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Abstract

The aim of the present thesis is to discuss the results obtained during my PhD studies,
mainly devoted to nonlocal issues. We first deal with strong unique continuation principles
and local asymptotic expansions at certain boundary points for solutions of two different
classes of elliptic equations. We start the investigation by the following class of fractional
elliptic equations

(−∆)su = hu (1)

in a bounded domain under some outer homogeneous Dirichlet boundary condition, with
s ∈ (0, 1). More precisely, we are interested in proving the strong unique continuation
property and local asymptotics of solutions at those boundary points where the domain
is locally of class C1,1. In order to do this, we exploit the Caffarelli-Silvestre extension
procedure developed in [8], which allows us to get an equivalent formulation of the non-
local problem as a local problem in one dimension more, consisting in a mixed Dirichlet-
Neumann boundary value problem. Then, we use a classical idea by Garofalo and Lin [48]
to obtain a doubling-type condition via a monotonicity formula for a suitable Almgren-
type frequency function. To overcome the difficulties related to the lack of regularity at
the Dirichlet-Neumann junction, we introduce a new technique based on an approxima-
tion argument, which leads us to derive a Pohozaev-type identity needed to estimate the
derivative of the Almgren function. Thus we gain a strong unique continuation result
in the local context, which is in turn combined with blow-up arguments to deduce local
asymptotics and, consequently, a strong unique continuation result in the nonlocal setting
as well.

We also provide a strong unique continuation result from the edge of a crack for the
solutions to a specific class of second order elliptic equations in an open bounded domain
with a fracture, on which a homogeneous Dirichlet boundary condition is prescribed, in the
presence of potentials satisfying either a negligibility condition with respect to the inverse-
square weight or some suitable integrability properties. This local problem is related to
a particular case of the setting described above when s = 1/2, by virtue of a strong
connection between this type of problems and the mixed Dirichlet-Neumann boundary
value problems resulting from the Caffarelli-Silvestre extension associated to (1).

We also treat a capillarity theory of nonlocal type, inspired by the study performed
in [60]. In our setting, we consider more general interaction kernels that are possibly
anisotropic and not necessarily invariant under scaling. In particular, the lack of scale
invariance is modeled via two different fractional exponents in order to take into account
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the possibility that the container and the environment present different features with
respect to particle interactions. We determine a nonlocal Young’s law for the contact angle
between the droplet and the surface of the container and discuss the unique solvability of
the corresponding equation in terms of the interaction kernels and of the relative adhesion
coefficient.
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Chapter 1

Introduction

1.1 Motivations

The study of unique continuation from the boundary has been widely treated in litera-
ture. We refer to papers [3, 4, 38, 57, 77] for unique continuation at the boundary for
solutions to elliptic equations under homogeneous Dirichlet conditions, to [76] for unique
continuation at the boundary under zero Neumann conditions, and also to [26] for a strong
unique continuation property from the vertex of a cone under non-homogeneous Neumann
conditions. Once a strong unique continuation property is proved, infinite vanishing order
for non-trivial solutions can be excluded. The problem of estimating and explicitely pro-
viding all possible vanishing orders is then naturally related to unique continuation; we
quote e.g. [56] for quantitative uniqueness and bounds for the maximal order of vanishing
and [38, 39, 44, 42, 43] for a precise description of the asymptotic behavior together with
a classification of possible vanishing orders of solutions for several classes of problems,
obtained by combining monotonicity methods with blow-up analysis for scaled solutions.
Furthermore, we cite [36] for a unique continuation result and asymptotic expansions of
solutions to fractional elliptic equations at interior points of the domain, achieved by
Almgren type monotonicity formulas combined with blow-up arguments. We mention
also [68] for quantitative unique continuation for fractional Schrödinger equations de-
rived by Carleman estimates, [81] for fractional operators with variable coefficients, and
[40, 41, 47, 70, 71, 72, 80] for higher order fractional problems.

The issue of unique continuation from the boundary turns out to be particularly hard
to study since a series of difficulties due to the geometry of the domain arise in the
derivation of suitable monotonicity formulas and in the investigation of the asymptotic
behavior of solutions. Indeed the regularity of the domain plays a crucial role in the
behaviour of solutions at the boundary; for instance in [38] the asymptotic behavior at
conical singularities of the boundary is proved to depend on the opening of the vertex of
the cone.

In particular, concerning problem (1), our main goal consists in extending the results
contained in [36] to boundary points of the domain, thus establishing sharp asymptotics
and unique continuation from the boundary. A related problem is the regularity of so-
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lutions up to the boundary. Within this framework, we mention [64, 66] for regularity
results at the boundary for solutions to fractional elliptic problems and also to [6], where
quantitative upper and lower estimates at the boundary are exihibited for nonnegative
solutions to semilinear nonlocal elliptic equations.

In connection with problem (1), we investigate also a class of second order elliptic
problems in a domain with a crack, which are in fact related to mixed Dirichlet/Neumann
boundary value problems. Indeed, if we consider an elliptic equation with mixed bound-
ary conditions, in particular a homogeneous Dirichlet condition on a flat portion of the
boundary and a homogeneous Neumann condition on the complement, applying an even
reflection through the flat boundary we obtain an elliptic equation satisfied in the com-
plement of the Dirichlet region as well. Then the Dirichlet portion becomes a crack (see
Figure 1.1 below) and the edge of the crack corresponds to the Dirichlet-Neumann junc-
tion of the original mixed boundary value problem. We cite [37] for a unique continuation
result and asymptotic expansions of solutions to planar mixed boundary value problems at
Dirichlet-Neumann junctions. Our idea is to extend the monotonicity method developed
in [37] to dimensions bigger than 2, with the aim of proving a strong unique continu-
ation result. We refer to [54, 69] and references therein for some regularity results for
second-order elliptic problems with mixed Dirichlet-Neumann type boundary conditions.

Neumann Dirichlet

(a) Mixed Dirich-
let/Neumann boundary
conditions on a flat portion
of the boundary

Crack

(b) After an even reflection
the Dirichlet region becomes
a crack

Figure 1.1: A relation between problems in domains with a crack and mixed Dirich-
let/Neumann boundary value problems

Moreover, the study of second order elliptic problems in a domain with a crack is of
particular interest itself since they occur in elasticity theory, see e.g. [18, 55, 58]. The
non-smoothness of domains having slits produces strong singularities of solutions at edges
of cracks; with regards to the structure of such singularities, we cite e.g. [12, 15, 32], and
references therein. In particular, asymptotic expansions of solutions at edges of cracks
play a crucial role in these problems, since the coefficients of such expansions are related
to the so called stress intensity factor, see e.g. [18].
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Concerning the nonlocal capillarity problem, it is well-known that in the classical
capillarity theory (see e.g. [21, 22]) the contact angle is defined as the angle ϑ at which a
liquid interface meets a solid surface. At the equilibrium, this angle is expressed by the
Young’s law equation in terms of the relative adhesion coefficient σ as the classical formula

cos(π − ϑ) = σ.

The contact angle plays also an important role in the fluid spreading on a solid surface,
determining also the velocity of the moving contact lines (see e.g. [20] and the references
therein). The contact angle is certainly the “macroscopic” outcome of several complex
“microscopic” phenomena, involving physical chemistry, statistical physics and fluid dy-
namics, and ultimately relying on the effect of long-range and distance-dependent interac-
tions between atoms or molecules (such as van der Waals forces). It is therefore of great
interest to understand how the interplay between different microscopic effects generates
an effective contact angle at a macroscopic scale, and to detect the proximal regions of the
interfaces (likely, at a very small distance from the contact line) in which the effect of the
singular long-range potentials may produce a significant effect, see e.g. [33, 53]. To fur-
ther understand the role of long-range particle interactions in models related to capillarity
theory, a modification of the classical Gauß free energy functional has been introduced
in [60] that took into account surface tension energies of nonlocal type and modeled on
the fractional perimeter presented in [9]. These new variational principles led to suitable
equilibrium conditions that determine a specific contact angle depending on the relative
adhesion coefficient and on the properties of the interaction kernel. The classical limit
angle was then obtained from this long-range prescription via a limit procedure, and pre-
cise asymptotics have been provided in [27]. Local minimizers in the fractional capillarity
model have been studied in [28], where their blow-up limits at boundary points have been
considered, showing, by means of a new monotonicity formula, that these blow-up limits
are cones, and giving a complete characterization of such cones in the planar case.

In our dissertation we present a capillarity theory of nonlocal type in which the long-
range particle interactions are possibly anisotropic and not necessarily invariant under
scaling. This setting is specifically motivated by the twofold objective to initiate and
consolidate a nonlocal capillarity theory in an anisotropic scenario, and to model the case
where the potential interactions of the droplet with the container and those with the
environment are subject to different van der Waals forces.

In this setting, we determine a nonlocal Young’s law for the contact angle, which
extends the known one in the nonlocal isotropic setting and recovers the classical one as
a limit case.

1.2 Organization of the thesis and main results

The first chapter of the present thesis is devoted to derive strong unique continuation
results and local asymptotics at boundary points for solutions of two classes of elliptic
equations. In particular, in Section 2.2 we recall some basic definitions related to the
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unique continuation property. In Section 2.3 we consider the following class of fractional
elliptic equations

(−∆)su = hu in Ω (1.2.1)

where s ∈ (0, 1), Ω ⊂ RN is a bounded domain, N ≥ 2 and

h ∈W 1,p(Ω) with p > N/2s. (1.2.2)

More precisely, we are interested in a strong unique continuation property and local asymp-
totics of solutions at those boundary points where the domain is locally C1,1 and some
outer homogeneous Dirichlet boundary condition is prescribed. To this purpose, we as-
sume there exists x0 ∈ ∂Ω such that ∂Ω is of class C1,1 in a neighbourhood of x0, i.e.
there exist a suitable radius R > 0 and a function g ∈ C1,1(RN−1) such that, choosing a
proper coordinate system (x′, xN ) ∈ RN−1 × R, it holds that

B′
R(x0) ∩ Ω = {(x′, xN ) ∈ B′

R(x0) : xN < g(x′)} (1.2.3)

B′
R(x0) ∩ ∂Ω = {(x′, xN ) ∈ B′

R(x0) : xN = g(x′)}

(see Section 2.1), and we prescribe for u the following local outer homogeneous Dirichlet
boundary condition

u = 0 a.e. in Ωc ∩B′
R(x0). (1.2.4)

In order to give a suitable weak formulation of (1.2.1), we introduce the functional space
Ds,2(RN ) defined as the completion of C∞

c (RN ) with respect to the scalar product

(u, v)Ds,2(RN ) :=

∫
RN

|ξ|2s û(ξ)v̂(ξ) dξ (1.2.5)

and the associated norm ∥u∥2Ds,2(RN )
= (u, u)Ds,2(RN ), where û denotes the unitary Fourier

transform of u in RN , i.e.

û(ξ) = Fu(ξ) := 1

(2π)N/2

∫
RN

e−ix·ξu(x) dx.

The fractional Laplacian (−∆)s can be defined as the Riesz isomorphism of Ds,2(RN ) with
respect to the scalar product defined in (1.2.5), i.e.

(Ds,2(RN ))∗⟨(−∆)su, v⟩Ds,2(RN ) = (u, v)Ds,2(RN )

for all u, v ∈ Ds,2(RN ). A weak solution to (1.2.1) is any function u ∈ Ds,2(RN ) satisfying

(u, φ)Ds,2(RN ) =

∫
Ω
h(x)u(x)φ(x) dx for all φ ∈ C∞

c (Ω). (1.2.6)

We observe that the right hand side of (1.2.6) is well defined in view of assumption
(1.2.2), by the Hölder’s inequality and the following well-known Sobolev-type inequality

SN,s∥u∥2L2∗(s)(RN )
≤ ∥u∥2Ds,2(RN ), (1.2.7)
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where SN,s is a positive constant depending only on N and s and

2∗(s) =
2N

N − 2s
, (1.2.8)

see [16]. By the extension technique introduced in [8], by adding an additional space
variable t ∈ [0,+∞), we can reformulate the nonlocal problem (1.2.1) as a local degenerate
or singular problem on the half space RN+1

+ . For this, taking z = (x, t) ∈ RN+1
+ , we define

D1,2(RN+1
+ , t1−2s dz) as the completion of C∞

c (RN+1
+ ) with respect to the norm

∥U∥D1,2(RN+1
+ ,t1−2s dz) =

√∫
RN+1
+

t1−2s|∇U(x, t)|2 dx dt.

It is well-known that there exists a continuous trace map

Tr : D1,2(RN+1
+ , t1−2s dz) → Ds,2(RN )

(see e.g. [13]), which is onto, see [7]. By [8], for every u ∈ Ds,2(RN ), the minimization
problem

min

{
∥W∥2D1,2(RN+1

+ ,t1−2s dz)
: W ∈ D1,2(RN+1

+ , t1−2s dz), TrW = u

}
admits a unique minimizer U = H(u) ∈ D1,2(RN+1

+ , t1−2s dz), which can be obtained by

convoluting u with the Poisson kernel of the half-space RN+1
+ and weakly solves−div(t1−2s∇U) = 0 in RN+1
+ ,

− lim
t→0+

t1−2s∂tU = κs(−∆)su in RN × {0},

where

κs =
Γ(1− s)

22s−1Γ(s)
> 0,

that is, for all W ∈ D1,2(RN+1
+ , t1−2s dz)∫

RN+1
+

t1−2s∇H(u)(x, t) · ∇W (x, t) dx dt = κs(u,TrW )Ds,2(RN ).

As a relevant consequence, a function u ∈ Ds,2(RN ) satisfies (1.2.6) if and only if its
extension U = H(u) weakly solves

−div
(
t1−2s∇U

)
= 0 in RN+1

+ ,

TrU = u in RN × {0},
− lim
t→0+

t1−2s∂tU = κshu in Ω× {0},
(1.2.9)
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i.e ∫
RN+1
+

t1−2s∇U(x, t) · ∇ϕ(x, t) dx dt = κs

∫
Ω
huTrϕdx (1.2.10)

for every ϕ ∈ C∞
c (RN+1

+ ) with Trϕ ∈ C∞
c (Ω).

After describing a more detailed functional setting for the extended problem (1.2.9)
at the beginning of Section 2.3, in Subsection 2.3.1 we introduce the auxiliary problem
(2.3.11) obtained by applying a diffeomorphism, inspired by [3], which straightens the
boundary of the domain Ω. This deformation is thought to ensure that the extended
equation is preserved by reflection through a straightened vertical boundary. In Sub-
section 2.3.2, first we provide some coercivity-type inequalities, and then we develop an
approximation procedure in order to overcome the difficulties related to the lack of regu-
larity at Dirichlet-Neumann junctions. Specifically, we approximate the potential h with
potentials vanishing close to the boundary and the Dirichlet N -dimensional region with
smooth (N + 1)-dimensional sets having a straight vertical boundary. Then we construct
a sequence of solutions to certain boundary value problems on the approximating domains
which enjoy enough regularity to derive Pohozaev-type identities and, once we prove that
such a sequence converges in the H1-norm to the solution of (2.3.11), passing to the
limit, we achieve a Pohozaev-type identity even for solutions to the straightened problem
(2.3.11), see Subsection 2.3.3 for details. Subsection 2.3.4 is devoted to the proof of a
monotonicity formula for the Almgren frequency function (2.3.89), which in turn is used
to perform a blow-up analysis in Subsection 2.3.5. Here, the asymptotic behaviour at
x0 ∈ ∂Ω of solutions to (1.2.9), and consequently of solutions to (1.2.1), turn out to be
related to the eigenvalues and the eigenfunctions of the following weighted spherical eigen-
value problem with mixed Dirichlet-Neumann boundary conditions on the unit half-sphere

−divSN
(
θ1−2s
N+1∇SNψ

)
= θ1−2s

N+1µψ in SN+ ,
ψ = 0 on SN−1 ∩ {θN ≥ 0},

lim
θN+1→0+

θ1−2s
N+1∇SNψ · ν = 0 on SN−1 ∩ {θN < 0},

(1.2.11)

where ν = (0, . . . , 0,−1) (see Section 2.1). In order to give the variational formulation

of (1.2.11), we define H1(SN+ , θ1−2s
N+1dS) as the completion of C∞(SN+ ) with respect to the

norm

∥ψ∥H1(SN+ ,θ
1−2s
N+1 dS)

=

(∫
SN+
θ1−2s
N+1

(
|∇SNψ(θ)|2 + ψ2(θ)

)
dS

)1/2
.

Let H0 be the closure of C∞
c (SN+ \ S+

1 ) in H1(SN+ , θ1−2s
N+1dS). We say that µ ∈ R is an

eigenvalue of (1.2.11) if there exists ψ ∈ H0 \ {0} such that∫
SN+
θ1−2s
N+1∇SNψ · ∇SNϕdS = µ

∫
SN+
θ1−2s
N+1ψϕdS for any ϕ ∈ H0. (1.2.12)

By classical spectral theory, problem (1.2.11) admits a diverging sequence of real eigen-
values with finite multiplicity {µk}k≥0. In Appendix A.2 we derive the following explicit
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formula for such eigenvalues

µk = (k + s)(k +N − s), k ∈ N. (1.2.13)

For all k ∈ N, letMk ∈ N\{0} be the multiplicity of the eigenvalue µk and {Yk,m}m=1,2,...,Mk

be a L2(SN+ , θ1−2s
N+1dS)-orthonormal basis of the eigenspace of problem (1.2.11) associated

to µk. In particular,
{Yk,m : k ∈ N, m = 1, ...,Mk} (1.2.14)

is an orthonormal basis of L2(SN+ , θ1−2s
N+1dS).

A first result involving problem (1.2.11) is a sharp description of the asymptotic be-
haviour of solutions to (1.2.9) around x0 ∈ ∂Ω, contained in Theorem 2.3.30. More
precisely, we prove that there exist k0 ∈ N and an eigenfunction Y of problem (1.2.11)
associated to the eigenvalue µk0 = (k0 + s)(k0 +N − s) such that, letting z0 = (x0, 0),

U(z0 + λz)

λk0+s
→ |z|k0+sY

(
z

|z|

)
in H1(B+

1 , t
1−2sdz) as λ→ 0+,

where H1(B+
1 , t

1−2sdz) is the weighted Sobolev space defined at the beginning of Section
2.3. Actually in the proof of Theorem 2.3.30 we give a more precise characterization of
the angular limit profile Y as a linear combination of the orthonormalized eigenfunctions
{Yk0,m}m=1,2,...,Mk0

of (1.2.11) associated to the eigenvalue µk0 with coefficients explicitely
given by formula (2.3.176).

Then we are able to derive also a similar sharp description of the asymptotic behaviour
of solutions to (1.2.1) at x0 ∈ ∂Ω (we refer to Theorem 2.3.31), i.e. we infer that there
exist k0 ∈ N and an eigenfunction Y of problem (1.2.11) associated to the eigenvalue
µk0 = (k0 + s)(k0 +N − s) such that

u(x0 + λx)

λk0+s
→ |x|k0+sY

(
x
|x| , 0

)
in Hs(B′

1) as λ→ 0+,

where Hs(B′
1) is the usual fractional Sobolev space on the N -dimensional unit ball B′

1,
see e.g. [52].

As a consequence of the above asymptotic expansions, we deduce the following strong
unique continuation principles for problems (1.2.9) and (1.2.1) (see Theorem 2.3.32), that
is, respectively:

(i) if U is a weal solution to (1.2.9) such that U(z) = O(|z − z0|k) as z → z0 for any
k ∈ N, then U ≡ 0 in RN+1

+ ;

(ii) if u is a weak solution to (1.2.1) such that u(x) = O(|x − x0|k) as x → x0 for any
k ∈ N, then u ≡ 0 in RN .

Finally, in Appendix A.1 we present some boundary regularity results for singu-
lar/degenerate equations in cylinders, while in Appendix A.2 we prove (1.2.13), through
a classification of possible homogeneity degrees of homogeneous solutions to (A.2.1).
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In Section 2.4, we develop a monotonicity approach to the study of the asymptotic
behavior and unique continuation from the edge of a crack for solutions to the following
class of Dirichlet boundary value problems{

−∆u(z) = f(z)u(z) in Ω \ Γ,
u = 0 on Γ,

(1.2.15)

where Ω ⊂ RN+1 is a bounded open domain, N ≥ 2, Γ ⊂ RN is a closed set defined as

Γ = {(x′, xN ) = (x1, . . . , xN−1, xN ) ∈ RN : xN ≥ g(x′)}, (1.2.16)

for some function g ∈ C2(RN−1). In order to do this, we fix a point on the edge of Γ and,
without loss of generality, we may select our coordinate system in such a way that the
origin coincides with this point, and

g(0) = 0, ∇g(0) = 0, (1.2.17)

namely the boundary of Γ is tangent to the hyperplane xN = 0 at 0, thus having that

|g(x′)| = O(|x′|2) as |x′| → 0+. (1.2.18)

Moreover we assume that there exists a suitable radius R̂ > 0 such that

g(x′)− x′ · ∇g(x′) ≥ 0 for any x′ ∈ B′
R̂
. (1.2.19)

We observe that this assumption can be removed arguing as in the fractional case, that
is applying a suitable diffeomorphism to straighten the boundary before carrying out the
approximation procedure.

In the setting described above, we are interested in studying local asymptotics and
strong unique continuation property at the origin for solutions to the following boundary
value problem {

−∆u = f u in BR̂ \ Γ,
u = 0 on Γ,

(1.2.20)

where f : BR̂ → R is measurable and bounded in BR̂ \Bδ for every δ ∈ (0, R̂).
We contemplate two alternative sets of assumptions on f , namely we assume either

that
lim
r→0+

ξf (r) = 0, (H1-1)

ξf (r)

r
∈ L1(0, R̂),

1

r

∫ r

0

ξf (s)

s
ds ∈ L1(0, R̂), (H1-2)

where the function ξf is defined as

ξf (r) := sup
z∈Br

|z|2|f(z)| for any r ∈ (0, R̂), (H1-3)
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or that
lim
r→0+

η(r, f) = 0, (H2-1)

η(r, f)

r
∈ L1(0, R̂),

1

r

∫ r

0

η(s, f)

s
ds ∈ L1(0, R̂), (H2-2)

and
∇f ∈ L∞

loc(BR̂ \ {0}), (H2-3)

η(r,∇f · z)
r

∈ L1(0, R̂),
1

r

∫ r

0

η(s,∇f · z)
s

ds ∈ L1(0, R̂), (H2-4)

where

η(r, h) := sup
u∈H1(Br)\{0}

∫
Br

|h|u2 dz∫
Br

|∇u|2 dz + N−1
2r

∫
∂Br

|u|2 dS
, (H2-5)

for every r ∈ (0, R̂) and h ∈ L∞
loc(BR̂ \ {0}). We refer to Section 2.4 for some examples of

functions verifying the above assumptions.
In order to give a weak formulation of problem (1.2.20), we introduce for every R > 0

the space H1
Γ(BR) defined as the closure in H1(BR) of the subspace

C∞
0,Γ(BR) := {u ∈ C∞(BR) : u = 0 in a neighborhood of Γ}. (1.2.21)

It actually holds that

H1
Γ(BR) = {u ∈ H1(BR) : τΓ(u) = 0},

where τΓ denotes the trace operator on Γ, see Lemma 2.4.1 in Section 2.4.
Hence we say that u ∈ H1(BR̂) is a weak solution to (1.2.20) if
u ∈ H1

Γ(BR̂),∫
BR̂

∇u(z) · ∇φ(z) dz −
∫
BR̂

f(z)u(z)φ(z) dz = 0 for any φ ∈ C∞
c (BR̂ \ Γ). (1.2.22)

Since our domain is highly non-smooth due to the presence of the crack, as in the above
case we use an approximation argument to derive a monotonicity formula. Specifically, the
proof of the monotonicity formula is based on the differentiation of the Almgren quotient
defined in (2.4.47), which in turn requires a Pohozaev-type identity formally obtained by
testing the equation with the function ∇u·z; however our domain with crack doesn’t verify
the exterior ball condition (which ensures L2-integrability of second order derivatives, see
[2]), thus ∇u · z could be not sufficiently regular to be an admissible test function. Hence,
in order to overcome this difficulty, in Subsection 2.4.1 we construct first a sequence of
regular sets which approximate our cracked domain with the twofold features of satisfying
the exterior ball condition and being star-shaped with respect to the origin, and then a
sequence of solutions of some approximating problems on such domains, converging to
the solution of the original problem with crack. Thus for each approximating problem we
have enough regularity to derive a Pohozaev-type identity with some remainder terms,
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due to interference with the boundary, whose sign can nevertheless be established thanks
to star-shapeness conditions (see Subsection 2.4.2). Then, passing to the limit in the
resulting Pohozaev-type inequalities for the approximating problems, we obtain inequality
(2.4.34), which allows us in Subsection 2.4.3 to estimate from below the derivative of the
Almgren quotient and to prove that it has a finite limit at 0 (Lemma 2.4.23). Then, in
Subsection 2.4.4, we perform a blow-up analysis for scaled solution: in particular, in the
classification of possible vanishing orders and blow-up profiles of solutions, the following
eigenvalue problem {

−∆SNψ = µψ on SN \ S+
1 ,

ψ = 0 on S+
1 ,

(1.2.23)

on the unit N -dimensional sphere with an half-equator cut plays a crucial role.
We say that µ ∈ R is an eigenvalue of (1.2.23) if there exists an eigenfunction ψ ∈

H1
0 (SN \ S+

1 ), ψ ̸≡ 0, such that∫
SN

∇SNψ · ∇SNϕdS = µ

∫
SN
ψϕdS

for all ϕ ∈ H1
0 (SN \S+

1 ). By classical spectral theory, (1.2.23) admits a diverging sequence
of real eigenvalues with finite multiplicity {µk}k≥1; these eigenvalues are explicitly given
by the formula

µk =
k(k + 2N − 2)

4
, k ∈ N \ {0}, (1.2.24)

see Lemma 2.4.30. For all k ∈ N\{0}, letMk ∈ N\{0} be the multiplicity of the eigenvalue
µk and

{Yk,m}m=1,2,...,Mk
be a L2(SN )-orthonormal basis

of the eigenspace of (1.2.23) associated to µk.
(1.2.25)

In particular {Yk,m : k ∈ N \ {0},m = 1, 2, . . . ,Mk} is an orthonormal basis of L2(SN ).
In Subsection 2.4.5, by means of an auxiliary problem obtained by straightening the

crack, a first result consists in proving that scaled solutions of problem (1.2.20) converge
to a homogeneous limit profile, whose homogeneity order is related to the eigenvalues of
problem (1.2.23). More precisely, we prove that

u(λz)

λk0/2
→ |z|k0/2ψ

(
z

|z|

)
in H1(B1) as λ→ 0+, (1.2.26)

for some k0 ∈ N \ {0} and some eigenfunction ψ of problem (1.2.23) associated with the
eigenvalue µk0 . A strongest version of the above result can be found in Theorem 2.4.39,
where we actually give a more precise description of the limit angular profile ψ: indeed,
if Mk0 ≥ 1 is the multiplicity of the eigenvalue µk0 and {Yk0,i : 1 ≤ i ≤ Mk0} is as in
(1.2.25), then the eigenfunction ψ in (1.2.26) can be written as

ψ(θ) =

mk0∑
i=1

βiYk0,i, (1.2.27)
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where the coefficients βi are given by the integral Cauchy-type formula (2.4.151).
A relevant consequence of our asymptotic analysis is the following strong unique contin-

uation principle, whose proof follows straightforwardly from (1.2.26) (see Theorem 2.4.40):
if u is a weak solution to (1.2.20) such that u(z) = O(|z|k) as |z| → 0 for any k ∈ N, then
u ≡ 0 in BR̂.

Finally, in Chapter 3 we present a capillarity theory of nonlocal type in which the
long-range particle interactions are possibly anisotropic and not necessarily invariant un-
der scaling. In particular, the lack of scale invariance will be modeled via two different
fractional exponents s1, s2 ∈ (0, 1) which take into account the possibility that the con-
tainer and the environment present different features with respect to particle interactions.
In order to describe in more details our setting, we first discuss the type of particle in-
teractions that we take into account and the variational structure of the corresponding
anisotropic nonlocal capillarity theory. Owing to [9], the most widely studied interaction
kernel of singular type in problems related to nonlocal surface tension is

Ks(ζ) :=
1

|ζ|n+s
for all ζ ∈ Rn \ {0}, (1.2.28)

with s ∈ (0, 1). We aim at considering more general kernels than the one in (1.2.28),
with a twofold objective: on the one hand, we wish to initiate and consolidate a nonlocal
capillarity theory in an anisotropic scenario; on the other hand, we want to also model
the case in which the particle interaction of the container has a different structure with
respect to the one of the external environment. The first of these two goals will be pursued
by considering interaction kernels that are not necessarily invariant under rotation, the
second by taking into account interactions with different homogeneity inside the container
and in the external environment.

More specifically, given n ≥ 2, s ∈ (0, 1), λ ≥ 1 and ϱ ∈ (0,∞], we consider the family of
interaction kernels, denoted by K(n, s, λ, ϱ), containing the even functions K : Rn \ {0} →
[0,+∞) such that, for all ζ ∈ Rn \ {0},

χBϱ(0)(ζ)

λ|ζ|n+s
≤ K(ζ) ≤ λ

|ζ|n+s
. (1.2.29)

We use the notation Bϱ(0) = Rn when ϱ = ∞. Also, for every h ∈ N, we consider the
class Kh(n, s, λ, ϱ) of all the kernels K ∈ K(n, s, λ, ϱ) ∩ Ch(Rn \ {0}) such that, for all
ζ ∈ Rn \ {0},

|DjK(ζ)| ≤ λ

|ζ|n+s+j
for all 1 ≤ j ≤ h. (1.2.30)

We also say that the kernel K admits a blow-up limit if for every ζ ∈ Rn\{0} the following
limit exists:

K∗(ζ) := lim
r→0+

rn+sK(rζ). (1.2.31)

For each kernel K we consider the interaction induced by K between any two disjoint
(measurable) subsets E,F of Rn defined by

IK(E,F ) :=

∫
E

∫
F
K(x− y) dx dy. (1.2.32)
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For instance, with this definition, the so-called K-nonlocal perimeter of a set E associated
to K is given by the quantity IK(E,Ec), which is the interaction of the set E with its
complement with respect to Rn (here, as usual, we use the notation Ec := Rn\E). See [14]
for several results on the K-nonlocal perimeter. In particular, if K is the fractional kernel
in (1.2.28), then the notion of K-perimeter boils down to the one introduced by Caffarelli,
Roquejoffre and Savin in [9].

Given an open set Ω ⊆ Rn, s1, s2 ∈ (0, 1) and σ ∈ R, for every K1 ∈ K(n, s1, λ, ϱ)
and K2 ∈ K(n, s2, λ, ϱ) and every set E ⊆ Ω we define the functional

E(E) := I1(E,E
c ∩ Ω) + σ I2(E,Ω

c). (1.2.33)

Throughout all Chapter 3, we will use the short notation I1 := IK1 and I2 := IK2 .
We observe that when σ > 0, one could reabsorb it into the second interaction kernel

up to redefining K2 into σK2. In general, one can think that σ “simply plays the role
of a sign”, say it suffices to understand the matter for σ ∈ {−1,+1}, up to changing K2

into |σ|K2. However, we thought it was convenient to consider σ as an “independent
parameter”, since this makes it easier to compare with the classical case.

Moreover, given a function g ∈ L∞(Ω), we let

C(E) := E(E) +

∫
E
g(x) dx. (1.2.34)

The setting that we take into account is general enough to include anisotropic nonlocal
perimeter functionals as in [59, 14], which, in turn, can be seen as nonlocal modifications of
the classical anisotropic perimeter functional. In this spirit, the functional in (1.2.34) can
be seen as a nonlocal generalization of classical anisotropic capillarity problems, such as
the ones in [63]. As customary in the analysis of nonlocal problems arising from geometric
functionals, the long-range interactions involved in (1.2.34) produce significant energy
contributions which will give rise to structural differences with respect to the classical
case.

In this context, our goal is to study the minimizers of the nonlocal capillarity func-
tional C among all the sets E with a given volume. The case in which K1(ζ) = K2(ζ) =
Ks(ζ) as in (1.2.28) has been studied in [60, 27, 28]. Here instead we are specifically inter-
ested in the nonlocal capillarity energy in (1.2.34) with two different types of interactions
between E and Ω ∩ Ec and between E and Ωc, as modeled in (1.2.33).

Notice that the volume constrained minimization of the functional in (1.2.34) is well-
posed, according to Proposition 3.1.2 in Section 3.1. In particular, we give a formulation
of Proposition 3.1.2 which is new in literature, though its proof relies on an appropriate
variation of standard techniques, see e.g. [9, 60].

In Section 3.2 we show that the volume constrained minimizers (and, more generally,
the volume constrained critical points) obtained in Proposition 3.1.2 satisfy a suitable
Euler-Lagrange equation (under reasonable regularity assumptions on the domain and on
the interaction kernels), according to Proposition 3.2.1.

A crucial step of any capillarity theory is the determination of the contact angle be-
tween the droplet and the container (in jargon, the Young’s law), which relies on a delicate
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cancellation of the singular kernel contributions, which requires the determination of an
auxiliary angle which is “symmetric” (in a suitable sense of “measuring singular inter-
actions”) with respect to the contact angle itself. For this, in Section 3.3 we establish
a cancellation property which has been thought in order to reproduce a cancellation of
terms as in [60], highlighting that in this context a new construction is needed due to the
fact that the function a1 is anisotropic.

Then in Section 3.4 we present two versions of the nonlocal Young’s law depending on
whether s1 ̸= s2 or s1 = s2, since in our setting the Young’s law is very sensitive to the
relative homogeneity of the interacting kernels. Loosely speaking, when s1 < s2, at small
scales (which are the ones which we believe are more significant in the local determination
of the contact angle), the interaction between the droplet and the exterior of the container
prevails with respect to the one between the droplet and the interior of the container. Thus,
in this situation, the sign of the relative adhesion coefficient σ becomes determinant: in the
hydrophilic regime σ < 0 the droplet is “absorbed” by the boundary of the container, thus
producing a zero contact angle; instead, in the hydrorepellent regime σ > 0 the droplet is
“held off” the boundary of the container, thus producing a contact angle equal to π; finally,
in the neutral case σ = 0 the behavior of the second interaction kernel becomes irrelevant.
When σ = 0 and additionally the problem is isotropic, the contact angle becomes π/2.
Conversely, when s1 > s2, the interaction between the droplet and the interior of the
container is, at small scales, significantly stronger than that between the droplet and the
exterior of the container. In this situation, the relative adhesion coefficient σ does not play
any role and the contact angle is determined by an integral cancellation condition (that
will be explicitly provided in (3.3.6)). When the first kernel is isotropic, this condition
simplifies and the contact angle is proved to be π/2.

Section 3.5 deals with the possible complete stickiness or detachment of the nonlocal
droplets. Indeed, we think that the detection of a contact angle in a nonlocal capillarity
setting is an interesting feature in itself, especially when we compare this situation with
the stickiness phenomenon for the nonlocal minimal surfaces, as discovered in [29]. More
specifically, for nonlocal minimal surfaces, the long-range interactions make it possible
for the surface to stick to a domain (even if the domain is smooth and convex), thus
changing dramatically the boundary analysis (moreover, this phenomenon is essentially
“generic”, see [31]). The possible detection of the contact angle for the nonlocal capillarity
theory instead highlights the fact that the boundary analysis of this theory is somewhat
“sufficiently robust” with respect to the classical case. Roughly speaking, we believe
that this important difference between nonlocal minimal surfaces and nonlocal capillarity
theory is due to the fact that in the latter the mass is always placed in a bounded region,
whence the energy contributions coming from infinity have a different nature than the
ones occurring for nonlocal perimeter functionals.

We also stress that conditions (3.4.2) and (3.4.4) basically state that if the kernel K2

is “too strong”, then one cannot expect nontrivial minimizers. Roughly speaking, while
Proposition 3.1.2 always guarantees the existence of a minimizer, when conditions (3.4.2)
and (3.4.4) are violated the minimizer can “detach from the boundary” (or “completely
stick to the boundary”), hence the notion of contact angle becomes degenerate or void.
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That is, while for the existence of minimizers we do not need to require any bound on
the relative adhesion coefficient σ in dependence of the interaction kernels, to speak about
a contact angle some quantitative condition is in order (roughly speaking, otherwise the
droplet does not meet the boundary of the container with a nontrivial angle, rather prefer-
ring to either detach from the container and float, or to completely stick at the boundary
by surrounding it). The configuration in which the droplet tends to be squashed on the
container, thus producing a contact angle ϑ close to zero, is sketched in Figure 1.2.

Figure 1.2: The configuration in which the droplet tends to stick to the container.

The opposite situation in which the droplet tends to detach from the container, thus
producing a contact angle ϑ close to π, is depicted in Figure 1.3.

Figure 1.3: The configuration in which the droplet tends to detach from the container.

These concepts are made explicit in Theorems 3.5.1 and 3.5.2.
Section 3.6 is devoted to discuss the existence and uniqueness theory for the equation

prescribing the nonlocal angle of contact between the droplet and the container. Addi-
tionally, in Remark 3.6.4 at the end of Section 3.6, we will point out that the uniqueness
statement in Theorem 3.6.3 heavily depends on the strict positivity of the kernel and it
fails for kernels that are merely nonnegative.
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Chapter 2

Some strong unique continuation
results from the boundary

2.1 Notations

We list below some symbols used throughout Chapter 2 and the relative description.

Symbol Description

RN+1
+ The half-space RN × (0,+∞)

SN The unit sphere {(θ′, θN , θN+1) ∈ RN+1 : |θ′|2 + θ2N + θ2N+1 = 1}
SN+ The unit half-sphere {(θ′, θN , θN+1) ∈ SN : θN+1 > 0}
SN−1 The boundary of SN+ , i.e. SN−1 × {0} identified with SN−1

SN−1
− The set {(θ1, . . . , θN ) ∈ SN−1 : θN ≤ 0}
S+
1 The set {(θ′, θN , θN+1) ∈ SN : θN+1 = 0 and θN ≥ 0}
dS The volume element on N -dimensional spheres
Br The ball in RN+1 centered at 0 with radius r, i.e. {z ∈ RN+1 : |z| < r}
B+
r The half-ball in RN+1 given by Br ∩ RN+1

+

∂+B+
r The spherical shell given by ∂Br ∩ RN+1

+

B′
r(x0) The ball in RN centered at x0 with radius r, i.e. {x ∈ RN : |x− x0| < r}

B′
r The ball in RN centered at 0 with radius r, i.e. B′

r(0)

2.2 An introduction to the unique continuation property

In this section we exhibit a brief introduction to the unique continuation principle. With
regard to this property, three different notions are available in the literature.

� The strong unique continuation property is said to hold for a family of functions,
e.g. the set of solutions to a certain partial differential equation, if no solution in
the family, except for the zero function, has a zero of infinite order. We notice that
the sentence has a zero of infinite order acquires a different meaning depending on
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the context. In the case of a C∞-function, we will say it has a zero of infinite order
at some point x0 if all its derivatives at x0 are zero. For example, the set of analytic
functions trivially satisfies the strong unique continuation principle. Instead, in the
case of a non-smooth function, we will assert it has a zero of infinite order at some
point x0 if

u(x) = O(|x− x0|k) as x→ x0 for all k ∈ N.

� A weaker version of the strong unique continuation property is the following one:
we say that the set of solutions to a certain partial differential equation satisties
the so-called weak unique continuation property if no solution, except for the zero
function, vanishes on some non-empty open set. We remark that if a family of
solutions satisfies the strong unique continuation principle then it trivially verifies
the weak unique continuation property.

� Finally, we assert that a family of functions enjoys the unique continuation property
from sets of positive measure if no function, besides possibly the zero function,
vanishes on a set of positive Lebesgue measure. In other words, if a function in the
family is non-trivial then its nodal set has zero Lebesgue measure.

A way to obtain the strong unique continuation property for solutions to some linear
second order elliptic equation on an open subset of RN is to prove their analyticity, since
in that case the strong unique continuation property would trivially follow. Hilbert’s
nineteenth problem asks whether the solutions to linear second order elliptic equations
with analytic coefficients are themselves analytic. Several contributions occured over the
years in order to give an answer to this problem. The first one was by Bernstein who
proved in 1904 the analyticity of solutions of class C3 in dimension 2; then Petrowsky
improved this result in 1939 requiring less regularity for solutions.

When coefficients are not analytic, there is no hope for solutions to be analytic; thus
in this case the strong unique continuation principle is not trivial to be proved, hence one
should use different methods. For instance, if we consider a linear second order elliptic
operator

Lu = −
N∑

i,j=1

∂

∂xi

(
aij

∂u

∂xj

)
+W · ∇u+ V u (2.2.1)

for some vector field W and for some potential V , where aij are the components of some
matrix-valued function A(x), an approach to study the unique continuation property in
the presence of non-analytic coefficients is the Carleman method, based on some weighted
a priori estimates (see [11]); indeed, Carleman proved the strong unique continuation
property in the case where N = 2, aij ∈ C2, V and W belong to L∞. Other contributions
in this field were later given by Aronszajn, Jerison-Kenig and Sogge. In 1992 Wolff proved
the weak unique continuation principle for N ≥ 3, aij ∈ C0,1, V ∈ LN/2 and W ∈ LN .
Under the same hypotheses, Koch and Tataru (2001) were able to prove the strong unique
continuation principle using the Carleman estimates. We observe that in the context of
Lebesgue spaces, the assumption V ∈ LN/2 is sharp. In order to show this, we exhibit a
counterexample provided by Jerison and Kenig in 1985.
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Example 2.2.1. We consider

f(x) = exp

(
−
(
log

1

|x|

)1+ε
)

for every |x| < 1, with ε > 0. (2.2.2)

Then by direct calculations, ∆f = V f in B1, with

V (x) ∼ (1 + ε)2
(
log

1

|x|

)2ε 1

|x|2
as |x| → 0. (2.2.3)

From this, we deduce that V ∈ Lp(B1) if and only if∫ 1

0
rN−1 (− log r)2εp r−2p dr < +∞,

thus if and only if 2p −N + 1 < 1, that is p < N/2. We conclude by observing that f is
non-trivial and for all k ∈ N it holds that

lim
r→0

f(r)r−k = 0,

namely f has infinite order of vanishing at the origin. Thus the family of solutions to
∆f = V f with V as in (2.2.3) does not satisfy the strong unique continuation principle.

Another approach to get unique continuation results for solutions to elliptic equations
has been developed by Garofalo and Lin, based on some local doubling properties obtained
via the so-called monotonicity formula for the Almgren frequency function, which is defined
as the local energy over the mass of non-trivial solutions near a fixed point x0. To be more
clear, we show the monotonicity formula in a simple case.

Example 2.2.2. Using the same notation as in (2.2.1), the frequency function associated
to a non-trivial solution of Lu = 0 in B1, with A = IdN and W ≡ 0, around x0 = 0 is
given by

N (r) =

r

∫
Br

[
|∇u|2 + V u2

]
dx∫

∂Br

|u|2 dS
. (2.2.4)

Once the boundedness of (2.2.4) is proved, it is possible to derive a doubling type condition,
that is ∫

B2r

u2 dx ≤ Cdoub

∫
Br

u2 dx,

for some positive constant Cdoub and then to prove the strong unique continuation property.
To this goal, let us suppose that u(x) = O(|x|k) as x → 0 for all k ∈ N and let k0 ∈ N be

such that
Cdoub

22k0+N
< 1. In particular, we have that∫

B1

u2 dx ≤ Cdoub

∫
B1/2

u2 dx ≤ . . . ≤ Ckdoub

∫
B

1/2k

u2 dx ≤
k large

CkdoubC0

(
1

2k

)2k0+N

≤ C0

(
Cdoub

22k0+N

)k k→+∞
−→ 0 ,
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which implies that u ≡ 0 in B1, as desired.

In 1986 Garofalo and Lin proved the strong unique continuation principle for solutions
to a perturbed problem in the presence of variable coefficients. In particular, they consider
a class of potentials that are allowed to be very singular, namely V (x) = c/|x|m with c ∈ R
and 0 ≤ m ≤ 2. If m > 2 the strong unique continuation property fails. Furthermore, in
1990 Fabes, Garofal and Lin proved the weak unique continuation principle for V in some
Kato class, see [34].

2.3 A fractional elliptic problem

In this part of the thesis we present the results contained in [25]. In particular, we
investigate fractional elliptic equations of type (1.2.1) in a bounded domain Ω ⊂ RN ,
where N ≥ 2, s ∈ (0, 1), and the potential h satisfies (1.2.2), aiming to prove the strong
unique continuation property and local asymptotics of solutions at any fixed point x0 ∈ ∂Ω
where the boundary of Ω is locally of class C1,1 and some outer homogeneous Dirichlet
boundary condition is assigned. These two assumptions are made explicit in (1.2.3) and
(1.2.4) for some suitable R > 0 and function g ∈ C1,1(RN−1). Without loss of generality,
up to translation and rotation, we can assume that x0 = 0 and

g(0) = 0 and ∇g(0) = 0. (2.3.1)

We recall that a weak solution to (1.2.1) is any function u ∈ Ds,2(RN ) such that (1.2.6)
holds true, where the space Ds,2(RN ) is defined in Section 1.2.

In order to remedy the difficulty of defining a suitable Almgren’s type frequency func-
tion in a non-local setting, we apply the Caffarelli-Silvestre extension technique to trans-
form the non-local problem in the local problem performed in (1.2.9), see Section 1.2 for
the contruction of the local problem. Thus, under assumptions (1.2.3) and (1.2.4), the
extension U = H(u) solves

−div
(
t1−2s∇U

)
= 0 in B+

R ,

− lim
t→0+

t1−2s∂tU = κshu in Γ−
g,R := {(x′, xN , 0) ∈ B′

R : xN < g(x′)},

U = 0 in Γ+
g,R := {(x′, xN , 0) ∈ B′

R : xN ≥ g(x′)}.

(2.3.2)

In this new local context, we define for all r > 0 the weighted Sobolev spaceH1(B+
r , t

1−2s dz)

as the completion of C∞(B+
r ) with respect to the norm

∥U∥H1(B+
r ,t1−2s dz) =

√∫
B+

r

t1−2s (|U |2 + |∇U |2) dz.

It is well known, see e.g. [52, Proposition 2.1], that there exists a well-defined continuous
trace operator

Tr : H1(B+
r , t

1−2s dz) → L2∗(s)(B′
r);
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in particular there exists a positive constant CN,s depending only on N and s such that,
for all r > 0 and U ∈ H1(B+

r , t
1−2s dz),

∥Tr(U)∥2
L2∗(s)(B′

r)
≤ CN,s

∫
B+

r

t1−2s
(
r−2|U(z)|2 + |∇U(z)|2

)
dz, (2.3.3)

where 2∗(s) is given in (1.2.8).
The suitable weighted Sobolev space for energy solutions to (2.3.2) isH1

Γ+
g,R

(B+
R , t

1−2s dz),

defined as the closure of C∞
c (B+

R \Γ+
g,R) in H

1(B+
R , t

1−2s dz). By energy solution to (2.3.2)

we mean a function U ∈ H1
Γ+
g,R

(B+
R , t

1−2s dz) such that

∫
B+

R

t1−2s∇U(x, t) · ∇ϕ(x, t) dz − κs

∫
Γ−
g,R

hTrU Trϕdx = 0 for all ϕ ∈ C∞
c (B+

R ∪ Γ−
g,R).

2.3.1 A diffeomorphism to straighten the boundary

In this section we exhibit a similar construction as in [3] in order to obtain the auxiliary
problem (2.3.11) where the Dirichlet-Neumann junction coincides with the hyperplane
xN = 0. For this, we consider the set of variables (y, t) ∈ RN × [0,+∞), with y =
(y′, yN ) = (y1, ..., yN−1, yN ). Let ρ ∈ C∞

c (RN−1) be such that ρ ≥ 0, supp(ρ) ⊂ B′
1 and∫

RN−1

ρ(y′) dy′ = 1. For every δ > 0 we define

ρδ(y
′) := δ−N+1ρ

(
y′

δ

)
.

Let us define also, for every j = 1, ..., N − 1,

Gj(y
′, yN ) :=


(
ρyN ∗ ∂yjg

)
(y′) if y′ ∈ RN−1, yN > 0,

∂yjg(y
′) if y′ ∈ RN−1, yN = 0,

where ∗ denotes the convolution product.
It is easy to verify that, for all j = 1, . . . , N−1, Gj ∈ C∞(RN+ ), Gj is Lipschitz continous

in RN+ , and
∂Gj

∂yi
∈ L∞(RN+ ) for every i ∈ {1, . . . , N}. Moreover, for all j = 1, . . . , N − 1

and i = 1, . . . , N ,

yN
∂Gj
∂yi

is Lipschitz continuous in RN+ .

As a consequence, we have that, letting

G̃j : RN → R, G̃j(y
′, yN ) := Gj(y

′, |yN |)

and
ψj : RN → R, ψj(y

′, yN ) = yj − yN G̃j(y
′, yN ),
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G̃j is Lipschitz continuous in RN and ψj ∈ C1,1(RN ) (i.e. ψj is continuously differentiable
with Lipschitz gradient) for all j = 1, . . . , N − 1. Let

G̃(y′, yN ) = (G̃1(y
′, yN ), G̃2(y

′, yN ), . . . , G̃N−1(y
′, yN ))

and denote as J
G̃
(y′, yN ) the Jacobian matrix of G̃ at (y′, yN ). Then JG̃ ∈ L∞(RN ,RN(N−1))

and
|G̃(y′, yN )−∇g(y′)| ≤ C |yN | for all (y′, yN ) ∈ RN , (2.3.4)

for some constant C > 0 independent of (y′, yN ).
Let us consider the local diffeomorphism F : RN+1 → RN+1 defined as

F (y′, yN , t) = (ψ1(y
′, yN ), ..., ψN−1(y

′, yN ), yN + g(y′), t). (2.3.5)

We observe that F is of class C1,1 and F (y′, 0, 0) = (y′, g(y′), 0), namely F−1 is straight-
ening the boundary of the set {(x′, xN , 0) : xN < g(x′)}.

Direct computations and (2.3.4) yield that

JacF (y′, yN , t) = JacF (y′, yN ) (2.3.6)

=



1− yN
∂G̃1
∂y1

−yN ∂G̃1
∂y2

· · · −yN ∂G̃1
∂yN−1

−G̃1 − yN
∂G̃1
∂yN

0

−yN ∂G̃2
∂y1

1− yN
∂G̃2
∂y2

· · · −yN ∂G̃2
∂yN−1

−G̃2 − yN
∂G̃2
∂yN

0
...

...
. . .

...
...

...

−yN ∂G̃N−1

∂y1
−yN ∂G̃N−1

∂y2
· · · 1− yN

∂G̃N−1

∂yN−1
−G̃N−1 − yN

∂G̃N−1

∂yN
0

∂g
∂y1

(y′) ∂g
∂y2

(y′) · · · ∂g
∂yN−1

(y′) 1 0

0 0 . . . 0 0 1



=


IdN−1 − yNJG̃ −∇g(y′) +O(yN ) 0

(∇g(y′))T 1 0

0T 0 1

 ,

where ∇g(y′) is meant as a column vector in RN−1, 0 is the null column vector in RN−1

and (∇g(y′))T ,0T are their transpose; from now on, the notation O(yN ) will be used to
denote blocks of matrices with all entries being O(yN ) as yN → 0 uniformly with respect
to y′ and t.

Setting J(y′, yN ) = JacF (y′, yN ), from (2.3.1) and the fact that g ∈ C1,1(RN−1) it
follows that ∇g(y′) = O(|y′|) as |y′| → 0, then

det J(y′, yN ) = 1 + |∇g(y′)|2 +O(yN ) = 1 +O(|y′|2) +O(yN ) (2.3.7)

as yN → 0 and |y′| → 0.
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In particular we have that det JF (0) = 1 ̸= 0; therefore, by the Inverse Function
Theorem, F is invertible in a neighbourhood of the origin, i.e. there exists R1 > 0 such
that, from (2.3.7)

α(y′, yN ) := det J(y′, yN ) > 0 in B′
R1

(2.3.8)

and F is a diffeomorphism of class C1,1 from BR1 to U = F (BR1) for some U open
neighbourhood of 0 such that U ⊂ BR. Furthermore

F−1(U ∩ Γ−
g,R) = Γ−

R1
and F−1(U ∩ Γ+

g,R) = Γ+
R1
,

where, for all r > 0, we denote

Γ−
r := {(y′, yN , 0) ∈ B′

r : yN < 0}, Γ+
r := {(y′, yN , 0) ∈ B′

r : yN ≥ 0}.

Since

F−1 ∈ C1,1(U , BR1), F ∈ C1,1(BR1 ,U), F (0) = F−1(0) = 0, JF (0) = JF−1(0) = IdN+1,

we have that

JF−1(x) = IdN+1 +O(|x|) and F−1(x) = x+O(|x|2) as |x| → 0, (2.3.9)

JF (y) = IdN+1 +O(|y|) and F (y) = y +O(|y|2) as |y| → 0. (2.3.10)

If U is a solution to (2.3.2), then W = U ◦ F solves
−div

(
t1−2sA∇W

)
= 0 in B+

R1
,

lim
t→0+

(
t1−2sA∇W · ν

)
= κsh̃ TrW in Γ−

R1
,

W = 0 in Γ+
R1
,

(2.3.11)

where ν = (0, 0, . . . , 0,−1) is the vertical downward unit vector, A is the (N +1)× (N +1)
variable coefficient matrix (not depending on t) given by

A(y) = (J(y))−1((J(y))−1)T | det J(y)|, (2.3.12)

and
h̃(y) = α(y)h(F (y, 0)), y ∈ Γ−

R1
.

Equation (2.3.11) is meant in a weak sense, i.e. W belongs to H1
Γ+
R1

(B+
R1
, t1−2s dz) (defined

as the closure of C∞
c (B+

R1
\ Γ+

R1
) in H1(B+

R1
, t1−2s dz)) and satisfies∫

B+
R1

t1−2sA(y)∇W (y, t) · ∇ϕ(y, t) dz − κs

∫
Γ−
R1

h̃TrW Trϕdy = 0 (2.3.13)

for all ϕ ∈ C∞
c (B+

R1
∪ Γ−

R1
).
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We observe that A is symmetric and, in view of (2.3.9)–(2.3.10), uniformly elliptic if
R1 is chosen sufficiently small; furthermore A has C0,1 coefficients. We also remark that,
under assumption (1.2.2),

h̃ ∈W 1,p(Γ−
R1

). (2.3.14)

From (2.3.6) it follows that

J(y′, yN )
−1 =

(
(M(y′, yN ))

−1 0

0T 1

)
,

where 0 is the null column vector in RN and

M(y′, yN ) =

 IdN−1 − yNJG̃ −∇g(y′) +O(yN )

(∇g(y′))T 1

 . (2.3.15)

From (2.3.6) and (2.3.8) one can deduce that

detM(y′, yN ) = α(y′, yN ) > 0 in B′
R1
. (2.3.16)

Let us define
B(y′, yN ) := detM(y′, yN )(M(y′, yN ))

−1.

By (2.3.15) and a direct calculation we have that

B =



1 +
∑
j ̸=1

∣∣ ∂g
∂yj

∣∣2+O(yN ) − ∂g
∂y1

∂g
∂y2

+O(yN ) · · · − ∂g
∂y1

∂g
∂yN−1

+O(yN )

− ∂g
∂y2

∂g
∂y1

+O(yN ) 1 +
∑
j ̸=2

∣∣ ∂g
∂yj

∣∣2+O(yN ) · · · − ∂g
∂y2

∂g
∂yN−1

+O(yN )

...
...

. . .
...

− ∂g
∂yN−1

∂g
∂y1

+O(yN ) − ∂g
∂yN−1

∂g
∂y2

+O(yN ) · · · 1 +
∑

j ̸=N−1

∣∣ ∂g
∂yj

∣∣2+O(yN )

∇g +O(yN )

−(∇g)T +O(yN ) 1 +O(yN )


.

(2.3.17)
Then (J(y′, yN ))

−1 can be rewritten as follows

(J(y′, yN ))
−1 =

 1
α(y) B(y) 0

0T 1

 ,

thus from (2.3.12) it turns out that

A(y) =

(
D(y) 0

0 α(y)

)
, (2.3.18)

where D = 1
αBB

T . From (2.3.17), (2.3.7), and (2.3.8) it follows that

D(y′, yN ) =

 IdN−1 +O(|y′|2) +O(yN ) O(yN )

O(yN ) 1 +O(|y′|2) +O(yN )

 , (2.3.19)
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where here O(yN ), respectively O(|y′|2), denote blocks of matrices with all entries being
O(yN ) as yN → 0, respectively O(|y′|2) as |y′| → 0. In particular we have that

A(y) = IdN+1 +O(|y|) as |y| → 0. (2.3.20)

We set

µ(z) :=
A(y)z · z

|z|2
, (2.3.21)

observing that µ(z) > 0 in BR1 , possibly choosing R1 smaller, thanks to (2.3.20). Thus
we are allowed to define the vector

β(z) :=
A(y)z

µ(z)
, (2.3.22)

having that

β(z) = (β′(z), βN+1(z)) =

(
D(y)y

µ(z)
,
α(y)t

µ(z)

)
, (2.3.23)

since the matrix A is of the form (2.3.18). Furthermore, up to choosing R1 smaller, we
have that

∥A(y)∥L(RN+1,RN+1) ≤ 2 for all y ∈ B′
R1
. (2.3.24)

Moreover, for every ξ = (ξ1, . . . , ξN , ξN+1) ∈ RN+1 and y ∈ B′
R1

, we define a further vector

in RN+1 denoted with the symbol dA(y) ξ ξ such that for every i = 1, ..., N + 1 the i-th
component of this vector is given by

(dA(y) ξ ξ)i =
N+1∑
j,k=1

∂ziajk(y) ξjξk. (2.3.25)

Lemma 2.3.1. Let µ be as in (2.3.21) and A as in (2.3.12). Then

µ(z) = 1 +O(|z|) as |z| → 0+ (2.3.26)

and
∇µ(z) = O(1) as |z| → 0+. (2.3.27)

Proof. Estimate (2.3.26) follows directly from (2.3.21) and (2.3.20). In order to prove
(2.3.27), we differentiate (2.3.21), obtaining that, for all z = (y, t) ∈ BR1 ,

∇µ(z) = −2
(A(y)z · z)z

|z|4
+
dA(y)zz

|z|2
+ 2

A(y)z

|z|2
= −2

µ(z)z

|z|2
+
dA(y)zz

|z|2
+ 2

A(y)z

|z|2
.

Noting that dA(y)zz = O(|z|2) as |z| → 0+ since the matrix A has Lipschitz coefficients,
and using (2.3.26) and (2.3.20), we deduce that

∇µ(z) = − 2z

|z|2
[1 +O(|z|)] +O(1) +

2

|z|2
[z +O(|z|2)] = O(1)

as |z| → 0+, thus proving (2.3.27).
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Lemma 2.3.2. Let β be as in (2.3.22) and A as in (2.3.12). Then we have that, as
|z| → 0+,

β(z) = z +O(|z|2) = O(|z|), (2.3.28)

Jacβ(z) = A(y) +O(|z|) = IdN+1 +O(|z|), (2.3.29)

divβ(z) = N + 1 +O(|z|). (2.3.30)

Proof. The result follows by combining (2.3.26), (2.3.27) and (2.3.20).

2.3.2 Approximating domains

In this section we provide some important inequalities that will be pivotal throughout our
discussion in Section 2.3, and then we construct some regular sets approximating the region
on which an homogeneous Dirichlet boundary condition is prescribed. Then we build up a
sequence of solutions to certain boundary value problems on such approximating domains
converging in the H1(B+

R0
, t1−2sdz)-norm to the solution of (2.3.11), for some suitable

radius R0.
We start by recalling from [36, Lemma 2.4] the following Hardy type inequality with

boundary terms, which will be used throughout the paper.

Lemma 2.3.3. For all r > 0 and w ∈ H1(B+
r , t

1−2s dz)(
N − 2s

2

)2 ∫
B+

r

t1−2sw
2(z)

|z|2
dz

≤
∫
B+

r

t1−2s

(
∇w(z) · z

|z|

)2

dz +

(
N − 2s

2r

)∫
∂+B+

r

t1−2sw2dS.

We refer to Section 2.1 for the definition of ∂+B+
r . In order to prove the coercivity-

type inequality (2.3.32), we provide the following Sobolev-type inequality with boundary
terms (see Lemma 2.6 in [36]).

Lemma 2.3.4. There exists a positive constant S̃N,s > 0 depending on N and s such that,
for all r > 0 and V ∈ H1(B+

r , t
1−2sdz),(∫

B′
r

|TrV |2∗(s)dy

) 2
2∗(s)

≤ S̃N,s

[
N − 2s

2r

∫
∂+B+

r

t1−2sV 2dS +

∫
B+

r

t1−2s|∇V |2dz
]
.

(2.3.31)

Lemma 2.3.5. For every ᾱ > 0, there exists r(ᾱ) ∈ (0, R1) such that, for any 0 < r ≤
r(ᾱ), ζ ∈ Lp(B′

R1
) such that ∥ζ∥Lp(B′

R1
) ≤ ᾱ and V ∈ H1(B+

r , t
1−2sdz),∫

B+
r

t1−2sA∇V · ∇V dz − κs

∫
B′

r

ζ|TrV |2dy + N − 2s

2r

∫
∂+B+

r

t1−2sµV 2 dS (2.3.32)

≥ C̃N,s

∫
B+

r

t1−2s|∇V |2 dz +

(∫
B′

r

|TrV |2∗(s)dy

) 2
2∗(s)

 ,
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for some positive constant C̃N,s > 0 depending only on N and s.

Proof. Let us estimate from below each term on the left hand side of (2.3.32). To this
aim, exploiting (2.3.20), we can choose r1 ∈ (0, R1) such that, for all 0 < r ≤ r1 and
V ∈ H1(B+

r , t
1−2s dz),∫

B+
r

t1−2sA∇V · ∇V dz ≥ 1

2

∫
B+

r

t1−2s|∇V |2 dz. (2.3.33)

Furthermore, thanks to (2.3.26), we can assert that µ ≥ 1/4 in Br if 0 < r ≤ r2, for
some r2 ∈ (0, R1). Hence, exploiting (2.3.31), we deduce that, for all 0 < r ≤ r2 and
V ∈ H1(B+

r , t
1−2s dz),

N − 2s

2r

∫
∂+B+

r

t1−2sµV 2 dS ≥ 1

4S̃N,s

(∫
B′

r

|TrV |2∗(s)dy

) 2
2∗(s)

− 1

4

∫
B+

r

t1−2s|∇V |2 dz.

(2.3.34)
Let ᾱ > 0 and let us observe that by (2.3.31) TrV ∈ L2∗(s)(B′

r). Hence applying the
Hölder’s inequality, we infer that for all r ∈ (0, R1), V ∈ H1(B+

r , t
1−2sdz), and ζ ∈

Lp(B′
R1

) such that ∥ζ∥Lp(B′
R1

) ≤ ᾱ,

∫
B′

r

ζ |TrV |2 dy ≤ c̃N,s,p r
ε∥ζ ∥Lp(B′

R1
)

(∫
B′

r

|TrV |2∗(s)dy

) 2
2∗(s)

(2.3.35)

≤ c̃N,s,pᾱ r
ε

(∫
B′

r

|TrV |2∗(s)dy

) 2
2∗(s)

for some positive constant c̃N,s,p > 0 (depending only on p,N, s), where

ε =
2sp−N

p
> 0. (2.3.36)

Selecting r3 = r3(ᾱ) ∈ (0, R1) such that

κsc̃N,s,pᾱr
ε ≤ 1

8S̃N,s
for all 0 < r ≤ r3 (2.3.37)

and combining (2.3.33), (2.3.34), and (2.3.35), we obtain that, for all 0 < r ≤ r(ᾱ) :=
min{r1, r2, r3} and V ∈ H1(B+

r , t
1−2s dz),∫

B+
r

t1−2sA∇V · ∇V dz − κs

∫
B′

r

ζ|TrV |2dy + N − 2s

2r

∫
∂+B+

r

t1−2sµV 2 dS

≥ 1

4

∫
B+

r

t1−2s|∇V |2dz +
(

1

4S̃N,s
− κsc̃N,s,pᾱ r

ε

)(∫
B′

r

|TrV |2∗(s)dy

) 2
2∗(s)

≥ C̃N,s

∫
B+

r

t1−2s|∇V |2dz +

(∫
B′

r

|TrV |2∗(s)dy

) 2
2∗(s)

 ,
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where C̃N,s := min
{
1
4 ,

1
8S̃N,s

}
, thus proving (2.3.32).

For purposes that will be clear in the sequel we provide the following remark.

Remark 2.3.6. For ᾱ > 0, let r(ᾱ) and c̃N,s,p be as in Lemma 2.3.5 and let ζ ∈ Lp(B′
R1

)
be such that ∥ζ∥Lp(B′

R1
) ≤ ᾱ. Then, for every r ∈ (0, r(ᾱ)] and V ∈ H1(B+

r , t
1−2sdz), we

have that∫
B′

r

ζ|TrV |2dy ≤ S̃N,sc̃N,s,pr
εᾱ

2(N − 2s)

r

∫
∂+B+

r

t1−2sµV 2dS +
1

8κs

∫
B+

r

t1−2s|∇V |2 dz.

(2.3.38)

Proof. Applying (2.3.35) and (2.3.31), we obtain (2.3.38), taking into account that, for all
0 < r ≤ r(ᾱ), (2.3.37) holds and µ ≥ 1/4.

The main difficulty in the proof of a Pohozaev type identity for problem (2.3.11), which
is needed to differentiate the Almgren quotient, relies in a substancial lack of regularity at
Dirichlet-Neumann junctions. We face this difficulty by a double approximation procedure,
involving both the potential h and the N -dimensional region Γ+

R1
where the solution to

(2.3.11) is forced to vanish. In order to construct our approximation procedure, let η ∈
C∞([0,+∞)) be such that

η ≡ 1 in [0, 1/2], η ≡ 0 in [1,+∞), 0 ≤ η ≤ 1 and η′ ≤ 0. (2.3.39)

Let
f : [0,+∞) → R, f(t) = η(t) + (1− η(t))t1/4.

We observe that

f ∈ C∞([0,+∞)), f(t) = 1 for all t ∈ [0, 1/2], and f(t)− 4t f ′(t) ≥ 0 for all t ≥ 0.
(2.3.40)

Furthermore

f(t) ≥ 1

2
and f(t) ≥ t1/4 for all t ≥ 0. (2.3.41)

For every n ∈ N \ {0}, we introduce the sequence of functions

fn(t) =
f(nt)

n1/8
.

Then, (2.3.40) implies that

fn ∈ C∞([0,+∞)), fn(t) = n−1/8 for all t ∈ [0, 1/2n], fn(t)−4t f ′n(t) ≥ 0 for all t ≥ 0,
(2.3.42)

whereas (2.3.41) yields

fn(t) ≥
1

2
n−1/8 and fn(t) ≥ n1/8t1/4 for all t ≥ 0. (2.3.43)
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By (2.3.14) and density of smooth functions in Sobolev spaces, there exists a sequence of

potential terms hn ∈ C∞(Γ−
R1

)
such that

hn → h̃ in W 1,p(Γ−
R1

). (2.3.44)

Let
ᾱ0 = sup

n
∥hn∥Lp(Γ−

R1
) (2.3.45)

and set
R0 = r(ᾱ0) (2.3.46)

according to the notation introduced in Lemma 2.3.5.

Remark 2.3.7. Because of the above choice of R0, we have that (2.3.32) holds with any
ζ ∈ Lp(B′

R1
) such that |ζ| ≤ |hn| a.e. (being hn trivially extended in B′

R1
\ Γ−

R1
), for any

n ∈ N \ {0}, r ≤ R0, and for all V ∈ H1(B+
r , t

1−2s dz).

Let us define, for all n ∈ N \ {0},

γn = {(y′, yN , t) ∈ B+
R0

: yN = fn(t)}, (2.3.47)

with R0 as in (2.3.46). If (y′, yN , t) ∈ γn, then from (2.3.43) it follows that

n1/8t1/4 ≤ fn(t) = yN ≤ R0,

thus obtaining that

t ≤ R4
0√
n

if (y′, yN , t) ∈ γn. (2.3.48)

The approximating domains are defined as

Un := {(y′, yN , t) ∈ B+
R0

: yN < fn(t)} (2.3.49)

with topological boundary
∂Un = σn ∪ γn ∪ τn,

where γn has been defined in (2.3.47) and

σn =

{
(y′, yN ) ∈ B′

R0
: yN <

1

n1/8

}
, τn =

{
(y′, yN , t) ∈ ∂BR0 : t ≥ 0, yN < fn(t)

}
,

see Figure 2.1.
Functions fn have been constructed with the precise aim to have that Un satisfy the

following geometric property, which will be used to estimate some boundary terms in the
Pohozaev-type identity.

Lemma 2.3.8. There exists n̄ ∈ N\{0} such that, for all n ≥ n̄ and z = (y, t) ∈ γn∩B+
R0

,

A(y)z · ν ≥ 0 on γn, (2.3.50)

where γn has been defined in (2.3.47) and ν = ν(z) is the outward unit normal vector at
z ∈ ∂Un.
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yN

t

n−1/8σn

τn

γn

Figure 2.1: Section of the approximating domain Un.

Proof. For all z = (y, t) ∈ γn ∩B+
R0

we have that ν = ν(z) = n
|n| , where n = (0, 1,−f ′n(t)).

Hence, from (2.3.18) and (2.3.19) it follows that

A(y)(y, t) · n = (D(y)y, α(y)t) · ((0, 1),−f ′n(t)) = yN (1 +O(|y′|) +O(yN ))− α(y)tf ′n(t).

Therefore, possibly choosing R1 (and consequently R0) smaller from the beginning and
recalling (2.3.7)–(2.3.8), we obtain that

A(y)(y, t) · n ≥

{
yN
2 − 2tf ′n(t) =

1
2(fn(t)− 4tf ′n(t)) if f ′n(t) ≥ 0

yN
2 if f ′n(t) ≤ 0

thus concluding that A(y)(y, t) · n ≥ 0 in view of (2.3.42).

Now we construct a sequence Un of solutions to some suitable approximating problems
on Un that converges strongly to W in the weighted Sobolev space H1(B+

R0
, t1−2s dz).

Functions Un will be sufficiently regular to satisfy a Rellich-Nec̆as identity and make it
integrable on Un, thus allowing us to obtain a Pohozaev type identity for Un with some
remainder terms produced by the transition of the boundary conditions, whose sign can
anyway be understood thanks to the geometric property (2.3.50); therefore, passing to
the limit in the Pohozaev identity satisfied by Un, we end up with inequality (2.3.67) for
W , which will be used to estimate from below the derivative of the Almgren frequency
function (2.3.89) and then to prove that such frequency has a finite limit at 0 (Proposition
2.3.19).

Let W ∈ H1(B+
R1
, t1−2s dz) be a non-trivial energy solution to (2.3.11), in the sense

clarified in (2.3.13). By density, there exists a sequence of functions Gn ∈ C∞
c (B+

R1
\Γ+

R1
)

such that Gn → W strongly in H1(B+
R1
, t1−2s dz). Thanks to (2.3.48), without loss of

generality we can assume that Gn = 0 on γn.
We construct a sequence of cut-off functions letting η ∈ C∞([0,+∞)) as in (2.3.39)

and defining

ηn : RN → R, ηn(y
′, yN ) =

{
1− η

(
−nyN

2

)
if yN ≤ 0,

0 if yN > 0.
(2.3.51)
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For any fixed n ∈ N, we consider the following boundary value problem
−div

(
t1−2sA∇Un

)
= 0 in Un,

lim
t→0+

(
t1−2sA∇Un · ν

)
= κsηnhnTrUn in σn,

Un = Gn in τn ∪ γn,

(2.3.52)

in a weak sense, i.e.
Un −Gn ∈ Hn,∫
Un

t1−2sA∇Un · ∇Φ dz − κs

∫
σn

ηnhnTrUn TrΦ dy = 0 for all Φ ∈ Hn,
(2.3.53)

where Hn is defined as the closure of C∞
c (Un ∪ σn) in H1(Un, t1−2s dz).

We aim to prove that for any fixed n ∈ N problem (2.3.53) admits a unique weak
solution. To this purpose, we premise the Urysohn’s subsequence principle.

Lemma 2.3.9. Let X be a topological space and let us consider a sequence {xn}n∈N of
elements of X. We suppose that

(i) every subsequence of {xn}n∈N admits a convergent subsequence in X,

(ii) all convergent subsequences of {xn}n∈N have the same limit x̄ ∈ X.

Then it holds that {xn}n∈N converges to x̄ in X.

Proof. We assume by contradiction that {xn}n∈N does not converge to x̄. Hence there
exists a neighbourhood W of x̄ such that for all n ∈ N there exists n̄ > n such that
xn̄ /∈W . In this way we are able to costruct a subsequence {xnk

}k∈N such that xnk
/∈W .

In virtue of (i), there exists a subsequence {xnkh
}h∈N and y ∈ X such that xnkh

→ y in
X. Therefore, by (ii), it follows that y = x̄ and this implies that for every neighbourhood
V of x̄ there exists ν ∈ N such that xnkh

∈ V for all h ≥ ν. Thus if we choose V =W we
obtain that xnkh

∈W definitely and this is a contradiction since xnkh
is a subsequence of

xnk
, thus completing the proof.

In the following proposition we establish the existence of a unique solution Un of
(2.3.53) for every n ∈ N and we also show the convergence of such sequence to W .

Proposition 2.3.10. For any fixed n ∈ N, there exists a unique solution Un to (2.3.53).
Moreover Un →W strongly in H1(B+

R0
, t1−2sdz) (where Un is extended trivially to zero in

B+
R0

\ Un) and R0 is taken as in (2.3.46).

Proof. For any fixed n ≥ 1, Un solves (2.3.53) if and only if Vn = Un −Gn satisfies

Vn ∈ Hn and bn(Vn,Φ) = ⟨Fn,Φ⟩ for all Φ ∈ Hn, (2.3.54)

where

bn : Hn×Hn → R, bn(V,Φ) =

∫
Un

t1−2sA∇V ·∇Φ dz−κs
∫
σn

ηnhnTrV TrΦ dy (2.3.55)
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and

Fn : Hn → R, ⟨Fn,Φ⟩ = −
∫
Un

t1−2sA∇Gn ·∇Φ dz+κs

∫
σn

ηnhnTrGnTrΦ dy. (2.3.56)

From Hölder’s inequality, (2.3.31), and the boundedness of {hn}n≥1 and {Gn}n≥1 respec-
tively in Lp(Γ−

R1
) and in H1(B+

R1
, t1−2s dz), it follows that

|⟨Fn,Φ⟩| ≤ c ∥Φ∥Hn for all Φ ∈ Hn (2.3.57)

for some constant c > 0 which does not depend on n. In particular Fn ∈ H⋆
n, being H⋆

n

the dual space of Hn, and ∥Fn∥H⋆
n
≤ c uniformly in n.

The idea is to apply the Lax-Milgram Theorem. In order to do this, we remark that,
using the Hardy inequality in Lemma 2.3.3, after extending functions Vn trivially to zero
in B+

R0
\ Un, the weighted L2-norm of the gradient(∫

Un

t1−2s|∇Vn|2dz
)1/2

turns out to be an equivalent norm in the space Hn that will be still denoted as ∥ · ∥Hn .
It follows that bn is coercive: indeed, for every V ∈ Hn, we have that

bn(V, V ) =

∫
Un

t1−2sA∇V · ∇V dz − κs

∫
σn

ηnhn|TrV |2dy (2.3.58)

=

∫
B+

R0

t1−2sA∇V · ∇V dz − κs

∫
B′

R0

ηnhn|TrV |2dy

≥ C̃N,s

∫
B+

R0

t1−2s|∇V |2dz = C̃N,s

∫
Un

t1−2s|∇V |2dz = C̃N,s∥V ∥2Hn
,

as a consequence of Lemma 2.3.5, with ζ = ηnhn, see Remark 2.3.7. Furthermore, from
(2.3.24) and (2.3.38) it follows that

|bn(V,W )| ≤
(
2 +

1

8

)
∥V ∥Hn∥W∥Hn ≤ 3∥V ∥Hn∥W∥Hn (2.3.59)

for all V,W ∈ Hn. In particular bn is continuous.
Hence, from (2.3.58), (2.3.59) and the Lax-Milgram Theorem we can conclude that

there exists a unique Vn ∈ Hn solving (2.3.54), which implies also the existence and
uniqueness of a solution Un to (2.3.53). Moreover, combining (2.3.58) and (2.3.57) we also
obtain that, extending Vn trivially to zero in B+

R0
\ Un,

∥Vn∥H1(B+
R0
,t1−2s dz) ≤

c

C̃N,s
for all n,

thus Vn is bounded in H1(B+
R0
, t1−2s dz). From this, it follows that there exist V ∈

H1(B+
R0
, t1−2s dz) and a subsequence {Vnk

} of {Vn} such that

Vnk
⇀ V weakly in H1(B+

R0
, t1−2s dz). (2.3.60)
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From the fact that Vn ∈ Hn, we easily deduce that V has null trace on ∂+B+
R0

and on

Γ+
R0

. Hence it can be taken as a test function in (2.3.13) yielding∫
B+

R0

t1−2sA∇W · ∇V dz − κs

∫
Γ−
R0

h̃TrW TrV dy = 0. (2.3.61)

Since Gn →W strongly in H1(B+
R1
, t1−2s dz), from (2.3.3) we deduce that TrGn → TrW

in L2∗(s)(B′
R1

). By (2.3.3) and (2.3.60) we have that TrVnk
⇀ TrV weakly in L2∗(s)(B′

R1
).

Furthermore ηnhn → h̃ in L
N
2s (Γ−

R1
). Hence from (2.3.61) it follows that

0 =

∫
B+

R0

t1−2sA∇W · ∇V dz − κs

∫
Γ−
R0

h̃TrW TrV dy

= lim
k→+∞

∫
B+

R0

t1−2sA∇Gnk
· ∇Vnk

dz − κs

∫
Γ−
R0

ηnk
hnk

TrGnk
TrVnk

dy

= − lim
k→+∞

⟨Fnk
, Vnk

⟩ = − lim
k→∞

bnk
(Vnk

, Vnk
)

thus obtaining that ∥Vnk
∥H1(B+

R0
,t1−2s dz) → 0 as k → +∞ in view of (2.3.58). Hence

Vnk
→ 0 strongly in H1(B+

R0
, t1−2s dz). By Lemma 2.3.9, we can deduce that actually

Vn → 0 strongly in H1(B+
R0
, t1−2s dz). Indeed assumption (i) of Lemma 2.3.9 is a trivial

consequence of the boundedness of Vn in H1(B+
R0
, t1−2s dz), and, as far as assumption (ii)

is concerned, if Vnh
is any other convergent subsequence of Vn, namely such that Vnh

⇀ V
for some V ∈ H1(B+

R0
, t1−2s dz), repeating the same argument as above, we are able to

prove that Vnh
→ 0 in H1(B+

R0
, t1−2s dz) as well. Then also assumption (ii) is proved.

Therefore, by Lemma 2.3.9, we can conclude that Vn → 0 strongly in H1(B+
R0
, t1−2s dz)

and, consequently, it holds that Un = Vn+Gn →W in H1(B+
R0
, t1−2s dz) as n→ +∞.

2.3.3 Pohozaev-type inequality for the extended problem

The aim of this section is to prove a Pohozaev-type inequality for the energy solution
W ∈ H1(B+

R1
, t1−2s dz) to (2.3.11); in this situation we have to settle for an inequality

instead of a classical Pohozev-type identity because of the mixed boundary conditions,
which produce some extra singular terms with a recognizable sign when integrating the
Rellich-Nec̆as identity.

The idea is to obtain the inequality as limit of ones for the approximating sequence
Un. For every r ∈ (0, R0), n ∈ N such that n > r−8, and δ ∈

(
0, 1

4n

)
, we consider the

following domain
Or,n,δ := Un ∩ {(y, t) ∈ Br : t > δ}.

We note that, if δ ∈
(
0, 1

4n

)
, then fn(t) = n−1/8 for 0 ≤ t ≤ 2δ, see (2.3.42). We can split

its topological boundary as follows

∂Or,n,δ = σr,n,δ ∪ γr,n,δ ∪ τr,n,δ, (2.3.62)
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with

σr,n,δ :=

{
(y′, yN , t) ∈ Br : yN <

1

n1/8
, t = δ

}
, (2.3.63)

γr,n,δ :=
{
(y′, yN , t) ∈ B+

r : yN = fn(t), t ≥ δ
}
, (2.3.64)

τr,n,δ :=
{
(y′, yN , t) ∈ ∂+B+

r : yN < fn(t), t ≥ δ
}
, (2.3.65)

see Figure 2.2.

yN

t

n−1/8

σr,n,δ

τr,n,δ

γr,n,δ

Figure 2.2: Section of Or,n,δ.

We define also the set

S−
r := {(y′, yN , t) ∈ ∂Br : t = 0 and yN < 0}. (2.3.66)

Proposition 2.3.11 (Pohozaev-type inequality). Let W ∈ H1(B+
R1
, t1−2s dz) weakly solve

(2.3.11). Then, for almost every r ∈ (0, R0),

r

2

∫
∂+B+

r

t1−2sA∇W · ∇W dS − r

∫
∂+B+

r

t1−2s |A∇W · ν|2

µ
dS (2.3.67)

+
κs
2

∫
Γ−
r

(
∇h̃ · β′ + h̃divβ′

)
|TrW |2dy − κsr

2

∫
S−
r

h̃|TrW |2dS′

≥ 1

2

∫
B+

r

t1−2sA∇W · ∇W divβ dz −
∫
B+

r

t1−2sJacβ(A∇W ) · ∇W dz

+
1

2

∫
B+

r

t1−2s(dA∇W∇W ) · β dz + 1− 2s

2

∫
B+

r

t1−2sα

µ
A∇W · ∇W dz

and∫
B+

r

t1−2sA∇W · ∇W dz =

∫
∂+B+

r

t1−2s(A∇W · ν)W dS + κs

∫
Γ−
r

h̃|TrW |2dy. (2.3.68)

Remark 2.3.12. The term
∫
S−
r
h̃|TrW |2dS′ is understood for a.e. r ∈ (0, R0) as the

L1-function given by the weak derivative of the W 1,1(0, R0)-function r 7→
∫
Γ−
r
h̃|TrW |2dy.
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Likewise, the two terms∫
∂+B+

r

t1−2sA∇W · ∇W dS and

∫
∂+B+

r

t1−2s |A∇W · ν|2

µ
dS

are understood for a.e. r ∈ (0, R0) as the L1-functions given by the weak derivative of the

W 1,1(0, R0)-functions r 7→
∫
B+

r
A∇W · ∇W dz and r 7→

∫
B+

r
t1−2s |A∇W ·ν|2

µ dz respectively.

Proof. Since the matrix A has Lipschitz coefficients and being the equation satisfied in
a smooth domain containing Or,n,δ, by classical elliptic regularity theory (see e.g. [51,
Theorem 2.2.2.3]) we have that

Un ∈ H2(Or,n,δ). (2.3.69)

Hence from (2.3.69) the following Rellich-Nec̆as identity holds in a distributional sense in
Or,n,δ:

div
(
(Ã∇Un · ∇Un)β − 2(β · ∇Un)Ã∇Un

)
= (Ã∇Un · ∇Un)divβ − 2(β · ∇Un)div(Ã∇Un) + (dÃ∇Un∇Un) · β

− 2Jacβ(Ã∇Un) · ∇Un,

(2.3.70)

where Ã(z) = t1−2sA(y) and β has been defined in (2.3.22). Moreover we have that

(Ã∇Un ·∇Un)β − 2(β ·∇Un)Ã∇Un ∈W 1,1(Or,n,δ),

as a consequence of (2.3.69) and that Ã and β have Lipschitz components.
Thus we can use the integration by parts formula for Sobolev functions on the Lipschitz

domain Or,n,δ, obtaining that∫
∂Or,n,δ

(
(Ã∇Un · ∇Un)β − 2(β · ∇Un)Ã∇Un

)
· ν dS

=

∫
Or,n,δ

t1−2sA∇Un · ∇Un divβ dz − 2

∫
Or,n,δ

t1−2sJacβ(A∇Un) · ∇Un dz

+

∫
Or,n,δ

t1−2s(dA∇Un∇Un) · β dz + (1− 2s)

∫
Or,n,δ

t1−2sα

µ
A∇Un · ∇Un dz,

(2.3.71)

by (2.3.25) and (2.3.52). Taking into account (2.3.62), (2.3.63), (2.3.64), (2.3.65), we
estimate each term on the left hand side of (2.3.71). For this, by (2.3.22), (2.3.21), using
that A is symmetric and observing that on τr,n,δ the outward unit normal vector ν can be
written as z/r, we have that∫

τr,n,δ

(t1−2sA∇Un · ∇Un)β · ν dz =
∫
τr,n,δ

(t1−2sA∇Un · ∇Un)
A(y)z

µ
· z
r
dz

=

∫
τr,n,δ

(t1−2sA∇Un · ∇Un)µr2
1

µr
dz

= r

∫
τr,n,δ

t1−2sA∇Un · ∇Un dz,
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and

−2

∫
τr,n,δ

t1−2s(β · ∇Un)A∇Un · ν dS = −2

∫
τr,n,δ

t1−2s

(
A(y)z

µ
· ∇Un

)
A∇Un · ν dS

= −2

∫
τr,n,δ

t1−2s

(
A∇Un
µ

· rν
)
A∇Un · ν dS

= −2r

∫
τr,n,δ

t1−2s |A∇Un · ν|2

µ
dS.

As far as the integral on γr,n,δ is concerned, since ∇Un boils down to
∂Un
∂ν

on γr,n,δ, it

holds that∫
γr,n,δ

(t1−2sA∇Un · ∇Un)(β · ν) dz − 2

∫
γr,n,δ

t1−2s(β · ∇Un)(A∇Un · ν) dS

= −
∫
γr,n,δ

t1−2s

µ

∣∣∣∣∂Un∂ν

∣∣∣∣2(Aν · ν)(Az · ν) dS.
Finally, we notice that on σr,n,δ, ν = (0, . . . , 0,−1) , hence∫

σr,n,δ

t1−2s(A∇Un · ∇Un)(β · ν) dy =

∫
σr,n,δ

t1−2s(A∇Un · ∇Un)
(
A(y)z

µ
· ν
)
dy

= −
∫
σr,n,δ

δ2−2sα

µ
A∇Un · ∇Un dy,

and

−2

∫
σr,n,δ

t1−2s(β · ∇Un)(A∇Un · ν) dy = 2

∫
σr,n,δ

δ1−2s

(
A(y)z

µ
· ∇Un

)
(α∂tUn) dy

= 2

∫
σr,n,δ

δ1−2sD∇yUn · y + αδ∂tUn
µ

(α∂tUn) dy

= 2

∫
σr,n,δ

δ1−2sα

µ
∂tUn(D∇yUn · y) dy

+ 2

∫
σr,n,δ

δ2−2sα
2

µ
|∂tUn|2 dy.
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Putting together all the above computations, (2.3.71) can be rewritten as follows

r

∫
τr,n,δ

t1−2sA∇Un · ∇Un dS − 2r

∫
τr,n,δ

t1−2s |A∇Un · ν|2

µ
dS

−
∫
γr,n,δ

t1−2s

µ
|∂νUn|2(Aν · ν)(Az · ν) dS −

∫
σr,n,δ

δ2−2sα

µ
A∇Un · ∇Un dy

+ 2

∫
σr,n,δ

δ1−2sα

µ
∂tUn(D∇yUn · y) dy + 2

∫
σr,n,δ

δ2−2sα
2

µ
|∂tUn|2 dy

=

∫
Or,n,δ

t1−2sA∇Un · ∇Un divβ dz − 2

∫
Or,n,δ

t1−2sJacβ(A∇Un) · ∇Un dz

+

∫
Or,n,δ

t1−2s(dA∇Un∇Un) · β dz + (1− 2s)

∫
Or,n,δ

t1−2sα

µ
A∇Un · ∇Un dz.

From Lemma 2.3.8 and uniform ellipticity of A it follows that∫
γr,n,δ

t1−2s

µ
|∂νUn|2(Aν · ν)(Az · ν) dS ≥ 0.

Hence, from this we get the following inequality

r

∫
τr,n,δ

t1−2sA∇Un · ∇Un dS − 2r

∫
τr,n,δ

t1−2s |A∇Un · ν|2

µ
dS

−
∫
σr,n,δ

δ2−2sα

µ
A∇Un · ∇Un dy + 2

∫
σr,n,δ

δ1−2sα

µ
∂tUn(D∇yUn · y) dy

+ 2

∫
σr,n,δ

δ2−2sα
2

µ
|∂tUn|2 dy

≥
∫
Or,n,δ

t1−2sA∇Un · ∇Un divβ dz − 2

∫
Or,n,δ

t1−2sJβ(A∇Un) · ∇Un dz

+

∫
Or,n,δ

t1−2s(dA∇Un∇Un) · β dz + (1− 2s)

∫
Or,n,δ

t1−2sα

µ
A∇Un · ∇Un dz.

(2.3.72)

At this point, we want to pass to the limit as δ → 0. We denote as Or,n the limit domain
whose boundary is given by ∂Or,n = σr,n ∪ γr,n ∪ τr,n, i.e.

Or,n = Un ∩Br, τr,n =
{
(y′, yN , t) ∈ ∂Br : yN < fn(t), t ≥ 0

}
,

γr,n =
{
(y′, yN , t) ∈ B+

r : yN = fn(t)
}
, σr,n =

{
(y′, yN ) ∈ B′

r : yN < n−1/8
}
.

We claim that, for every fixed r ∈ (0, R0) and n > r−8, there exists a sequence δk → 0+

such that

−
∫
σr,n,δk

δ2−2s
k

α

µ
A∇Un · ∇Un dy + 2

∫
σr,n,δk

δ2−2s
k

α2

µ
|∂tUn|2 dy → 0 as k → ∞.
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Using that α defined in (2.3.8) is bounded by (2.3.7), µ ≥ 1/4 in BR0 , and A has
bounded coefficients, it is enough to prove that there exists a sequence δk → 0+ such

that lim
k→∞

∫
σr,n,δk

δ2−2s
k |∇Un|2 dy = 0. To prove this, we argue by contradiction and as-

sume that there exist a positive constant c > 0 and δ0 > 0 such that, for any δ ∈ (0, δ0),

c

δ
≤
∫
σr,n,δ

δ1−2s|∇Un(y, δ)|2 dy,

which, after integration over (0, δ0), gives a contradiction, since it holds∫ δ0

0

c

δ
dδ ≤

∫ δ0

0
δ1−2s

(∫
σr,n,δ

|∇Un(y, δ)|2 dy

)
dδ ≤ ∥Un∥2H1(B+

R0
,t1−2s dz)

,

where the first integral diverges.
In order to prove the convergence

2

∫
σr,n,δ

δ1−2sα

µ
∂tUn(D∇yUn · y) dy−→

δ→0
−2κs

∫
σr,n

1

µ
ηnhnTrUn(D∇yTrUn · y) dy,

we exploit a continuity result for t1−2s∂tUn and ∇yUn over Un ∩Br, which allows us to
pass to the limit by the Dominated Convergence Theorem. More precisely we claim that,
for all r ∈ (0, R0) and n > r−8,

t1−2s∂tUn ∈ C0(Un ∩Br), ∇yUn ∈ C0(Un ∩Br). (2.3.73)

The continuity of t1−2s∂tUn and ∇yUn away from {t = 0} easily follows from classical
elliptic regularity theory, since Un is solution of an uniformly elliptic equation (we refer to
[50, Corollary 8.36]). Nevertheless, Lemma 3.3 in [36] allows us to prove the continuity of
t1−2s∂tUn and ∇yUn up to {t = 0} when we stay away from the corner between σr,n and
γr,n, i.e. away from the edge {(y′, yN , t) ∈ Br : t = 0 and yN = n−1/8}: to this aim it is
enough to apply [36, Lemma 3.3] to the function Un ◦F−1. Eventually, we can deduce the
continuity of t1−2s∂tUn and ∇yUn also in the set

{(y′, yN , t) ∈ Br : t ∈ [0, 1/2n] and yN ∈ [0, n−1/8]}

as a consequence of the regularity result given in Lemma A.1.1 applied to the function
Un ◦ F−1.

We remark that for all r ∈ (0, R0) and n > r−8, the terms integrated over τr,n,δ belong
to L1(τr,n) in view of (2.3.73) and the terms integrated over Or,n,δ belong to L1(Un ∩Br)
since Un ∈ H1(Un, t1−2s dz). These facts allow us passing to the limit in (2.3.72) along
δ = δk as k → +∞ by absolute continuity of the Lebesgue integral, thus ending up with
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the following inequality

r

∫
τr,n

t1−2sA∇Un · ∇Un dS − 2r

∫
τr,n

t1−2s |A∇Un · ν|2

µ
dS

− 2κs

∫
σr,n

1

µ
ηnhnTrUn(D∇yTrUn · y) dy

≥
∫
Or,n

t1−2sA∇Un · ∇Undivβ dz − 2

∫
Or,n

t1−2sJacβ(A∇Un) · ∇Un dz

+

∫
Or,n

t1−2s(dA∇Un∇Un) · β dz

+ (1− 2s)

∫
Or,n

t1−2sα

µ
A∇Un · ∇Un dz,

(2.3.74)

for all r ∈ (0, R0) and n > r−8.
Now for r ∈ (0, R0) fixed, we aim to pass to the limit in (2.3.74) as n→ +∞. Therefore,

we extend the functions Un to be zero in B+
r \ Un. By the strong convergence Un →W in

H1(B+
R0
, t1−2sdz) (see Proposition 2.3.10), it follows that∫ R0

0

(∫
∂+B+

r

t1−2s
(
|∇(Un −W )|2 + |Un −W |2

)
dS

)
dr → 0,

i.e. the sequence of functions

un(r) :=

∫
∂+B+

r

t1−2s
(
|∇(Un −W )|2 + |Un −W |2

)
dS

converges to 0 in L1(0, R0) and hence a.e. along a subsequence unk
. In particular we have

that
Unk

→W as k → ∞ in H1(∂+B+
r , t

1−2s dS) for a.e. r ∈ (0, R0), (2.3.75)

where H1(∂+B+
r , t

1−2s dS) is the completion of C∞(∂+B+
r ) with respect to the norm

∥ψ∥H1(∂+B+
r ,t1−2s dS) =

(∫
∂+B+

r

t1−2s
(
|∇ψ|2 + ψ2

)
dS

)1/2
.

Let us now discuss the behavior of the term

∫
σr,n

1

µ
ηnhnTrUn(D∇yTrUn · y) dy as n→ ∞.
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Since ηn(y
′, yN ) = 0 if yN > − 1

n , by the Divergence Theorem we have that∫
σr,n

1

µ
ηnhnTrUn(D∇yTrUn · y) dy =

∫
Γ−
r

1

µ
ηnhnTrUn(D∇yTrUn · y) dy (2.3.76)

=
1

2

∫
Γ−
r

divy

(
1

µ
ηnhn|TrUn|2Dy

)
dy − 1

2

∫
Γ−
r

|TrUn|2divy
(
1

µ
ηnhnDy

)
dy

=
1

2

∫
S−
r

1

µ
ηnhn|TrUn|2Dy · ν dS′ − 1

2

∫
Γ−
r

|TrUn|2divy
(
ηnhnβ

′) dy
=
r

2

∫
S−
r

ηnhn|TrUn|2 dS′ − 1

2

∫
Γ−
r

|TrUn|2
(
ηn∇yhn · β′ + ηnhndivyβ

′) dy
− 1

2

∫
Γ−
r

|TrUn|2hn∇yηn · β′ dy,

where S−
r has been introduced in (2.3.66) and β′ has been defined in (2.3.23). From the

strong convergence of Un to W in H1(B+
R0
, t1−2sdz) proved in Proposition 2.3.10, (2.3.44)

and (2.3.3), it follows that∫ R0

0

(∫
S−
r

(
ηnhn|TrUn|2 − h̃|TrW |2

)
dS′
)
dr → 0,

i.e. the sequence of functions r 7→
∫
S−
r

(
ηnhn|TrUn|2 − h̃|TrW |2

)
dS′ converges to 0 in

L1(0, R0) and hence a.e. along a further subsequence, which we still index by nk. In
particular we deduce that∫

S−
r

ηnk
hnk

|TrUnk
|2 dS′ →

∫
S−
r

h̃|TrW |2 dS′ as k → ∞ for a.e. r ∈ (0, R0). (2.3.77)

The strong convergence of Un to W in H1(B+
R0
, t1−2sdz) implies that TrUn → TrW in

L2∗(s)(B′
R0

) by (2.3.3). Combining this fact with (2.3.44) and that ηn → 1 a.e. in Γ−
R0

, we
obtain that∫

Γ−
r

|TrUn|2
(
ηn∇yhn · β′ + ηnhndivyβ

′)dy
→
∫
Γ−
r

|TrW |2
(
∇yh̃ · β′ + h̃divyβ

′
)
dy

(2.3.78)

as n→ ∞ for all r ∈ (0, R0). Finally, we observe that, by (2.3.51) and (2.3.23),

∇yηn · β′ =
1

µ

n

2
η′
(
− nyN

2

)
(D(y)y)N .

By (2.3.19) we have that (D(y)y)N = O(yN ) as yN → 0 and (2.3.39) allows us to assert
that η′

(
− nyN

2

)
̸= 0 only for yN ∈

(
− 2

n ,−
1
n

)
. Hence we can conclude that

∇yηn · β′ is bounded in Γ−
r uniformly with respect to n.
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Therefore, by the Hölder’s inequality,∣∣∣∣∫
Γ−
r

|TrUn|2hn∇yηn · β′ dy
∣∣∣∣

≤ const ∥TrUn∥2L2∗(s)(Γ−
r )
∥hn∥Lp(Γ−

r )

∣∣∣{(y′, yN ) ∈ Γ−
r : − 2

n < yN < − 1
n}
∣∣∣ 2s
pN

(p−N
2s

)

N

where |·|N stands for theN -dimensional Lebesgue measure; hence, since {TrUn} is bounded
in L2∗(s)(Γ−

r ) and the same hols true for {hn} in Lp(Γ−
r ), we infer that

lim
n→∞

∫
Γ−
r

|TrUn|2hn∇yηn · β′ dy = 0. (2.3.79)

Combining (2.3.77), (2.3.78) and (2.3.79), passing to the limit in (2.3.76) along the sub-
sequence, we obtain that

lim
k→∞

∫
σr,nk

1

µ
ηnk

hnk
TrUnk

(D∇yTrUnk
· y) dy

=
r

2

∫
S−
r

h̃|TrW |2 dS′ − 1

2

∫
Γ−
r

|TrW |2
(
∇yh̃ · β′ + h̃divyβ

′
)
dy. (2.3.80)

In virtue of (2.3.75), (2.3.80) and the strong convergence of Un to W in H1(B+
R0
, t1−2sdz),

we can pass to the limit as n = nk → ∞ in (2.3.74) obtaining the desired Pohozaev-type
inequality (2.3.67) for the solution W .

Finally, to prove (2.3.68), we first multiply equation (2.3.52) by Un itself and integrate
by parts over Or,n,δ; then we pass to the limit as δ → 0+ using (2.3.73) and as n = nk → ∞,
taking into account (2.3.75).

2.3.4 The Almgren frequency function for the extended problem

In this section we analyze the properties of the Almgren frequency functionN (r) associated
to (2.3.11), defined in (2.3.89): in particular we will prove the boundedness of the frequency
and that N possesses a nonnegative finite limit as r → 0+.

To this aim, let W ∈ H1
Γ+
R1

(B+
R1
, t1−2s dz) be a nontrivial weak solution to (2.3.11).

For all r ∈ (0, R1), we define

E(r) =
1

rN−2s

(∫
B+

r

t1−2sA∇W · ∇W dz − κs

∫
Γ−
r

h̃|TrW |2 dy
)

(2.3.81)

and

H(r) =
1

rN+1−2s

∫
∂+B+

r

t1−2sµ(z)W 2(z) dS. (2.3.82)

Let us first estimate the derivative of H.
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Lemma 2.3.13. Let E and H be the functions defined as in (2.3.81) and (2.3.82). Then
H ∈W 1,1

loc (0, R1) and

H ′(r) =
2

rN+1−2s

∫
∂+B+

r

t1−2sµW
∂W

∂ν
dS +H(r)O(1) as r → 0+ (2.3.83)

in a distributional sense and for a.e. r ∈ (0, R1), where ν = ν(z) = z
|z| denotes the unit

outer normal vector to ∂+B+
r . Moreover

H ′(r) =
2

rN+1−2s

∫
∂+B+

r

t1−2s(A∇W · ν)W dS +H(r)O(1) (2.3.84)

and

H ′(r) =
2

r
E(r) +H(r)O(1) (2.3.85)

as r → 0+.

Proof. We observe that H ∈ L1
loc(0, R1) by definition and it can be rewritten as

H(r) =

∫
SN+
θ1−2s
N+1µ(rθ)W

2(rθ) dS.

Thus, for all test functions φ ∈ C∞
c (0, R1), we have that

−
∫ R1

0
H(r)φ′(r)dr = −

∫ R1

0

(∫
SN+
θ1−2s
N+1µ(rθ)W

2(rθ) dS

)
φ′(r) dr

= −
∫ R1

0

∫
SN+
θ1−2s
N+1µ(rθ)W

2(rθ)∇φ̃(rθ) · θ dS dr

= −
∫
B+

R1

t1−2sµ(z)W
2(z)

|z|N+2−2s
∇φ̃(z) · z dz

=

∫
B+

R1

div

(
t1−2sµ(z)W 2(z)z

|z|N+2−2s

)
φ̃(z)dz

=

∫
B+

R1

t1−2s

(
2µ(z)W (z)∇W (z) +W 2(z)∇µ(z)

|z|N+2−2s
· z
)
φ̃(z)dz

=

∫ R1

0

(∫
SN+
θ1−2s
N+1

[
2µ(rθ)W (rθ)∇W (rθ) · θ +W 2(rθ)∇µ(rθ) · θ

]
dS

)
φ(r) dr,

where we set φ̃(rθ) := φ(r) for every r ∈ (0, R1) and θ ∈ SN+ , having that φ′(r) = ∇φ̃(rθ)·θ
and that φ̃(R1θ) = 0. Hence the distributional derivative of H in (0, R1) is given by

H ′(r) =
2

rN+1−2s

∫
∂+B+

r

t1−2sµW
∂W

∂ν
dS +

1

rN+1−2s

∫
∂+B+

r

t1−2sW 2∇µ · ν dS. (2.3.86)
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Since W,∇W ∈ L2(B+
R1
, t1−2sdz), from (2.3.26) and (2.3.27) we easily infer that H ∈

W 1,1
loc (0, R1) and (2.3.86) also holds for a.e. r ∈ (0, R1). Moreover, combining (2.3.26),

(2.3.27), (2.3.82) and (2.3.86), we obtain (2.3.83).
In order to prove (2.3.84), we introduce γ(z) := µ(z)(β(z)− z)/|z|, observing that

γ(z) · z = 0,

div(t1−2sγ) = t1−2sdivγ + (1− 2s)γN+1t
−2s,

γN+1(z) = tO(1) as |z| → 0+,

and

divγ =

(
∇µ(z)
|z|

− µ(z)z

|z|3

)
(β(z)− z) +

µ(z)

|z|
(divβ − (N + 1)) = O(1) as |z| → 0+,

as a consequence of (2.3.26), (2.3.27), (2.3.28), (2.3.30). From all these facts, we deduce
that for a.e. r ∈ (0, R1),∫

∂+B+
r

t1−2s(A∇W · ν)W dS =

∫
∂+B+

r

t1−2sµW
∂W

∂ν
dS +

1

2

∫
∂+B+

r

t1−2sγ · ∇(W 2) dS

=

∫
∂+B+

r

t1−2sµW
∂W

∂ν
dS − 1

2

∫
∂+B+

r

div(t1−2sγ)W 2 dS

=

∫
∂+B+

r

t1−2sµW
∂W

∂ν
dS +H(r)O(rN+1−2s),

(2.3.87)

using (2.3.82) and (2.3.26). Hence, from (2.3.83) and (2.3.87), it follows (2.3.84). From
(2.3.81), (2.3.68) and (2.3.84) we infer that

rN−2sE(r) =

∫
∂+B+

r

t1−2s(A∇W · ν)W dS =
rN+1−2s

2
H ′(r) +H(r)O(rN+1−2s),

as r → 0+, which gives (2.3.85), thus proving the lemma.

Lemma 2.3.14. The function H defined as in (2.3.82) is strictly positive for every 0 <
r ≤ R0, with R0 being defined in (2.3.46).

Proof. We prove the statement arguing by contradiction. To this aim, we suppose that
there exists R ≤ R0 such that H(R) = 0. Then, using that µ ≥ 1/4 in Br for every
r ≤ R0, we obtain that

∫
∂+B+

R

t1−2sW 2 dS = 0, hence W ≡ 0 on ∂+B+
R
. From (2.3.85) it

follows that H is differentiable in a classical sense in R and H ′(R) = 2R
−1
E(R); on the

other hand, H(r) ≥ 0 = H(R) implies that 0 = H ′(R) = 2R
−1
E(R) and hence E(R) = 0.

Then from (2.3.32) it follows that

0 =

∫
B+

R

t1−2sA∇W · ∇W dz − κs

∫
Γ−
R

h̃|TrW |2 dy ≥ C̃N,s

∫
B+

R

t1−2s|∇W |2 dz. (2.3.88)
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By (2.3.88) and Lemma 2.3.3, we can deduce that W ≡ 0 in B+
R
, which in turn leads to

W ≡ 0 in B+
R1

∩ {t > δ} from classical unique continuation principles for second order
elliptic equations with Lipschitz coefficients (see [48]). Since δ > 0 can be taken arbitrarily
small, we end up with W ≡ 0 in B+

R1
, which is a contradiction.

As a consequence of Lemma 2.3.14, the Almgren type frequency function

N (r) =
E(r)

H(r)
(2.3.89)

is well defined in (0, R0], with R0 as in (2.3.46).
In the following lemma we provide an estimate for the derivative of the function E.

Lemma 2.3.15. Let E be the function defined as in (2.3.81). Then E ∈W 1,1
loc (0, R1) and

E′(r) ≥ 2

rN−2s

∫
∂+B+

r

t1−2s |A∇W · ν|2

µ
+O(r−1+δ̄)

[
E(r) +

N − 2s

2
H(r)

]
as r → 0+

(2.3.90)
for a.e. r ∈ (0, R0), where

δ̄ = min{ε, 1} ∈ (0, 1] (2.3.91)

and ε is defined as in (2.3.36).

Proof. From (2.3.81) we deduce that E ∈ L1
loc(0, R1). Using the coarea formula we obtain

that

E′(r) =
2s−N

rN+1−2s

(∫
B+

r

t1−2sA∇W · ∇W dz − κs

∫
Γ−
r

h̃|TrW |2 dy
)

(2.3.92)

+
1

rN−2s

(∫
∂+B+

r

t1−2sA∇W · ∇W dS − κs

∫
S−
r

h̃|TrW |2 dS′
)

in a distributional sense and a.e. in (0, R1), thus having that E ∈ W 1,1
loc (0, R1). Using

(2.3.67), Lemma 2.3.1 and Lemma 2.3.2, we infer that

E′(r) ≥ 2

rN−2s

∫
∂+B+

r

t1−2s |A∇W · ν|2

µ
dS +

O(r)

rN+1−2s

∫
B+

r

t1−2sA∇W · ∇W dz (2.3.93)

+
O(1)

rN+1−2s

∫
Γ−
r

(|h̃|+ |∇yh̃|)|TrW |2 dy

as r → 0+, for a.e. r ∈ (0, R0). We can estimate the last two terms on the right hand side
in (2.3.93) exploiting (2.3.32). Indeed, observing that

O(r)

rN+1−2s

∫
B+

r

t1−2sA∇W · ∇W dz =
O(r)

rN+1−2s

∫
B+

r

t1−2s|∇W |2 dz,

as a consequence of (2.3.20), we obtain that

O(r)

rN+1−2s

∫
B+

r

t1−2sA∇W · ∇W dz = O(1)

[
E(r) +

N − 2s

2
H(r)

]
(2.3.94)

44



and, taking into account (2.3.35), we also derive that

O(1)

rN+1−2s

∫
Γ−
r

(|h̃|+ |∇yh̃|)|TrW |2 dy =
O(rε)

rN+1−2s

(∫
Γ−
r

|TrW |2∗(s) dy
)2/2∗(s)

(2.3.95)

= O(r−1+ε)

[
E(r) +

N − 2s

2
H(r)

]
.

Estimate (2.3.90) follows from (2.3.93), (2.3.94) and (2.3.95).

Lemma 2.3.16. Let N be the function defined in (2.3.89). Then, for every 0 < r ≤ R0,

N (r) > −N − 2s

2
(2.3.96)

and
lim inf
r→0+

N (r) ≥ 0. (2.3.97)

Proof. We deduce (2.3.96) from (2.3.32). By (2.3.81), (2.3.82), (2.3.38) and (2.3.33), we
obtain that for all 0 < r ≤ R0

rN−2sE(r) =

∫
B+

r

t1−2sA∇W · ∇W dz − κs

∫
Γ−
r

h̃|TrW |2 dy

≥ 3

8

∫
B+

r

t1−2s|∇W |2 dz − κsS̃N,sc̃N,s,pr
εᾱ0

2(N − 2s)

r

∫
∂+B+

r

t1−2sµW 2 dS

≥ −C̃rε+N−2sH(r),

with ᾱ0 as in (2.3.45) and C̃ := 2(N − 2s)κsS̃N,sc̃N,s,pᾱ0 > 0. From this and (2.3.89) it
follows that, for every 0 < r ≤ R0,

N (r) ≥ −C̃rε,

which in turn leads to (2.3.97).

Lemma 2.3.17. Let N be the function defined in (2.3.89). Then N ∈W 1,1
loc ((0, R0]).

Proof. Let us consider any interval [a, b] with 0 < a < b ≤ R0 and notice that N ∈
L1([a, b]) trivially since E and H are continuous functions by Lemma 2.3.15 and Lemma
2.3.13. A bit more difficult is to show that also N ′ ∈ L1([a, b]). In order to do this, we
prove two statements:

1) if f ∈W 1,1([a, b]) and f > 0, then 1/f ∈W 1,1([a, b]);

2) if f, g ∈W 1,1([a, b]), then fg ∈W 1,1([a, b]).
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Then it will be sufficient to apply the above results with f = E and g = 1/H to prove the
thesis, taking into account Lemmas 2.3.13, 2.3.14, and 2.3.15.

As far as 1) is concerned, we first observe that f ≥ C > 0 for some positive constant
C > 0 by assumption and then we introduce a real-valued function G ∈ C1(R) as in Figure
2.3 such that G(t) = 1/t for every t ≥ C.

C

Figure 2.3: The graph of the function G

Thus, using that f ≥ C and f is continuous, it follows that G ◦ f = 1/f ∈ L1([a, b]).
Moreover it holds that |G′(t)| ≤ const. Hence,(

1

f

)′
= (G ◦ f)′ = (G′ ◦ f)f ′ ∈ L1([a, b])

since f ′ ∈ L1([a, b]) by assumption, thus obtaining that 1/f ∈W 1,1([a, b]).
Now let us move on to prove 2). For this, we observe that there exist {fn}n, {gn}n ⊂

C∞([a, b]) such that
fn → f and gn → g in W 1,1((a, b)). (2.3.98)

From this, it also follows that

fn → f and gn → g in L∞((a, b)), (2.3.99)

in virtue of the Sobolev embedding W 1,1((a, b)) ↪→ L∞((a, b)), which allows us also to
conclude that fg ∈ L1((a, b)). Thus, expoliting (2.3.98) and (2.3.99), we deduce that

(fngn)
′ = f ′ngn + fng

′
n → f ′g + fg′ in L1((a, b)). (2.3.100)

Neverthless, since fngn → fg in L1((a, b)) as a consequence of (2.3.98) and (2.3.99), then
it follows that fngn → fg in D′((a, b)) as well. This leads to

(fngn)
′ → (fg)′ in D′((a, b)). (2.3.101)

Therefore, combining (2.3.100) and (2.3.101) and by the uniqueness of limits in the
distributional sense, we obtain that (fg)′ = f ′g + fg′ ∈ L1((a, b)), thus proving that
fg ∈W 1,1((a, b)).
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Lemma 2.3.18. Let N be the function defined in (2.3.89). Then

N ′(r) ≥ V1(r) + V2(r) (2.3.102)

for almost every r ∈ (0, R0), where

V1(r)

=

2r

[(∫
∂+B+

r
t1−2s |A∇W ·ν|2

µ dS
)(∫

∂+B+
r
t1−2sµW 2 dS

)
−
(∫

∂+B+
r
t1−2s(A∇W · ν)W dS

)2]
(∫

∂+B+
r
t1−2sµW 2 dS

)2
and

V2(r) = O(r−1+δ̄)

(
N (r) +

N − 2s

2

)
as r → 0+,

with δ̄ as in (2.3.91).

Proof. Exploiting (2.3.84), (2.3.85) and (2.3.90), we obtain that

N ′(r) =
E′(r)H(r)−H ′(r)E(r)

H2(r)
=
E′(r)H(r)

H2(r)
− H ′(r)

H2(r)

(r
2
H ′(r) +H(r)O(r)

)

≥
2r

[(∫
∂+B+

r
t1−2s |A∇W ·ν|2

µ dS
)(∫

∂+B+
r
t1−2sµW 2dS

)
−
(∫

∂+B+
r
t1−2s(A∇W · ν)WdS

)2]
(∫

∂+B+
r
t1−2sµW 2dS

)2
+O(r−1+δ̄)

(
N (r) +

N − 2s

2

)
+O(r) +O(1)

1

H(r)

1

rN−2s

∫
∂+B+

r

t1−2s(A∇W · ν)W dS

(2.3.103)

as r → 0+, for a.e. r ∈ (0, R0). In order to estimate the last term in (2.3.103), we observe
that

O(1)
1

H(r)

1

rN−2s

∫
∂+B+

r

t1−2s(A∇W · ν)W dS =
H ′(r)

H(r)
O(r) +O(r)

= N (r)O(1) +O(r),

(2.3.104)

as r → 0+, by (2.3.84) and (2.3.85). Inserting (2.3.104) into (2.3.103), we obtain that

N ′(r)

≥
2r

[(∫
∂+B+

r
t1−2s |A∇W ·ν|2

µ dS
)(∫

∂+B+
r
t1−2sµW 2dS

)
−
(∫

∂+B+
r
t1−2s(A∇W · ν)WdS

)2]
(∫

∂+B+
r
t1−2sµW 2dS

)2
+N (r)O(1) +O(r) +O(r−1+δ̄)

(
N (r) +

N − 2s

2

)
as r → 0+,

which yields (2.3.102) in view of (2.3.97).
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Proposition 2.3.19. Let N be the function defined in (2.3.89). Then there exists C1 > 0
such that, for every r ∈ (0, R0],

N (r) ≤ C1. (2.3.105)

Moreover the limit
γ := lim

r→0+
N (r) (2.3.106)

exists, is finite and nonnegative.

Proof. From Lemma 2.3.18, we deduce that N ′(r) ≥ V2(r) a.e. in (0, R0), since V1(r) ≥ 0
as a consequence of Schwarz’s inequality. Hence there exist 0 < R̂ < R0 and C2 > 0 such
that

N ′(r) ≥ −C2r
−1+δ̄

(
N (r) +

N − 2s

2

)
, (2.3.107)

for a.e. r ∈ (0, R̂). Then

d

dr

[
log

(
N (r) +

N − 2s

2

)]
≥ −C2r

−1+δ̄ a.e. in (0, R̂),

and, integrating the above inequality between (r, R̂) with r < R̂, we obtain the upper
bound

N (r) ≤
(
N (R̂) +

N − 2s

2

)
eC2

R̂δ̄

δ̄ − N − 2s

2
for all r ∈ (0, R̂),

which yields (2.3.105), in view of the continuity of N on (0, R0]. From (2.3.107), we deduce
that

d

dr

[
eC2

rδ̄

δ̄

(
N (r) +

N − 2s

2

)]
≥ 0 a.e. in (0, R̂),

hence

r 7→ eC2
rδ̄

δ̄

(
N (r) +

N − 2s

2

)
is a monotonically increasing function on the interval (0, R̂), thus its limit as r → 0+

does exist, and the same holds true for the limit of the function N . From (2.3.105) we can
conclude that the limit γ := lim

r→0+
N (r) is finite and it is nonnegative by Lemma 2.3.16.

Lemma 2.3.20. Let γ = lim
r→0+

N (r). Then:

(i) there exists k1 > 0 such that, for all r ∈ (0, R0],

H(r) ≤ k1r
2γ ; (2.3.108)

(ii) for any σ > 0, there exists k2(σ) > 0 such that, for all r ∈ (0, R0),

H(r) ≥ k2(σ)r
2γ+σ.
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Proof. To prove (i), we write

N ′(r) = β1(r) + β2(r), (2.3.109)

where

β1(r) := N ′(r) + C2r
−1+δ̄

(
C1 +

N−2s
2

)
≥ 0 for a.e. r ∈ (0, R̂), (2.3.110)

as a consequence of (2.3.107) and (2.3.105), and

β2(r) := −C2r
−1+δ̄

(
C1 +

N−2s
2

)
∈ L1(0, R̂). (2.3.111)

Since N ∈W 1,1
loc ((0, R0]) and by (2.3.109), it holds that

N (r)−N (ε) =

∫ r

ε
N ′(s) ds =

∫ r

ε
β1(s) ds+

∫ r

ε
β2(s) ds

=

∫ r

0
χ(ε,r)β1(s) ds+

∫ r

0
χ(ε,r)β2(s) ds

(2.3.112)

for every r ∈ (0, R̂). Passing to the limit as ε → 0+ into (2.3.112), taking into account
(2.3.106), (2.3.110) and (2.3.111), we obtain that

N (r)− γ =

∫ r

0
N ′(s) ds for all r ∈ (0, R̂). (2.3.113)

From this, by (2.3.110), we easily deduce that

N (r)− γ ≥ −C2

(
C1 +

N−2s
2

) rδ̄
δ̄

for all r ∈ (0, R̂). (2.3.114)

By (2.3.85) we have that there exist a positive constant C > 0 and a suitable radius R̃0 > 0
such that

H ′(r)

H(r)
≥ 2N (r)

r
− C ≥ 2γ

r
− 2C2

(
C1 +

N−2s
2

) r−1+δ̄

δ̄
− C

for all r ∈ (0,min{R̃0, R̂}). Integrating the above estimate we gain (2.3.108) for all
r ∈ (0,min{R̃0, R̂}). Taking into account that H is continuous and positive on (0, R0], we
obtain (2.3.108) for all r ∈ (0, R0], since

H(r)

r2γ
≤ max

r∈[min{R̃0,R̂},R0]

H(r)

r2γ
.

Now we move on to prove (ii). Since γ = lim
r→0+

N (r), for any σ > 0 there exists rσ > 0

such that, for any r ∈ (0, rσ),

N (r) < γ +
σ

2
,

and hence by (2.3.85)

H ′(r)

H(r)
=

2N (r)

r
+O(1) <

2γ + σ

r
+ const,

up to taking rσ smaller arguing as above. Integrating over the interval (r, rσ) and taking
into account that H is continuous and positive in (0, R0], we also complete the proof of
the second statement.
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2.3.5 Blow-up analysis and local asymptotics

Let W ∈ H1
Γ+
R1

(B+
R1
, t1−2s dz) be a nontrivial weak solution to (2.3.11). For every λ ∈

(0, R0), with R0 being as in (2.3.46), let us define

wλ(z) =
W (λz)√
H(λ)

. (2.3.115)

We have that wλ is a weak solution to
−div

(
t1−2sA(λ ·)∇wλ

)
= 0 in B+

R1/λ
,

lim
t→0+

(
t1−2sA(λ ·)∇wλ · ν

)
= κsλ

2sh̃(λ·) Trwλ on Γ−
R1/λ

,

wλ = 0 on Γ+
R1/λ

.

(2.3.116)

Moreover we have that ∫
SN+
θ1−2s
N+1µ(λθ)|w

λ(θ)|2 dS = 1. (2.3.117)

Lemma 2.3.21. The family of functions {wλ}λ∈(0,R0) is bounded in H1(B+
1 , t

1−2sdz).

Proof. By (2.3.89) and using (2.3.33), (2.3.37) and (2.3.38), we obtain that, for every
λ ∈ (0, R0),

N (λ) =
λ2s−N

H(λ)

(∫
B+

λ

t1−2sA∇W · ∇W dz − κs

∫
Γ−
λ

h̃|TrW |2 dy

)

≥ λ2s−N

H(λ)

[
3

8

∫
B+

λ

t1−2s|∇W |2 dz − κsS̃N,sc̃N,s,pλ
εᾱ0

2(N − 2s)

λ

∫
∂+B+

λ

t1−2sµW 2dS

]
≥ 3

8

∫
B+

1

t1−2s|∇wλ|2 dz − 2(N − 2s)κsS̃N,sc̃N,s,pλ
εᾱ0

≥ 3

8

∫
B+

1

t1−2s|∇wλ|2 dz − N − 2s

4
,

which together with (2.3.105) implies that
{
∥∇wλ∥L2(B+

1 ,t
1−2sdz)

}
λ∈(0,R0)

is bounded.

From this and (2.3.117), the boundedness of {wλ}λ∈(0,R0) in H1(B+
1 , t

1−2sdz) follows by
Lemma 2.3.3.

We aim to prove strong convergence in H1(B+
1 , t

1−2sdz) of {wλ} along a proper van-
ishing sequence of λ’s; to this purpose, we first need to establish the following doubling
properties.

Lemma 2.3.22. There exists C3 > 0 such that

1

C3
H(λ) ≤ H(Rλ) ≤ C3H(λ), (2.3.118)
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∫
B+

R

t1−2s|∇wλ|2dz ≤ C32
N−2s

∫
B+

1

t1−2s|∇wRλ|2dz, (2.3.119)

and ∫
B+

R

t1−2s|wλ|2dz ≤ C32
N+2−2s

∫
B+

1

t1−2s|wRλ|2dz. (2.3.120)

for any λ < R0/2 and R ∈ [1, 2].

Proof. From (2.3.85) we deduce that, for a.e. r ∈ (0, R0),

H ′(r)

H(r)
=

2N (r)

r
+O(1) as r → 0+.

Hence for all r ∈ (0, R̃0),

−C − N − 2s

r
≤ H ′(r)

H(r)
≤ C +

2C1

r
,

with C > 0 and R̃0 as in the proof of Lemma 2.3.20, in virtue of (2.3.96) and (2.3.105).
Integrating the above inequalities over the interval (λ,Rλ), with R ∈ (1, 2] and λ < R̃0/R,
we obtain that

2−(N−2s)e−C
R̃0
R

(R−1) ≤ H(Rλ)

H(λ)
≤ 4C1eC

R̃0
R

(R−1). (2.3.121)

The above chain of inequalities trivially extends to the case R = 1. Estimate (2.3.118)
follows from (2.3.121) and the fact that H is continuous and strictly positive on (0, R0]
(Lemmas 2.3.13 and 2.3.14). By scaling and (2.3.118), we easily deduce (2.3.119) as follows∫
B+

R

t1−2s|∇wλ|2 dz = λ2s−N

H(λ)

∫
B+

Rλ
t1−2s|∇W (z)|2 dz

=
λ2R2−2s+N

H(λ)

∫
B+

1

t1−2s|∇W (Rλz)|2 dz = RN−2sH(Rλ)

H(λ)

∫
B+

1

t1−2s|∇wRλ(z)|2 dz

≤ RN−2sC3

∫
B+

1

t1−2s|∇wRλ(z)|2 dz.

With a similar argument we obtain also (2.3.120).

Lemma 2.3.23. Let wλ be as in (2.3.115), with λ ∈ (0, R0). Then there exist M > 0 and
λ0 > 0 such that, for any λ ∈ (0, λ0), there exists Rλ ∈ [1, 2] such that∫

∂+B+
Rλ

t1−2s|∇wλ|2 dS ≤M

∫
B+

Rλ

t1−2s|∇wλ|2 dz.

Proof. We recall that, by Lemma 2.3.21, the family {wλ}λ∈(0,R0) is bounded in the space

H1(B+
1 , t

1−2sdz) and trivially

wλ ∈ H1
Γ+
1
(B+

1 , t
1−2s dz) for all λ ∈ (0, R0). (2.3.122)
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Moreover, by Lemma 2.3.22, we have that {wλ}λ∈(0,R0/2) is bounded in H1(B+
2 , t

1−2sdz),
hence

lim sup
λ→0+

∫
B+

2

t1−2s|∇wλ|2 dz < +∞. (2.3.123)

For every λ ∈ (0, R0/2), let

fλ(r) :=

∫
B+

r

t1−2s|∇wλ|2 dz.

Then fλ is absolutely continuous in [0, 2] with distributional derivative given by

f ′λ(r) =

∫
∂+B+

r

t1−2s|∇wλ|2 dS for almost every r ∈ (0, 2).

Let us suppose by contradiction that for any M > 0 there exists a sequence λn → 0+ such
that ∫

∂+B+
r

t1−2s|∇wλn |2 dS > M

∫
B+

r

t1−2s|∇wλn |2 dz

for all r ∈ [1, 2] and n ∈ N, i.e.
f ′λn(r) > Mfλn(r) (2.3.124)

for a.e. r ∈ (1, 2) and any n ∈ N. Integrating (2.3.124) over [1, 2], we obtain that, for any
n ∈ N, fλn(2) > eMfλn(1), and hence

lim inf
n→+∞

fλn(1) ≤ lim sup
n→+∞

fλn(1) ≤ e−M lim sup
n→+∞

fλn(2),

which implies that
lim inf
λ→0+

fλ(1) ≤ e−M lim sup
λ→0+

fλ(2), (2.3.125)

for all M > 0. From (2.3.125) and (2.3.123), letting M → +∞ we deduce that

lim inf
λ→0+

fλ(1) = 0.

Then there exist a sequence λ̃n → 0+ and some w ∈ H1(B+
1 , t

1−2sdz) such that wλ̃n ⇀ w
in H1(B+

1 , t
1−2sdz) with

lim
n→+∞

∫
B+

1

t1−2s|∇wλ̃n |2dz = 0.

However, by compactness of trace mapH1(B+
1 , t

1−2sdz) ↪→↪→ L2(∂+B+
1 , t

1−2sdS), (2.3.117),
(2.3.26), and weak lower semicontinuity of norms, we necessarily have that∫

B+
1

t1−2s|∇w|2dz = 0 and

∫
∂+B+

1

t1−2sw2dS = 1.

Hence there exists c ∈ R such that w ≡ c in B+
1 and c ̸= 0. Since H1

Γ+
1

(B+
1 , t

1−2s dz) is

weakly closed in H1(B+
1 , t

1−2s dz), from (2.3.122) we deduce that

w ≡ c ∈ H1
Γ+
1
(B+

1 , t
1−2s dz),

so that 0 = Trw
∣∣
Γ+
1
= c, a contradiction.
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Lemma 2.3.24. Let wλ and Rλ be as in the statement of Lemma 2.3.23. Then there
exists M > 0 such that ∫

∂+B+
1

t1−2s|∇wλRλ |2 dS ≤M

for any λ ∈ (0,min{λ0, R0/2}).

Proof. We observe that, by scaling and (2.3.115),∫
∂+B+

1

t1−2s|∇wλRλ |2 dS =
R1−N+2s
λ H(λ)

H(λRλ)

∫
∂+B+

Rλ

t1−2s|∇wλ|2 dS,

so that, in view of Lemmas 2.3.22, 2.3.23 and 2.3.21, we have that∫
∂+B+

1

t1−2s|∇wλRλ |2 dS ≤ 2C3M

∫
B+

Rλ

t1−2s|∇wλ|2 dz

≤ 21+N−2sMC2
3

∫
B+

1

t1−2s|∇wλRλ |2 dz ≤M < +∞,

for any λ ∈ (0,min{λ0, R0/2}). The proof is thereby complete.

Proposition 2.3.25. Let W ∈ H1
Γ+
R1

(B+
R1
, t1−2s dz), W ̸≡ 0, be a nontrivial weak solution

to (2.3.11). Let γ be as in Proposition 2.3.19. Then

(i) there exists k0 ∈ N such that γ = s+ k0;

(ii) for any sequence λn → 0+, there exist a subsequence {λnk
} and an eigenfunction ψ

of problem (1.2.11) associated to the eigenvalue µk0 = (k0+ s)(k0+N − s) such that
∥ψ∥L2(SN+ ,θ

1−2s
N+1 dS)

= 1 and

wλnk (z) =
W (λnk

z)√
H(λnk

)
→ |z|γψ

(
z

|z|

)
strongly in H1(B+

1 , t
1−2sdz).

Proof. Let wλ ∈ H1
Γ+
1

(B+
1 , t

1−2s dz) be as in (2.3.115) and Rλ as in Lemma 2.3.23. From

Lemma 2.3.21 we deduce that the set {wλRλ}λ∈(0,min{λ0,R0/2}) is bounded in the space

H1(B+
1 , t

1−2sdz). Let us consider a sequence λn → 0+. Then there exist a subsequence

{λnk
}k and w ∈ H1

Γ+
1

(B+
1 , t

1−2s dz) such that w
λnk

Rλnk ⇀ w weakly in H1(B+
1 , t

1−2sdz).

Moreover we have that ∫
∂+B+

1

t1−2sw2dS = 1 (2.3.126)

by compactness of trace map H1(B+
1 , t

1−2sdz) ↪→↪→ L2(∂+B+
1 , t

1−2sdS), (2.3.117), and
(2.3.26). This allows us to conclude that w is non-trivial.
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We now claim strong convergence

w
λnk

Rλnk → w in H1(B+
1 , t

1−2sdz). (2.3.127)

We note that w
λnk

Rλnk weakly solves (2.3.116) with λ = λnk
Rλnk

. Since

B+
1 ⊂ B+

R1/(λnk
Rλnk

)

for sufficiently large k, we then have that∫
B+

1

t1−2sA(λnk
Rλnk

y)∇wλnk
Rλnk (z) · ∇Φ(z) dz (2.3.128)

= κs(λnk
Rλnk

)2s
∫
Γ−
1

h̃(λnk
Rλnk

y) Trw
λnk

Rλnk (y) TrΦ(y) dy

+

∫
∂+B+

1

(
t1−2sA(λnk

Rλnk
y)∇wλnk

Rλnk (z) · ν
)
Φ(z) dS

for sufficiently large k and for every Φ ∈ C∞
c (B+

1 \ Γ+
1 ), hence by density for every Φ ∈

H1
Γ+
1

(B+
1 , t

1−2sdz). We want to pass to the limit in (2.3.128). To this aim, we observe that

(2.3.20) implies that∣∣∣∣ ∫
B+

1

t1−2s(A(λy)∇wλ(z)−∇w(z)) · ∇Φ(z) dz

∣∣∣∣ (2.3.129)

≤
∣∣∣∣ ∫

B+
1

t1−2s∇(wλ − w) · ∇Φ dz

∣∣∣∣+ Cλ

∫
B+

1

t1−2s|∇wλ||∇Φ| dz

≤
∣∣∣∣ ∫

B+
1

t1−2s∇(wλ − w) · ∇Φ dz

∣∣∣∣+ Cλ

(∫
B+

1

t1−2s|∇wλ|2 dz

)1/2(∫
B+

1

t1−2s|∇Φ|2 dz

)1/2

for some C > 0 and for sufficiently small λ, and

λ2s
∣∣∣∣ ∫

Γ−
1

h̃(λy) Trwλ(y) TrΦ(y) dy

∣∣∣∣ (2.3.130)

≤ λ2s

(∫
B′

1

|Trwλ(y)|2∗(s) dy

) 1
2∗(s)

(∫
B′

1

|TrΦ(y)|2∗(s) dy

) 1
2∗(s)

(∫
Γ−
1

|h̃(λy)|
N
2s dy

)2s
N

= O(1)

(∫
Γ−
λ

|h̃(y)|
N
2sdy

)2s
N

= o(1) as λ→ 0+,

from Hölder’s inequality, Lemma 2.3.4, Lemma 2.3.21 and (2.3.117), using that µ(λy) ≥
1/4 for all λ ≤ R0. Taking λ = λnk

Rλnk
in (2.3.129) and (2.3.130), and recalling that

w
λnk

Rλnk ⇀ w weakly in H1(B+
1 , t

1−2sdz) as k → +∞, we obtain that

lim
k→+∞

∫
B+

1

t1−2sA(λnk
Rλnk

y)∇wλnk
Rλnk (z) · ∇Φ(z) dz =

∫
B+

1

t1−2s∇w · ∇Φ dz (2.3.131)
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and

lim
k→+∞

(λnk
Rλnk

)2s
∫
Γ−
1

h̃(λnk
Rλnk

y) Trw
λnk

Rλnk (y) TrΦ(y) dy = 0. (2.3.132)

Thanks to (2.3.20), we also have that∫
∂+B+

1

t1−2s
(
A(λy)∇wλ(z) · ν

)
Φ(z) dS (2.3.133)

=

∫
∂+B+

1

t1−2s∂w
λ

∂ν
Φ dS +

∫
∂+B+

1

t1−2s
(
(A(λy)− IdN )∇wλ(z) · ν

)
Φ(z) dS

=

∫
∂+B+

1

t1−2s∂w
λ

∂ν
Φ dS +O(λ)

(∫
∂+B+

1

t1−2s|∇wλ|2 dS

)1/2(∫
∂+B+

1

t1−2sΦ2 dS

)1/2

.

Moreover, from Lemma 2.3.24, up to a further subsequence, we have that

∂w
λnk

Rλnk

∂ν
⇀ f weakly in L2(∂+B+

1 , t
1−2sdS) (2.3.134)

for some f ∈ L2(∂+B+
1 , t

1−2sdS). Then, taking λ = λnk
Rλnk

in (2.3.133) and passing to
the limit as k → +∞, we obtain that

lim
k→+∞

∫
∂+B+

1

(
t1−2sA(λnk

Rλnk
y)∇wλnk

Rλnk (z) · ν
)
Φ(z) dS =

∫
∂+B+

1

t1−2sfΦ dS,

(2.3.135)
as a consequence of Lemma 2.3.24 and (2.3.134). Hence, passing to the limit as k → +∞
in (2.3.128) and combining (2.3.131), (2.3.132) and (2.3.135), we find that∫

B+
1

t1−2s∇w · ∇Φ dz =

∫
∂+B+

1

t1−2sfΦ dS for any Φ ∈ H1
Γ+
1
(B+

1 , t
1−2sdz). (2.3.136)

On the other hand, if we take Φ = w
λnk

Rλnk in (2.3.128), we have that∫
B+

1

t1−2sA(λnk
Rλnk

y)∇wλnk
Rλnk (z) · ∇wλnk

Rλnk (z) dz

= κs(λnk
Rλnk

)2s
∫
Γ−
1

h̃(λnk
Rλnk

y)|Trwλnk
Rλnk (y)|2 dy

+

∫
∂+B+

1

(
t1−2sA(λnk

Rλnk
z)∇wλnk

Rλnk (z) · ν
)
w
λnk

Rλnk (z) dS.

From this, by (2.3.20), using (2.3.132) with Φ = w
λnk

Rλnk , (2.3.133) with λ = λnk
Rλnk

,
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we obtain that

lim
k→+∞

∫
B+

1

|∇wλnk
Rλnk |2 = lim

k→+∞

∫
B+

1

t1−2sA(λnk
Rλnk

y)∇wλnk
Rλnk (z) · ∇wλnk

Rλnk (z) dz

(2.3.137)

= lim
k→+∞

∫
∂+B+

1

t1−2s∂w
λnk

Rλnk

∂ν
w
λnk

Rλnk dS

=

∫
∂+B+

1

t1−2sfw dS =

∫
B+

1

t1−2s|∇w|2,

where we used also that the trace operator from H1(B+
1 , t

1−2sdz) to L2(∂+B+
1 , t

1−2sdS)

is compact, (2.3.134) and (2.3.136) with Φ = w. The weak convergence w
λnk

Rλnk ⇀ w in
H1(B+

1 , t
1−2sdz) together with (2.3.137) imply (2.3.127).

For every k ∈ N and r ∈ (0, 1], let us define

Ek(r) =
1

rN−2s

[∫
B+

r

t1−2sA(λnk
Rλnk

y)∇wλnk
Rλnk · ∇wλnk

Rλnk dz

− κsλ
2s
nk
R2s
λnk

∫
Γ−
r

h̃(λnk
Rλnk

y)|Trwλnk
Rλnk |2dy

]
and

Hk(r) =
1

rN+1−2s

∫
∂+B+

r

t1−2sµ(λnk
Rλnk

z)|wλnk
Rλnk (z)|2dS.

We also define, for any r ∈ (0, 1],

Ew(r) =
1

rN−2s

∫
B+

r

t1−2s|∇w(z)|2dz (2.3.138)

and

Hw(r) =
1

rN+1−2s

∫
∂+B+

r

t1−2sw2(z) dS. (2.3.139)

By scaling, one can easily verify that

Nk(r) :=
Ek(r)

Hk(r)
=
E(λnk

Rλnk
r)

H(λnk
Rλnk

r)
= N (λnk

Rλnk
r) for all r ∈ (0, 1]. (2.3.140)

From (2.3.127), (2.3.20), and (2.3.130), it follows that, for any fixed r ∈ (0, 1],

Ek(r) → Ew(r). (2.3.141)

On the other hand, by compactness of the trace operator and (2.3.26), we also have, for
any fixed r ∈ (0, 1],

Hk(r) → Hw(r). (2.3.142)
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In order to prove that Hw is strictly positive, we argue by contradiction and assume that
there exists r ∈ (0, 1] such that Hw(r) = 0; then r is a minimum point for Hw and hence,
arguing as in Lemma 2.3.13, we obtain that necessarily

0 = H ′
w(r) = 2r2s−N−1

∫
B+

r

t1−2s|∇w(z)|2dz

and hence w is constant in B+
r . From Lemma 2.3.3 we conclude that w ≡ 0 in B+

r , which
implies that w ≡ 0 in B+

1 from classical unique continuation principles for second order
elliptic equations, thus contradicting (2.3.126).

Hence Hw(r) > 0 for all r ∈ (0, 1], thus the function

Nw : (0, 1] → R, Nw(r) :=
Ew(r)

Hw(r)

is well defined and, arguing as in Lemma 2.3.17, one can easily prove that Nw belongs to
W 1,1

loc ((0, 1]), since Ew and Hw belong to W 1,1
loc ((0, 1]). From (2.3.140), (2.3.141), (2.3.142)

and Proposition 2.3.19, we deduce that

Nw(r) = lim
k→+∞

N (λnk
Rλnk

r) = γ (2.3.143)

for all r ∈ (0, 1]. Therefore Nw is constant in (0, 1], hence

N ′
w(r) = 0 for any r ∈ (0, 1). (2.3.144)

Recalling the equation satisfied by w, i.e. (2.3.136), and arguing as in Lemma 2.3.18 with
A = IdN and h̃ ≡ 0, we can prove that, for a.e. r ∈ (0, 1),

N ′
w(r) ≥

2r

[(∫
∂+B+

r
t1−2s |∂νw|2 dS

)(∫
∂+B+

r
t1−2sw2dS

)
−
(∫

∂+B+
r
t1−2s∂νww dS

)2]
(∫

∂+B+
r
t1−2sw2dS

)2 .

(2.3.145)
Combining (2.3.144) and (2.3.145) with Schwarz’s inequality, we obtain that, for a.e.
r ∈ (0, 1),(∫

∂+B+
r

t1−2s |∂νw|2 dS
)(∫

∂+B+
r

t1−2sw2dS

)
−
(∫

∂+B+
r

t1−2s∂νww dS

)2
= 0.

Therefore, for a.e. r ∈ (0, 1), w and ∂νw have the same direction as vectors in the space
L2(∂+B+

r , t
1−2sdS), so that there exists a function η = η(r), defined a.e. in (0, 1), such

that ∂νw(rθ) = η(r)w(rθ) for a.e. r ∈ (0, 1) and for all θ ∈ SN+ . It is easy to verify

that η(r) = H′
w(r)

2Hw(r) for a.e r ∈ (0, 1), so that η ∈ L1
loc((0, 1]), by Lemma 2.3.17. After

integration we obtain that

w(rθ) = e
∫ r
1 η(s)dsw(θ) = g(r)ψ(θ), r ∈ (0, 1), θ ∈ SN+ , (2.3.146)
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where g(r) = e
∫ r
1 η(s)ds and ψ = w

∣∣
SN+

. We observe that (2.3.126) implies that

∥ψ∥L2(SN+ ,θ
1−2s
N+1 dS)

= 1. (2.3.147)

From the fact that w ∈ H1
Γ+
1

(B+
1 , t

1−2s dz) it follows that ψ ∈ H0, where H0 is defined in

Section 1.2; moreover, plugging (2.3.146) into (2.3.136) we obtain that ψ satisfies (1.2.12)
for some µ ∈ R, so that ψ is an eigenfunction of (1.2.11). Recalling (1.2.13) and letting
k0 ∈ N be such that µ = µk0 = (k0 + s)(k0 + N − s), we can rewrite the equation
−div

(
t1−2s∇w

)
= 0 in polar coordinates exploiting [36, Lemma 2.1], thus obtaining, for

all r ∈ (0, 1) and θ ∈ SN+ ,

0 =
1

rN
(rN+1−2sg′)′θ1−2s

N+1ψ(θ) + r−1−2sg(r)divSN (θ
1−2s
N+1∇SNψ(θ))

=
1

rN
(rN+1−2sg′)′θ1−2s

N+1ψ(θ)− r−1−2sg(r)θ1−2s
N+1µk0ψ(θ).

Then g(r) solves the equation

− 1

rN
(rN+1−2sg′)′ + µk0r

−1−2sg(r) = 0 in (0, 1)

i.e.

−g′′(r)− N + 1− 2s

r
g′(r) +

µk0
r2
g(r) = 0 in (0, 1).

Hence g(r) is of the form
g(r) = c1r

k0+s + c2r
s−N−k0

for some c1, c2 ∈ R. Since w ∈ H1(B+
1 , t

1−2s dz) and the function |z|−1|z|s−N−k0ψ
(
z
|z|
)
̸∈

L2(B+
1 , t

1−2s dz), from Lemma 2.3.3 we deduce that necessarily c2 = 0 and g(r) = c1r
k0+s.

Moreover, from g(1) = 1, we obtain that c1 = 1 and then

w(rθ) = rk0+sψ(θ), for all r ∈ (0, 1) and θ ∈ SN+ . (2.3.148)

Let us now consider the sequence {wλnk}. Up to a further subsequence still denoted
by {wλnk}, we may suppose that wλnk ⇀ w weakly in H1(B+

1 , t
1−2s dz) for some w ∈

H1(B+
1 , t

1−2s dz) and that Rλnk
→ R for some R ∈ [1, 2].

Strong convergence of w
λnk

Rλnk in H1(B+
1 , t

1−2sdz) implies that, up to a subsequence,

both w
λnk

Rλnk and |∇wλnk
Rλnk | are a.e. dominated by a L2(B+

1 , t
1−2sdz)-function uni-

formly with respect to k. Moreover, by (2.3.118), up to a further subsequence, we may
assume that the limit

ℓ := lim
k→+∞

H(λnk
Rλnk

)

H(λnk
)
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exists and is finite, with ℓ > 0. Then, by the Dominated Convergence Theorem, we have
that

lim
k→+∞

∫
B+

1

t1−2swλnk (z)v(z)dz = lim
k→+∞

RN+2−2s
λnk

∫
B+

1/Rλnk

t1−2swλnk (Rλnk
z)v(Rλnk

z)dz

= lim
k→+∞

RN+2−2s
λnk

√
H(λnk

Rλnk
)

H(λnk
)

∫
B+

1

t1−2sχB+
1/Rλnk

(z)w
λnk

Rλnk (z)v(Rλnk
z)dz

= R
N+2−2s√

ℓ

∫
B+

1

t1−2sχB+

1/R

(z)w(z)v(Rz)dz

= R
N+2−2s√

ℓ

∫
B+

1/R

t1−2sw(z)v(Rz)dz =
√
ℓ

∫
B+

1

t1−2sw(z/R)v(z)dz

for any v ∈ C∞(B+
1 ). By density, the above convergence actually holds for all v ∈

L2(B+
1 , t

1−2sdz). This proves that wλnk ⇀
√
ℓw(·/R) weakly in L2(B+

1 , t
1−2sdz). Since

we know that wλnk ⇀w weakly in H1(B+
1 , t

1−2s dz), we conclude that w =
√
ℓw(·/R) and

then wλnk ⇀
√
ℓw(·/R) in H1(B+

1 , t
1−2s dz). Moreover

lim
k→+∞

∫
B+

1

t1−2s|∇wλnk (z)|2dz = lim
k→+∞

RN+2−2s
λnk

∫
B+

1/Rλnk

t1−2s|∇wλnk (Rλnk
z)|2dz

= lim
k→+∞

RN−2s
λnk

H(λnk
Rλnk

)

H(λnk
)

∫
B+

1

t1−2sχB+
1/Rλnk

|∇wλnk
Rλnk (z)|2dz

= R
N−2s

ℓ

∫
B+

1

t1−2sχB+

1/R

(z)|∇w(z)|2dz = R
N−2s

ℓ

∫
B+

1/R

t1−2s|∇w(z)|2dz

=

∫
B+

1

t1−2s
∣∣∣√ℓ∇(w( z

R

))∣∣∣2dz.
This shows that wλnk → w =

√
ℓw(·/R) strongly in H1(B+

1 , t
1−2sdz).

By (2.3.148) w is homogeneous of degree k0+ s, hence w =
√
ℓR

−k0−sw. Furthermore
(2.3.117), (2.3.26) and the strong convergence wλnk → w in L2(∂+B+

1 , t
1−2sdS) imply that

1 =

∫
∂+B+

1

t1−2sw2 dS = ℓR
−2k0−2s

∫
∂+B+

1

t1−2sw2 dS = ℓR
−2k0−2s

in view of (2.3.126), thus implying that w = w.
It remains to prove part (i). By (2.3.148), (2.3.147) and the fact that ψ is an eigen-

function of (1.2.11) with associated eigenvalue µk0 = (k0 + s)(k0 +N − s), we have that∫
B+

r

t1−2s|∇w(z)|2dz = rN+2k0

N + 2k0

(
(k0 + s)2 + µk0

)
= (k0 + s)rN+2k0

and ∫
∂+B+

r

t1−2sw2dS = rN+1−2s

∫
SN+
θ1−2s
N+1w

2(rθ) dS = rN+2k0+1.
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Therefore, by (2.3.138), (2.3.139) and (2.3.143), it follows that

γ = Nw(r) =
Ew(r)

Hw(r)
=

r

∫
B+

r

t1−2s|∇w(z)|2dz∫
∂+B+

r

t1−2sw2dS

= k0 + s.

This completes the proof.

To complete the blow-up analysis and detect the sharp asymptotic behaviour of W at
0, it remains to describe the behavior of H(λ) as λ→ 0+.

Lemma 2.3.26. Let γ = lim
r→0

N (r) be as in Proposition 2.3.19. Then the limit

lim
r→0+

r−2γH(r)

exists and is finite.

Proof. Thanks to (2.3.108), it is enough to show that the limit exists. From (2.3.85) and

(2.3.113), we deduce that, a.e. in (0, R̂),

d

dr

H(r)

r2γ
=
H ′(r)

r2γ
− 2γ

H(r)

r2γ+1
=

2

r2γ+1
[E(r) +H(r)O(r)− γH(r)] (2.3.149)

=
2H(r)

r2γ+1
[N (r)− γ +O(r)] =

2H(r)

r2γ+1

(∫ r

0
N ′(s) ds+O(r)

)
as r → 0+. Using the same notation as in the proof of Lemma 2.3.20, we writeN ′ = β1+β2
in (0, R̂), with β1 and β2 defined as in (2.3.110) and (2.3.111). Integrating (2.3.149)
between (r, R̂), we obtain that

H(R̂)

R̂2γ
− H(r)

r2γ
=

∫ R̂

r

2H(ρ)
ρ2γ+1

(∫ ρ

0
β1(τ) dτ

)
dρ+

∫ R̂

r

2H(ρ)
ρ2γ+1

(∫ ρ

0
β2(τ) dτ

)
dρ

+

∫ R̂

r

H(ρ)
ρ2γ

O(1) dρ

=

∫ R̂

r

2H(ρ)
ρ2γ+1

(∫ ρ

0
β1(τ) dτ

)
dρ−

∫ R̂

r

H(ρ)

ρ2γ

(
2C4

δ̄
ρ−1+δ̄ +O(1)

)
dρ,

where C4 := C2

(
C1 +

N−2s
2

)
. By (2.3.110) we have that

lim
r→0+

∫ R̂

r

2H(ρ)

ρ2γ+1

(∫ ρ

0
α1(τ) dτ

)
dρ exists.

On the other hand, estimate (2.3.108) ensures that

ρ 7→ H(ρ)

ρ2γ

(
−2C4

δ̄
ρ−1+δ̄ +O(1)

)
∈ L1(0, R̂),
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so that the limit lim
r→0+

∫ R̂

r

H(ρ)

ρ2γ

(
−2C4

δ̄
ρ−1+δ̄ +O(1)

)
dρ exists and is finite. The lemma

is thereby proved.

The next step is to prove that the limit lim
r→0+

r−2γH(r) is actually strictly positive. To

this aim, we first define the Fourier coefficients associated with W , with respect to the
orthonormal basis (1.2.14) of L2(SN+ , θ1−2s

N+1dS), as

φk,m(λ) =

∫
SN+
θ1−2s
N+1W (λθ)Yk,m(θ)dS, λ ∈ (0, R1], k ∈ N, m = 1, . . . ,Mk. (2.3.150)

We also define

Υk,m(λ) = −
∫
B+

λ

t1−2s(A− IdN+1)∇W (z) ·
∇SNYk,m(z/|z|)

|z|
dz (2.3.151)

+ κs

∫
Γ−
λ

h̃(y)TrW (y)TrYk,m

(
y

|y|

)
dy +

∫
∂+B+

λ

t1−2s(A− IdN+1)∇W · z
|z|
Yk,m

(
z

|z|

)
dS,

for a.e. λ ∈ (0, R1], k ∈ N and m ∈ {1, 2, ...,Mk}.

Lemma 2.3.27. Let k0 be as in Proposition 2.3.25. Then, for all m ∈ {1, 2, . . . ,Mk0}
and R ∈ (0, R0],

φk0,m(λ) = λk0+s
(
R−k0−sφk0,m(R) +

(k0 + s)R−N−2k0

N + 2k0

∫ R

0
ρk0+s−1Υk0,m(ρ) dρ

+
N − s+ k0
N + 2k0

∫ R

λ
ρ−N−1+s−k0Υk0,m(ρ) dρ

)
+O(λk0+s+δ̄) as λ→ 0+, (2.3.152)

where δ̄ is defined in (2.3.91).

Proof. Let k ∈ N and m ∈ {1, 2, ...,Mk}. Testing (2.3.11) with ϕ = ω(|z|)
|z|N+1−2sYk,m(z/|z|)

for any test function ω ∈ C∞
c (0, R1) and using (1.2.12), we can easily verify that φk,m

solves the following second order differential equation

− φ′′
k,m(λ)−

N + 1− 2s

λ
φ′
k,m(λ) +

µk
λ2
φk,m(λ) = ζk,m(λ) in (0, R1) (2.3.153)

in a distributional sense, with µk as in (1.2.13), where the distribution ζk,m ∈ D′(0, R1) is
defined by

D′(0,R1)⟨ζk,m, ω⟩D(0,R1) = κs

∫ R1

0

ω(λ)

λ2−2s

(∫
SN−1
−

h̃(λθ′) TrW (λθ′)Yk,m(θ
′, 0)dS′

)
dλ

−
∫
B+

R1

t1−2s(A− IdN+1)∇W · ∇
(
ω(|z|)|z|−N−1+2sYk,m(z/|z|)

)
dz
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for any ω ∈ C∞
c (0, R1) (we refer to Section 2.1 for the definition of SN−1

− ).
Letting Υk,m be as in (2.3.151), by direct calculations we have that Υk,m ∈ L1(0, R1)

and
Υ′
k,m(λ) = λN+1−2sζk,m(λ) in D′(0, R1). (2.3.154)

In view of (2.3.154) and (1.2.13), we have that (2.3.153) is equivalent to

−
(
λN+1+2k

(
λ−k−sφk,m

)′)′
= λk+sΥ′

k,m in D′(0, R1).

Integrating the above equation, we obtain that, for every R ∈ (0, R1], k ∈ N and m ∈
{1, 2, . . . ,Mk}, there exists a real number ck,m(R) (depending also on R) such that(

λ−k−sφk,m(λ)
)′

= −λ−N−1+s−kΥk,m(λ)

− (k + s)λ−N−1−2k

(
ck,m(R) +

∫ R

λ
ρk+s−1Υk,m(ρ) dρ

)
, (2.3.155)

in the sense of distributions in (0, R1). From (2.3.155) we infer that φk,m ∈W 1,1
loc ((0, R1]),

thus a new integration leads to

φk,m(λ) = λk+s
(
φk,m(R)

Rk+s
−

(k + s)ck,m(R)

(N + 2k)RN+2k
+
N + k − s

N + 2k

∫ R

λ
ρ−N−k+s−1Υk,m(ρ) dρ

)
+

(k + s)λ−N−k+s

N + 2k

(
ck,m(R) +

∫ R

λ
ρk+s−1Υk,m(ρ) dρ

)
(2.3.156)

for all λ ∈ (0, R1]. From now on, we fix k0 as in Proposition 2.3.25, R0 as in (2.3.46), and
m ∈ {1, 2, . . . ,Mk0}. We prove that∫ R0

0
ρ−N−k0+s−1|Υk0,m(ρ)| dρ < +∞. (2.3.157)

To this purpose, exploiting (2.3.20) and using Hölder’s inequality, one can estimate the
first term in (2.3.151) for all ρ ∈ (0, R0) as follows∣∣∣∣∫

B+
ρ

t1−2s(A− IN+1)∇W (z) ·
∇SNYk0,m(z/|z|)

|z|
dz

∣∣∣∣ (2.3.158)

≤ const

√∫
B+

ρ

t1−2s|∇W |2dz ·
√∫

B+
ρ

t1−2s|∇SNYk0,m(z/|z|)|2dz

=: const I1(ρ) · I2(ρ),

where

I1(ρ) =

√
ρN+2−2s

∫
B+

1

t1−2s|∇W (ρz)|2dz = ρ
N−2s

2

√
H(ρ)

√∫
B+

1

t1−2s|∇wρ(z)|2dz

(2.3.159)

≤ const ρ
N−2s

2

√
H(ρ),
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as a consequence of Lemma 2.3.21, and

I2(ρ) =

√∫ ρ

0
τN+1−2s

(∫
SN+
θ1−2s
N+1 |∇SNYk0,m(θ)|2dS

)
dτ =

√
µk0√

N + 2− 2s
ρ

N+2−2s
2 ,

(2.3.160)

due to (1.2.12) and taking into account that elements of (1.2.14) have L2(SN+ , θ1−2s
N+1dS)-

norm equals 1. Combining (2.3.158), (2.3.159), (2.3.160), and (2.3.108) we obtain that,
for every R ∈ (0, R0],∫ R

0
ρ−N−1+s−k0

∣∣∣∣∫
B+

ρ

t1−2s(A− IN+1)∇W (z) ·
∇SNYk0,m(z/|z|)

|z|
dz

∣∣∣∣ dρ
≤ const

∫ R

0
ρ−s−k0

√
H(ρ) ds ≤ constR. (2.3.161)

Moreover, as regards the second term in (2.3.151), Hölder’s inequality implies that∣∣∣∣∫
Γ−
λ

h̃(y) TrW (y) TrYk0,m
( y
|y|
)
dy

∣∣∣∣ ≤
√∫

Γ−
λ

|h̃||TrW |2dy ·
√∫

Γ−
λ

|h̃(y)||TrYk0,m
( y
|y|
)
|2dy.

(2.3.162)
Arguing as in (2.3.35) and using homogeneity of the function Yk0,m(y/|y|), we have that,
for all ρ ∈ (0, R0),√∫

Γ−
ρ

|h̃(y)||TrYk0,m
( y
|y|
)
|2dy ≤

√
c̃N,s,p ∥h̃ ∥1/2Lp(Γ−

R1
)
ρε/2

(∫
Γ−
ρ

|TrYk0,m
( y
|y|
)
|2∗(s) dy

) 1
2∗(s)

=
√
c̃N,s,p ∥h̃ ∥1/2Lp(Γ−

R1
)
ρ

ε+N−2s
2

(∫
Γ−
1

|TrYk0,m
( y
|y|
)
|2∗(s) dy

) 1
2∗(s)

.

Furthermore, using (2.3.32), and (2.3.105), we deduce that, for all ρ ∈ (0, R0),√∫
Γ−
ρ

|h̃||TrW |2dy ≤

√√√√c̃N,s,p∥h̃ ∥Lp(Γ−
R1

)ρ
ε

(∫
Γ−
ρ

|TrW |2∗(s) dy

)2/2∗(s)

≤

√
c̃N,s,p

C̃N,s
∥h̃ ∥Lp(Γ−

R1
)ρ
ε+N−2sH(ρ)

(
N (ρ) +

N − 2s

2

)
≤ const ρ

N−2s+ε
2

√
H(ρ).

Putting the above estimates together and recalling (2.3.108), we conclude that, for every
R ∈ (0, R0],∫ R

0
ρ−N−k0+s−1

∣∣∣∣∫
Γ−
ρ

h̃(y)TrW (y)TrYk0,m
( y
|y|
)
dy

∣∣∣∣dρ
≤ const

∫ R

0
ρ−1+ε−k0−s

√
H(ρ) dρ ≤ constRε. (2.3.163)
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In order to estimate the last term in (2.3.151), we observe that∫
B+

λ

t1−2s
∣∣Yk0,m( z|z|)∣∣2dz = ∫ λ

0
τN+1−2s

(∫
SN+
θ1−2s
N+1 |Yk0,m(θ)|

2dS

)
dτ

=
λN+2−2s

N + 2− 2s
.

(2.3.164)

Hence, thanks to (2.3.20), Hölder inequality, (2.3.159), (2.3.164) and (2.3.108), integrating
by parts, we have that, for every R ∈ (0, R0],∫ R

0
ρ−N+s−1−k0

∣∣∣∣∫
∂+B+

ρ

t1−2s(A− IdN+1)∇W · z
|z|
Yk0,m

(
z
|z|
)
dS

∣∣∣∣dρ (2.3.165)

≤ const

∫ R

0
ρ−N+s−k0

(∫
∂+B+

ρ

t1−2s|∇W ||Yk0,m
(
z
|z|
)
| dS

)
dρ

= const

(
R−N+s−k0

∫
B+

R

t1−2s|∇W |
∣∣Yk0,m( z|z|)∣∣ dz

+ (N + k0 − s)

∫ R

0
ρ−N+s−1−k0

(∫
B+

ρ

t1−2s|∇W |
∣∣Yk0,m( z|z|)∣∣ dz)dρ)

≤ const

(
R1−s−k0

√
H(R) +

∫ R

0
ρ−s−k0

√
H(ρ) dρ

)
≤ constR.

Thus from (2.3.151), (2.3.161), (2.3.163) and (2.3.165) it follows that, for every R ∈ (0, R0],∫ R

0
ρ−N−k0+s−1|Υk0,m(ρ)| dρ ≤ constRδ̄ (2.3.166)

where δ̄ is defined in (2.3.91). From (2.3.166), it immediately follows (2.3.157).
From (2.3.157) we infer that, for every R ∈ (0, R0],

λk0+s
(
φk0,m(R)

Rk0+s
−

(k0 + s)ck0,m(R)

(N + 2k0)RN+2k0
+
N + k0 − s

N + 2k0

∫ R

λ
ρ−N−k0+s−1Υk0,m(ρ) dρ

)
= O(λk0+s) = o(λ−N−k0+s) as λ→ 0+. (2.3.167)

Now we prove that, for every R ∈ (0, R0],

ck0,m(R) +

∫ R

0
ρk0+s−1Υk0,m(ρ) dρ = 0. (2.3.168)

To this aim, first we observe that∫ R0

0
ρk0+s−1|Υk0,m(ρ)|dρ < +∞, (2.3.169)
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as a direct consequence of (2.3.157), since k0 + s − 1 > −N − k0 + s − 1. Suppose by
contradiction that (2.3.168) does not hold true for some R ∈ (0, R0]; then from (2.3.156),
(2.3.167) and (2.3.169), we would have that

φk0,m(λ) ∼
(k0 + s)λ−N−k0+s

N + 2k0

(
ck0,m(R) +

∫ R

0
ρk0+s−1Υk0,m(ρ) dρ

)
as λ→ 0+,

and hence ∫ R0

0
λN−1−2s|φk0,m(λ)|2dλ = +∞.

On the other hand, by (2.3.150), we have that∫ R0

0
λN−1−2s|φk0,m(λ)|2dλ ≤

∫ R0

0
λN−1−2s

(∫
SN+
θ1−2s
N+1 |W (λθ)|2dS

)
dλ

=

∫
B+

R0

t1−2sW
2(z)

|z|2
dz <∞,

as a consequence of Lemma 2.3.3, giving rise to a contradiction. Hence (2.3.168) is proved.
From (2.3.168) and (2.3.166) we deduce that, for every R ∈ (0, R0],∣∣∣∣λ−N−k0+s

(
ck0,m(R) +

∫ R

λ
ρk0+s−1Υk0,m(ρ) dρ

)∣∣∣∣ = λ−N+s−k0
∣∣∣∣∫ λ

0
ρk0+s−1Υk0,m(ρ) dρ

∣∣∣∣
≤ λ−N+s−k0

∫ λ

0
ρN+2k0 |ρ−N−1+s−k0Υk0,m(ρ)| dρ

≤ λk0+s
∫ λ

0
ρ−N−1+s−k0 |Υk0,m(ρ)| dρ = O(λk0+s+δ̄) as λ→ 0+.

Combining this last information with (2.3.168) and (2.3.156), we finally obtain (2.3.152).

Using Lemma 2.3.27, we now prove that lim
r→0+

r−2γH(r) = lim
r→0+

r−2(k0+s)H(r) > 0.

Lemma 2.3.28. Let γ = lim
r→0

N (r) be as in Proposition 2.3.19. Then

lim
r→0+

r−2γH(r) > 0.

Proof. By (2.3.26) and using the Parseval identity we have that

H(λ) =

∫
SN+
θ1−2s
N+1µ(λθ)|W (λθ)|2dS (2.3.170)

= (1 +O(λ))

∫
SN+
θ1−2s
N+1 |W (λθ)|2dS = (1 +O(λ))

∞∑
k=0

Mk∑
m=1

|φk,m(λ)|2.
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Let k0 ∈ N be as in Proposition 2.3.25, thus γ = k0 + s. We argue by contradiction,
assuming that

lim
λ→0+

λ−2γH(λ) = 0. (2.3.171)

Hence from (2.3.170) it follows that lim
λ→0+

λ−(k0+s)φk0,m(λ) = 0 for anym ∈ {1, 2, . . . ,Mk0}.
This, together with (2.3.157) and Lemma 2.3.27, leads to

R−k0−sφk0,m(R) +
(k0 + s)R−N−2k0

N + 2k0

∫ R

0
ρk0+s−1Υk0,m(ρ) dρ

+
N − s+ k0
N + 2k0

∫ R

0
ρ−N−1+s−k0Υk0,m(ρ) dρ = 0, (2.3.172)

for all m ∈ {1, 2, . . . ,Mk0} and for every R ∈ (0, R0]. From (2.3.172), (2.3.152) and
(2.3.166) it follows that

φk0,m(λ) = −λk0+sN − s+ k0
N + 2k0

∫ λ

0
ρ−N−1+s−k0Υk0,m(ρ) dρ+O(λk0+s+δ̄) = O(λk0+s+δ̄)

as λ→ 0+ for all m ∈ {1, 2, . . . ,Mk0}. Hence√
H(λ) (wλ, ψ)L2(SN+ ,θ

1−2s
N+1 dS)

= O(λk0+s+δ̄) as λ→ 0+ (2.3.173)

for every ψ ∈ span{Yk0,m : m = 1, . . . ,Mk0}. From Lemma 2.3.20-(ii),
√
H(λ) ≥√

k2(δ̄)λ
k0+s+

δ̄
2 for λ small, so that (2.3.173) yields

(wλ, ψ)L2(SN+ ,θ
1−2s
N+1 dS)

= O(λδ̄/2) as λ→ 0+ (2.3.174)

for every ψ ∈ span{Yk0,m : m = 1, . . . ,Mk0}. On the other hand, by Proposition 2.3.25
and continuity of the trace map from H1(B+

1 , t
1−2sdz) into L2(∂+B+

1 , t
1−2sdS), for any se-

quence λn → 0+, there exist a subsequence {λnk
} and ψ0 ∈ span{Yk0,m : m = 1, . . . ,Mk0}

such that

∥ψ0∥L2(SN+ ,θ
1−2s
N+1 dS)

= 1 and wλnk → ψ0 in L2(SN+ , θ1−2s
N+1dS). (2.3.175)

From (2.3.174) and (2.3.175) we deduce that

0 = lim
k→+∞

(wλnk , ψ0)L2(SN+ ,θ
1−2s
N+1 dS)

= ∥ψ0∥2L2(SN+ ,θ
1−2s
N+1 dS)

= 1,

thus reaching a contradiction.

Theorem 2.3.29. Let k0 ∈ N be as in Proposition 2.3.25. Let Mk0 ∈ N \ {0} be
the multiplicity of the eigenvalue µk0 = (k0 + s)(k0 + N − s) and let {Yk0,m}m=1,...,Mk0

be a L2(SN+ , θ1−2s
N+1dS)-orthonormal basis of the eigenspace of (1.2.11) associated to µk0.
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Then, for every m ∈ {1, 2, . . . ,Mk0}, there exists βm ∈ R such that (β1, β2, . . . , βMk0
) ̸=

(0, 0, . . . , 0),

W (λz)

λk0+s
→ |z|k0+s

Mk0∑
m=1

βmYk0,m(z/|z|) in H1(B+
1 , t

1−2sdz) as λ→ 0+,

and

βm = R−(k0+s)φk0,m(R) +
(k0 + s)R−N−2k0

N + 2k0

∫ R

0
ρk0+s−1Υk0,m(ρ) dρ

+
N − s+ k0
N + 2k0

∫ R

0
ρ−N−1+s−k0Υk0,m(ρ) dρ for all R ∈ (0, R0], (2.3.176)

with φk0,m and Υk0,m given by (2.3.150) and (2.3.151) respectively.

Proof. If we consider any sequence of strictly positive real numbers λn → 0+, then from
Proposition 2.3.25 and Lemmas 2.3.26 and 2.3.28, we deduce that there exist a subsequence
{λnk

}k∈N and real numbers β1, β2, . . . βMk0
not all equal to 0 such that

W (λnk
z)

λk0+snk

→ |z|k0+s
Mk0∑
m=1

βmYk0,m(z/|z|) in H1(B+
1 , t

1−2sdz) as k → ∞. (2.3.177)

We claim that the coefficients βm depend neither on the sequence {λn}n∈N, nor on its sub-
sequence {λnk

}k∈N. To this aim, we observe that (2.3.150), (2.3.177), and the continuity
of the trace map from H1(B+

1 , t
1−2sdz) into L2(∂+B+

1 , t
1−2sdS) imply that

lim
k→+∞

λ−(k0+s)
nk

φk0,m(λnk
) = lim

k→+∞

∫
SN+
θ1−2s
N+1λ

−(k0+s)
nk

W (λnk
θ)Yk0,m(θ)dS

=

Mk0∑
i=1

βi

∫
SN+
θ1−2s
N+1Yk0,i(θ)Yk0,m(θ)dS = βm,

for all m ∈ {1, 2, . . . ,Mk0}. At the same time, after fixing R ≤ R0, by (2.3.152) we have
that

lim
k→∞

λ−(k0+s)
nk

φk0,m(λnk
) =R−(k0+s)φk0,m(R) +

(k0 + s)R−N−2k0

N + 2k0

∫ R

0
ρk0+s−1Υk0,m(ρ) dρ

+
N − s+ k0
N + 2k0

∫ R

0
ρ−N−1+s−k0Υk0,m(ρ) dρ,

hence, by uniqueness of the limit, we can deduce that, for all m ∈ {1, 2, . . . ,Mk0},

βm =R−(k0+s)φk0,m(R) +
(k0 + s)R−N−2k0

N + 2k0

∫ R

0
ρk0+s−1Υk0,m(ρ) dρ

+
N − s+ k0
N + 2k0

∫ R

0
ρ−N−1+s−k0Υk0,m(ρ) dρ.
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This is enough to conclude that the coefficients βm depend neither on the sequence
{λn}n∈N, nor on its subsequence {λnk

}k∈N. Lemma 2.3.9 allows us to conclude that the
convergence in (2.3.177) holds as λ→ 0+, thus completing the proof.

We are now in position to prove the following convergence result for scaled solutions
to (1.2.9).

Theorem 2.3.30. Let Ω be a bounded domain in RN such that there exist g ∈ C1,1(RN−1),
x0 ∈ ∂Ω and R > 0 satisfying (1.2.3). Let h satisfy (1.2.2) and U ∈ D1,2(RN+1

+ , t1−2s dz)
be a weak solution to (1.2.9) in the sense of (1.2.10), with U ̸≡ 0 and TrU = u satisfying
(1.2.4). Then there exist k0 ∈ N and an eigenfunction Y of problem (1.2.11) associated to
the eigenvalue µk0 = (k0 + s)(k0 +N − s) such that, letting z0 = (x0, 0),

U(z0 + λz)

λk0+s
→ |z|k0+sY

(
z

|z|

)
in H1(B+

1 , t
1−2sdz) as λ→ 0+. (2.3.178)

Proof. Up to a translation, we can assume that x0 = 0. If U is as in the assumptions of
Theorem 2.3.30, then, letting F as in Subsection 2.3.1, W = U ◦ F ∈ H1

Γ+
R1

(B+
R1
, t1−2s dz)

is a nontrivial weak solution to (2.3.11). We notice that the nontriviality of U in any
neighbourhood of 0, and consequently of W in B+

R1
, can be easily deduced from nontriv-

iality of U in RN+1
+ and classical unique continuation principles for second order elliptic

equations with Lipschitz coefficients [48].
Then, by Proposition 2.3.25 and Theorem 2.3.29, there exist k0 ∈ N and an eigenfunc-

tion Y of problem (1.2.11) associated to the eigenvalue µk0 = (k0 + s)(k0 + N − s) such
that

W (λz)

λk0+s
→ |z|k0+sY (z/|z|) in H1(B+

1 , t
1−2sdz) as λ→ 0+. (2.3.179)

We observe that

U(λz)

λk0+s
=
W (λGλ(z))

λk0+s
, ∇

(
U(λ·)
λk0+s

)
(z) = ∇

(
W (λ·)
λk0+s

)
(Gλ(z)) JacGλ(z), (2.3.180)

where

Gλ(z) =
1

λ
F−1(λz).

From (2.3.9) we have that

Gλ(z) = z +O(λ) and JacGλ(z) = IdN+1 +O(λ) (2.3.181)

as λ→ 0+ uniformly with respect to z ∈ B+
1 . From (2.3.181) one can easily deduce that,

if fλ → f in L2(B+
1 , t

1−2sdz), then fλ ◦Gλ → f in L2(B+
1 , t

1−2sdz). In view of (2.3.179)
and (2.3.180), this yields the conclusion.

As a direct consequence of Theorem 2.3.30 and of the equivalent formulation of problem
(1.2.1) given in (1.2.9), we obtain also a convergence result for scaled solutions to (1.2.1).
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Theorem 2.3.31. Let Ω be a bounded domain in RN such that there exist g ∈ C1,1(RN−1),
x0 ∈ ∂Ω and R > 0 satisfying (1.2.3). Let h satisfy (1.2.2) and u ∈ Ds,2(RN ), u ̸≡ 0,
be a weak solution to (1.2.1) in the sense of (1.2.6), satisfying (1.2.4). Then there exist
k0 ∈ N and an eigenfunction Y of problem (1.2.11) associated to the eigenvalue µk0 =
(k0 + s)(k0 +N − s) such that

u(x0 + λx)

λk0+s
→ |x|k0+sY

(
x
|x| , 0

)
in Hs(B′

1) as λ→ 0+, (2.3.182)

where Hs(B′
1) is the usual fractional Sobolev space on the N -dimensional unit ball B′

1.

Proof. If u ∈ Ds,2(RN ), u ̸≡ 0, is a nontrivial weak solution to (1.2.1), then its extension
U = H(u) ∈ D1,2(RN+1

+ , t1−2s dz) weakly solves (1.2.9) in the weak sense specified in
(1.2.10), see [8] and Section 1.2. Then the conclusion follows from Theorem 2.3.30 applied
to U and the continuity of the trace map from H1(B+

1 , t
1−2sdz) into Hs(B′

1), see e.g. [52,
Proposition 2.1].

The salient consequence of the precise asymptotic expansions given in Theorem 2.3.30
and Theorem 2.3.31 is the following strong unique continuation principle for problems
(1.2.1) and (1.2.9).

Theorem 2.3.32.

(i) Under the same assumptions as in Theorems 2.3.30, let U ∈ D1,2(RN+1
+ , t1−2s dz) be

a weak solution to (1.2.9) (in the sense of (1.2.10)) with TrU = u satisfying (1.2.4)
and such that U(z) = O(|z − z0|k) as z → z0, for any k ∈ N. Then U ≡ 0 in RN+1

+ .

(ii) Under the same assumptions as in Theorems 2.3.31, let u ∈ Ds,2(RN ) be a weak
solution to (1.2.1) (in the sense of (1.2.6)) satisfying (1.2.4) and such that u(x) =
O(|x− x0|k) as x→ x0, for any k ∈ N. Then u ≡ 0 in RN .

In order to prove it we premise the following remark.

Remark 2.3.33. It is worth highlighting the fact that eigenfunctions of problem (1.2.11)
cannot vanish identically on SN−1 ∩ {θN < 0}, i.e. on the boundary portion where a
Neumann homogeneous condition is assigned. Indeed, if an eigenfunction ψ associated to
the eigenvalue µk = (k + s)(k + N − s) vanishes on SN−1 ∩ {θN < 0}, then the function
Ψ(ρθ) = ρk+sψ(θ) would be a weak solution to the equation div(t1−2s∇Ψ) = 0 in RN−1 ×
(−∞, 0)×(0,+∞) satisfying both Dirichlet and weighted Neumann homogeneous boundary
conditions on RN−1 × (−∞, 0) × {0}; then its trivial extension to RN−1 × (−∞, 0) × R
would violate the unique continuation principle for elliptic equations with Muckenhoupt
weights proved in [77] (see also [48], [73, Corollary 3.3], and [67, Proposition 2.2]).

Proof of Theorem 2.3.32. In order to prove (i), let U ∈ D1,2(RN+1
+ , t1−2s dz) be a non-

trivial weak solution to (1.2.9). Exploiting that by assumption U(z) = O(|z − z0|k) as
z → z0 for any k ∈ N, we have that for any fixed k ∈ N∣∣∣∣U(z0 + λz)

λk0+s

∣∣∣∣ ≤ constλk−k0−s (2.3.183)
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for λ sufficiently small. Taking k > k0+ s, from (2.3.183) il follows that
U(z0 + λz)

λk0+s
tends

to 0 in L2(B+
1 , t

1−2sdz) as λ→ 0, thus contradicting the assumption that U is non trivial
and (2.3.178). As far as the proof of (ii) is concerned, we argue by combining a similar
argument to the one used for the proof of (i) with Remark 2.3.33, which ensures that the
right hand side on (2.3.182) is non trivial.

2.4 Second order elliptic equations in a domain with a crack

In this section we present the results contained in [24]. Specifically, we carry out the
study of local asymptotics and the strong unique continuation property from the edge
of a crack for solutions to the class of boundary value problems of type (1.2.15), where
N ≥ 2, Ω ⊂ RN+1 is a bounded open domain, Γ ⊂ RN is a closed set defined as in
(1.2.16). The function g that parametrizes the edge of Γ is assumed to be of class C2 and,
without loss of generality, we suppose (1.2.17) holds true after fixing at the origin of our
coordinate system a point of the edge of the crack. Then in particular we focus on the
study of the strong unique continuation principle at the origin for solutions to problem
(1.2.20), where the radius R̂ is choosen in assumption (1.2.19) and the potential f satisfies
either (H1-1)-(H1-3) or (H2-1)-(H2-5). We recall that a weak solution to (1.2.20) is a
function u ∈ H1(BR̂) satisfying (1.2.22), where the space H1

Γ(BR̂) is defined as the closure
with respect to the H1-norm of the subspace defined in (1.2.21). The above space can be
explicitly characterized as follows.

Lemma 2.4.1. The space H1
Γ(BR̂) coincides with the subset of H1(BR̂) of those functions

with null trace on Γ.

The proof is based on the following Hardy-type inequality with boundary terms, due
to Wang and Zhu [78].

Lemma 2.4.2 ([78], Theorem 1.1). For every r > 0 and u ∈ H1(Br),∫
Br

|∇u(z)|2 dz + N − 1

2r

∫
∂Br

|u(z)|2 dS ≥
(
N − 1

2

)2 ∫
Br

|u(z)|2

|z|2
dz. (2.4.1)

It is also useful to give an adapted version of [5, Theorem 3.1] to our setting in order
to prove Lemma 2.4.1.

Theorem 2.4.3. Let Γ̊ be the interior of the crack Γ. Then the space of all smooth
functions defined in the closure of the ball BR̂ vanishing in a neighbourhood of Γ̊ is dense

in the set of functions in H1(BR̂) having null trace on Γ̊.

Now we can move on to prove Lemma 2.4.1.

Proof of Lemma 2.4.1. It is sufficient to prove that any function in H1(BR̂) having null
trace on Γ can be approximated by smooth functions defined in the closure of the ball
BR̂ vanishing in a neighbourhood of Γ. In order to do this, we exploit Theorem 2.4.3,
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taking into account that ∂Γ has zero capacity in BR̂, being contained in a 2-codimensional
manifold (see [49]). For this, we recall that the capacity of a compact set K contained in
an open set Ω ⊂ RN+1 is defined as

capΩK := inf

{∫
RN+1

|∇u|2 dz : u ∈ D(K,Ω)

}
,

where D(K,Ω) := {u ∈ C∞
c (Ω) : 0 ≤ u ≤ 1, u = 1 in a neighbourhood of K}.

Let u be any function in H1(BR̂) with null trace on Γ and let ε > 0. By Theorem 2.4.3
we deduce that there exists a function gε ∈ C∞(BR̂) such that

gε = 0 in a neighbourhood of Γ̊ and ∥u− gε∥H1(BR̂) < ε/2.

Furthermore, since ∂Γ has zero capacity in BR̂, there exists a sequence of functions
{ηn}n∈N ⊂ D(∂Γ, BR̂) such that∫

BR̂

|∇ηn|2 dz → 0 as n→ ∞. (2.4.2)

We claim that gε(1 − ηn) → gε in H1(BR̂) as n → ∞. In order to show it, we first
prove that ∫

BR̂

|gε − gε(1− ηn)|2 dz → 0 as n→ ∞.

Indeed, since gε − gε(1− ηn) = gεηn, it is sufficient to observe that gε is bounded and∫
BR̂

|ηn|2 dz ≤ R̂2

∫
BR̂

η2n
|z|2

dz ≤ const R̂2

∫
BR̂

|∇ηn|2 dz → 0 as n→ ∞, (2.4.3)

where we used (2.4.1) and (2.4.2). Moreover, we have that ∇gε−∇ (gε(1− ηn)) = ηn∇gε+
gε∇ηn, and∫

BR̂

|ηn∇gε + gε∇ηn|2 dz ≤ 2

(∫
BR̂

|ηn∇gε|2 dz +
∫
BR̂

|gε∇ηn|2 dz

)

≤ 2 const

(∫
BR̂

|ηn|2 dz +
∫
BR̂

|∇ηn|2 dz

)
→ 0

as n → ∞, exploiting the boundedness of ∇gε, (2.4.3) and (2.4.2). Hence there exists
ν = ν(ε) ∈ N such that

∥gε(1− ην(ε))− gε∥H1(BR̂) < ε/2.

Putting together all the above information we achieve the desired convergence because
gε(1− ην(ε)) vanishes in a neighbourhood of Γ and

∥gε(1− ην(ε))− u∥H1(BR̂) ≤ ∥gε(1− ην(ε))− gε∥H1(BR̂) + ∥gε − u∥H1(BR̂) < ε/2 + ε/2 = ε,

thus completing the proof.
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We provide some examples of functions satisfying our assumptions on potential f .

Remark 2.4.4. Conditions (H1-1)-(H1-3) are satisfied e.g. if |f(z)| = O(|z|−2+δ) as
|z| → 0+ for some δ > 0, whereas assumptions (H2-1)-(H2-5) hold e.g. if f ∈W 1,∞

loc (BR̂ \
{0}) and f,∇f ∈ Lp(BR̂) for some p > N+1

2 . We also observe that condition (H2-1) is
satisfied if f belongs to the Kato class Kn+1, see [34].

We make also some observations on assumption (1.2.19).

Remark 2.4.5. Assumption (1.2.19) says that the complement of Γ is star-shaped with
respect to the origin in a neighbourood of 0. This fact can be easily seen taking into
account that if x = (x′, xN ) ∈ ∂Γc, then xN = g(x′) and the outward unit normal vector
at x denoted with ν(x) is given by

(−∇g(x′), 1)√
1 + |∇g(x′)|2

.

In particular, we observe that (1.2.19) is satisfied for instance if the function g is concave
in a neighbourood of the origin, see Figure 2.4. Indeed, under this assumption the Hessian
matrix is negative semi-definite for any point in a neighbourood of the origin; in particular,
using condition (1.2.17) and considering the asymptotic expansions of g and ∇g around 0
we deduce that

g(x′) =
1

2

N−1∑
i,j=1

∂2g(0)

∂xi∂xj
xixj + o(|x′|2) as |x′| → 0+ (2.4.4)

∇g(x′) · x′ =
N−1∑
i,j=1

∂2g(0)

∂xi∂xj
xixj + o(|x′|2) as |x′| → 0+,

hence

g(x′)−∇g(x′) · x′ = −1

2

N−1∑
i,j=1

∂2g(0)

∂xi∂xj
xixj + o(|x′|2) as |x′| → 0+, (2.4.5)

thus implying (1.2.19).

BR̂
g

Γc Γ

Figure 2.4: An example of g satistying (1.2.19)
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2.4.1 Approximation argument

In this section we carry out an approximation argument based on the construction of
a sequence of domains approximating our cracked domain with the twofold features of
satisfying the exterior ball condition and being star-shaped with respect to the origin. In
order to have the latter property, condition (1.2.19) turns out to be crucial (see the proof
of Lemma 2.4.8).

Consequently, we consider a sequence of solutions of some boundary value problems
on such domains converging to the solution of the original problem with crack.

We start by providing a coercivity type result for the quadratic form associated to
problem (1.2.20) in small neighbourhoods of the origin.

Lemma 2.4.6. Let f satisfy either (H1-1) or (H2-1). Then there exists r0 ∈ (0, R̂) such
that for every r ∈ (0, r0] and u ∈ H1(Br)∫

Br

(|∇u|2 − |f |u2) dz ≥ 1

2

∫
Br

|∇u|2 dz − ω(r)

∫
∂Br

u2 dS (2.4.6)

where

ω(r) =


2

N − 1

ξf (r)

r
, under assumption (H1-1),

N − 1

2

η(r, f)

r
, under assumption (H2-1),

(2.4.7)

and

rω(r) <
N − 1

4
. (2.4.8)

Remark 2.4.7. For future use, we notice that (2.4.6) can be rewritten as follows∫
Br

|f |u2 dz ≤ 1

2

∫
Br

|∇u|2 dz + ω(r)

∫
∂Br

u2 dS (2.4.9)

for all u ∈ H1(Br) and r ∈ (0, r0].

Proof of Lemma 2.4.6. We first prove the lemma under assumption (H1-1). Using (H1-3)
and (2.4.1), we infer that for any r ∈ (0, R̂) and u ∈ H1(Br)∫

Br

|f |u2 dz ≤ ξf (r)

∫
Br

|u(z)|2

|z|2
dz

≤
4ξf (r)

(N − 1)2

[∫
Br

|∇u|2 dz + N − 1

2r

∫
∂Br

u2 dS

]
.

(2.4.10)

From (H1-1) we can deduce that there exists r0 ∈ (0, R̂) such that

4ξf (r)

(N − 1)2
<

1

2
for all r ∈ (0, r0]. (2.4.11)
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Thus, for every r ∈ (0, r0], combining (2.4.11) and (2.4.10), we obtain that∫
Br

(
|∇u|2 − |f |u2

)
dz ≥

(
1−

4ξf (r)

(N − 1)2

)∫
Br

|∇u|2 dz − 2

N − 1

ξf (r)

r

∫
∂Br

u2 dS

≥ 1

2

∫
Br

|∇u|2 dz − 2

N − 1

ξf (r)

r

∫
∂Br

u2 dS

and this completes the proof of (2.4.6) under assumption (H1-1).
Now we move on to prove the lemma under assumption (H2-1). Then by (H2-5), it

follows that for every r ∈ (0, R̂) and u ∈ H1(Br)∫
Br

|f |u2 dz ≤ η(r, f)

[∫
Br

|∇u|2 dz + N − 1

2r

∫
∂Br

u2 dS

]
. (2.4.12)

From (H2-1) we can deduct that there exists r0 ∈ (0, R̂) be such that

η(r, f) <
1

2
for all r ∈ (0, r0]. (2.4.13)

Hence, for every r ∈ (0, r0], putting together (2.4.13) and (2.4.12) we deduce that∫
Br

(
|∇u|2 − |f |u2

)
dz ≥ (1− η(r, f))

∫
Br

|∇u|2 dz − N − 1

2

η(r, f)

r

∫
∂Br

u2 dS

≥ 1

2

∫
Br

|∇u|2 dz − N − 1

2

η(r, f)

r

∫
∂Br

u2 dS,

hence concluding the proof of (2.4.6) under assumption (H2-1). Estimate (2.4.8) follows
from the definition of ω in (2.4.7), (2.4.11), and (2.4.13).

Now we construct suitable regular sets approximating our cracked domain which are
star-shaped with respect to the origin and satisfy the exterior ball condition. In order to
do this, for any n ∈ N \ {0} let fn : R → R be defined as

fn(t) =

n|t|+ 1
ne

2n2|t|
n2|t|−2 , if |t| < 2/n2,

n|t|, if |t| ≥ 2/n2,

so that fn ∈ C2(R), fn(t) ≥ n|t| for all t ∈ R, and f ′n(t) ≤ n for every t > 0 and f ′n ≥ −n
for every t < 0; from these information, we can easily deduce that

fn(t)− t f ′n(t) ≥ 0 for every t ∈ R. (2.4.14)

This condition reveals to be fundamental to obtain domains that are star-shaped with
respect to the origin (see Lemma 2.4.8 below). Then for all r > 0, we define

B̃r,n := {z = (x′, xN , t) ∈ Br : xN < g(x′) + fn(t)}, (2.4.15)
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see Figure 2.5.

(a) The set B̃r,n (b) Section of B̃r,n

Figure 2.5: Approximating domains

Let γ̃r,n that part of the boundary of B̃r,n contained in Br given by the set

{z = (x′, xN , t) ∈ Br : xN = g(x′) + fn(t)}

and S̃r,n denote its complement with respect to ∂B̃r,n. For any fixed r > 0, the set γ̃r,n is
not empty and, consequently, B̃r,n ̸= Br, provided that n is sufficiently large.

Lemma 2.4.8. Let 0 < r ≤ R̂. Then, for all n ∈ N \ {0}, the set B̃r,n is star-shaped
with respect to the origin, i.e. z · ν(z) ≥ 0 for a.e. z ∈ ∂B̃r,n, where ν is the outward unit
normal vector.

Proof. If γ̃r,n is empty, then B̃r,n = Br and the conclusion is obvious. Let γ̃r,n be not
empty.

The thesis is trivial if one considers a point z ∈ ∂B̃r,n \ γ̃r,n.
If z ∈ γ̃r,n, then z = (x′, g(x′) + fn(t), t) and the outward unit normal vector at this

point is given by

ν(z) =
(−∇g(x′), 1,−f ′n(t))√
1 + |f ′n(t)|2 + |∇g(x′)|2

,

hence

z · ν(z) = g(x′)−∇g(x′) · x′ + fn(t)− t f ′n(t)√
1 + |f ′n(t)|2 + |∇g(x′)|2

≥ 0

as a consequence of assumption (1.2.19) and by (2.4.14).

We fix once and for all u ∈ H1(BR̂) a non-trivial weak solution to problem (1.2.20), as
clarified in (1.2.22). Hence there exists a sequence of functions Gn ∈ C∞

0,Γ(BR̂) such that

Gn → u in H1(BR̂). Starting from the functions Gn, we can easily construct a sequence
of functions gn such that

gn(x
′, xN , t) = 0 if (x′, xN ) ∈ Γ and |t| ≤ C̃

n
, (2.4.16)

with

C̃ >
√
2(r20 +M2), where M := max{|g(x′)| : |x′| ≤ r0}. (2.4.17)
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Indeed, since G1 vanishes in a neighbourhood of Γ, then G1 vanishes on a set of type

Γ×
(
− C̃
n1
, C̃n1

)
for sufficiently large n1 ∈ N∗. Thus, choosing gi = G1 for every 1 ≤ i ≤ n1,

we will have

gi(x
′, xN , t) = 0 if (x′, xN ) ∈ Γ and |t| ≤ C̃

n1
≤ C̃

i

for every 1 ≤ i ≤ n1, which implies property (2.4.16), as desired. We proceed by selecting

n2 > n1 such that G2 = 0 on Γ×
(
− C̃
n2
, C̃n2

)
and letting gj = G2 for every n1+1 ≤ j ≤ n2.

In this way, (2.4.16) holds true also for gj , with n1+1 ≤ j ≤ n2. Via an iteration argument,
as shown below

g1 g2 · · · gn1gn1+1 · · · gn2 · · ·

G1 G1 · · · G1 G2 · · · G2 · · ·

we obtain a sequence of functions gn satisfying (2.4.16).

Remark 2.4.9. It holds that gn ≡ 0 in Br0 \ B̃r0,n. Indeed, if z = (x′, xN , t) ∈ Br0 \ B̃r0,n,
then

xN ≥ g(x′) + fn(t) > g(x′),

and hence (x′, xN ) ∈ Γ. Moreover

xN ≥ fn(t) + g(x′) ≥ n|t| −M,

withM defined as in (2.4.17). Thus either |t| ≤ M
n or r20 ≥ x2N ≥ (n|t|−M)2 ≥ n2

2 |t|2−M2,

implying that |t| ≤
√

2(r20+M
2)

n < C̃
n , if we take C̃ as in (2.4.17). Then gn(z) = 0 in view

of (2.4.16).

We go ahead with our construction by considering a sequence of solutions {un}n∈N to
some boundary value problems on the approximating domains B̃r0,n. Therefore, for every
n ∈ N, we claim that there exists a unique weak solution un to the following boundary
value problem {

−∆un = fun in B̃r0,n,

un = gn on ∂B̃r0,n.
(2.4.18)

Letting vn := un−gn, we have that un weakly solves (2.4.18) if and only if vn ∈ H1(B̃r0,n)
is a weak solution to the homogeneous boundary value problem{

−∆vn − fvn = fgn +∆gn in B̃r0,n,

vn = 0 on ∂B̃r0,n,
(2.4.19)

that is equivalent to assert that
vn ∈ H1

0 (B̃r0,n),∫
B̃r0,n

(∇vn · ∇ϕ− fvnϕ) dz =

∫
B̃r0,n

(fgn +∆gn)ϕdz for any ϕ ∈ H1
0 (B̃r0,n).
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Lemma 2.4.10. Let r0 be as in Lemma 2.4.6. Then, for all n ∈ N, problem (2.4.19) has
one and only one weak solution vn ∈ H1

0 (B̃r0,n), where B̃r0,n is defined as in (2.4.15).

Proof. For every v, w ∈ H1
0 (B̃r0,n) we introduce the bilinear form

a(v, w) =

∫
B̃r0,n

(∇v · ∇w − fvw) dz,

and by Lemma 2.4.6 we deduce that a is coercive on H1
0 (B̃r0,n), namely there exists a

positive constant β > 0 such that for every v ∈ H1
0 (B̃r0,n)

a(v, v) ≥ β∥v∥2
H1

0 (B̃r0,n)
.

Indeed, observing that the boundary term in (2.4.6) vanishes since v ∈ H1
0 (B̃r0,n), we have

that

a(v, v) =

∫
B̃r0,n

[
|∇v|2 − fv2

]
dz ≥ 1

2

∫
B̃r0,n

|∇v|2 dz = 1

2
∥v∥2

H1
0 (B̃r0,n)

. (2.4.20)

Furthermore, from estimate (2.4.9) we easily infer that a is continuous, i.e. there exists a
positive constant C > 0 such that for every v, w ∈ H1

0 (B̃r0,n)

|a(v, w)| ≤ C∥v∥H1
0 (B̃r0,n)

∥w∥H1
0 (B̃r0,n)

.

In order to show this we introduce

ω̃(r) :=


4ξf (r0)

(N − 1)2
, under assumption (H1-1),

η(r, f), under assumption (H2-1),

(2.4.21)

obtaining that by (2.4.11) and (2.4.13)

ω̃(r0) <
1

2
.

Then applying the Hölder inequality and proceeding as in the proof of Lemma 2.4.6

|a(v, w)| ≤
∫
B̃r0,n

|∇v · ∇w| dz +
∫
B̃r0,n

|fvw| dz

≤

(∫
B̃r0,n

|∇v|2 dz

)1/2(∫
B̃r0,n

|∇w|2 dz

)1/2

+

(∫
B̃r0,n

|f |v2 dz

)1/2(∫
B̃r0,n

|f |w2 dz

)1/2

≤ (1 + ω̃(r0)) ∥v∥H1
0 (B̃r0,n)

∥w∥H1
0 (B̃r0,n)

≤3

2
∥v∥H1

0 (B̃r0,n)
∥w∥H1

0 (B̃r0,n)
.

The thesis follows from the Lax-Milgram Theorem.
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Proposition 2.4.11. Under the same assumptions of Lemma 2.4.10, there exists a posi-
tive constant C > 0 such that ∥vn∥H1

0 (Br0 )
≤ C for every n ∈ N, after extending vn trivially

to zero in Br0 \ B̃r0,n.

Proof. First we observe that fgn and −∆gn interpreted as linear and continuous operators
on H1

0 (Br0) are bounded in H−1(Br0): indeed, by the Hölder inequality and (2.4.9), for
any ϕ ∈ H1

0 (Br0),∣∣∣∣∫
Br0

fgnϕdz

∣∣∣∣ ≤
(∫

Br0

|f |g2n dz

)1/2(∫
Br0

|f |ϕ2 dz

)1/2

≤ 1

2

(
1

2

∫
Br0

|∇gn|2 dz + ω(r0)

∫
∂Br0

g2n dS

)1/2(∫
Br0

|∇ϕ|2 dz

)1/2

≤ const∥gn∥H1(Br0 )
∥ϕ∥H1

0 (Br0 )
≤ const∥ϕ∥H1

0 (Br0 )
,

where we used also the continuity of the trace map from H1(Br0) to L2(∂Br0) and the
boundedness of functions gn in H1(Br0); moreover we have also∣∣∣∣−∫

Br0

∆gnϕdz

∣∣∣∣ = ∣∣∣∣∫
Br0

∇gn · ∇ϕdz
∣∣∣∣ ≤ const∥gn∥H1(Br0 )

∥ϕ∥H1
0 (Br0 )

≤ const∥ϕ∥H1
0 (Br0 )

.

Thus exploiting the equation (2.4.19) and Lemma 2.4.6, it follows that

∥vn∥2H1
0 (Br0 )

=

∫
Br0

|∇vn|2 dz ≤ 2

∫
Br0

(|∇vn|2 − fv2n) dz = 2

∫
Br0

(fgn +∆gn)vn dz

≤ const∥vn∥H1
0 (Br0 )

,

thus completing the proof.

Proposition 2.4.12. Under the same assumptions of Lemma 2.4.10, it holds that un ⇀ u
weakly in H1(Br0), after extending un trivially to zero in Br0 \ B̃r0,n.

Proof. We observe that the trivial extension to zero of un in Br0 \B̃r0,n belongs to H1(Br0)
since the trace of un on γ̃r0,n is null in view of Remark 2.4.9.

From Proposition 2.4.11 it follows that there exist ṽ ∈ H1
0 (Br0) and a subsequence

{vnk
} of {vn} such that vnk

⇀ ṽ weakly in H1
0 (Br0). Then unk

= vnk
+ gnk

⇀ ũ weakly
in H1(Br0), where ũ := ṽ + u. Let ϕ ∈ C∞

c (Br0 \ Γ). Arguing as in Remark 2.4.9, we can
prove that ϕ ∈ H1

0 (B̃r0,nk
) for all sufficiently large k. Hence, from (2.4.18) it follows that,

for all sufficiently large k, ∫
Br0

∇unk
· ∇ϕdz =

∫
Br0

funk
ϕdz, (2.4.22)
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where unk
is extended trivially to zero in Br0 \ B̃r0,nk

. Passing to the limit into (2.4.22),
we obtain that ∫

Br0

∇ũ · ∇ϕdz =
∫
Br0

fũϕ dz

for every ϕ ∈ C∞
c (Br0 \ Γ). Furthermore ũ = u on ∂Br0 in the trace sense: indeed, due to

compactness of the trace map γ : H1(Br0) → L2(∂Br0), we have that γ(unk
) → γ(ũ) in

L2(∂Br0) and γ(unk
) = γ(gnk

) → γ(u) in L2(∂Br0), since gn → u in H1(Br0).
Finally, we prove that ũ ∈ H1

Γ(Br0). To this aim, for every δ > 0 let Γδ := {(x′, xN ) ∈
RN : xN ≥ g(x′) + δ}. For every δ > 0 we have that Γδ ∩Br0 ⊂ Br0 \ B̃r0,n provided n is
sufficiently large. Hence, since un is extended trivially to zero in Br0 \ B̃r0,n, we have that,
for every δ > 0, un ∈ H1

Γδ
(Br0) provided n is sufficiently large. Since H1

Γδ
(Br0) is weakly

closed in H1(Br0), it follows that ũ ∈ H1
Γδ
(Br0) for every δ > 0, and hence ũ ∈ H1

Γ(Br0).
Thus ũ weakly solves 

−∆ũ = fũ in Br0 \ Γ,
ũ = u on ∂Br0 ,

ũ = 0 on Γ.

Now we consider the function U := ũ− u: it weakly solves the following problem
−∆U = fU in Br0 \ Γ,

U = 0 on ∂Br0 ,

U = 0 on Γ.

(2.4.23)

Testing equation (2.4.23) with U itself and using Lemma 2.4.6, we obtain that

1

2

∫
Br0

|∇U |2 dz ≤
∫
Br0

(|∇U |2 − fU2) dz = 0,

so that U = 0, hence u = ũ. We observe that, since vn is bounded, then assumption (i)
of Lemma 2.3.9 is trivially satisfied and if vnh

is any subsequence of vn such that vnh
⇀ v̄

for some v̄ ∈ H1
0 (Br0), then unh

= vnh
+ gnh

= v̄ + u =: ū. Arguing as above we are
able to prove that ū = u, thus having that v̄ = 0 hence the limit does not depend on
the specific subsequence and also assumption (ii) holds true. Therefore, by Lemma 2.3.9,
we can conclude that vn ⇀ 0 weakly in H1(Br0) and, consequently, un ⇀ u weakly in
H1(Br0).

We are now able to prove that actually there is strong convergence of the sequence
{un}n∈N to u in H1(Br0).

Proposition 2.4.13. Under the same assumptions of Lemma 2.4.10, it holds that un → u
strongly in H1(Br0).
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Proof. From Proposition 2.4.12 it follows that vn ⇀ 0 in H1(Br0), hence testing (2.4.19)
with vn itself, we have that∫
Br0

(|∇vn|2 − fv2n) dz =

∫
B̃r0,n

(|∇vn|2 − fv2n) dz

=

∫
B̃r0,n

(fgnvn −∇gn · ∇vn) dz =
∫
Br0

(fgnvn −∇gn · ∇vn) dz → 0

as n → ∞. Thus, by Lemma 2.4.6, we deduce that ∥vn∥H1
0 (Br0 )

→ 0 as n → ∞, therefore

vn → 0 in H1(Br0). This yields that un = gn + vn → u in H1(Br0).

2.4.2 Pohozaev-type inequality

In the present section we provide a Pohozaev-type inequality for problem (1.2.20) in order
to estimate the derivative of the Almgren function (2.4.47) in Section 2.4.3. In particular,
in this case due to the high non-smoothness of the domain, it is not possible directly to
infer a Pohozaev-type identity for problem (1.2.20). Then the idea is to derive Pohozaev-
type identities for problems (2.4.18) exploiting the higher regularity of the approximating
domains. Thus, using the star-shapeness of such domains exhibited in Lemma 2.4.8, we
are able to estimate some boundary terms appearing in the above identities. Then, passing
to the limit in the resulting inequalities, thanks to the convergence shown in Proposition
2.4.13, we obtain inequality (2.4.34).

To this aim, for every r ∈ (0, r0) and v ∈ H1(Br), we define

R(r, v) =


∫
Br

fv(z · ∇v) dz, if f satisfies (H1-1)-(H1-3),

r

2

∫
∂Br

f v2 dS − 1

2

∫
Br

(
∇f · z + (N + 1)f

)
v2 dz, if f satisfies (H2-1)-(H2-5).

Lemma 2.4.14. Let r ∈ (0, r0). Then there exists n0 = n0(r) ∈ N \ {0} such that, for all
n ≥ n0,

− N − 1

2

∫
B̃r,n

|∇un|2 dz +
r

2

∫
S̃r,n

|∇un|2 dS

− 1

2

∫
γ̃r,n

∣∣∣∣∂un∂ν
∣∣∣∣2z · ν dS − r

∫
S̃r,n

∣∣∣∣∂un∂ν
∣∣∣∣2 dS −R(r, un) = 0, (2.4.24)

where un is a weak solution to problem (2.4.18) for each fixed n ∈ N \ {0}.

Proof. Since un solves (2.4.18) in B̃r0,n that satisfies the exterior ball condition, and
fun ∈ L2

loc(B̃r0,n \ {0}), by elliptic regularity theory (see [2]), we can conclude that
un ∈ H2(B̃r,n \Bδ) for all r ∈ (0, r0), n sufficiently large and all δ < rn, where rn is such
that Brn ⊂ B̃r,n. Furthermore from the fact that∫ rn

0

[∫
∂Bt

(
|∇un|2 + |f |u2n

)
dS

]
dt =

∫
Brn

(
|∇un|2 + |f |u2n

)
dx < +∞,
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we deduce that there exists a sequence {δk}k∈N ⊂ (0, rn) such that lim
k→∞

δk = 0 and

δk

∫
∂Bδk

|∇un|2 dS → 0, δk

∫
∂Bδk

|f |u2n dS → 0 as k → ∞. (2.4.25)

Thus testing (2.4.18) with z · ∇un and integrating over B̃r,n \Bδk , we obtain that

−
∫
B̃r,n\Bδk

∆un(z · ∇un) dz =
∫
B̃r,n\Bδk

fun(z · ∇un) dz. (2.4.26)

Integration by parts allows us to rewrite the first term in (2.4.26) as follows

−
∫
B̃r,n\Bδk

∆un(z · ∇un) dz =
∫
B̃r,n\Bδk

∇un · ∇(z · ∇un) dz − r

∫
S̃r,n

∣∣∣∣∂un∂ν
∣∣∣∣2 dS

−
∫
γ̃r,n

∣∣∣∣∂un∂ν
∣∣∣∣2z · ν dS + δk

∫
∂Bδk

∣∣∣∣∂un∂ν
∣∣∣∣2 dS,

(2.4.27)

where we used that z = rν on S̃r,n, z = −δkν on ∂Bδk and the gradient ∇un is orthogonal
to γ̃r,n, i.e. ∇un = ∂un

∂ν ν on γ̃r,n. Furthermore, by direct calculations, the first term on
the right hand side in (2.4.27) can be rewritten as

∫
B̃r,n\Bδk

∇un · ∇(z · ∇un) dz

=
N+1∑
i,j=1

∫
B̃r,n\Bδk

∂un
∂zi

∂

∂zi

(
∂un
∂zj

zj

)
dz

N+1∑
i,j=1

∫
B̃r,n\Bδk

∂un
∂zi

[
∂2un
∂zi∂zj

zj + δij
∂un
∂zj

]
dz

=

∫
B̃r,n\Bδk

|∇un|2 dz +
1

2

N+1∑
i,j=1

∫
B̃r,n\Bδk

zj
∂

∂zj

[(
∂un
∂zi

)2
]
dz

=

∫
B̃r,n\Bδk

|∇un|2 dz −
N + 1

2

∫
B̃r,n\Bδk

|∇un|2 dz

+
1

2

∫
∂(B̃r,n\Bδk

)

N+1∑
i,j=1

∣∣∣∣∂un∂zi

∣∣∣∣2zjνj dS
=− N − 1

2

∫
B̃r,n\Bδk

|∇un|2 dz +
r

2

∫
S̃r,n

|∇un|2 dS +
1

2

∫
γ̃r,n

∣∣∣∣∂un∂ν
∣∣∣∣2z · ν dS

− δk
2

∫
∂Bδk

|∇un|2 dS.

(2.4.28)
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Putting together (2.4.26), (2.4.27) and (2.4.28), we obtain that

−N − 1

2

∫
B̃r,n\Bδk

|∇un|2 dz+
r

2

∫
S̃r,n

|∇un|2 dS−
1

2

∫
γ̃r,n

∣∣∣∣∂un∂ν
∣∣∣∣2z ·ν dS−r ∫

S̃r,n

∣∣∣∣∂un∂ν
∣∣∣∣2 dS

− δk
2

∫
∂Bδk

|∇un|2 dS + δk

∫
∂Bδk

∣∣∣∣∂un∂ν
∣∣∣∣2 dS −

∫
B̃r,n\Bδk

fun(z · ∇un) dz = 0. (2.4.29)

Under assumptions (H1-1)-(H1-3), we have that f un(z · ∇un) ∈ L1(Br), indeed by the
Hardy inequality (2.4.1)∫
Br

|f un(z · ∇un)| dz ≤ ξf (r)

∫
Br

|un(z)|
|z|

|∇un| dz

≤ ξf (r)

(∫
Br

|un(z)|2

|z|2
dz

)1/2(∫
Br

|∇un|2 dz
)1/2

≤ const ξf (r)

(∫
Br

|∇un|2 dz +
N − 1

2r

∫
∂Br

|un|2dS
)1/2(∫

Br

|∇un|2 dz
)1/2

<∞,

since ξf (r) is bounded thus finite for sufficiently small r, as a consequence of assumption
(H1-1). Hence we use the Lebesgue’s dominated convergence theorem to conclude that

lim
k→∞

∫
B̃r,n\Bδk

fun(z · ∇un) dz = lim
k→∞

∫
Br\Bδk

fun(z · ∇un) dz

=

∫
Br

fun(z · ∇un) dz.
(2.4.30)

On the other hand, if (H2-1)-(H2-5) hold, we can use the Divergence Theorem to obtain
that∫

B̃r,n\Bδk

fun(z · ∇un) dz =
1

2

∫
B̃r,n\Bδk

fz · ∇(u2n) dz

=
r

2

∫
S̃r,n

fu2n dS − 1

2

∫
B̃r,n\Bδk

(
∇f · z + (N + 1)f

)
u2n dz −

δk
2

∫
∂Bδk

fu2n dS

=
r

2

∫
∂Br

fu2n dS − 1

2

∫
Br\Bδk

(
∇f · z + (N + 1)f

)
u2n dz −

δk
2

∫
∂Bδk

fu2n dS. (2.4.31)

Under assumptions (H2-1)-(H2-5), it holds that
(
∇f ·z+(N+1)f

)
u2n ∈ L1(Br), indeed∫

Br

|∇f · z + (N + 1)f |u2n dz ≤
∫
Br

|∇f · z|u2n dz + (N + 1)

∫
Br

|f |u2n dz

≤ (η(r,∇f · z) + (N + 1)η(r, f))

(∫
Br

|∇un|2 dz +
N − 1

2r

∫
∂Br

|un|2 dS
)
<∞,
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since η(r,∇f · z) is finite a.e. by assumption (H2-4) and η(r, f) is finite for sufficiently
small r in virtue of (H2-2). Then passing to the limit as k → ∞ in (2.4.31), taking into
account also (2.4.25), we deduce that

lim
k→∞

∫
B̃r,n\Bδk

fun(z ·∇un) dz =
r

2

∫
∂Br

fu2n dS−
1

2

∫
Br

(
∇f ·z+(N+1)f

)
u2n dz. (2.4.32)

Letting k → +∞ in (2.4.29), by (2.4.25), (2.4.30), and (2.4.32), we attain (2.4.24).

Exploiting Lemma 2.4.14 and the fact that the domains B̃r,n (defined as in (2.4.15))
are star-shaped with respect to the origin, we deduct the following inequality.

Corollary 2.4.15. Let 0 < r < r0. Then there exists n0 = n0(r) ∈ N \ {0} such that, for
all n ≥ n0,

− N − 1

2

∫
B̃r,n

|∇un|2 dz +
r

2

∫
S̃r,n

|∇un|2 dS − r

∫
S̃r,n

∣∣∣∣∂un∂ν
∣∣∣∣2 dS −R(r, un) ≥ 0, (2.4.33)

where un is a weak solution to problem (2.4.18) for each fixed n ∈ N \ {0}.

Proof. In view of (2.4.24), the left-hand side of (2.4.33) is equal to
1

2

∫
γ̃r,n

∣∣∣∣∂un∂ν
∣∣∣∣2z · ν dS,

which is in fact non-negative since z · ν ≥ 0 on γ̃r,n by Lemma 2.4.8.

Passing to the limit into (2.4.33) as n → ∞, a similar inequality can be derived for a
weak solution to (1.2.20).

Proposition 2.4.16. Let u be a weak solution to (1.2.20), with f satisfying either (H1-1)-
(H1-3) or (H2-1)-(H2-5). Then, for a.e. r ∈ (0, r0), we have that

− N − 1

2

∫
Br

|∇u|2 dz + r

2

∫
∂Br

|∇u|2 dS − r

∫
∂Br

∣∣∣∣∂u∂ν
∣∣∣∣2 dS −R(r, u) ≥ 0 (2.4.34)

and ∫
Br

|∇u|2 dz =
∫
Br

fu2 dz +

∫
∂Br

u
∂u

∂ν
dS. (2.4.35)

Proof. In order to prove (2.4.34), we pass to the limit inside inequality (2.4.33). As regards
the first term, it is sufficient to observe that∫

B̃r,n

|∇un|2dz =
∫
Br

|∇un|2dz →
∫
Br

|∇u|2dz as n→ ∞,

for each fixed r ∈ (0, r0), as a consequence of Proposition 2.4.13. Dealing with the second
term, we observe that, by strong H1-convergence of un to u,

lim
n→+∞

∫ r0

0

(∫
∂Br

|∇(un − u)|2 dS
)
dr = 0. (2.4.36)
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Letting

Fn(r) =

∫
∂Br

|∇(un − u)|2 dS,

(2.4.36) implies that Fn → 0 in L1(0, r0). Then we can deduce that there exists a subse-
quence Fnk

such that Fnk
(r) → 0 for a.e. r ∈ (0, r0), hence having that∫

S̃r,nk

|∇unk
|2 dS =

∫
∂Br

|∇unk
|2 dS →

∫
∂Br

|∇u|2 dS as k → ∞

for a.e. r ∈ (0, r0). Arguing in a similar way, we obtain that∫
S̃r,nk

∣∣∣∣∂unk

∂ν

∣∣∣∣2dS →
∫
∂Br

∣∣∣∣∂u∂ν
∣∣∣∣2dS as k → ∞

for a.e. r ∈ (0, r0). It remains to prove the convergence of R(r, un) to R(r, u). Under the
set of assumptions (H1-1)-(H1-3), we notice that∫

Br

|fun(z · ∇un)− fu(z · ∇u)| dz =
∫
Br

|f(un − u)(z · ∇un)− fuz · ∇(u− un)| dz

≤
∫
Br

|f(un − u)(z · ∇un)|dz +
∫
Br

|fuz · ∇(u− un)| dz.

(2.4.37)

The Hölder inequality, (2.4.1), and Proposition 2.4.13 imply that

∫
Br

|f(un − u)(z · ∇un)| dz ≤ ξf (r)

(∫
Br

|un − u|2

|z|2
dz

)1/2(∫
Br

|∇un|2 dz
)1/2

≤ 2

N − 1
ξf (r)

(∫
Br

|∇(un − u)|2 dz + N − 1

2r

∫
∂Br

|un − u|2dS
)1/2(∫

Br

|∇un|2 dz
)1/2

→ 0

and∫
Br

|fuz · ∇(un − u)| dz ≤ ξf (r)

(∫
Br

|u(z)|2

|z|2
dz

)1/2(∫
Br

|∇(un − u)|2 dz
)1/2

≤ 2

N − 1
ξf (r)

(∫
Br

|∇u|2 dz + N − 1

2r

∫
∂Br

|u|2dS
)1/2(∫

Br

|∇(un − u)|2 dz
)1/2

→ 0

as n → ∞, for all r ∈ (0, r0), since ξf (r) is bounded thus finite for sufficiently small r, as
a consequence of assumption (H1-1). Hence, from (2.4.37) we deduce that

lim
n→∞

R(r, un) = R(r, u) (2.4.38)
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under assumptions (H1-1)-(H1-3). In order to prove (2.4.38) under assumptions (H2-1)-
(H2-5), we first use Proposition 2.4.13 and the Hölder inequality to observe that∣∣∣∣ ∫

Br

[∇f · z + (N + 1)f ](u2n − u2) dz

∣∣∣∣
≤
(∫

Br

(|∇f · z|+ (N + 1)|f |)|un − u|2 dz
)1/2(∫

Br

(|∇f · z|+ (N + 1)|f |)|un + u|2 dz
)1/2

≤ (η(r,∇f · z) + (N + 1)η(r, f))

(∫
Br

|∇(un − u)|2 dz + N − 1

2r

∫
∂Br

|un − u|2 dS
)1/2

·
(∫

Br

|∇(un + u)|2 dz + N − 1

2r

∫
∂Br

|un + u|2 dS
)1/2

→ 0,

as n→ ∞, for a.e. r ∈ (0, r0), since η(r,∇f · z) is finite a.e. by assumption (H2-4), η(r, f)
is finite for sufficiently small r in virtue of (H2-2) and {un + u}n is bounded in H1(Br)
for every r ∈ (0, r0). Furthermore, by the fact that f is bounded far from the origin and
using the compactness of the trace map from H1(Br) to L

2(∂Br), it follows that∫
∂Br

fu2n dS →
∫
∂Br

fu2 dS,

for a.e. r ∈ (0, r0). Hence, passing to the limit in R(r, un) we conclude the first part of
the proof.

Finally (2.4.35) follows by testing (2.4.18) with un itself and passing to the limit arguing
as above.

2.4.3 The Almgren frequency function

Let u ∈ H1
Γ(BR̂) be a non trivial solution to (1.2.20). For every r ∈ (0, R̂) we define

D(r) = r1−N
∫
Br

(
|∇u|2 − fu2

)
dz (2.4.39)

and

H(r) = r−N
∫
∂Br

u2 dS. (2.4.40)

In the following lemma we compute the derivative of the function H.

Lemma 2.4.17. It holds that H ∈W 1,1
loc (0, R̂) and

H′(r) = 2 r−N
∫
∂Br

u
∂u

∂ν
dS (2.4.41)

in a distributional sense and for a.e. r ∈ (0, R̂). Furthermore

H′(r) =
2

r
D(r) for a.e. r ∈ (0, R̂). (2.4.42)
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Proof. First we observe that

H(r) =

∫
SN

|u(rθ)|2 dS. (2.4.43)

Let ϕ ∈ C∞
c (0, R̂). If we set ϕ(r) = v(rθ) with θ ∈ SN , we deduce that ϕ′(r) = ∇v(rθ) · θ

and v(R̂θ) = 0 since ϕ is null at 0 and R̂. Then, exploiting all these information

−
∫ R̂

0
H(r)ϕ′(r) dr = −

∫ R̂

0
ϕ′(r)

∫
∂B1

u2(rθ) dS dr = −
∫ R̂

0

∫
SN
u2(rθ)∇v(rθ) · θ dS dr

=−
∫
BR̂

|z|−N−1u2(z)∇v(z) · z dz

=−
∫
∂BR̂

(
v(z)|z|−N−1u2(z)z

)
· ν dS + 2

∫
BR̂

v(z)u(z)|z|−N−1∇u(z) · z dz

=2

∫
BR̂

v(z)u(z)|z|−N−1∇u(z) · z dz

=2

∫ R̂

0
ϕ(r)

(∫
SN
u(rθ)∇u(rθ) · θ dS

)
dr,

by the divergence Theorem. Thus we proved (2.4.41) in a distributional sense and a.e.
Furthermore, using that u,∇u ∈ L2(BR̂), we easily obtain that H ∈ W 1,1

loc (0, R̂). Identity
(2.4.42) follows from (2.4.41) and (2.4.35).

In order to define a suitable Almgren-type frequency function we show that the function
H is strictly positive in a neighbourhood of 0.

Lemma 2.4.18. For any r ∈ (0, r0] it holds that H(r) > 0.

Proof. Assume by contradiction that there exists r1 ∈ (0, r0] such that H(r1) = 0, thus
the trace of u on ∂Br1 is null and hence u ∈ H1

0 (Br1 \ Γ). Then, testing (1.2.20) with u,
we obtain that ∫

Br1

|∇u|2 dz −
∫
Br1

fu2 dz = 0. (2.4.44)

Therefore, from Lemma 2.4.6 and (2.4.44) it follows that

0 =

∫
Br1

[|∇u|2 − fu2] dz ≥ 1

2

∫
Br1

|∇u|2 dz,

which, together with Lemma 2.4.2, implies that u ≡ 0 in Br1 . From classical unique
continuation principles for second order elliptic equations with locally bounded coefficients
(see e.g. [79]), we can conclude that u = 0 a.e. in BR̂, a contradiction.

The following lemma contains an estimate from below for the derivative of the function
D, making use of the Pohozaev-type inequality found in Section 2.4.2.
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Lemma 2.4.19. The function D defined in (3.3.1) belongs to W 1,1
loc (0, R̂) and

D′(r) ≥ 2r1−N
∫
∂Br

∣∣∣∣∂u∂ν
∣∣∣∣2 dS + (N − 1)r−N

∫
Br

fu2 dz + 2r−NR(r, u)

− r1−N
∫
∂Br

fu2 dS

(2.4.45)

for a.e. r ∈ (0, r0).

Proof. By direct calculations, we deduce that

D′(r) = (1−N)r−N
∫
Br

(
|∇u|2 − fu2

)
dz + r1−N

∫
∂Br

(
|∇u|2 − fu2

)
dS (2.4.46)

in the distributional sense and for a.e. r ∈ (0, R̂). This allows us to conclude that
D ∈W 1,1

loc (0, R̂). Inserting (2.4.34) into (2.4.46), we obtain (2.4.45).

Thanks to Lemma 2.4.18, the Almgren frequency function

N : (0, r0] → R, N (r) =
D(r)

H(r)
(2.4.47)

is well defined. As a consequence of Lemmas 2.4.6, 2.4.17 and 2.4.19, we provide the
following estimates from below of the Almgren function N and its derivative.

Lemma 2.4.20. The function N defined in (2.4.47) belongs to W 1,1
loc ((0, r0]) and

N ′(r) ≥ ν1(r) + ν2(r) (2.4.48)

for a.e. r ∈ (0, r0), where

ν1(r) =
2r
[(∫

∂Br

∣∣∂u
∂ν

∣∣2 dS)(∫∂Br
|u|2 dS

)
−
(∫
∂Br

u∂u∂ν dS
)2](∫

∂Br
|u|2 dS

)2
and

ν2(r) =
2
[
N−1
2

∫
Br
fu2 dz +R(r, u)− r

2

∫
∂Br

fu2 dS
]∫

∂Br
|u|2 dS

. (2.4.49)

Furthermore,

N (r) > −N − 1

4
for every r ∈ (0, r0) (2.4.50)

and, for every ε > 0, there exists rε > 0 such that

N (r) > −ε for every r ∈ (0, rε), (2.4.51)

i.e. lim inf
r→0+

N (r) ≥ 0.
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Proof. We can easily obtain that N ∈ W 1,1
loc ((0, r0]), arguing as in Lemma 2.3.17, by

Lemmas 2.4.17, 2.4.18, and 2.4.19. Using (2.4.42) we have that

N ′(r) =
D′(r)H(r)−D(r)H′(r)

[H(r)]2
=

D′(r)H(r)− r
2 [H

′(r)]2

[H(r)]2

for a.e. r ∈ (0, r0) and the proof of (2.4.48) easily follows from (2.4.41) and (2.4.45). To
prove (2.4.50) and (2.4.51), we observe that (3.3.1) and (2.4.40), together with Lemma
2.4.6, imply that

N (r) =
D(r)

H(r)
≥
r
[
1
2

∫
Br

|∇u|2 dz − ω(r)
∫
∂Br

|u|2 dS
]∫

∂Br
|u|2 dS

≥ −rω(r) (2.4.52)

for every r ∈ (0, r0), where ω is defined in (2.4.7). Then (2.4.50) follows directly from
(2.4.8). From either assumption (H1-1) or (H2-1) it follows that lim

r→0+
rω(r) = 0; hence

(2.4.52) implies (2.4.51).

Lemma 2.4.21. Let ν2 be as in (2.4.49). There exists a positive constant C1 > 0 such
that

|ν2(r)| ≤ C1α(r)

[
N (r) +

N − 1

2

]
(2.4.53)

for all r ∈ (0, r0), where

α(r) =

{
r−1ξf (r), under assumptions (H1-1)-(H1-3),

r−1 (η(r, f) + η(r,∇f · z)) , under assumptions (H2-1)-(H2-5).
(2.4.54)

Proof. From Lemma 2.4.6 we deduce that for all r ∈ (0, r0),∫
Br

|∇u|2 dz ≤ 2
(
rN−1D(r) + ω(r)rNH(r)

)
, (2.4.55)

where ω(r) is defined in (2.4.7).
Let us first suppose to be under assumptions (H1-1)-(H1-3). Estimating the first term

in the numerator of ν2(r) we obtain that∣∣∣∣∫
Br

fu2 dz

∣∣∣∣ ≤ ξf (r)

∫
Br

|u(z)|2

|z|2
dz ≤ ξf (r)

4

(N − 1)2

[∫
Br

|∇u|2 dz + N − 1

2r

∫
∂Br

u2 dS

]
≤ 8

(N − 1)2
rN−1ξf (r)D(r) +

16

(N − 1)3
rN−1 (ξf (r))

2H(r) +
2

N − 1
rN−1ξf (r)H(r)

≤ 8

(N − 1)2
rN−1ξf (r)D(r) +

4

N − 1
rN−1ξf (r)H(r)

=
8

(N − 1)2
rN−1ξf (r)

(
D(r) +

N − 1

2
H(r)

)
,

(2.4.56)
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where we used (H1-3), Lemma 2.4.2, (2.4.55) and (2.4.11). Using Hölder inequality,
(2.4.56), (2.4.11), and (2.4.55), the second term can be estimated as follows∣∣∣∣∫
Br

fuz · ∇u dz
∣∣∣∣ ≤ ξf (r)

(∫
Br

|u(z)|2

|z|2
dz

)1/2(∫
Br

|∇u|2 dz
)1/2

≤ ξf (r)
4

N − 1
rN−1

(
D(r) +

N − 1

2
H(r)

)1/2(
D(r) +

2

N − 1
ξf (r)H(r)

)1/2

≤ ξf (r)
4

N − 1
rN−1

(
D(r) +

N − 1

2
H(r)

)
.

(2.4.57)

For the last term we have that

r

∣∣∣∣∫
∂Br

fu2 dS

∣∣∣∣ ≤ ξf (r)

r

∫
∂Br

u2 dS = ξf (r)r
N−1H(r). (2.4.58)

Combining (2.4.56), (2.4.57), and (2.4.58), we obtain that, for all r ∈ (0, r0),

|ν2(r)| ≤ C1 ξf (r)r
−1

[
N (r) +

N − 1

2

]
for some positive constant C1 > 0 which does not depend on r.

Now let us suppose to be under assumptions (H2-1)-(H2-5). In this case, the definition
of R(r, u) allows us to rewrite ν2 as

ν2(r) = −
∫
Br

(2f +∇f · z)u2 dz∫
∂Br

u2 dS
.

From (H2-5), (2.4.55) and (2.4.13) it follows that∣∣∣∣∫
Br

(2f +∇f · z)u2 dz
∣∣∣∣ ≤ (2η(r, f) + η(r,∇f · x))

(∫
Br

|∇u|2 dz + N − 1

2r

∫
∂Br

|u|2 dS
)

≤ 2(2η(r, f) + η(r,∇f · x))rN−1

(
D(r) +

N − 1

2
η(r, f)H(r) +

N − 1

4
H(r)

)
≤ 2(2η(r, f) + η(r,∇f · x))rN−1

(
D(r) +

N − 1

2
H(r)

)
.

Therefore, we have that

|ν2(r)| ≤
2(2η(r, f) + η(r,∇f · x))

r

(
N (r) +

N − 1

2

)
and estimate (2.4.53) is proved also under assumptions (H2-1)-(H2-5), with C1 = 4.

Lemma 2.4.22. Letting r0 be as in Lemma 2.4.6 and N as in (2.4.47), there exists a
positive constant C2 > 0 such that

N (r) ≤ C2 for all r ∈ (0, r0). (2.4.59)
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Proof. By Lemma 2.4.20, Schwarz’s inequality, and Lemma 2.4.21, we obtain(
N +

N − 1

2

)′
(r) ≥ ν2(r) ≥ −C1α(r)

[
N (r) +

N − 1

2

]
(2.4.60)

for a.e. r ∈ (0, r0), where α is defined in (2.4.54). Taking into account thatN (r)+N−1
2 > 0

for all r ∈ (0, r0) in view of (2.4.50) and α ∈ L1(0, r0) thanks to assumptions (H1-2), (H2-2)
and (H2-4), after integration over (r, r0) it follows that

N (r) ≤ −N − 1

2
+

(
N (r0) +

N − 1

2

)
exp

(
C1

∫ r0

0
α(s)ds

)
for any r ∈ (0, r0), thus proving estimate (2.4.59).

Lemma 2.4.23. The limit
γ := lim

r→0+
N (r)

exists and is finite. Moreover γ ≥ 0.

Proof. Since N ′(r) ≥ −C1α(r)
[
N (r) + N−1

2

]
for a.e. r ∈ (0, r0) in view of (2.4.60) and

α ∈ L1(0, r0) by assumptions (H1-2), (H2-2) and (H2-4), we have that

d

dr

[
eC1

∫ r
0 α(s) ds

(
N (r) +

N − 1

2

)]
≥ 0 for a.e. r ∈ (0, r0),

therefore the limit of r 7→ eC1

∫ r
0 α(s) ds

(
N (r) + N−1

2

)
as r → 0+ exists; hence the function

N has a limit as r → 0+.
From (2.4.59) and (2.4.51) it follows that C2 ≥ γ := lim

r→0+
N (r) = lim inf

r→0+
N (r) ≥ 0; in

particular γ is finite.

A first consequence of the above analysis on the Almgren’s frequency function is the
following estimate of H(r).

Lemma 2.4.24. Let γ be as in Lemma 2.4.23 and r0 be as in Lemma 2.4.6. Then there
exists a constant K1 > 0 such that

H(r) ≤ K1r
2γ for all r ∈ (0, r0). (2.4.61)

On the other hand, for any σ > 0 there exists a constant K2(σ) > 0 depending on σ such
that

H(r) ≥ K2(σ)r
2γ+σ for all r ∈ (0, r0). (2.4.62)

Proof. By (2.4.60) and (2.4.59) we have that

N ′(r) ≥ −C1

(
C2 +

N − 1

2

)
α(r) a.e. in (0, r0). (2.4.63)
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Moreover, it holds that for all r ∈ (0, r0)

N (r)− γ =

∫ r

0
N ′(s) ds. (2.4.64)

Indeed, for any fixed r ∈ (0, r0)

N (r)−N (ε) =

∫ r

ε
N ′(s) ds =

∫ r

ε
α1(s) ds+

∫ r

ε
α2(s) ds

=

∫ r

0
χ(ε,r)α1(s) ds+

∫ r

0
χ(ε,r)α2(s) ds,

(2.4.65)

with

α1(s) := N ′ + C1

(
C2 +

N − 1

2

)
α(s) (2.4.66)

and

α2(s) := −C1

(
C2 +

N − 1

2

)
α(s). (2.4.67)

Then, passing to the limit as ε→ 0 into (2.4.65), we obtain that the left hand side tends to

N (r)−γ by Lemma 2.4.23 and, on the right hand side, the first term tends to

∫ r

0
α1(s) ds

as a consequence of the monotone convergence theorem since α1(s) ≥ 0 a.e. in s ∈ (0, r) by

(2.4.63) and the second term goes to

∫ r

0
α2(s) ds by the Lebesgue’s dominated convergence

theorem, using that α2 ∈ L1(0, r0) since α ∈ L1(0, r0) due to assumptions (H1-2), (H2-2)
and (H2-4). Therefore from (2.4.64) and (2.4.63), it follows that

N (r)− γ ≥ −C1

(
C2 +

N − 1

2

)∫ r

0
α(s) ds = −C3rF (r), (2.4.68)

where C3 := C1

(
C2 +

N−1
2

)
and

F (r) :=
1

r

∫ r

0
α(s) ds.

We observe that, thanks to assumptions (H1-2), (H2-2) and (H2-4),

F ∈ L1(0, r0). (2.4.69)

From (2.4.42) and (2.4.68) we deduce that, for a.e. r ∈ (0, r0),

H′(r)

H(r)
=

2N (r)

r
≥ 2γ

r
− 2C3F (r),

which, thanks to (2.4.69), after integration over the interval (r, r0), yields (2.4.61).
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Let us prove (2.4.62). Since γ := lim
r→0+

N (r), for any σ > 0 there exists rσ > 0 such

that N (r) < γ + σ/2 for any r ∈ (0, rσ) and hence

H′(r)

H(r)
=

2N (r)

r
<

2γ + σ

r
for all r ∈ (0, rσ).

Integrating over the interval (r, rσ), we then obtain that

H(r)

r2γ+σ
≥ H(rσ)

r2γ+σσ

for all r ∈ (0, rσ). (2.4.70)

Neverthless, by the continuity of H outside 0, we can assert that

H(r)

r2γ+σ
≥ min

r∈[rσ ,r0]

H(r)

r2γ+σ
> 0 for all r ∈ [rσ, r0]. (2.4.71)

Combining (2.4.70) and (2.4.71), we derive (2.4.62) for some positive constant K2(σ) > 0
depending on σ.

2.4.4 The blow-up argument

let u be a non trivial weak H1(BR̂)-solution to equation (1.2.20) with f satisfying either
(H1-1)-(H1-3) or (H2-1)-(H2-5). Let D and H be the functions defined in (3.3.1) and
(2.4.40) and r0 be as in Lemma 2.4.6. We define the following scaled function

wλ(z) =
u(λz)√
H(λ)

, (2.4.72)

with λ ∈ (0, r0). We notice that wλ ∈ H1
Γλ
(BR̂/λ), where

Γλ := Γ/λ = {x ∈ RN : λx ∈ Γ} =

{
x = (x′, xN ) ∈ RN : xN ≥ g(λx′)

λ

}
,

and∫
BR̂/λ

∇wλ(z) · ∇v(z) dz − λ2
∫
BR̂/λ

f(λz)wλ(z)v(z) dz = 0 for all v ∈ C∞
c (BR̂/λ \ Γλ),

i.e. wλ weakly solves {
−∆wλ(z) = λ2f(λz)wλ(z) in BR̂/λ \ Γλ,

wλ = 0 on Γλ.
(2.4.73)

Remark 2.4.25. From assumptions (1.2.17) we easily deduce that RN+1 \ Γλ converges
in the sense of Mosco (see [19, 61]) to the set RN+1 \ Γ̃, where

Γ̃ = {(x′, xN ) ∈ RN : xN ≥ 0}. (2.4.74)

In particular, for every R > 0, the weak limit points in H1(BR) as λ → 0+ of the family
of functions {wλ}λ belong to H1

Γ̃
(BR).
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Lemma 2.4.26. Let wλ be defined in (2.4.72) with λ ∈ (0, r0). Then {wλ}λ∈(0,r0) is
bounded in H1(B1).

Proof. From (2.4.43) we deduce that∫
∂B1

|wλ|2dS = 1. (2.4.75)

By scaling and using (2.4.6) we have that

N (λ) ≥ λ1−N

H(λ)

(
1

2

∫
Bλ

|∇u|2 dz − ω(λ)

∫
∂Bλ

u2 dS

)
=

1

2

∫
B1

|∇wλ(z)|2 dz − λω(λ).

(2.4.76)
Combining (2.4.76), (2.4.59), and (2.4.8) we infer that for every λ ∈ (0, r0)

1

2

∫
B1

|∇wλ(z)|2 dz ≤ C2 +
N − 1

4
. (2.4.77)

After applying suitable changes of variable to inequality (2.4.1), we obtain that(
N − 1

2

)2

λN−1H(λ)

∫
B1

|wλ(z)|2 dz ≤ N − 1

2
λN−1H(λ)

+ λN−1H(λ)

∫
B1

|∇wλ(z)|2 dz,
(2.4.78)

where we used (2.4.75). Dividing each member of (2.4.78) by λN−1H(λ) and exploiting
(2.4.77), we achieve∫

B1

|wλ(z)|2 dz ≤ N − 1

2
+

∫
B1

|∇wλ(z)|2 dz ≤ 2C2 +N − 1, (2.4.79)

thus concluding the proof.

In the following we exhibit a doubling type result.

Lemma 2.4.27. There exists a positive constant C4 > 0 such that

1

C4
H(λ) ≤ H(Rλ) ≤ C4H(λ) for any λ ∈ (0, r0/2) and R ∈ [1, 2], (2.4.80)∫

BR

|∇wλ(z)|2 dz ≤ 2N−1C4

∫
B1

|∇wRλ(z)|2 dz for any λ ∈ (0, r0/2) and R ∈ [1, 2],

(2.4.81)
and ∫

BR

|wλ(z)|2 dx ≤ 2N+1C4

∫
B1

|wRλ(z)|2 dz for any λ ∈ (0, r0/2) and R ∈ [1, 2],

(2.4.82)
where wλ is defined in (2.4.72).
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Proof. By (2.4.42), (2.4.50) and (2.4.59), it follows that

−N − 1

2r
≤ H′(r)

H(r)
=

2N (r)

r
≤ 2C2

r
for a.e. r ∈ (0, r0).

Let R ∈ (1, 2]. Integrating over (λ,Rλ) for λ < r0/R the above inequality and taking into
account that R ≤ 2, we obtain

2(1−N)/2H(λ) ≤ H(Rλ) ≤ 4C2H(λ) for every λ ∈ (0, r0/R).

The above estimates trivially hold also for R = 1, hence (2.4.80) with

C4 := max{4C2 , 2(N−1)/2}

is established. For every λ ∈ (0, r0/2) and R ∈ [1, 2], (2.4.80) yields∫
BR

|∇wλ(z)|2 dz = λ1−N

H(λ)

∫
BRλ

|∇u(z)|2 dz

= RN−1H(Rλ)

H(λ)

∫
B1

|∇wRλ(z)|2 dz ≤ RN−1C4

∫
B1

|∇wRλ(z)|2 dz,

thus proving (2.4.81). A similar argument allows deducing (2.4.82) from (2.4.80).

Lemma 2.4.28. For every λ ∈ (0, r0), let w
λ be as in (2.4.72). Then there exist M > 0

and λ0 > 0 such that, for any λ ∈ (0, λ0), there exists Rλ ∈ [1, 2] such that∫
∂BRλ

|∇wλ|2 dS ≤M

∫
BRλ

|∇wλ(z)|2 dz.

Proof. From Lemma 2.4.26 we know that the family {wλ}λ∈(0,r0) is bounded in H1(B1).

Moreover Lemma 2.4.27 implies that the set {wλ}λ∈(0,r0/2) is bounded in H1(B2) and
hence

lim sup
λ→0+

∫
B2

|∇wλ(z)|2 dz < +∞. (2.4.83)

For every λ ∈ (0, r0/2) the function fλ(r) =

∫
Br

|∇wλ(z)|2 dz is absolutely continuous in

[0, 2] and its distributional derivative is given by

f ′λ(r) =

∫
∂Br

|∇wλ|2dS for a.e. r ∈ (0, 2).

We argue by contradiction and assume that for anyM > 0 there exists a sequence λn → 0+

such that ∫
∂Br

|∇wλn |2dS > M

∫
Br

|∇wλn(z)|2dz for all r ∈ [1, 2] and n ∈ N,
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i.e.
f ′λn(r) > Mfλn(r) for a.e. r ∈ [1, 2] and for every n ∈ N. (2.4.84)

Integration of (2.4.84) over [1, 2] yields fλn(2) > eMfλn(1) for every n ∈ N and conse-
quently

lim sup
n→+∞

fλn(1) ≤ e−M · lim sup
n→+∞

fλn(2).

It follows that
lim inf
λ→0+

fλ(1) ≤ e−M · lim sup
λ→0+

fλ(2) for all M > 0.

Therefore, lettingM → +∞ and taking into account (2.4.83), we obtain that lim inf
λ→0+

fλ(1) =

0 i.e.

lim inf
λ→0+

∫
B1

|∇wλ(z)|2 dz = 0. (2.4.85)

From (2.4.85) and boundedness of {wλ}λ∈(0,r0) in H1(B1) we have that there exist a

sequence λ̃n → 0 and some w ∈ H1(B1) such that wλ̃n ⇀ w in H1(B1) and

lim
n→+∞

∫
B1

|∇wλ̃n(z)|2 dz = 0. (2.4.86)

The compactness of the trace map from H1(B1) to L
2(∂B1) and (2.4.75) imply that∫

∂B1

|w|2dS = 1. (2.4.87)

Moreover, by weak lower semicontinuity and (2.4.86),∫
B1

|∇w(z)|2 dz ≤ lim
n→+∞

∫
B1

|∇wλ̃n(z)|2 dz = 0.

Hence w ≡ const in B1. On the other hand, in view of Remark 2.4.25, w ∈ H1
Γ̃
(B1) so

that w ≡ 0 in B1, thus contradicting (2.4.87).

In the following lemma we show that the L2-norm of the gradient of wλRλ on the
boundary of the unit ball is bounded from above. It will be crucial to prove a convergence
result for scaled solutions (2.4.72).

Lemma 2.4.29. Let wλ be as in (2.4.72) and Rλ be as in Lemma 2.4.28. Then there
exists M such that∫

∂B1

|∇wλRλ |2 dS ≤M for any 0 < λ < min
{
λ0,

r0
2

}
.

Proof. Since∫
∂B1

|∇wλRλ |2 dS =
λ2R2−N

λ

H(λRλ)

∫
∂BRλ

|∇u(λz)|2 dS(z) =
R2−N
λ H(λ)

H(λRλ)

∫
∂BRλ

|∇wλ|2 dS,
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from (2.4.80), (2.4.81), Lemma 2.4.28, Lemma 2.4.26, and the fact that 1 ≤ Rλ ≤ 2, we
deduce that for every 0 < λ < min{λ0, r02 },∫
∂B1

|∇wλRλ |2 dS ≤ C4M

∫
BRλ

|∇wλ(z)|2 dz ≤ 2N−1C2
4M

∫
B1

|∇wλRλ(z)|2 dz ≤M < +∞,

thus completing the proof.

In the following lemma, we derive the explicit formula (1.2.24) for the eigenvalues of
problem (1.2.23).

Lemma 2.4.30. The set of all eigenvalues of problem (1.2.23) is{
k(k + 2N − 2)

4
: k ∈ N \ {0}

}
and all eigenfunctions belong to L∞(SN ).

Proof. Let us start by observing that, if µ is an eigenvalue of (1.2.23) with an associated
eigenfunction ψ, then, letting

σ = −N − 1

2
+

√(
N − 1

2

)2

+ µ,

the function W (ρθ) = ρσψ(θ) belongs to H1
Γ̃
(B1) and is harmonic in B1 \ Γ̃. From [15] it

follows that there exists k ∈ N\{0} such that σ = k
2 , so that µ = k

4 (k+2N−2). Moreover,
from [15] we also deduce that W ∈ L∞(B1), thus implying that ψ ∈ L∞(SN ).

Viceversa, let us prove that all numbers of the form µ = k
4 (k+2N−2) with k ∈ N\{0}

are eigenvalues of (1.2.23). Let us fix k ∈ N \ {0} and consider the function W defined, in
cylindrical coordinates, as

W (x′, r cos t, r sin t) = rk/2 sin

(
k

2
t

)
, x′ ∈ RN−1, r ≥ 0, t ∈ [0, 2π].

We have that W belongs to H1
Γ̃
(B1) and is harmonic in B1 \ Γ̃; furthermore W is homo-

geneous of degree k/2, so that, letting ψ :=W
∣∣
SN , we have that ψ ∈ H1

0 (SN \S+
1 ), ψ ̸≡ 0,

and
W (ρθ) = ρk/2ψ(θ), ρ ≥ 0, θ ∈ SN . (2.4.88)

Plugging (2.4.88) into the equation ∆W = 0 in B1 \ Γ̃, we obtain that

ρ
k
2
−2
(
k
2

(
k
2 − 1 +N

)
ψ(θ) + ∆SNψ

)
= 0, ρ > 0, θ ∈ SN \ S+

1 ,

so that k
4 (k + 2N − 2) is an eigenvalue of (1.2.23).

The lemma is thereby proved.
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Lemma 2.4.31. Let u ∈ H1(BR̂) \ {0} be a non-trivial weak solution to (1.2.20) with f
satisfying either (H1-1)-(H1-3) or (H2-1)-(H2-5). Let γ be as in Lemma 2.4.23. Then

(i) there exists k0 ∈ N \ {0} such that γ = k0
2 ;

(ii) for every sequence λn → 0+, there exist a subsequence {λnk
}k∈N and an eigenfunction

ψ of problem (1.2.23) associated with the eigenvalue µk0 such that ∥ψ∥L2(SN ) = 1 and

u(λnk
z)√

H(λnk
)
→ |z|γψ

(
z

|z|

)
strongly in H1(B1). (2.4.89)

Proof. For λ ∈ (0,min{r0, λ0}), let wλ be as in (2.4.72) and Rλ be as in Lemma 2.4.28.
Let λn → 0+. By Lemma 2.4.26, we have that the set {wλRλ : λ ∈ (0,min{r0/2, λ0})}
is bounded in H1(B1). Then there exists a subsequence {λnk

}k such that w
λnk

Rλnk ⇀ w
weakly in H1(B1) for some function w ∈ H1(B1). The compactness of the trace map from
H1(B1) into L

2(∂B1) and (2.4.75) ensure that∫
∂B1

|w|2dS = 1 (2.4.90)

and, consequently, w ̸≡ 0. Furthermore, in view of Remark 2.4.25 we infer that w ∈
H1

Γ̃
(B1), where Γ̃ is the set defined in (2.4.74).

Let ϕ ∈ C∞
c (B1 \ Γ̃). It is easy to verify that ϕ ∈ C∞

c (B1 \Γλ) provided λ is sufficiently
small. Indeed, we notice that a neighbourhood of Γ̃ is of type

Uε := {z = (x′, xN , t) ∈ RN+1 | xN > −ε},

with ε > 0. By assumption ϕ vanishes on B1 ∩ Uε for some ε > 0. Then, it is sufficient
to show that B1 ∩ Uε is a neighbourhood of B1 ∩ Γλ for sufficiently small λ. To this aim,

we observe that by (1.2.18), for λ sufficiently small

∣∣∣∣g(λx′)λ

∣∣∣∣ ≤ constλ. Hence
g(λx′)

λ
≥

−constλ > −ε if we choose λ sufficiently small, thus having that B1 ∩ Γλ ⊆ B1 ∩ Uε and
ϕ ∈ C∞

c (B1 \ Γλ) provided λ is sufficiently small.

Therefore, since w
λnk

Rλnk weakly satisfies equation (2.4.73) with λ = λnk
Rλnk

and,
for sufficiently large k, B1 ⊂ BR̂/(λnk

Rλnk
), we have that∫

B1

∇wλnk
Rλnk · ∇ϕdz − (λnk

Rλnk
)2
∫
B1

f(λnk
Rλnk

z)w
λnk

Rλnk ϕdz = 0 (2.4.91)

for k sufficiently large. Under the set of assumptions (H1-1)-(H1-3), from (2.4.1) it follows
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that

λ2
∣∣∣∣∫
B1

f(λz)wλ(z)ϕ(z) dz

∣∣∣∣
≤
(
λ2
∫
B1

|f(λz)||wλ(z)|2 dz
)1/2(

λ2
∫
B1

|f(λz)||ϕ(z)|2 dz
)1/2

≤ ξf (λ)

(∫
B1

|wλ(z)|2

|z|2
dz

)1/2(∫
B1

|ϕ(z)|2

|z|2
dz

)1/2

≤
4ξf (λ)

(N − 1)2

(∫
B1

|∇wλ|2 dz + N − 1

2

)1/2(∫
B1

|∇ϕ|2 dz + N − 1

2

∫
∂B1

ϕ2 dS

)1/2

= o(1)

(2.4.92)

as λ→ 0+, using (2.4.75) and Lemma 2.4.26.
In order to make a similar estimate in the case where f satisfies (H2-1)-(H2-5), we

notice that from (H2-5), for any r ∈ (0, R̂) and u ∈ H1(Br)∫
Br

|f |u2 dz ≤ η(r, f)

(∫
Br

|∇u|2 dz + N − 1

2r

∫
∂Br

|u|2 dS
)
.

Then by the change of variable z′ = λz, setting w(z′) = u(λz) and, consequently, taking
into account that ∇w(z′) = λ∇u(λz), it holds that

λN+1

∫
Br/λ

|f(λz′)||w(z′)|2 dz′

≤ η(r, f)

[
λN−1

∫
Br/λ

|∇w(z′)|2 dz′ + N − 1

2
λN−1

∫
∂Br/λ

|w(z′)|2 dS

]
,

with w ∈ H1(Br/λ). Dividing each member by λN−1, we obtain that for any r ∈
(0, R̂), λ > 0 and w ∈ H1(Br/λ)

λ2
∫
Br/λ

|f(λz′)||w(z′)|2 dz′

≤ η(r, f)

[∫
Br/λ

|∇w(z′)|2 dz′ + N − 1

2

∫
∂Br/λ

|w(z′)|2 dS

]
.

(2.4.93)

Thus, under assumptions (H2-1)-(H2-5), applying estimate (2.4.93) to wλ and ϕ with
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r = λ, using (2.4.75) and Lemma 2.4.26, we deduce that as λ→ 0+,

λ2
∣∣∣∣∫
B1

f(λz)wλ(z)ϕ(z) dz

∣∣∣∣
≤
(
λ2
∫
B1

|f(λz)||wλ(z)|2 dz
)1/2(

λ2
∫
B1

|f(λz)||ϕ(z)|2 dz
)1/2

≤ η(λ, f)

(∫
B1

|∇wλ|2 dz + N − 1

2

)1/2(∫
B1

|∇ϕ|2 dz + N − 1

2

∫
∂B1

ϕ2 dS

)1/2

= o(1).

(2.4.94)

The weak convergence of w
λnk

Rλnk to w in H1(B1), (2.4.92) and (2.4.94) allow passing to
the limit in (2.4.91) thus yielding that w ∈ H1

Γ̃
(B1) satisfies the equation∫

B1

∇w(z) · ∇ϕ(z) dz = 0 for all ϕ ∈ C∞
c (B1 \ Γ̃),

i.e. w weakly solves {
−∆w(z) = 0 in B1 \ Γ̃,

w = 0 on Γ̃.
(2.4.95)

We observe that, by classical regularity theory, w is smooth in B1 \ Γ̃. From Lemma 2.4.29
and the density of C∞(B1 \ Γ̃) in H1

Γ̃
(B1), it follows that∫

B1

∇wλnk
Rλnk ·∇ϕdz = λ2nk

R2
λnk

∫
B1

f(λnk
Rλnk

z)w
λnk

Rλnk ϕdz +

∫
∂B1

∂w
λnk

Rλnk

∂ν
ϕ dS

(2.4.96)
for every ϕ ∈ H1

Γ̃
(B1) as well as for every ϕ ∈ H1

Γλnk
Rλnk

(B1). From Lemma 2.4.29 it

follows that, up to a subsequence still denoted as {λnk
}, there exists g ∈ L2(∂B1) such

that
∂w

λnk
Rλnk

∂ν
⇀ g weakly in L2(∂B1). (2.4.97)

Passing to the limit in (2.4.96) and taking into account (2.4.92)-(2.4.94), we then obtain
that ∫

B1

∇w · ∇ϕdz =
∫
∂B1

g ϕ dS for every ϕ ∈ H1
Γ̃
(B1).

In particular, taking ϕ = w above, we have that∫
B1

|∇w|2 dz =
∫
∂B1

g w dS. (2.4.98)

On the other hand, from (2.4.96) with ϕ = w
λnk

Rλnk , (2.4.92)-(2.4.94), (2.4.97), the weak

convergence of w
λnk

Rλnk to w in H1(B1) (which implies the strong convergence of the
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traces in L2(∂B1) by compactness of the trace map from H1(B1) into L2(∂B1)), and
(2.4.98) it follows that

lim
k→+∞

∫
B1

|∇wλnk
Rλnk |2 dz = lim

k→+∞

(
λ2nk

R2
λnk

∫
B1

f(λnk
Rλnk

z)|wλnk
Rλnk |2 dz

+

∫
∂B1

∂w
λnk

Rλnk

∂ν
w
λnk

Rλnk dS

)
=

∫
∂B1

g w dS =

∫
B1

|∇w|2 dx

which implies that
w
λnk

Rλnk → w strongly in H1(B1). (2.4.99)

For every k ∈ N and r ∈ (0, 1], let

Dk(r) = r1−N
∫
Br

(
|∇wλnk

Rλnk (z)|2 − λ2nk
R2
λnk

f(λnk
Rλnk

z)|wλnk
Rλnk (z)|2

)
dz

and

Hk(r) = r−N
∫
∂Br

|wλnk
Rλnk |2 dS.

We also define, for all r ∈ (0, 1],

Dw(r) = r1−N
∫
Br

|∇w|2 dz and Hw(r) = r−N
∫
∂Br

|w|2 dS.

A change of variables directly gives

Nk(r) :=
Dk(r)

Hk(r)
=

D(λnk
Rλnk

r)

H(λnk
Rλnk

r)
= N (λnk

Rλnk
r) for all r ∈ (0, 1]. (2.4.100)

From (2.4.99), (2.4.92)-(2.4.94) and compactness of the trace map from H1(Br) into
L2(∂Br), it follows that, for every fixed r ∈ (0, 1],

Dk(r) → Dw(r) and Hk(r) → Hw(r). (2.4.101)

We observe that Hw(r) > 0 for all r ∈ (0, 1]; indeed if, for some r ∈ (0, 1], Hw(r) = 0, then
w = 0 on ∂Br and, testing (2.4.95) with w ∈ H1

0 (Br\Γ̃), we would obtain
∫
Br

|∇w|2 dz = 0
and hence w ≡ 0 in Br, thus contradicting classical unique continuation principles for
second order elliptic equations (see e.g. [79]). Therefore the function

Nw : (0, 1] → R, Nw(r) :=
Dw(r)

Hw(r)

is well defined. Moreover (2.4.100), (2.4.101), and Lemma 2.4.23, imply that, for all
r ∈ (0, 1],

Nw(r) = lim
k→+∞

N (λnk
Rλnk

r) = γ. (2.4.102)

100



Therefore Nw is constant in (0, 1] and hence N ′
w(r) = 0 for any r ∈ (0, 1). Hence, from

(2.4.95) and Lemma 2.4.20 with f ≡ 0, we deduce that, for a.e. r ∈ (0, 1),

0 = N ′
w(r) ≥ ν1(r) =

2r
[(∫

∂Br

∣∣∂w
∂ν

∣∣2 dS)(∫∂Br
|w|2 dS

)
−
(∫
∂Br

w ∂w
∂ν dS

)2](∫
∂Br

|w|2 dS
)2 ≥ 0

so that
(∫
∂Br

∣∣∂w
∂ν

∣∣2 dS)(∫∂Br
|w|2 dS

)
−
(∫
∂Br

w ∂w
∂ν dS

)2
= 0. This implies that w and ∂w

∂ν

have the same direction as vectors in L2(∂Br) for a.e. r ∈ (0, 1). Then there exists a
function ζ = ζ(r), defined a.e. in (0, 1), such that

∂w

∂ν
(rθ) = ζ(r)w(rθ) (2.4.103)

for a.e. r ∈ (0, 1) and for all θ ∈ SN \ S+
1 . Multiplying by w(rθ) and integrating over SN

we obtain that ∫
SN

∂w

∂ν
(rθ)w(rθ) dS = ζ(r)

∫
SN
w2(rθ) dS

and hence, in view of the definition of Hw, (2.4.41) and (2.4.43), ζ(r) = H′
w(r)

2Hw(r) for a.e

r ∈ (0, 1). This in particular implies that ζ ∈ L1
loc((0, 1]), exploiting 1)-2) of Lemma 2.3.17,

using that Hw(r) > 0 and Hw ∈ W 1,1((0, 1]). Moreover, after integrating (2.4.103), we
obtain

w(rθ) = e
∫ r
1 ζ(s) dsw(1θ) = φ(r)ψ(θ) for all r ∈ (0, 1), θ ∈ SN \ S+

1 ,

where φ(r) = e
∫ r
1 ζ(s) ds and ψ = w

∣∣
SN . The fact that w ∈ H1

Γ̃
(B1) implies that ψ ∈

H1
0 (SN \ S+

1 ); moreover (2.4.90) yields that∫
SN
ψ2(θ) dS = 1. (2.4.104)

Equation (2.4.95) rewritten in polar coordinates r, θ becomes(
−φ′′(r)− N

r
φ′(r)

)
ψ(θ)− φ(r)

r2
∆SNψ(θ) = 0 on SN \ S+

1 .

The above equation for a fixed r implies that ψ is an eigenfunction of problem (1.2.23).

Letting µk0 = k0(k0+2N−2)
4 be the corresponding eigenvalue, φ solves

−φ′′(r)− N

r
φ′(r) +

µk0
r2
φ(r) = 0.

Integrating the last equation we obtain that there exist c1, c2 ∈ R such that

φ(r) = c1r
σ+
k0 + c2r

σ−
k0 ,

where

σ+k0 = −N − 1

2
+

√(
N − 1

2

)2

+ µk0 =
k0
2
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and

σ−k0 = −N − 1

2
−

√(
N − 1

2

)2

+ µk0 = −
(
N − 1 + k0

2

)
.

Since the function |z|σ
−
k0ψ
(
z
|z|
)
/∈ L2∗(B1) (where 2∗ = 2(N + 1)/(N − 1)), we have that

|z|σ
−
k0ψ
(
z
|z|
)
does not belong to H1(B1); then necessarily c2 = 0 and φ(r) = c1r

k0/2. Since

φ(1) = 1, we obtain that c1 = 1 and then

w(rθ) = rk0/2ψ(θ), for all r ∈ (0, 1) and θ ∈ SN \ S+
1 . (2.4.105)

Let us now consider the sequence {wλnk}k. Up to a further subsequence still denoted
by wλnk , we may suppose that wλnk ⇀ w weakly in H1(B1) for some w ∈ H1(B1) and

that Rλnk
→ R for some R ∈ [1, 2]. Strong convergence of w

λnk
Rλnk in H1(B1) implies

that, up to a subsequence, both w
λnk

Rλnk and |∇wλnk
Rλnk | are dominated a.e. by a

L2(B1)-function uniformly with respect to k. Furthermore, in view of (2.4.80), up to a
subsequence we can assume that the limit

ℓ := lim
k→+∞

H(λnk
Rλnk

)

H(λnk
)

exists and is finite. The Dominated Convergence Theorem then implies

lim
k→+∞

∫
B1

wλnk (z)v(z) dz = lim
k→+∞

RN+1
λnk

∫
B1/Rλnk

wλnk (Rλnk
z)v(Rλnk

z) dz

= lim
k→+∞

RN+1
λnk

√
H(λnk

Rλnk
)

H(λnk
)

∫
B1

χB1/Rλnk

(z)w
λnk

Rλnk (z)v(Rλnk
z) dz

= R
N+1√

ℓ

∫
B1

χB1/R
(z)w(z)v(Rz) dz = R

N+1√
ℓ

∫
B1/R

w(z)v(Rz) dz

=
√
ℓ

∫
B1

w(z/R)v(z) dz

for any v ∈ C∞
c (B1). By density it is easy to verify that the previous convergence also

holds for all v ∈ L2(B1). We conclude that wλnk ⇀
√
ℓw(·/R) weakly in L2(B1); as

a consequence we have that w =
√
ℓw
( ·
R

)
and wλnk ⇀

√
ℓw(·/R) weakly in H1(B1).

Moreover

lim
k→+∞

∫
B1

|∇wλnk (z)|2 dz = lim
k→+∞

RN+1
λnk

∫
B1/Rλnk

|∇wλnk (Rλnk
z)|2 dz

= lim
k→+∞

RN−1
λnk

H(λnk
Rλnk

)

H(λnk
)

∫
B1

χB1/Rλnk

(z)|∇wλnk
Rλnk (z)|2 dz

= R
N−1

ℓ

∫
B1

χB1/R
(z)|∇w(z)|2 dz = R

N−1
ℓ

∫
B1/R

|∇w(z)|2 dz =
∫
B1

|
√
ℓ∇(w(z/R))|2 dz.
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Therefore we conclude that wλnk → w =
√
ℓw(·/R) strongly in H1(B1). Furthermore, by

(2.4.105) and the fact that
∫
∂B1

|w|2 dS =
∫
∂B1

|w|2 dS = 1, we deduce that w = w.

It remains to prove part (i). From (2.4.105) and (2.4.104) it follows that Hw(r) = rk0 .
Therefore (2.4.102) and Lemma 2.4.17 applied to w imply that

γ =
r

2

H′
w(r)

Hw(r)
=
r

2

k0 r
k0−1

rk0
=
k0
2
,

thus completing the proof.

In order to make more explicit the blow-up result proved in Lemma 2.4.31, we describe
the asymptotic behavior of H(r) as r → 0+.

Lemma 2.4.32. Let γ be as in Lemma 2.4.23. The limit lim
r→0+

r−2γH(r) exists and is

finite.

Proof. Thanks to estimate (2.4.61), it is enough to prove that the limit exists. By (2.4.42)
and (2.4.64) we have

d

dr

H(r)

r2γ
= 2r−2γ−1 (D(r)− γH(r)) = 2r−2γ−1H(r)

∫ r

0
N ′(s) ds. (2.4.106)

Let us write N ′ = α1+α2, with α1 and α2 defined as in (2.4.66) and (2.4.67) respectively.
From (2.4.63) it holds that

α1(r) ≥ 0 for a.e. r ∈ (0, r0). (2.4.107)

Moreover assumptions (H1-2), (H2-2) and (H2-4) ensure that not only α2 ∈ L1(0, r0), but
also

1

s

∫ s

0
α2(t) dt ∈ L1(0, r0). (2.4.108)

Integration of (2.4.106) over (r, r0) yields

H(r0)

r2γ0
−H(r)

r2γ
=

∫ r0

r
2s−2γ−1H(s)

(∫ s

0
α1(t)dt

)
ds+

∫ r0

r
2s−2γ−1H(s)

(∫ s

0
α2(t)dt

)
ds.

(2.4.109)

In virtue of (2.4.107) we deduce that lim
r→0+

∫ r0

r
2s−2γ−1H(s)

(∫ s

0
α1(t)dt

)
ds exists. On

the other hand, (2.4.61) and (2.4.108) imply that∣∣∣∣s−2γ−1H(s)

(∫ s

0
α2(t)dt

)
ds

∣∣∣∣ ≤ K1s
−1

∫ s

0
α2(t) dt ∈ L1(0, r0),

for all s ∈ (0, r0), thus proving that s−2γ−1H(s)

(∫ s

0
α2(t) dt

)
∈ L1(0, r0). Then we may

conclude that both terms on the right hand side of (2.4.109) admit a limit as r → 0+ and
at least one of such limits is finite, thus completing the proof of the lemma.
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2.4.5 Local asymptotics

In order to detect the sharp vanishing order of the function H and to give a more explicit
blow-up result, in this subsection we construct an auxiliary equivalent problem by a diffeo-
morphic deformation of the domain, inspired by [38], see also [3] and [77]. The purpose of
such deformation is to straighten the crack; the advantage of working in a domain with a
straight crack will then rely in the possibility of separating radial and angular coordinates
in the Fourier expansion of solutions (see (2.4.141)).

Lemma 2.4.33. There exists r̄ ∈ (0, r0) such that the function

Ξ(z) = Ξ(x′, xN , t) =
(x′, xN − g(x′), t)√
1 + g2(x′)−2g(x′)xN

|x′|2+x2N+t2

,

is invertible from Br̄ to Br̄. Furthermore, setting Φ = Ξ−1, we have that

Φ−1(z) = z +O(|z|2), JacΦ−1(z) = IdN+1 +O(|z|) as |z| → 0, (2.4.110)

det JacΦ−1(z) = 1 +O(|z|) as |z| → 0, (2.4.111)

Φ(y) = y +O(|y|2), JacΦ(y) = IdN+1 +O(|y|) as |y| → 0, (2.4.112)

det JacΦ(y) = 1 +O(|y|) as |y| → 0, (2.4.113)

Φ(Br \ Γ̃) = Br \ Γ, Φ−1(Br \ Γ) = Br \ Γ̃ for all r ∈ (0, r̄]. (2.4.114)

Proof. We can immediately deduce (2.4.110) and (2.4.111) from (1.2.17) and (1.2.18). In
particular, det JacΞ(0) = 1 ̸= 0, then by the local inversion theorem, there exists a suitable
0 < r̄ < r0 such that Ξ is invertible from Br̄ to itself. Thus, setting Φ = Ξ−1, by (2.4.110)
and (2.4.111) we obtain (2.4.112) and (2.4.113). To conclude, properties (2.4.114) hold
true since |Ξ(z)|2 = |z|2 and if z ∈ Γc, i.e. xN < g(x′), then, setting y = Ξ(z), we have
that yN = xN − g(x′) < 0, which is equivalent to prove that y ∈ Γ̃c.

Let u ∈ H1(BR̂) be a weak solution to (1.2.20). Then

v = u ◦ Φ ∈ H1(Br̄) (2.4.115)

is a weak solution to {
−div(A(y)∇v(y)) = f̃(y)v(y) in Br̄ \ Γ̃,

v = 0 on Γ̃,
(2.4.116)

with

A(y) = |det JacΦ(y)|(JacΦ(y))−1((JacΦ(y))−1)T ,

f̃(y) = |det JacΦ(y)|f(Φ(y)).
(2.4.117)

Indeed v ∈ H1
Γ̃
(Br̄) thanks to (1.2.22) and (2.4.114). Moreover it holds that∫

Br̄

A(y)∇v(y) ·∇ψ(y) dy−
∫
Br̄

f̃(y)v(y)ψ(y) dy = 0 for any ψ ∈ C∞
c (Br̄ \ Γ̃). (2.4.118)
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Indeed, by (1.2.22) we have that∫
Br̄

∇u(z) · ∇φ(z) dz −
∫
Br̄

f(z)u(z)φ(z) dz = 0 for any φ ∈ C∞
c (Br̄ \ Γ).

Thus, setting z = Φ(y), we obtain that for any φ ∈ C∞
c (Br̄ \ Γ)∫

Br̄

∇u(Φ(y)) · ∇φ(Φ(y))|det JacΦ(y)| dy

−
∫
Br̄

f(Φ(y))u(Φ(y))φ(Φ(y))|det JacΦ(y)| dy = 0.

From this, by (2.4.115), letting ψ = φ ◦ Φ and taking into account (2.4.114), we deduce
that for any ψ ∈ C∞

c (Br̄ \ Γ̃)∫
Br̄

∇v(y)(JacΦ(y))−1 · ∇ψ(y)(JacΦ(y))−1|det JacΦ(y)| dy

−
∫
Br̄

f(Φ(y))v(y)ψ(y)|det JacΦ(y)| dy = 0,

thus obtaining (2.4.118) with A(y) and f̃(y) as in (2.4.117).
By Lemma 2.4.33, (2.4.117) and direct calculations, we obtain that

A(y) = IdN+1 +O(|y|) as |y| → 0. (2.4.119)

Lemma 2.4.34. Letting H be as in (2.4.40) and v = u ◦ Φ as in (2.4.115), we have that

H(λ) = (1 +O(λ))

∫
SN
v2(λθ) dS as λ→ 0+, (2.4.120)

∫
B1

|v̂λ(y)|2 dy
H(λ)

= (1 +O(λ))

∫
B1

|wλ(z)|2 dz = O(1) as λ→ 0+, (2.4.121)

and ∫
B1

|∇v̂λ(y)|2 dy
H(λ)

= (1 +O(λ))

∫
B1

|∇wλ(z)|2 dz = O(1) as λ→ 0+, (2.4.122)

where wλ is defined in (2.4.72) and v̂λ(y) := v(λy).

Proof. From (2.4.114) and a change of variable it follows that∫
Bλ

u2(z) dz =

∫
Bλ

v2(y)|det JacΦ(y)| dy for all λ ∈ (0, r̄).

Differentiating the above identity with respect to λ we obtain that∫
∂Bλ

u2 dS =

∫
∂Bλ

v2|det JacΦ| dS for a.e. λ ∈ (0, r̄).
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Hence, by the continuity of H, we deduce that

H(λ) = λ−N
∫
∂Bλ

v2|det JacΦ| dS =

∫
SN
v2(λθ)|det JacΦ(λθ)|dS for all λ ∈ (0, r̄),

which yields (2.4.120) in view of (2.4.113). Furthermore, from (2.4.114) and a change of
variable it also follows that∫

B1
|v̂λ(y)|2 dy
H(λ)

=

∫
B1

|u(Φ(λy))|2 dy
H(λ)

=

∫
B1

|u(λz)|2|det JacΦ−1(λz)| dz
H(λ)

=

∫
B1

|wλ(z)|2|det JacΦ−1(λz)| dz

and ∫
B1

|∇v̂λ(y)|2 dy
H(λ)

=

∫
B1
λ2|∇u(Φ(λy)) JacΦ(λy)|2 dy

H(λ)

=

∫
B1
λ2|∇u(λz) JacΦ(Φ−1(λz))|2|det JacΦ−1(λz)| dz

H(λ)

=

∫
B1

|∇wλ(z) JacΦ(Φ−1(λz))|2|det JacΦ−1(λz)| dz

for all λ ∈ (0, r̄). The above identities, together with (2.4.110), (2.4.111), (2.4.112) and the
boundedness in H1(B1) of {wλ} established in Lemma 2.4.26, imply respectively estimates
(2.4.121) and (2.4.122).

Lemma 2.4.35. Let v = u ◦Φ be as in (2.4.115) and let k0 and γ be as in Lemma 2.4.31
(i). Then, for every sequence λn → 0+, there exist a subsequence {λnk

}k∈N and an eigen-
function ψ of problem (1.2.23) associated with the eigenvalue µk0 such that ∥ψ∥L2(SN ) = 1,
the convergence (2.4.89) holds and

v(λnk
·)√∫

SN v
2(λnk

θ) dS
→ ψ strongly in L2(SN ).

Proof. From Lemma 2.4.31, there exist a subsequence λnk
and an eigenfunction ψ of prob-

lem (1.2.23) associated with the eigenvalue µk0 such that ∥ψ∥L2(SN ) = 1 and (2.4.89) holds.

From (2.4.89) it follows that, up to passing to a further subsequence, wλnk

∣∣
∂B1

converges to

ψ in L2(SN ) and almost everywhere on SN , where wλ is defined in (2.4.72). From Lemma
2.4.34 it follows that {v̂λ/

√
H(λ)}λ is bounded in H1(B1) and hence, up to a further

subsequence still denoted by λnk
, there exists ψ̃ ∈ H1(B1) such that {v̂λnk/

√
H(λnk

)}k
weakly converges to ψ̃ in H1(B1). From this, in view of (2.4.120), we have that up to a
further subsequence,

v(λnk
·)√∫

SN
v2(λnk

θ) dS

→ ψ̃ strongly in L2(SN ) and almost everywhere on SN . (2.4.123)
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To conclude it is enough to show that ψ̃ = ψ. To this aim we observe that, for every
φ ∈ C∞

c (SN ), from (2.4.115), (2.4.120), and a change of variable, arguing as in the proof
of Lemma 2.4.34, it follows that∫

SN

v(λnk
θ)√∫

SN v
2(λnk

·) dS
φ(θ) dS

= (1 +O(λnk
))

∫
SN
wλnk (θ)φ

(
Φ−1(λnk

θ)

λnk

)
| det JacΦ−1(λnk

θ)| dS. (2.4.124)

In view of (2.4.110) and (2.4.111) we have that, for all θ ∈ SN ,

lim
k→+∞

φ
(
Φ−1(λnk

θ)

λnk

)
|det JacΦ−1(λnk

θ)| = φ(θ),

so that, by the Dominated Convergence Theorem, the right hand side of (2.4.124) con-

verges to

∫
SN
ψ(θ)φ(θ) dS. On the other hand (2.4.123) implies that the left hand side of

(2.4.124) converges to

∫
SN
ψ̃(θ)φ(θ) dS. Therefore, passing to the limit in (2.4.124), we

obtain that ∫
SN
ψ(θ)φ(θ) dS =

∫
SN
ψ̃(θ)φ(θ) dS for all φ ∈ C∞

c (SN )

thus implying that ψ = ψ̃.

Lemma 2.4.36. Let k0 be as in Lemma 2.4.31 and let Mk0 ∈ N \ {0} be the multiplicity
of µk0 as an eigenvalue of (2.3.18). Let {Yk0,m}m=1,2,...,Mk0

be as in (2.3.131). Then, for

any sequence λn → 0+, there exists m ∈ {1, 2, . . . ,Mk0} such that

lim sup
n→+∞

∣∣∫
SN v(λnθ)Yk0,m(θ) dS

∣∣√
H(λn)

> 0.

Proof. We argue by contradiction and assume that, along a sequence λn → 0+,

lim sup
n→+∞

∣∣∫
SN v(λnθ)Yk0,m(θ) dS

∣∣√
H(λn)

= 0 (2.4.125)

for all m ∈ {1, 2, . . . ,Mk0}. From Lemma 2.4.35 and (2.4.120) it follows that there ex-
ist a subsequence {λnk

} and an eigenfunction ψ of problem (2.3.18) associated with the
eigenvalue µk0 such that ∥ψ∥L2(SN ) = 1 and

v(λnk
θ)√

H(λnk
)
→ ψ(θ) strongly in L2(SN ).

Furthermore, from (2.4.125) we have that, for every m ∈ {1, 2, . . . ,Mk0}

lim
k→+∞

∫
SN

v(λnk
θ)√

H(λnk
)
Yk0,m(θ) dS = 0.
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Therefore

∫
SN
ψ Yk0,m dS = 0 for all m ∈ {1, 2, . . . ,Mk0}, thus implying that ψ ≡ 0 and

giving rise to a contradiction.

For all k ∈ N \ {0}, m ∈ {1, 2, . . . ,Mk}, and λ ∈ (0, r̄), we define

φk,m(λ) :=

∫
SN
v(λθ)Yk,m(θ) dS (2.4.126)

and

Υk,m(λ) = −
∫
Bλ

(A− IdN+1)∇v(y) ·
∇SNYk,m(y/|y|)

|y|
dy +

∫
Bλ

f̃(y)v(y)Yk,m(y/|y|) dy

+

∫
∂Bλ

(A− IdN+1)∇v(y) ·
y

|y|
Yk,m(y/|y|) dS,

(2.4.127)

where the functions {Yk,m}m=1,2,...,Mk
are introduced in (1.2.25).

In the following lemma we provide an asymptotic expansion as λ→ 0+ for the Fourier
coefficients associated with v.

Lemma 2.4.37. Let k0 be as in Lemma 2.4.31. For all m ∈ {1, 2, . . . ,Mk0} and R ∈ (0, r̄]

φk0,m(λ) = λ
k0
2

(
R− k0

2 φk0,m(R) +
2N + k0 − 2

2(N + k0 − 1)

∫ R

λ
s−N− k0

2 Υk0,m(s) ds

+
k0R

−N+1−k0

2(N + k0 − 1)

∫ R

0
s

k0
2
−1Υk0,m(s) ds

)
+ o(λ

k0
2 )

(2.4.128)

as λ→ 0+.

Proof. For all k ∈ N \ {0} and m ∈ {1, 2, . . . ,Mk}, we consider the distribution ζk,m on
(0, r̄) defined as

D′(0,r̄)⟨ζk,m, ω⟩D(0,r̄) =

∫ r̄

0
ω(λ)

(∫
SN
f̃(λθ)v(λθ)Yk,m(θ) dS

)
dλ

+H−1(Br̄)

〈
div((A− IdN+1)∇v), |y|−Nω(|y|)Yk,m(y/|y|)

〉
H1

0 (Br̄)

for all ω ∈ D(0, r̄), where

H−1(Br̄)

〈
div((A− IdN+1)∇v), ϕ

〉
H1

0 (Br̄)
= −

∫
Br̄

(A− IdN+1)∇v · ∇ϕdy

for all ϕ ∈ H1
0 (Br̄). Letting Υk,m as in (2.4.127), we observe that Υk,m ∈ L1

loc(0, r̄) and,
by direct calculations,

Υ′
k,m(λ) = λNζk,m(λ) in D′(0, r̄). (2.4.129)
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From the definition of ζk,m, (2.4.116), and the fact that Yk,m is an eigenfunction of (1.2.23)
associated to the eigenvalue µk, it follows that, for all k ∈ N \ {0} and m ∈ {1, 2, . . . ,Mk},
the function φk,m defined in (2.4.126) solves

−φ′′
k,m(λ)−

N

λ
φ′
k,m(λ) +

µk
λ2
φk,m(λ) = ζk,m(λ)

in the sense of distributions in (0, r̄), which, in view of (1.2.24), can be also written as

−(λN+k(λ−
k
2φk,m(λ))

′)′ = λN+ k
2 ζk,m(λ)

in the sense of distributions in (0, r̄). Integrating by parts and taking into account
(2.4.129), we obtain that, for every k ∈ N \ {0}, m ∈ {1, 2, . . . ,Mk}, and R ∈ (0, r̄],
there exists ck,m(R) ∈ R such that

(λ−
k
2φk,m(λ))

′ = −λ−N− k
2Υk,m(λ)−

k

2
λ−N−k

(
ck,m(R) +

∫ R

λ
s

k
2
−1Υk,m(s) ds

)
in the sense of distributions in (0, r̄). In particular, φk,m ∈ W 1,1

loc (0, r̄) and, by a further
integration,

φk,m(λ) = λ
k
2

(
R− k

2φk,m(R) +

∫ R

λ
s−N− k

2Υk,m(s) ds

)
+
k

2
λ

k
2

∫ R

λ
s−N−k

(
ck,m(R) +

∫ R

s
t
k
2
−1Υk,m(t) dt

)
ds

= λ
k
2

(
R− k

2φk,m(R) +
2N + k − 2

2(N + k − 1)

∫ R

λ
s−N− k

2Υk,m(s) ds−
k ck,m(R)R

−N+1−k

2(N + k − 1)

)
+

k λ−N+1− k
2

2(N − 1 + k)

(
ck,m(R) +

∫ R

λ
t
k
2
−1Υk,m(t) dt

)
.

(2.4.130)

Let now k0 be as in Lemma 2.4.31. We claim that

the function s 7→ s−N− k0
2 Υk0,m(s) belongs to L

1(0, r̄) for any m ∈ {1, 2, . . . ,Mk0}.
(2.4.131)

To this purpose, let us estimate each term in (2.4.127). By (2.4.119), (2.4.122), the Hölder
inequality and a change of variable we obtain that, for all s ∈ (0, r̄),∣∣∣∣∫

Bs

(A(y)− IdN+1)∇v(y) ·
∇SNYk0,m

( y
|y|
)

|y|
dy

∣∣∣∣
≤ const

√∫
Bs

|∇v(y)|2 dy

√∫
Bs

∣∣∣∣∇SNYk0,m

(
y

|y|

)∣∣∣∣2 dy
≤ const s

N−1
2 s

N+1
2

√
H(s)

√∫
B1

|∇v̂s(y)|2
H(s)

dy

≤ const sN
√
H(s),

(2.4.132)
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taking into account that ∇v(sy) = s−1∇v̂s(y) and that∫
Bs

∣∣∣∣∇SNYk0,m

(
y

|y|

)∣∣∣∣2 dy =

∫ s

0
tN

(∫
SN

∣∣∣∣∇SNYk0,m

(
y

|y|

)∣∣∣∣2 dS
)
dt

= µk0

∫ s

0
tN

(∫
SN

∣∣∣∣Yk0,m( y

|y|

)∣∣∣∣2 dS
)
dt

=
sN+1

N + 1
.

By the Hölder inequality, (2.4.115), (2.4.114), and the definition of f̃ in (2.4.117) we have
that,∣∣∣∣∫

Bs

f̃(y)v(y)Yk0,m
( y
|y|
)
dy

∣∣∣∣ ≤
√∫

Bs

|f̃(y)|v2(y) dy ·

√∫
Bs

|f̃(y)|Y 2
k0,m

( y
|y|
)
dy

=

√∫
Bs

|f(z)|u2(z) dz ·

√∫
Bs

|f(z)|Y 2
k0,m

( Φ−1(z)
|Φ−1(z)|

)
dz.

Using (H2-5), (2.4.55), (2.4.13), (2.4.59) under assumptions (H2-1)-(H2-5), and (2.4.56)
under assumptions (H1-1)-(H1-3), it follows that∫

Bs

|f |u2 dz ≤ constβ(s, f)sN−1H(s)

where β(s, f) = η(s, f) under assumptions (H2-1)-(H2-5) and β(s, f) = ξf (s) under as-
sumptions (H1-1)-(H1-3). Moreover, by (H2-5) under assumptions (H2-1)-(H2-5), and
from (2.4.10) under assumptions (H1-1)-(H1-3), we also have that∫

Bs

|f(z)|Y 2
k0,m

( Φ−1(z)
|Φ−1(z)|

)
dz ≤ constβ(s, f)sN−1.

Therefore we conclude that, for all s ∈ (0, r̄),∣∣∣∣∫
Bs

f̃(y)v(y)Yk0,m
( y
|y|
)
dy

∣∣∣∣ ≤ constβ(s, f)sN−1
√
H(s). (2.4.133)

As regards the last term in (2.4.127), we observe that, for a.e. s ∈ (0, r̄),∣∣∣∣∫
∂Bs

(A− IdN+1)∇v(y) ·
y

|y|
Yk0,m

( y
|y|
)
dS

∣∣∣∣ ≤ const s

∫
∂Bs

|∇v|
∣∣Yk0,m( y|y|)∣∣dS, (2.4.134)

as a consequence of (2.4.119). Integrating by parts and using (2.4.122), Lemma 2.4.26,
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the Hölder inequality and a change of variable we have that, for every R ∈ (0, r̄],∫ R

0
s−N− k0

2
+1

(∫
∂Bs

|∇v||Yk0,m
( y
|y|
)
|dS
)
ds = R−N− k0

2
+1

∫
BR

|∇v|
∣∣Yk0,m( y|y|)∣∣dy

+
(
N + k0

2 − 1
) ∫ R

0
s−N− k0

2

(∫
Bs

|∇v|
∣∣Yk0,m( y|y|)∣∣ dy)ds

≤ const

(
R− k0

2
+1
√

H(R) +

∫ R

0
s−

k0
2

√
H(s)ds

)
,

(2.4.135)

as a consequence of (2.4.132). From (2.4.127), (2.4.132), (2.4.133), and (2.4.135) we deduce
that, for all m ∈ {1, 2, . . . ,Mk0} and R ∈ (0, r̄],∫ R

0
s−N− k0

2 |Υk0,m(s)| ds ≤ constR− k0
2
+1
√
H(R) +

∫ R

0
s−

k0
2

√
H(s)

(
1 + s−1β(s, f)

)
ds.

(2.4.136)
Thus claim (2.4.131) follows from (2.4.136), (2.4.61) and assumptions (H1-2) and (H2-2).

From (2.4.131) we deduce that, for every fixed R ∈ (0, r̄],

λ
k0
2

(
R− k0

2 φk0,m(R) +
2N + k0 − 2

2(N + k0 − 1)

∫ R

λ
s−N− k0

2 Υk0,m(s)ds−
k0 ck0,m(R)R

−N+1−k0

2(N + k0 − 1)

)
= O(λ

k0
2 ) = o(λ−N+1− k0

2 ) as λ→ 0+.

(2.4.137)

On the other hand, (2.4.131) also implies that t 7→ t
k0
2
−1Υk0,m(t) ∈ L1(0, r̄). We claim

that, for every R ∈ (0, r̄],

ck0,m(R) +

∫ R

0
t
k0
2
−1Υk0,m(t)dt = 0. (2.4.138)

Suppose by contradiction that (2.4.138) is not true for some R ∈ (0, r̄]. Then, from
(2.4.130) and (2.4.137) we infer that

φk0,m(λ) ∼
k0 λ

−N+1− k0
2

2(N − 1 + k0)

(
ck0,m(R) +

∫ R

0
t
k0
2
−1Υk0,m(t)dt

)
as λ→ 0+. (2.4.139)

Lemma 2.4.2 and the fact that v ∈ H1(Br̄) imply that∫ r̄

0
λN−2|φk0,m(λ)|2 dλ ≤

∫ r̄

0
λN−2

(∫
SN

|v(λθ)|2dS
)
dλ =

∫
Br̃

|v(y)|2

|y|2
dy < +∞,

thus contradicting (2.4.139), since N − 1 + k0/2 ≥ 1. Claim (2.4.138) is thereby proved.
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From (2.4.131) and (2.4.138) it follows that, for every R ∈ (0, r̄],∣∣∣∣λ−N+1− k0
2

(
ck0,m(R) +

∫ R

λ
t
k0
2
−1Υk0,m(t)dt

)∣∣∣∣ = λ−N+1− k0
2

∣∣∣∣ ∫ λ

0
t
k0
2
−1Υk0,m(t)dt

∣∣∣∣
≤ λ−N+1− k0

2

∫ λ

0
tN+k0−1

∣∣∣t−N− k0
2 Υk0,m(t)

∣∣∣dt ≤ λ
k0
2

∫ λ

0

∣∣∣t−N− k0
2 Υk0,m(t)

∣∣∣dt = o(λ
k0
2 )

(2.4.140)

as λ→ 0+.
The conclusion follows by (2.4.130), (2.4.140) and (2.4.138).

Lemma 2.4.38. Let γ be as in Lemma 2.4.23. Then lim
r→0+

r−2γH(r) > 0.

Proof. For any λ ∈ (0, r̄), we expand θ 7→ v(λθ) ∈ L2(SN ) in Fourier series with respect
to the orthonormal basis {Yk,m}m=1,2,...,Mk

introduced in (1.2.25), i.e.

v(λθ) =
∞∑
k=1

Mk∑
m=1

φk,m(λ)Yk,m(θ) in L2(SN ), (2.4.141)

where m ∈ {1, 2, . . . ,Mk} for all k ∈ N\{0}, λ ∈ (0, r̄) and φk,m(λ) is defined in (2.4.126).
Let k0 ∈ N, k0 ≥ 1, be as in Lemma 2.4.31, so that

γ = lim
r→0+

N (r) =
k0
2
. (2.4.142)

From (2.4.120) and the Parseval identity we deduce that

H(λ) = (1 +O(λ))

∫
SN
v2(λθ) dS = (1 +O(λ))

∞∑
k=1

Mk∑
m=1

φ2
k,m(λ), (2.4.143)

for all 0 < λ < r̄. Let us assume by contradiction that lim
λ→0+

λ−2γH(λ) = 0. Then,

(2.4.142) and (2.4.143) imply that

lim
λ→0+

λ−k0/2φk0,m(λ) = 0 for any m ∈ {1, 2, . . . ,Mk0}. (2.4.144)

From (2.4.128) and (2.4.144) we obtain that

R− k0
2 φk0,m(R) +

2N + k0 − 2

2(N + k0 − 1)

∫ R

0
s−N− k0

2 Υk0,m(s)ds

+
k0R

−N+1−k0

2(N + k0 − 1)

∫ R

0
s

k0
2
−1Υk0,m(s) ds = 0

(2.4.145)

for all R ∈ (0, r̄] and m ∈ {1, 2, . . . ,Mk0}.
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Since we are assuming by contradiction that lim
λ→0+

λ−2γH(λ) = 0, there exists a se-

quence {Rn}n∈N ⊂ (0, r̄) such that Rn+1 < Rn, lim
n→∞

Rn = 0 and

R−k0/2
n

√
H(Rn) = max

s∈[0,Rn]

(
s−k0/2

√
H(s)

)
.

By Lemma 2.4.36 with λn = Rn, there exists m0 ∈ {1, 2, . . . ,Mk0} such that, up to a
subsequence,

lim
n→+∞

φk0,m0(Rn)√
H(Rn)

̸= 0. (2.4.146)

By (2.4.145), (2.4.136), (2.4.146), (H1-2) and (H2-2), we have∣∣∣∣R− k0
2

n φk0,m0(Rn) +
k0R

−N+1−k0
n

2(N + k0 − 1)

∫ Rn

0
s

k0
2
−1Υk0,m0(s) ds

∣∣∣∣
=

∣∣∣∣ 2N + k0 − 2

2(N + k0 − 1)

∫ Rn

0
s−N− k0

2 Υk0,m0(s) ds

∣∣∣∣
≤ 2N + k0 − 2

2(N + k0 − 1)

∫ Rn

0
s−N− k0

2 |Υk0,m0(s)| ds

≤ const

(
R

− k0
2
+1

n

√
H(Rn) +

∫ Rn

0
s−

k0
2

√
H(s)

(
1 + s−1β(s, f)

)
ds

)
≤ const

(
R

− k0
2

n

√
H(Rn)Rn +R

− k0
2

n

√
H(Rn)

∫ Rn

0

β(s, f)

s
ds

)
≤ const

(∣∣∣∣
√
H(Rn)

φk0,m0(Rn)

∣∣∣∣∣∣∣∣φk0,m0(Rn)

R
k0/2
n

∣∣∣∣Rn + ∣∣∣∣
√
H(Rn)

φk0,m0(Rn)

∣∣∣∣∣∣∣∣φk0,m0(Rn)

R
k0/2
n

∣∣∣∣ ∫ Rn

0

β(s, f)

s
ds

)
= o

(
φk0,m0(Rn)

R
k0/2
n

)
(2.4.147)

as n→ +∞. On the other hand, by (2.4.147) we also have that

k0R
−N+1−k0
n

2(N + k0 − 1)

∣∣∣∣∫ Rn

0
t
k0
2
−1Υk0,m0(t)dt

∣∣∣∣
=

k0R
−N+1−k0
n

2(N + k0 − 1)

∣∣∣∣∫ Rn

0
tN+k0−1t−N− k0

2 Υk0,m0(t)dt

∣∣∣∣
≤ k0

2(N + k0 − 1)

∫ Rn

0
t−N− k0

2 |Υk0,m0(t)|dt = o

(
φk0,m0(Rn)

R
k0/2
n

) (2.4.148)

as n→ +∞. Combining (2.4.147) with (2.4.148) we obtain that

R
− k0

2
n φk0,m0(Rn) = o

(
R

− k0
2

n φk0,m0(Rn)
)

as n→ +∞,

which is a contradiction.
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Combining Lemma 2.4.31, Lemma 2.4.35 and Lemma 2.4.38, we can now prove the
following theorem which gives a more precise description of the limit angular profile ψ of
Lemma 2.4.31.

Theorem 2.4.39. Let N ≥ 2 and u ∈ H1(BR̂) \ {0} be a non-trivial weak solution to
(1.2.20), with f satisfying either assumptions (H1-1)-(H1-3) or (H2-1)-(H2-5). Then,
letting N (r) be as in (2.4.47), there exists k0 ∈ N, k0 ≥ 1, such that

lim
r→0+

N (r) =
k0
2
. (2.4.149)

Furthermore, ifMk0 ∈ N\{0} is the multiplicity of µk0 as an eigenvalue of problem (1.2.23)
and {Yk0,i : 1 ≤ i ≤ Mk0} is a L2(SN )-orthonormal basis of the eigenspace associated to
µk0, then

u(λz)

λk0/2
→ |z|k0/2

Mk0∑
m=1

βmYk0,m

(
z

|z|

)
in H1(B1) as λ→ 0+, (2.4.150)

where (β1, β2, . . . , βMk0
) ̸= (0, 0, . . . , 0) and

βm =

∫
SN
R−k0/2u(Φ(Rθ))Yk0,m(θ) dS

+
1

1−N − k0

∫ R

0

(
1−N − k0

2

sN+
k0
2

− k0 s
k0
2
−1

2RN−1+k0

)
Υk0,m(s) ds

(2.4.151)

for all R ∈ (0, r̄] for some r̄ > 0, where Υk0,m is defined in (2.4.127) and Φ is the
diffeomorphism introduced in Lemma 2.4.33.

Proof. Identity (2.4.149) follows immediately from Lemma 2.4.31.
In order to prove (2.4.150), let {λn}n∈N ⊂ (0,∞) be such that λn → 0+ as n → +∞.

By Lemmas 2.4.31, 2.4.32, 2.4.35, 2.4.38 and (2.4.120), there exist a subsequence {λnj}j∈N
and constants β1, β2, . . . , βMk0

∈ R such that (β1, β2, . . . , βMk0
) ̸= (0, 0, . . . , 0),

λ
− k0

2
nj u(λnjz) → |z|

k0
2

Mk0∑
m=1

βmYk0,m

(
z

|z|

)
in H1(B1) as j → +∞ (2.4.152)

and

λ
− k0

2
nj v(λnj ·) →

Mk0∑
m=1

βmYk0,m in L2(SN ) as j → +∞, (2.4.153)

where {Yk0,i : 1 ≤ i ≤Mk0} is a L2(SN )-orthonormal basis of the eigenspace associated to
µk0 . We will now prove that the βm’s depend neither on the sequence {λn}n∈N nor on its
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subsequence {λnj}j∈N. Let us fix R ∈ (0, r̄], with r̄ as in Lemma 2.4.33, and define φk0,m
as in (2.4.126). From (2.4.153) it follows that, for any m = 1, 2, . . . ,Mk0 ,

lim
j→+∞

λ
− k0

2
nj φk0,m(λnj ) = lim

j→+∞

∫
SN

v(λnjθ)

λ
k0/2
nj

Yk0,m(θ)dS =

Mk0∑
i=1

βi

∫
SN
Yk0,i Yk0,mdS = βm.

(2.4.154)
On the other hand, (2.4.128) implies that, for any m = 1, 2, . . . ,Mk0 ,

lim
λ→0+

λ−
k0
2 φk0,m(λ) = R− k0

2 φk0,m(R) +
2N + k0 − 2

2(N + k0 − 1)

∫ R

0
s−N− k0

2 Υk0,m(s)ds

+
k0R

−N+1−k0

2(N + k0 − 1)

∫ R

0
s

k0
2
−1Υk0,m(s) ds,

with Υk0,m as in (2.4.127), and therefore from (2.4.154) we deduce that

βm = R− k0
2 φk0,m(R) +

2N + k0 − 2

2(N + k0 − 1)

∫ R

0
s−N− k0

2 Υk0,m(s)ds

+
k0R

−N+1−k0

2(N + k0 − 1)

∫ R

0
s

k0
2
−1Υk0,m(s) ds

for any m = 1, 2, . . . ,Mk0 . In particular the βm’s depend neither on the sequence {λn}n∈N
nor on its subsequence {λnj}j∈N.

Thanks to Lemma 2.3.9 we obtain that the convergence in (2.4.152) actually holds as
λ→ 0+, thus proving the theorem.

As a direct consequence, we deduce the following strong unique continuation principle.

Theorem 2.4.40. Under the same assumptions as in Theorem 2.4.39, let u ∈ H1(BR̂)
be a weak solution to (1.2.15) such that u(z) = O(|z|k) as |z| → 0 for any k ∈ N. Then
u ≡ 0 in BR̂.

Proof. Let u ∈ H1(BR̂) be a non-trivial weak solution to (1.2.15). By assumption, for
every k ∈ N ∣∣∣∣u(λz)λk0/2

∣∣∣∣ ≤ constλk−k0/2 (2.4.155)

for λ sufficiently small. In particular if k > k0/2 then
u(λz)

λk0/2
tends to 0 in L2(B1) as

λ→ 0, as a consequence of (2.4.155). This contradicts (2.4.150).
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Appendix A

A.1 Some boundary regularity results at edges of cylinders

Let us consider the following local problem: Ω ⊂ RN is a C1,1 domain, x0 ∈ ∂Ω, R, T > 0
and U is a weak solution to

div
(
t1−2s∇U

)
= 0 in CR,T (x0),

U = 0 in DR,T (x0),

lim
t→0

t1−2s∂tU = 0 in σR,T (x0),

(A.1.1)

where

CR,T (x0) := (B′
R(x0) ∩ Ω)× (0, T ), DR,T (x0) := (B′

R(x0) ∩ ∂Ω)× (0, T ),

σR,T (x0) = (B′
R(x0) ∩ Ω)× {0};

i.e. U belongs to the space H defined as the closure of the set

{v ∈ C∞(CR,T (x0)) : v = 0 in a neighbourhood of DR,T (x0)}

in H1(CR,T (x0), t
1−2s dz), and∫

CR,T (x0)
t1−2s∇U · ∇Φ dz = 0 for all Φ ∈ C∞

c (CR,T (x0) ∪ σR,T (x0)).

The following regularity result holds true.

Lemma A.1.1. Let α ∈ (0, 1), β ∈ (0, 1) ∩ (0, 2 − 2s), r < R, and τ < T . Then there
exists a positive constant C > 0 such that, for every weak solution U to (A.1.1),

∥U∥C1,α(Cr,τ (x0)) + ∥t1−2s∂tU∥C0,β(Cr,τ (x0)) ≤ C∥U∥L2(CR,T (x0),t1−2sdz).

Proof. We denote the total variable z = (x, t) ∈ RN × (0,+∞), with x = (x′, xN ) ∈
RN−1 × R, and we consider g ∈ C1,1(RN−1) such that

B′
R(x0) ∩ Ω = {x = (x′, xN ) ∈ B′

R(x0) : xN < g(x′)}.
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Without loss of generality we can assume that x0 = 0, g(0) = 0 and ∇g(0) = 0. Starting
from this function g, we can argue as in Subsection 2.3.1 and construct a function F as
in (2.3.5), which turns out to be a diffeomorphism in a neighbourhood of 0. Hence there
exist 0 < r0 < R and 0 < τ0 < T such that the composition W = U ◦ F weakly solves the
following straightened problem

div
(
t1−2sA∇W

)
= 0 in Γ−

r0 × (0, τ0),

W = 0 in (B′
r0 ∩ {yN = 0})× (0, τ0),

lim
t→0

t1−2sA∇W · ν = 0 in Γ−
r0 ,

with A = A(y) being as in (2.3.12); in particular the matrix A(y) does not depend on the
vertical variable t, is symmetric, uniformly elliptic, and possesses C0,1 coefficients.

Let us consider the odd reflection of W (which we still denote as W ) through the
hyperplane {yN = 0} in B′

r0 × (0, τ0), i.e. we set W (y′, yN , t) = −W (y′,−yN , t) for
yN < 0; it is easy to verify that W weakly satisfies{

div(t1−2sÃ∇W ) = 0 in B′
r0 × (0, τ0),

lim
t→0

t1−2sÃ∇W · ν = 0 in B′
r0 ,

where

Ã(y) = Ã(y′, yN ) :=

{
A(y′, yN ), if yN ≤ 0,

SA(y′,−yN )S, if yN > 0,

with

S :=


IdN−1 0 0

0T −1 0

0T 0 1

 .

We observe that no discontinuities appear in the coefficients of the matrix Ã since, denoting
as (aij) the entries of the matrix A,

ai,N (y
′, 0, t) = 0 for all i < N

thanks to (2.3.18) and (2.3.19). Then the matrix Ã has Lipschitz continuous coefficients.
Thus we consider the even reflection of W (which we still denote as W ) through the
hyperplane {t = 0} in B′

r0 × (−τ0, τ0), i.e. we set W (y′, yN , t) = W (y′, yN ,−t) for t < 0;
due to the homogeneous Neumann type boundary condition satisfied byW on B′

r0 and the
fact that the matrix A is independent on t, we obtain that such even reflection through
{t = 0} weakly solves

div(|t|1−2sÃ∇W ) = 0 in B′
r0 × (−τ0, τ0).

From [75, Lemma 7.1] it follows that V = |t|1−2s∂tW ∈ H1
loc(B

′
r0 × (−τ0, τ0), |t|2s−1 dz) is

a weak solution to
div(|t|2s−1Ã∇V ) = 0 in B′

r0 × (−τ0, τ0)
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and such V is odd with respect to {t = 0}, i.e. V (y′, yN ,−t) = −V (y′, yN ,−t).
From [75, Theorem 1.2] it follows that, for all r ∈ (0, r0) and τ ∈ (0, τ0),

W ∈ C1,α(B′
r × (−τ, τ)),

and
∥W∥C1,α(B′

r×(−τ,τ)) ≤ const∥W∥L2(B′
r0

×(−τ0,τ0),|t|1−2s dz)

for some const > 0 (independent ofW ). Furthermore, [35] ensures that V is locally Hölder
continous. More precisely, [74, Proposition 2.10] yields that the function

Φ(x, t) =
V (x, t)

t|t|1−2s
,

which is even in the variable t, belongs to the weighted Sobolev space

H1
loc(B

′
r0 × (−τ0, τ0), |t|3−2s dz),

and weakly solves
div(|t|3−2sÃ∇Φ) = 0 in B′

r0 × (−τ0, τ0),

thanks to the fact that the matrix Ã is independent of t.
From [75, Theorem 1.2] we have that Φ ∈ C0,γ(B′

r×(−τ, τ)) for all γ ∈ (0, 1), r ∈ (0, r0)
and τ ∈ (0, τ0), and

∥Φ∥C0,γ(B′
r×(−τ,τ)) =

∥∥∥∥ V

t|t|1−2s

∥∥∥∥
C0,γ(B′

r×(−τ,τ))
≤ const ∥V ∥L2(B′

r0
×(−τ0,τ0),|t|2s−1 dz)

for some const > 0 (independent of V ).
Therefore V ∈ C0,δ(B′

r × (−τ, τ)) with δ = min{2− 2s, γ} and

∥V ∥C0,δ(B′
r×(−τ,τ)) ≤ const ∥V ∥L2(B′

r0
×(−τ0,τ0),|t|2s−1 dz).

The conclusion follows by recalling that U = W ◦ F−1 with F−1 being of class C1,1

and taking into account the particular form of the matrix in (2.3.6).

A.2 Homogeneity degrees and eigenvalues of the spherical
problem

We derive an explicit formula for the eigenvalues of problem (1.2.11), which follows from
a complete classification of possible homogeneity degrees of homogeneous weak solutions
to the problem 

−div
(
t1−2s∇Ψ

)
= 0 in RN+1

+ ,

lim
t→0+

(
t1−2s∇Ψ · ν

)
= 0 in Γ−,

Ψ = 0 in Γ+,

(A.2.1)

where Γ− := {(y′, yN , 0) ∈ RN×{0} : yN < 0} and Γ+ := {(y′, yN , 0) ∈ RN×{0} : yN ≥ 0}.

118



Proposition A.2.1. Let Ψ ∈
⋂
r>0H

1
Γ+
r
(B+

r , t
1−2s dz) be a weak solution to (A.2.1), i.e.∫

RN+1
+

t1−2s∇Ψ · ∇Φ dz = 0, for all Φ ∈ C∞
c (RN+1

+ \ Γ+).

If, for some γ ≥ 0, Ψ(z) = |z|γΨ( z|z|), then there exists j ∈ N such that γ = j + s.

The proof of Proposition A.2.1 requires a polynomial Liouville type theorem for even so-
lutions to degenerate equations with a weight which is possibly out of the A2-Muckenhoupt
class. To this aim, Lemma A.2.2 below provides a generalization of Lemma 2.7 in [10].

For all a ∈ (−1,+∞) and r > 0, we define H1(Br, |t|a dz) as the completion of C∞(Br)
with respect to the norm √∫

Br

|t|a (|Ψ|2 + |∇Ψ|2) dz

and

H1,a
loc (R

N+1) := {Ψ ∈ L2
loc(RN+1, |t|a dz) : Ψ ∈ H1(Br, |t|a dz) for all r > 0}.

We also define

H1,a
loc (R

N+1
+ ) = {Ψ ∈ L2

loc(R
N+1
+ , ta dz) : Ψ ∈ H1(B+

r , t
a dz) for all r > 0}.

Lemma A.2.2. Let a ∈ (−1,+∞) and v ∈ H1,a
loc (R

N+1) be a weak solution to

div(|t|a∇v) = 0 in RN+1 (A.2.2)

which is even in t, i.e.
v(x,−t) = v(x, t) a.e. in RN+1.

If there exist k ∈ N and c > 0 such that

|v(z)| ≤ c(1 + |z|k) for all z ∈ RN+1,

then v is a polynomial.

Proof. Let a > −1 and v ∈ H1,a
loc (R

N+1) be a weak solution to (A.2.2) even in t. For

α ∈ (0, 1) and k ∈ N, let Dβk
x v be the partial derivative with respect to the variables

x = (x1, ..., xN ) of order k = |βk|, with βk ∈ NN multiindex. Then, there exists a positive
constant C > 0 depending only on N,α, a, k such that

sup
Br/2

|Dβk
x v| ≤

C

rk
sup
Br

|v| (A.2.3)

and

[Dβk
x v]C0,α(Br/2)

≤ C

rk+α
sup
Br

|v|, (A.2.4)
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where [w]C0,α(Λ) := supz,z′∈Λ |z − z′|−α|w(z) − w(z′)|. In order to prove the previous
inequalities we apply some local regularity estimates for even solutions contained in [75].
If k = 0, then the inequalities follow by scaling

∥v∥C0,α(B1/2)
≤ C∥v∥L∞(B1)

proved in [75, Theorem 1.2 part i)]. If k ≥ 1, we remark that any partial derivation

in variables xi for i ∈ {1, ..., N} commutes with the operator div(|t|a∇·) and Dβk
x v are

actually even solutions to the same equation, (see [75, Section 7] for details). Hence,
inequalities (A.2.3) and (A.2.4) follow by scaling and iterating the estimate

∥v∥C1,α(B1/2)
≤ C∥v∥L∞(B1)

proved in [75, Theorem 1.2 part ii)]. Indeed, after fixing a multiindex βk, we can choose

rk = 1/2 < rk−1 < ... < r0 = 1,

then

∥Dβk
x v∥C0,α(B1/2)

≤ Ck−1 sup
Brk−1

|Dβk−1
x v| ≤ Ck−1Ck−2 sup

Brk−2

|Dβk−2
x v|

≤ ... ≤

(
k−1∏
i=0

Ci

)
sup
B1

|v|.

Once we have (A.2.3) and (A.2.4), we can proceed exactly as in proof of [10, Lemma 2.7].
We have only to remark that for any a ∈ (−1,+∞), given an even solution to (A.2.2) v,
then ∂2ttv +

a
t ∂tv = −∆xv is also an even solution to (A.2.3).

Now we are able to prove Proposition A.2.1.

Proof of Proposition A.2.1. Let Ψ ∈ H1,1−2s
loc (RN+1

+ ) be a weak solution to (A.2.1), such
that

Ψ(z) = |z|γΨ
(
z

|z|

)
in RN+1

+ ,

for some γ ≥ 0. The homogeneity condition trivially implies a polynomial global bound
on the growth of Ψ. The same bound is inherited by the trace ϕ = TrΨ on RN = ∂RN+1

+ ,
which is also γ-homogeneous. Moreover, ϕ ∈ C∞(Γ−) by [75, Theorem 1.1] and ϕ ∈
C0(RN ) by [62, Proposition 5.3]. With these premises, we can define the extension V of
ϕ in the sense of [1, Lemma 3.3]. Actually, we introduce a minor change in the definition
of the extension given in [1]; that is, for every R > 0 we define

ϕR = ϕηR (A.2.5)

(instead of ϕR = ϕχB′
R
), where ηR ∈ C∞

c (B′
2R) is a radially decreasing cut-off function

with |ηR| ≤ 1 and ηR ≡ 1 in B′
R. We remark that the adjusted family of functions ϕR
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convoluted with the usual Poisson kernel of the upper half-space converge in a suitable way
to the same extension V obtained by Abatangelo and Ros-Oton in [1]. Moreover, defining

the extension starting from (A.2.5), we can easily ensure that V ∈ H1,1−2s
loc (RN+1

+ ) and that
it is weak solution to (A.2.1). Nevertheless, also V inherits from ϕ an at most polynomial

growth. Let us consider W = V −Ψ ∈ H1,1−2s
loc (RN+1

+ ), which weakly solves{
div(t1−2s∇W ) = 0 in RN+1

+ ,

TrW = 0 on RN = ∂RN+1
+ .

Then, denoting as W̃ the odd reflection of W through RN = ∂RN+1
+ , by [74, Proposition

2.10]

W =
W̃

t|t|2s−1
∈ H1,1+2s

loc (RN+1)

is an even entire weak solution to (A.2.2) with a = 1+2s ∈ (1, 3). We have thatW satisfies
the assumptions of Lemma A.2.2, being a polynomial bound on its growth ensured by the
polynomial bounds of Ψ and V . From Lemma A.2.2 we can promptly conclude that W is
a polynomial. We also have that

t1−2s∂tV = t1−2s∂tΨ+ t1−2s∂t(t
2sW ) = t1−2s∂tΨ+ Pk

for some polynomial Pk of degree k ∈ N. Hence, passing to the trace of the weighted
derivative above, by [1, Lemma 3.3] it follows that

(−∆)sϕ
k+1
= 0 in Γ−

and ϕ = 0 in Γ+, where the above identity is meant in the sense of the notion of “fractional
Laplacian modulus polynomials of degree at most k” given in [1, Definition 3.1], see also
[30]. Hence, by [1, Theorem 3.10], we have that

ϕ(x) = p(x)(xN )
s
−,

for some polynomial p. By homogeneity of ϕ, this implies that necessary there exists j ∈ N
such that γ = j + s.

We are now going to derive from Proposition A.2.1 the explicit formula (1.2.13) for
the eigenvalues of problem (1.2.11). We first observe that, if µ is an eigenvalue of (1.2.11)
with an associated eigenfunction ψ, then the function Ψ(ρθ) = ρσψ(θ) with

σ = −N − 2s

2
+

√(
N − 2s

2

)2

+ µ

belongs to H1,1−2s
loc (RN+1

+ ) and is a weak solution to (A.2.1). From Proposition A.2.1 we
then deduce that there exists j ∈ N such that σ = j + s and hence

µ = (j + s)(j +N − s).
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Viceversa, we prove now that all numbers of the form µ = (j + s)(j +N − s) with j ∈ N
are eigenvalues of (1.2.11). For any fixed j ∈ N, we consider the function Ψ defined, in
cylindrical coordinates, as

Ψ(x′, r cos τ, r sin τ) = rs+j
∣∣∣∣sin(τ2

)∣∣∣∣2s 2F1

(
−j, j+1; 1−s; 1 + cos τ

2

)
, r ≥ 0, τ ∈ [0, 2π],

where 2F1 is the hypergeometric function. From [65] we have that Ψ ∈ H1,1−2s
loc (RN+1

+ ) is
a weak solution to (A.2.1). Furthermore Ψ is homogeneous of degree s+ j and therefore
the function ψ := Ψ

∣∣
SN+

belongs to H0, ψ ̸≡ 0, and

Ψ(ρθ) = ρs+jψ(θ), ρ ≥ 0, θ ∈ SN+ .

Plugging the above characterization of Ψ into (A.2.1), we obtain that

ρj−1−s
(
(j + s)(j +N − s)θ1−2s

N+1ψ(θ) + divSN
(
θ1−2s
N+1∇SNψ

) )
= 0, ρ > 0, θ ∈ SN+ ,

so that (j + s)(j +N − s) is an eigenvalue of (1.2.11).
We then conclude that the set of all eigenvalues of problem (1.2.11) is

{(j + s)(j +N − s) : j ∈ N} .
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Chapter 3

A nonlocal capillarity problem

In the present chapter we discuss the results contained in [23], namely we perform the study
of a nonlocal capillarity problem with interaction kernels that are possibly anisotropic and
not necessarily invariant under scaling. In particular, the lack of scale invariance will be
modeled via two different fractional exponents s1, s2 ∈ (0, 1) which take into account the
possibility that the container and the environment present different features with respect
to particle interactions.

In detail, given an open set Ω ⊆ Rn (n ≥ 2), s1, s2 ∈ (0, 1) and σ ∈ R, for ev-
ery K1 ∈ K(n, s1, λ, ϱ) and K2 ∈ K(n, s2, λ, ϱ) (see Section 1.2 for the definition of the
space K(n, s, λ, ϱ) with s ∈ (0, 1)) and every set E ⊆ Ω, we consider a functional E(E)
defined as in (1.2.33), where I1 := IK1 and I2 := IK2 according to (1.2.32). From this, we
consider the functional C as in (1.2.34) with g ∈ L∞(Ω).

Our aim is to investigate the existence of minimizers of the nonlocal capillarity func-
tional C among all the sets E with a given volume and to find the equation prescribing
the contact angle between the droplet and the container.

Before to dive into the technicalities, we introduce the following notations that will be
used throughout all this chapter:

� given a set F ⊆ Rn, x0 ∈ Rn and r > 0, we let

F x0,r :=
F − x0
r

; (3.0.1)

� for any two angles ϑ1, ϑ2 ∈ [0, 2π), with ϑ1 < ϑ2, we define

Jϑ1,ϑ2 :=
{
x ∈ Rn : ∃ β ∈ (ϑ1, ϑ2), ρ > 0 such that (x1, xn) = ρ(cosβ, sinβ)

}
;

(3.0.2)

� for any angle α, we set
e(α) := cosα e1 + sinα en. (3.0.3)

In particular, in our analysis we consider K1 ∈ K2(n, s1, λ, ϱ) and K2 ∈ K2(n, s2, λ, ϱ)
such that the associated blow-up kernels defined as in (1.2.31) are well-defined and given
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by

K∗
1 (ζ) =

a1(
−→
ζ )

|ζ|n+s1
and K∗

2 (ζ) =
a2(

−→
ζ )

|ζ|n+s2
, (3.0.4)

where
−→
ζ := ζ

|ζ| and a1, a2 are continuous functions on ∂B1, bounded from above and
below by two positive constants and satisfying

ai(ω) = ai(−ω) (3.0.5)

for all ω ∈ ∂B1 and i ∈ {1, 2}.

3.1 Existence of minimizers

In this section we prove the existence of minimizers for the functional C defined in (1.2.34),
which is based on a semicontinuity argument and on a direct minimization procedure.

For this we first provide the following lower semicontinuity lemma.

Lemma 3.1.1 (Semicontinuity of the energy). If I2(Ω,Ω
c) < +∞, Ej ⊆ Ω and Ej → E

in L1(Ω), then
lim inf
j→+∞

E(Ej) ≥ E(E).

Proof. If σ ≥ 0, the proof follows by Fatou’s Lemma. If instead σ < 0, then we observe
that

I2(Ω,Ω
c) = I2(E,Ω

c) + I2(E
c ∩ Ω,Ωc),

and therefore, using that σ = −|σ|, we can write

E(E) = I1(E,E
c ∩ Ω)− |σ|I2(E,Ωc) + (|σ|+ 1)I2(Ω,Ω

c)− (|σ|+ 1)I2(Ω,Ω
c)

= I1(E,E
c ∩ Ω) + I2(E,Ω

c) + (|σ|+ 1)I2(E
c ∩ Ω,Ωc)− (|σ|+ 1)I2(Ω,Ω

c).

As a consequence, we can exploit Fatou’s Lemma and obtain the desired result.

With this we are able to prove the following result.

Proposition 3.1.2. Let K1 ∈ K(n, s1, λ, ϱ) and K2 ∈ K(n, s2, λ, ϱ). Let Ω be an open
and bounded set with I1(Ω,Ω

c) + I2(Ω,Ω
c) < +∞.

Let m ∈ (0, |Ω|) and g ∈ L∞(Ω).
Then, there exists a minimizer for the functional C in (1.2.34) among all the sets E

with Lebesgue measure equal to m.
Moreover, I1(E,E

c ∩ Ω) < +∞ for every minimizer E.

Proof. We observe that, if K1 ∈ K(n, s1, λ, ϱ), then, for any p ∈ Rn,

I1(F, F
c) ≥ 1

λ
Is1(F ∩Bϱ/2(p), F c ∩Bϱ/2(p)) for every F ⊆ Rn. (3.1.1)
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To prove it, we notice that if x, y ∈ Bϱ/2(p), then |x − y| ≤ |x − p| + |p − y| < ϱ, and
therefore, recalling (1.2.29),

I1(F, F
c) ≥

∫
F∩Bϱ/2(p)

∫
F c∩Bϱ/2(p)

K1(x− y) dx dy ≥ 1

λ

∫
F∩Bϱ/2(p)

∫
F c∩Bϱ/2(p)

dx dy

|x− y|n+s1
,

which establishes (3.1.1).
Now, if H is a half-space such that |H ∩Ω| = m and R > 0 is such that Ω ⊆ BR, then,

using (1.2.29), we see that

I1(H ∩BR, Hc ∩BR) = C Rn−s1 ,

for some C > 0 depending only on n and s1, and therefore

E(H ∩ Ω) = I1(H ∩ Ω, (H ∩ Ω)c ∩ Ω) + σI2(H ∩ Ω,Ωc)

= I1(H ∩ Ω, Hc ∩ Ω) + σI2(H ∩ Ω,Ωc)

≤ I1(H ∩BR, Hc ∩BR) + |σ| I2(Ω,Ωc)
< +∞.

As a consequence, we find that

γ := inf {C(E) : E ⊆ Ω, |E| = m} < +∞.

Let now Ej ⊆ Ω be such that |Ej | = m and C(Ej) = E(Ej) +
∫
Ej
g → γ as j → +∞.

Then, if j is large enough, we have that

γ + 1 +

∫
Ω
|g| ≥ E(Ej) = I1(Ej , E

c
j ∩ Ω) + σI2(Ej ,Ω

c) ≥ I1(Ej , E
c
j ∩ Ω)− |σ| I2(Ω,Ωc).

Consequently

I1(Ej , E
c
j ) = I1(Ej , E

c
j ∩ Ω) + I1(Ej , E

c
j ∩ Ωc) ≤ γ + 1 +

∫
Ω
|g|+ I1(Ω,Ω

c) + |σ|I2(Ω,Ωc).

Since Ej ⊆ BR, using (3.1.1) and the fact that the spaceW s1,2(BR) is compactly embedded
in L1(BR), we find that, up to a subsequence, Ej → E in L1

loc(Rn) for some E ⊆ Ω
with |E| = m. Hence, using the semicontinuity property in Lemma 3.1.1, we conclude
that E is a minimizer.

We also remark that
I2(E,Ω

c) ≤ I2(Ω,Ω
c) < +∞,

and therefore, since E(E) < +∞, we conclude that

I1(E,E
c ∩ Ω) < +∞,

as desired.
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3.2 The Euler-Lagrange equation

In this section we present one of the main basic features of the capillarity energy functional
in (1.2.34). More explicitly, the volume constrained minimizers (and, more generally, the
volume constrained critical points) obtained in Proposition 3.1.2 satisfy (under reasonable
regularity assumptions on the domain and on the interaction kernels) a suitable Euler-
Lagrange equation, according to the following result. To state it precisely, it is convenient
to denote by RegE the collection of all those points x0 ∈ Ω ∩ ∂E for which there exists ρ >
0 and α ∈ (s1, 1) such that Bρ(x0)∩∂E is a manifold of class C1,α possibly with boundary,
and the boundary (if any) is contained in ∂Ω, see Figure 3.1.

Figure 3.1: The geometry involved in the definition of RegE .

Given a kernel K ∈ K(n, s1, λ, ϱ), it is also convenient to recall the notion of K-mean
curvature, that is defined, for all x ∈ Ω ∩ RegE , as

HK
∂E(x) := p.v.

∫
Rn

K(x− y)
(
χEc(y)− χE(y)

)
dy. (3.2.1)

Here p.v. stands for the principal value, that we omit from now on for the sake of simplicity
of notation. We also say that E ⊆ Ω is a critical point of C among sets with prescribed
Lebesgue measure if

d

dt

∣∣∣
t=0

C
(
ft(E)

)
= 0,

for every family of diffeomorphisms {ft}|t|<δ such that, for each |t| < δ, one has that f0 =
Id, the support of ft − Id is a compact set, ft(Ω) = Ω and |ft(E)| = |E|.

With this notation, we have the following result:

Proposition 3.2.1. Let K1 ∈ K1(n, s1, λ, ϱ) and K2 ∈ K1(n, s2, λ, ϱ). Let Ω be an open
bounded set with C1-boundary and g ∈ C1(Rn). Let E be a critical point of C in (1.2.34)
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among all the sets with Lebesgue measure equal to m. Then, there exists c ∈ R such that∫∫
E×(Ec∩Ω)

div(x,y)

(
K1(x− y)

(
T (x), T (y)

))
dx dy

+ σ

∫∫
E×Ωc

div(x,y)

(
K2(x− y)

(
T (x), T (y)

))
dx dy +

∫
E
div(g T ) = c

∫
E
divT

(3.2.2)

for every T ∈ C∞
c (Rn;Rn) with

T · νΩ = 0 on ∂Ω.

Moreover, if K1 ∈ K2(n, s1, λ, ϱ) and K2 ∈ K2(n, s2, λ, ϱ), then

HK1
∂E(x)−

∫
Ωc

K1(x− y) dy + σ

∫
Ωc

K2(x− y) dy + g(x) = c (3.2.3)

for all x ∈ Ω ∩ RegE.

The proof of Proposition 3.2.1 relies on a modification of techniques previously ex-
ploited in [9, 45, 60]. We omit the proof here since one can follow precisely the proof of
Theorem 1.3 in [60] with obvious modifications due to the presence of different kernels.

3.3 The cancellation property in the anisotropic setting

In this section we exhibit the proof of the cancellation property in the anisotropic setting.
The argument relies on a delicate analysis of the geometric properties of the integrals
involved in the definition of the function (3.3.1).

Proposition 3.3.1. Given ϑ ∈ (0, π), for every ϑ̄ ∈ (0, 2π) let

Dϑ(ϑ̄) :=

∫
Jϑ,ϑ+ϑ̄

a1(
−−−−−→
x− e(ϑ))

|x− e(ϑ)|n+s1
dx−

∫
J0,ϑ

a1(
−−−−−→
x− e(ϑ))

|x− e(ϑ)|n+s1
dx. (3.3.1)

Then,

Dϑ is well-defined in the principal value sense; (3.3.2)

Dϑ is continuous in (0, 2π); (3.3.3)

lim
ϑ̄↘0

Dϑ(ϑ̄) = −∞; (3.3.4)

lim
ϑ̄↗2π

Dϑ(ϑ̄) = +∞. (3.3.5)

Moreover, for every c ∈ R and every angle ϑ ∈ (0, π), there exists a unique angle ϑ̂ ∈ (0, 2π)
such that

Dϑ(ϑ̂) = c. (3.3.6)
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Proof. We focus on the proof of (3.3.2), (3.3.3), (3.3.4) and (3.3.5): once these statements
are proved, we can conclude that there exists an angle ϑ̂ ∈ (0, 2π) such that Dϑ(ϑ̂) = 0,
and this angle is unique since Dϑ is strictly increasing, thus establishing (3.3.6).

We start by proving (3.3.2). For this, we observe that the definition in (3.3.1) has to
be interpreted in the principal-value sense, namely

Dϑ(ϑ̄) = lim
ρ↘0

(∫
Jϑ,ϑ+ϑ̄\Bρ(e(ϑ))

a1(
−−−−−→
x− e(ϑ))

|x− e(ϑ)|n+s1
dx−

∫
J0,ϑ\Bρ(e(ϑ))

a1(
−−−−−→
x− e(ϑ))

|x− e(ϑ)|n+s1
dx

)
.

(3.3.7)
Hence, to establish (3.3.2), we want to show that the limit in (3.3.7) does exist and is finite.
To this end, given ϑ̄ ∈ (0, 2π), we let δ := min{sin ϑ̄, sinϑ} and we note that Bδ(e(ϑ)) is
contained in J0,ϑ+ϑ̄. Then, for every ρ ∈ (0, δ] we set

f(ρ) :=

∫
Jϑ,ϑ+ϑ̄\Bρ(e(ϑ))

a1(
−−−−−→
x− e(ϑ))

|x− e(ϑ)|n+s1
dx−

∫
J0,ϑ\Bρ(e(ϑ))

a1(
−−−−−→
x− e(ϑ))

|x− e(ϑ)|n+s1
dx.

We also define Aδ,ρ(e(ϑ)) := Bδ(e(ϑ)) \ Bρ(e(ϑ)), see Figure 3.2. By the change of vari-
able x 7→ 2e(ϑ)− x, we see that∫

Jϑ,ϑ+ϑ̄∩Aδ,ρ(e(ϑ))

a1(
−−−−−→
x− e(ϑ))

|x− e(ϑ)|n+s1
dx−

∫
J0,ϑ∩Aδ,ρ(e(ϑ))

a1(
−−−−−→
x− e(ϑ))

|x− e(ϑ)|n+s1
dx

=

∫
J0,ϑ∩Aδ,ρ(e(ϑ))

[
a1(

−−−−−→
e(ϑ)− x)

|e(ϑ)− x|n+s1
− a1(

−−−−−→
x− e(ϑ))

|x− e(ϑ)|n+s1

]
dx = 0,

since a1 is symmetric. From this, we deduce that for every ρ ∈ (0, δ]

f(ρ)− f(δ) =

∫
Jϑ,ϑ+ϑ̄∩Aδ,ρ(e(ϑ))

a1(
−−−−−→
x− e(ϑ))

|x− e(ϑ)|n+s1
dx−

∫
J0,ϑ∩Aδ,ρ(e(ϑ))

a1(
−−−−−→
x− e(ϑ))

|x− e(ϑ)|n+s1
dx = 0.

Hence we conclude that
lim
ρ↘0

f(ρ) = f(δ), (3.3.8)

thus proving the existence and finiteness of the limit in (3.3.7).
This completes the proof of (3.3.2) and we now focus on the proof of (3.3.3).
For this, we notice that, if ϑ̃, ϑ̄ ∈ (0, 2π) with ϑ̄ ≥ ϑ̃,

Dϑ(ϑ̄)−Dϑ(ϑ̃) =

∫
Jϑ,ϑ+ϑ̄

a1(
−−−−−→
x− e(ϑ))

|x− e(ϑ)|n+s1
dx−

∫
J
ϑ,ϑ+ϑ̃

a1(
−−−−−→
x− e(ϑ))

|x− e(ϑ)|n+s1
dx

=

∫
J
ϑ+ϑ̃,ϑ+ϑ̄

a1(
−−−−−→
x− e(ϑ))

|x− e(ϑ)|n+s1
dx.

Since the denominator in the latter integral is bounded from below by a positive constant
(depending on ϑ̃), the claim in (3.3.3) follows from the Dominated Convergence Theorem.
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Figure 3.2: The geometry involved in the proof of the existence and finiteness of the
limit in (3.3.7).

We now deal with the proof of (3.3.4) and (3.3.5). To this end, we first prove that

lim
ε↘0

(∫
Jϑ−ε,ϑ

a1(
−−−−−→
x− e(ϑ))

|x− e(ϑ)|n+s1
dx−

∫
Jϑ,ϑ+2ε

a1(
−−−−−→
x− e(ϑ))

|x− e(ϑ)|n+s1
dx

)
= −∞

and lim
ε↘0

(∫
Jϑ−2ε,ϑ

a1(
−−−−−→
x− e(ϑ))

|x− e(ϑ)|n+s1
dx−

∫
Jϑ,ϑ+ε

a1(
−−−−−→
x− e(ϑ))

|x− e(ϑ)|n+s1
dx

)
= +∞.

(3.3.9)

We focus on the proof of the first claim in (3.3.9) since a similar argument would
take care of the second one. For this, let Ξ be the first limit in (3.3.9) and R be the
rotation by an angle ϑ in the (x1, xn) plane that sends e(ϑ) in e1 = (1, 0, . . . , 0). Let
also a1,ϑ := a1 ◦ R and notice that a1,ϑ inherits the properties of a1, that is a1,ϑ is a
continuous functions on ∂B1, bounded from above and below by two positive constants
and satisfying a1,ϑ(ω) = a1,ϑ(−ω) for all ω ∈ ∂B1.

With this notation, we have

Ξ = lim
ε↘0

(∫
J−ε,0

a1,ϑ(
−−−−→
x− e1)

|x− e1|n+s1
dx−

∫
J0,2ε

a1,ϑ(
−−−−→
x− e1)

|x− e1|n+s1
dx

)
. (3.3.10)

We also remark that, in view of the boundedness of a1,ϑ,∫
J−2ε,2ε\B2

a1,ϑ(
−−−−→
x− e1)

|x− e1|n+s1
dx ≤

∫
Rn\B1

C

|y|n+s1
dy ≤ C,

for a suitable constant C ≥ 1 possibly varying from step to step.
Combining this information with (3.3.10) we find that

Ξ ≤ lim
ε↘0

(∫
J−ε,0∩B2

a1,ϑ(
−−−−→
x− e1)

|x− e1|n+s1
dx−

∫
J0,2ε∩B2

a1,ϑ(
−−−−→
x− e1)

|x− e1|n+s1
dx+ C

)
. (3.3.11)
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Now we claim that, if ε is sufficiently small,

Bε/10

(
e1 +

3ε

2
en

)
⊆ Jε,2ε ∩B2. (3.3.12)

To check this, let y ∈ Bε/10
(
e1 +

3ε
2 en

)
. Then,

ε2

100
≥ |y1 − 1|2 +

∣∣∣∣yn − 3ε

2

∣∣∣∣2
and accordingly y1 ∈

[
1− ε

10 , 1 +
ε
10

]
and yn ∈

[
7ε
5 ,

8ε
5

]
. As a consequence, if ε is conve-

niently small,

yn
y1

∈

[
7ε
5

1 + ε
10

,
8ε
5

1− ε
10

]
⊆
[
6ε

5
,
9ε

5

]
⊆ [tan ε, tan(2ε)],

which, recalling (3.0.2), establishes (3.3.12).
Using (3.3.12) and the assumption that a1,ϑ is bounded from below away from zero,

we obtain that∫
Jε,2ε∩B2

a1,ϑ(
−−−−→
x− e1)

|x− e1|n+s1
dx ≥ 1

C

∫
Bε/10(e1+ 3ε

2
en)

dx

|x− e1|n+s1
≥ 1

Cεs1
.

This and (3.3.11) entail that

Ξ ≤ lim
ε↘0

(∫
J−ε,0∩B2

a1,ϑ(
−−−−→
x− e1)

|x− e1|n+s1
dx−

∫
J0,ε∩B2

a1,ϑ(
−−−−→
x− e1)

|x− e1|n+s1
dx− 1

Cεs1
+ C

)
. (3.3.13)

Now we observe that
J−ε,ε =

{
x ∈ Rn : |xn| < tan ε x1

}
and we define

J ♯ε := 2e1 − J−ε,ε,

Rε := J−ε,ε ∩ J ♯ε ,
J⋆ε := J0,ε \Rε

and Bε :=
{
x ∈ J⋆ε : xn >

x1 − 1

| log ε|

}
,

see Figure 3.3.
The intuition behind this set decomposition is that, on the one hand, the set Rε ac-

counts for the cancellations due to the symmetry of a1,ϑ (corresponding to the reflection
through e1, namely x 7→ 2e1−x); on the other hand, the remaining integral contributions
in J⋆ε cancel exactly when a1,ϑ is constant, thanks to the reflection through the horizontal
hyperplane x 7→ (x′,−xn), but they may provide additional terms when a1,ϑ is not con-
stant. To overcome this difficulty, our idea is to exploit the continuity of a1,ϑ together
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Figure 3.3: The set decomposition involved in the proof of (3.3.9).

with the reflection through the horizontal hyperplane in order to “approximately cancel”
as many contributions as possible.

This idea by itself however does not exhaust the complexity of the problem, because
two adjacent points can end up being projected far away from each other on the sphere (for
instance, if a point is close to e1+tan ε en and the other to e1−tan ε en). To overcome this
additional complication, we exploit the set Bε: roughly speaking, points outside Bε remain
sufficiently close after they get projected on the sphere (and here we can take advantage of
the continuity of a1,ϑ), while the points in Bε provide an additional, but small, correction,
in view of the location of Bε and of its measure.

The details of the quantitative computation needed to implement this combination of
ideas go as follows.

We stress that
if x belongs to Rε, then so does 2e1 − x. (3.3.14)

Indeed, if x ∈ Rε then x ∈ J−ε,ε and x ∈ 2e1−J−ε,ε, and consequently 2e1−x ∈ 2e1−J−ε,ε
and 2e1 − x ∈ J−ε,ε, which gives (3.3.14).

Also, we see that J−ε,0 ∩ Rε = Rε ∩ {xn < 0} and J0,ε ∩ Rε = Rε ∩ {xn > 0}. Thus,
using (3.3.14), the change of variable x 7→ 2e1 − x and the symmetry of a1,ϑ, taking into
account that under this transformation some vectors end up outside the ball B2,∫

J−ε,0∩B2∩Rε

a1,ϑ(
−−−−→
x− e1)

|x− e1|n+s1
dx =

∫
Rε∩{xn<0}∩B2

a1,ϑ(
−−−−→
x− e1)

|x− e1|n+s1
dx

≤
∫
Rε∩{xn>0}∩B2

a1,ϑ(
−−−−→
e1 − x)

|e1 − x|n+s1
dx+ C

∫
Rn\B2

dx

|x− e1|n+s1

≤
∫
J0,ε∩B2∩Rε

a1,ϑ(
−−−−→
x− e1)

|x− e1|n+s1
dx+ C.
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Plugging this cancellation into (3.3.13), we conclude that

Ξ ≤ lim
ε↘0

(∫
(J−ε,0∩B2)\Rε

a1,ϑ(
−−−−→
x− e1)

|x− e1|n+s1
dx−

∫
(J0,ε∩B2)\Rε

a1,ϑ(
−−−−→
x− e1)

|x− e1|n+s1
dx− 1

Cεs1
+ C

)
.

Using the change of variable x 7→ (x′,−xn) and noticing that |(x′,−xn) − e1| = |x − e1|,
we thus find that

Ξ ≤ lim
ε↘0

(∫
(J0,ε∩B2)\Rε

a1,ϑ(
−−−−−−−−−−→
(x′,−xn)− e1)− a1,ϑ(

−−−−→
x− e1)

|x− e1|n+s1
dx− 1

Cεs1
+ C

)

= lim
ε↘0

(∫
J⋆
ε∩B2

a1,ϑ(
−−−−−−−−−−→
(x′,−xn)− e1)− a1,ϑ(

−−−−→
x− e1)

|x− e1|n+s1
dx− 1

Cεs1
+ C

)
.

(3.3.15)

We point out that
J⋆ε ⊆ {x1 ≥ 1}. (3.3.16)

Indeed, if x ∈ J⋆ε , then x ∈ J0,ε, whence

xn ∈ (0, tan εx1) . (3.3.17)

Also, we have that x ̸∈ Rε and therefore either x ̸∈ J−ε,ε or x ̸∈ J ♯ε . In fact, since J0,ε ⊆
J−ε,ε, we have that necessarily x ̸∈ J ♯ε , and, as a result, 2e1 − x ̸∈ J−ε,ε. This gives
that |xn| ≥ tan ε (2− x1). Therefore, by (3.3.17),

2− x1 ≤
|xn|
tan ε

=
xn
tan ε

≤ x1, (3.3.18)

and this entails (3.3.16).
Now we claim that

Bε ⊆
{
x ∈ Rn : |x1 − 1| ≤ 2ε | log ε|, |xn − tan ε| ≤ 2ε2 | log ε|

}
. (3.3.19)

To check this, let x ∈ Bε. Then,

x1 − 1

| log ε|
≤ xn ≤ tan ε x1 = tan ε (x1 − 1) + tan ε. (3.3.20)

Recalling (3.3.16), we thus find that(
1

| log ε|
− tan ε

)
|x1 − 1| =

(
1

| log ε|
− tan ε

)
(x1 − 1) ≤ tan ε.

Consequently, if ε is conveniently small,

9

10
|x1 − 1| ≤ (1− tan ε | log ε|) |x1 − 1| ≤ tan ε | log ε| ≤ 11

10
ε | log ε|. (3.3.21)
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Furthermore, by the second inequality in (3.3.20) and (3.3.21),

xn − tan ε ≤ tan ε (x1 − 1) ≤ tan ε |x1 − 1| ≤ 11

9
ε tan ε | log ε| ≤ 2ε2 | log ε|. (3.3.22)

Moreover, from (3.3.18),
xn ≥ tan ε (2− x1),

whence, utilizing again (3.3.21),

tan ε− xn ≤ tan ε+ tan ε (x1 − 2) ≤ tan ε |x1 − 1| ≤ 11

9
ε tan ε | log ε| ≤ 2ε2 | log ε|.

From this, (3.3.21) and (3.3.22) we obtain (3.3.19), as desired.

Now, using (3.3.19) and the changes of variable y := x−e1
tan ε and z :=

(
y′

|yn| , yn

)
, we see

that ∫
Bε

dx

|x− e1|n+s1
≤
∫

{|x1−1|≤2ε | log ε|}
{|xn−tan ε|≤2ε2 | log ε|}

dx

|x− e1|n+s1

=
1

(tan ε)s1

∫
{|y1|≤2ε | log ε|/ tan ε}

{|yn−1|≤2ε2 | log ε|/ tan ε}

dy

|y|n+s1

≤ 2

εs1

∫
{|yn−1|≤4ε | log ε|}

dy

|y|n+s1

=
2

εs1

∫
{|zn−1|≤4ε | log ε|}

dz

|zn|1+s1
(
|z′|2 + 1

)n+s1
2

≤ C

εs1

∫ 1+4ε | log ε|

1−4ε | log ε|

dzn

z1+s1n

≤ Cε1−s1 | log ε|,

(3.3.23)

up to renaming the positive constant C line after line.
We also recall that |(x′,−xn)− e1| = |x− e1| and accordingly∣∣∣−−−−−−−−−−→(x′,−xn)− e1 −

−−−−→
x− e1

∣∣∣ = |((x′,−xn)− e1)− (x− e1)|
|x− e1|

=
2|xn|

|x− e1|
. (3.3.24)

As a result, recalling (3.3.16) and (3.3.17), if x ∈ J⋆ε \ Bε then

|xn| = xn ≤ x1 − 1

| log ε|
=

|x1 − 1|
| log ε|

.

This and (3.3.24) give that ∣∣∣−−−−−−−−−−→(x′,−xn)− e1 −
−−−−→
x− e1

∣∣∣ ≤ 2

| log ε|
.
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Consequently, if we consider the modulus of continuity of a1,ϑ, namely

σ(t) := sup
v,w∈∂B1
|v−w|≤t

|a1,ϑ(v)− a1,ϑ(w)|,

we deduce that if x ∈ J⋆ε \ Bε then∣∣a1,ϑ(−−−−−−−−−−→(x′,−xn)− e1)− a1,ϑ(
−−−−→
x− e1)

∣∣ ≤ σ

(
2

| log ε|

)
and thus∫

J⋆
ε \Bε

a1,ϑ(
−−−−−−−−−−→
(x′,−xn)− e1)− a1,ϑ(

−−−−→
x− e1)

|x− e1|n+s1
dx ≤ σ

(
2

| log ε|

)∫
J⋆
ε \Bε

dx

|x− e1|n+s1
. (3.3.25)

Notice also that
J⋆ε ⊆ Rn \Bε/100(e1). (3.3.26)

Indeed, if x ∈ J⋆ε , from (3.3.18) we have that

|xn| = xn ≥ tan ε(2− x1). (3.3.27)

Now, if x1 ≥ 19
10 , then |x−e1| ≥ |x1−1| ≥ 9

10 and (3.3.26) plainly follows; if instead x1 <
19
10

we deduce from (3.3.27) that

|x− e1| ≥ |xn| ≥
tan ε

10
,

from which (3.3.26) follows in this case too.
By combining (3.3.25) and (3.3.26) we deduce that∫

J⋆
ε \Bε

a1,ϑ(
−−−−−−−−−−→
(x′,−xn)− e1)− a1,ϑ(

−−−−→
x− e1)

|x− e1|n+s1
dx ≤ σ

(
2

| log ε|

)∫
Rn\Bε/100

dy

|y|n+s1

≤ C

εs1
σ

(
2

| log ε|

)
,

which together with (3.3.23) leads to∫
J⋆
ε

a1,ϑ(
−−−−−−−−−−→
(x′,−xn)− e1)− a1,ϑ(

−−−−→
x− e1)

|x− e1|n+s1
dx ≤ C

εs1
σ

(
2

| log ε|

)
+ Cε1−s1 | log ε|.

Joining this information with (3.3.15) we find that

Ξ ≤ lim
ε↘0

[
C

εs1
σ

(
2

| log ε|

)
+ Cε1−s1 | log ε| − 1

Cεs1
+ C

]
= lim

ε↘0

1

εs1

[
Cσ

(
2

| log ε|

)
+ Cε | log ε| − 1

C
+ Cεs1

]
≤ lim

ε↘0

(
− 1

2Cεs1

)
= −∞
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This completes the proof of (3.3.9). Now, using (3.3.9),

lim
ϑ̄↘0

Dϑ(ϑ̄)

= lim
ϑ̄↘0

(∫
Jϑ,ϑ+ϑ̄

a1(
−−−−−→
x− e(ϑ))

|x− e(ϑ)|n+s1
dx−

∫
Jϑ−2ϑ̄,ϑ

a1(
−−−−−→
x− e(ϑ))

|x− e(ϑ)|n+s1
dx−

∫
J0,ϑ−2ϑ̄

a1(
−−−−−→
x− e(ϑ))

|x− e(ϑ)|n+s1
dx

)

≤ lim
ϑ̄↘0

(∫
Jϑ,ϑ+ϑ̄

a1(
−−−−−→
x− e(ϑ))

|x− e(ϑ)|n+s1
dx−

∫
Jϑ−2ϑ̄,ϑ

a1(
−−−−−→
x− e(ϑ))

|x− e(ϑ)|n+s1
dx

)
= −∞,

which proves (3.3.4), and

lim
ϑ̄↗2π

Dϑ(ϑ̄) = lim
α↘0

Dϑ(2π − α)

= lim
α↘0

(∫
Jϑ,ϑ+2π−α

a1(
−−−−−→
x− e(ϑ))

|x− e(ϑ)|n+s1
dx−

∫
J0,ϑ

a1(
−−−−−→
x− e(ϑ))

|x− e(ϑ)|n+s1
dx

)

= lim
α↘0

(∫
Jϑ,2π

a1(
−−−−−→
x− e(ϑ))

|x− e(ϑ)|n+s1
dx−

∫
Jϑ−α,ϑ

a1(
−−−−−→
x− e(ϑ))

|x− e(ϑ)|n+s1
dx

)

≥ lim
α↘0

(∫
Jϑ,ϑ+2α

a1(
−−−−−→
x− e(ϑ))

|x− e(ϑ)|n+s1
dx−

∫
Jϑ−α,ϑ

a1(
−−−−−→
x− e(ϑ))

|x− e(ϑ)|n+s1
dx

)
= +∞,

which proves (3.3.5).

3.4 Nonlocal Young’s law

One of the pivotal steps of any capillarity theory is the determination of the contact angle
between the droplet and the container (in jargon, the Young’s law) that we are going to
treat in the present section.

We showcase below a first version of the nonlocal Young’s law corresponding to the
case s1 ̸= s2.

Theorem 3.4.1. Let K1 ∈ K2(n, s1, λ, ϱ) and K2 ∈ K2(n, s2, λ, ϱ). Suppose that K1, K2

admit blow-up limits K∗
1 , K

∗
2 (according to (1.2.31)) that satisfy assumption (3.0.4).

Let g ∈ C1(Rn). Let Ω be an open bounded set with C1-boundary and E be a volume-
constrained critical set of C.

Let x0 ∈ RegE ∩ ∂Ω and suppose that H and V are open half-spaces such that

Ωx0,r → H and Ex0,r → H ∩ V in L1
loc(Rn) as r → 0+. (3.4.1)

Let also ϑ ∈ [0, π] be the angle between the half-spaces H and V , that is H ∩ V = J0,ϑ in
the notation of (3.0.2).

Then, the following statements hold true.

1) If s1 < s2 and σ < 0 then ϑ = 0.
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2) If s1 < s2 and σ > 0 then ϑ = π.

3) If
either s1 < s2 and σ = 0, or s1 > s2, (3.4.2)

then ϑ ∈ (0, π). Also, letting ϑ̂ ∈ (0, 2π) be as in (3.3.6) with c = 0, we have
that ϑ̂ = π − ϑ. Moreover, for all v ∈ H ∩ ∂V ,

H
K∗

1

∂(H∩V )(v)−
∫
Hc

K∗
1 (v − y) dy = 0. (3.4.3)

Figure 3.4: The geometry involved in the asymptotics in (3.4.1).

The asymptotics in (3.4.1) are depicted in Figure 3.4. As a particular case of Theo-
rem 3.4.1, we single out the special situation in which the kernel K∗

1 is isotropic. In this
setting, the cancellation condition in (3.3.6) boils down to an explicit condition for the
contact angle, and we have:

Corollary 3.4.2. Under the same assumptions of Theorem 3.4.1, we additionally suppose
that a1 ≡ const.

Then, the following statements hold true.

1) If s1 < s2 and σ < 0 then ϑ = 0.

2) If s1 < s2 and σ > 0 then ϑ = π.

3) If either s1 < s2 and σ = 0, or s1 > s2, then ϑ = π
2 .

We exhibit below the nonlocal Young’s law in the case s1 = s2, which was left out of
Theorem 3.4.1.

Theorem 3.4.3. Let s ∈ (0, 1) and K1, K2 ∈ K2(n, s, λ, ϱ). Suppose that K1, K2 admit
blow-up limits K∗

1 , K
∗
2 (according to (1.2.31)) that satisfy assumption (3.0.4). Assume

that there exists ε0 ∈ (0, 1) such that

|σ|K2(ζ) ≤ (1− ε0)K1(ζ) for all ζ ∈ Bε0 \ {0}. (3.4.4)
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Let g ∈ C1(Rn). Let Ω be an open bounded set with C1-boundary and E be a volume-
constrained critical set of C.

Let x0 ∈ RegE ∩ ∂Ω and suppose that H and V are open half-spaces such that

Ωx0,r → H and Ex0,r → H ∩ V in L1
loc(Rn) as r → 0+.

Let also ϑ ∈ [0, π] be the angle between the half-spaces H and V , that is H ∩ V = J0,ϑ in
the notation of (3.0.2), and let νE(x0) := νV (0).

Then, we have that ϑ ∈ (0, π) and, for all v ∈ H ∩ ∂V ,

H
K∗

1

∂(H∩V )(v)−
∫
Hc

K∗
1 (v − z) dz + σ

∫
Hc

K∗
2 (v − z) dz = 0. (3.4.5)

Even in the very special situation in which K1(ζ) = K2(ζ) =
1

|ζ|n+s , Theorem 3.4.3 here

can be seen as a strengthening of Theorem 1.4 in [60] (and, in particular, of formula (1.24)
there): indeed, the result here establishes explicitly the nondegeneracy of the contact
angle ϑ by proving that ϑ ∈ (0, π).

We point out that the case σ = 0 makes indistinguishable the setting s1 = s2 from
that of s1 ̸= s2: consistently with this, we observe that the contact angle prescription
when s1 = s2, as given in (3.4.5), reduces to (3.4.3) when additionally σ = 0.

Also, we remark that when σ = 0 condition (3.4.4) is automatically satisfied. Fur-
thermore, when K1 = K2, condition (3.4.4) reduces to σ ∈ (−1, 1), which is precisely the
assumption taken in [60].

We now reformulate the condition of contact angle according to the following result:

Proposition 3.4.4. Let K∗
1 and K∗

2 be as in (3.0.4). Let σ ∈ R. Assume that

either s1 = s2, or σ = 0. (3.4.6)

Let H and V be open half-spaces and let ϑ ∈ (0, π) be the angle between H and V , that
is H ∩V = J0,ϑ in the notation of (3.0.2). Let also ϑ̂ ∈ (0, 2π) be as in (3.3.6) with c := 0

Suppose that there exists v ∈ H ∩ ∂V such that

H
K∗

1

∂(H∩V )(v)−
∫
Hc

K∗
1 (v − z) dz + σ

∫
Hc

K∗
2 (v − z) dz = 0. (3.4.7)

Then, we have that ϑ and σ satisfy the relation∫
Jϑ,π

a1(
−−−−−→
e(ϑ)− x)

|e(ϑ)− x|n+s1
dx−

∫
J0,ϑ

a1(
−−−−−→
e(ϑ)− x)

|e(ϑ)− x|n+s1
dx+ σ

∫
Hc

a2(
−−−−−→
e(ϑ)− x)

|e(ϑ)− x|n+s1
dx = 0. (3.4.8)

In order to prove Theorems 3.4.1 and 3.4.3, Corollary 3.4.2 and Proposition 3.4.4,
we first recall an ancillary result on the continuity of the nonlocal K-mean curvature
defined in (3.2.1) (for the usual fractional mean curvature, that is when the kernel K is
as in (1.2.28), similar continuity results were presented in [17, 45]).

From now on, we denote points x ∈ Rn as x = (x′, xn) ∈ Rn−1 × R and we set

C := {x = (x′, xn) ∈ Rn : |x′| < 1, |xn| < 1}
and D := {z ∈ Rn−1 : |z| < 1}.
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Lemma 3.4.5. Let λ ≥ 1, s ∈ (0, 1) and α ∈ (s, 1). Let {Fk}k∈N be a sequence of Borel
sets in Rn such that 0 ∈ ∂Fk and

Fk → F in L1
loc(Rn) for some F ⊆ Rn.

and uk, u ∈ C1,α(Rn−1) be such that

C ∩ Fk = {x ∈ C : xn ≤ uk(x
′)}

and
lim

k→+∞
∥uk − u∥C1,α(D) = 0.

Let Kk, K ∈ K(n, s, λ, 0) be such that Kk → K pointwise in Rn \ {0} as k → +∞.
Then

lim
k→+∞

HKk
∂Fk

(0) = HK
∂F (0).

For the proof of Lemma 3.4.5 here, see Lemma 4.1 in [60].

We will also need a technical lemma to distinguish between the nondegenerate case ϑ ∈
(0, π) and the particular cases in which ϑ ∈ {0, π}.

Lemma 3.4.6. Let K1 ∈ K2(n, s1, λ, ϱ) be such that it admits a blow-up limit K∗
1 (ac-

cording to (1.2.31)). Let Ω be an open bounded set with C1-boundary and E be a volume-
constrained critical set of C.

Let x0 ∈ RegE ∩ ∂Ω, xk ∈ RegE ∩ Ω such that xk → x0 as k → +∞ and rk > 0 such
that rk → 0 as k → +∞.

Suppose that H and V are open half-spaces such that

Ωx0,rk → H and Ex0,rk → H ∩ V in L1
loc(Rn) as k → +∞. (3.4.9)

Set vk :=
xk−x0
rk

and suppose that there exists v ∈ H∩∂V such that vk → v as k → +∞.
Let ϑ ∈ [0, π] be the angle between the half-spaces H and V , that is H ∩ V = J0,ϑ in

the notation of (3.0.2).
Then,

i) if ϑ = 0 then

lim
k→+∞

rs1k

[
HK1
∂E(xk)−

∫
Ωc

K1(xk − y) dy

]
= +∞;

ii) if ϑ = π then

lim
k→+∞

rs1k

[
HK1
∂E(xk)−

∫
Ωc

K1(xk − y) dy

]
= −∞;

iii) if ϑ ∈ (0, π) then

lim
k→+∞

rs1k

[
HK1
∂E(xk)−

∫
Ωc

K1(xk − y) dy

]
= H

K∗
1

∂(H∩V )(v)−
∫
Hc

K∗
1 (v − y) dy ∈ R.
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Proof. We start by proving i). For this, we notice that

Ξk := rs1k

[
HK1
∂E(xk)−

∫
Ωc

K1(xk − y) dy

]
= rs1k

[∫
Ec∩Ω

K1(xk − y) dy −
∫
E
K1(xk − y) dy

]
= rn+s1k

[∫
(Ex0,rk )c∩Ωx0,rk

K1(xk − x0 − rkz) dz −
∫
Ex0,rk

K1(xk − x0 − rkz) dz

]

= rn+s1k

[∫
(Ex0,rk )c∩Ωx0,rk

K1

(
rk(vk − z)

)
dz −

∫
Ex0,rk

K1

(
rk(vk − z)

)
dz

]
,

where the change of variable z = y−x0
rk

has been used.
Now we point out that

rn+s1k

∫
Rn\B1/2(vk)

K1

(
rk(vk − z)

)
dz ≤ λ

∫
Rn\B1/2(vk)

dz

|vk − z|n+s1
≤ C,

thanks to (1.2.29), for some positive constant C, depending only on n, s1 and λ.
From these observations we conclude that

Ξk ≥ rn+s1k

[∫
(Ex0,rk )c∩Ωx0,rk∩B1/2(vk)

K1

(
rk(vk − z)

)
dz

−
∫
Ex0,rk∩B1/2(vk)

K1

(
rk(vk − z)

)
dz

]
− C.

(3.4.10)

Now we notice that Ex0,rk∩B1/2(vk) can be written as a portion of space included between
the graphs of the functions describing ∂Ωx0,rk and ∂Ex0,rk , that we denote respectively
by ψk and uk. More precisely, recalling that x0 ∈ RegE ∩ ∂Ω, in the vicinity of x0 we
can describe ∂Ω and ∂E by the graphs of two functions ψ and u, respectively, with ψ of
class C1 and u of class C1,α with α ∈ (s1, 1), and ψ(x

′
0) = u(x′0) = x0,n. Up to a rotation,

we also assume that ∇ψ(x′0) = 0. In this way,

ψk(x
′) =

ψ(x′0 + rkx
′)− x0,n

rk
and uk(x

′) =
u(x′0 + rkx

′)− x0,n
rk

. (3.4.11)

Moreover,

Ex0,rk ∩B1/2(vk) =
{
x ∈ B1/2(vk) : xn ∈

(
ψk(x

′), uk(x
′)
)}

and notice that, since E ⊆ Ω, it follows that ψ ≤ u and so ψk ≤ uk. As a result,{
x ∈ B1/2(vk) : xn > uk(x

′)
}
⊆ (Ex0,rk)c ∩ Ωx0,rk ∩B1/2(vk).
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Hence, from (3.4.10) we obtain that

Ξk ≥ rn+s1k

[∫
B1/2(vk)∩{xn>uk(x′)}

K1

(
rk(vk − z)

)
dz

−
∫
B1/2(vk)∩{xn∈(ψk(x′),uk(x′))}

K1

(
rk(vk − z)

)
dz

]
− C.

(3.4.12)

We now define
ũk(x

′) := uk(v
′
k) +∇uk(v′k) · (x′ − v′k)

and we point out that, if |x′ − v′k| ≤ 3,

|uk(x′)− ũk(x
′)| =

∣∣∣∣u(x′0 + rkx
′)− u(x′0 + rkv

′
k)

rk
−∇u(x′0 + rkv

′
k) · (x′ − v′k)

∣∣∣∣
=

∣∣∣∣∣u
(
x′k + rk(x

′ − v′k)
)
− u(x′k)

rk
−∇u(x′k) · (x′ − v′k)

∣∣∣∣∣
=

∣∣∣∣∫ 1

0
∇u
(
x′k + trk(x

′ − v′k)
)
· (x′ − v′k) dt−∇u(x′k) · (x′ − v′k)

∣∣∣∣
≤ ∥u∥C1,α(B′

ρ(x
′
0))
rαk |x′ − v′k|1+α,

for a suitable ρ > 0. As a consequence,

rn+s1k

∫
({xn>uk(x′)}∆{xn>ũk(x′)})∩B1/2(vk)

K1

(
rk(vk − z)

)
dz

≤ λ

∫
({xn>uk(x′)}∆{xn>ũk(x′)})∩B1/2(vk)

dz

|vk − z|n+s1

≤ λ∥u∥C1,α(B′
ρ(x

′
0))
rαk

∫
B′

1/2
(v′k)

|v′k − z′|1+α

|v′k − z′|n+s1
dz′

≤ C rαk ,

up to renaming C, possibly in dependence of u as well.
Plugging this information into (3.4.12), and possibly renaming C again, we obtain that

Ξk ≥ rn+s1k

[∫
B1/2(vk)∩{xn>ũk(x′)}

K1

(
rk(vk − z)

)
dz

−
∫
B1/2(vk)∩{xn∈(ψk(x′),ũk(x′))}

K1

(
rk(vk − z)

)
dz

]
− C.

(3.4.13)

Now, from (3.4.11) we see that ψk(x
′) → ∇ψ(x′0) ·x′ and uk(x′) → ∇u(x′0) ·x′ as k → +∞.
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Hence, if ϑ = 0 it follows that ∇ψ(x′0) = ∇u(x′0). Consequently, if x′ ∈ B′
1/2(v

′
k) then

|ũk(x′)− ψk(x
′)|

=

∣∣∣∣uk(v′k) +∇uk(v′k) · (x′ − v′k)−
ψ(x′0 + rkx

′)− ψ(x′0)

rk

∣∣∣∣
=

∣∣∣∣u(x′0 + rkv
′
k)− u(x′0)

rk
+∇u(x′0 + rkv

′
k) · (x′ − v′k)−

∫ 1

0
∇ψ(x′0 + trkx

′) · x′ dt
∣∣∣∣

=

∣∣∣∣∫ 1

0
∇u(x′0 + trkv

′
k) · v′k dt+∇u(x′0 + rkv

′
k) · (x′ − v′k)−

∫ 1

0
∇ψ(x′0 + trkx

′) · x′ dt
∣∣∣∣

≤
∣∣∣∣∫ 1

0
∇u(x′0) · v′k dt+∇u(x′0) · (x′ − v′k)−

∫ 1

0
∇ψ(x′0) · x′ dt

∣∣∣∣+ δk

= δk,

(3.4.14)

for a suitable δk such that δk → 0 as k → +∞.
This and (3.4.13) give that

Ξk ≥ rn+s1k

[∫
B1/2(vk)∩{xn>ũk(x′)}

K1

(
rk(vk − z)

)
dz

−
∫
B1/2(vk)∩{xn∈(ũk(x′)−δk,ũk(x′))}

K1

(
rk(vk − z)

)
dz

]
− C.

(3.4.15)

Now we define the map Y (z) := 2vk − z and we show that

Y
(
B1/2(vk) ∩ {xn ∈ (ũk(x

′)− δk, ũk(x
′))}
)
⊆ B1/2(vk) ∩ {xn ∈ (ũk(x

′), ũk(x
′) + δk)}.

(3.4.16)
Indeed, let z ∈ B1/2(vk) ∩ {xn ∈ (ũk(x

′) − δk, ũk(x
′))} and call y := Y (z). We have

that |y − vk| = |vk − z| < 1/2. Moreover,

yn − ũk(y
′) = 2vk,n − zn − ũk

(
2v′k − z′

)
= 2uk(v

′
k)− zn − ũk

(
2v′k − z′

)
∈

(
2uk(v

′
k)− ũk(z

′)− ũk
(
2v′k − z′

)
, 2uk(v

′
k)− ũk(z

′)− ũk
(
2v′k − z′

)
+ δk

)
=

(
2uk(v

′
k)− 2ũk(v

′
k), 2uk(v

′
k)− 2ũk(v

′
k) + δk

)
=

(
0, δk

)
and the proof of (3.4.16) is thus complete.
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Using (3.4.16) and changing variable y = Y (z) we see that∫
B1/2(vk)∩{xn∈(ũk(x′)−δk,ũk(x′))}

K1

(
rk(vk − z)

)
dz

≤
∫
B1/2(vk)∩{xn∈(ũk(x′),ũk(x′)+δk)}

K1

(
rk(y − vk)

)
dy

=

∫
B1/2(vk)∩{xn∈(ũk(x′),ũk(x′)+δk)}

K1

(
rk(vk − y)

)
dy.

Combining this and (3.4.15), and recalling (1.2.29), we arrive at

Ξk ≥ rn+s1k

∫
B1/2(vk)∩{xn>ũk(x′)+δk}

K1

(
rk(vk − z)

)
dz − C

≥ 1

λ

∫
B1/2(vk)∩{xn>ũk(x′)+δk}

dz

|vk − z|n+s1
dz − C.

(3.4.17)

Now we define

νk :=
(−∇uk(v′k), 1)√
1 + |∇uk(v′k)|2

and ζk := vk + 3δkνk (3.4.18)

and we claim that, if k is sufficiently large,

Bδk(ζk) ⊆ B1/2(vk) ∩ {xn > ũk(x
′) + δk}. (3.4.19)

To check this, we observe that

lim
k→+∞

|∇uk(v′k)| = lim
k→+∞

|∇u(x′k)| = |∇u(x′0)| = |∇ψ(x′0)| = 0

and consequently

lim
k→+∞

3√
1 + |∇uk(v′k)|2

− 4|∇uk(v′k)| − 2 = 1. (3.4.20)

Now, pick w ∈ Bδk(ζk). We have that

|w − vk| ≤ |w − ζk|+ |ζk − vk| < δk + 3δk = 4δk

and thus w ∈ B1/2(vk) as long as k is large enough.
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Moreover,

wn − ũk(w
′)− δk ≥ (ζk,n − δk)− uk(v

′
k)−∇uk(v′k)(w′ − v′k)− δk

=

(
vk,n +

3δk√
1 + |∇uk(v′k)|2

− δk

)
− vk,n −∇uk(v′k)(w′ − v′k)− δk

=
3δk√

1 + |∇uk(v′k)|2
−∇uk(v′k)(w′ − v′k)− 2δk

≥ 3δk√
1 + |∇uk(v′k)|2

− |∇uk(v′k)| |w′ − v′k| − 2δk

≥

(
3√

1 + |∇uk(v′k)|2
− 4|∇uk(v′k)| − 2

)
δk

> 0,

thanks to (3.4.20).
The proof of (3.4.19) is thereby complete.
Thus, exploiting (3.4.17) and (3.4.19), we find that

Ξk ≥
∫
Bδk

(ζk)

dz

|vk − z|n+s1
dz − C.

Notice also that if z ∈ Bδk(ζk) then |vk − z| ≤ |vk − ζk| + |ζk − z| ≤ 3δk + δk = 4δk and
accordingly

Ξk ≥
∫
Bδk

(ζk)

dz

(4δk)n+s1
dz − C =

c

δs1k
− C,

for some c > 0. This establishes the claim in i), as desired.
The claim in ii) can be proved similarly.
As for the claim in iii), we suppose that ϑ ∈ (0, π) and, for every k ∈ N, we denote

by Fk the set obtained by a suitable rigid motion of the set Ex0,rk − vk so as to have that
0 ∈ ∂Fk and

C ∩ Fk =
{
x ∈ C : xn ≤ uk(x

′)
}
, (3.4.21)

for some uk ∈ C1,α(Rn−1). Let also u be the linear function such that uk → u in C1,α(D)
as k → +∞. We notice that, by (3.4.9), up to a rigid motion,

Fk → F := H ∩ V − v in L1
loc(Rn) as k → +∞. (3.4.22)

Furthermore, recalling the definition of mean curvature in (3.2.1) and exploiting the
change of variable y = x0 + rkz, we see that

HK1
∂E(xk) =

∫
Rn

K1(xk − y)
(
χEc(y)− χE(y)

)
dy

= r−s1k

∫
Rn

rn+s1k K1(xk − x0 − rkz)
(
χ(Ex0,rk )c(z)− χEx0,rk (z)

)
dz.

(3.4.23)

143



We also introduce, for every ζ ∈ Rn \ {0}, the kernel

K1,k(ζ) := rn+s1k K1(rkζ),

and we observe that, in light of (3.4.23),

HK1
∂E(xk) = r−s1k H

K1,k

∂Fk
(0). (3.4.24)

Furthermore, we recall that K1,k → K∗
1 pointwise in Rn \ {0}, hence one can infer

from (3.4.21), (3.4.22), (3.4.24) and Lemma 3.4.5 that

lim
k→+∞

rs1k HK1
∂E(xk) = H

K∗
1

∂(H∩V )(v). (3.4.25)

Moreover, since ϑ ∈ (0, π), one can use the Lebesgue’s Dominated Convergence Theo-
rem and find that

lim
k→+∞

rs1k

∫
Ωc

K1(xk − y) dy = lim
k→+∞

∫
(Ωx0,rk )c

rn+s1k K1(rk(vk − y)) dy

=

∫
Hc

K∗
1 (v − y) dy.

From this and (3.4.25) we obtain the desired result in iii).

Now we showcase a refinement of Lemma 3.4.6 which will be needed to exclude the
degenerate blow-up limits ϑ ∈ {0, π} in the case s1 > s2.

Lemma 3.4.7. Let s1 > s2, K1 ∈ K2(n, s1, λ, ϱ) and K2 ∈ K2(n, s2, λ, ϱ). Let Ω be an
open bounded set with C1-boundary and E be a volume-constrained critical set of C.

Let x0 ∈ RegE ∩ ∂Ω, xk ∈ RegE ∩ Ω such that xk → x0 as k → +∞ and rk > 0 such
that rk → 0 as k → +∞.

Suppose that H and V are open half-spaces such that

Ωx0,rk → H and Ex0,rk → H ∩ V in L1
loc(Rn) as k → +∞.

Let ϑ ∈ [0, π] be the angle between the half-spaces H and V , that is H ∩ V = J0,ϑ in the
notation of (3.0.2).

Then,

i) if ϑ = 0 then

lim
k→+∞

rs1k

[
HK1
∂E(xk)−

∫
Ωc

K1(xk − y) dy

]
+ σ rs1−s2k rs2k

∫
Ωc

K2(xk − y) dy = +∞;

ii) if ϑ = π then

lim
k→+∞

rs1k

[
HK1
∂E(xk)−

∫
Ωc

K1(xk − y) dy

]
+ σ rs1−s2k rs2k

∫
Ωc

K2(xk − y) dy = −∞.
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Proof. We focus on the proof of i), since the proof of ii) is similar, up to sign changes.
To this end, we exploit the notation introduced in Lemma 3.4.6, and specifically (3.4.13),
and we set vk :=

xk−x0
rk

, to see that

Υk := rs1k

[
HK1
∂E(xk)−

∫
Ωc

K1(xk − y) dy

]
+ σ rs1−s2k rs2k

∫
Ωc

K2(xk − y) dy

≥Ξk − |σ| rs1−s2k rs2k

∫
Ωc

K2(xk − y) dy

≥ rn+s1k

[∫
B1/2(vk)∩{xn>ũk(x′)}

K1

(
rk(vk − z)

)
dz

−
∫
B1/2(vk)∩{xn∈(ψk(x′),ũk(x′))}

K1

(
rk(vk − z)

)
dz

]

− |σ| rs1−s2k rn+s2k

∫
Rn\Ωx0,rk

K2

(
rk(vk − z)

)
dz − C

≥ rn+s1k

[∫
B1/2(vk)∩{xn>ũk(x′)}

K1

(
rk(vk − z)

)
dz

−
∫
B1/2(vk)∩{xn∈(ψk(x′),ũk(x′))}

K1

(
rk(vk − z)

)
dz

]

− |σ| rs1−s2k rn+s2k

∫
B1/2(vk)∩{xn<ψk(x′)}

K2

(
rk(vk − z)

)
dz − C,

(3.4.26)

up to changing C > 0 from line to line.
Also, by (3.4.14),∫

B1/2(vk)∩{xn<ψk(x′)}
K2

(
rk(vk − z)

)
dz =

∫
B1/2(vk)∩{xn∈(ũk(x′)−δk,ψk(x′))}

K2

(
rk(vk − z)

)
dz

+

∫
B1/2(vk)∩{xn<ũk(x′)−δk}

K2

(
rk(vk − z)

)
dz.

Therefore, we can write (3.4.26) as

Υk ≥ rn+s1k

[∫
B1/2(vk)∩{xn>ũk(x′)}

K1

(
rk(vk − z)

)
dz

−
∫
B1/2(vk)∩{xn∈(ψk(x′),ũk(x′))}

K1

(
rk(vk − z)

)
dz

]

− |σ| rs1−s2k rn+s2k

∫
B1/2(vk)∩{xn∈(ũk(x′)−δk,ψk(x′))}

K2

(
rk(vk − z)

)
dz

− |σ| rs1−s2k rn+s2k

∫
B1/2(vk)∩{xn<ũk(x′)−δk}

K2

(
rk(vk − z)

)
dz − C.

(3.4.27)
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Now we set
Zk(x) := max

{
rn+s1k K1(x), |σ| rs1−s2k rn+s2k K2(x)

}
. (3.4.28)

In this way, we deduce from (3.4.27) that

Υk ≥ rn+s1k

∫
B1/2(vk)∩{xn>ũk(x′)}

K1

(
rk(vk − z)

)
dz

−
∫
B1/2(vk)∩{xn∈(ũk(x′)−δk,ũk(x′))}

Zk
(
rk(vk − z)

)
dz

− |σ| rs1−s2k rn+s2k

∫
B1/2(vk)∩{xn<ũk(x′)−δk}

K2

(
rk(vk − z)

)
dz − C.

(3.4.29)

Let Y (z) := 2vk − z. We also use the short notation

Pk := B1/2(vk) ∩ {xn > ũk(x
′)},

Qk := B1/2(vk) ∩ {xn ∈ (ũk(x
′)− δk, ũk(x

′))}
and Rk := B1/2(vk) ∩ {xn < ũk(x

′)− δk}.

We know from (3.4.16) that

Y (Qk) ⊆ B1/2(vk) ∩ {xn ∈ (ũk(x
′), ũk(x

′) + δk)} ⊆ Pk. (3.4.30)

We also claim that
Y (Rk) ⊆ Pk \ Y (Qk). (3.4.31)

Indeed, if there were a point y ∈ Y (Qk)∩Y (Rk) we would have that y = 2vk−Q = 2vk−R
for some Q ∈ Qk and R ∈ Rk, but this would entail that Q = R ∈ Qk∩Rk = ∅, which is a
contradiction. This shows that Y (Rk) lies in the complement of Y (Qk), thus, to complete
the proof of (3.4.31), it only remains to show that Y (Rk) ⊆ Pk. To this end, we observe
that if zn < ũk(z

′)− δk and y = Y (z), then

yn − ũk(y
′) = 2vk,n − zn − ũk(y

′) = 2ũk(v
′
k)− zn − ũk(2v

′
k − z′)

> 2ũk(v
′
k)− ũk(z

′) + δk − ũk(2v
′
k − z′) = δk > 0.

This completes the proof of (3.4.31).
Hence, by (3.4.29), (3.4.30) and (3.4.31),

Υk ≥ rn+s1k

∫
Pk

K1

(
rk(vk − z)

)
dz −

∫
Qk

Zk
(
rk(vk − z)

)
dz

− |σ| rs1−s2k rn+s2k

∫
Rk

K2

(
rk(vk − z)

)
dz − C

= rn+s1k

∫
Pk

K1

(
rk(vk − z)

)
dz −

∫
Y (Qk)

Zk
(
rk(vk − y)

)
dy

− |σ| rs1−s2k rn+s2k

∫
Y (Rk)

K2

(
rk(vk − y)

)
dy − C

= rn+s1k

∫
Pk\(Y (Qk)∪Y (Rk))

K1

(
rk(vk − z)

)
dz +

∫
Y (Qk)

αk(z) dz +

∫
Y (Rk)

βk(z) dz − C,

(3.4.32)
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where

αk(z) := rn+s1k K1

(
rk(vk − z)

)
−Zk

(
rk(vk − z)

)
and βk(z) := rn+s1k K1

(
rk(vk − z)

)
− |σ| rs1−s2k rn+s2k K2

(
rk(vk − z)

)
.

We stress that up to now the condition s1 > s2 has not been used. We are going to exploit
it now to bound αk and βk. For this, we note that, if z ∈ B1/2(vk) and k is large enough,
then

|σ| rs1−s2k rn+s2k K2

(
rk(vk − z)

)
≤

λ |σ| rs1−s2k

|vk − z|n+s2
≤

λ |σ| rs1−s2k

|vk − z|n+s1
=
λ |σ| rs1−s2k rn+s1k∣∣rk(vk − z)

∣∣n+s1
≤ λ2 |σ| rs1−s2k rn+s1k K1

(
rk(vk − z)

)
≤ 1

2
rn+s1k K1

(
rk(vk − z)

)
.

This and (3.4.28) entail that if z ∈ B1/2(vk) and k is large enough, then Zk
(
rk(vk − z)

)
=

rn+s1k K1

(
rk(vk − z)

)
, and therefore αk(z) = 0. In addition,

βk(z) ≥
1

2
rn+s1k K1

(
rk(vk − z)

)
.

From these observations and (3.4.32) we arrive at

Υk ≥ rn+s1k

∫
Pk\(Y (Qk)∪Y (Rk))

K1

(
rk(vk − z)

)
dz +

1

2
rn+s1k

∫
Y (Rk)

K1

(
rk(vk − z)

)
dz − C

≥ 1

2
rn+s1k

∫
Pk\Y (Qk)

K1

(
rk(vk − z)

)
dz − C.

(3.4.33)

Now we utilize the notation in (3.4.18), the inclusion in (3.4.19) and the first inclusion
in (3.4.30) to see that

Pk \ Y (Qk) ⊇Pk \
(
B1/2(vk) ∩ {xn ∈ (ũk(x

′), ũk(x
′) + δk)}

)
=B1/2(vk) ∩ {xn ≥ ũk(x

′) + δk}
⊇Bδk(ζk).

(3.4.34)

By plugging this information into (3.4.33), we thereby conclude that

Υk ≥
1

2
rn+s1k

∫
Bδk

(ζk)
K1

(
rk(vk − z)

)
dz − C

≥ 1

2

∫
Bδk

(ζk)

dz

|vk − z|n+s1
− C

=
c

δs1k
− C,

(3.4.35)

for some c > 0. From this, the desired result in i) plainly follows.
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With this, we are in the position of providing the proof of Theorem 3.4.1, where we
suppose that a1 and a2 are anisotropic functions and then, as a special case, we exhibit
the proof of Corollary 3.4.2 where we take a1 ≡ const.

Proof of Theorem 3.4.1. We fix a point x0 ∈ ∂Ω ∩ RegE and a sequence of points xk ∈
Ω ∩ RegE such that xk → x0 as k → +∞. We also set rk := |xk − x0| and we observe
that rk → 0 as k → +∞.

From (3.2.3) evaluated at xk, we get

HK1
∂E(xk)−

∫
Ωc

K1(xk − y) dy + σ

∫
Ωc

K2(xk − y) dy + g(xk) = c,

where c does not depend on k. Multiplying both sides by rs1k , we thereby obtain that

rs1k HK1
∂E(xk)− rs1k

∫
Ωc

K1(xk − y) dy + σ rs1−s2k rs2k

∫
Ωc

K2(xk − y) dy + rs1k g(xk) = c rs1k .

Notice that, since g is locally bounded, we have that rs1k g(xk) → 0 as k → +∞. As a
consequence,

lim
k→+∞

rs1k

[
HK1
∂E(xk)−

∫
Ωc

K1(xk − y) dy

]
+ σrs1−s2k rs2k

∫
Ωc

K2(xk − y) dy = 0. (3.4.36)

Now, we prove the statement in 1) of Theorem 3.4.1. For this, we suppose that s1 < s2
and σ < 0. In this case,

σ rs1−s2k rs2k

∫
Ωc

K2(xk − y) dy ≤ 0,

and therefore by ii) in Lemma 3.4.6 and (3.4.36) we deduce that ϑ ̸= π. Hence, to prove
1) it remains to check that

ϑ ̸∈ (0, π). (3.4.37)

To this end, we suppose by contradiction that ϑ ∈ (0, π). Then, by the Lebesgue’s Domi-
nated Convergence Theorem,

lim
k→+∞

rs2k

∫
Ωc

K2(xk − y) dy = lim
k→+∞

∫
(Ωx0,rk )c

rn+s2k K2(rk(vk − y)) dy

=

∫
Hc

K∗
2 (v − y) dy

(3.4.38)

and this limit is finite. Consequently,

lim
k→+∞

σ rs1−s2k rs2k

∫
Ωc

K2(xk − y) dy = −∞.

This and iii) in Lemma 3.4.6 contradict (3.4.36), and thus (3.4.37) is proved.
Accordingly, if s1 < s2 and σ < 0, then necessarily ϑ = 0, which establishes 1).
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We now prove the statement in 2). Namely we consider the case in which s1 < s2
and σ > 0, and thus

σ rs1−s2k rs2k

∫
Ωc

K2(xk − y) dy ≥ 0.

From this, i) in Lemma 3.4.6 and (3.4.36) we infer that ϑ ̸= 0. Hence, to establish 2) we
show that

ϑ ̸∈ (0, π). (3.4.39)

We argue as before and we suppose by contradiction that ϑ ∈ (0, π). Then, exploit-
ing (3.4.38) we see that

lim
k→+∞

σ rs1−s2k rs2k

∫
Ωc

K2(xk − y) dy = +∞.

This and iii) in Lemma 3.4.6 contradict (3.4.36), and thus (3.4.39) is proved.
As a consequence, if s1 < s2 and σ > 0, then ϑ = π, hence we have established 2) as

well. Hence, we now focus on the statement in 3).
For this, we first suppose that s1 < s2 and σ = 0. Then, (3.4.36) becomes

lim
k→+∞

rs1k

[
HK1
∂E(xk)−

∫
Ωc

K1(xk − y) dy

]
= 0. (3.4.40)

This and Lemma 3.4.6 give that ϑ ∈ (0, π) in this case.
In the case in which s1 > s2, if ϑ ∈ {0, π} then we would use Lemma 3.4.7 to find a

contradiction with (3.4.36), hence we conclude that necessarily ϑ ∈ (0, π) in this case as
well.

Now, in order to prove (3.4.3), we take v ∈ H ∩ ∂V , then by (3.4.1) we have that,
for every k, there exists vk ∈ Ωx0,rk ∩ ∂Ex0,rk such that vk → v as k → +∞, where rk is
an infinitesimal sequence as k → +∞. As a consequence, for every k, there exists xk ∈
RegE ∩Ω such that vk =

xk−x0
rk

and xk → x0 as k → +∞. Then, we are in the position to
apply iii) in Lemma 3.4.6 and conclude that

lim
k→+∞

rs1k

[
HK1
∂E(xk)−

∫
Ωc

K1(xk − y) dy

]
= H

K∗
1

∂(H∩V )(v)−
∫
Hc

K∗
1 (v − y) dy. (3.4.41)

Also, if s1 > s2, we recall that the limit in (3.4.38) is finite (since ϑ ∈ (0, π)) and
that rk is infinitesimal to infer that

lim
k→+∞

rs1−s2k rs2k

∫
Ωc

K2(xk − y) dy = 0.

This, together with (3.4.36), gives that (3.4.40) holds true in this case as well.
Accordingly, from (3.4.40) and (3.4.41) we deduce that

H
K∗

1

∂(H∩V )(v)−
∫
Hc

K∗
1 (v − y) dy = 0,
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which establishes (3.4.3).
Hence, to complete the proof of the statement in 3), it remains to check that ϑ̂ = π−ϑ,

being ϑ̂ ∈ (0, 2π) the angle given in (3.3.6) with c = 0.
For this, we exploit the notation in (3.0.3), the assumption in (3.0.4) and the change

of variable z = y/|v|, to see that, for all v ∈ H ∩ ∂V , the left hand side of (3.4.3) can be
written as

H
K∗

1

∂(H∩V )(v)−
∫
Hc

K∗
1 (v − y) dy =

∫
Rn

K∗
1 (v − y)

(
χ(H∩V )c∩H(y)− χH∩V (y)

)
dy

=

∫
Rn

a1(
−−−→
v − y)

|v − y|n+s1
(
χ(H∩V )c∩H(y)− χH∩V (y)

)
dy

= |v|−s1
∫
Rn

a1(
−−−−−→
e(ϑ)− z)

(
χJc

0,ϑ∩H(z)− χJ0,ϑ(z)
)

|e(ϑ)− z|n+s1
dz

= |v|−s1
∫
Jϑ,π

a1(
−−−−−→
e(ϑ)− z)

|e(ϑ)− z|n+s1
dz − |v|−s1

∫
J0,ϑ

a1(
−−−−−→
e(ϑ)− z)

|e(ϑ)− z|n+s1
dz.

Therefore, by (3.4.3),∫
Jϑ,π

a1(
−−−−−→
e(ϑ)− z)

|e(ϑ)− z|n+s1
dz −

∫
J0,ϑ

a1(
−−−−−→
e(ϑ)− z)

|e(ϑ)− z|n+s1
dz = 0. (3.4.42)

Consequently, recalling the notation in (3.3.1) and exploting (3.3.6) with c = 0, we have
that

Dϑ(π − ϑ) =

∫
Jϑ,π

a1(
−−−−−→
e(ϑ)− z)

|e(ϑ)− z|n+s1
dz −

∫
J0,ϑ

a1(
−−−−−→
e(ϑ)− z)

|e(ϑ)− z|n+s1
dz = 0 = Dϑ(ϑ̂).

By the uniqueness claim in Proposition 3.3.1, we conclude that π − ϑ = ϑ̂, as desired.
This completes the proof of 3), and in turn of Theorem 3.4.1.

proof of Corollary 3.4.2. We point out that 1) and 2) in Corollary 3.4.2 follow from 1)
and 2) in Theorem 3.4.1, respectively.

To prove 3) of Corollary 3.4.2, we first notice that ϑ ∈ (0, π) in these cases. Also,
if a1 ≡ const, then the cancellation property in (3.3.6) boils down to Dϑ(ϑ) = 0, and
therefore, by the uniqueness claim in Proposition 3.3.1 we obtain that ϑ̂ = ϑ.

Furthermore, we recall that (3.4.3) holds true in this case, thanks to 3) of Theo-
rem 3.4.1, and therefore, using the equivalent formulation of (3.4.3) given in (3.4.42)
(with a1 ≡ const in this case), we find that

Dϑ(π − ϑ) =

∫
Jϑ,π

a1
|e(ϑ)− z|n+s1

dz −
∫
J0,ϑ

a1
|e(ϑ)− z|n+s1

dz = 0 = Dϑ(ϑ).

Hence, using again the uniqueness claim in Proposition 3.3.1 we conclude that π− ϑ = ϑ,
which gives that ϑ = π

2 , as desired.
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We now deal with the case s1 = s2, as given by Theorem 3.4.3. For this, we need a
variation of Lemma 3.4.7 that takes into account the situation in which s1 = s2.

Lemma 3.4.8. Let s ∈ (0, 1) and K1, K2 ∈ K2(n, s, λ, ϱ). Assume that there exists ε0 ∈
(0, 1) such that

|σ|K2(ζ) ≤ (1− ε0)K1(ζ) for all ζ ∈ Bε0 \ {0}. (3.4.43)

Let Ω be an open bounded set with C1-boundary and E be a volume-constrained critical
set of C.

Let x0 ∈ RegE ∩ ∂Ω, xk ∈ RegE ∩ Ω such that xk → x0 as k → +∞ and rk > 0 such
that rk → 0 as k → +∞.

Suppose that H and V are open half-spaces such that

Ωx0,rk → H and Ex0,rk → H ∩ V in L1
loc(Rn) as k → +∞.

Let ϑ ∈ [0, π] be the angle between the half-spaces H and V , that is H ∩ V = J0,ϑ in the
notation of (3.0.2).

Then,

i) if ϑ = 0 then

lim
k→+∞

rsk

[
HK1
∂E(xk)−

∫
Ωc

K1(xk − y) dy + σ

∫
Ωc

K2(xk − y) dy

]
= +∞;

ii) if ϑ = π then

lim
k→+∞

rsk

[
HK1
∂E(xk)−

∫
Ωc

K1(xk − y) dy + σ

∫
Ωc

K2(xk − y) dy

]
= −∞.

Proof. We establish i), being the proof of ii) analogous. For this, we use the notation
introduced in the proof of Lemma 3.4.7, and specifically we recall formula (3.4.32), to be
used here with s1 = s2 = s. In this case, we use (3.4.43) to see that, if k is large enough,
for all z ∈ B1/2(vk) we have that

|σ|K2

(
rk(vk − z)

)
≤ (1− ε0)K1

(
rk(vk − z)

)
. (3.4.44)

This and (3.4.28) give that

Zk
(
rk(vk − z)

)
= rn+sk max

{
K1

(
rk(vk − z)

)
, |σ|K2

(
rk(vk − z)

)}
= rn+sk K1

(
rk(vk − z)

)
,

which entails that αk(z) = 0.
Also, using again (3.4.44), it follows that

βk(z) = rn+sk

(
K1

(
rk(vk − z)

)
− |σ|K2

(
rk(vk − z)

))
≥ ε0 r

n+s
k K1

(
rk(vk − z)

)
.
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In light of these observations, (3.4.32) in this framework reduces to

Υk ≥ ε0 r
n+s
k

∫
Pk\Y (Qk)

K1

(
rk(vk − z)

)
dz − C.

We have thus recovered the last inequality in (3.4.33), with 1/2 replaced by the constant ε0.
Then it suffices to proceed as in (3.4.34) and (3.4.35) to complete the proof.

With this additional result, we are now in the position of giving the proof of Theo-
rem 3.4.3.

Proof of Theorem 3.4.3. We fix a point x0 ∈ ∂Ω ∩ RegE and a sequence of points xk ∈
Ω ∩ RegE such that xk → x0 as k → +∞. We also set rk := |xk − x0| and we observe
that rk → 0 as k → +∞.

From (3.2.3) evaluated at xk, we get

HK1
∂E(xk)−

∫
Ωc

K1(xk − y) dy + σ

∫
Ωc

K2(xk − y) dy + g(xk) = c,

where c does not depend on k. Thus, multiplying both sides by rsk, we find that

rskH
K1
∂E(xk)− rsk

∫
Ωc

K1(xk − y) dy + σ rs1k

∫
Ωc

K2(xk − y) dy + rsk g(xk) = c rsk.

Since g is locally bounded, we have that rskg(xk) → 0 as k → +∞, and therefore

lim
k→+∞

rsk

[
HK1
∂E(xk)−

∫
Ωc

K1(xk − y) dy + σ

∫
Ωc

K2(xk − y) dy

]
= 0. (3.4.45)

In light of Lemma 3.4.8 (which can be exploited here thanks to assumption (3.4.4)), this
gives that the angle ϑ between H and V lies in (0, π).

Thus, in order to prove (3.4.5), we can take v ∈ H ∩ ∂V and we see that, for every k,
there exists vk ∈ Ωx0,rk∩∂Ex0,rk such that vk → v as k → +∞, where rk is an infinitesimal
sequence as k → +∞. As a consequence, for every k, there exists xk ∈ RegE ∩ Ω such
that vk = xk−x0

rk
and xk → x0 as k → +∞. Then, we are in the position to apply iii) in

Lemma 3.4.6 and conclude that

lim
k→+∞

rs1k

[
HK1
∂E(xk)−

∫
Ωc

K1(xk − y) dy

]
= H

K∗
1

∂(H∩V )(v)−
∫
Hc

K∗
1 (v − y) dy.

Also, by Lebesgue’s Dominated Convergence Theorem,

lim
k→+∞

rsk

∫
Ωc

K2(xk − y) dy = lim
k→+∞

∫
(Ωx0,rk )c

rn+sk K2(rk(vk − y)) dy

=

∫
Hc

K∗
2 (v − y) dy

and this limit is finite.
These considerations and (3.4.45) give the desired result in (3.4.5).
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We are now in the position of proving Proposition 3.4.4.

Proof of Proposition 3.4.4. We exploit the notation in (3.0.3), the assumption in (3.0.4)
and the change of variable z = y/|v|, to see that (3.4.7) can be written as

0 =H
K∗

1

∂(H∩V )(v)−
∫
Hc

K∗
1 (v − y) dy + σ

∫
Hc

K∗
2 (v − y) dy

=

∫
Rn

K∗
1 (v − y)

(
χ(H∩V )c∩H(y)− χH∩V (y)

)
dy + σ

∫
Hc

K∗
2 (v − y) dy

=

∫
Rn

a1(
−−−→
v − y)

|v − y|n+s1
(
χ(H∩V )c∩H(y)− χH∩V (y)

)
dy + σ

∫
Hc

a2(
−−−→
v − y)

|v − y|n+s2
dy

= |v|−s1
∫
Rn

a1(
−−−−−→
e(ϑ)− z)

(
χJc

0,ϑ∩H(z)− χJ0,ϑ(z)
)

|e(ϑ)− z|n+s1
dz + σ|v|−s2

∫
Hc

a2(
−−−−−→
e(ϑ)− z)

|e(ϑ)− z|n+s2
dz

= |v|−s1
∫
Jϑ,π

a1(
−−−−−→
e(ϑ)− z)

|e(ϑ)− z|n+s1
dz − |v|−s1

∫
J0,ϑ

a1(
−−−−−→
e(ϑ)− z)

|e(ϑ)− z|n+s1
dz

+ σ|v|−s2
∫
Hc

a2(
−−−−−→
e(ϑ)− z)

|e(ϑ)− z|n+s2
dz.

Hence, recalling the assumption in (3.4.6), this gives the desired result in (3.4.8).

3.5 Possible stickiness or detachment of nonlocal droplets

In this section we investigate the possibly degenerate cases in which the nonlocal droplets
either detach from the container or adhere completely to its surfaces. These cases depend
on the strong attraction or repulsion of the second kernel and are described in the examples
provided in Theorems 3.5.1 and 3.5.2.

Theorem 3.5.1. Let σ > 0, Ω := B1, g := 0, K1(ξ) :=
k1

|ξ|n+s1
and K2(ξ) :=

k2
|ξ|n+s2

, for

some k1, k2 > 0.
Let E be a volume-constrained minimizer of C. Assume that there exist p ∈ ∂B1

and ε0 > 0 such that Bε0(p) ∩B1 ⊆ E. Assume also that RegE ∩ Ω ̸= ∅.
Then, either s1 > s2, or s1 = s2 and k1 > σk2.

Theorem 3.5.2. Let σ < 0, Ω := B1, g := 0, K1(ξ) :=
k1

|ξ|n+s1
and K2(ξ) :=

k2
|ξ|n+s2

, for

some k1, k2 > 0.
Let E be a volume-constrained minimizer of C. Assume that there exist p ∈ ∂B1

and ε0 > 0 such that Bε0(p) ∩B1 ⊆ (Ω \ E). Assume also that RegE ∩ Ω ̸= ∅.
Then, either s1 > s2, or s1 = s2 and −k1 < σk2.

In order to prove Theorems 3.5.1 and 3.5.2, we need some auxiliary integral estimates to
detect the interaction between “thin sets”. This is formalized in Lemmata 3.5.3 and 3.5.4
here below.
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Lemma 3.5.3. Let r, t > 0, s ∈ (0, 1) and

D :=
{
x = (x′, xn) ∈ Rn : |x′| < r and xn ∈ (0, t)

}
.

Then, ∫∫
D×{yn<0}

dx dy

|x− y|n+s
= c⋆ r

n−1 t1−s,

for a suitable c⋆ > 0, depending only on n and s.

Proof. We recall that the surface area of the (n − 1)-dimensional unit sphere is equal

to 2π
n
2

Γ(n
2 )
, where Γ is the Gamma Function. Furthermore,

∫ +∞

0

ℓn−2 dℓ(
ℓ2 + 1

)n+s
2

=
Γ
(
n−1
2

)
Γ
(
1+s
2

)
2Γ
(
n+s
2

) .

Hence, we use the substitution ξ := y′−x′
xn−yn to see that∫∫

D×{yn<0}

dx dy

|x− y|n+s

=

∫ t

0

∫
{|x′|<r}

∫ 0

−∞

∫
Rn−1

dξ

(xn − yn)1+s
(
|ξ|2 + 1

)n+s
2

 dyn
 dx′

 dxn
=

2π
n−1
2

Γ
(
n−1
2

) ∫ t

0

∫
{|x′|<r}

∫ 0

−∞

∫ +∞

0

ℓn−2 dℓ

(xn − yn)1+s
(
ℓ2 + 1

)n+s
2

 dyn
 dx′

 dxn
=
π

n−1
2 Γ

(
1+s
2

)
Γ
(
n+s
2

) ∫ t

0

[∫
{|x′|<r}

[∫ 0

−∞

dyn
(xn − yn)1+s

]
dx′

]
dxn

=
2π

2n−1
2 Γ

(
1+s
2

)
Γ
(
n
2

)
Γ
(
n+s
2

) rn−1

∫ t

0

[∫ 0

−∞

dyn
(xn − yn)1+s

]
dxn

=
2π

2n−1
2 Γ

(
1+s
2

)
sΓ
(
n
2

)
Γ
(
n+s
2

) rn−1

∫ t

0

dxn
xsn

=
2π

2n−1
2 Γ

(
1+s
2

)
s (1− s) Γ

(
n
2

)
Γ
(
n+s
2

) rn−1 t1−s,

as desired.

Lemma 3.5.4. Let r, t > 0, s ∈ (0, 1),

D :=
{
x = (x′, xn) ∈ Rn : |x′| < r and xn ∈ (0, t)

}
and F :=

{
x = (x′, xn) ∈ Rn : |x′| > r and xn ∈ (0, t)

}
.
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Then, ∫∫
D×F

dx dy

|x− y|n+s
≤ Ct rn−1−s,

for some C > 0 depending only on n and s.

Proof. Differently from the proof of Lemma 3.5.3, here it is convenient to exploit the
substitutions α := xn

|x′−y′| and β := yn
|x′−y′| . In this way we see that∫∫

D×F

dx dy

|x− y|n+s

=

∫
{|x′|<r}

[∫
{|y′|>r}

[∫ t/|x′−y′|

0

[∫ t/|x′−y′|

0

dβ

|x′ − y′|n+s−2(1 + (α− β)2)
n+s
2

]
dα

]
dy′

]
dx′

≤
∫
{|x′|<r}

[∫
{|y′|>r}

[∫ t/|x′−y′|

0

[∫ +∞

0

dγ

|x′ − y′|n+s−2(1 + γ2)
n+s
2

]
dα

]
dy′

]
dx′

= C

∫
{|x′|<r}

[∫
{|y′|>r}

[∫ t/|x′−y′|

0

dα

|x′ − y′|n+s−2

]
dy′

]
dx′

= Ct

∫
{|x′|<r}

[∫
{|y′|>r}

dy′

|x′ − y′|n+s−1

]
dx′

= Ct rn−1−s
∫
{|X′|<1}

[∫
{|Y ′|>1}

dY ′

|X ′ − Y ′|n+s−1

]
dX ′

= Ct rn−1−s,

where, as customary, we took the freedom of renaming C line after line.

Now, in the forthcoming Lemma 3.5.5 we present a further technical result that detects
suitable cancellations involving “thin sets”. This is a pivotal result to account for the
nonlocal scenario. Indeed, in the classical capillarity theory, to look for a competitor for a
given set, one can dig out a (small deformation of a) cylinder with base radius equal to ε
and height δε and then add a ball with the same volume. A very convenient fact in this
scenario is that the surface error produced by the cylinder is of order εn−1, while the one

produced by the balls are of order (δεn)
n−1
n = δ

n−1
n εn−1. That is, for δ suitably small, the

surface tension produced by the new ball is negligible with respect to the surface tension
of the cylinder, thus allowing us to construct competitors in a nice and simple way.

Instead, in the nonlocal setting, for a given value of the fractional parameter, the
corresponding nonlocal surface tension produced by cylinders and balls of the same volume
are comparable. This makes the idea of “adding a ball to compensate the loss of volume
caused by removing a cylinder” not suitable for the nonlocal framework. Instead, as we
will see in the proof of Theorem 3.5.1, the volume compensation should occur through the
addition of a suitably thin set placed at a regular point of the droplet. The fact that the
corresponding nonlocal surface energy produces a negligible contribution will rely on the
following result:

155



Lemma 3.5.5. Let s ∈ (0, 1), 0 < ε < δ < 1 and η ∈ (0, 1). Let f ∈ C1,α
0

(
Rn−1,

(
− δ

2 ,
δ
2

))
for some α ∈ (0, 1) and assume that f(0) = 0 and ∂if(0) = 0 for all i ∈ {1, . . . , n − 1}.
Let φ ∈ C∞(Rn−1, [0,+∞)) be such that φ(x′) = 0 whenever |x′| ≥ 1 and∫

Rn−1

φ(x′) dx′ = 1.

Let

ψ(x′) :=
η

εn−1
φ

(
x′

ε

)
,

P :=
{
x = (x′, xn) ∈ Rn : |x′| < δ and xn > f(x′) + ψ(x′)

}
,

Q :=
{
x = (x′, xn) ∈ Rn : |x′| < δ and xn ∈

(
f(x′), f(x′) + ψ(x′)

)}
and R :=

{
x = (x′, xn) ∈ Rn : |x′| < δ and xn < f(x′)

}
.

Then, there exist δ0 ∈ (0, 1) and C > 0, depending only on n, s, α, f and φ, such that
if δ < δ0 and η < δ0ε

n then∣∣∣∣∫∫
P×Q

dx dy

|x− y|n+s
−
∫∫

R×Q

dx dy

|x− y|n+s

∣∣∣∣ ≤ C
(
δα +

η

εn

)
ε(n−1)s η1−s.

Proof. The gist of this proof is to use a suitable reflection to simplify most of the integral
contributions. For this, we consider the map

T (x) :=
(
−x′, 2f(x′) + ψ(x′)− xn

)
.

We observe that when |x′| < δ the distance between the Jacobian of T and minus the
identity matrix is bounded from above by

C sup
|x′|<δ

(
|∇f(x′)|+ |∇ψ(x′)|

)
≤ C sup

|x′|<δ

(
|∇f(x′)−∇f(0)|+ η

εn

)
≤ C

(
δα +

η

εn

)
,

and the latter is a small quantity, as long as δ0 is chosen sufficiently small.
Moreover, the condition T (x) ∈ Q is equivalent to |x′| < δ and 2f(x′) + ψ(x′)− xn ∈(

f(x′), f(x′) + ψ(x′)
)
, which is in turn equivalent to x ∈ Q.

Similarly, the condition T (x) ∈ P is equivalent to x ∈ R, as well as the condition T (x) ∈
R is equivalent to x ∈ P.

From these observations and the change of variable (X,Y ) := (T (x), T (y)) we arrive
at ∫∫

P×Q

dx dy

|x− y|n+s
=
(
1 +O

(
δα +

η

εn

))∫∫
R×Q

dX dY

|X − Y |n+s
.

As a result,∣∣∣∣∫∫
P×Q

dx dy

|x− y|n+s
−
∫∫

R×Q

dx dy

|x− y|n+s

∣∣∣∣ ≤ C
(
δα +

η

εn

) ∫∫
R×Q

dx dy

|x− y|n+s
. (3.5.1)
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Now we consider the transformation S(x) := (x′, xn − f(x′)). When |x′| < δ the
distance between the Jacobian of S and the identity matrix is bounded from above by

C sup
|x′|<δ

|∇f(x′)| = C sup
|x′|<δ

|∇f(x′)−∇f(0)| ≤ Cδα.

Besides, if x ∈ R then S(x) ∈
{
x ∈ Rn : |x′| < δ and xn < 0

}
. Also, if x ∈ Q then

S(x) ∈ {x ∈ Rn : |x′| < δ and xn ∈ (0, ψ(x′))} ⊆
{
x ∈ Rn : |x′| < ε and xn ∈

(
0,

Cη

εn−1

)}
.

We stress that we are using here the fact that ψ(x′) = 0 when |x′| ≥ ε.
From these remarks and (3.5.1), using now the change of variable (X,Y ) := (S(x), S(y)),

it follows that ∣∣∣∣∫∫
P×Q

dx dy

|x− y|n+s
−
∫∫

R×Q

dx dy

|x− y|n+s

∣∣∣∣
≤ C

(
δα +

η

εn

) ∫∫
{Xn<0}×

{
|Y ′|<ε, Yn∈

(
0, Cη

εn−1

)} dX dY

|X − Y |n+s
.

We can thus employ Lemma 3.5.3 with r := ε and t := Cη
εn−1 and conclude that∣∣∣∣∫∫

P×Q

dx dy

|x− y|n+s
−
∫∫

R×Q

dx dy

|x− y|n+s

∣∣∣∣ ≤ C
(
δα +

η

εn

)
εn−1

( η

εn−1

)1−s
,

from which the desired result follows.

With this preliminary work, we can now prove Theorems 3.5.1 and 3.5.2.

Proof of Theorem 3.5.1. Up to a rigid motion we can suppose that p = en. We let ε > 0
and δ > 0, to be taken as small as we wish in what follows. We also define

B :=
{
x = (x′, xn) ∈ B1 \B1−δε : xn > 0 and |x′| < ε

}
.

We stress that B ⊆ Bε0/2(p) ∩ B1 as long as ε is small enough. Also, we pick a point q ∈
RegE ∩ Ω and we modify the surface of ∂E in the normal direction in an ε-neighborhood
of q by a set B′ with |B′| = |B|, see Figure 3.5 and notice that the geometry of Lemma 3.5.5
can be reproduced, up to a rigid motion. We stress that η in Lemma 3.5.5 corresponds
to the volume of the perturbation induced by ψ, therefore in this setting we will apply
Lemma 3.5.5 with η := |B′| = |B| ≤ Cδεn.

We also denote by Θ a cylinder centered at q (oriented by the normal of B′ at q) of
height equal to 2δ and radius of the basis equal to δ. In this way, we have that if x ∈ B′

and y ∈ Rn \ Θ then |x − y| ≥ |y − q| − |q − x| ≥
√
5δ
2 − Cε ≥ δ

4 , as long as ε is small
enough, possibly in dependence of δ, see Figure 3.6, whence

I1(B′, B1 \Θ) ≤ C

∫
B′×B1

dx dy

δn+s1
≤ C |B′|
δn+s1

.
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Figure 3.5: Removing the thin set B to E near p and adding the thin set B′ with the
same volume.

Consequently,

I1(B′, B1 \ E \ B′)− I1(B′, E) ≤ I1
(
B′, (B1 \ E \ B′) ∩Θ

)
− I1(B′, E ∩Θ) +

C|B′|
δn+s1

≤ I1
(
B′, (B1 \ E \ B′) ∩Θ

)
− I1(B′, E ∩Θ) +

Cεn

δn−1+s1
,

(3.5.2)

for some C > 0 that, as usual, gets renamed line after line.

Figure 3.6: Surrounding B′ with a small cylinder Θ.

In view of Lemma 3.5.5, we also know that

I1
(
B′, (B1 \ E \ B′) ∩Θ

)
− I1(B′, E ∩Θ) ≤ Cδαε(n−1)s1 (δεn)1−s1 = Cδ1−s1+αεn−s1 .
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This and (3.5.2) lead to

I1(B′, B1 \ E \ B′)− I1(B′, E) ≤ Cδ1−s1+αεn−s1 +
Cεn

δn−1+s1
. (3.5.3)

Now we consider the set (E \B)∪B′ which is a competitor for the minimal set E with the
same volume of E. Accordingly, comparing their energies, we have that

I1(B, B1 \ E) + I1(B′, E) + σI2(B, Bc
1)

≤ I1(B, E ∪ B′ \ B) + I1(B′, B1 \ E \ B′) + I1(B,B′) + σI2(B′, Bc
1).

By combining this and (3.5.3) we find that

I1(B, B1 \ E) + σI2(B, Bc
1)

≤ I1(B, E ∪ B′ \ B) + I1(B,B′) + σI2(B′, Bc
1) + Cδ1−s1+αεn−s1 +

Cεn

δn−1+s1
.

(3.5.4)

Besides, since the distance between B′ and Bc
1 is bounded from below by a uniform quan-

tity, only depending on q and ε0 (and, in particular, independent of ε), we have that

I2(B′, Bc
1) = k2

∫∫
B′×Bc

1

dx dy

|x− y|n+s2
≤ C|B′| = C|B| ≤ Cεn,

for some C > 0 depending only on n, s2, k2, ε0, q and the regularity of ∂E in the vicinity
of q. This and (3.5.4) yield that

σI2(B, Bc
1) ≤ I1(B, E ∪ B′ \ B) + I1(B,B′) + Cεn + Cδ1−s1+αεn−s1 +

Cεn

δn−1+s1

≤ I1(B, B1 \ B) + I1(B,B′) + Cεn + Cδ1−s1+αεn−s1 +
Cεn

δn−1+s1

≤ I1(B, B1 \ B) + Cδ1−s1+αεn−s1 +
Cεn

δn−1+s1
,

(3.5.5)

up to renaming C line after line. Now, we use the change of variables X := x−en
ε and Y :=

y−en
ε to see that

εs1−nI1(B, B1 \ B) = k1 ε
s1−n

∫∫
B×(B1\B)

dx dy

|x− y|n+s1
= k1

∫∫
Zε×Aε

dX dY

|X − Y |n+s1
, (3.5.6)

where

Zε :=
B − en
ε

=

{
X ∈ Rn : |X ′| < 1, Xn > −1

ε
and

∣∣∣X +
en
ε

∣∣∣ ∈ [1
ε
− δ,

1

ε

)}
and

Aε :=
(B1 \ B)− en

ε
= Lε ∪Mε ∪Nε,
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with

Lε :=

{
X ∈ Rn :

∣∣∣X +
en
ε

∣∣∣ < 1

ε
− δ

}
,

Mε :=

{
X ∈ Rn : |X ′| ≥ 1 and

∣∣∣X +
en
ε

∣∣∣ ∈ [1
ε
− δ,

1

ε

)}
and Nε :=

{
X ∈ Rn : |X ′| < 1, Xn ≤ −1

ε
and

∣∣∣X +
en
ε

∣∣∣ ∈ [1
ε
− δ,

1

ε

)}
.

Similarly,

εs2−nI2(B, Bc
1) = k2 ε

s2−n
∫∫

B×Bc
1

dx dy

|x− y|n+s2
= k2

∫∫
Zε×Oε

dX dY

|X − Y |n+s2
, (3.5.7)

where

Oε :=

{
X ∈ Rn :

∣∣∣X +
en
ε

∣∣∣ ≥ 1

ε

}
.

Plugging (3.5.6) and (3.5.7) into (3.5.5), we arrive at

σ εs1−s2 k2

∫∫
Zε×Oε

dX dY

|X − Y |n+s2
≤ k1

∫∫
Zε×Aε

dX dY

|X − Y |n+s1
+ Cδ1−s1+α +

Cεs1

δn−1+s1
.

(3.5.8)
Now we claim that, if ε > 0 is suitably small, possibly in depedence of δ, then

B ⊆
{
x = (x′, xn) ∈ Rn : |x′| < ε and xn ∈ [1− (1 + δ)δε, 1)

}
. (3.5.9)

Indeed, if x ∈ B then

xn =
√

|x|2 − |x′|2 ≥
√

(1− δε)2 − ε2 =
√
1− 2δε+ δ2ε2 − ε2

≥
√

1− 2(1 + δ)δε+ (1 + δ)2δ2ε2 =
√

(1− (1 + δ)δε)2 = 1− (1 + δ)δε

taking ε ≤ (2δ2)/(δ4 +2δ3 +1), thus establishing (3.5.9). Now from (3.5.9) it follows that

Zε ⊆
{
X = (X ′, Xn) ∈ Rn : |X ′| < 1 and Xn ∈ [−(1 + δ)δ, 0)

}
=: Z⋆

δ . (3.5.10)

Note also that
Oε ⊇ {Yn > 0}. (3.5.11)

Indeed, if Y ∈ Rn is such that Yn > 0, then

∣∣∣Y +
en
ε

∣∣∣ =
√

|Y ′|2 +
(
Yn +

1

ε

)2

=

√
|Y ′|2 + Y 2

n +
2Yn
ε

+
1

ε2
≥ 1

ε
,

as desired. We now claim that

Zε ⊇
{
X ∈ Rn : |X ′| < 1, Xn ∈ (−δ, 0) and

∣∣∣X +
en
ε

∣∣∣ < 1

ε

}
=: Wε. (3.5.12)
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To check this, suppose by contradiction that there exists X ∈ Wε with
∣∣∣X +

en
ε

∣∣∣ < 1

ε
− δ.

Then, we have that

0 <

(
1

ε
− δ

)2

−
∣∣∣X +

en
ε

∣∣∣2 = 1

ε2
+ δ2 − 2δ

ε
− |X ′|2 −

(
Xn +

1

ε

)2

= δ2 − 2δ

ε
− |X ′|2 −X2

n −
2Xn

ε
≤ δ2 − |X ′|2 −X2

n,

that is |X| < δ, and thus

1

ε
− δ >

∣∣∣X +
en
ε

∣∣∣ ≥ ∣∣∣en
ε

∣∣∣− |X| = 1

ε
− |X| > 1

ε
− δ.

This is a contradiction which establishes (3.5.12). Hence, by (3.5.11) and (3.5.12), we see
that ∫∫

Zε×Oε

dX dY

|X − Y |n+s2
≥
∫∫

Wε×{Yn>0}

dX dY

|X − Y |n+s2

=

∫∫
W⋆

δ×{Yn>0}

dX dY

|X − Y |n+s2
−
∫∫

(W⋆
δ \Wε)×{Yn>0}

dX dY

|X − Y |n+s2
,

(3.5.13)

where
W⋆
δ :=

{
X ∈ Rn : |X ′| < 1 and Xn ∈ (−δ, 0)

}
.

We observe that∫∫
(W⋆

δ \Wε)×{Yn>0}

dX dY

|X − Y |n+s2
≤
∫∫

W⋆
δ×{Yn>0}

dX dY

|X − Y |n+s2
< +∞

and
lim
ε↘0

∣∣W⋆
δ \Wε

∣∣ = 0,

since as long as ε is taken smaller in dependence on δ, the condition
∣∣∣X +

en
ε

∣∣∣ < 1/ε is

satisfied. Hence we can conclude that

lim
ε↘0

∫∫
(W⋆

δ \Wε)×{Yn>0}

dX dY

|X − Y |n+s2
= 0

and, as a consequence, we infer from (3.5.13) that

lim inf
ε↘0

∫∫
Zε×Oε

dX dY

|X − Y |n+s2
≥
∫∫

W⋆
δ×{Yn>0}

dX dY

|X − Y |n+s2
. (3.5.14)

We also note that if a≫ b > 0, then there exists a positive constant C > 0 such that∣∣∣∣√a2 − b2 − a− b2

2a

∣∣∣∣ =
∣∣∣∣∣a
√
1− b2

a2
− a− b2

2a

∣∣∣∣∣ ≤ b4

a3
,
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whence if X ∈ Nε then

−Xn −
2

ε
=

∣∣∣∣Xn +
1

ε

∣∣∣∣− 1

ε
=

√∣∣∣X +
en
ε

∣∣∣2 − |X ′|2 − 1

ε

∈

[∣∣∣X +
en
ε

∣∣∣+ |X ′|2

2
∣∣X + en

ε

∣∣ − |X ′|4∣∣X + en
ε

∣∣3 − 1

ε
,
∣∣∣X +

en
ε

∣∣∣+ |X ′|2

2
∣∣X + en

ε

∣∣ + |X ′|4∣∣X + en
ε

∣∣3 − 1

ε

]
⊆ [−δ − 2ε, 2ε] ⊆ [−2δ, 2δ],

as long as ε is sufficiently small, leading to

|Nε| ≤
∣∣∣∣{X ∈ Rn : |X ′| < 1, and Xn ∈

[
−2

ε
− 2δ,−2

ε
+ 2δ

]}∣∣∣∣ ≤ Cδ. (3.5.15)

Furthermore, if X ∈ Zε then Xn ≥ −(1 + δ)δ, thanks to (3.5.9), and therefore if Y ∈ Nε

we have that

|X − Y | ≥ Xn − Yn ≥ −(1 + δ)δ +
1

ε
≥ 1

2ε
,

choosing ε small enough depending on δ. This yields that∫∫
Zε×Nε

dX dY

|X − Y |n+s1
≤ Cεn+s1 |Zε| |Nε| ≤ Cεn+s1 . (3.5.16)

Now we set
M′

ε := Mε ∩B2 and M′′
ε := Mε \B2.

We remark that, if ε > 0 is suitably small, possibly in depedence of δ, then

M′
ε ⊆

{
X ∈ Rn : |X ′| ∈ [1, 2] and Xn ∈ [−(1 + δ)δ, 0)

}
=: M⋆

δ . (3.5.17)

Indeed, if X ∈ M′
ε then |X ′| ≥ 1 and |X ′| ≤ |X| < 2. Furthermore,

1 +

∣∣∣∣Xn +
1

ε

∣∣∣∣2 ≤ |X ′|2 +
∣∣∣∣Xn +

1

ε

∣∣∣∣2 = ∣∣∣X +
en
ε

∣∣∣2 ≤ 1

ε2
,

thus ∣∣∣∣Xn +
1

ε

∣∣∣∣ ≤
√

1

ε2
− 1

which in particular gives that

Xn ≤
√

1

ε2
− 1− 1

ε
< 0.

Hence Xn < 0. Moreover,

4 +

∣∣∣∣Xn +
1

ε

∣∣∣∣2 ≥ |X ′|2 +
∣∣∣∣Xn +

1

ε

∣∣∣∣2 = ∣∣∣X +
en
ε

∣∣∣2 ≥ (1

ε
− δ

)2

.
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Since Xn ≥ −|X| ≥ −2, this gives that

Xn +
1

ε
=

√∣∣∣∣Xn +
1

ε

∣∣∣∣2 ≥
√(

1

ε
− δ

)2

− 4 =

√
1

ε2
− 2δ

ε
+ δ2 − 4

=
1

ε

√
1− 2δε+ δ2ε2 − 4ε2 ≥ 1

ε
(1− (1 + δ)δε)

taking ε ≤ (2δ2)/(δ4 + 2δ3 + 4), and accordingly Xn ≥ −(1 + δ)δ. These observations
complete the proof of (3.5.17). We now use (3.5.17) in combination with (3.5.10). In this
way, we see that ∫∫

Zε×M′
ε

dX dY

|X − Y |n+s1
≤
∫∫

Z⋆
δ×M⋆

δ

dX dY

|X − Y |n+s1
. (3.5.18)

Besides we notice that if X ∈ Zε, then |X| ≤ 3/2 for sufficiently small δ, indeed by (3.5.10)

|X| =
√

|X ′|2 +X2
n <

√
1 + (1 + δ)2δ2 =

√
1 + δ2 + δ4 + 2δ3 ≤ 3

2

if δ is taken sufficiently small. Thus, if X ∈ Zε and Y ∈ M′′
ε then |X − Y | ≥ |Y | − |X| ≥

2− 3
2 = 1

2 and, as a result,∫∫
Zε×M′′

ε

dX dY

|X − Y |n+s1
=

∫
Zε

dX

∫
Rn\B1/2

dZ

|Z|n+s1
≤ |Zε|

∫
Rn\B1/2

dZ

|Z|n+s1
≤ Cδ.

Combining this and (3.5.18) we conclude that∫∫
Zε×Mε

dX dY

|X − Y |n+s1
≤
∫∫

Z⋆
δ×M⋆

δ

dX dY

|X − Y |n+s1
+ Cδ.

Using the latter inequality and (3.5.16) we obtain that

lim sup
ε↘0

∫∫
Zε×Aε

dX dY

|X − Y |n+s1

≤
∫∫

Z⋆
δ×M⋆

δ

dX dY

|X − Y |n+s1
+ Cδ + lim sup

ε↘0

∫∫
Zε×Lε

dX dY

|X − Y |n+s1
.

(3.5.19)

Now we consider the map

{
Rn : |X ′| < 2

}
∋ X = (X ′, Xn) 7−→ T (X) :=

X ′, Xn −

√(
1

ε
− δ

)2

− |X ′|2 + 1

ε


and we observe that if X ∈ Zε, in particular |X ′| < 2, then X := T (X) satisfies |X ′| < 1
and

Xn =

∣∣∣∣Xn +
1

ε

∣∣∣∣−
√(

1

ε
− δ

)2

− |X ′|2 =
√∣∣∣X +

en
ε

∣∣∣2 − |X ′|2 −

√(
1

ε
− δ

)2

− |X ′|2

∈

0, √ 1

ε2
− |X ′|2 −

√(
1

ε
− δ

)2

− |X ′|2

 ⊆ [0, (1 + δ)δ].
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In addition, if Y ∈ L′
ε := Lε ∩B2 and Y := T (Y ), we have that |Y ′| < 2 and

Y n ≤
∣∣∣∣Yn + 1

ε

∣∣∣∣−
√(

1

ε
− δ

)2

− |Y ′|2 =
√∣∣∣Y +

en
ε

∣∣∣2 − |Y ′|2 −

√(
1

ε
− δ

)2

− |Y ′|2 < 0.

We also observe that the distance of the Jacobian matrix of T from the identity is bounded
from above by

C

∣∣∣∣∣∣∇X′

√(1

ε
− δ

)2

− |X ′|2

∣∣∣∣∣∣ ≤ C|X ′|√(
1
ε − δ

)2 − |X ′|2
≤ Cε,

yielding that, in the above notation, |X − Y | ≤ (1 + Cε)|X − Y |, with the freedom, as
usual, of renaming C. These observations allow us to conclude that∫∫

Zε×L′
ε

dX dY

|X − Y |n+s1
≤ (1 + Cε)

∫∫
X ⋆

δ ×Y⋆

dX dY

|X − Y |n+s1
(3.5.20)

where

X ⋆
δ :=

{
X ∈ Rn : |X ′| < 1 and Xn ∈ (0, (1 + δ)δ)

}
and Y⋆ :=

{
X ∈ Rn : |X ′| < 2 and Xn < 0

}
.

Also, setting L′′
ε := Lε \B2, we have that∫∫

Zε×L′′
ε

dX dY

|X − Y |n+s1
=

∫
Zε

dX

∫
Rn\B1/2

dZ

|Z|n+s1
≤ |Zε|

∫
Rn\B1/2

dZ

|Z|n+s1
≤ Cδ.

Combining this inequality and (3.5.20) we find that∫∫
Zε×Lε

dX dY

|X − Y |n+s1
≤ (1 + Cε)

∫∫
X ⋆

δ ×Y⋆

dX dY

|X − Y |n+s1
+ Cδ.

From this and (3.5.19) we arrive at

lim sup
ε↘0

∫∫
Zε×Aε

dX dY

|X − Y |n+s1

≤
∫∫

Z⋆
δ×M⋆

δ

dX dY

|X − Y |n+s1
+ lim sup

ε↘0
(1 + Cε)

∫∫
X ⋆

δ ×Y⋆

dX dY

|X − Y |n+s1
+ Cδ.

Thus, given δ > 0, to be taken conveniently small, we consider the limit ε ↘ 0 and we
deduce from the latter inequality, (3.5.8) and (3.5.14) that, as ε↘ 0,

σ εs1−s2 k2

∫∫
W⋆

δ×{Yn>0}

dX dY

|X − Y |n+s2

≤ k1

(∫∫
Z⋆

δ×M⋆
δ

dX dY

|X − Y |n+s1
+ (1 + Cε)

∫∫
X ⋆

δ ×Y⋆

dX dY

|X − Y |n+s1

)

+ Cδ + Cδ1−s1+α +
Cεs1

δn−1+s1
.

(3.5.21)
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This yields that necessarily
s1 ≥ s2. (3.5.22)

Furthermore, if s1 = s2 then we obtain, passing to the limit (3.5.21) as ε↘ 0, that

σ k2

∫∫
W⋆

δ×{Yn>0}

dX dY

|X − Y |n+s1

≤ k1

(∫∫
Z⋆

δ×M⋆
δ

dX dY

|X − Y |n+s1
+

∫∫
X ⋆

δ ×Y⋆

dX dY

|X − Y |n+s1

)
+ Cδ + Cδ1−s1+α.

(3.5.23)

We are now ready to send δ ↘ 0. To this end, we multiply (3.5.23) by δs1−1 and we make
use of Lemmata 3.5.3 and 3.5.4 to find that

c⋆ σ k2 = lim
δ↘0

σ k2 δ
s1−1

∫∫
W⋆

δ×{Yn>0}

dX dY

|X − Y |n+s1

≤ lim
δ↘0

[
k1 δ

s1−1

(∫∫
Z⋆

δ×M⋆
δ

dX dY

|X − Y |n+s1
+

∫∫
X ⋆

δ ×Y⋆

dX dY

|X − Y |n+s1

)
+ Cδs1 + Cδα

]
≤ lim

δ↘0

[
Cδs1(1 + δ) + c⋆ k1 (1 + δ)1−s1 + Cδs1 + Cδα

]
= c⋆ k1

and therefore σk2 ≤ k1. Thanks to this, we have that, to complete the proof of Theo-
rem 3.5.1, it only remains to rule out the case s1 = s2 and k1 = σk2. In this situation,

C(F ) = E(F ) = k1

∫∫
F×F c

dx dy

|x− y|n+s1
,

hence all the minimizers with prescribed volume correspond to balls, thanks to [46]. But
this violates the assumptions about the point p in Theorem 3.5.1.

Proof of Theorem 3.5.2. This can be seen as a counterpart of Theorem 3.5.1 based on
complementary sets. For this argument, we denote by Cσ, instead of C, the functional
in (1.2.34), in order to showcase explicitly its dependence on the relative adhesion coeffi-
cient σ. Thus, in the setting of Theorem 3.5.2, if F ⊆ Ω and F̃ := Ω \ F ,

Cσ(F̃ ) = I1
(
Ω \ F, (Ω \ F )c ∩ Ω

)
+ σ I2(Ω \ F,Ωc)

= I1(Ω \ F, F ) + σ I2(Ω \ F,Ωc)
= C−σ(F ) + σ I2(F,Ω

c) + σ I2(Ω \ F,Ωc)
= C−σ(F ) + σ I2(Ω,Ω

c).

Since the latter term does not depend on F , we see that if E, as in the statement of
Theorem 3.5.2, is a volume-constrained minimizer of Cσ, then Ẽ := Ω \ E is a volume-
constrained minimizer of C−σ. Now, the set Ẽ fulfills the assumptions of Theorem 3.5.1
with σ replaced by −σ. It follows that either s1 > s2, or s1 = s2 and k1 > −σk2, as
desired.
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3.6 Unique determination of the contact angle

A topical question in view of Proposition 3.4.4 is to understand whether or not equa-
tion (3.4.8) identifies a unique contact angle ϑ. This is indeed the case, precisely under the
natural condition in (3.4.6), according to the following result in Theorem 3.6.3. To state it
in full generality, it is convenient to introduce some notation. Indeed, in the forthcoming
computations, it comes in handy to reduce the problem to a two-dimensional situation.
For this, we revisit the setting in (3.0.2) by defining its two-dimensional projection onto
the variables (x1, xn), namely one sets

J⋆ϑ1,ϑ2 :=
{
(x1, xn) ∈ R2 : ∃ β ∈ (ϑ1, ϑ2), ρ > 0 such that (x1, xn) = ρ(cosβ, sinβ)

}
.

(3.6.1)
Let also e⋆(ϑ) := (cosϑ, sinϑ) and, for every x = (x1, x2) ∈ ∂B1 ⊆ R2 and j ∈ {1, 2},

a⋆j (x) :=



aj(x) if n = 2,

∫
Rn−2

aj

(−−−−−−−−−−−−−−−−−−→
x1 e1 + x2 en + |x|(0, ȳ, 0)

)
(
1 + |ȳ|2

)n+sj
2

dȳ if n ≥ 3.

(3.6.2)

Let also
ϕj(ϑ) := a⋆j (cosϑ, sinϑ). (3.6.3)

We remark that, as a byproduct of (3.0.5),

a⋆j (x) = a⋆j (−x) and ϕj(ϑ) = ϕj(π + ϑ). (3.6.4)

Before exhibiting the proof of Theorem 3.6.3, it is also convenient to perform some integral
computations in order to appropriately rewrite integral interactions involving cones, de-
tecting cancellations, using a dimensional reduction argument and a well designed notation
of polar angle with respect to the kernel singularity. The details go as follows.

Lemma 3.6.1. In the notation of (3.0.2), (3.6.1), (3.6.2) and (3.6.3), if ϑ ∈ (0, π), then∫
Jϑ,π

a1(
−−−−−→
x− e(ϑ))

|x− e(ϑ)|n+s1
dx−

∫
J0,ϑ

a1(
−−−−−→
x− e(ϑ))

|x− e(ϑ)|n+s1
dx

=
1

s1(sinϑ)s1

(∫ ϑ

0
ϕ1(α) (sinα)

s1 dα−
∫ π

ϑ
ϕ1(α) (sinα)

s1 dα

)
.

(3.6.5)

Proof. We stress that each of the integrals on the left hand side of (3.6.5) is divergent,
hence the two terms have to be considered together, in the principal value sense. How-
ever, for typographical convenience, we will formally act on the integrals by omitting
the principal value notation and perform the cancellations necessary to have only finite
contributions to obtain the desired result. To this end, we recall (3.0.2) and observe
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Figure 3.7: A geometric argument involved in the proof of Lemma 3.6.1.

that x ∈ J0,ϑ ∩ {xn < 2 sinϑ} if and only if z := 2e(ϑ) − x ∈ Jϑ,π ∩ {xn < 2 sinϑ}, see
Figure 3.7. Hence, by the symmetry of a1,∫

J0,ϑ∩{xn<2 sinϑ}

a1(
−−−−−→
x− e(ϑ))

|x− e(ϑ)|n+s1
dx =

∫
Jϑ,π∩{zn<2 sinϑ}

a1(
−−−−−→
z − e(ϑ))

|z − e(ϑ)|n+s1
dz.

Consequently, if we denote by Υ the left hand side of (3.6.5), we see after a cancellation
that

Υ =

∫
Jϑ,π∩{xn>2 sinϑ}

a1(
−−−−−→
x− e(ϑ))

|x− e(ϑ)|n+s1
dx−

∫
J0,ϑ∩{xn>2 sinϑ}

a1(
−−−−−→
x− e(ϑ))

|x− e(ϑ)|n+s1
dx. (3.6.6)

It is useful now to reduce the problem to that in dimension 2. To this end, we adopt the
notation in (3.6.1) and (3.6.2) and note that∫

Jϑ,π∩{xn>2 sinϑ}

a1(
−−−−−→
x− e(ϑ))

|x− e(ϑ)|n+s1
dx

=

∫∫∫
{(x1,xn)∈J⋆

ϑ,π , x̄∈Rn−2, xn>2 sinϑ}

a1

(−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
(x1 − cosϑ)e1 + (xn − sinϑ)en + (0, x̄, 0)

)
(
(x1 − cosϑ)2 + (xn − sinϑ)2 + |x̄|2

)n+s1
2

dx̄ dx1 dxn

=

∫∫
{y=(y1,y2)∈J⋆

ϑ,π , ȳ∈Rn−2, y2>2 sinϑ}

a1

(−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
(y1 − cosϑ) e1 + (y2 − sinϑ) en + |y − e⋆(ϑ)|(0, ȳ, 0)

)
|y − e⋆(ϑ)|2+s1

(
1 + |ȳ|2

)n+s1
2

dȳ dy

=

∫
J⋆
ϑ,π∩{y2>2 sinϑ}

a⋆1(
−−−−−−→
y − e⋆(ϑ))

|y − e⋆(ϑ)|2+s1
dy.

(3.6.7)

Similarly,∫
J0,ϑ∩{xn>2 sinϑ}

a1(
−−−−−→
x− e(ϑ))

|x− e(ϑ)|n+s1
dx =

∫
J⋆
0,ϑ∩{y2>2 sinϑ}

a⋆1(
−−−−−−→
y − e⋆(ϑ))

|y − e⋆(ϑ)|2+s1
dy.
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Thanks to these observations, we rewrite (3.6.6) in the form

Υ =

∫
J⋆
ϑ,π∩{x2>2 sinϑ}

a⋆1(
−−−−−−→
x− e⋆(ϑ))

|x− e⋆(ϑ)|2+s1
dx−

∫
J⋆
0,ϑ∩{x2>2 sinϑ}

a⋆1(
−−−−−−→
x− e⋆(ϑ))

|x− e⋆(ϑ)|2+s1
dx. (3.6.8)

Now we use polar coordinates centered at e⋆(ϑ). For this, if x ∈ J⋆0,ϑ ∩ {x2 > 2 sinϑ},
we write x = (cosϑ, sinϑ) + ρ(cosα, sinα) with α ∈ (0, ϑ) and ρ > sinϑ

sinα . Similarly,
if x ∈ J⋆ϑ,π ∩ {x2 > 2 sinϑ}, we write x = (cosϑ, sinϑ) + ρ(cosβ, sinβ) with β ∈ (ϑ, π)

and ρ > sinϑ
sinβ , see Figure 3.8.

Figure 3.8: Another geometric argument involved in the proof of Lemma 3.6.1.

As a result, using the notation in (3.6.3), we deduce from (3.6.8) that

Υ =

∫∫
(0,ϑ)×( sinϑ

sinα
,+∞)

ϕ1(α)

ρ1+s1
dα dρ−

∫∫
(ϑ,π)×

(
sinϑ
sin β

,+∞
) ϕ1(β)
ρ1+s1

dβ dρ

=
1

s1(sinϑ)s1

(∫ ϑ

0
ϕ1(α) (sinα)

s1 dα−
∫ π

ϑ
ϕ1(β) (sinβ)

s1 dβ

)
,

which establishes (3.6.5).

Lemma 3.6.2. Let the notation in (3.0.2), (3.6.1), (3.6.2) and (3.6.3) hold true. Then,∫
Hc

a2(
−−−−−→
e(ϑ)− x)

|e(ϑ)− x|n+s1
dx =

1

s1(sinϑ)s1

∫ 0

−π
ϕ2(α) | sinα|s1 dα. (3.6.9)

Proof. As in (3.6.7), we have that the left hand side of (3.6.9) equals to

Λ :=

∫
R×(−∞,0)

a⋆2(
−−−−−−→
y − e⋆(ϑ))

|y − e⋆(ϑ)|2+s1
dy.

Now we use polar coordinates centered at e⋆(ϑ) by considering y = (cosϑ, sinϑ)+ρ(cosα, sinα)
with α ∈ (−π, 0) and ρ > sinϑ

| sinα| , see Figure 3.9. In this way, and recalling (3.6.3), it follows
that

Λ =

∫∫
(−π,0)×

(
sinϑ

| sinα| ,+∞
) ϕ2(α)
ρ1+s1

dα dρ =
1

s1(sinϑ)s1

∫ 0

−π
ϕ2(α) | sinα|s1 dα,
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Figure 3.9: A geometric argument involved in the proof of Lemma 3.6.2.

as desired.

With this, we can uniquely determine the contact angle, as follows.

Theorem 3.6.3. Let K∗
1 and K∗

2 be as in (3.0.4). Let σ ∈ R and assume that (3.4.6)
holds true. Then, there exists at most one ϑ ∈ (0, π) satisfying the contact angle condition
in (3.4.8).

Furthermore, if

|σ| <

∫ π

0
ϕ1(α) (sinα)

s1 dα∫ π

0
ϕ2(α) (sinα)

s1 dα

. (3.6.10)

then there exists a unique solution ϑ ∈ (0, π) of (3.4.8).

We stress once again that when a1 = a2 (and in particular for constant a1 = a2),
assumption (3.6.10) reduces to the structural assumption |σ| < 1 that was taken in [60].

Moreover, if K1(ξ) := k1
|ξ|s1 and K2(ξ) := k2

|ξ|s2 for some k1, k2 > 0, then assump-

tion (3.6.10) boils down to |σ| < k1
k2
, which is precisely the condition for nontrivial mini-

mizers obtained in Theorems 3.5.1 and 3.5.2.
For these reasons, Theorem 3.6.3 showcases the interesting fact that the equation

prescribing the contact angle in (3.4.8) admits one and only one solution precisely in the
natural range of kernels given by (3.4.6) and (3.6.10).

proof of Theorem 3.6.3. We let

W(ϑ) :=s1(sinϑ)
s1

(∫
Jϑ,π

a1(
−−−−−→
e(ϑ)− x)

|e(ϑ)− x|n+s1
dx−

∫
J0,ϑ

a1(
−−−−−→
e(ϑ)− x)

|e(ϑ)− x|n+s1
dx

)

− s1(sinϑ)
s1σ

∫
Hc

a2(
−−−−−→
e(ϑ)− x)

|e(ϑ)− x|n+s1
dx

and we observe that solutions of (3.4.8) correspond to zeros of W in [0, π].
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Also, by Lemmata 3.6.1 and 3.6.2, and recalling (3.6.4),

W(ϑ) =

∫ ϑ

0
ϕ1(α) (sinα)

s1 dα−
∫ π

ϑ
ϕ1(α) (sinα)

s1 dα− σ

∫ 0

−π
ϕ2(α) | sinα|s1 dα

=

∫ ϑ

0
ϕ1(α) (sinα)

s1 dα−
∫ π

ϑ
ϕ1(α) (sinα)

s1 dα− σ

∫ 0

−π
ϕ2(π + α) (sin(π + α))s1 dα

=

∫ ϑ

0
ϕ1(α) (sinα)

s1 dα−
∫ π

ϑ
ϕ1(α) (sinα)

s1 dα− σ

∫ π

0
ϕ2(α) (sinα)

s1 dα.

(3.6.11)

In particular, W is continuous in [0, π], differentiable in (0, π) and, for each ϑ ∈ (0, π),

W ′(ϑ) = 2ϕ1(ϑ) (sinϑ)
s1 > 0,

which shows that W admits at most one zero in (0, π). This establishes the uniqueness
result stated in Theorem 3.6.3.

Now we show the existence result claimed in Theorem 3.6.3 under assumption (3.6.10).
To this end, it suffices to notice that, by (3.6.10) and (3.6.11), we have that

W(0) = −
∫ π

0
ϕ1(α) (sinα)

s1 dα− σ

∫ π

0
ϕ2(α) (sinα)

s1 dα < 0

and

W(π) =

∫ π

0
ϕ1(α) (sinα)

s1 dα− σ

∫ π

0
ϕ2(α) (sinα)

s1 dα > 0.

From this and the continuity of W, we obtain the existence of a zero of W in (0, π).

Remark 3.6.4. We stress that the strict positivity of the kernel is essential for the unique-
ness result in Theorem 3.6.3: indeed, if one allows degenerate kernels in which a1 is only
nonnegative, such a uniqueness claim can be violated. As an example, consider σ := 0
and pick ϑ0 ∈

(
0, π2

)
. Let ϕ1 ∈ C∞(R) be such that ϕ1(α) := 0 for all α ∈ [ϑ0, π − ϑ0].

Assume also that ϕ1
(
π
2 + α

)
= ϕ1

(
π
2 − α

)
for all α ∈

(
0, π2

)
and that ϕ1(α + π) = ϕ1(α)

for all α ∈ (0, π). See e.g. Figure 3.10 for a sketch of this function.
Then, by (3.6.11), for every ϑ̄ ∈

[
ϑ0,

π
2

]
,

W(ϑ̄) =

∫ ϑ̄

0
ϕ1(α) (sinα)

s1 dα−
∫ π

ϑ̄
ϕ1(α) (sinα)

s1 dα

=

∫ ϑ0

0
ϕ1(α) (sinα)

s1 dα−
∫ π

π−ϑ0
ϕ1(α) (sinα)

s1 dα

=

∫ ϑ0

0
ϕ1(α) (sinα)

s1 dα−
∫ ϑ0

0
ϕ1(π − β) (sin(π − β))s1 dβ

=

∫ ϑ0

0
ϕ1(α) (sinα)

s1 dα−
∫ ϑ0

0
ϕ1

(π
2
+
π

2
− β

)
(sinβ)s1 dβ

=

∫ ϑ0

0
ϕ1(β) (sinβ)

s1 dβ −
∫ ϑ0

0
ϕ1

(π
2
−
(π
2
− β

))
(sinβ)s1 dβ

= 0,
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Figure 3.10: A degenerate example of ϕ1 leading to a multiplicity of the contact angle
in (3.4.6).

which shows that in this degenerate case every angle ϑ̄ ∈
[
ϑ0,

π
2

]
would be a zero of W,

hence a solution of the contact angle equation in (3.4.8). Accordingly, the assumption of
strict positivity of the kernel cannot be dropped in Theorem 3.6.3.

171



Bibliography

[1] Nicola Abatangelo and Xavier Ros-Oton. Obstacle problems for integro-differential
operators: higher regularity of free boundaries. Advances in Mathematics, 360:106931,
2020.

[2] Vilhelm Adolfsson. L 2-integrability of second order derivatives for poisson’s equation
in nonsmooth domains. Mathematica Scandinavica, pages 146–160, 1992.

[3] Vilhelm Adolfsson and Luis Escauriaza. C1,α domains and unique continuation at
the boundary. Communications on Pure and Applied Mathematics: A Journal Issued
by the Courant Institute of Mathematical Sciences, 50(10):935–969, 1997.

[4] Vilhelm Adolfsson, Luis Escauriaza, and Carlos E Kenig. Convex domains and unique
continuation at the boundary. Revista Matemática Iberoamericana, 11(3):513–525,
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[69] Giuseppe Savaré. Regularity and perturbation results for mixed second order elliptic
problems. Communications in Partial Differential Equations, 22(5-6):869–899, 1997.

[70] Ihyeok Seo. On unique continuation for schrödinger operators of fractional and higher
orders. Mathematische Nachrichten, 287(5-6):699–703, 2014.

[71] Ihyeok Seo. Carleman inequalities for fractional laplacians and unique continuation.
Taiwanese Journal of Mathematics, 19(5):1533–1540, 2015.

[72] Ihyeok Seo. Unique continuation for fractional schrödinger operators in three and
higher dimensions. Proceedings of the American Mathematical Society, 143(4):1661–
1664, 2015.

[73] Yannick Sire, Susanna Terracini, and Giorgio Tortone. On the nodal set of solutions to
degenerate or singular elliptic equations with an application to s-harmonic functions.
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