asymptotic expansion as A — 0T for the Fourier

coefficients associated with v.

Lemma 2.4.37. Let kg be as in Lemmal2.4.31. For allm € {1,2,..., My, } and R € (0,7]

2N + kg — 2

/RS_N_IZOTIC m(s)ds
2(N +ko—1) Jy »

ko _ko
Spko,m(/\) = A2 | R 2 90k07m(R) +

b RN Ko (2.4.128)

R,
—_ 2 I m(s)d A
+2(N+k0—1)/0 572 kom(8)ds | + of

I
Sk

)

as A — 0t

Proof. For all k € N\ {0} and m € {1,2,..., M}, we consider the distribution (j ., on
(0,7) defined as

/(0,7) {Ck,m> W) D(0,7) —/0 WO\)( o FOA)v(A0) Y (6) dS)d/\
+ir-1() (div((A = 1dn 1) Vo), [yl ™ w(lyD) Ym0/ 1)) 1 (5,9
for all w € D(0,7), where
H-1(Br) <d1V((A - IdN+1)V’U), ¢>H3(B,:) = — /B (A — Id]\H_l)VU . Vgﬁ dy
for all ¢ € H}(By). Letting Y, as in (2.4.127)), we observe that Yy, € Li (0,7) and,

loc
by direct calculations,
em(X) = AV em(A) in D(0,7). (2.4.129)

k,m
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From the definition of (j ,,, (2.4.116)), and the fact that Y}, ;,, is an eigenfunction of (|1.2.23)
associated to the eigenvalue py, it follows that, for all k € N\ {0} and m € {1,2,..., My},

the function ¢y, ,,, defined in ([2.4.126)) solves
N Wk
in the sense of distributions in (0,7), which, in view of (1.2.24]), can be also written as
—(ON A0 (V)Y = AR G (M)

in the sense of distributions in (0,7). Integrating by parts and taking into account

(2.4.129)), we obtain that, for every k € N\ {0}, m € {1,2,..., My}, and R € (0,7],
there exists cg m,(R) € R such that

k k

R
A S orm V) = AN 5T () — A (Ck,m(R) +/ ST T (5) dS)
A

in the sense of distributions in (0,7). In particular, g, € VVlzcl (0,7) and, by a further
integration,

k k R ~_N—Fk R k_1
+2)\2/ s ck,m(R)—l—/ t27 Yy m(t)dt |ds
A s

k(o k ON+k—-2 (B & kg (R)R-N*1-F
2( 2 Pk,m ( )+2(N+k—1)//\ s 2Thm(s)ds 2N k1)

k)\*N%*lfg R, .
—2 (epm t2 Iy (1) dt ).
e CRTOR W IO

Let now kg be as in Lemma [2.4.31l We claim that

(2.4.130)

the function s — S*N*%O'fko,m(s) belongs to L(0,7) for any m € {1,2,..., My, }.
(2.4.131)
To this purpose, let us estimate each term in . By (2.4.119)), (2.4.122)), the Holder
inequality and a change of variable we obtain that, for all s € (0,7),

Ven Yign (2
/ (A(y) — Idn+1)Vo(y) - W

< const / |Vou(y)|? dy \// Vv Yig,m <y>
) B. [yl

_ s 2
< const s¥ s%m / Mdy
B H(S)
< const sN\/”,'Ts%

.

2
d
ENCYRES
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taking into account that Vu(sy) = s71V*(y) and that

2 s
[, Fsien (i) o= [ (.
0 SN

N+1

_S
 N+1°

By the Hoélder inequality, (2.4.115)), (2.4.114)), and the definition of f in (2.4.117) we have

that,
[ F (Vi () ] < \// FWle2t) dy- \// FWIYE () dy
\// Here \// TNV () e

Using (H2-5)), (2.4.55), (2.4.13)), (2.4.59) under assumptions (H2-1))-(H2-5)), and ([2.4.56)
under assumptions (H1-1)-(H1-3)), it follows that

/ | flu? dz < const B(s, f)sV " H(s)

s

where [(s, f) n(s, f) under assumptions (H2-1)-(H2-5) and B(s, f) = £¢(s) under as-
sumptions m Moreover, by (H2-5) under assumptions (H2-1|)-(H2-5)), and
from ([2.4.10)) under assumptions (H1-1)-(H1-3|), we also have that

/ |f(z |Yk07 )dz<constﬂ( f)sNL

Therefore we conclude that, for all s € (0,7),

< const B(s, f)sV L/ H(s). (2.4.133)

T W)Yo () dy

As regards the last term in (2.4.127]), we observe that, for a.e. s € (0,7),

/ (A—IdNH)Vv(y)-&Yko,m(lz)ds‘ gconsts/ |vu|\Yk0m )\ds (2.4.134)
0B

s

as a consequence of (2.4.119). Integrating by parts and using (2.4.122)), Lemma [2.4.26
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the Holder inequality and a change of variable we have that, for every R € (0, 7],

R
S S U
0 0B Br
R k
+(N+’;0—1)/0 sN2°</ |Vv|\Yko,m(Z|)\dy)ds
< const ( HVH(R) + _%0 \/%ds)’

(2.4.135)

as a consequence of (2.4.132). From ([2.4.127)), (2.4.132)), (2.4.133]), and (2.4.135|) we deduce
that, for all m € {1,2,..., My, } and R € (0,7],

R
/ s_N_%O]Tkmm( )| ds < const R~ 2 T \/H(R) + / 2 /H s) (1+s'B(s, f)) ds
0
(2.4.136)
Thus claim (2.4.131)) follows from ([2.4.136)), (2.4.61) and assumptions (H1-2|) and (H2-2)).
From (2.4.131)) we deduce that, for every fixed R € (0, 7],

ko ko 2N + ko — 2 /R _N_ko ko Cpg.m (R)R™NF1=ko
AP (R R)+ T2 Yy o (8)ds — 0 Ckos
2< Peom Bt o R fy ¢ Thom(®) 2(N + ko — 1)
—ONF) = oA NF1=F) as A 5 07
(2.4.137)

On the other hand, (2.4.131)) also implies that t — t%O*lTkO,m(t) € L'(0,7). We claim
that, for every R € (0, 7],

R
Cko,m(R)+/ 3 gy ()t = 0. (2.4.138)
0

Suppose by contradiction that (2.4.138)) is not true for some R € (0,7]. Then, from

(2.4.130) and (2.4.137)) we infer that

N+1-*o R
Oko.m(N) ~ R AT Cko.m(R) +/ t%O*lTk m()dt ] asA— 0T,  (2.4.139)
» 2(N — 1+ ko) » 0 o

Lemma and the fact that v € H'(B;) imply that

7 7 2
/ AN—2|<pk0,m(A)|2dA§/ )\N_2</ \U(Ae)Pds)dA:/ ’”(yl‘ dy < +o0,
0 0 SN B |Vl

T

thus contradicting (2.4.139)), since N — 1 + ko/2 > 1. Claim (2.4.138]) is thereby proved.
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From (2.4.131)) and (2.4.138) it follows that, for every R € (0,7],

—N+1-* i fm 1 _ y\—N+1-f0
A 2 Cko,m(R) + 2 Tko m( )dt = 2
A

—N+1-ko A N+ko—1|,—N-ko [ T Lo}
<A £ ‘t : Tko,m(t)’dt <A | ‘t : Tko,m(t)’dt —o(AF)
(2.4.140)

A kg
t2 —lTkw(t)dt‘
0

as A — 0.
The conclusion follows by (2.4.130), (2.4.140) and (2.4.138)). O]

Lemma 2.4.38. Let vy be as in Lemma|2.4.25. Then lim r~2H(r) > 0

r—0t

Proof. For any A € (0,7), we expand 6 — v(\) € L?(S") in Fourier series with respect
to the orthonormal basis {Y} y }m=12,.. am, introduced in (1.2.25)), i.e.

oo My

=D > ekm\Yem(0) in L*(SY), (2.4.141)

k=1m=1

where m € {1,2,..., M} for all k € N\ {0}, A € (0,7) and @, ,,, () is defined in (2.4.126).
Let kg € N, kg > 1, be as in Lemma so that

ko
= li 2.4.142
= riI(r)l"r N( ) 2 ( )
From (2.4.120)) and the Parseval identity we deduce that
oo My
HO) = (1+ O(/\))/ 200)dS = (1+00) S S (A (2.4.143)
s k=1m=1

for all 0 < A < 7. Let us assume by contradiction that /\hm+)\ 'H(A) = 0. Then,
—0
(2.4.142) and (2.4.143) imply that
lim A7*0/2pp L (A) =0 forany m € {1,2,..., My, }. (2.4.144)

A—0t

From ([2.4.128)) and ([2.4.144)) we obtain that

_ko OIN+ko—2 [ v ke
R 2 Soko’m(R)—i_Q(]\/v—f—ko—l)/ S N—5 ’I’ko’m(s)ds

ka R—N—i—l—ko R ko
e — T ds =
a1y oF Theneds =0

(2.4.145)

for all R € (0,7] and m € {1,2,..., My, }.
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Since we are assuming by contradiction that )\lim+ A"27H(N\) = 0, there exists a se-
—0
quence {Ry,}nen C (0,7) such that Ry,+1 < Ry, 1i_>m R, =0 and
n—oo

R—k‘o/? Rn — —ko/2 .
R0/ /H(R,,) éﬁ%c? H(s))

By Lemma [2.4.36] with A, = R,, there exists mo € {1,2,..., My, } such that, up to a
subsequence,
lim Pko,mo (Rn)

By (2.4.145), (2.4.136), (2.4.146)), (HI-2) and (H2-2), we have

£0. (2.4.146)

ko k RnNJrl ko R, ko
‘R” * Pro,mo (Bn) + 0)/0 57 1T1<:07mo(3) ds

2(N +ko—1
2N + kg — 2 B _N_ka
= |l T
’2(N+ko—1)/ T Tama(s)
ON +ko—2 [l Nt
7 - Thomo(5)| d
_%N+%_D/ SN Ty g (5)]

< const < \/—+/ s~ 2 \/H(s) (1 +5716(s, f)) ds>

< const <R;2\/”H(Rn)Rn LRy HR) /Rn Bls. /) ds>
HTt) 4 | VAR

@ko,mo(Rn) (pko,mo(R )
_ Phio,mo (L2n)
=0 k‘o/Z
Ry
as n — 400. On the other hand, by (2.4.147) we also have that
Rn
/ te —1Tko,m0(t)dt'
0
k R—N+1—k0 Ry
_ 0 Ly / tN—‘rk()—lt—N——frkO mo( )dt
2(N +ko—1) | Jo

ko fin N-to Pko,mo (Fn)
< - " t~ Yiom dt = o T2 T/
= 2(N+ko—1)/o * koo (t) 0( RFo/?

as n — 4o00. Combining (2.4.147)) with (2.4.148]) we obtain that

< const <

[0
S

(2.4.147)

Pko 7m0
l%ko/2

Spko,mo )
R0/

kO RgNJrlfko
2(N + ko — 1)

(2.4.148)

ko ko

RT_LTcpkO,mO (Ry) = o(RT_L?cpko,mO (Rn)) as n — 400,

which is a contradiction. ]
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Combining Lemma Lemma and Lemma we can now prove the

following theorem which gives a more precise description of the limit angular profile ¢ of

Lemma 2.4.37]

Theorem 2.4.39. Let N > 2 and v € H'(Bp) \ {0} be a non-trivial weak solution to

(1.2.20), with f satisfying either assumptions (H1-1)-(H1-3)) or (H2-1)-(H2-5). Then,
letting N (r) be as in (2.4.47)), there exists ko € N, ko > 1, such that

ko

lim N(r) = —

r—0+ ( ) 2

Furthermore, if My, € N\{0} is the multiplicity of ux, as an eigenvalue of problem (|1.2.23])

and {Yiyi: 1 <i < My} is a L2(SN)-orthonormal basis of the eigenspace associated to
Uk, then

(2.4.149)

u(Az z .
o ||’“0/22/3myk07 (u) in H'(B1) a5 A 0", (2:4.150)

where (Bl,ﬁg,...,BMko) #(0,0,...,0) and

B = / R7F0/24(®(RH)) Vi m (0) dS
SN

N ko
+ 1 F 1 ko k0$2_1
T
1-N k0/0< N+ 2RN—1+ko> ko,m (8) ds

for all R € (0,7] for some 7 > 0, where Yy, is defined in (2.4.127) and @ is the
diffeomorphism introduced in Lemma|2.4.33,

Proof. Identity (2.4.149) follows immediately from Lemma [2.4.31
In order to prove (2.4.150), let {\; }nen C (0,00) be such that A, — 07 as n — +oo.

By Lemmas 2.4.31} [2.4.32} [2.4.35} [2.4.38 and ([2.4.120)), there exist a subsequence { A, }jen
and constants 1, B2, ..., Bum,, € R such that (B1, B2, - - - ,BMkO) # (0,0,...,0),

(2.4.151)

My,
_ko 0
A, (A, 2) — 12| % Z B Yo m () in HY(By) as j — +o0 (2.4.152)
and
_ko Mo
A2 0(An,) = Y BmYim  in L*(SY)  as j — 4o, (2.4.153)
m=1

where {Yy,;: 1 <14 < My} is a L2(S")-orthonormal basis of the eigenspace associated to
Li,- We will now prove that the f3,,’s depend neither on the sequence {Ay, }nen nor on its
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subsequence {\,; }jen. Let us fix R € (0,7], with 7 as in Lemma [2.4.33 and define ¢, m
as in (2.4.126). From (2.4.153) it follows that, for any m =1,2,..., My,,

L . v(An,0)
Jim A o) = tim [ Akojz Vi m(6)dS = Zﬁz L Yoo YigmdS = B
(2.4.154)
On the other hand, (2.4.128]) implies that, for any m =1,2,..., My,
lim A% o) = B % o () + 0 =2 /R——’?Y (s)d
im m(A) = m _— s m(s)ds
)\4}0_"_ Soko sok(), 2(N + ]{30 _ 1) 0 ko
ko R-N+1=ko (R 4
P VR Yio,m(s) ds,
2(N+k0—1)/ s% " Thom(s)ds

with Yy, as in (2.4.127), and therefore from (2.4.154)) we deduce that

ON +ko—2 [B o Kk
B = R % oy <R>+°/ SN (s)ds
0

9(N + ko — 1)
kO RfNJrlfko R [
2(N + ko — 1) /

for any m =1,2,..., My,. In particular the §,,’s depend neither on the sequence {\, }nen
nor on its subsequence {\,; }jen-

Thanks to Lemma we obtain that the convergence in actually holds as
A — 07, thus proving the theorem. O

As a direct consequence, we deduce the following strong unique continuation principle.

Theorem 2.4.40. Under the same assumptions as in Theorem let w € HY(Bp)
be a weak solution to (1.2.15)) such that u(z) = O(|z|¥) as |z| — 0 for any k € N. Then
u=01in Bps.

R

Proof. Let u € Hl(BR) be a non-trivial weak solution to ((1.2.15). By assumption, for

every k € N
u(Az) k—ko/2
W S constA 0 (24155)

Az
for X sufficiently small. In particular if & > ko/2 then uhz) tends to 0 in L?(B;) as

Ko /2
A — 0, as a consequence of (2.4.155)). This contradicts ([2.4.150)). O
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Appendix A

A.1 Some boundary regularity results at edges of cylinders

Let us consider the following local problem: 2 C RY is a Cb! domain, zp € 99, R,T > 0
and U is a weak solution to

div (#72°VU) =0 in Crz(zo),

U=0 in Dg7(zo), (A1L1)
limt'"250,U =0  in or7(20),

t—0

where

Crr(zo) := (BRr(zo) N Q) x (0,7T), Dpr (o) := (BRr(x0) N Q) x (0,T),
orr(z0) = (Br(zo) N Q) x {0};

i.e. U belongs to the space H defined as the closure of the set
{v e C*(Crr(x0)) : v =0 in a neighbourhood of Dg r(z¢)}

in HY(Cgrr(wo), t =% dz), and
/ VU - VO dz =0 for all ® € C°(Crr(20) Uorr(20))-
Cr,7(0)

The following regularity result holds true.

Lemma A.1.1. Let « € (0,1), 8 € (0,1)N (0,2 —2s), r < R, and 7 < T. Then there
exists a positive constant C > 0 such that, for every weak solution U to (A.1.1)),

Ul cra (. oy + 120U lcos (e, wo)) < CNUN L2 (o) 41-220d2)-

Proof. We denote the total variable z = (x,t) € RY x (0,400), with z = (2/,2y) €
RN-1 x R, and we consider g € C*!(RN~1) such that

Br(zo)NQ = {x = (2/,2n) € Br(zo) : zn < g(z')}.
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Without loss of generality we can assume that g = 0, g(0) = 0 and Vg(0) = 0. Starting
from this function g, we can argue as in Subsection and construct a function F' as
in , which turns out to be a diffeomorphism in a neighbourhood of 0. Hence there
exist 0 < rg < R and 0 < 19 < T such that the composition W = U o F' weakly solves the
following straightened problem

div ((1"2AVW) =0 in T, x (0,7),

W =0 in (B, N{y~ = 0}) x (0,7),
lim¢' " AVW -y =0 inl,,
t—0

with A = A(y) being as in ; in particular the matrix A(y) does not depend on the
vertical variable ¢, is symmetric, uniformly elliptic, and possesses C%! coefficients.

Let us consider the odd reflection of W (which we still denote as W) through the
hyperplane {yy = 0} in B;, x (0,7), i.e. we set W(y',yn,t) = —W(y', —yn,t) for
yn < 0; it is easy to verify that W weakly satisfies

70?7

div(t'=AVW) =0  in B, x (0,7),
lim " ZAVW -v =0 in B/
t—0

where
e e A yla YN ), if YN S 07
Aly) = AW, yn) = ( ; ) .
SA(y ) _yN)Sa if YN > Oa
with
Idy_1] O | O
S = ol | —-110
o’ 0|1

We observe that no discontinuities appear in the coefficients of the matrix A since, denoting
as (a;;) the entries of the matrix A,

ain(y,0,t) =0 foralli<N

thanks to and . Then the matrix A has Lipschitz continuous coefficients.
Thus we consider the even reflection of W (which we still denote as W) through the
hyperplane {t = 0} in B}, x (=70, 70), i.e. we set W(y',yn,t) = W(y',yn, —t) for t < 0;
due to the homogeneous Neumann type boundary condition satisfied by W on B;O and the
fact that the matrix A is independent on ¢, we obtain that such even reflection through
{t = 0} weakly solves

div([t|'">AVW) =0 in B}, x (~70,70).

From [75, Lemma 7.1] it follows that V = [t|'"2*0,W € H}} (B, x (—70,70), [t|** ' dz) is
a weak solution to

div([t{*'AVV) =0 in B}, x (—79,70)
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and such V is odd with respect to {t = 0}, i.e. V(v ,yn,—t) = =V (¥, yn, —1).
From [75, Theorem 1.2] it follows that, for all » € (0,7¢) and 7 € (0, 79),

W e CY(B. x (-7,7)),
and
IWllcro(Byx(—rry) < constlWllL2(p; x(—romo),Jt1-2+ dz)
for some const > 0 (independent of W). Furthermore, [35] ensures that V' is locally Holder
continous. More precisely, [74, Proposition 2.10] yields that the function
Vix,t
Bot) =
which is even in the variable ¢, belongs to the weighted Sobolev space
Hioo(By, x (=70, 70), [t[>7% d2),
and weakly solves

div([t}"2AV®) =0 in Bl x (~70,7),

thanks to the fact that the matrix A is independent of t.
From [75, Theorem 1.2] we have that ® € C%7(B.. x (—7, 7)) for ally € (0,1), r € (0,70)
and 7 € (0,79), and

< const V[l 2By, x(—ro,70),lt[2:-1 d)
CO1(By (7))

v
1@l con (B x (—r,7)) = Ht!t!”

for some const > 0 (independent of V).
Therefore V € C%9(B.. x (—7,7)) with § = min{2 — 25,7} and

IVllgos(Byx (=7, < const (V[ L2y x(—ro,m0), 1251 d2)-

The conclusion follows by recalling that U = W o F~! with F~! being of class C!
and taking into account the particular form of the matrix in (2.3.6]). O

A.2 Homogeneity degrees and eigenvalues of the spherical
problem

We derive an explicit formula for the eigenvalues of problem (L.2.11]), which follows from
a complete classification of possible homogeneity degrees of homogeneous weak solutions
to the problem

—div (#72VT¥) =0  in RYT

lim (#'7*VV¥.v) =0 inT", (A.2.1)
t—0+
\I/ = 0 il’l F+,

where T~ := {(3/, yn,0) € RV x{0} : yv < 0} and T'* := {(¢/, yn,0) € RN x{0} : yn > 0}.
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Proposition A.2.1. Let ¥ €[, H%j(B;*,tl_Zs dz) be a weak solution to (A.2.1), i.e.
/N ) tEVY - VOdz =0, for all ® € CORYTI\TH).
RYT

If, for some v >0, ¥(z) = |Z|7\I/(é), then there exists j € N such that v = j + s.

The proof of Proposition[A.2.1|requires a polynomial Liouville type theorem for even so-
lutions to degenerate equations with a weight which is possibly out of the As-Muckenhoupt
class. To this aim, Lemma below provides a generalization of Lemma 2.7 in [10].

For all @ € (—1,+00) and 7 > 0, we define H*(B,, |t|* dz) as the completion of C*°(B,)

with respect to the norm
\/ [ e o+ (v d:
B,

HECRVYY .= {0 e L2 (RN t]%d2) : W € HY(B,, |t|*dz) for all r > 0}.

loc loc

and

We also define

HYC®RYHY = {0 e L2 (RY !, 1% d2) : U € HY(B],t% d2) for all r > 0}.

loc loc

Lemma A.2.2. Let a € (—1,+00) and v € Hllo’g(RN‘H) be a weak solution to
div(jt|*Vv) =0 in RVT! (A.2.2)

which is even in t, i.e.

v(x, —t) = v(z,t) ae in RV

If there exist k € N and ¢ > 0 such that
lw(2)| < c(1 4|27 for all z € RN

then v s a polynomial.

Proof. Let a > —1 and v € HIIO"?(RN“) be a weak solution to (A.2.2) even in ¢. For
a € (0,1) and k € N, let Dg’“v be the partial derivative with respect to the variables
x = (x1,...,2x) of order k = |B|, with 8, € NV multiindex. Then, there exists a positive
constant C' > 0 depending only on N, «, a, k such that

C
sup |DPro| < —sup |v| (A.2.3)
B'r/2 r By
and
D5 < ¢ A2.4
[Df U]Cova(BT/Q) > WS}BIPM’ (A.2.4)
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where [w]co.a(p) = SUDP, yep [2 — 2|7 w(2) — w(2’)]. In order to prove the previous
inequalities we apply some local regularity estimates for even solutions contained in [75].
If £ = 0, then the inequalities follow by scaling

lollooa(s, ) < Cllvll o)

proved in [75, Theorem 1.2 part ¢)]. If & > 1, we remark that any partial derivation
in variables z; for ¢ € {1,..., N} commutes with the operator div(|¢t|*V-) and DEv are
actually even solutions to the same equation, (see [75, Section 7] for details). Hence,

inequalities and follow by scaling and iterating the estimate
lollcne s, ) < Clvllieesn
proved in [75 Theorem 1.2 part ii)]. Indeed, after fixing a multiindex S, we can choose
re=1/2<rp1<..<rg=1,
then

HDE%HCO’O‘(BW) < Cp1 sup Dy 0| < Ch1Chs sup | D52

Bry 4 Bry_o
k-1
<. < H C; | sup|v|.
i=0 B

Once we have (A.2.3)) and (A.2.4]), we can proceed exactly as in proof of [10, Lemma 2.7].
We have only to remark that for any a € (—1,+00), given an even solution to (A.2.2)) v,
then d%v + 40w = —A,v is also an even solution to (A.2.3). O

Now we are able to prove Proposition

Proof of Proposition[A.2.1. Let ¥ € Hlloi _zs(Rf 1) be a weak solution to (A.2.1), such
that
U(2) = |20 <‘Z’> in RN+,
z

for some v > 0. The homogeneity condition trivially implies a polynomial global bound
on the growth of U. The same bound is inherited by the trace ¢ = Tr ¥ on RY = 8RJI L
which is also y-homogeneous. Moreover, ¢ € C°(I'") by [75, Theorem 1.1] and ¢ €
C%(RN) by [62, Proposition 5.3]. With these premises, we can define the extension V of
¢ in the sense of [I, Lemma 3.3]. Actually, we introduce a minor change in the definition
of the extension given in [I]; that is, for every R > 0 we define

R = PNr (A.2.5)

(instead of ¢pp = ¢XB;2)7 where ng € C°(B)y) is a radially decreasing cut-off function
with |pg| < 1 and ng = 1 in Bj. We remark that the adjusted family of functions ¢r

120



convoluted with the usual Poisson kernel of the upper half-space converge in a suitable way
to the same extension V obtained by Abatangelo and Ros-Oton in [I]. Moreover, defining

the extension starting from (A.2.5)), we can easily ensure that V € H! ™2 (Rf *1) and that

loc

it is weak solution to (A.2.1]). Nevertheless, also V' inherits from ¢ an at most polynomial
growth. Let us consider W =V — ¥ € H"!72* (Rf 1), which weakly solves

loc

div(t!=»*VW) =0 in RY ™,
TrW =0 on RN:(‘)RfH.

Then, denoting as W the odd reflection of W through RY = 8]R_ZX+1, by [74, Proposition
2.10]

c 1’1+2S(RN+1)

loc

W = ——
t|t|25—1

is an even entire weak solution to (A.2.2]) with a = 1+2s € (1,3). We have that W satisfies
the assumptions of Lemma being a polynomial bound on its growth ensured by the
polynomial bounds of ¥ and V. From Lemma we can promptly conclude that W is
a polynomial. We also have that

250,V = B0 + 120, (t5W) = 10,0 + Py

for some polynomial P of degree k € N. Hence, passing to the trace of the weighted
derivative above, by [I, Lemma 3.3] it follows that

(—AY¢" 0 inT-

and ¢ = 0 in ['", where the above identity is meant in the sense of the notion of “fractional
Laplacian modulus polynomials of degree at most k” given in [I, Definition 3.1}, see also
[30]. Hence, by [I, Theorem 3.10], we have that

¢(z) = p(z)(zN)Z,

for some polynomial p. By homogeneity of ¢, this implies that necessary there exists j € N
such that v = j + s. O

We are now going to derive from Proposition the explicit formula ((1.2.13)) for

the eigenvalues of problem ([1.2.11)). We first observe that, if u is an eigenvalue of ((1.2.11))
with an associated eigenfunction 1, then the function ¥(pf) = p?4(0) with

__N—ZS+ N — 2s 2+
7= 2 2 H

belongs to Hllo’g_%(]RfH) and is a weak solution to (|A.2.1)). From Proposition [A.2.1| we

then deduce that there exists j € N such that ¢ = j + s and hence

p=0+s)j+N-s).
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Viceversa, we prove now that all numbers of the form pu = (j +s)(j + N — s) with j € N
are eigenvalues of ((1.2.11]). For any fixed j € N, we consider the function ¥ defined, in
cylindrical coordinates, as
"(3)
sin | =
2

where o F} is the hypergeometric function. From [65] we have that ¥ € H!™2 (Rf 1) is

loc

a weak solution to (A.2.1)). Furthermore ¥ is homogeneous of degree s + j and therefore
the function 1) := \II‘SN belongs to Ho, ¢ # 0, and
+

= TS+-]

2s
(2, rcosT,rsinT) 2F1(—j,j+1;1—5;

1
+) r>0, 7€ 0,27],

U(ph) = p*p(6), p>0, €Sy
Plugging the above characterization of ¥ into (A.2.1]), we obtain that
pFF%U+@O+NF$W§§(@+&me;ﬁmw@>=Q p>0,0csSy,

so that (5 + s)(j + N — s) is an eigenvalue of ((1.2.11)).
We then conclude that the set of all eigenvalues of problem ([1.2.11)) is

{(j+s)j+N—s):jeN}.
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Chapter 3

A nonlocal capillarity problem

In the present chapter we discuss the results contained in [23], namely we perform the study
of a nonlocal capillarity problem with interaction kernels that are possibly anisotropic and
not necessarily invariant under scaling. In particular, the lack of scale invariance will be
modeled via two different fractional exponents s;, s2 € (0,1) which take into account the
possibility that the container and the environment present different features with respect
to particle interactions.

In detail, given an open set Q@ C R™ (n > 2), s1, s2 € (0,1) and o € R, for ev-
ery K1 € K(n,s1, A, 0) and Ky € K(n, s2,\, 0) (see Section for the definition of the
space K(n,s, A, 0) with s € (0,1)) and every set E C €, we consider a functional £(F)
defined as in (1.2.33), where I} := I, and I := I, according to (1.2.32). From this, we
consider the functional C as in with g € L*(Q).

Our aim is to investigate the existence of minimizers of the nonlocal capillarity func-
tional C among all the sets F with a given volume and to find the equation prescribing
the contact angle between the droplet and the container.

Before to dive into the technicalities, we introduce the following notations that will be
used throughout all this chapter:

e given a set F' C R", g € R™ and r > 0, we let

F —
pror = 210, (3.0.1)

r

e for any two angles ¥;, J2 € [0,27), with ¥; < 2, we define

Ty 90 = {x eR" : 38 € (¥,92), p> 0 such that (z1,z,) = p(cosﬁ,sinﬁ)};
(3.0.2)

o for any angle «a, we set
e(a) == cosaey +sinaey,. (3.0.3)

In particular, in our analysis we consider K; € K2(n,s1, ), 0) and Ky € K2(n, s2, ), 0)
such that the associated blow-up kernels defined as in ((1.2.31)) are well-defined and given
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by

— —
. ai( ¢ . az2( ¢
KO =it ad K30 = 250 (3.0.4)
%
where ( = é—‘ and aq,as are continuous functions on 9B, bounded from above and
below by two positive constants and satisfying
a;j(w) = a;(—w) (3.0.5)

for all w € 9B; and 7 € {1,2}.

3.1 Existence of minimizers

In this section we prove the existence of minimizers for the functional C defined in (|1.2.34)),
which is based on a semicontinuity argument and on a direct minimization procedure.
For this we first provide the following lower semicontinuity lemma.

Lemma 3.1.1 (Semicontinuity of the energy). If Io(€,Q°) < +oo0, E; CQ and E; — E
in L' (), then
liminf £(E;) > E(E).
J—r+oo
Proof. If ¢ > 0, the proof follows by Fatou’s Lemma. If instead ¢ < 0, then we observe
that
15(Q,9° = L(E,Q°) + I,(E° N Q,Q°,

and therefore, using that o = —|o|, we can write

E(E) = I(E, E°NQ) — |o|L(E, Q) + (lo] + 1)1(2,9°) — (|o| + 1) I(2, Q°)
= I(E,E°N Q) + L(E, Q) + (lo| + 1) I(E° N Q,Q°) — (Jo| + 1)15(€, Q).

As a consequence, we can exploit Fatou’s Lemma and obtain the desired result. O
With this we are able to prove the following result.

Proposition 3.1.2. Let K1 € K(n,s1,A,0) and Ky € K(n,s2, A\, 0). Let Q be an open
and bounded set with I (£, Q) + I2(£2, Q) < +o0.

Let m € (0,|9]) and g € L™(Q).

Then, there exists a minimizer for the functional C in (1.2.34) among all the sets E
with Lebesgue measure equal to m.

Moreover, 11 (E, E° N Q) < 400 for every minimizer E.

Proof. We observe that, if K; € K(n, s1, A, 0), then, for any p € R",

L(F, FC) > <1, (F N Bya(p), F'°N Bya(p)) for every FF C R™. (3.1.1)

> =
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To prove it, we notice that if 2,y € B,y(p), then |z —y| < [z —p| + |p —y| < o, and

therefore, recalling ([1.2.29)),
L (F, F¢) > /

1 dz d
/ Kie—y)dedy> [ G
FNB,/3(p) JF°NB,/2(p) A

_ oynts1?
FNB,»(p) /chBQ/z(p) |z — y[nte

which establishes (3.1.1]).
Now, if H is a half-space such that |H N Q| = m and R > 0 is such that 2 C Bpg, then,

using (1.2.29)), we see that
Il(H N BR,I‘IC N BR) = CRnisl,
for some C' > 0 depending only on n and s;, and therefore

EHNQ) = LHEHNQYHND ND) +ola(HNQ,Q
= LHNQH NQ)+oly(HNQ,N°

Li(H N Br,H°N Br) + |o| I2(©, °)

+00.

ARVAN

As a consequence, we find that
v:=inf{C(E) : ECQ, |[E|=m} < +o0.

Let now E; C § be such that |E;| = m and C(E;) = £(E;) + ijg — v as j — 4oo.
Then, if j is large enough, we have that

v+1 +/ |g| > 5(EJ) = Il(Ej,EJC' ﬂQ) —|-0'12(Ej,Qc) > Il(Ej,E;-: ﬂQ) - |0'|IQ(Q,QC).
Q
Consequently
Il(EjvEgc’) = Il(Ej7E;‘: N Q) + Il(EjaE]C' N QC) <~v+1 +/ |g| + Il(QaQC) + |U‘I2(Q>QC)'
Q

Since E; C Bg, using and the fact that the space W*1?(Bg) is compactly embedded
in LY(Bg), we find that, up to a subsequence, E; — E in LIIOC(R”) for some E C
with |E| = m. Hence, using the semicontinuity property in Lemma we conclude
that F is a minimizer.
We also remark that
IQ(E, QC) < IQ(Q,QC) < +00,

and therefore, since £(F) < 400, we conclude that
L(E,E°NQ) < +oo,

as desired. ]
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3.2 The Euler-Lagrange equation

In this section we present one of the main basic features of the capillarity energy functional
in . More explicitly, the volume constrained minimizers (and, more generally, the
volume constrained critical points) obtained in Proposition satisfy (under reasonable
regularity assumptions on the domain and on the interaction kernels) a suitable Euler-
Lagrange equation, according to the following result. To state it precisely, it is convenient
to denote by Regp the collection of all those points z¢ € 2 N JE for which there exists p >
0 and « € (s1,1) such that B,(z)NOE is a manifold of class C1* possibly with boundary,
and the boundary (if any) is contained in 02, see Figure

Figure 3.1: The geometry involved in the definition of Regp.

Given a kernel K € K(n, s1, A, ), it is also convenient to recall the notion of K-mean
curvature, that is defined, for all x € Q2 N Regy, as

Hjp(x) := p.v. | K@=y) (xee(v) — x£)) dy. (3.2.1)

Here p.v. stands for the principal value, that we omit from now on for the sake of simplicity
of notation. We also say that E C () is a critical point of C among sets with prescribed
Lebesgue measure if

4| e(rum) =o,

for every family of diffeomorphisms { f;};<s such that, for each [t| < J, one has that fo =
Id, the support of f; — Id is a compact set, f;(Q2) = Q and |f(E)| = |E].
With this notation, we have the following result:

Proposition 3.2.1. Let K1 € K!(n, s1,),0) and Ky € K!(n, s2,\, 0). Let Q be an open
bounded set with C*-boundary and g € C*(R™). Let E be a critical point of C in (1.2.34)
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among all the sets with Lebesgue measure equal to m. Then, there exists ¢ € R such that

//Ex(Ech) div(g ) <K1 (x —y) (T(x)7 T(y))) dz dy

3.2.2
+ U//EXQC div(z ) (Kz(a? — y)(T(az),T(y))> dx dy + /Ediv(g T) = c/EdivT ( )
for every T € C°(R™;R™) with
T-vg=0 on 0.
Moreover, if K1 € K2(n,s1,),0) and Ko € K2(n, 52, \, 0), then
HjL(z) — . Ki(z —y)dy +o o Ky(x —y)dy + g(z) = ¢ (3.2.3)

for all x € QN Regg.

The proof of Proposition [3.2.1] relies on a modification of techniques previously ex-
ploited in [9, [45] [60]. We omit the proof here since one can follow precisely the proof of
Theorem 1.3 in [60] with obvious modifications due to the presence of different kernels.

3.3 The cancellation property in the anisotropic setting

In this section we exhibit the proof of the cancellation property in the anisotropic setting.
The argument relies on a delicate analysis of the geometric properties of the integrals

involved in the definition of the function (3.3.1]).

Proposition 3.3.1. Given 9 € (0,7), for every ¥ € (0,27) let

o ay(x — 6(’[9;) ay(x — 6(’[9;)
Jygep T —€(0)] Jos [T —e(D)]
Then,

Dy is well-defined in the principal value sense; (3.3.2)
Dy is continuous in (0, 2m); (3.3.3)
lim Dy(J) = —oo; (3.3.4)
LAN]

lim Dy(d) = +oo. (3.3.5)

9 2m

Moreover, for every c € R and every angle ¥ € (0, ), there exists a unique angle Je (0,2m)
such that
Dy(9) = c. (3.3.6)
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Proof. We focus on the proof of (3.3.2)), (3.3.3), (3.3.4) and once these statements
are proved, we can conclude that there exists an angle U € (0 277) such that Dﬁ(ﬁ) =0,
and this angle is unique since Dy is strictly increasing, thus establishing -

We start by proving (3.3.2)). For this, we observe that the definition in (3.3.1]) has to

be interpreted in the principal-value sense, namely

Dy() = lim ( / e —ed) , / (e —e(¥)) dm) |
Ty Jo.0\By(e(9)) |

PO 9+ \Bp(e(?)) |z — e(J)[* T x —e(¥)[vFs1

(3.3.7)
Hence, to establish (3.3.2)), we want to show that the limit in (3.3.7)) does exist and is finite.
To this end, given ¢ € (0,27), we let 0 := min{sinJ,sin¥} and we note that Bs(e(1)) is
contained in Jy 4, 5. Then, for every p € (0, 4] we set

/ a(z — 6(19;) dr — / a(x — 6(19;) .
To.9+5\Bp(e(®)) | Jo.0\Bp(e(®)) |

z —e(d)[r z —e(D)[rra

f(p) =

We also define A5 ,(e(?)) := Bs(e(¥)) \ By(e(V)), see Figure By the change of vari-
able x +— 2e(d¥) — z, we see that

/ al(a:—e(ﬁ;) da:/ al(a:—e(ﬁ;) gz
Jo,9450As,p( Jo,0NAs,0(

@) 1T — e(d)["*=1 L(e) |z —e(@)[ =

/ a(e@ —2)  ailz—e(®) de — 0
Jo.0nAs p(e(@) || |

() —z[rrer o —e(P)[rn

since a; is symmetric. From this, we deduce that for every p € (0, ]

ay(x — 6(19;) B / ay(x — 6(’[9;) dr — 0.
Jo,9NAs,p(

o) - 10) = [ ale—eld) iz —eld))
R N sty o T — e@)n

Hence we conclude that

lim, f(p fp) = £(5), (3.3.8)

thus proving the existence and finiteness of the limit in (3.3.7)).
This completes the proof of (3.3.2) and we now focus on the proof of (3.3.3)).
For this, we notice that, if 9, ¥ € (0,27) with ¢ > 9,

Dy(d) — Dy(d) = /J e o /J @)

osg 1T — (@) |z — ()]s

e,

_ +
gy 1T @)

Since the denominator in the latter integral is bounded from below by a positive constant
(depending on ¥), the claim in (3.3.3]) follows from the Dominated Convergence Theorem.
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Figure 3.2: The geometry involved in the proof of the existence and finiteness of the
limit in (3.3.7)).

We now deal with the proof of (3.3.4) and (3.3.5]). To this end, we first prove that

N0 x — e(9)|nts x — e(9)|nts ( )
3.3.9
. ar(z — 6(19;) a(z — 6(19;) B
and lim T dr — - da | = +oo.
N0 NSy gy [2 = e(D)[F ooy [T —e(D)[rF

We focus on the proof of the first claim in since a similar argument would
take care of the second one. For this, let = be the first limit in and R be the
rotation by an angle ¥ in the (z1,x,) plane that sends e(d) in e; = (1,0,...,0). Let
also a1y := a1 o R and notice that a;y inherits the properties of ai, that is a;y is a
continuous functions on 0Bj, bounded from above and below by two positive constants
and satisfying a1 y(w) = a1 9(—w) for all w € 9B;.

With this notation, we have

— —
= — lim / a(r—el) .o _/ ag(@—e1) ) (3.3.10)
eNO\ Sy, [z —erts Joge [T — ex]mts

We also remark that, in view of the boundedness of aq y,

ay9(x —eq) C
/ ‘M—mfmﬁ/ e W=
J_2¢,2¢\ B2 |z — er[ st R\ By |y|ntse

for a suitable constant C' > 1 possibly varying from step to step.
Combining this information with (3.3.10) we find that

ay9(x —eq) a19(x —eq)
= < lim / Jﬁ—Tﬁﬁm—/ S+ C (3.3.11)
6\‘0 J_E,oﬂBz |:I; - €1| ! JO’QEQB2 |CU - 61| !
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Now we claim that, if € is sufficiently small,
3¢
Bz—:/lO er + ?en - Je,2a N Ba. (3.3.12)

To check this, let y € B, /19 (61 + 3—25en). Then,
2 2

9
— >y — 1
g = 1

3¢

yn_?

and accordingly 1y, € [1 — 1501+ %] and y, € [k 85—5] As a consequence, if € is conve-

5>
niently small,
Yn e 8 ] c {65 9e

, — | C [tane, tan(2¢)],
b | 2s | € tane.an(ao)

575
which, recalling (3.0.2)), establishes (3.3.12]).
Using (3.3.12) and the assumption that a;y is bounded from below away from zero,
we obtain that

apg(x —eq) 1 dz 1
Iy — oo [nts1 dr > = n+s = s
JE,QemBQ |CU - el|n ! C BE/10(61+37€G'”) ’x o 61’ ' CE '

This and (3.3.11)) entail that

ay9(xr —eq) Glﬂ(l‘—ei) 1
== / 7d“"‘/ ’ da — +C|. (3.3.13)
N0\ on, |7 — e[ Jo..NBy [T — e[t Ces

Now we observe that

Joce={z €R" : |z, < tanew }

and we define

JE =2 — J_..,

R.:=J ..NJ:,
JE = Joe \ Re
-1
and B, = erg*:xn>$1 )
log <]

see Figure [3:3]
The intuition behind this set decomposition is that, on the one hand, the set R. ac-

counts for the cancellations due to the symmetry of a; y (corresponding to the reflection
through e, namely = — 2e; — x); on the other hand, the remaining integral contributions
in JZ cancel exactly when a; » is constant, thanks to the reflection through the horizontal
hyperplane z — (2’, —x,), but they may provide additional terms when a; y is not con-
stant. To overcome this difficulty, our idea is to exploit the continuity of a; y together
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) — 1
|log | Ty =tanex)

Ty =tane (2 —xy) =
~

~
~

~N

Figure 3.3: The set decomposition involved in the proof of (3.3.9).

with the reflection through the horizontal hyperplane in order to “approximately cancel”
as many contributions as possible.

This idea by itself however does not exhaust the complexity of the problem, because
two adjacent points can end up being projected far away from each other on the sphere (for
instance, if a point is close to e; +tan e e, and the other to e; —tanee,). To overcome this
additional complication, we exploit the set B.: roughly speaking, points outside B remain
sufficiently close after they get projected on the sphere (and here we can take advantage of
the continuity of a1 ), while the points in B. provide an additional, but small, correction,
in view of the location of B, and of its measure.

The details of the quantitative computation needed to implement this combination of
ideas go as follows.

We stress that

if = belongs to R, then so does 2e; — x. (3.3.14)

Indeed, if z € R, thenz € J_. . and « € 2e; —J_. ¢, and consequently 2e; —x € 2e1 —J_ .

and 2e; —x € J_. ., which gives .

Also, we see that J_.oN R: = R. N {x, <0} and Jo. N R. = R. N {z, > 0}. Thus,
using , the change of variable x — 2e; — x and the symmetry of a; y, taking into
account that under this transformation some vectors end up outside the ball By,

% —>
a1,9(z — e1) a;g(x —eq)
1y — oq|nts1 dx = 1y — oq|nts1 dx
J_e,0NB2NR: |z — eq |51 R:N{zn,<0}NB> |z — eq|ntst

ayg(er — ) dz
= / e+ O [Py
R.n{zn>0}NB> ’61 - I’ ! R7\ B ’l‘ — 61’ 1
ay9(x —eq)
Jo.NBaNR. |T — €171
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Plugging this cancellation into (3.3.13)), we conclude that

_% %
=<t | | %W—el)dx_/ ao@—e) 1
T e\o (J=¢,0NB2)\Re |$ — €1|n+31 (Jo.cNB2)\R= |$ _ el|n+sl Cest

+c).

Using the change of variable z — (2/, —z;,) and noticing that |(2/, —x,) — e1| = |z — €],

we thus find that

- .
= < lim / ao((@, —tn) —er) —arg(r—er) , 1
— N0\ J(Jo,enBa)\Re |z — er[™ts Cest

- N

_ a1,9((', =) —e1) —a19(7 —e1) d L

= l1m — s xXr — Cest + .
e\0 J*NBa |.1? €1| 1S

We point out that
J: g {xl 2 1}.

Indeed, if = € JZ, then x € Jy ., whence

xn € (0,tanexy) .

(3.3.16)

(3.3.17)

Also, we have that ¢ R. and therefore either x ¢ J_. . or z ¢ Jg. In fact, since Jy. C
J_ce, we have that necessarily = ¢ Jg, and, as a result, 2e; —x ¢ J_... This gives

that |z,| > tane (2 — x1). Therefore, by (3.3.17)),

|z _ ZIn

2—.’,13'1§ =~ T,

tane tane

and this entails ([3.3.16|).

Now we claim that
B. C{z eR" : |z; — 1| < 2e|logel, |z, — tane| < 2s2|log5|}.

To check this, let © € B.. Then,

I‘lfl

<, <tanex; = tane (r; — 1) + tane.
| log ]

Recalling (|3.3.16f), we thus find that

1 1
—tane | |z — 1| = —tane | (z1 — 1) < tane.
|log ¢| |log ¢|

Consequently, if € is conveniently small,

9 11
10 |z1 — 1] < (1 —tane|logel) |z1 — 1] < tane |loge| < Eellogs\.
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Furthermore, by the second inequality in (3.3.20) and (3.3.21)),
11
x, —tane < tane (x; — 1) < tane|z; — 1| < 35 °¢ tane|loge| < 2¢? |loge|.  (3.3.22)

Moreover, from ([3.3.18)),

Ty > tane (2 —xy),

whence, utilizing again (3.3.21)),

11
tane — z, < tane + tane (1 — 2) < tane |z — 1| < o€ tane|loge| < 22 |loge|.

From this, (3.3.21)) and (3.3.22)) we obtain (3.3.19)), as desired.
Now, using (3.3.19) and the changes of variable y := - and z := <%, yn), we see
that

dx < dx
B. |x —eg|P st — {leg—1I<2e [logel} |z — e |?F51

{|&n—tane|<2e2 | loge|}

_ 1 dy
N (tans)sl {ly1|<2¢|loge|/tane} |y|n+51

{lyn—1|<2e2 | loge|/ tane}

2 dy

< = e
e Jlyn—1]<e [logel} [Y" (3.3.23)
2 dz

n—+s

es1 {|zn—1|<4e|loge|} ‘Zn’1+81(’2/‘2+1) 2
_ g 1+4e|loge| dzy,

1+s
g%l 1—4e|loge| <n !

< Cet~*1logel,

up to renaming the positive constant C' line after line.
We also recall that |(2/, —z,) — e1| = |z — e1] and accordingly

(3.3.24)

P —— r_ B . _ 9
e - el < M) —e) el o

|z — eq] oz —eq]

As a result, recalling (3.3.16]) and (3.3.17)), if = € JZ \ B: then

1‘1—1_ ’$1—1|
~ |loge|  |loge|

This and (3.3.24)) give that
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Consequently, if we consider the modulus of continuity of a; y, namely

o(t):== sup |ayy(v) —a1p(w)l,
v, wE€dBq
[v—w[<t

we deduce that if x € J! \ B: then

‘al,ﬁ(m) — aug(l’ — 61)‘ <o < 2 >

Tog |
and thus
ey N
a1 (@', —z,) —e1) —ar9(z —e1) 2 dx
dr <o | —— ——. (3.3.25)
JA\B. |z — eq|nts1 [logel ) Jynp. |2 —er|" =1
Notice also that
J; g ]Rn \ Be/loo(el). (3326)
Indeed, if z € JZ, from (3.3.18) we have that
|xn| = zp > tane(2 — ). (3.3.27)

Now, if z; > 13, then |z —e;| > |21 —1| > % and (3:3.26)) plainly follows; if instead 1 < 15
we deduce from (3.3.27)) that

tane

o1l  foal > 555,

from which (3.3.26)) follows in this case too.
By combining (3.3.25)) and (3.3.26)) we deduce that

N N
JE\Be |z — g1 [logel ) Jrn\B, 100 UM%

C 2
i [
g1 | log ¢

which together with ((3.3.23)) leads to

SR —
N _ —
/ a1,9((2', —2n) — €1) —a19(z — e1) de < Q o 2 + el |log €.
s |z — eg|nts1 es1 | log €|

Joining this information with (3.3.15]) we find that

C 2 1
E < lim|— 1751 loge| —
s lm [551 o <]log5|> + Ce *]loge| =T +C’]

1 2 1
= lim — |Co | —— ) +Ce|l O
t 55 |07 (g )+ Celtowel — g+ ="

< i 1
- EI\I‘I(I] 2Ces1

= —00
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This completes the proof of (3.3.9)). Now, using (3.3.9)),

lim Dy ()

IN\0

— lim / (@ —e(V)) 3)dgc_/ iz —e(¥)) 3)(1:3—/ a1z —e(d)) ﬁ)dw
Jy J9—_29,9 J,

N0\ Sy gy |2 = e(D)7F |z — e(d)| =1 ooy [T — @)1

. ( / e —e@) , / <——w5>d> .

INO\Ju, g 12— e(@)[H |z —e()[rF

which proves (3.3.4)), and

lim Dy(Y¥) = lim Dy(27m — «)
9 ,2m a0

. a@—e®) [ aG@-e0)
N i\‘o </‘]19,19+27r—a |z — e(J)[" T I /Jo,ﬁ |z — e(¥) |51 d )
[ mleci) ) 4o [ ) ) dx)
Jo J9—a,0

an [T —E(@)[MF |z —e()[F

|z — e()[F |z —e(D)[rF

which proves (3.3.5)). [

3.4 Nonlocal Young’s law

One of the pivotal steps of any capillarity theory is the determination of the contact angle
between the droplet and the container (in jargon, the Young’s law) that we are going to
treat in the present section.

We showcase below a first version of the nonlocal Young’s law corresponding to the
case §1 7 So.

Theorem 3.4.1. Let K1 € K?(n,s1, A, 0) and Ko € K?(n, 50, A\, 0). Suppose that K1, K

admit blow-up limits K}, K5 (according to (1.2.31))) that satisfy assumption (3.0.4)).
Let g € CY(R™). Let Q be an open bounded set with C'-boundary and E be a volume-
constrained critical set of C.

Let xy € Regy N0 and suppose that H and V' are open half-spaces such that
Q" -~ H  and  E™" - HNV in LL.(R") asr — 0T, (3.4.1)

Let also ¥ € [0, 7] be the angle between the half-spaces H and V, that is HN'V = Jyy in

the notation of (3.0.2)).
Then, the following statements hold true.

1) If s1 < s2 and o < 0 then 9 = 0.
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2) If s1 < s2 and o > 0 then ¥ = 7.
3) If

either s1 < s and o = 0, or s1 > $3, (3.4.2)
then ¥ € (0,m). Also, letting J e (0,27) be as in (3.3.6) with ¢ = 0, we have
that ¥ = m — . Moreover, for allv e HNOV,

K3

Hy (v (v) = e Ki(v—y)dy =0. (3.4.3)

Figure 3.4: The geometry involved in the asymptotics in (3.4.1]).

The asymptotics in are depicted in Figure As a particular case of Theo-
rem we single out the special situation in which the kernel K7 is isotropic. In this
setting, the cancellation condition in boils down to an explicit condition for the
contact angle, and we have:

Corollary 3.4.2. Under the same assumptions of Theorem|3.4.1], we additionally suppose
that a1 = const.
Then, the following statements hold true.

1) If s1 < sy and o < 0 then ¥ = 0.
2) If s1 < s2 and o > 0 then ¥ = 7.
3) If either s1 < s3 and o =0, or s1 > s3, then ¥ = 5

We exhibit below the nonlocal Young’s law in the case s; = so, which was left out of

Theorem B.4.11

Theorem 3.4.3. Let s € (0,1) and K1, Ko € K%(n, s, \, 0). Suppose that K1, Ko admit

blow-up limits K, K3 (according to (1.2.31)) that satisfy assumption (3.0.4)). Assume
that there exists eg € (0,1) such that

o] Ka(¢) < (1 —e0) K1(¢)  forall ¢ € B, \ {0} (3.4.4)
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Let g € CY(R™). Let Q be an open bounded set with C'-boundary and E be a volume-
constrained critical set of C.
Let xg € Regy N0 and suppose that H and V' are open half-spaces such that

Qror 5 g and E*" - HNV in L%OC(R”) asr — 0.

Let also ¥ € [0, 7] be the angle between the half-spaces H and V, that is HN'V = Jyy in

the notation of (3.0.2)), and let vg(xo) = vy (0).
Then, we have that ¥ € (0,7) and, for allv € HNOV,

Hg(l;m\/) (v) — . Ki(v—2z)dz+o . K5(v—2z)dz=0. (3.4.5)

Even in the very special situation in which K;(¢) = K2(¢) = \C|++S’ Theorem here

can be seen as a strengthening of Theorem 1.4 in [60] (and, in particular, of formula (1.24)

there): indeed, the result here establishes explicitly the nondegeneracy of the contact
angle ¥ by proving that 9 € (0, 7).

We point out that the case 0 = 0 makes indistinguishable the setting s; = so from

that of s; # so: consistently with this, we observe that the contact angle prescription

when s; = sg, as given in (3.4.5)), reduces to (3.4.3) when additionally o = 0.

Also, we remark that when ¢ = 0 condition is automatically satisfied. Fur-
thermore, when K7 = K5, condition reduces to o € (—1,1), which is precisely the
assumption taken in [60].

We now reformulate the condition of contact angle according to the following result:

Proposition 3.4.4. Let K{ and K; be as in (3.0.4). Let 0 € R. Assume that
either s1 = sg, or o = 0. (3.4.6)

Let H and V' be open half-spaces and let ¥ € (O,W)Abe the angle between H and V', that
is HOV = Jy g in the notation of (3.0.2). Let also 9 € (0,27) be as in (3.3.6)) with ¢ :=0
Suppose that there exists v € H N OV such that

K* N .
Ha(lev) (v) — - Ki(v—2z)dz+o - K5(v—2z)dz=0. (3.4.7)

Then, we have that ¥ and o satisfy the relation

—_— — —
ar(e(¥) — x) / ar(e(¥) — x) / az(e(V) — x)
———————dx — ———————dr +o —— 2 dr =0. (3.4.8)
/Jﬁ le(9) — x| Jop 1€(0) — x| e |e(9) — z[r+e

In order to prove Theorems [3.4.1] and [3.4.3] Corollary and Proposition (3.4.4
we first recall an ancillary result on the continuity of the nonlocal K-mean curvature
defined in (for the usual fractional mean curvature, that is when the kernel K is
as in ([1.2.28)), similar continuity results were presented in [17, 45]).

From now on, we denote points x € R as x = (2/,7,,) € R"! x R and we set

C:={z= (2 2,) eR": |2/| < 1,|z,] < 1}
and D:={zcR":|z] <1}

S\
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Lemma 3.4.5. Let A > 1, s € (0,1) and a € (s,1). Let {Fj}ren be a sequence of Borel
sets in R™ such that 0 € 0F}, and

Fy, — F in L} (R™) for some F C R".
and uy, u € CH*(R"™1) be such that
CNF,={re€C:x, <u(z))}

and

1. - @ == U.
kJToo”uk ul|crapy =0

Let Ky, K € K(n, s, \,0) be such that K, — K pointwise in R™ \ {0} as k — +o0.
Then
lim HAi: (0) = HEL(0).
i Hpp (0) = Hpp(0)

For the proof of Lemma here, see Lemma 4.1 in [60].

We will also need a technical lemma to distinguish between the nondegenerate case 9 €
(0,7) and the particular cases in which ¥ € {0, 7}.

Lemma 3.4.6. Let K; € K?(n,s1,),0) be such that it admits a blow-up limit K (ac-
cording to ) Let Q be an open bounded set with C'-boundary and E be a volume-
constrained critical set of C.

Let xg € Regp N 0N, xx € Regp N Q such that xi, — xo as k — +oo and 1 > 0 such
that r, — 0 as k — +o00.

Suppose that H and V' are open half-spaces such that

Qs » H  and  E*™™ - HNOV in LL_(R") as k — +oo0. (3.4.9)

Set vy, = and suppose that there exists v € HNOV such that vy, — v as k — +o0.
Let ¢ € [0, 7] be the angle between the half-spaces H and V', that is HNV = Jyy in

the notation of (3.0.2)).
Then,

i) if 9 =0 then

Lk—%0
T

lim rzl [Hgé(xk) — Ki(xg —y) dy} = +o0;
Qc

k——+o0
it) if 9 = 7 then
li S1 HKl _ K — d = —00:

iii) if ¥ € (0,m) then

. s K7 *
lim rp' [Hé%(mk) - Ki(xg —y) d,y} = Ha(lev) (v) — Ki(v—y)dy € R.
k—+o0 QOc He
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Proof. We start by proving i). For this, we notice that

[1]
=
|

o [ - [ i)

= 7“21 [ Kl(xky)dy/ Kl(xky)dy]
EcNQ E
= T’Z‘i‘sl [/ Kl(.’ﬂk —l’o—?”kZ) dz—/ Kl(l’k—l’o—’rkz) dZ]
(Ezo,r‘k)chzO,'rk EIO7Tk

E TZ+31 [/ Kl (Tk(vk — Z)) dz — / Kl (Tk('l)k — Z)) dZ] R
(E®0:7k)eNQT0:Tk E*0"k

where the change of variable z = % has been used.
Now we point out that

TZ+81 / K, (Tk(vk — z)) dz < )\/ an <C,
R\ By 5 (vg,) R™\B, 5(0) |V — 2|

thanks to ([1.2.29)), for some positive constant C', depending only on n, s; and A.
From these observations we conclude that

n+s1

Ep >y, K; (rk(vk — z)) dz

IKEWWMWme%mBUwa

—/ K; (rk(vk — z)) dz
E*0:"kNBy j2(vk)

Now we notice that E*0"* N By /5(vy,) can be written as a portion of space included between
the graphs of the functions describing 9™ and JE%0"k that we denote respectively
by ¢ and ug. More precisely, recalling that xg € Regy N OS2, in the vicinity of xg we
can describe 0f) and OF by the graphs of two functions ¢ and u, respectively, with 1 of
class C! and u of class C1* with a € (s1,1), and 9 (z}) = u(zh) = zo,n. Up to a rotation,
we also assume that Vi (zf) = 0. In this way,

(3.4.10)
~C.

Y(zg+ 1)) —Tom o W@g:“%+”w_ﬂm. (3.4.11)

Tk Tk

U(a') =
Moreover,
BTN By ja(vg) = {95 € Byja(vg) : n € (T/Jk(ﬂfl)auk(xl))}

and notice that, since ' C Q, it follows that ¢ < u and so ¥, < ug. As a result,

{x € Bija(vg) = wn > up(a’)} C (E™7%)° N QT N By jo(vg).
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Hence, from ([3.4.10)) we obtain that

i > T‘Z+Sl / Ky (rk(vk - z)) dz
By ja(vi)N{zn>uk(z')}

(3.4.12)
—/ K1 (ri(vy — 2)) dz| — C.

Bz (vi){zn€(r(2') ur(z))}

We now define
k() = up(vg) + Vu(vg) - (2" = vp)

and we point out that, if |2/ — v} | < 3,
N ry N Iy ’
o)) ~Tage!) = [ ) ) (o = o)

_ u(z), + re(z ;vk)) —u(zy) Vaal) - (& — o)

1
= / Vu(z), + tri(a’ — vy,)) - (2 — vp,) dt — Vu(zy,) - (2" — v},)
0

IN

lullera sy @y 7 2" — ol

for a suitable p > 0. As a consequence,

TZ+51 K (rk(vk — z)) dz

/({xn>uk(m/)}A{xn>1~Lk(I’)})mBl/2(vk)
dz

= A / Tor — glner
({&n>ur (@)} A{@n > T (@) OBy o (vg) |Vk — 2"

< Mullere s, o ﬁ/ W=zl
(B, (zp)) B 04) |U;€ — 2|t

o = ]+

<Cry,

up to renaming C, possibly in dependence of u as well.
Plugging this information into (3.4.12)), and possibly renaming C' again, we obtain that

Ep >t [/ K1 (rg(vg — 2)) dz
By 2 (v ) {on >k (2') } (3.4.13)

—/ Kl(rk(vk—z)) dz| — C.
By jo(vi) M {zn € (vr (2),ax (2)) }

Now, from ([3.4.11]) we see that (') — Vi(zg) - 2" and ug(2') — Vu(xy) -2’ as k — 4o0.
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Hence, if ¥ = 0 it follows that Vi (z() = Vu(z(). Consequently, if 2’ € Bi/Z(U;{:) then

|k (2") — Pr(2)]

= |ug(vy,) + Vug(vg) - (2’ — o) — P(xgy + rpa’) — ()

Tk

I A ! !
_ | ulag ?”k:’;:) u(zg) + Vau(z) + revl) - (2 — ) — / Vi (zp + tria’) - o' dt
0

1 1
= / Vu(zf + trgvg) - v), dt + Vu(xg + rgoy) - (27 — o)) — / Vi(zh + trga’) - o’ dt‘
0 0

1 1
< / Vu(zg) - v dt + Vu(zg) - (2 — o) — / Vip(zg) - ' dt‘ + 0
0 0

= O,

(3.4.14)
for a suitable d; such that 6 — 0 as k — +oc.
This and (3.4.13)) give that
B > TZJFSI [/ K (rk(vk - z)) dz
B vg )N {zn >0 (2!
1/2( &) {xn >ug (z')} (3'4.15)

—/ Ki(ri(vg — 2)) dz| — C.
By 2 (ve) N {zn € (g (') =0k ur (z')) }

Now we define the map Y (z) := 2v;, — z and we show that
Y(B1/z(vk) N{zn € (un(z') - 5k7?7k($'))}) C Byja(vr) N {zn € (Un(a"), up(2) + o) }-
(3.4.16)

Indeed, let z € Byjo(vx) N {z, € (up(z’) — o, ux(2’))} and call y := Y(z). We have
that |y — vk| = |ux — 2| < 1/2. Moreover,

Yn —u(y) = 20k — 20 — Wk (20 — 2')
= 2uk(vg) — 20 — Uk (20}, — 2)

€ (2uk(v;€) — (2") — (20}, — ), 2up(vy,) — Uk(2') — (20, — 2) + 5k)
= (2un(v}) — 20 (v}, 2un(vf) - 20 () + 1)
= (0, &)

and the proof of (3.4.16|) is thus complete.
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Using (3.4.16]) and changing variable y = Y (z) we see that

/ Ky (rp(vg — 2)) dz
By a2 (vi)N{zn € (g (z') —dk k(') }

IN

/ Ky (re(y — vg)) dy
By 2 (vie) {zn € (g (2), g () +0x) }

/ Ky (re(ve — ) dy.
Bi 2 (vie) {zn € (g (2), g (2 ) +0x) }

Combining this and (3.4.15)), and recalling (|1.2.29)), we arrive at

Ek > rZJrsl / K1 (rk(vk — z)) dz — C
By 2 (vi) {@n >k (2)+05 }

dz

1
"X / e 2 C
)\ Bl/g(vk)m{l'n>ak(x/)+5k} |ka _ Z| 1

Now we define

/
— 1
yk — ( VUk(Uk)7 ) and Ck; = Uk; + 3(Sk;yk;

V14 [Vug(v)?

and we claim that, if &k is sufficiently large,

B, (Cr) € Byja(vr) N {zn > g (2') + 0p}-

To check this, we observe that

lim [Vue(e})| = lim _|Vu(oh)| = [Vu(eh)| = [V(ap)| =0

k—+o00
and consequently

lim 3
k—+oo /1 + \Vuk(v;)]

= = 4[Vug(vp)| -2 = 1.

Now, pick w € Bs, (Cr). We have that
[w —v] < [w = Gl + |G — vkl < Ok + 30 = 46y,

and thus w € By /(vi) as long as k is large enough.
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Moreover,

wy — Up(w') =0 > (Cron — Ok) — ur(vy,) — Vug(vy) (w' — vy,) — o,

30y, / / /
= n+ -0, | —vpmn —V — -9
(vk’ 1+ [Vug(v)|? k) o ) (= o) = O
3616 / / /
= — Vug(v)(w' —v) — 26
L+ [Vup (o)) 2 (k) (0 = vi) =20
30k

T+ [Vur(op)? Vel et =l =28
k

3
> — 4| Vug(vy,)| — 2] 6
- ( 1+ [Vug(v},)? Vo) ) )

> 0,

thanks to (3.4.20)).
The proof of (3.4.19)) is thereby complete.
Thus, exploiting (3.4.17)) and (3.4.19)), we find that

Ek>/ 4 e

~ JBs, (G |vg — 2|7

Notice also that if z € Bj, (k) then |vgy — 2| < |vg — G| + |Ck — 2] < 30k + 0 = 49, and
accordingly

dz c
By, (¢) (40)7F1 o'

for some ¢ > 0. This establishes the claim in i), as desired.

The claim in ii) can be proved similarly.

As for the claim in iii), we suppose that ¢ € (0,7) and, for every k € N, we denote
by F} the set obtained by a suitable rigid motion of the set E*0:"t — v so as to have that
0 € 0F}, and

CNnF,={zeC:a, <u(a)}, (3.4.21)

for some u € CY*(R™1). Let also u be the linear function such that uj — u in C%(D)
as k — 4+o00. We notice that, by (3.4.9)), up to a rigid motion,

F, - F:=HNV —v inLL (R") as k — +oo. (3.4.22)

Furthermore, recalling the definition of mean curvature in (3.2.1) and exploiting the
change of variable y = xg + rz, we see that

HY (21) = | Ki(zr — ) (xee(y) — x5(y)) dy
e (3.4.23)

=7 / P Ky (e — 0 — 1i2) (X(mroriye (2) — X ook (2)) dz.
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We also introduce, for every ¢ € R™ \ {0}, the kernel
K1(Q) := rp P Ky (ri(),
and we observe that, in light of (3.4.23)),
A (ok) = g " H s (0). (3.4.24)

Furthermore, we recall that K;j; — K pointwise in R" \ {0}, hence one can infer
from (3.4.21)), (3.4.22), (3.4.24) and Lemma that

lim i HAS (2) = Hply ) (0). (3.4.25)

Moreover, since ¢ € (0,7), one can use the Lebesgue’s Dominated Convergence Theo-
rem and find that

lim 7' | Ki(zg —y)dy = li ARty ¢ —y))d
T 1z —y)dy R (WOM)C% 1(ri(vr —y)) dy
= [ Ki(v—y)dy.
HC
From this and (3.4.25)) we obtain the desired result in iii). O

Now we showcase a refinement of Lemma [3.4.6] which will be needed to exclude the
degenerate blow-up limits ¢ € {0, 7} in the case s; > s2.

Lemma 3.4.7. Let 51 > s2, K1 € K2(n,51, )\, 0) and Ky € K?(n,s2, )\, 0). Let Q be an
open bounded set with C*-boundary and E be a volume-constrained critical set of C.

Let xg € Regp N 0N, xi € Regp N Q such that xi, — xo as k — +oo and 1 > 0 such
that r, — 0 as k — +o00.

Suppose that H and V' are open half-spaces such that

Q"™ H  and  E*™" - HNV in L (R") as k — +oc.

Let ¢ € [0, 7] be the angle between the half-spaces H and V', that is HNV = Jyy in the

notation of (3.0.2)).
Then,

i) if ¥ =0 then
lim 7}! {Hé%(xk) — / Ki(zr —y) dy} +orp T2 Ko(zy, — y) dy = +00;
k)*}+00 Qc Qe

ii) if 9 = 7 then

klim ! {Hgé(wk) - / Ki(zr —v) dy} +ory T2 Ky(wp —y) dy = —oo.
—+o00 Qc Qe
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Proof. We focus on the proof of i), since the proof of ii) is similar, up to sign changes.

To this end, we exploit the notation introduced in Lemma and specifically (3.4.13)),
and we set vy, 1= %, to see that

Ty =t [Hg%(xk) - /Q Ki(zy, — y) dy] For | Kalze—y)dy

>y — o] o0 g / Koy —y) dy
Qc

> r2+81 [/ K (Tk(vk — z)) dz
B 2 (ve)N{zn>ug (2')}

_/ Ky (ri(vi — 2)) dz]
By ja(vi)N{zn€ (i (2’),uk(2’))}

(3.4.26)
—lo|rpt ™ TZ+82 / K> (rk(vk — z)) dz — C
R\Q0:"k
> TZ+81 [/ K, (rk(vk — z)) dz
By 2 (ve )N {zn>ug (z')}
_/ Kl (Tk(vk — Z)) dZ]
By 2 (ve)N{zn€(r (@), ur(z')) }
—lo|rpt ™ T‘Z+S2/ Kg(rk(vk —z)) dz — C,
By o (vi)N{zn<tpp (')}
up to changing C' > 0 from line to line.
Also, by ,
/ KQ(rk(Uk — Z)) dz :/ KQ(Tk(’Uk — Z)) dz
By ja(vi)N{zn<top(a’)} By o (i) {n € (Ug (2) 0k r (2')) }

+ / KQ(T'k(’Uk — z)) dz.
B 3 (ve) N {zn <ug(z')—0k }

Therefore, we can write (3.4.26]) as

Ty > TZ+51 [/ K (rk(vk — Z)) dz
By 2 (ve) {zn >tk (z')}

—/ Kl(rk(vk—z)) dz
By jo(vi){zn € (vr (2),ax (2)) }
_ |U| 7,21—52 ,,,.Z'f‘sz

/ K, (rk(vk — z)) dz

By 2 (ve) N {an € (Uk (2) =0,k (z)) }

—lo|rpt TZ—"SQ / K, (Tk(vk — z)) dz — C.
Bl/g(vk)ﬁ{rn<ik(m’)—5k}

(3.4.27)
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Now we set

Z(z) := max {rg+81 Ky(2), |o|riis prte Kg(a:)}. (3.4.28)
In this way, we deduce from (3.4.27)) that
T, > T’Z+Sl / K (rk(vk — z)) dz
By 2 (ve) {zn >tk (z')}

— / Zi(re(vp — 2)) dz (3.4.29)
By o (v )N {zn € (g (') =0k, U (z')) }

o |G‘ ,),,ZI_SQ TZ+82

/ Kg(rk(vk fz)) dz —C.
Bl/Q(Uk)ﬂ{$n<ﬁk(CE,)—5k}

Let Y (z) := 2v, — z. We also use the short notation

Pr. := Byya(vg) N {zn > g(2")},
Q== Bya(vk) N {zy € (Un(2’) — ok, up(a"))}
and Ry := Bl/Q(’Uk) N {Jin < 'ﬁk(x’) — 5k}

We know from (|3.4.16|) that

Y(Qr) C Bl/z(vk) N{x, € (ak(l‘/),ﬂk(iﬂl) +0)} C Py (3.4.30)
We also claim that

Y(Ri) CPr\Y(Qk). (3.4.31)
Indeed, if there were a point y € Y (Qx)NY (Ry) we would have that y = 2v,—Q = 2vy— R
for some Q € Q. and R € Ry, but this would entail that Q = R € Q,NR; = &, which is a
contradiction. This shows that Y (Ry) lies in the complement of Y (Qy), thus, to complete
the proof of (3.4.31)), it only remains to show that Y (Ry) C Pg. To this end, we observe
that if z, < ux(2") — 0 and y = Y'(z), then
Yn — U(Y') = 20k, — 20 — U (y') = 20k (v},) — 2 — Uk(20), — 2')
> 222;.3(1;;6) — ’ljk(zl) + 0 — Hk(2v,'€ — Z/) =0, > 0.

This completes the proof of (3.4.31)).
Hence, by (3.4.29)), (3.4.30)) and (3.4.31]),

T, > r?“l /P Ky (rk(vk - z)) dz — /Q Zk(rk(vk - z)) dz
k

k

—lo|rpt ™ TZ+82 / Ky (rk(vk — z)) dz —C
Ry

e /P (o= ) - [zt -w)dy

Y (Qk)
—lo|rpt ™ 7“2“2 / Kg(rk(vk — y)) dy — C
Y (Rx)

= TZHI K, (rk(vk - z)) dz + /
Y(Qk)

aw@)det [ Az dz-C.

/7’k\(Y(Qk)UY(Rk)) Y(Ry)
(3.4.32)
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where

ap(z) =1 K (re(ve — 2)) — Zk(re(ox — 2))
and Br(z) == rZ“l K (rk(vk — z)) —|o|rpt ™ 7“2“2 Ky (rk(vk — z))
We stress that up to now the condition s; > s has not been used. We are going to exploit

it now to bound «y, and fj. For this, we note that, if z € By /p(vy) and k is large enough,
then

Ao|rpt—*2 AMo|rpt=™ B AMo|rpt—™ T‘Z+81

)‘n+s1

S§1—S82 TL+SQK _ < —
oA i Kol = 2)) € T S =2 oaop =2

1
< \? o[t 2 TZJ“sl K (rk(vk — z)) < 5 TZJ“sl K (rk(vk — z))

This and (3.4.28) entail that if z € By /5(vx) and k is large enough, then Zj (rk(vk — z)) =
it Ky (1 (vg — 2)), and therefore ag(z) = 0. In addition,
1 n-s
Br(z) > 5 rk+ VK, (rk(vk — z))

From these observations and (3.4.32|) we arrive at

Tk > TZ+51/
Pr\(Y (Qr)UY (Ri))

1
> 5 rpte / Ki(ri(vg — 2)) dz — C.
Pr\Y (Qx)
(3.4.33)

Now we utilize the notation in (3.4.18]), the inclusion in (3.4.19)) and the first inclusion
in (3.4.30) to see that

P\ Y(Qu) 2P\ (Byja(w) N {wa € (@n(a'), () +61)} )
= By jo(vi) N {zy > g (2') + 6} (3.4.34)
2 Bs, (Ck)-

By plugging this information into (3.4.33|), we thereby conclude that
1
Tk ZTZ+SI/ K1(7“k(vk—z)) dz—C
2 Bs,, (Ck)

>1/' =g (3.4.35)

~2 By, (Ck) o — 2"+
c
=5 C,
for some ¢ > 0. From this, the desired result in i) plainly follows. O
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With this, we are in the position of providing the proof of Theorem [3.4.1] where we
suppose that a1 and ag are anisotropic functions and then, as a special case, we exhibit
the proof of Corollary where we take a; = const.

Proof of Theorem[3.7.1. We fix a point xy € 9Q N Regp and a sequence of points xj €
Q N Regp such that zy — z¢ as k — +00. We also set r; := |xp — 29| and we observe
that r, — 0 as £k — +o0.

From (3.2.3) evaluated at xj, we get
H/ L (2x) — A Ki(zp —y)dy +o A Ks(zp —y) dy + g(zr) = ¢,
where ¢ does not depend on k. Multiplying both sides by r;!, we thereby obtain that

! Hgé(xk) — ! Ki(zp—y)dy+ory 22 | Ky(xp —y)dy + 1y glag) = crgl.
Qe Qe

Notice that, since g is locally bounded, we have that r;'g(zz) — 0 as k — 400. As a
consequence,

k—+o0

lim 7}! {Hgé(xk) - / Ky(z, —v) dy} +ort T2 / Ky(zg —y)dy =0. (3.4.36)
Qe Qe

Now, we prove the statement in 1) of Theorem For this, we suppose that s; < s9
and o < 0. In this case,

or 72 r2 [ Ko(z, —y)dy <0,
Qc

and therefore by ii) in Lemma [3.4.6] and (3.4.36)) we deduce that ¢ # 7. Hence, to prove
1) it remains to check that

9 ¢ (0,7). (3.4.37)

To this end, we suppose by contradiction that ¢ € (0, 7). Then, by the Lebesgue’s Domi-
nated Convergence Theorem,

lim 72 | Ks(xp —y)dy = lim 2 Ko (rp (v — ) d
I 2T — Yy)ay k 2\Tx\Vg — Y))ay
k—+ c k—+ 0,7 \c
e e o) (3.4.38)
= | Ky(v-y)dy
Hece
and this limit is finite. Consequently,
li SIS 02 K. —y)dy = —o0.
k_1)r_|1r1000rk T e 2(zp —y)dy 0

This and iii) in Lemma contradict (3.4.36)), and thus (3.4.37)) is proved.

Accordingly, if s1 < s and ¢ < 0, then necessarily ¥ = 0, which establishes 1).

148



We now prove the statement in 2). Namely we consider the case in which s; < s9
and ¢ > 0, and thus
oty Ky(zp —y)dy > 0.
Qc
From this, i) in Lemma [3.4.6| and (3.4.36)) we infer that 9 # 0. Hence, to establish 2) we
show that

9 ¢ (0,7). (3.4.39)

We argue as before and we suppose by contradiction that ¢ € (0,7). Then, exploit-

ing (3.4.38]) we see that

lim o7t %22 Ko(zp —y) dy = +o0.
k—+o0 k k Qc 2( k y) Y

This and iii) in Lemma contradict (3.4.36)), and thus (3.4.39)) is proved.

As a consequence, if s; < sg and o > 0, then ¥ = 7, hence we have established 2) as
well. Hence, we now focus on the statement in 3).

For this, we first suppose that s; < s9 and ¢ = 0. Then, (3.4.36]) becomes

. K
kginoo et [Haé(xk) - /QC Ki(zg —y) dy} =0. (3.4.40)
This and Lemma give that ¥ € (0, 7) in this case.

In the case in which s1 > s, if ¥ € {0, 7} then we would use Lemma to find a
contradiction with (3.4.36]), hence we conclude that necessarily ¥ € (0,7) in this case as
well.

Now, in order to prove (3.4.3), we take v € H N OV, then by (3.4.1) we have that,
for every k, there exists vy € Q%" N JE*0"* such that vy — v as k — 400, where ry, is
an infinitesimal sequence as k — +o00. As a consequence, for every k, there exists xj €
Regp N such that v, = @ and x — xg as k — +oo. Then, we are in the position to

k
apply iii) in Lemma and conclude that

o K; \
lim 7! [Hé%(xk) — | Ki(zy—vy) dy] = Hylyoy(0) = | Ki(v—y)dy. (3.4.41)
k*)+OO Qc He

Also, if s1 > s9, we recall that the limit in (3.4.38)) is finite (since ¥ € (0,7)) and
that rj is infinitesimal to infer that
k—+o0

lim 7'7 %% [ Ko(xp —y)dy =0.
Qc

This, together with (3.4.36)), gives that (3.4.40|) holds true in this case as well.
Accordingly, from (3.4.40) and (3.4.41)) we deduce that

K} .
H ey (0) — e Ki(v—y)dy =0,
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which establishes (|3.4.3]). N

Hence, to complete the proof of the statement in 3), it remains to check that ¥ = 7 —1,
being ¢ € (0, 27) the angle given in with ¢ = 0.

For this, we exploit the notation in , the assumption in and the change
of variable z = y/|v]|, to see that, for all v € H N9V, the left hand side of can be

written as

K*
H vy (0) / Ki(v—y)dy = - K3 (v —y) (X(arvyenm (¥) — xanv () dy

a1(v—y)
(0 =4
= /Rn = y|”+31 (X(rrvyen () — xanv (y)) dy

dz

_ ‘U|_51 /n )(XJCMWH XJO,ﬁ(Z))

L
IR IR
= [ D) gy [ @l )
- _ o|n+s1 9) — z|nts1
Ty |€(0) = 2] Jo,o e(9) = 2|
Therefore, by (3.4.3)),
/ a(e(®) —2) / ale()—2) (3.4.42)
Jﬁ J0,19 ’

- le(0) = 2|t e(V) — z[rr=

Consequently, recalling the notation in (3.3.1]) and exploting (3.3.6) with ¢ = 0, we have
that

—_— _—
Dﬁ(ﬂ_ﬁ):/J al(e(ﬁ)—z)dz_/J Wdz:O:Dg(A).

- le(@) = z|nt e(9) — 2|t

By the uniqueness claim in Proposition we conclude that m — ¥ = 5, as desired.
This completes the proof of 3), and in turn of Theorem O

proof of Corollary[3.4.9 We point out that 1) and 2) in Corollary follow from 1)
and 2) in Theorem respectively.
To prove 3) of Corollary we first notice that ¥ € (0,7) in these cases. Also,

if a; = const, then the cancellation property in (3.3.6) boils down to Dy(d¥) = 0, and
therefore, by the uniqueness claim in Proposition we obtain that ¥ = 9.

Furthermore, we recall that (3.4.3)) holds true in this case, thanks to 3) of Theo-
rem and therefore, using the equivalent formulation of (3.4.3)) given in (3.4.42)

(with a; = const in this case), we find that

D al a1
o ( ) Jon l€(0) = 2[5 oy 109) = 2751 9 ()

Hence, using again the uniqueness claim in Proposition [3.3.1| we conclude that m — 9 = 9,
which gives that ¥ = %, as desired. O
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We now deal with the case s; = s9, as given by Theorem [3.4.3] For this, we need a
variation of Lemma that takes into account the situation in which s; = ss.

Lemma 3.4.8. Let s € (0,1) and K1, Ky € K%(n,s, )\, 0). Assume that there exists o €
(0,1) such that

o] K2(C) < (1 —e0) K1(C)  for all ¢ € B, \ {0} (3.4.43)

Let Q be an open bounded set with C'-boundary and E be a volume-constrained critical
set of C.

Let g € Regp N O, i € Regy NQ such that xp, — xg as k — +oo and ri, > 0 such
that r, — 0 as k — 4o00.

Suppose that H and V' are open half-spaces such that

Qo — H and E®™  HNV in L. (R™) as k — +oo0.

Let ¥ € [0, 7] be the angle between the half-spaces H and V, that is HNV = Jyy in the

notation of (3.0.2]).
Then,

i) if 9 =0 then

k——+o0

lim 7 [Hgé(wk) — | Ki(zp—y)dy+o | Koz, —vy) dy] = 400;
Qc

Qc

ii) if 9 = 7 then

lim 7} [Hgé(:nk) — / Ki(xg—y)dy+o
Qc

k—4o00

Ky(zp —y) dy] = —o0.
Qc

Proof. We establish i), being the proof of ii) analogous. For this, we use the notation
introduced in the proof of Lemma and specifically we recall formula , to be
used here with s; = s9 = s. In this case, we use to see that, if k is large enough,
for all z € By /5(vx) we have that

|lo| Ko (ri(ve — 2)) < (1 —e0) K1 (ri(v — 2)). (3.4.44)
This and give that
Z; (rk(vk - z)) = TZ+S max {Kl (rk(vk - z)), lo| Ko (rk(vk — z))}

= T‘Z+SK1 (rk(vk - z)),

which entails that ax(z) = 0.
Also, using again ([3.4.44]), it follows that

Bi(z) = rivts (m (re(ve — 2)) — |o| Ko (ri(vp — z))) > £ K (r(vg — 2)).
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In light of these observations, (3.4.32) in this framework reduces to

Y. > e 7"2“/ K (rk(vk - z)) dz—C.
Pr\Y (Qk)
We have thus recovered the last inequality in (3.4.33)), with 1/2 replaced by the constant .
Then it suffices to proceed as in ([3.4.34]) and ({3.4.35)) to complete the proof. O

With this additional result, we are now in the position of giving the proof of Theo-

rem 3. 4.3

Proof of Theorem[3.7.3. We fix a point xy € 9Q N Regp and a sequence of points xj €
Q N Regp such that zy — z¢ as k — +00. We also set r; := |xp — 29| and we observe
that r, — 0 as k — +o0.

From (3.2.3) evaluated at xj, we get
HY(2r) — | Ki(zr—y)dy+o | Koz —y)dy + g(zp) = c,
Qe Qe
where ¢ does not depend on k. Thus, multiplying both sides by r}, we find that

ri Hy b (k) — 7 o Ki(vg —y)dy + oy . Ko(zp —y) dy + 1} g(zg) = ey

Since g is locally bounded, we have that r{g(xz;) — 0 as k — +o0, and therefore

kEI-P T} [Hg%(xk) - / Ki(zp —y)dy+o | Koz —vy) dy] =0. (3.4.45)
9] Qe

QC
In light of Lemma [3.4.8] (which can be exploited here thanks to assumption (3.4.4)), this
gives that the angle ¥ between H and V lies in (0, 7).

Thus, in order to prove , we can take v € H N0V and we see that, for every k,
there exists v, € Q%" NJE*0"k such that v, — v as k — +00, where g, is an infinitesimal
sequence as k — +00. As a consequence, for every k, there exists z € Regp N Q2 such
that vy = % and xp — xg as k — +o00. Then, we are in the position to apply iii) in
Lemma [3.4.6] and conclude that

. K KT *
i g [0 - [ K- dy] =By 0 - [ Kio- )y
Also, by Lebesgue’s Dominated Convergence Theorem,
lim 7 [ Ka(zp —y)dy = li PHK —y))d
JHm i) oo —y)dy = T — 2(re(ve — ) dy
= [ K(v-y)dy
HC
and this limit is finite.
These considerations and ((3.4.45)) give the desired result in (3.4.5)). O
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We are now in the position of proving Proposition

Proof of Proposition[3.4.4, We exploit the notatlon in , the assumption in
and the change of Varlable z = y/|v]|, to see that ( can be written as

0= H HmV / Ki(v—y dy+a/ K5(v—vy)dy
= Ky (v —y) (x(anvyenm (W) — xanv (y)) dy + o i K3(v—y)dy
a1(v —9) az(v — )
1 - 2 _
= Y . - d 2V
/Rn |U _ |n+sl (X(HOV) ﬁH(y) XHQV(y)) y+0/]{c "U _y|n+82 Yy
—>
_\U’_Sl/ )(XJgﬂﬂH ~ X, (2)) s+ ]v[‘”/ as(e(V) — z) i
B . [e(9) — 2t 7 e Je(9) — 2]t
- a(e(@)—=2) g ai(e(d) — 2)
= |v] T P dz — |v|™ T P dz
g l€(0) — 2[nts Jo.g l€(F) — 2|7

(@) 4)
s az(e(9) —z)
Tl ‘/cam—dmw :

Hence, recalling the assumption in (3.4.6|), this gives the desired result in (3.4.8)). O

3.5 Possible stickiness or detachment of nonlocal droplets

In this section we investigate the possibly degenerate cases in which the nonlocal droplets
either detach from the container or adhere completely to its surfaces. These cases depend
on the strong attraction or repulsion of the second kernel and are described in the examples

provided in Theorems [3.5.1] and [3.5.2]

Theorem 3.5.1. Let 0 > 0, Q:= By, g :=0, K1(§) := Iélf‘l”l and Ko(§) := |§|n+62, for
some ki, ko > 0.

Let E be a volume-constrained minimizer of C. Assume that there exist p € 0By
and g9 > 0 such that B (p) N By C E. Assume also that Regp N # &.

Then, either s1 > sg, or s1 = So and ki1 > oks.

Theorem 3.5.2. Let 0 < 0, Q := By, g := 0, K{(£) := |g|5fiS1 and Ko(€) := |§|§+52, for

some ki, ko > 0.

Let E be a volume-constrained minimizer of C. Assume that there exist p € 0B
and g9 > 0 such that Be,(p) N By C (2\ E). Assume also that Regp N Q # @.

Then, either s1 > sg, or s1 = S9 and —k1 < oko.

In order to prove Theorems and[3.5.2] we need some auxiliary integral estimates to
detect the interaction between “thin sets”. This is formalized in Lemmata 3.5.3] and B.5.4]
here below.
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Lemma 3.5.3. Letr, t >0, s € (0,1) and

D:={z=(a/,2,) eR" : |2'| <7 and z,, € (0,1)}.

dx dy — o, gLyl
Dx{yn<0} |z — y[nts 7 7

for a suitable ¢, > 0, depending only on n and s.

Then,

Proof. We recall that the surface area of the (n — 1)-dimensional unit sphere is equal
71'%

to %, where I' is the Gamma Function. Furthermore,
2

ey ()

[ vemyres
o = .

Hence, we use the substitution & := % to see that

// dx dy
Dx{yn<0} |z — y|nts

t 0
[ [ ——
0 {|a’|<r} —oo | JRR-1 (mn _ yn)1+8(’€|2 4 1)T

n—1

) t 0 +o00 En—? dl
= anl / / / / = | dYn dz'| dx,
L") Jo | Jywi<ry |- | o (zn —yn)1 (2 +1) 2

51 (LlEs t 0
S T =
F( 2 ) 0 {]z’|<r} L/ —o0 (:En - yn) s
2n—1 Q t 0
= —(f) pnl / |:/ dynl] dxy,
(n25 0 —00 (mn - yn) +s

as desired. ]

Lemma 3.5.4. Letr, t >0, s € (0,1),

D:={z=(a,2,) €R" : |2'| <7 and z, € (0,1)}
and F:={z=(,2,) €R" : [2/| > 7 and z, € (0,¢)}.
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Then,

dx d
[ o
pxr |z —y|nts |"s

for some C > 0 depending only on n and s.

Proof. Differently from the proof of Lemma [3.5.3] here it is convenient to exploit the
substitutions « := = e and B = In this way we see that

// _dzdy
DxF |CU — y|nts
t/|z' =y t/|z' =y
ol £ b ]uue
{le'[<r} | Hly'[>r} | /0 0 2! — |7 +s=2(1 + (o — B)2) 2
t/|z"—y'| +00
010 ol o R
{l='|<r} [ Aly'[>r} | /0 0 |x/—y"n+8*2(1+,}/2) )
t/|z' =y
{le'|<r} [l 1>ry |Jo | — /|
/
{lorl<r} |y 1>ny 12 =¥/

dy’
:Ctr”_l_s/ / — | dX’
(X7|<1} [ vy 1 X7 — Y’\”+s_1]

= Oty s

\x y\

where, as customary, we took the freedom of renaming C' line after line. O

Now, in the forthcoming Lemma[3.5.5 we present a further technical result that detects
suitable cancellations involving “thin sets”. This is a pivotal result to account for the
nonlocal scenario. Indeed, in the classical capillarity theory, to look for a competitor for a
given set, one can dig out a (small deformation of a) cylinder with base radius equal to &
and height de and then add a ball with the same volume. A very convenient fact in this
scenario is that the surface error produced by the cylinder is of order €™~ *, while the one
produced by the balls are of order (d&™) o 5 5” L. That is, for § su1tably small, the
surface tension produced by the new ball is negligible w1th respect to the surface tension
of the cylinder, thus allowing us to construct competitors in a nice and simple way.

Instead, in the nonlocal setting, for a given value of the fractional parameter, the
corresponding nonlocal surface tension produced by cylinders and balls of the same volume
are comparable. This makes the idea of “adding a ball to compensate the loss of volume
caused by removing a cylinder” not suitable for the nonlocal framework. Instead, as we
will see in the proof of Theorem the volume compensation should occur through the
addition of a suitably thin set placed at a regular point of the droplet. The fact that the
corresponding nonlocal surface energy produces a negligible contribution will rely on the
following result:
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Lemma 3.5.5. Let s € (0,1),0<e<d<1andne€ (0,1). Let f € Cy*° (R”‘l (_g )
for some o € (0,1) and assume that f(0) = 0 and 0;f(0) = 0 for all ie{l,...,n—1}.
Let o € C®°(R"1,[0, +00)) be such that ¢(z') = 0 whenever |z'| > 1 and

/ o(z')da’ = 1.
n—1
Let

= (2/,2n) €R™ : |2!| <6 and z, > f(a') + (')},

v = (2 0,) €ER" : 2] <8 and zp € (F(2), F(2)) +(2))}

and = (2, z,) €ER™ : |2/] <& and z, < f(2)}.

Then, there exist g € (0,1) and C > 0, depending only on n, s, «, f and ¢, such that
if 0 < o and n < Spe™ then

’// dx dy // dzx dy
PxQ ’x —y|nts RxQ ’m —y|nts

Proof. The gist of this proof is to use a suitable reflection to simplify most of the integral
contributions. For this, we consider the map

T(z) := (=2, 2f(2') + ¥(2) — xy) .

<O (074 L) eyt

We observe that when |2/| < § the distance between the Jacobian of 7' and minus the
identity matrix is bounded from above by

/ n a N
C sup (|Vf(@")|+ |Vy(')]) < C sup (]Vf(m)—Vf(o)\+€7) < C((S +€7)’

|’ | <8 |z’| <o

and the latter is a small quantity, as long as dg is chosen sufficiently small.

Moreover, the condition T'(x) € Q is equivalent to |2'| < § and 2f(2') + ¢ (2') — zp, €
(f(@), f(z') + ¢¥(a')), which is in turn equivalent to z € Q.

Similarly, the condition T'(z) € P is equivalent to z € R, as well as the condition T'(z) €
R is equivalent to x € P.

From these observations and the change of variable (X,Y’) := (T'(x),T(y)) we arrive

dx dy o dX dY
// ‘ _ ‘n—f—s - (1 +0 5 -n // \X Y‘n+s
PxQ 1T T RxQ

dad
<C(0+ L // Y (35.)
€ rxQ |7 =Yl

at

As a result,

‘// dx dy // dzx dy
PxQ ’:L‘ —y[nts RxQ ’x - ’n+s
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Now we consider the transformation S(z) := (¢/,z, — f(2’)). When |2/| < § the
distance between the Jacobian of S and the identity matrix is bounded from above by

C sup |[Vf(2')|=C sup |[Vf(z') — Vf(0)] < C6°.

|x’| <o |’ | <5

Besides, if 2 € R then S(z) € {z € R" : |2/| < and x,, < 0}. Also, if z € Q then

) 6”71

S(x) € {z € R™ : |2/| < § and x,, € (0,%(2'))} C {xE]R” 2’| < e and z, € <0 C77>}

We stress that we are using here the fact that ¢(z') = 0 when |2/| > ¢.
From these remarks and (3.5.1)), using now the change of variable (X,Y") := (S(z), S(v)),
it follows that

‘// dx dy // dx dy
Pxo l—ylts rxo T —y[**e

<c s+ L) X ay

gn //{Xn<0}><{Y’|<s, Yne(o,;—jl)} |X —Y|nts

We can thus employ Lemma with r :=¢ and t := 55171 and conclude that

’//PXQ :Ucixd’z“ //RXQ !:ccimd!a“ SC(‘SQ Zn) e (gnn_l)lis,

from which the desired result follows. O

With this preliminary work, we can now prove Theorems [3.5.1] and [3.5.2]

Proof of Theorem[3.5.1 Up to a rigid motion we can suppose that p = ¢e,. We let € > 0
and § > 0, to be taken as small as we wish in what follows. We also define

B:= {x = (2/,2,) € B1\ B1_sc : T, > 0and |2'| < 6}.

We stress that B C BEO/Z(p) N Bj as long as ¢ is small enough. Also, we pick a point ¢ €
Regp N Q and we modify the surface of OF in the normal direction in an e-neighborhood
of ¢ by a set B’ with |B| = |B|, see Figure 3.5 and notice that the geometry of Lemmal[3.5.5|
can be reproduced, up to a rigid motion. We stress that n in Lemma [3.5.5| corresponds
to the volume of the perturbation induced by 1, therefore in this setting we will apply
Lemma [3.5.5| with n := |B'| = |B| < Cde".

We also denote by © a cylinder centered at ¢ (oriented by the normal of B’ at ¢) of
height equal to 20 and radius of the basis equal to ¢. In this way, we have that if z € B/
and y € R"\ © then |z —y| > |y —¢| — |¢ — x| > @—C’s > g, as long as € is small
enough, possibly in dependence of J, see Figure whence

dx dy < C|B|
gntst — gntsi :

L(B,B\©)<C
B/XBl
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Figure 3.5: Removing the thin set B to F near p and adding the thin set B’ with the
same volume.

Consequently,
/ / / / / / C‘B,|
Il(BaBl\E\B)_Il(B7E) S11(87(BI\E\B)QG) _Il(B’Em6)+ Jntsit
Ce™
< 11(8,7 (Bi\ E\ B,) N 6) B Il(B/’E ne)+ on—1+s1’
(3.5.2)

for some C' > 0 that, as usual, gets renamed line after line.

Figure 3.6: Surrounding B’ with a small cylinder ©.

In view of Lemma [3.5.5] we also know that

L(B,(Bi\E\B)NO)~L(B,ENO) < C§*%nD (5em)l=51 = ggl-sitagn=s,
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This and (3.5.2)) lead to

Cem

L(B B\ E\B) - L(B,E) <C§l—srtogn=s 4 T

(3.5.3)

Now we consider the set (E '\ B) UB’ which is a competitor for the minimal set E with the
same volume of E. Accordingly, comparing their energies, we have that

L(B,B1\ E) + [,(B, E) + o I5(B, BS)
<L(B,EUB\B)+L(B,B\E\B)+1(B,B) +cl(B,BY).

By combining this and (3.5.3|) we find that

Il(Ba By \ E) + 012(87 Bf)
Ce™ (3.5.4)
5n—1+51 :

<L(B,EUB\B)+1L(B,B)+ 0B, Bf) + Css1tagn—s 1

Besides, since the distance between B’ and Bf is bounded from below by a uniform quan-
tity, only depending on ¢ and €( (and, in particular, independent of €), we have that

dx dy
123’,30:1@// Y <08 =0|B| < Ce",
( 1) I B ‘.’L‘ _ y‘»,H_SQ ’ ‘ ‘ ‘

for some C > 0 depending only on n, s3, k2, €9, ¢ and the regularity of OF in the vicinity
of ¢. This and (3.5.4) yield that

oly(B,BS) < (B, EUB'\ B) 4+ I,(B,B) + Ce" 4 O —s1Tagn=s1 4 55‘;31
< I1(B, By \ B) + (B, B) + Ce" + C§'—stegn=s1 65;1 (3.5.5)
Cem
< N(B, By \ B) + Co' T 4 o

up to renaming C' line after line. Now, we use the change of variables X := == and Y :=
Y=°n to see that

_ _ dx dy dX dY
e [1(B, By \ B) = k1 £ ”// = // ; (3.5.6
( 1 \ ) 1 B (B1\B) ’x _ |n+51 AL |X Y|n+sl ( )

where
Zs;:B_enz{XeR” X < 1, Xn>—1 and ‘X+6i € [1—5,1)}
e € e € €
and B\ B
AE::(l\E)_e”:ﬁsuMgu_/\/'E’
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with

L. = {XéR”:)XJren<15},
g g
n / en ]. 1
M. = {XeR":|X|>1and ‘X+— el|-—4-
g € g
e 1 enl [1 1
and M. = {XER": X <1, Xy < - and ’X+? elz-6-)

Similarly,

dx dy dX dY
527N, (B. BS) = ko 527" e
15 2( s 1) 2E //BxBf |a:—y|"+32 //Exog |X Y|n+32 (3.5.7)

where
: }
2 —
€
Plugging (3.5.6) and (3.5.7)) into (3.5.5)), we arrive at

dX dY dX dY Cet
$1—5 l1-s14+a
;oo z;@//gxos oy < //A L e

(3.5.8)

0. = {XGR” ‘X+

Now we claim that, if € > 0 is suitably small, possibly in depedence of §, then
BC{z=(a\2,) eR" : |2'| <& and zp, € [1 — (1+0)de, 1)}. (3.5.9)

Indeed, if = € B then

2n = V)72 = |72 > /(1 = 66)% — €2 = /1 — 20¢ + 022 — &2
> /1 —=2(146)0e+ (1+06)262e2 = /(1 — (1+0)6)2=1—(1+6)de

taking e < (20%)/(6* 4263 4 1), thus establishing (3.5.9). Now from (3.5.9) it follows that

Z.C{X =(XX,) €R" : |X'| <1 and X, € [-(1+6)5,0)} =: Z5. (3.5.10)

Note also that
O: 2 {Y, > 0}. (3.5.11)

Indeed, if Y € R" is such that Y;,, > 0, then

11
\/]Y’P <Y+> \/|ny2+1/2++ >,
3

as desired. We now claim that
|
< —_
€

2=

Z. 2 {XGR" X' < 1, X,, € (—4,0) and ‘X+e—”
S

CW.. (3.5.12)
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e 1
To check this, suppose by contradiction that there exists X € W, with ‘X + 2 <
€ €

Then, we have that

2 1 ) 1\2
:2+52——|X/|2—<Xn+>
g g &

%S(Q*’X/F*
IS

that is | X| < 4, and thus

1 1 1
7—5>‘X+‘i” CX|=-—|X|> - -4
3 g g 9

This is a contradiction which establishes (3.5.12)). Hence, by (3.5.11)) and (3.5.12f), we see
that

// dxXdy // dxXdy
zoxo. |X —Y|rts = o (vas0) | X — Y[

_ // dxXdy // dxdy
Wi (v, >0} | X — Y[z W) x Yy s0) | X — Y [rEe2]

Wi:={XeR": |X'| <1and X, € (—4,0)}.

(3.5.13)

where

We observe that
/ / dXdy / / dxXdy -y
00
W x vasoy X = Y452 = J fye v sop [X =Y [rbsz

and

e
since as long as ¢ is taken smaller in dependence on ¢, the condition ‘X + =

satisfied. Hence we can conclude that

. // dXdY 0
im —_— =
N0 S wa)x [y, >0y X — Y[+

and, as a consequence, we infer from ([3.5.13]) that

dX dY dXdyY
lim inf // // 3.5.14
B Lo, TR =V 2 | e sy TX — Vb (8:3.14)

We also note that if a > b > 0, then there exists a positive constant C' > 0 such that
b4
‘ B a3 ’
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whence if X € N then

2
e
9

X !X’I4 !
Z}X—I—%”‘ |X_|_%n‘3 €
- [*5 - 25, 25] - [725, 25]7

|X/‘2_1
£

N ‘X’|2 N ’X/|4 B
X+ Xl

€n

=+

as long as ¢ is sufficiently small, leading to
n !/ 2 2
IN:e /| < R X eR" : | X'| <1, and X, € - 25,—g +26| ¢| < CO. (3.5.15)

Furthermore, if X € Z. then X,, > —(1 + §)d, thanks to (3.5.9), and therefore if Y € N

we have that 1 1
X = Y] 2 X = Yo 2 —~(14+8)0+ = 2 o,
€ €

choosing € small enough depending on ¢. This yields that

dX dy
// o XY < Ce"T | Z| INL| < Oenter, (3.5.16)
ZexXNe

Now we set

ML= M. N By and M= M.\ Bs.
We remark that, if € > 0 is suitably small, possibly in depedence of §, then
MLC{X eR": |X'| €[1,2] and X,, € [-(1+6)5,0)} =: Mj. (3.5.17)
Indeed, if X € M. then |X’| > 1 and | X'| < |X| < 2. Furthermore,

1

2
14 ‘X+ ‘ <=,
&

1
‘ <|X')? + ‘X + -

thus
1
€ €

which in particular gives that

Hence X, < 0. Moreover,

12
4+‘Xn+’ > | X2+
3

162



Since X,, > —|X| > —2, this gives that

= /|x ,/ 7—5 —4_ l——+52

,\/1_2554_5252 4e2> (1 —(149)de)

taking e < (262)/(6* 4+ 26% 4+ 4), and accordingly X, > —(1 4 6)d. These observations
complete the proof of (3.5.17). We now use (3.5.17)) in combination with (3.5.10)). In this

way, we see that
dX dY dX dy
/ / / / | (3.5.18)
e | X =Y = ] f oo [X = Y[

Besides we notice that if X € Z,, then | X| < 3/2 for sufficiently small §, indeed by (3.5.10)

3
X = X2+ X2 <14 (1+6)202 = \/1+<52+54+253<5

if 4 is taken sufficiently small. Thus, if X € Z, and Y € M/ then |X - Y| > |Y|—|X]| >
2 — % = % and, as a result,

dX dy iz iz
// X — v :/ X Zzpe = 12 iz =90
Zox MY . R™\Bj /o R™\By /5

Combining this and (3.5.18]) we conclude that

// dXdy // dXdy LS
e XM |X Y’n+51 5 XM |X Y|n+s1 .

Using the latter inequality and (| we obtain that

I // dXdYy
im sup
e\0 e X Ae |X Y|n+81

// dX dY 4O+ i // dX dY
1m —_—,
conts 1X — Y[rEst S0P Sz, X =Y

Now we consider the map

(3.5.19)

—_

2
(R": |X'| <2} 3 X = (X', X)) — T(X) == | X', X, — \/< - 5> — X2+

[©)

and we observe that if X € Z., in particular |X'| < 2, then X := T'(X) satisfies |[X'| < 1

and
2 5 2
:Xn+1‘_\/<1_5) —‘X’P:\/’X-i-en —|X”2—\/(1—5> _‘X/’2
g 9 g 9
e ot o J(E2s) x| co.a el
M 62 E = )
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In addition, if Y € L. := L. N By and Y := T(Y), we have that [Y'| < 2 and

1 1 2 en |2 1 2
Yot =|—4/(==0) —y2= ]Y+— Y —y/(=-6) — v <o
13 g 3 g

We also observe that the distance of the Jacobian matrix of 7' from the identity is bounded
from above by

1 2 C|X’
C|Vx \/<—5> — X2 < ‘2’ < Ce,
€
Vo) —1xp
yielding that, in the above notation, | X — Y| < (1 + C¢)|X — Y|, with the freedom, as
usual, of renaming C. These observations allow us to conclude that

//Exg |X Y|n+sl = 1+C€ //*Xy* |X Y|n+81 (3.5.20)

Xf={XeR":|X'|<land X, € (0,(1+6))}
and YV i={X eR": |X'| <2and X, <0}.

Y <

where

Also, setting L7 := L.\ Bz, we have that

dX dY 4z z
// X — Y[t :/ X iz = 12 e =9
zxcr | | . R™\B) /s BB, 5

Combining this inequality and (3.5.20) we find that

dXdy dX dy
(1 .
//EX[,E |X Y|n+s1 o +C€ //*xy* |X Y|n+s1 +C§

From this and (3.5.19)) we arrive at

. // dX dYy
im sup
e\0 e X Ae ‘X Y‘n+sl

dX dY dX dy
+ limsup(1 + Ce¢) // + .
//*XM* ‘X Y‘n+5 e\0 FxY* |X Y|n+s1

Thus, given § > 0, to be taken conveniently small, we consider the limit £ \, 0 and we
deduce from the latter inequality, (3.5.8) and (3.5.14]) that, as € \, 0,

dXdy
o152 oy / / -
Wi x{Y, >0} | X —Y|nts2

dX dY dX dY
5.21
b ([ g 00 ff ) 09

Cet
5n—1+s1 :

+C5+ Ot 4
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This yields that necessarily
S1 Z S9. (3.5.22)

Furthermore, if s; = s then we obtain, passing to the limit (3.5.21]) as € \, 0, that

i // dXdy
0 K9 B
Wi x{Yp>0p [ X = Y[rtst

)

_daxdy _dXdy
k1 // // + O + Cyt e,

We are now ready to send § \, 0. To this end, we multiply (3.5.23) by 6°1~! and we make
use of Lemmata [3.5.3] and B.5.4] to find that

(3.5.23)

XdY
c,oky = llkaQ(ssl 1// dX d -
Wi x{Yn>0} | X —Y|ntst
dXdY dX dy
< lim [k 6571 C6% 4+ Co“
= S| (//*XM* X —Yrrsr //*Xy* X — Yyn+81) e

< h{n [CO5 (14 8) + e ki (L+6)175 + C6% + C5%)
= ok

and therefore oky < k1. Thanks to this, we have that, to complete the proof of Theo-
rem [3.5.1] it only remains to rule out the case s; = s and k; = oks. In this situation,

dx dy
C(F) = £(F) = k / /
) Y e | — y[rtst?

hence all the minimizers with prescribed volume correspond to balls, thanks to [46]. But
this violates the assumptions about the point p in Theorem [3.5.1 ]

Proof of Theorem[3.5.3 This can be seen as a counterpart of Theorem based on
complementary sets. For this argument, we denote by C,, instead of C, the functional
in , in order to showcase explicitly its dependence on the relative adhesion coeffi-
cient o. Thus, in the setting of Theorem if FCQand F:=Q\F,

Co(F) = L(Q\F(Q\F)*NQ) +0L(Q\F Q)
= L(Q\F F)+0L(Q\FQ)
= C_o(F)+0(F,Q% 40 I(Q\ F,Q°)
= C_(F) 40 ,(Q,0Q°).

Since the latter term does not depend on F', we see that if £, as in the statement of
Theorem is a volume-constrained minimizer of C,, then E := ( \ E is a volume-
constrained minimizer of C_,. Now, the set E fulfills the assumptions of Theorem
with o replaced by —o. It follows that either s; > so, or s1 = s9 and k; > —oko, as
desired. O
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3.6 Unique determination of the contact angle

A topical question in view of Proposition [3.4.4] is to understand whether or not equa-
tion identifies a unique contact angle 1. This is indeed the case, precisely under the
natural condition in , according to the following result in Theorem m To state it
in full generality, it is convenient to introduce some notation. Indeed, in the forthcoming
computations, it comes in handy to reduce the problem to a two-dimensional situation.
For this, we revisit the setting in by defining its two-dimensional projection onto
the variables (z1,x,), namely one sets

I3y 0y = {(xl,:pn) € R? : 3 3 € (¥1,92), p> 0 such that (z1,z,) = p(cosﬂ,sinﬁ)}
(3.6.1)
Let also e*(¥9) := (cos¥,sin®) and, for every = = (z1,22) € 9B; C R? and j € {1,2},

a;(x) if n =2,
*()
aj(aj) T a; (1‘1 e1+xoe, + |x|(0,yj,05> (362)
/ T dy ifn>3.
Rn—2 (1 + |g|2)T
Let also
¢ (V) := aj(cosV,sin ). (3.6.3)
We remark that, as a byproduct of ( -,
aj(z) = aj(—x) and  ¢;(V) = ¢;(m + ). (3.6.4)

Before exhibiting the proof of Theorem [3.6.3] it is also convenient to perform some integral
computations in order to appropriately rewrite integral interactions involving cones, de-
tecting cancellations, using a dimensional reduction argument and a well designed notation
of polar angle with respect to the kernel singularity. The details go as follows.

Lemma 3.6.1. In the notation of (3.0.2), (3.6.1), (3.6.2)) and (3.6.3)), if ¥ € (0,7), then

/ ’m(m) dx_/ a@—c()
Jy Jo,»

s — @) o — @)+

= W (/ ¢1(a) (sin)® da —/ ¢1(a) (sin o)™ da)
in

Proof. We stress that each of the integrals on the left hand side of is divergent,
hence the two terms have to be considered together, in the principal value sense. How-
ever, for typographical convenience, we will formally act on the integrals by omitting
the principal value notation and perform the cancellations necessary to have only finite
contributions to obtain the desired result. To this end, we recall and observe

(3.6.5)
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}0,,9 NA{z, < 2sind}

—

—e

-

Figure 3.7: A geometric argument involved in the proof of Lemma .

that = € Jyy N {z, < 2sind} if and only if z := 2e(V) —z € Jy, N {z, < 2sinv}, see
Figure Hence, by the symmetry of aq,

ar(z — 6(’19;) dr — ay(z — 6(19;) d
. — nts 0T : — e(9)|ntst =
Jo,sM{xn<2sin v} |l‘ 6(19)’ Jy,xN{zn<2sin 9} ’Z 6( )‘

Consequently, if we denote by T the left hand side of (3.6.5)), we see after a cancellation
that

T / ar(z—e(9)). dr — / ar(z—e(9)) de.  (3.6.6)
Jgn{zn>2sin0} [T — €(J)["H51 Jo.gn{zn>2sing} [T — e(I)[ 5

It is useful now to reduce the problem to that in dimension 2. To this end, we adopt the

notation in (3.6.1)) and (3.6.2) and note that

/ a@—e)

aN{zn>2sin v} |$ - 6(19)’714_51

n+sy
2

ap ((:L’l —cost)ey + (x, —sind)e, + (0, T, 05)
= /// dT dxy dz,,

(ranes; . 582, nssing) (21— cos9)? + (2, — sind)? + [7]2)

a1 ((n = cosv) ex + (g2 — sin ) e + [y — *(9)[(0,,0))
= / n+sq dgdy
ok 2451 (1_|_ ‘*|2)T
{y=(y1,y2)€J} ., JER™ 2, y2>2sin v} ly — ex(9)] Y
-/ ity =)
5 yz>2sino} [y — €X ()=
(3.6.7)

Similarly,

/ a@—e@) , / i)
Jo J*

9 {xn>2sind} ‘.%' - e<19)’n+81 5 9 {y2>2sin 9} |y - 6*(19)‘2—’—51
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Thanks to these observations, we rewrite (3.6.6) in the form

Y= / aifa— @) dz — / (e ) dr.  (3.6.8)
b T

A {z2>2sind} |x - e*(ﬁ)‘?—f—sl 0o {@2>2sind} ‘x - e*(ﬁ)‘}i_sl

Now we use polar coordinates centered at e*(1)). For this, if x € Jj 4N {x2 > 2sind},
sin ¥

we write x = (cos?,sin?) + p(cosa,sina) with o € (0,9) and p > 52=. Similarly,
if v € Jj, N{xe > 2sind}, we write z = (cos,sind) + p(cos B,sin B) with 8 € (J,7)

and p > :iﬁg, see Figure

Figure 3.8: Another geometric argument involved in the proof of Lemma m

As a result, using the notation in (3.6.3)), we deduce from (3.6.8]) that

[ el ([ e,
(0,0)x (822 4 oc) 7T (@,m)x (22 o0) P

sin

1 g - 7 o
s1(sin 0yt </0 é1(a) (sina)®™ da — /79 ¢1(B) (sin B) dﬂ) ,
which establishes (3.6.5)). —

Lemma 3.6.2. Let the notation in (3.0.2)), (3.6.1)), (3.6.2]) and (3.6.3)) hold true. Then,

a(e(V) — x) 1 0
2 — B o
/HC le(9) — z[rts do = s1(sind)st J_ ¢2(a) |sinaf* da. (3.6.9)

Proof. As in (3.6.7)), we have that the left hand side of (3.6.9)) equals to
R

x(—o0,0) |y — ex(@)[FFer 7

Now we use polar coordinates centered at e* (1) by considering y = (cos ¥, sin J)+p(cos a, sin ax)
with a € (—m,0) and p > sindsee Figure In this way, and recalling (3.6.3]), it follows

[sinaf’
that
P2() 1 0 _
A= dadp = —— 5 g

//(—ﬂ,O)X( sy ,+oo) pltet aar s1(sin)st J_ . $2() [sinal* da,

| sin |
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Figure 3.9: A geometric argument involved in the proof of Lemma .

as desired. ]
With this, we can uniquely determine the contact angle, as follows.

Theorem 3.6.3. Let Ki and K3 be as in (3.0.4). Let 0 € R and assume that (3.4.6)
holds true. Then, there exists at most one ¥ € (0,7) satisfying the contact angle condition

in (E15).

Furthermore, if

! ¢1(a) (sin)® da
lo| < /0 : (3.6.10)

| @) inay da-

then there exists a unique solution ¥ € (0,7) of (3.4.8).

We stress once again that when a; = ag (and in particular for constant a3 = as),
assumption (3.6.10) reduces to the structural assumption |o| < 1 that was taken in [60].

Moreover, if Ki(§) := é—gl and Ks(&) = |§k\7§2 for some ki, ko > 0, then assump-

tion boils down to |o| < Z—;, which is precisely the condition for nontrivial mini-
mizers obtained in Theorems [3.5.7] and [3.5.2

For these reasons, Theorem [3.6.3] showcases the interesting fact that the equation
prescribing the contact angle in admits one and only one solution precisely in the
natural range of kernels given by (3.4.6) and (3.6.10)).

proof of Theorem[3.6.3. We let

(e(9) — ) (e(¥) —x)
. s ai(e(V) — alelv) -2
‘Wm:*@”>(Lhww—ﬂwa“‘ﬂwww—ﬂwa“>
| (e(?) — ) |
) s az(e(V) —x
_Sl(Slnﬁ) U/I_ICWde

and we observe that solutions of (3.4.8) correspond to zeros of W in [0, 7.
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Also, by Lemmata and and recalling (3.6.4)),
9 T 0
W) = / ¢1(a) (sin)®™ da — / o1(a) (sina)® da — o p2(a) |sin ™ da
0 9 -7

0

9 T
= / é1(a) (sina)® da — / ¢1(a) (sina)* da — o d2(m + ) (sin(m + «))*' da
0 9

—Tr

= [[ @ enarda— [ o) i) da—o [ oafe) (inay do
’ ’ ’ (3.6.11)
In particular, W is continuous in [0, 7], differentiable in (0, 7) and, for each ¢ € (0, ),
W (9) = 2¢1(9) (sind)® > 0,

which shows that W admits at most one zero in (0,7). This establishes the uniqueness
result stated in Theorem [3.6.3]
Now we show the existence result claimed in Theorem under assumption (3.6.10)).

To this end, it suffices to notice that, by and , we have that
W(0) = — /07r ¢1(a) (sin)® da — U/O7r d2(a) (sina)® da < 0
and - -
W(r) = / ¢1(a) (sina)®™ da — 0'/ ¢2(a) (sina)®™ da > 0.
From this and the contir(l)uity of W, we obtain theoexistence of a zero of Win (0,7). O

Remark 3.6.4. We stress that the strict positivity of the kernel is essential for the unique-
ness result in Theorem [3.6.3} indeed, if one allows degenerate kernels in which a; is only
nonnegative, such a uniqueness claim can be violated. As an example, consider o := 0

and pick Jg € (0,%). Let ¢1 € C*°(R) be such that ¢;(c) := 0 for all a € [Jg, 7 — Dy].

Assume also that ¢y (5 + ) = ¢1 (5 — ) for all « € (0,%) and that ¢1(a+7) = ¢1(c)
for all @ € (0, 7). See e.g. Figure for a sketch of this function.

Then, by , for every ¥ € [190, g],
9 T
WE) = /0 ¢1(a) (sina)® da — /9 ¢1(a) (sin@)® da
Yo T
— / o1(a) (sin)® da — / ¢1(a) (sin@)® da
0 T—10
190 190
= [ o) Ginayda— [ or(x—p) sintr — 5))" ds

- /0190 é1 () (sin@)® do — /0190 b1 (g + g - 5) (sin 3)* d3

- /0 " 61(8) (sin )" dp — /0 Yo (5 (% 5)) Gy da
= 0,
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Figure 3.10: A degenerate example of ¢ leading to a multiplicity of the contact angle

in (3.10).

which shows that in this degenerate case every angle 9 € [190, %] would be a zero of W,
hence a solution of the contact angle equation in (3.4.8). Accordingly, the assumption of
strict positivity of the kernel cannot be dropped in Theorem [3.6.3
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