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Abstract: In the recent years there has been an increasing amount

of single-cell sequencing (SCS) studies, producing a considerable

number of new datasets. This has particularly affected the field

of cancer analysis, where more and more papers are published using
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2 1 INTRODUCTION

this sequencing technique that allows for capturing more detailed

information regarding the specific genetic mutations on each indi-

vidually sampled cell.

As the amount of information increases, it is necessary to have more

sophisticated and rapid tools for analyzing the samples. To this goal

we developed plastic, an easy-to-use and quick to adapt pipeline

that integrates three different steps: (1) to simplify the input data;

(2) to infer tumor phylogenies; and (3) to compare the phylogenies.

We have created a pipeline submodule for each of those steps, and

developed new in-memory data structures that allow for easy and

transparent sharing of the information across the tools implementing

the above steps.

While we use existing open source tools for those steps, we have

extended the tool used for simplifying the input data, incorporating

two machine learning procedures — which greatly reduce the run-

ning time without affecting the quality of the downstream analysis.

Moreover, we have introduced the capability of producing some plots

to quickly visualize results.

1 Introduction

During the last few years we have witnessed an explosion of computational

tools to infer tumor phylogenies (also called cancer progressions) from single-

cell sequencing (SCS) data.

Most of the algorithmic research has so far focused on bulk sequencing data

for inferring tumor phylogenies, mainly because of the widespread availability

and affordability of the next-generation sequencing (NGS) data that are used,
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producing a large number of tools Strino et al. (2013); Jiao et al. (2014); Ha-

jirasouliha et al. (2014); Yuan et al. (2015); Popic et al. (2015); Malikic et al.

(2015); El-Kebir et al. (2016); Marass et al. (2016); Satas and Raphael (2017);

Bonizzoni et al. (2018); Toosi et al. (2019); Wu (2019). From a computational

point of view, the main characteristic of bulk sequencing data is that only the

approximate proportion of cells with any given mutation is observable, without

distinguishing the cells that carry them. Moreover, each sample contains a mix-

ture of both healthy and cancerous cells — the latter belonging to different and

unknown clones — therefore further introducing uncertainty.

More recently, the introduction of single-cell sequencing (SCS) technologies

promises to greatly reduce such uncertainty, since the presence or absence of

mutation is determined at the level of the cell. Unfortunately, SCS is still much

more expensive than bulk sequencing, hence limiting its adoption in practice.

Moreover, the quality of the data obtained from SCS is not yet at par with bulk

sequencing Kharchenko (2021). In fact, those datasets are affected by some

clearly identified problems: (1) doublet cell captures, that is, data originating

from two cells instead of one; (2) false negatives from allelic dropout, that is,

the presence of a mutation is not detected; and (3) missing values due to low

coverage. However, all three of these problems are slowly fading away — the

latter two driven by the reduction in cost that allows a higher coverage, and the

first due to the development of state-of-the art approaches DePasquale et al.

(2019) are able to remove such artifacts.

Various methods have been recently developed for inferring tumor phyloge-

nies given current SCS data Jahn et al. (2016); Ross and Markowetz (2016);

Zafar et al. (2017, 2019); Ciccolella et al. (2020b); El-Kebir (2018); Singer et al.

(2018), some of them introducing a hybrid approach of combining both SCS

and VAF (variant allele frequency, from bulk sequencing) data Ramazzotti et al.
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(2019); Malikic et al. (2017); Salehi et al. (2017). To trim the search space and

reduce the time needed to infer a phylogeny, most methods rely on the infinite

sites assumption (ISA), which essentially states that each mutation is acquired

at most once in the phylogeny and is never lost. This assumption leads to a com-

putationally tractable model of evolution called perfect the phylogeny Gusfield

(1991); Kimura (1969).

However, some studies Kuipers et al. (2017); Brown et al. (2017) on cancer

data provide strong hints that the ISA does not always hold, the main reason is

that cancers usually have large independent deletions on separate branches of

the phylogeny Brown et al. (2017). When those deletions span a shared locus,

we observe multiple deletions of the same mutation.

Relaxing the ISA greatly expands the search space, making it more difficult

to develop efficient approaches. For this reason, the number of possible mutation

losses is usually bounded in any (more general) model which relaxes the ISA.

While the general Dollo model Farris (1977); Rogozin et al. (2006) does not

impose any restriction on the number of losses, more restricted models are the

Dollo-k and the Dollo-1 (also known as the persistent phylogenyBonizzoni et al.

(2012, 2017)).

Even though relaxing the ISA increases the complexity, some methods have

appeared, such as TRaIT Ramazzotti et al. (2019), SiFit Zafar et al. (2017),

SASC Ciccolella et al. (2020b) and SPhyR El-Kebir (2018). The latter is ex-

tremely relevant to our context, as it introduces the idea of clustering the input

SCS matrix to reduce the running time. In Ciccolella et al. (2021) this idea is

further developed, by devising a clustering method tailored to SCS data — while

SPhyR instead relied on the ubiquitous k-means McQueen (1967); Anderberg

(1973) algorithm. Since SCS data are becoming cheaper to produce, we expect

the datasets to increase more rapidly than computing power, as mentioned ex-
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plicitly in Kharchenko (2021). Therefore including some steps to reduce the

instance matrix will become even more common in the next years.

The availability of so many tools for inferring tumor phylogenies, not to

mention the parameters that those methods routinely have, means that it is

easy to have several different phylogenies from the same SCS dataset, motivating

the search for methods that are able to compare and cluster those phylogenies

— a large cluster with several highly similar phylogenies is likely to be more

reliable, since the underlying evolution is confirmed by multiple methods. In this

direction, some methods to measure the distance between two tumor phylogenies

have recently been proposed DiNardo et al. (2019); Karpov et al. (2019); Govek

et al. (2018); Bernardini et al. (2019, 2020); Ciccolella et al. (2020a); Jahn et al.

(2021). While these measures vary greatly in practical applicability, they all

express the need for incorporating the evolutionary process into the definition

of distance.

Our discussion so far shows that tumor phylogeny inference is crystallizing

into different, well-established steps that are combined to obtain a complete tool

that starts from an SCS dataset and ends with one or more phylogenies together

with some rough idea of their relationships. Still, how to combine those steps

is largely ad-hoc, making it more time consuming than is necessary to develop

a complete pipeline.

With the goal of making the analysis of cancer data more streamlined, we

developed plastic (PipeLine Amalgamating Single-cell Tree Inference Compo-

nents), an integrated and easy to use tool that includes clustering, phylogeny

inference, and comparison steps. The plastic tool is developed in Python and

can be easily integrated into any script or used inside an interactive notebook,

such as Jupyter Notebook, to facilitate the reproduction of research results.

Currently, plastic incorporates the publicly available tools celluloid, SASC,
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and MP3treesim — respectively for the clustering, inference, and distance steps

— but provides the infrastructure to easily extend it to incorporate any other

tool. In fact, plastic provides unified in-memory data structures to manage

the communication between steps.

Moreover, the current strategies for trimming SCS datasets focus on reducing

the number of mutations, while leaving the set of cells unchanged. We have

divided the clustering step into two parts: first reducing the number of cells, then

reducing the number of mutations. We have explored two strategies for the first

part that has been proven to be useful in the past, namely, ridge regression Hoerl

and Kennard (1970); Marquardt and Snee (1975) and autoencoder Wang et al.

(2014).

Ridge regression is a variant of least squares regression, which deals with

the trade-off between bias and variance while fitting the regression line. As

compared to least squares regression, ridge regression consist of an l2 penalty on

the regression coefficients (see Equation 1). This penalty term in ridge regression

helps to introduce some bias, which eventually helps to reduce the variance while

fitting the regression line (hence regularizing the fit). In least squares regression,

since we do not have the bias, there will be a high variance while fitting the line.

Ridge regression has been successfully used in the literature for dimensionality

reduction Chen et al. (2018); Imakura et al. (2019); Liu et al. (2019).

Autoencoder is an unsupervised approach based on artificial neural networks.

It takes as input the data matrix, encodes it into a latent space (of reduced di-

mension), and then tries to reconstruct the original input from the latent space.

During the reconstruction process, it tries to minimize least squared error. Au-

toencoder has been successfully used in the literature for dimensionality reduc-

tion Ramamurthy et al. (2020); Hu and Greene (2018); D’Agostino et al. (2018);

Abeßer et al. (2017). For further detail about ridge regression and autoencoder,
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please refer to Section 2.1. The idea with both ridge regression and autoencoder

is that we can perform downstream clustering (tree inference, etc.) in reduced

dimensional data, rather than applying clustering, etc., on the high dimensional

data, resulting in reduced downstream runtimes.

We have run two different experiments: one on real data to showcase all fea-

tures of plastic, including its capability to plot clustering of mutations (i.e.,

the output of the clustering step) and trees; and the second on simulated data,

to assess the reduction in running time stemming from the reduction in the num-

ber of cells provided by the two dimensionality reduction strategies mentioned

above. The plastic tool and all data needed to reproduce the analysis can be

found at https://github.com/plastic-phy, including the source code of the

Jupyter notebook used for the real data experiment, witnessing the simplicity

of our approach. The plastic tool is available under the MIT license.

2 Methods

We have developed an integrated, modular, and extendable tool for inferring

and comparing cancer progressions (also referred to as tumor phylogenies) called

plastic, which integrates three separate steps into a single program that shares

the same data structure among these steps. These three steps are (1) input ma-

trix reduction, (2) tumor phylogeny inference, and (3) tumor phylogeny com-

parison.

One of the main contributions of our paper is the integration of different

tools that usually have specific on-disk input and output file formats, therefore

needing a parsing step to process the input, and a dedicated procedure to pro-

duce the output. Instead, plastic uses in-memory data structures to share all

information across the methods.

In particular, plastic provides an SCS matrix data structure that is en-

https://github.com/plastic-phy


8 2 METHODS

SCS matrix

GraphViz Tree

Figure 1: Graphical representation of the plastic framework and the interac-
tion between its components and with the input/output files.

riched with some additional information that can be shared among the different

steps, and a phylogeny tree structure that is used for communication between

the phylogeny inference and the phylogeny comparison steps. Such structures

are transparent to the user and contribute many additional functionalities with-

out complications from the end-user perspective.

Furthermore, given the nature of plastic, we added some graphical capa-

bilities, so that each step of the pipeline can be displayed within an interactive

notebook or be exported to separate files.

Finally, notice that each step is optional, therefore allowing the execution

of the entire pipeline, or only of a part of it. A schematic of our plastic tool

is depicted in Figure 1. We now introduce some of the new dimensionality

reduction features we have added to plastic, as follows.
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2.1 Dimensionality Reduction

Dimensionality reduction is a popular approach to enhance the performance

of machine learning algorithms and to avoid the problem of the “curse-of-

dimensionality” Ali et al. (2019a,b). To increase the clustering performance

and reduce the runtime for clustering, we use two dimensionality reduction ap-

proaches, namely ridge regression Hoerl and Kennard (1970); Marquardt and

Snee (1975) and autoencoder Wang et al. (2014).

The main goal of ridge regression (RR) is to find a linear function, which

models the dependencies between covariate variables and univariate labels. Al-

though ridge regression is an older approach, it is still successfully used in or-

der to reduce the dimensions of current datasets Chen et al. (2018); Zhang

et al. (2010). Ridge regression help to find a subspace, which most com-

pactly expresses the target and rejects other possible but less compact can-

didates Imakura et al. (2019). It works by introducing a bias term — the goal

of ridge regression is to increase the bias (by changing the slope of the regression

line) in order to improve the variance (generalization capability). The general

expression for ridge regression is as follows:

min(sum of square residuals + α× slope2) (1)

where (α×slope2) is an l2 penalty term. Ridge regression gives insights on which

independent variables are not informative (independent variables for which we

can reduce the slope close to zero). We can eliminate those independent vari-

ables to reduce the dimensions of the data. Note that after the dimensionality

reduction, we are left with the variables from the actual data and not some

latent variables.

Autoencoder (AE) is an unsupervised artificial neural network based ap-

proach used for dimensionality reduction Wang et al. (2012, 2016). It consists
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of three the components: encoder; code; and decoder (pictured in Figure 2).

The encoder component compresses the input data and produces the code (low

dimensional latent-space representation). The decoder component then recon-

structs the input only using this low dimensional representation only (hence an

unsupervised approach). The low-dimensional data (in the code component) is

a compact summary, or compression of the input. This compact data is used

as the reduced dimensional representation of the original data. The activation

function used for the encoding component is the rectified linear activation func-

tion (ReLU), while we used the sigmoid function for the decoding. The loss

function that we used in our experiments is the least squared error. The opti-

mizer that we use is Adadelta Polic et al. (2019), a stochastic gradient descent

method which is based on adaptive learning rate per dimension. It is a popular

optimizer used in autoencoder because it avoids the continual decay of learning

rates throughout training. It also helps to decide the global learning rate, hence

not requiring to select it manually.

3 Results

Here we present our results on both real and simulated data.

3.1 Real data

As a result, we show a complete workflow example on a real medulloblastoma

dataset Hovestadt et al. (2019). In particular, we will explore a full pipeline

analysis where multiple samples are taken into account. For each sample: mu-

tations are clustered using celluloid ; phylogeny trees are reconstructed using

SASC ; and finally, the patients are clustered using MP3treesim as similarity

measure between them.

The sequencing study consists of 36 patients that we want to cluster into
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Figure 2: The autoencoder architecture. The encoder takes input data and
maps it to a latent space (code component) of reduced dimension. The decoders
code back the latent representation to the output. This architecture learns to
compress data by reducing the reconstruction error (least squared error).
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GSM3905413_MUV29 GSM3905430_SJ970 GSM3905423_SJ454 GSM3905438_Med411FH GSM3905432_Icb1299 GSM3905416_MUV39 GSM3905414_MUV34 GSM3905407_BCH825 GSM3905441_RCMB24

GSM3905419_SJ17 GSM3905421_SJ129 GSM3905439_RCMB18 GSM3905436_Med211FH GSM3905411_MUV19 GSM3905406_BCH807 GSM3905410_MUV11 GSM3905433_Icb1572 GSM3905428_SJ723

GSM3905427_SJ625 GSM3905431_DMB006 GSM3905409_BCH1205 GSM3905412_MUV27 GSM3905437_Med2312FH GSM3905434_Med114FH GSM3905429_SJ917 GSM3905420_SJ99 GSM3905424_SJ516

GSM3905425_SJ577 GSM3905408_BCH1031 GSM3905440_RCMB20 GSM3905415_MUV37 GSM3905435_Med2112FH GSM3905422_SJ217 GSM3905426_SJ617 GSM3905418_MUV44 GSM3905417_MUV41

Figure 3: Mutations clustered on SCS data computed by the celluloid submodule
and displayed by plastic for the 36 medulloblastoma patients in the dataset
of Hovestadt et al. (2019).

different subtypes. To simulate a real case scenario, where such information is

not available, we started from SCS binary matrices, one for each patient, and we

clustered mutations using celluloid (k = 50), for which we can see a summary

in Figure 3.

After the first preprocessing step, we utilized the SASC submodule of plastic

to infer the evolutionary trees of each patient. As a proof of concept we run

it using the following parameters α = 0.25, β = 1 × 10−4, k = 0, d = 0 for

whose definitions we refer to SASC ’s manuscript Ciccolella et al. (2020b). Once

computed we used the newly-added plotting feature to display the phylogenies

using the SASC-viz plotting feature to prettify the trees; the result is shown in

Figure 4.

As the last step, we then used the MP3treesim submodule to compute a

matrix of similarity-scores between all the trees and then used it to cluster the

patients according to a hierarchical clustering method. We then displayed the

final clustering of the patients in Figure 5.
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Figure 4: Trees computed by the SASC submodule and displayed by plastic

for the 36 medulloblastoma patients in the dataset of Hovestadt et al. (2019).

3.2 Simulated data

To evaluate the performance of the input matrix reduction methods that we

present here, we designed a two-fold experiment on synthetic datasets. We first

measure the quality of the matrix obtained from the reduction step — in this

case we have a ground truth that we can use for the evaluation. Second, we

evaluate the accuracy and runtime of the downstream phylogeny inference tools

when given as input the reduced instance from the first step, to assess that our

reduction step is actually useful. This is similar to the experimental approach

taken in Ciccolella et al. (2021).

The simulated data are generated as follows. First we generate a random tree

topology on s nodes, each representing a tumor clone, by first creating a root

(the germline) and then iteratively attaching the s−1 remaining nodes uniformly

at random to any other node in the tree. The nodes are then randomly labeled

with m mutations — each mutation understood as being acquired at the node

that it labels. Then, a total of n cells are randomly associated to the s nodes.

Each cell harbours all of the mutations on the path in the tree from the root to
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Figure 5: Clustermap based on the similarity between the trees computed by the
mp3 submodule of plastic for the 36 medulloblastoma patients in the dataset
of Hovestadt et al. (2019).
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the node that the cell labels. A binary n×m matrix M is then obtained from

the cells, where M [i, j] = 1 if cell i harbours mutation j, otherwise M [i, j] = 0.

Noise is then added to this matrix according to the false negative, false positive

and missing value rates, to simulate a real single cell sequencing experiment.

Each of the s nodes is therefore considered as a natural (true) cluster of the

simulated dataset.

We design three experiments, each with 100, 200 and 300 cells, respectively.

In each experiment, we generate 50 simulated datasets with its corresponding

number of cells, using the procedure mentioned above. In all three experiments,

the number s of clones is 20, and the number m of mutations is 1000.

To each dataset of our experiments, we first performed dimensionality re-

duction in the cells using both the ridge regression and autoencoder techniques

mentioned in Section 2. The number of dimensions selected in case of autoen-

coder are 50, 100, and 150 for experiments 1, 2 and 3, respectively. This number

of dimensions, in each case, is selected empirically when the least squared error

for the loss function is minimized. The loss function gives us the error value

when autoencoder tries to reconstruct the input in the decoder component. The

main goal in this case is to reconstruct the input as accurately as possible, giving

rise to the respective numbers of dimensions above. The number of dimensions

selected in the case of ridge regression is different for each dataset because ridge

regression is a data driven technique, however the average number of dimensions

for each of experiments 1, 2 and 3 is roughly 49, 97, and 146, respectively (see

Table 1). Following dimensionality reduction in the cells, we then clustered the

mutations using celluloid.

3.2.1 Evaluating input matrix reduction.

Because we are performing dimensionality reduction only on the cells, we can

still use the same measures of precision and recall used in Ciccolella et al. (2021),
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Table 1: Number of cells
selected by ridge regression
from the experimentsa

Experiment mean ± SD

1 48.7 ± 2.51
2 97.0 ± 4.71
3 146 ± 5.85

a The mean (µ) ± standard de-
viation (σ) of the number of cells
selected from the 50 simulated
datasets after applying dimen-
sionality reduction using ridge
regression. Calculations reported
to three significant digits. The
original (full) table, from which
these aggregates were performed,
can be found at https://github.

com/plastic-phy/plastic/blob/

master/data/cells-ridge.csv

which are based on how mutations are clustered together, as follows:

Precision: measures how well mutations are clustered together. For each pair

of mutations appearing in the same clone in the simulated tree, we check

if they are in the same cluster, resulting in a true positive (TP ). For

each pair of mutations clustered together that are not in the same clone,

we encounter a false positive (FP ). The value of the precision is then

calculated with the standard formula: TP
TP+FP .

Recall: measures how well mutations are separated. For each pair of muta-

tions in the same clone, we now also check if they are not in the same

cluster, resulting in a false negative (FN). The recall is then calculated

as: TP
TP+FN .

Notice that, just as in Ciccolella et al. (2021), we are mostly interested in

obtaining a high precision. The reason for focusing on obtaining high precision

is that since cancer phylogeny inference algorithms can later cluster together

mutations — for example, by assigning them to the same node or the same

https://github.com/plastic-phy/plastic/blob/master/data/cells-ridge.csv
https://github.com/plastic-phy/plastic/blob/master/data/cells-ridge.csv
https://github.com/plastic-phy/plastic/blob/master/data/cells-ridge.csv
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Figure 6: Precision and recall results of the clusterings of the mutations ob-
tained for experiment 1, generated with 1000 mutations and 100 cells. The first
row corresponds the results obtained by clustering the mutations to k = 100
clusters using celluloid (no dimensionality reduction). The second and third
rows correspond to first applying a dimensionality reduction step on the 100
cells, using ridge regression and autoencoder, respectively, followed by the clus-
tering of the 1000 mutations to k = 100 clusters (in the reduced number of cells)
using celluloid .

non-branching path — however they cannot separate mutations that have been

erroneously clustered together. It is for this same reason that the number (k)

of clusters is carefully chosen with high precision in mind.

On the other hand, ridge regression does not allow to determine a priori the

number of cells that will be obtained. For this reason we report, in Table 1, the

distributions1 of the actual number of cells obtained.

Figures 6, 7, and 8 correspond to the precision and recall of the clusterings

of the mutations obtained after first applying dimensionality reduction in the

cells of experiments 1, 2 and 3, respectively.

3.2.2 Evaluating the effect of the reduction step on downstream phy-

logeny inference

The goal of dimensionality reduction (in the cells) and clustering (of the mu-

tations) is to allow for a significant decrease in the runtime of the phylogeny

inference, the most expensive step in the pipeline — as long as it does not worsen

1note that the variance of all three distributions is small
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Figure 7: Precision and recall results of the clusterings of the mutations ob-
tained for experiment 2, generated with 1000 mutations and 200 cells. The first
row corresponds the results obtained by clustering the mutations to k = 100
clusters using celluloid (no dimensionality reduction). The second and third
rows correspond to first applying a dimensionality reduction step on the 200
cells, using ridge regression and autoencoder, respectively, followed by the clus-
tering of the 1000 mutations to k = 100 clusters (in the reduced number of cells)
using celluloid .
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Figure 8: Precision and recall results of the clusterings of the mutations ob-
tained for experiment 3, generated with 1000 mutations and 300 cells. The first
row corresponds the results obtained by clustering the mutations to k = 100
clusters using celluloid (no dimensionality reduction). The second and third
rows correspond to first applying a dimensionality reduction step on the 300
cells, using ridge regression and autoencoder, respectively, followed by the clus-
tering of the 1000 mutations to k = 100 clusters (in the reduced number of cells)
using celluloid .



3.2 Simulated data 19

the accuracy. The idea is that, since the reduced matrix has much fewer rows

and columns, using it in place of the original matrix as input to the phylogeny

inference should result in much lower runtimes, at the risk of decreasing the

accuracy of downstream analysis, due to errors introduced in the dimensional-

ity reduction and clustering steps. The main observation is that, if the clusters

are highly precise, the decrease of the accuracy of the downstream inference

is negligible or small. Assessing this fact is the main goal of our experimental

analysis, based on the measures used in Ciccolella et al. (2020c,b):

Ancestor-descendant accuracy: For each pair (m1,m2) of mutations such

that m1 is an ancestor of m2 in the ground truth, we check whether m1 is

an ancestor of m2 also in the inferred tree (TP ) or whether it is not (FN).

Moreover, each pair (m1,m2) of mutations such that m1 is an ancestor of

m2 in the inferred tree but not in the ground truth, we consider that pair

a false positive.

Different lineages accuracy: Similarly to the previous measure, we check

whether mutations in different branches (i.e., neither is an ancestor of

the other) are correctly inferred or if any pair of mutation is erroneously

inferred in different branches.

Since these new dimensionality reduction techniques are built into the plastic

framework, one can customize a cancer phylogeny inference task by:

1. choosing any (or none of the) dimensionality reduction steps from ridge

regression or autoencoder; followed by

2. clustering (or not) with celluloid ; and finally

3. phylogeny inference with SASC in either the reduced set of cells, or not.

An extensive study of how clustering can reduce the runtime (and sometimes

improve accuracy) of the downstream phylogeny inference appears in Ciccolella
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et al. (2021), and so here we explore the further gains in runtime and/or accuracy

that might be achieved by adding a dimensionality reduction step. Hence, in

our experiments, we try three different choices for the reduction step — ridge

regression, autoencoder, and no dimensionality reduction to produce a matrix

to be given to celluloid (notice that SASC will receive the matrix on the original

set of cells, but with the clustered mutations). Moreover, when applying ridge

regression, we also provide the reduced set of cells to SASC, hence resulting in

four different settings — when no dimensionality reduction is performed, the

reduced and the original sets of cells are the same, while autoencoder produces

reduced matrices in its learned latent tensor space, which is not an SCS matrix

that can be fed to SASC. We always perform the clustering step, because 1000

mutations is prohibitive for the downstream phylogeny inference (see Ciccolella

et al. (2021)).

Figures 9, 10 and 11 report the ancestor-descendant and different lineages

accuracy measures of the trees obtained by running plastic with the four

settings mentioned above. From the results, it is clear that when dimensionality

reduction is followed by inference in the original set of cells, there is no noticeable

loss in accuracy. In these two cases, the clustering is still performed in the

reduced set of cells, providing a speedup at no cost. On the other hand, we

see a slight loss of accuracy in the ancestor-descendant measure when ridge

regression is applied, and the resulting reduced set of cells is used also in the

inference step.

We have investigated the speedup provided by ridge regression. In Figure 12

are represented the running times of celluloid with and without first applying

ridge regression, as a function of the number of mutations. More precisely, we

take the first columns of the datasets of Experiment 1 (the number of mutations

is the x axis).
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Figure 9: Ancestor-descendant and different lineages accuracies of the trees
obtained by running plastic on the data of experiment 1. From the top, the
four rows correspond to the settings: no dimensionality reduction, just clustering
— No Reduction —; ridge regression + clustering in the original set of cells —
Ridge —; autoencoder + clustering in the original set — Autoencoder —; and
ridge regression + clustering in the reduced set — Ridge(reduced).

Table 2: Runtimes of SASC on the
experimentsa

Experiment celluloid RR + celluloid

1 37.7 ± 24.3 0.414 ± 0.0710
2 44.3 ± 21.2 0.832 ± 0.0682
3 34.2 ± 25.6 1.31 ± 0.112

a The mean (µ) ± standard deviation (σ) of the runtime
of SASC on the 50 datasets of each of the three exper-
iments (on the original set of cells), after having either:
clustered the mutations of the input matrix using cellu-
loid (celluloid); or performed dimensionality reduction
on the cells using ridge regression, followed by clustering
the mutations with celluloid (RR + celluloid). Times
are reported in hours, and to three significant digits.

Finally, in Table 2 we report the running times of SASC when ridge regres-

sion is applied, and the resulting reduced set of cells is used also in the inference

step, that is, the case where we have observed a slight loss of accuracy in the

ancestor-descendant measure. In this case the phylogeny inference is up to 100

times faster, making therefore possible to run SASC on more mutations.
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Figure 10: Ancestor-descendant and different lineages accuracies of the trees
obtained by running plastic on the data of experiment 2. From the top, the
four rows correspond to the settings: no dimensionality reduction, just clustering
— No Reduction —; ridge regression + clustering in the original set of cells —
Ridge —; autoencoder + clustering in the original set — Autoencoder —; and
ridge regression + clustering in the reduced set — Ridge(reduced).
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Figure 11: Ancestor-descendant and different lineages accuracies of the trees
obtained by running plastic on the data of experiment 3. From the top, the
four rows correspond to the settings: no dimensionality reduction, just clustering
— No Reduction —; ridge regression + clustering in the original set of cells —
Ridge —; autoencoder + clustering in the original set — Autoencoder —; and
ridge regression + clustering in the reduced set — Ridge(reduced).
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Figure 12: Runtime analysis, as a function of the number of mutations, of the
clustering step (celluloid) without dimensionality reduction using ridge regres-
sion (in black), and with ridge regression (in red).
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4 Discussion

Given the large amount of SCS cancer studies that are being published, there is

a need for a fast and easy-to-use framework that allows to perform the needed

analyses. We developed plastic with this goal in mind, a pipeline composed

of different submodules that allow for dimensionality reduction on SCS cells,

clustering of SCS mutations, inference of tumor phylogenies, comparison of such

trees, and convenient plotting of the results.

Each of the submodules can be used independently or they can be used in

conjunction with each other to create complex operations, due to special data

structures developed for the interaction between different methods.

The plastic pipeline is open-source and available at https://github.com/

plastic-phy along with extensive documentation and a Jupyter Notebook that

replicates the real-case scenario depicted in Section 3.1.

Future improvements for plastic would be to include more tools into the

pipeline to extend the breadth of analyses available and to provide additional

algorithmic alternatives for the same task. Moreover, we could incorporate

more steps, such as the removal of doublets, to streamline the entire pipeline

even more.
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