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ABSTRACT
In this paper, we systematically explore the impact of a galactic bar on the inspiral time-scale
of a massive object (MO) within a Milky Way-like galaxy. We integrate the orbit of MOs in
a multi-component galaxy model via a semi-analytical approach that accounts for dynamical
friction generalized to rotationally supported backgrounds. We compare the MO evolution
in a galaxy featuring a Milky Way-like rotating bar to the evolution within an analogous
axisymmetric galaxy without the bar. In agreement with previous studies, we find that the bar
presence may significantly affect the inspiral, sometimes making it shorter by a factor of a few,
sometimes hindering it for a Hubble time. The erratic behaviour is mainly impacted by the
relative phase at which the MO encounters the stronger bar-induced resonances. In particular,
the effect of the bar is more prominent for initially in-plane, prograde MOs, especially those
crossing the bar co-rotation radius or outer Lindblad resonance. In the barred galaxy,we find the
sinking of the most massive MOs (& 107.5M�) approaching the galaxy from large separations
(& 8 kpc) to be most efficiently hampered. Neglecting the effect of global torques associated
with the non-symmetric mass distribution is thus not advisable even within an idealized,
smooth galaxy model; we further note that spiral patterns are unlikely to affect the inspiral due
to their transient and fluctuating nature. We speculate that the sinking efficiency of massive
black holes involved in minor galaxy mergers may be hampered in barred galaxies, making
them less likely to host a gravitational wave signal accessible to low-frequency detectors.

Key words: galaxies: kinematics and dynamics – galaxies: structure – stars: kinematics and
dynamics – Galaxy: kinematics and dynamics – black hole physics – methods: numerical

1 INTRODUCTION

When a massive object (MO, an object with mass much larger than
the typical mass of individual stars) orbits within its host galaxy,
its trajectory is affected by the so-called dynamical friction (DF,
Chandrasekhar 1942; Ostriker 1999). DF arises as a response of
the environment to the passage of the perturbing mass, and typi-
cally results in the gradual inspiral of the MO. In spite of the crude
assumptions over which it has been first derived (Chandrasekhar
1942, 1943), DF theory seems to properly describe the decay of
many MOs, as galaxy satellites, stellar clusters, and massive black
holes (MBHs) within their host systems (e.g. Inoue 2009; Pfister
et al. 2017). However, most studies supporting the success of DF
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theory model the host environment with very simplistic and ideal-
ized assumptions: the host galaxies are typically modelled as spher-
ical and isotropic or axisymmetric systems, with smooth galactic
potentials (e.g. Just et al. 2011; Arca-Sedda & Capuzzo-Dolcetta
2014; Petts et al. 2015, 2016). This is not surprising, as these are
the systems that are typically addressed in standard (non cosmo-
logical) astrophysical simulations (e.g. White 1978; Bortolas et al.
2016; Gualandris et al. 2017; Capelo & Dotti 2017; Bortolas et al.
2018a,b; Tamfal et al. 2018). Perhaps owing to this, DF alone has
been often referred to as the very main phenomenon capable to
determine the decay of an orbiting MO (e.g. Tremaine et al. 1975;
Begelman et al. 1980).

Only recently, a number of studies started exploring the evo-
lution of MBHs within much less idealized galactic environments,
featuring, e.g. the cosmological evolution of the galaxies, the pos-
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sible formation of clumps, spirals, bars, the effect of star formation
and hydrodynamics and so forth (e.g. Fiacconi et al. 2013; Van
Wassenhove et al. 2014; Lupi et al. 2015; Roškar et al. 2015; Tam-
burello et al. 2017; Souza Lima et al. 2017; Tremmel et al. 2018a,b;
Pfister et al. 2019; Bellovary et al. 2019; Bortolas et al. 2020; Souza
Lima et al. 2020). The MO evolution within these more realistic,
composite galaxies appears to be much harder to predict in the DF
framework, as the aforementioned non-symmetric, time-dependent
perturbations in the potential result in a much more erratic orbital
evolution.

Bortolas et al. (2020) evolved a set of MBHs within a typical,
irregular and turbulent galaxy at 𝑧 & 6, embedded in a cosmological
environment. They found that, once a strong bar develops in the host
galaxy, the MBHs orbital evolution is critically affected by it: owing
to the bar interaction, the decay time is ∼ 10 times faster than what
DF theory would predict for four out of five MBHs, while in one
case the interaction kicks the MBH in the galaxy outskirts (Bortolas
et al. 2020). This study further highlights that the magnitude of the
galactic global torques resulting from the non-symmetric galactic
mass distribution is virtually always much stronger than the DF-
induced torques, suggesting that assuming DF to be the main driver
of the inspiral may be inadequate for realistic galaxies (Bortolas
et al. 2020).

The aforementioned shortcomings of DF theory are particu-
larly relevant in view of the forthcoming opening of a low-frequency
(< 0.1 Hz) gravitational wave window, where the nano-Hz regime
is being probed by Pulsar Timing Arrays (PTAs; Desvignes et al.
2016; Reardon et al. 2016; Perera et al. 2019; Alam et al. 2021),
and the milli-Hz band will be explored by the Laser Interferometer
Space Antenna (LISA; Amaro-Seoane et al. 2017; Schödel et al.
2017; Barack et al. 2019) in the 2030s. Therefore, it is important
to constrain the time spanning from a galaxy merger to the gravita-
tional wave induced coalescence of the host’s MBHs, that is going
to be observed by the aforementioned facilities; such time-scales
would obviously strongly depend on the physics of the large scale
galactic inspiral.

In this paper, we aim at addressing more systematically how
galactic bars affect the decay time-scale of MOs. Conservatively,
we explore the evolution of MOs in an idealized, Milky Way-like
galaxy, in which the only deviation from axisymmetry is constituted
by a rotating triaxial bar of ≈ 5 kpc extension. We integrate the MO
orbit with the semi-analytical code presented in Bonetti et al. (2020,
2021), whose novel treatment for DF guarantees remarkable agree-
ment with 𝑁-body simulations of composite galaxies. We perform
a large number of numerical experiments, comparing the decay
time-scale in the barred galaxy to its value in an analogous, ax-
isymmetric galaxy not featuring the bar. In Sec. 2, we detail the
methodology adopted for the orbits initialization and integration;
Sec. 3 briefly reviews the theoretical aspects related to the orbital
evolution within a uniformly rotating, non-axisymmetric potential;
in Sec. 4, we present the results of our study, which are then dis-
cussed and summarized in Sec. 5.

2 METHODS

2.1 Galaxy potential

We first introduce the reference parameters adopted for the study
of the Milky Way-like galaxy. We model the galaxy by considering
components of different shape and nature, specifically: a stellar
spherical bulge, a stellar disc, and (in part of our runs) a stellar

bar, all of them embedded in a dark matter halo. The properties for
the different Galactic components adopted here are in agreement
with recent literature on the topic, and in particular with Bovy
(2015); the properties of the Galactic bar are taken from Portail
et al. (2017). Table 1 reports the relevant values adopted for the
galaxy initialization.

Specifically, we represent the central bulge using a Dehnen
(1993) potential well, whose associated density profile reads

𝜌B (𝑟) =
(3 − 𝛾)𝑀B
4𝜋

𝑟B
𝑟𝛾 (𝑟 + 𝑟B)3−𝛾

, (1)

where 𝑀B is the bulge total mass, 𝑟B is its characteristic radius, and
𝛾 represents the inner density slope of the model; finally, 𝑟 is the
distance from the centre. We choose 𝛾 = 1, which corresponds to a
Hernquist (1990) profile.

The disc is modelled with an exponential profile (Spitzer 1942;
Binney & Tremaine 2008):

𝜌D (𝑅, 𝑧) =
𝑀D

4𝜋𝑟2D𝑧D
e−𝑅/𝑟Dsech2

(
𝑧

𝑧D

)
, (2)

where 𝑅 represents the cylindric radius, 𝑧 is the coordinate per-
pendicular to the disc, 𝑟D is the disc scale lenght, 𝑧D is the disc
scale height, and 𝑀D is the total mass of the disc. Given that an
analytical expression for the associated disc potential does not exist,
the integrator obtains the accelerations induced by the disc poten-
tial numerically, as described in detail in Bonetti et al. (2021). In
order to speed up the computation of the disc acceleration, the 𝑅
and 𝑧 components of the acceleration are tabulated in an adaptive
grid spanning several orders of magnitude in both 𝑅 and 𝑧, and the
acceleration along the integration is obtained by interpolating the
tabulated values for the 𝑅 and 𝑧 values needed at each timestep.

The dark matter halo is described via a Navarro et al. (1996)
potential, whose associated density profile is

𝜌H (𝑟) =
𝑀H

4𝜋𝑟3H

𝑟H
𝑟 (1 + 𝑟/𝑟H)2

, (3)

where 𝑀H is the mass scale of the model and 𝑟H its scale radius;
the model virial mass can be expressed as 𝑀V = 𝑀H [ln(1 + 𝑐H) −
𝑐H/(1 + 𝑐H)], with 𝑐H concentration parameter defined as the ratio
between the galaxy virial radius 𝑟V and 𝑟H. The above three com-
ponents (central bulge, disc, and halo) are always accounted for in
our study.

In addition to the disc, bulge, and halo components, in many
of our runs we also account for the presence of a galactic bar. We
model the bar as a softened needle profile (Long & Murali 1992),
whose potential has the form

Φbar (𝑥, 𝑦, 𝑧) =
𝐺𝑀bar
2𝑎bar

ln
(
𝑥 − 𝑎bar + 𝑇−
𝑥 + 𝑎bar + 𝑇+

)
(4)

𝑇± = {(𝑎bar ± 𝑥)2 + 𝑦2 + [𝑏bar + (𝑐2bar + 𝑧2)1/2]2}1/2,
(5)

where 𝐺 is the gravitational constant, 𝑀bar is the total mass of the
bar, and (𝑎bar, 𝑏bar, 𝑐bar) are the scale lengths in the direction of
the (𝑥, 𝑦, 𝑧) Cartesian coordinates. We assume the bar to initially
lie along the 𝑥 direction. The bar rotates in the disc plane with a
constant orbital frequency 𝜔bar. The parameters associated to the
bar are also shown in Table 1. Note that the mass of the disc and
bulge are adjusted depending on the presence (or absence) of the
bar.

In order to disentangle the effect of the bar alone on the
evolution of MOs, we decided to run all our integrations in two
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The role of bars on the DF-driven inspiral of MOs 3

Table 1. Reference galaxy structural parameters

Component Model Mass [M�] scale length [kpc] others

Bulge∗ Dehnen (1993) 𝑀B = 5 × 109 𝑟B = 0.7 𝛾 = 1
Disc∗ Exponential (Binney & Tremaine 2008) 𝑀D = 3 × 1010 (𝑟D, 𝑧D) = (3, 0.3) –
Halo Navarro, Frenk & White (1996) 𝑀H = 4.317 × 1011, 𝑀V = 8 × 1011 𝑟H = 16, 𝑟V = 245 𝑐H = 15.3
Bar Softened Needle (Long & Murali 1992) 𝑀bar = 1.8 × 1010 (𝑎, 𝑏, 𝑐)bar = (5, 2, 0.3) 𝜔bar = 40 km s−1 kpc−1

∗ Note that the disc and bulge mass shown here refer to the case in which the bar is present, and have to be enhanced as discussed in the text for the integrations
that are not featuring a bar.

analogous galaxy models, one featuring the galaxy bar described
above, and another one which is purely axisymmetric, and in
which the mass assigned to the bar is re-distributed between the
bulge and disc components. We perform this latter task by redis-
tributing the bar mass1 as: 𝑀B → 𝑀B + 0.1 × 𝑀bar (𝑟B/𝑎bar),
𝑀D → 𝑀D + 𝑀bar (1 − 0.1 × 𝑟B/𝑎bar). We find that this choice
allows us to maintain a very similar rotation curve in the disc plane
for the two models: if the circular velocity of the barred galaxy in
the disc plane is averaged over all possible bar orientations, we find
our prescription to maintain the deviation between the two always
below 4 per cent (see Fig. A4 in the Appendix). For clarity, in the
following we will always refer to the galaxy rotation curve as that
associated to the barred galaxy.

The characteristic resonances of the galaxy are shown in Ta-
ble 2. The profiles of the epicyclic frequency and the orbital fre-
quency are computed in the non-barred galaxy, and the bar orbital
frequency is used to define the various resonances reported in the
Table.

2.2 Dynamical friction prescriptions

The implementation for the DF-induced deceleration suffered by the
MO along its orbital evolution is described in detail in Bonetti et al.
(2020, 2021). Here we report the key aspects of the implementation,
and we refer the reader to the aforementioned papers for more
details.

The DF acting on the MO is computed as a sum of the DF
associated to the different galactic components. Each of the spher-
ically symmetric components induces a deceleration with the form

adf,sph = −2𝜋𝐺2 ln(1 + Λ2)𝑚p𝜌(𝑟)
(
erf (𝑋) − 2𝑋e

−𝑋2
√
𝜋

)
vp
|vp |3

,

(6)

where 𝑚p and vp are the MO mass and instantaneous velocity, re-
spectively, 𝜌(𝑟) is the local background density associated with the
given spherical component, and 𝑋 = 𝑣p/(

√
2𝜎(𝑟)), with𝜎(𝑟) being

the local velocity dispersion of the considered galactic component.
The argument of the Coulomb logarithm in the equation is given by
the ratio between the maximum and minimum impact parameters,
Λ = 𝑝max/𝑝min, computed as 𝑝max = 𝑟 (− d ln 𝜌/ d ln 𝑟)−1 and
𝑝min = max[𝐺𝑚p/

(
𝑣2p + 𝜎(𝑟)2

)
, 𝐷p], where 𝐷p is the physical

1 Note that the prescription we propose for redistributing the bar mass into
the disc and bulge is by no means a general prescription and we found it
to work well for the galaxy we are considering, but it may fail if different
galaxy potentials are adopted.

radius of the MO (which we set to zero in the present integration,
as we always assume non extended MOs, as MBHs).

The DF associated to the rotating disc is modelled as

adf,disc = −2𝜋𝐺2 ln(1 + Λ2)𝑚p𝜌D (𝑅, 𝑧) ×

×
(
erf (𝑋D) −

2𝑋De−𝑋
2
D

√
𝜋

)
vrel
|vrel |3

,

(7)

where vrel = vp − vrot (𝑅), and vrot (𝑅) is the rotational velocity
in the disc, generally not equal to the circular velocity of the disc,
as we assume that it is not fully rotationally supported. Finally,
𝑋D = 𝑣rel/(

√
2𝜎R), where𝜎R denotes the radial velocity dispersion

of the disc. The details for the computation of vrot (𝑅) and𝜎R can be
found in Bonetti et al. (2021). In the above expression, the minimum
impact parameter entering the Coulomb logarithm is computed as
𝑝min,D = 𝐺𝑚p/(𝑣2rel + 𝜎2R), whereas 𝑝max is chosen equal to the
disc scale height. Physically, the expression adopted for the DF in
the rotating disc accounts for the fact that the MO is moving within
a medium featuring a net rotational velocity, so that the relative
velocity between the MO and the disc typical rotational velocity at
each given radius is what has to be accounted for when estimating
the MO deceleration. This treatment has been proven to work very
well in rotating environments (Bonetti et al. 2021), and it reproduces
the so-called drag-towards-circular-corotation (see Sec. 4.1.2 for a
description).

The DF induced by the bar, when present, is very difficult
to describe starting from first principles. Here we considered only
the effect produced by the enhanced density and the additional DF
caused by the bar is simply obtained by adding the bar density to
the disc component in the equations for the deceleration (Eq. 7).
Note that this assumption can in principle be inaccurate and impact
our results. In Appendix B, we thus compare our semi-analytical
treatment with full 𝑁-body simulations. The stochasticity induced
by merely changing the number of particles in the 𝑁-body run is
significant, thus suggesting that the detailed implementation of a
more accurate DF prescription would probably not severely impact
the evolution, as stochasticity induced by the fact that the orbits
are chaotic appears to be the main factor in determining the decay
time-scale.

2.3 Initial conditions for the orbit

In order to explore the effect of bars on the MOs dynamics, we
perform a large number of orbital integrations. Each of the simula-
tions is always performed with the very same initial conditions in
the galaxy featuring and non-featuring the galactic rotating bar. The
MO does not suffer any mass variation during the evolution; this is
obviously a simplification, and we plan to implement the effect of
the MO mass loss in a forthcoming study. The initialization of the

MNRAS 000, 1–14 (2022)
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Table 2. Characteristic scales for resonances

Label Value

Bar semi-major axis 5.0000 kpc
Co-rotation radius 5.0041 kpc
Inner Lindblad resonance 0.5746 kpc
Outer Lindblad resonance 8.8870 kpc
Saddle radius (Φeff ) 5.3165 kpc
Maxima radius (Φeff ) 4.9620 kpc

The table displays the characteristic scales at which the bar resonateswith the
galaxy characteristic orbital frequencies, and the radii of the saddle points
and maxima associated to the effective potential shown in Fig. 2.

orbit of the MO is characterized by a series of variables that serve
to uniquely determine the initial position and velocity of the MO,
and specifically we will mainly use the following:

• 𝑟0, the initial distance of theMO from the centre of the system;
• 𝑓circ ∈ (0, 1]: if 𝑣c is the circular velocity at 𝑟0, we assign to

the MO a tangential velocity equal to 𝑣 = 𝑓circ𝑣c, and zero radial
velocity, meaning that the orbital evolution in the axisymmetric
case and in the disc plane is always initialized at the apocentre;2 so
𝑓circ ' 0 means an almost radial orbit, and 𝑓circ = 1 corresponds to
an ideally circular orbit (when the MO is in the disc plane). Note
that 𝑣c is always taken in the disc plane, regardless of whether the
MO actually starts its evolution within the disc;

• 𝜙 ∈ [0, 180) degrees, the azimuthal angle; in principle, this
should run from0 to 360 degrees, butwe limit its range for symmetry
reasons. Note that this angle can be neglected for the non-barred
galaxy, as the potential is axisymmetric. In the barred case, 𝜙 = 0
means that the MO initially sits along the bar longest principal axis,
𝑎bar;
• 𝜃 ∈ [0, 180] degrees, the angle between the disc (𝑥 − 𝑦) plane

and the MO initial position vector;
• 𝛼 ∈ [0, 360) degrees, the angle between the initial velocity

vector and the 𝑥 − 𝑦 plane; remember that the initial velocity vector
is always perpendicular to the position vector of the particle;

• 𝑖 ∈ [0, 180) degrees, the inclination of the initial orbit with
respect to the disc plane. Note that this variable is degenerate with
the previous three angular variables, but we will refer to it as well
in some situations.

Fig. 1 shows most of the aforementioned quantities in the three-
dimensional space. In what follows, we define the inspiral to be
completed once the MO stably remains below a separation of 10 pc
from the centre; we always stop the integration when the simulation
time reaches a Hubble time (assumed to be 13.7 Gyr).

3 THEORETICAL BACKGROUND

In order to understand the behaviour of the MO evolution, we re-
call that the gravitational potential of a uniformly rotating, non-
axisymmetric density distribution is usefully described in a frame-
work that co-rotates with the triaxial perturbation. In particular, it is
useful to define the effective potential (e.g. Sellwood & Wilkinson
1993)

Φeff = Φ − 1
2
𝜔2bar𝑟

2, (8)

2 Note that the apocentre is not well defined out of the disc plane and in the
barred case.

Figure 1. The image shows the relevant variables adopted to initialize the
orbit of the MO in the presented integrations. The point P (𝑥0, 𝑦0, 𝑧0) in
which the MO is initialized is defined by the azimuthal and polar angles 𝜃 ,
𝜙, and by the length 𝑟0 of the position vector. The velocity (vel, indicated as
𝑣p in the text) always lies in the plane perpendicular to the position vector
associated to P, and its orientation is defined by the angle 𝛼, which is defined
to be 0 if the velocity lies parallel to the 𝑥 − 𝑦 plane.

where Φ is the conservative, space-dependent galactic potential
of the barred galaxy, 𝜔bar is the rotational frequency of the bar
and 𝑟 is the distance from the centre. Even neglecting the Coriolis
force (which depends on the velocity of the moving mass), the
gradient of the effective potential gives a good estimate of the force
experienced by a test mass in the rotating frame within the disc
plane. Fig. 2 displays a map of the effective potential in the plane of
the disc, for our barred galaxy model; the plot additionally shows
the magnitude and direction of the associated effective force. This
effective potential can be thought as a ‘volcano’ (Prendergast 1983),
with a minimum (crater) at the centre, a rim whose height varies
slightly, and the slope that descends at larger radii. In this framework,
neglectingDF, the so-called Jacobi integral (rather than the standard
energy) of a test mass in the disc plane is conserved in time. This
quantity can be expressed as

𝐸J = 𝐸 − 𝜔bar𝐽𝑧 = 𝑣2𝑝/2 +Φeff , (9)

where 𝐸 and 𝐽𝑧 are, respectively, the energy and 𝑧 component of the
angular momentum per unit mass, and 𝑣p is the velocity magnitude,
all quantities being measured in the non-rotating frame; note that
𝐸𝐽 is defined in the plane of the disc. In absence of DF, 𝐸J would
determine whether a mass is limited to orbits in a particular region
of space: only if 𝐸J is larger than the maxima of Φeff , it can in
principle explore the entire galaxy plane. It is also relevant to note
that the two saddle points are unstable equilibria points, whereas in
the present galaxy model the two potential maxima and the central
minimum are stable points, meaning that a test mass can stably sit
there or orbit these points in the absence of perturbations. More
details on the orbits of subject masses in triaxial, rotating potentials
can be found in, e.g. Sellwood & Wilkinson (1993, especially from
their sec. 4.3.2).

In our present framework, the otherwise conserved 𝐸J, that
determines the orbit of a subject mass, can vary due to the effect
of DF. The above considerations allow us to better understand the
orbital behaviour of MOs subject to the combined effect of the
galactic potential, the rotating bar, and DF.

MNRAS 000, 1–14 (2022)
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Figure 2.The colour-codedmap displays the effective galactic potentialΦeff
in the plane of the disc (𝑧 = 0), measured in units of 4.301 × 104 km2 s−2.
The central white point in the origin marks a central minimum, the two red
‘+’ are the two potential maxima (𝑥 = 0; 𝑦 ≈ ±4.962 kpc), and the green ‘×’
are the two saddle points (𝑥 ≈ ±5.316 kpc; 𝑦 = 0). The cyan line describes a
circle of radius 5 kpc, i.e. the spatial extension of the bar; the arrows indicate
the direction of the gravitational force associated to the effective potential
displayed, with their length being proportional to its magnitude.

4 RESULTS

Fig. 3 reports an illustrative example of how the bar may affect
the decay time-scale. An MO of 5 × 106M� on a relatively low-
angular-momentum orbit, initially decaying from 𝑟0 = 8 kpc with
an initial inclination 𝑖 = 15◦, needs < 10 Gyr to reach the centre
if the bar is present, while it needs more than a Hubble time in the
non-barred scenario. The plots also display some recurrent features
of the orbital evolution: in the non-barred scenario, the evolution
is way more smooth and predictable, contrarily to the stochastic
evolution that characterizes the barred case; in both runs, the orbit
circularizes and is dragged in the disc plane (as can be seen by
looking at the different angular momentum components) at nearly
kpc separation.

4.1 Systematic orbital sampling

As a first test, we explore the orbital evolution of a 5 × 106M�
MO in the galaxy. This mass is a compromise between the typical
mass an intruder MBH would have, if brought in the Milky Way
by a minor merger, and the whole mass of the satellite galaxy that
could host it. We find this value to be a good compromise in order
for a reasonable fraction of MO orbital decays to be completed in a
Hubble time.

4.1.1 In-plane, prograde orbits

Fig. 4 shows the time needed by the MO to complete its inspiral
for in-plane, prograde orbits (i.e. whose angular momentum has the
same direction as that of the bar and the disc). In each sub-plot,
the inspiral time is shown as a function of the phase 𝜙 (sampled

as 𝜙 = 0, 6, 12, ..., 174 degrees) if the bar is present, while it is
represented as a dashed line for the equivalent non-barred galaxy
case. A more detailed view of the inspiral can be found in Fig. 5,
which shows the MO distance from the centre as a function of time
for the same runs referenced in Fig. 4.

The effect of the bar on the orbital evolution and decay time-
scale is particularly relevant for orbits that cross or initially remain
close to the co-rotation radius, which roughly coincides with the
bar major axis 𝑎bar (5 kpc); at these scales, the bar reduces the
decay time for orbits initialized near the edges of its major axis,
while the decay time tends to be larger for initial phases near 90
degrees. As expected, the effect of the bar weakens for orbits which
are initially close to the size of the second axis 𝑏bar = 2 kpc, as can
be seen by looking at the decay time-scales of MOs starting from
small 𝑟0 and small 𝑓circ in Fig. 4. At scales of the order of the outer
Lindblad resonance (Table 2), the interaction with the bar becomes
less predictable and, in some cases, the bar keeps the MO out of
≈ 9 kpc, preventing any inspiral and quashing the effect of DF, as
can be seen in Fig. 5.

In order to better understand the aforementioned behaviour, we
show in Fig. 6 the orbital evolution of the MO in the rotating frame
for four different runs. The same Figure also shows the evolution
of the different contributions to the 𝑧 component of the torque (av-
eraged over a radial oscillation, 𝜏𝑧), of the Jacobi integral (Eq. 9),
and the orbital radius of the MO. By examining Figs 4, 5, and 6, we
can see that the orbital evolution of MOs exhibits some recurrent
behaviours: if an object starts from a large 𝑟0, with 𝑓circ ≈ 1, it
may remain trapped in a nearly circular orbit near the outer Lind-
blad resonance, characterized by the same value for 𝐸J ≈ −4 (in
units of 4.301× 104 km2 s−2), without experiencing any net decay.
This behaviour is due to the positive bar-induced torque that, over
a full orbit, counteracts the effect of DF, as shown in the first col-
umn of Fig. 6. Accordingly, Fig. 5 clearly shows that several MOs
starting from a large separation remain trapped there as they do not
experience any net decay in about a Hubble time.

Fig. 6 displays other typical configurations for the evolution:
if the MO starts with an initial 𝐸J larger than the maximum of the
effective potential, then it can in principle explore the whole galaxy.
Owing to the drag of DF, though, 𝐸J gets smaller and smaller, so
that the orbit typically remains confined in a given region about
one of the bar stable Lagrangian points (i.e. about one of the two
effective potential maxima,3 or about the origin). This is, for in-
stance, what is shown in the second column of Fig. 6: the MO is
initially wandering freely in the inner 10 kpc but, owing to the DF
energy loss, it remains trapped about one maximum.While orbiting
the maximum, it slowly decreases its 𝐸J due to DF and increases
its eccentricity (as it happens in the run in the fourth column in
the same Figure; in that case, however, the MO spends a Hubble
time orbiting the effective potential maximum), until it manages
to go trough one of the two saddle points; from this moment, the
DF-driven inspiral proceeds within the eye-shaped central crater,
and the MO successfully inspirals towards the centre. Analogously,
in the run shown in the third column of Fig. 6, the MO wanders
with an 𝐸J close to the value of the effective potential at the saddle;
since it immediately manages to pass close to one saddle point, its
inspiral proceeds smoothly and effectively in the inner eye-shaped
hollow of the effective potential.

3 We stress that the maxima of the effective potential are not maxima of the
gravitational potential, and therefore stable orbits can exist around these two
Lagrangian points (Sellwood & Wilkinson 1993).
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Figure 3. The plot shows various quantities associated to the orbital evolution of an MO in the non-barred (left-hand panels) and barred (right-hand) galactic
potential. In both cases, the 5 × 106M� MO is initially at 8 kpc from the centre, with 𝑓circ = 0.3, 𝜃 = 𝑖 = 15◦, and initial velocity parallel to the disc plane. In
the barred case, 𝜙 = 24◦ (the system has been rotated in the right-hand image, so that the coordinates of the initial MO position are the same in the barred and
unbarred case). For each scenario, the three panels on the left-hand side show the projections of the orbit in time in three different directions, with 𝑥 − 𝑦 being
the plane of the disc. The initial 150 Myr of the orbital evolution are highlighted in red. The four panels on the right-hand side show, from top to bottom, (i) the
distance of the MO from the centre of the system, (ii) the orbital energy per unit mass, measured in units of 4.301 × 104 km2 s−2, and (iii - iv) the 𝑥 − 𝑦 and 𝑧
components of the orbital angular momentum per unit mass, measured in internal units of 207.4 kpc km s−1. The dashed line in each plot marks the starting
value for each of the displayed quantities. Interestingly, in the run with the bar, the MO gets dragged towards the centre faster thanks to the interactions with
the bar, that allow it to reach the centre in less than a Hubble time, contrarily to the non-barred case.

Note that the torque induced by DF and the global torque4 may
work against each other out of the central crater (as the rotating bar
tends to increase the angular momentum of the MO), while they
both promote the inspiral within the central hollow.

The aforementioned behaviours allow for a better interpretation
of the time-scales in Fig. 4: orbits with initial 𝜙 ≈ 0, 180◦ starting
their evolution with 𝑟0 ≈ 5 kpc and 𝑓circ ≈ 1 (or, analogously, with
𝑟0 & 5 kpc, but with 𝑓circ < 1) start from a point that is very close
to a saddle point, so that they can easily cross it and enter the region
in which both 𝜏𝑧 from DF and the galaxy potential promote the
inspiral. On the other hand, the evolution of these MOs, if it starts
from 𝜙 ≈ 90◦, is necessarily delayed as they are initially ‘trapped’
near a potential maximum, and they remain there until their 𝐸J
becomes small enough so that they can cross a saddle point and
proceed with the central inspiral.

The behaviour of the decay time-scales for 𝑟0 & 8 kpc is
much less predictable, but it essentially boils down to understanding
whether the MO starts oscillating about a potential maximum, so
that it can eventually cross a saddle point and reach the centre, or
whether it remains trapped in a circular orbit at the outer Lindblad
resonance, not experiencing any net decay, as in the first column of
Fig. 6. As a matter of fact, for orbits with 𝑟0 & 7 kpc and 𝑓circ & 0.6,
the decay is typically possible if they start from 𝜙 ≈ 90◦ (see, e.g.
the case with 𝑟0 = 10 kpc, 𝑓circ = 0.8, or 𝑟0 = 12 kpc, 𝑓circ = 0.6),
as the effective potential at that location is slightly higher than that
at the saddle point. On the other hand, the potential evaluated at the
same initial radius for 𝜙 ≈ 0, 180◦ is lower and therefore, for such
values of 𝜙, the Jacobi integral is too small to allow for the crossing

4 From this moment on, we will denote the torque experienced by the MO
owing to the effect of the non-spherical and rotating galaxy potential (as
opposed to the dissipative torque due to DF) as the global torque.

of the saddles. As a consequence, the associated orbits are more
likely to remain trapped about the outer Lindblad resonance.

Summarizing, the different behaviour of the MO orbiting near
the co-rotation or outer Lindblad resonance can be understood as
follows. Near co-rotation, the MO would remain trapped about the
ridges in the effective potential in absence of DF. As shown in
the right-most panels of Fig. 6, the orbit-averaged torque due to
DF (which is always negative in this run) and the oscillating bar-
induced one (which is positive, once orbit-averaged) nearly balance
each other along the evolution; the two torques combine in such
a way that, if the MO starts from near the top of the ridge, it
then descends while exhibiting wider and wider oscillations about
the ridge top. As these oscillations grow larger, the non-averaged
global torque grows in modulus due to the fact that the MO can get
closer and closer to the bar. This descent eventually brings the MO
out of the rim area so that it can cross the saddle point.

Orbits trapped about the outer Lindblad resonance (see the
left-most panels in Fig. 6) behave quite differently. In there, both
the bar torque and DF oscillate between positive and negative values
along each orbit5, and the net torque oscillates significantly as well.
The net torque over each orbit is nearly zero, and the MO orbit
does not drift along the evolution, once in the trap orbit, because
of the angular momentum transfer from the bar to the MO that
compensates for the loss due to DF. Note that we tried to evolve the
MO on this orbit for a hundred Hubble times, and we found no net
decay. We further note that those trap orbits exist only for relatively
light intruders, since DF becomes much stronger for significantly
more massive MOs, overwhelming the bar-induced torque.

5 DF can also induce an acceleration in rotating discs, see Chandrasekhar
(1942) and Bonetti et al. (2020)
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Figure 4. All runs shown here assume an MO coplanar with the disc and co-rotating with the bar and galactic disc (i.e. 𝜃 = 𝛼 = 𝑖 = 0). The plots show the
time for an MO of 5× 106M� to reach the galaxy centre in a range of initial configurations: different rows consider a distinct initial separation from the centre
(𝑟0 decreasing from 12 to 3 kpc, from top to bottom), whereas different columns imply an initial velocity expressed as a fraction of the circular velocity ( 𝑓circ
increasing from 0.1 to 1, from left to right). In each panel, the green horizontal line marks the time needed by the MO to complete the inspiral in the non-barred
galaxy; blue circles refer to the run with the bar and show the time needed for the MO to inspiral as a function of the phase 𝜙 (note that 𝜙 = 0 when the MO
initially sits along the bar longest axis). The red triangles (and the orange dashed line, for the cases without a bar) mark the configurations for which the MO
does not complete the inspiral within a Hubble time.
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Figure 5. The matrix is the same as in Fig. 4. Each panel shows the distance of an MO from the centre as a function of time; the black line refers to the run
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Figure 6. The plots show different aspects of the orbital evolution for a 5× 106M� MO evolving in the barred potential. Each column refers to a different run,
whose initialization variables are displayed in the bottom panels. The top plots show the MO orbital evolution in the rotating frame of the bar, and the colour
associated to the line refers to a different time in the evolution, as mapped in the two bottom panels; the dotted grey lines are effective potential isocontours,
the same as in Fig. 2. The second panel shows the 𝑧 component of the torque experienced by the MO averaged over a full azimuthal oscillation in the rotating
frame, measured in units of 4.4985× 104 kpc2 Gyr−2; we distinguish between the DF-induced torque, the global torque due to the ‘potential’ of all components
in the galaxy (see Footnote 4), and the total torque experienced by the MO (the sum of the aforementioned ones); note that, when the orbit is too irregular, it
is almost impossible to get a proper orbit average of the torque, so this quantity is not shown for all time ranges. The third panel shows the value of the Jacobi
integral (Eq. 9, measured in units of 4.301×104 km2 s−2) as a function of time, the black dashed horizontal line being the value of the effective potential at the
saddle points. The bottom panel shows the distance of the MO from the galaxy centre as a function of time. All runs shown refer to prograde and in-plane MOs.

4.1.2 Counter-rotating orbits

Figs A1 and A2 of Appendix A show the analogous to Figs 4
and 5, respectively, but initializing the MO orbit so that it ini-
tially counter-rotates with respect to the galaxy angular momentum.
The bar impact on the decay time-scale is relatively modest in the
counter-rotating cases, as the inspiral times remain very similar for
runs with and without the bar. This is due to the following: when
the MO is initially counter-rotating, its velocity relative to the bar is
much larger than in the prograde case, so the bar does not manage
to effectively torque the MO. This is true as long as the MO does
not reverse the sign of its angular momentum. Indeed, a retrograde
MO embedded in a rotating system has been shown to experience
the so-called drag-towards circular co-rotation: this means that the
MO would progressively lose angular momentum via DF, until its
orbit gets very radial and its angular momentum reverses sign; from
this moment on, DF would promote the circularization of the now

prograde MO (Dotti et al. 2007; Bonetti et al. 2020). In the present
framework, this means that the MO experiences little effect from
the bar until its orbit turns to prograde: at that point the evolution
can be assimilated to the prograde one, described above, and the
effect of the bar becomes significant.

We find that the MOs that switch the sign of their angular
momentum earlier in the evolution are consistently found to take a
longer time to complete their inspiral, for a given value of 𝑟0 and
𝑓circ. This is likely due to the fact that, once the angular momentum
reverses, circularization occurs promptly, thus the MO spends more
time on a nearly circular orbit that does not reach the dense central
regions where DF would be more efficient. On the other hand, if
the angular momentum reversal never occurs or occurs when the
inspiral is nearly completed, the MO orbit stays more eccentric, so
that, along each orbit, it penetrates the denser regions near the centre,
experiencing a stronger DF. In addition, we found that the angular
momentum sign reversal almost never happens if 𝑓circ & 0.6; this is
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likely due to the fact that the efficiency of DF is weaker if the relative
velocity between the MO and the background is larger; given that
retrograde, nearly circular orbits maximise this relative velocity,
the effect of DF is weaker, thus circularization is not effectively
promoted.

4.1.3 Off-plane orbits

Finally, we also explore the inspiral time-scale of the same MO for
off-plane orbits. We find that the bar effect gets weaker as the initial
orbit gets more off-plane. In general, the orbital evolution time-scale
is very stochastic if the bar is present, and it is not easy to define
a clear trend for the decay. We report the map that illustrates the
decay time-scale in a set of off-planar runs in Fig. A3. Note that
the off-plane MOs tend to get gradually dragged in the disc plane,
where the evolution is analogous to what presented in the previous
Sections.

4.2 Monte Carlo orbital sampling

In addition to the aforementioned simulations, we perform a series
of runs initializing the MO so that its initial position is isotropic in
a sphere of radius 𝑟0, where 𝑟0 is extracted uniformly in the range
[2, 14] kpc. We sampled the angle 𝛼 uniformly between [0,360)
degrees and 𝑓circ uniformly between [0.03, 1.0]. We additionally
sampled the MO mass in a log-uniform distribution between
5× 106M� and 108M� , in order to understand the dependence of
the inspiral also on the intruder’s mass. For each extracted initial
conditions,6 we run a simulation both in the barred and in the
unbarred galaxy (≈ 13, 000 runs). Fig. 7 shows a set of corner
plots: the left-hand ones show whether the bar promotes (blue) or
hinders (red) the inspiral for several combinations of parameters
used in the orbit initialization. In particular, in the top-left plot,
each area in the parameter space is colour-coded depending on the
value of 𝑓b = (𝑛promote − 𝑛demote)/𝑛tot, with 𝑛promote the number
of runs for which the barred inspiral time-scale is 0.75 or less
times that of the non-barred case, 𝑛demote the number of runs for
which the non-barred inspiral time-scale is 0.75 or less times that
of the barred case (see the caption for more details), and 𝑛tot the
total number of runs in that given region of the parameter space.
The bottom-left panel, instead, is colour-coded with the ratio of the
average inspiral time-scale in the barred and unbarred scenario.
Both left-hand plots show very similar features. In general, there is
a region near 𝑟0 ≈ 5 kpc and 𝜙 ≈ 90◦ that shows the slow-down
in the inspiral induced by the ‘trap’ near the effective potential
maxima. It is also clear that the bar tends to promote the inspiral
of prograde MOs within the disc plane (cos(𝑖) ≈ 1), at least within
the outer Lindblad resonance. Large MO masses are less likely to
sink in the barred case, especially for large 𝑟0 and 𝑓circ. Indeed, the
relative fraction of inspirals that are not completed in a Hubble time
with and without the bar within our complete Monte Carlo sample
respectively amounts to 31 and 26 per cent; however, the same ratio
amounts to 23.5 (9.6) per cent in the barred (non barred) scenario
if we limit our analysis to MOs with 𝑚p > 107.5M� and 𝑟0 > 7.5
kpc. This is likely due to the fact that the DF-induced deceleration
increases linearly with the MO mass, whereas the effect of global
torques is independent of the MO mass. More massive MOs thus

6 Note that the distributions fromwhich these quantities have been extracted
for the Monte Carlo sampling have no claim to be representative of a sample
of MOs entering a real galaxy.

sink more promptly in an axisymmetric, static potential where they
experience DF alone; however, if the bar is present, the effect of
DF is hampered by global torques induced by the rotating triaxial
structure: those typically hinder the inspiral at large scales.

The results shown in the left-hand panels of Fig. 7 can be
almost completely explained in term of the 𝑧 component of the
global (bar) torque for the barred cases. Indeed, in the top-right
panel of the same Figure, we display the 𝑧 component of the (bar-
induced) torque, time-averaged for every run, and then for all runs
in a given region of the corner plot. This map nearly reproduces the
left-hand ones, with averaged positive (negative) 𝑧 torques mapping
the regions in which the bar promotes (demotes) the inspiral.

Furthermore, the bottom-right panel of Fig. 7 compares the
degree of stochasticity associated with barred and unbarred runs.
In particular, the plot is colour-coded according to the quantity
(𝜎𝑡/〈𝑡〉)bar − (𝜎𝑡/〈𝑡〉)no bar, where 〈𝑡〉, 𝜎𝑡 respectively represent
the average decay time and its standard deviation within a given
region of the parameter space, and the subscript refers to whether
we are considering runs with or without the bar. This means that
red (blue) regions mark the portion of the parameter space in which
the decay time-scale is more stochastic with (without) the bar. In
most cases, the bar presence enhances the stochasticity in the same
regions where the inspiral takes longer if the bar is present, and the
bar average torque is positive. An exception is the region in which
cos(𝑖) = 1, mapping initially nearly prograde MOs. Those tend
to have a faster inspiral in the barred case, at least for moderately
light MOs starting from relatively small 𝑟0; however, all coplanar
runs accounting for the bar appear to have an enhanced degree of
stochasticity, as for those runs the randomizing effect of the bar
appears to be stronger.

5 DISCUSSION AND CONCLUSION

In this paper, we explored the orbital evolution of massive objects
(MOs) in a barred Milky Way galaxy model, and we compared it
to the evolution of MOs in an analogous, non-barred galaxy. We
performed a large number of runs adopting a very accurate orbit
integrator that features a careful treatment for the galaxy potential
(including a bulge, a disc, a dark matter halo, and – in some configu-
rations – a rotating bar) and careful treatment for dynamical friction
(DF) that properly recovers the results of 𝑁-body simulations even
in rotationally supported galaxy discs (Bonetti et al. 2020, 2021).

We found that the presence of a typical galactic rotating bar,
within an otherwise axisymmetric galaxy model, makes the MO
orbital evolution more stochastic, and can significantly affect its
orbital decay time-scale. In particular, the effect of the bar is more
prominent for MOs that spend most of their evolution on a prograde
orbit co-planar with the disc: in these situations, the inspiral time
with and without bar can vary by a factor of a few.

These results are remarkable, especially considering that the
chosen Milky Way-like galaxy did not feature an extremely promi-
nent bar. Rather, its properties, such as themass, are compatiblewith
the Milky Way bar including its pseudo-bulge component (Portail
et al. 2017). The morphology of the considered system is analogous
to that of many other spirals in the local Universe (Kormendy &
Kennicutt 2004; Drory & Fisher 2007), in which pseudo-bulges are
ubiquitous and are believed to be originated from the bar itself,
suggesting that our results should apply to typical late-type spirals,
one of the most common class of galaxies in the Universe.

In our runs, the bar presence often promotes the orbital decay
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Figure 7. The top-left corner plot displays whether it is more probable that the bar promotes (blue) or demotes (red) the MO inspiral. More specifically, each
region of the parameter space is colour-coded with the variable 𝑓b = (𝑛promote − 𝑛demote)/𝑛tot, where 𝑛tot is the total number of simulations in that given region
of the parameter space, among which 𝑛promote is the number of runs for which the barred inspiral time-scale is 0.75 or less times the non-barred inspiral; on the
contrary, 𝑛demote is the number of runs for which the non-barred inspiral time-scale is 0.75 or less times the barred inspiral. Runs taking more than a Hubble
time are assumed to take infinitely positive time to inspiral; note that if we assume runs taking more than a Hubble time to take exactly a Hubble time instead,
the plot looks similar. The top-right corner plot shows the average magnitude of the 𝑧-component of the global torque in the barred runs: the time average
of the torque is computed over each run, and this value is averaged over all runs that belong to each different region of the displayed maps. The bottom-left
corner plot shows, for each given region of the parameter space, the ratio between the average MO inspiral time in the barred galaxy and the same quantity in
the equivalent unbarred system, so that the red (blue) regions mark the portions of the parameter space in which the inspiral is slower with (without) accounting
for the bar. The bottom-right corner plot compares the degree of stochasticity associated with the ispiral time-scale in barred and unbarred systems, with the
red (blue) colours showing the regions in which the inspiral time-scale gets more stochastic with (without) the bar. More specifically, the colour map refers to
the quantity (𝜎𝑡/〈𝑡 〉)bar − (𝜎𝑡/〈𝑡 〉)no bar, where 〈𝑡 〉, 𝜎𝑡 respectively represent the average inspiral time and its standard deviation, and the subscript refers to
whether we are considering runs with or without the bar. In the bottom panels, inspirals taking more than a Hubble time have been set to take 16 Gyr for the
computation of the colour-coded quantities; we checked that this somehow arbitrary choice does not appreciably affect our findings. In all plots, the vertical
lines mark the co-rotation radius and the position of the outer Lindblad resonance.

but, in some configurations (especially if the MO is initialized on
a large prograde orbit co-planar with the disc), it does induce the
stalling of an MO at large separations. This is in line with the
results in Bortolas et al. (2020): in their zoom-in cosmological
simulation, MBHs were found to typically promptly inspiral when
a bar develops in the host galaxy but, in one case, the bar instead
scatters an MBH on a wide, large angular momentum orbit,

hampering its further orbital decay.

Our semi-analytical approach implies an idealized treatment of
the host galaxy and in particular of the DF drag, which is accounted
for based on the Chandrasekhar implementation, a treatment that
has its own limitations. Among those, the fact that the Coulomb
logarithm entering the DF drag should be allowed to vary along the
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evolution (Petts et al. 2015), rather than being kept fixed, was taken
into account in our implementation; in addition, the standard DF
treatment does not consider objects moving faster than the MO in
the braking effect, potentially resulting in an inaccurate evolution
in some situations (e.g. Read et al. 2006; Antonini et al. 2012; Petts
et al. 2015, 2016). To constrain the impact of this approximation, we
therefore checked that fast-moving stars do not crucially contribute
to the friction in our implementation (Bonetti et al. 2021). It is also
important to mention that Chandrasekhar’s DF treatment assumes
the response of the host galaxy to the passage of the MO to be
rather local, while in reality the whole host reacts to and resonates
as a result of the MO perturbation (Tremaine & Weinberg 1984).
Taking into account this aspect is very important (Tamfal et al.
2021; Vasiliev et al. 2021) especially if the mass ratio between
the host and the MO is not too far from unity. On the other hand,
very low-mass MOs compared to the host, as those adopted in the
presented study, are likely to result in a negligible global response
from the host, so that the local treatment is good enough (Bonetti
et al. 2021; Vasiliev et al. 2021). Finally, our implementation of DF
is relatively simplistic especially for the axisymmetric and triaxial
structures. In particular, in the triaxial case, the barmay substantially
affect the main moments of the velocity distribution; as a result, the
prescription adopted here may be systematically affected. Given
that our results in the barred scenario are critically impacted by the
interplay between DF and global torques, adopting a more accurate
prescription for DF would affect the MO probability of approaching
a resonance and remaining trapped into it or not. Nonetheless, it is
clear that stochasticity plays a critical role in the orbital evolution of
MOs in barred galaxies, as demonstrated by the 𝑁-body simulations
presented in Appendix B. Thus, the limitations of the presented
DF implementation do not threaten the qualitative finding that bar
resonances induce stochasticity in the orbital evolution of MOs.

Another important caveat concerns the temporal evolution of
the galaxy (and its bar, when present): in our runs, the bar and
galaxy properties were kept fixed, while in reality both would evolve
significantly with time (e.g. Sellwood 2014; Zana et al. 2018a,
2019). A live bar, as opposed to the rigid bar potential adopted here,
may change its properties in time, possibly getting stronger (e.g.
Athanassoula 2013). This could not be taken into account in our
semi-analytical treatment, and can only be addressed via devoted
numerical simulations. Related to this, it is worth mentioning that
the same galaxymerger that brings anMO in the outskirts of a larger
galaxy may influence the presence of a bar, possibly triggering
its formation, delaying it or weakening/destroying a bar which is
already in place (e.g. Pfenniger &Norman 1990; Zana et al. 2018b).

Furthermore, (disc) galaxies may well feature further devia-
tions from axisymmetry, the most obvious being spiral structures
(e.g. Bertin et al. 1989). The bar, when present, is generally the
most prominent deviation, thus it would reasonably have the most
relevant impact on the orbit of MOs; spirals are generally transient
structures and may be strongly fluctuating, and a recent study shows
their angular momentum transfer to the halo is negligible (Sellwood
2021), suggesting the MO may be virtually unaffected by the spi-
rals. Additional torquing sources could be represented by clumps
(Tamburello et al. 2017), tidal perturbations to the galaxy (Bortolas
et al. 2020) and many others; our simplified treatment represents a
lower limit to the sources of stochasticity that may affect the inspiral
of MOs. Finally, another important limitation of our study is the fact
that we consider only point mass MOs with fixed mass and negli-
gible extension, an approximation that is valid when the considered

MO is an MBH or a very compact cluster of stars.7 If the MO were
an extended and relatively diluted dwarf galaxy, or a stellar cluster,
it would get trimmed by tidal forces along the evolution, depending
on its properties with respect to the host’s; modelling the effect of
stripping however is beyond the scope of the present work. In spite
of these limitations, our treatment allows to pinpoint the sole ef-
fect of the bar in the orbital evolution of an MO, and we defer the
implementation of additional physical processes that may affect the
inspiral to a forthcoming study.

To conclude, it is worth highlighting that we found the most
massive MOs in our sample (& 107.5M�) that start their evolution
from relatively large radii (& 8 kpc) to be less likely to successfully
complete the inspiral within the barred galaxy, compared to the ax-
isymmetric case; when the bar is present, we find that the number
of stalled MOs may double. This aspect is particularly relevant con-
sidering that, in a realistic scenario, one expects a relatively massive
intruder galaxy to start interacting from large separations. In partic-
ular, MOsmight be delivered byminor mergers, in the form of cores
of a galaxy companion, and since these might be easily dropped at
the outskirts of the galaxy when the host companion is tidally dis-
solved (e.g. Callegari et al. 2009, 2011), this outcome might not
be rare. Our runs suggest that, in the limit of minor mergers that
was probed in this work, the most massive MOs which are the most
affected by DF are also those whose large-scale inspiral is most ef-
fectively hindered by the bar, implying that barred galaxies involved
in minor mergers are likely to feature lower rates of MBH mergers.
However, the statistical relevance of this should be evaluated with
the help of cosmological simulations or semi-analytical models of
galaxy formationmodeling a large sample of systems. In general, we
stress that the presence of bars and other deviations from axisym-
metry should be taken into account when exploring the accretion of
galaxy satellites onto more massive systems, and when making pre-
dictions of MBH mergers, as the rates of gravitational wave driven
MBH coalescences are closely connected with the efficiency of in-
spiral of their parent systems. For example, MBHs detectable by
LISA should be abundant in the mass range 105 − 107𝑀� , which is
the typical mass of MBHs hosted by late-type spirals, the class of
galaxies in which the dynamical processes discussed in this paper
is most relevant. In this context, our semi-analytical framework can
be implemented into semi-analytical models of galaxy and MBH
formation and evolution, to better evaluate the impact of bars on the
formation and evolution time-scales of MBH binaries, which is crit-
ical in estimating the formation rate of gravitational-wave sources
detectable by forthcoming low-frequency gravitational wave facili-
ties such as LISA (Bonetti et al. 2019).
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APPENDIX A: DECAY TIME-SCALES FOR INCLINED
OR COUNTER-ROTATING RUNS

In this appendix, we collect further figures that illustrate the decay
time-scale and orbital evolution for MOs of 5× 106M� for a larger
region of the parameters space. Fig. A1 shows the decay time-scale
for counter-rotating, in-plane orbits sampled as in Fig. 4; Fig. A2
shows the associated radial separation as a function of time. Fig. A3
maps the inspiral time-scale of the same MO for different, sampled
values of 𝑟0, 𝜃, and 𝜙. That is, the MO is now allowed to orbit out
of the disc plane. The results associated to the aforementioned plots
are briefly presented in Sec. 4.1.
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Finally, Fig. A4 compares the rotation curve of the barred and
unbarred galaxy models adopted in the text. The two quantities
deviate by up to 4 per cent.

APPENDIX B: COMPARISON WITH NUMERICAL
SIMULATIONS

In order to test the validity of our implementation in the orbital
integration, we performed a set of 𝑁-body runs and compared them
with the results obtained via the semi-analytical orbital integrator
adopted throughout the paper. The 𝑁-body simulations have been
performed using gizmo (Hopkins 2015). The initial conditions for
the run were obtained by means of the agama package (Vasiliev
2019) and feature a disc, bulge, and dark matter halo whose proper-
ties are the same displayed in Tab. 1, except for the disc mass which
was increased to 3.3 × 1010 M� to enhance the stability of the
model. Here the bar was implemented as a Ferrers potential (Pfen-
niger 1984), in place of the softened needle adopted in the rest of the
present study; in fact, the Ferrers potential (contrarily to the soft-
ened needle one) was available in the agama toolkit and allowed us
to generate equilibrium initial conditions. The bar properties were
chosen so that the total mass is 1.5 × 1010M� , its axes ratios are
(𝑎, 𝑏, 𝑐)bar = (5, 2, 1) kpc and its initial rotational frequency is 40
km s−1 kpc−1; these choices allowed to obtain a more stable system.
We performed two different simulations, with the same properties
but with different resolution, i.e. one with 𝑁 = 106 particles and 10
pc of spatial resolution, and another one with 𝑁 = 107 and 3 pc of
spatial resolution. In both situations, the dark matter halo was in-
cluded as a rigid analytical potential, while the bar, disc, and bulge
structure were modelled with live particles. We put a total of 16
MOs of 5 × 107M� (i.e. respectively ≈ 103 and 104 times more
massive than the other particles in the run) in the run, whose orbits
were initialized as follows: 𝑟0 = {4, 6, 8, 10} kpc, 𝑓circ = {0.4, 0.8},
and 𝜙 = {0, 90}, for a total of 16 configurations. In addition, we
switched off the gravitational interaction between these MOs, so
that each of them could be considered to be evolving independently
from the others, allowing us to obtain a good statistical sample at
a relatively limited computational cost.8 We simulated the evolu-
tion of the same MOs, within the same underlying potential (the
Softened Needle potential for the bar was here replaced by the Fer-
rers potential), via the semi-analytical orbital integrator, switching
off the dynamical friction from the halo for consistency with the
𝑁-body run. The semi-analytical orbit integration was performed
adopting two different choices for the rotational velocity vrot (𝑅)
entering via vrel in Eq. 7; in one case, we computed it as in Bonetti
et al. (2021) (i.e. as it was done for all the other semi-analytical
integrations in the main body of the paper); in addition, we also
computed vrot (𝑅) by extracting it from the initial conditions of the
simulation and averaging it in the azimuthal direction considering
particles within a thin slice (of total height 60 pc) about the disc
plane.

The MOs distance in time for a sub-sample of our initial con-
ditions and for each of our integration methods is shown in Fig. B1.
The figure shows that stochasticity overall plays a central role in
the evolution of MOs. In fact, even changing the resolution of the
simulation, the inspiral time-scale and overall orbital decay change

8 A similar strategy was proposed and adopted for the first time by Bortolas
et al. (2020).

significantly. This implies that we cannot expect a one-to-one com-
parison between our semi-analytical orbital integrator and the 𝑁-
body simulation. Our results also clearly suggest that the orbits are
very chaotic, and just a small perturbation along the evolution re-
sults in a different dynamics and orbital decay. This also implies that,
although our semi-analytical prescription for DF may not capture
completely the physics underlying this phenomenon, uncertainties
associated with its modelling are most likely a secondary effect,
with stochasticity being the main actor in determining the evolu-
tion. This strongly supports the fact that barsmay induce very erratic
dynamics in the orbital decay of MOs.

This paper has been typeset from a TEX/LATEX file prepared by the author.

MNRAS 000, 1–14 (2022)



The role of bars on the DF-driven inspiral of MOs 15

0
3
6
9

12

t in
sp

ira
l [

Gy
r]

fcirc = 0.1 fcirc = 0.2 fcirc = 0.3 fcirc = 0.4 fcirc = 0.6 fcirc = 0.8

r 0
/k

pc
 =

 1
2.

0

fcirc = 1.0

0
3
6
9

12

t in
sp

ira
l [

Gy
r]

r 0
/k

pc
 =

 1
1.

0

0
3
6
9

12

t in
sp

ira
l [

Gy
r]

r 0
/k

pc
 =

 1
0.

0

0
3
6
9

12

t in
sp

ira
l [

Gy
r]

r 0
/k

pc
 =

 9
.0

0
3
6
9

12

t in
sp

ira
l [

Gy
r]

r 0
/k

pc
 =

 8
.0

0
3
6
9

12

t in
sp

ira
l [

Gy
r]

r 0
/k

pc
 =

 7
.0

0
3
6
9

12

t in
sp

ira
l [

Gy
r]

r 0
/k

pc
 =

 6
.0

0
3
6
9

12

t in
sp

ira
l [

Gy
r]

r 0
/k

pc
 =

 5
.0

0
3
6
9

12

t in
sp

ira
l [

Gy
r]

r 0
/k

pc
 =

 4
.0

0 45 90 135
 [deg]

0
3
6
9

12

t in
sp

ira
l [

Gy
r]

0 45 90 135
 [deg]

0 45 90 135
 [deg]

0 45 90 135
 [deg]

0 45 90 135
 [deg]

0 45 90 135
 [deg]

0 45 90 135
 [deg]

r 0
/k

pc
 =

 3
.0

Figure A1. Same as Fig. 4 but for MOs initially counter-rotating with respect to the bar and disc angular momentum. Counter-rotating orbits seem to be much
less affected by the presence of the bar, except for very radial orbits starting from large separations, which have time to experience the drag towards circular
co-rotation and later evolve coplanarly, so that their late evolution can be assimilated to the co-rotating co-planar cases.
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Figure A2. Same as Fig. 5 but for MOs initially counter-rotating with respect to the bar and disc angular momentum.
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Figure A3. In each plot, the colour refers to the time needed for the MO to complete the inspiral, from blue (0 Gyr) to yellow (13.7 Gyr, the colour-bar is
shown in the top right plot); the white regions refer to runs in which an MO does not complete the inspiral within a Hubble time. Each column of subplots
corresponds to a different 𝑓circ (growing from left to right, i.e. the initial orbit is more and more circular from left to right); each row corresponds to a different
initial MO separation, 𝑟0, which grows from bottom to top. We show the decay time as a function of the initial phase 𝜙 and the angle 𝜃 ; note that the angle 𝜃
is sampled non uniformly to have a finer grid near the disc plane. The narrow coloured strip next to each sub-plot represents the reference colour-coded inspiral
time for the runs without the bar (which have no phase dependence). All plots refer to the case for which 𝛼 = 0 (meaning that the initial MO velocity is always
parallel to the disc plane), and assume an MO of 5 × 106M� .
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Figure A4. Comparison between the in-plane rotation curve for the model
accounting for the bar (blue solid line in the top panel) and for the one
in which the bar is not in place, thus its mass is re-distributed between
the bulge and disc component (orange dashed line). The relative difference
between the two rotation curves is shown in the bottom panel and its absolute
value is always below 4 per cent. The relative difference is computed as
(𝑣circ,bar − 𝑣circ,no bar)/𝑣circ,bar, with 𝑣circ,bar being the circular velocity
associated with the barred potential (note that here the velocity is obtained
by averaging over all possible bar orientations) and 𝑣circ,no bar being the
circular velocity in the galaxy not featuring a bar.
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Figure B1. The plot displays the distance as a function of time of the 5 × 107M� MO for the two 𝑁 -body simulations with a different resolution (𝑁 = 107
and 106 particles for the orange and red line, respectively) and for the semi-analytical runs employing the rotational velocity obtained either via the standard
method adopted in the remaining of the paper (blue line) or from the initial conditions of the 𝑁 -body run (green line). The initializing parameters for the orbit
are shown at the top of each panel.
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