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Abstract

The current work deals with an epidemic model on the complete graph 𝕂𝑛 on 𝑛
vertices in a non-homogeneous setting, where the vertices may have distinct types.
Different types differ in the probability of getting infected, and/or in the capacity of
infecting other vertices. This generalizes the model in [4]. We prove in Theorem 5.1
and Theorem 6.3 laws of large numbers and central limit theorems for the the total
duration of the process and for the number of infected vertices, respectively, when
𝑛 → ∞. Moreover, we also prove that when all individuals have the same spread
capacity, then a population with inhomogeneous susceptibility is less affected by the
epidemics than a homogeneous population.

Keywords: multitype Galton-Watson process, coupon collector, branching process, limit
theorems, Markov chain, Poisson process, random trees.

AMS subject classification: 60J10, 60J80, 60F17.

1 Introduction

We consider an epidemic model in an inhomogeneous environment, where a virus arrives
from outside the system and infects one individual of a population. Then, the infected indi-
vidual attempts to infect some other individuals of the population, and these individuals, in
turn, try to infect other individuals, and so on. We start with a population of 𝑛 individuals,
that will be encoded in the vertices of the complete graph 𝕂𝑛 on 𝑛 vertices. The virus can
circulate along the edges of 𝕂𝑛. When we refer to a vertex of a graph, we think of it as an
individual of the population.

Once a target vertex 𝑢 is hit by an infection attempt, two things may happen. Either 𝑢
is visited for the first time, then it becomes infected and makes itself ℒt(𝑢)(𝑢) attempts to
infect other vertices in the graph. The number ℒt(𝑢)(𝑢) is called the spread capacity of 𝑢
and will be introduced in full detail later. Or the vertex 𝑢 has been infected before, then
it has antibodies, and it has already revealed its spread capacity, so nothing happens, but
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just one piece of the spread capacity of the source vertex is lost. The process stops when
either all vertices have been infected, or there are non-infected vertices, but the total spread
capacity is exhausted, which happens when too much capacity was wasted on vertices with
antibodies.

A mathematically equivalent problem is that of information transmission in a network, as
used in [4, 5]: the vertices of the graph are computers and when one of these computers
receives a message, it spreads the message to a certain number of further computers, but it
does so only if it has received the message for the first time.

During this work we shall refer to our model as the virus spread model or infection model.
We recall that processes where individuals after infection become immune are often called
SIR models (susceptible-infected-recovered) – see [3] for an introduction to this model and
to other epidemic models. There is a vast literature on SIR models. On infinite graphs the
aim is usually to study the shape of the set of the sites reached by infection (see for instance
[6], [13], [1]) or to identify the critical parameter below which the epidemics dies out in a
finite time (in these cases there is a parameter which tunes the intensity of the epidemics,
see [10]). In the present paper the graph is finite, hence the epidemics ends almost surely
in finite time. Natural questions in this context are how long the whole epidemic lasts,
whether all vertices are infected during the epidemic and, if not, how large the number of
infected/non-infected vertices is.

A slightly different, well-studied epidemic model is the so-called frog model, where infected
individuals randomly walk on the graph and infect all the susceptible individuals they
meet on their way. When the underlying graph is the complete graph, the frog model
is a particular case of our model. In [9] this model was considered on complete graphs
where all vertices are equally likely to be infected and they all have the same deterministic
spread capacity. In that paper individuals are assumed to have a deterministic number 𝐿 of
“lives” and one life is lost when the infection attempt is unsuccessful. This translates into
our language by assuming that each individual has a spread capacity equal to 𝐿 + 1. The
authors derive laws of large numbers and central limit theorems for the number of individuals
eventually infected and law of large numbers for the number of infection attempts. The
frog model on complete graphs has recently been studied in [11] (with geometric lifespans
and simultaneous infection attempts), and [14] (where simultaneous infection attempts are
allowed).

In [4] the model was generalized to random spread capacities and laws of large numbers,
central limit theorems and large deviation results are derived. Later on, in [5] these results
have been generalized from complete graphs to Erdös-Rényi graphs; in particular in [5] it
is shown that the model behaves in the limit roughly like the one on complete graphs from
[4] by using a coupling argument. However, in [4] and the other works mentioned so far
the environment was homogeneous in the sense that all vertices had the same (distribution
of the) spread capacity and the same probability of getting infected. As we all know,
such assumptions are not very realistic, e.g. the probability to infect a member of the same
family is much higher than infecting the member of another family, people with many social
contacts have a higher probability of being infected and will infect more people once they are
infected. Finally, also factors like age or other diseases can increase the probability of being
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infected. So, a straightforward generalization of the model introduced in [4] is to consider
𝐽 different types of vertices with distinct spread capacities and infection probabilities, for
some fixed number 𝐽 ∈ N. The type of a vertex will be represented by a type function
t : 𝕂𝑛 → {1, 2 . . . , 𝐽} such that, for each vertex 𝑣, t(𝑣) = 𝑖 ∈ {1, 2 . . . , 𝐽} means that 𝑣 is
of type 𝑖.

Somehow similarly to [4], our proof approach will be to consider a multitype Galton-Watson
tree and a coupon collector with 𝐽 different types of coupons on the same probability space
as the infection model. In contrast to [4], in our model the coupons will be unequally
likely, and thus the success epochs (time needed to collect a new coupon) will not be
independent random variables. Independence was heavily used in [4]. To overcome the
difficulties arising in the non-independent case, we use thinned Poisson processes as time
intervals of the infection process.

Structure of the paper. In Section 2 we rigorously introduce our infection model and
multitype Galton-Watson processes. We also show how to represent such a process as a
Markov chain for which we write down the transition probabilities, and how to interpret it
as a coupon collector’s problem. Then in Section 3 we couple the infection model with a
Poisson process, and then by using the thinning property of such processes, we get rid of the
dependencies produced by the coupons of different types and probabilities of being chosen.
Subsequently, in Section 3.1 we prove limit results for the number of infected individuals
and for the acquisition times in the continuous-time setting. In Section 4, we look at our
model as a random subtree of a multitype Galton-Watson tree with 𝐽 different types, and
we show that as in the homogeneous case, the infection takes place on a macroscopic time
level. In Section 5 we prove law of large numbers for the total duration of the process 𝜏𝑛
and for the total number 𝑁𝑛(𝜏𝑛) of individuals infected by time 𝜏𝑛 respectively, while in
Section 6 we prove central limit theorems for the same quantities. Finally, in Section 7,
we compare the homogeneous case with the inhomogeneous one. In particular we prove
that when the spread capacities of the individuals are identically distributed, the epidemics
in the inhomogeneous enviroment (that is, with non-uniform susceptibilities) lasts less and
involves a smaller fraction of the population, when compared to the case with uniform
susceptibility. On the other hand, if also the spread capacities are allowed to have different
laws, then it may happen that a population with non-uniform susceptibility is less affected
by the epidemics (for instance when more susceptible individuals have smaller expected
spread capacity) or it may be more affected (for instance when more susceptible individuals
have larger expected spread capacity).

2 Preliminaries

Let (Ω,ℱ ,ℙ) be a generic probability space on which all our random variables and processes
are defined.

Conventions and notations. The number 𝐽 ∈ N will be reserved for the number of
types, and we will sometimes write [𝐽 ] := {1, 2, . . . , 𝐽}. We use the same notation [𝑛] :=
{1, 2, . . . , 𝑛} for any natural number 𝑛 ≥ 1. All our vectors will be regarded as column
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vectors, and for a vector 𝗎 ∈ R𝐽 (or infinite dimensional) the notation 𝗎 = (𝗎1, . . . 𝗎𝐽)
is purely for convenience. When we deal with row vectors, it will be either mentioned
explicitly, or it will be clear from the context. For 𝑖 ∈ [𝐽 ], denote by 𝖾𝑖 = (0, . . . , 1, . . . , 0)
the 𝑖-th standard basis vector in R𝐽 that has 1 in the 𝑖-th coordinate, and all the other
coordinates are 0.

Stochastic processes. For any discrete-time processes (𝑋𝑡)𝑡∈N, (𝑋𝑡)𝑡≥0 stands for
(𝑋⌊𝑡⌋)𝑡≥0, where ⌊𝑡⌋ stands for the floor function. We may also use the ceiling function ⌈·⌉.
For any interval 𝐼 in R, define the Skorohod space 𝒟(𝐼,R) as the space of cádlág functions
(right continuous with left limits) from 𝐼 to R. As usual, we endow 𝒟(𝐼,R) with the
standard J1 topology introduced by Skorohod (see [2] or [8]). We remind that convergence
in the J1 topology implies uniform convergence on compact sets when the limit function is
continuous.

2.1 Virus spread model

We take 𝕂𝑛, the complete graph on 𝑛 vertices, as the base state space where the infection
takes place and recall that, for 𝐽 ∈ N, the type of a vertex is represented by the type
function t : 𝕂𝑛 → {1, 2 . . . , 𝐽} that is, for each vertex 𝑣, t(𝑣) = 𝑖 ∈ {1, 2 . . . , 𝐽} means that
𝑣 is of type 𝑖. The type function is deterministic and fixed at the beginning. For 𝑖 ∈ [𝐽 ],
denote by 𝑛𝑖 = |{𝑣 ∈ 𝕂𝑛 : t(𝑣) = 𝑖}| the number of vertices in 𝕂𝑛 with type 𝑖, so that
𝑛 =

∑︀𝐽
𝑖=1 𝑛𝑖. We assume that each vertex of type 𝑖 ∈ [𝐽 ] has been assigned the weight

𝑝𝑖 ∈ (0, 1) (the probability) so that the total weight is 1 = 𝑛1𝑝1+𝑛2𝑝2+ . . . 𝑛𝐽𝑝𝐽 . The goal
of this paper is to extend part of the results in [4], where all vertices have the same type
and equal weights 1/𝑛, to the non-homogeneous setting of vertices with different types and
weights. If 𝑝1 = . . . = 𝑝𝐽 = 1

𝑛 , then the proportion 𝑛𝑖/𝑛 of vertices of type 𝑖 in the graph
represents the weight of this group. We do not restrict to the case of equal probabilities,
and the weight of the group of vertices of type 𝑖 will be denoted by 𝛼𝑖 := 𝑝𝑖𝑛𝑖, for 𝑖 ∈ [𝐽 ].

Description of the virus spread model. We consider the following stochastic process
in discrete time. At time 𝑡 = 0, a fixed vertex 𝑣0 ∈ 𝕂𝑛 receives a virus from outside, and it
spreads the virus among the vertices of 𝕂𝑛 at random, considering that the spread capacity
of each vertex is limited and encoded in the following random variables. Let ℒ1, . . . ,ℒ𝐽 be
𝐽 independent N-valued random variables representing the number of infection attempts
that vertices of different types make once they are infected. Furthermore, denote by 𝐿(𝑖,𝑗)

the N-valued random variable that gives the number of vertices of type 𝑗 that one infected
vertex of type 𝑖 can in turn infect, so ℒ𝑖 =

∑︀𝐽
𝑗=1 𝐿

(𝑖,𝑗), and for 𝑖 ∈ [𝐽 ]. The random variables

𝐿(𝑖,𝑗) will also be used as entries of an offspring distribution matrix 𝐿 in a multitype Galton-
Watson process in what follows.

For every 𝑖 ∈ [𝐽 ], let (ℒ𝑖(𝑢)){𝑢∈𝕂𝑛: t(𝑢)=𝑖} be a family (of length 𝑛𝑖) of i.i.d. copies of ℒ𝑖.
For a vertex 𝑢 of type 𝑖, the random variable ℒ𝑖(𝑢) represents the spread capacity of 𝑢, and
has the same distribution as ℒ𝑖. For technical reasons we also need ℒ𝑖(𝑢) to be defined if
t(𝑢) ̸= 𝑖, but these random variables are void of meaning. We write ℒ := (ℒ1,ℒ2, . . . ,ℒ𝐽)
for the vector of spread capacities.
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Notice that the offspring distribution (𝐿(𝑖,𝑗))𝑖,𝑗∈[𝐽 ] we can realize is far from arbitrary.
In fact, given the event {ℒ𝑖(𝑢) = 𝑙} that vertex 𝑢 makes 𝑙 ∈ N infection attempts, the
types of the vertices hit by these 𝑙 attempts are i.i.d. with probabilities 𝛼1, . . . , 𝛼𝐽 , and
thus the numbers (𝐿(𝑖,1)(𝑢), . . . , 𝐿(𝑖,𝐽)(𝑢)) are multinomial distributed with parameter 𝑙
and 𝛼1, . . . , 𝛼𝐽 , i.e.

ℙ
[︀
𝐿(𝑖,1)(𝑢) = 𝑘1, . . . , 𝐿

(𝑖,𝐽)(𝑢) = 𝑘𝐽 |ℒ𝑖(𝑢) = 𝑙
]︀
=

(︂
𝑙

𝑘1, . . . , 𝑘𝐽

)︂
𝛼𝑘1
1 · · · · · 𝛼𝑘𝐽

𝐽 .

for all 𝑘1, . . . , 𝑘𝐽 ∈ N with
∑︀𝐽

𝑖=1 𝑘𝑖 = 𝑙, where
(︀

0
0,...0

)︀
:= 1. Hence the distribution of the

vector
(︀
𝐿(𝑖,1)(𝑢), . . . , 𝐿(𝑖,𝐽)(𝑢)

)︀
is given by

ℙ
[︀
𝐿(𝑖,1)(𝑢) = 𝑘1, . . . , 𝐿

(𝑖,𝐽)(𝑢) = 𝑘𝐽
]︀
= ℙ[ℒ𝑖(𝑢) = 𝑙] ·

(︂
𝑙

𝑘1, . . . , 𝑘𝐽

)︂
𝛼𝑘1
1 · · · · · 𝛼𝑘𝐽

𝐽 . (1)

where 𝑙 := 𝑘1 + · · · + 𝑘𝐽 . With the random variables introduced above, we are now ready
to explain how the model works. Suppose that the vertex 𝑣0 ∈ 𝕂𝑛 that receives the virus
is of type 𝑖0 ∈ [𝐽 ], i.e. t(𝑣0) = 𝑖0. This first vertex reveals its spread capacity ℒ𝑖0(𝑣0), with
ℒ𝑖0(𝑣0) =

∑︀𝐽
𝑖=1 𝐿

(𝑖0,𝑖)(𝑣0) and distributes it randomly among the neighbors, not uniformly,
but according to the probabilities 𝑝𝑖, 𝑖 = 1, . . . , 𝐽 . One may think of having ℒ(𝑖0) indepen-
dent random walkers at 𝑣0 that perform independently one random step according to the
transition probability 𝑝𝑗 , so that 𝐿(𝑖0,𝑗) walkers reach a vertex of type 𝑗 for each 𝑗 ∈ [𝐽 ].
That is, the spread capacity 𝐿(𝑖0,𝑗)(𝑣0) is spread only among vertices of type 𝑗. Recall that∑︀

𝑢∈𝕂𝑛
𝑝t(𝑢) =

∑︀𝐽
𝑖=1 𝑛𝑖𝑝𝑖 = 1. Once another vertex is reached for the first time by such a

random walker, this vertex reveals its capacity, and does the same thing as the first vertex
𝑣0. If a random walker reaches a vertex infected previously, nothing happens. We continue
until there is nothing to be spread around. We can describe the above model as a Markov
chain in discrete time. Since the number 𝑛 of vertices is finite, this process will terminate
in finite time, because the spread capacity of each individual (vertex) is assumed to be a.s.
finite.

Our main goal is to study the asymptotics, in 𝑛, for the probability of infecting every
site, for the proportion of infected vertices of each type before exhaustion and for the total
duration of the process.

Virus spread model as a Markov chain

We describe now formally the model introduced heuristically above, as a Markov chain
(𝖬𝑡)𝑡∈N, where 𝖬𝑡 is given by the following (𝐽 + 1)-uple in N𝐽+1:

𝖬𝑡 = (𝖭1
𝑡 ,𝖭

2
𝑡 , . . . ,𝖭

𝐽
𝑡⏟  ⏞  

:=𝖭𝑡

, 𝖲𝑡) = (𝖭𝑡, 𝖲𝑡)

where 𝖭𝑖
𝑡, for 𝑖 ∈ [𝐽 ] represents the number of vertices of type 𝑖 infected by time 𝑡 and 𝖲𝑡

represents the total spread capacity (revealed and available for distribution) by time 𝑡. We
suppress the index 𝑛 in the definition of the Markov chain 𝖬𝑡 and in the random variables in
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the (𝐽 +1)-uple, but it is clear that all those random variables depend on the total number
𝑛 of available vertices. Suppose at time 𝑡 = 0, the virus reaches a vertex 𝑣0 with type 𝑖0,
that is

𝖭0 = 𝖾𝑖0 , 𝖲0 = ℒ(𝑖0)(𝑣0) ∼ ℒ(𝑖0), and 𝖬0 = (𝖾𝑖0 ,ℒ(𝑖0)).

Given the state (𝗇1, . . . , 𝗇𝐽 , 𝗌) of the Markov chain (𝖬𝑡)𝑡∈N at time 𝑡, the state at time 𝑡+1
is given by⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(𝗇1, . . . , 𝗇𝐽 , 𝗌− 1), with probability
∑︀𝐽

𝑖=1 𝗇
𝑖𝑝𝑖

(𝗇1 + 1, 𝗇2, . . . , 𝗇𝐽 , 𝗌+ ℒ1
𝑡 − 1), with probability 𝑝1(𝑛1 − 𝗇1)

...

(𝗇1, . . . , 𝗇𝑖 + 1, . . . , 𝗇𝐽 , 𝗌+ ℒ𝑖
𝑡 − 1), with probability 𝑝𝑖(𝑛𝑖 − 𝗇𝑖)

...

(𝗇1, . . . , . . . , 𝗇𝐽 + 1, 𝗌+ ℒ𝐽
𝑡 − 1), with probability 𝑝𝐽(𝑛𝐽 − 𝗇𝐽)

(2)

as long as 𝗌 ̸= 0. In reality, the process stops if 𝗌 = 0. For technical reasons, we have,
however, to assume that it continues, but its values are void of meaning then. Remark that
𝖭𝑡 = (𝖭1

𝑡 ,𝖭
2
𝑡 , . . . ,𝖭

𝐽
𝑡 ) is a Markov process itself, the so-called coupon collector’s process,

where the coupons are chosen with unequal probabilities. We denote by 𝒩𝑡 =
∑︀𝐽

𝑖=1𝖭
𝑖
𝑡 the

total number of vertices infected - or collected coupons - by time 𝑡.

The sequence of the revealed spread capacities (ℒ𝑡)𝑡∈N =
(︀
(ℒ1

𝑡 , . . . ,ℒ𝐽
𝑡 )
)︀
𝑡∈N is an i.i.d. copy

of the random variable ℒ = (ℒ1, . . .ℒ𝐽) as introduced at the beginning of this section. Since
𝑛 is finite, and each vertex has a finite spread capacity, this process will terminate in finite
time 𝜏 := 𝜏𝑛,

𝜏𝑛 := min{𝑡 ∈ N : 𝖲𝑡 = 0} (3)

either when all vertices were reached and exhausted their own capacity, or when there is
no more capacity to be spread even though some of the vertices were not visited at all.
We will be interested in the asymptotic behavior of 𝜏𝑛, and in the total number of infected
vertices at exhaustion

∑︀𝐽
𝑖=1𝖭

𝑖
𝜏𝑛 . It suffices to understand the law of the random vector

(𝖭1
𝜏𝑛 ,𝖭

2
𝜏𝑛 , . . . ,𝖭

𝐽
𝜏𝑛) in order to obtain the limit behavior for 𝒩𝜏𝑛 =

∑︀𝐽
𝑖=1𝖭

𝑖
𝜏𝑛 .

Acquisition and inter-arrival times. In order to have a better understanding of the
joint limit behavior of the process 𝖭𝑡 = (𝖭1

𝑡 ,𝖭
2
𝑡 , . . . ,𝖭

𝐽
𝑡 ), where for 𝑖 ∈ [𝐽 ], 𝖭𝑖

𝑡 represents the
number of vertices in 𝕂𝑛 of type 𝑖 that have been infected by time 𝑡, we will also introduce
acquisition times 𝑇 𝑖

𝑘 and inter-arrival times Δ𝑖
𝑘: for 𝑖 ∈ [𝐽 ] and 𝑘 = 1, . . . , 𝑛𝑖 denote by 𝑇 𝑖

𝑘

the time needed to reach the 𝑘-th vertex of type 𝑖, and by Δ𝑖
𝑘 the time needed, after the

(𝑘 − 1)-th vertex of type 𝑖 has been collected, to collect the 𝑘-th one, that is

𝑇 𝑖
𝑘 = inf{𝑡 ∈ N : 𝖭𝑖

𝑡 = 𝑘}

Δ𝑖
𝑘 = 𝑇 𝑖

𝑘 − 𝑇 𝑖
𝑘−1 or equivalently 𝑇 𝑖

𝑘 =
𝑘∑︁

𝑗=1

Δ𝑖
𝑗
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and 𝖭𝑖
𝑡 =

∑︀𝑛𝑖
𝑘=1 1{𝑇 𝑖

𝑘≤𝑡}. While in the case when all vertices have the same type and the same
probability of being chosen, the inter-arrival times are independent geometrically distributed
random variables, when one has different types of vertices with unequal probabilities of
reaching them, we do not have independence anymore.

2.2 Multitype Galton-Watson processes

It may be useful to view Multitype Galton-Watson processes as random subtrees of the
Ulam-Harris tree that we define now.

Ulam-Harris tree. The infinite Ulam-Harris tree 𝒰∞ is the infinite rooted tree with
vertex set 𝑉∞ :=

⋃︀
𝑛∈N0

N𝑛, the set of all finite strings or words 𝑣1 · · · 𝑣𝑛 of positive integers
over 𝑛 letters, including the empty word ∅ which we take to be the root, and with an edge
joining 𝑣1 · · · 𝑣𝑛 and 𝑣1 · · · 𝑣𝑛+1 for any 𝑛 ∈ N0 and any 𝑣1, · · · , 𝑣𝑛+1 ∈ N. Thus every vertex
𝑣 = 𝑣1 · · · 𝑣𝑛 has outdegree ∞, and the children of 𝑣 are the words 𝑣1, 𝑣2, . . . and we let
them have this order so that 𝒰∞ becomes an infinite ordered rooted tree. We will identify
𝒰∞ with its vertex set 𝑉∞, where no confusion arises. For vertices 𝑣 = 𝑣1 · · · 𝑣𝑛 we also write
𝑣 = (𝑣1, . . . , 𝑣𝑛), and if 𝑢 = (𝑢1, . . . , 𝑢𝑚) we write 𝑢𝑣 for the concatenation of the words 𝑢
and 𝑣, that is 𝑢𝑣 = (𝑢1, . . . , 𝑢𝑚, 𝑣1, . . . , 𝑣𝑛). The parent of 𝑣1 · · · 𝑣𝑛 is 𝑣1 · · · 𝑣𝑛−1. Further,
if 𝑘 ≤ 𝑚, we set 𝑢|𝑘 := 𝑢1 . . . 𝑢𝑘 for the vertex 𝑢 truncated at height 𝑘. Finally, for 𝑢 ∈ 𝒰∞,
we use the notation |𝑢| = 𝑛 for 𝑢 ∈ N𝑛, that is 𝑢 is a word of length (or height) 𝑛, that is,
at distance 𝑛 from the root ∅. The family 𝒯 of ordered rooted trees can be identified with
the set of all subtrees T of 𝒰∞ that have the property that for all 𝑣 ∈ 𝑉 (T):

𝑣𝑖 ∈ 𝑉 (T) ⇒ 𝑣𝑗 ∈ 𝑉 (T), for all 𝑗 ≤ 𝑖,

where 𝑉 (T) denotes the set of vertices of T. For a tree in 𝒯 which is not rooted at ∅, but
at some other vertex 𝑢 ∈ 𝒰∞, we write T𝑢. For two vertices 𝑢, 𝑣 ∈ 𝒰∞ we denote by 𝑑(𝑢, 𝑣)
their graph distance, that is, the length of the shortest path between 𝑢 and 𝑣. For trees
rooted at ∅, we omit the root and we write only T.

For 𝒯 = {all ordered rooted subtrees T of 𝒰∞} and 𝐽 ∈ N, a 𝐽-type tree is a pair (T, t⋆)
where T ∈ 𝒯 and t⋆ : T → {1, . . . , 𝐽} is a function defined on the vertices of T which
returns for each vertex 𝑣 its type tT(𝑣). We denote by 𝒯 [𝐽 ] the set of all 𝐽-type trees, and
elements of 𝒯 [𝐽 ] will be referred to as T without explicitly mentioning the function t⋆.

A multitype Galton-Watson processes (MGW), called also multitype branching process, is a
natural generalization of a Galton-Watson process, where a finite number of distinguishable
types of particles with different probabilistic behavior are allowed. We use again 𝐽 ∈ N for
the number of particle types, and the particle types will be the same as the 𝐽 different types
of vertices in the complete graph 𝕂𝑛 and will be denoted by {1, . . . , 𝐽}. In order to relate
the infection model with multitype Galton-Watson processes, we proceed as follows. We
consider the sequence

(︀
𝐿(𝑖)

)︀
𝑖∈[𝐽 ] of 𝐽 independent random (row) vectors in R𝐽 , with entries

𝐿(𝑖) =
(︀
𝐿(𝑖,1), . . . , 𝐿(𝑖,𝐽)

)︀
, whose distribution is given by (1), and with these 𝐽 vectors we

build our Galton-Watson tree. The vector 𝐿(𝑖) represents the offspring distribution vector
of a vertex of type 𝑗, meaning that for 𝑗 ∈ [𝐽 ], the entry 𝐿(𝑖,𝑗) represents the number of
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offspring of type 𝑗 produced by a vertex of type 𝑖. Let now 𝐿 be the 𝐽 × 𝐽 random matrix
whose rows are the vectors 𝐿(𝑖):

𝐿 =
(︁
𝐿(1), 𝐿(2), . . . , 𝐿(𝐽)

)︁
=

⎛⎜⎜⎜⎝
𝐿(1,1) 𝐿(1,2) · · · · · · 𝐿(1,𝐽)

𝐿(2,1) 𝐿(2,2) · · · · · · 𝐿(2,𝐽)

...
...

...
...

...

𝐿(𝐽,1) 𝐿(𝐽,2) · · · · · · 𝐿(𝐽,𝐽)

⎞⎟⎟⎟⎠
Starting with the random matrix 𝐿 as introduced above, we can now define multitype
Galton-Watson trees as 𝒯 [𝐽 ]-valued random variables, where the type function t⋆ is ran-
dom and defined in terms of the 𝐽 × 𝐽-random matrix 𝐿. Let (𝐿(𝑢))𝑢∈𝒰∞ be a family
of i.i.d. copies of 𝐿, so (ℒ(𝑢))𝑢∈𝒰∞ is a family of i.i.d. copies of the random vector ℒ =
(ℒ1, . . . ,ℒ𝐽) that has independent entries. For any 𝑖0 ∈ [𝐽 ], we define the random labeled
tree T𝖬𝖦𝖶 ∈ 𝒯 [𝐽 ] rooted at ∅, with the associated type function t⋆ : T𝖬𝖦𝖶 → {1, . . . , 𝐽}
defined recursively as follows:

∅ ∈ T𝖬𝖦𝖶 and t⋆(∅) = 𝑖0.

Now suppose that 𝑢 = 𝑢1 . . . 𝑢𝑚 ∈ T𝖬𝖦𝖶 with t⋆(𝑢) = 𝑖, for some 𝑖 ∈ [𝐽 ]. Then

𝑢1 . . . 𝑢𝑚𝑘 ∈ T𝖬𝖦𝖶 iff 𝑘 ≤ 𝐿(𝑖,1)(𝑢) + · · ·+ 𝐿(𝑖,𝐽)(𝑢) = ℒ𝑖(𝑢)

and we assume

|{𝑘 ∈ N | t⋆(𝑢1 . . . 𝑢𝑚𝑘) = 𝑗}| = 𝐿(𝑖,𝑗)(𝑢) for all 𝑗 ∈ [𝐽 ].

The multitype branching process 𝖹𝑡 = (𝖹1
𝑡 , . . . ,𝖹

𝐽
𝑡 ) associated with (T𝖬𝖦𝖶, t⋆), and starting

from a single particle of type 𝑖0 ∈ [𝐽 ] at the root ∅, that is t⋆(∅) = 𝑖0, is defined as: 𝖹0 = e𝑖0
and for 𝑡 ≥ 1

𝖹𝑖
𝑡 := #{𝑢 ∈ T𝖬𝖦𝖶 : |𝑢| = 𝑡 and t⋆(𝑢) = 𝑖} =

∑︁
𝑣∈T𝖬𝖦𝖶:|𝑣|=𝑡−1

𝐿(t⋆(𝑣),𝑖)(𝑣), for 𝑖 ∈ [𝐽 ],

that is, 𝖹𝑖
𝑡 represents the number of particles of type 𝑖 in the 𝑡-th generation, or more

precisely the number of vertices 𝑢 ∈ T𝑖0 with |𝑢| = 𝑡 and t⋆(𝑢) = 𝑖. When referring
to multitype Galton-Watson processes we shall always have in mind both (𝖹𝑡)𝑡∈N and its
genealogical Galton-Watson tree T𝖬𝖦𝖶, with the corresponding type function t⋆, i.e. the
pair (T𝖬𝖦𝖶, t⋆).

Denote by 𝑚𝑖𝑗 = E
[︀
𝐿(𝑖,𝑗)

]︀
the expectation of the random variable 𝐿(𝑖,𝑗), for all 𝑖, 𝑗 ∈ [𝐽 ]

and by 𝑀 = (𝑚𝑖𝑗)𝑖,𝑗∈[𝐽 ] the first moment or the mean offspring matrix. We have E𝐿 = 𝑀 .
Also, for 𝑡 ∈ N we denote by 𝒵𝑡 the total number of offspring in the 𝑡-th generation, that
is 𝒵𝑡 =

∑︀𝐽
𝑖=1 𝖹

𝑖
𝑡.

If there exists 𝑛 ∈ N such that all entries of 𝑀𝑛 are strictly positive, then (𝖹𝑡)𝑡∈N is called
positive regular. If each particle has exactly one child, then (𝖹𝑡)𝑡∈N is called singular. It is
well known that if (𝖹𝑡)𝑡∈N is positive regular and not singular, then if the spectral radius
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𝜌(𝑀) ≤ 1, the MGW process (𝖹𝑡)𝑡∈N dies out almost surely. If 𝜌(𝑀) > 1, then it survives
with positive probability ℙ

[︀
𝖲𝗎𝗋𝗏𝖬𝖦𝖶

]︀
and we will denote by 𝜎𝖬𝖦𝖶 = 1− ℙ

[︀
𝖲𝗎𝗋𝗏𝖬𝖦𝖶

]︀
its

complement, where

𝖲𝗎𝗋𝗏𝖬𝖦𝖶 =

{︃
𝒵𝑡 =

𝐽∑︁
𝑖=1

𝖹𝑖
𝑡 > 0, ∀𝑡 ∈ N

}︃
,

so

𝜎𝖬𝖦𝖶 = 1− ℙ
[︁
𝖲𝗎𝗋𝗏𝖬𝖦𝖶

]︁{︃= 1 , if 𝜌(𝑀) ≤ 1

< 1 , if 𝜌(𝑀) > 1.

Note that in the case of multitype Galton-Watson trees (T𝖬𝖦𝖶, t⋆), the type function t⋆ is
random and constructed with the help of the offspring distribution matrix 𝐿, while in the
infection model the type function t is deterministic, and each vertex in 𝕂𝑛 comes at the
beginning with its own type.

Assumptions. Our results will be proven under the following assumptions concerning
the proportions and the weights of vertices of type 𝑖, and on the spectral radius 𝜌(𝑀).

𝖠𝗌𝗌𝗎𝗆𝗉𝗍𝗂𝗈𝗇 𝟣: For every 𝑖 ∈ [𝐽 ], both the proportions 𝛾𝑖 :=
𝑛𝑖
𝑛 ∈ (0, 1) of vertices of type 𝑖

and the weights 𝛼𝑖 := 𝑛𝑖𝑝𝑖 ∈ (0, 1) of type 𝑖 group do not depend on 𝑛, thus are constant.
We have

∑︀𝐽
𝑖=1 𝛾𝑖 = 1.

𝖠𝗌𝗌𝗎𝗆𝗉𝗍𝗂𝗈𝗇 𝟤: 𝜌(𝑀) > 1.

3 Coupling coupons collector’s with Poisson processes

Our proof strategy involves approximating the discrete-time process of collecting coupons
(vertices in our case) by a continuous-time process. Instead of the coupon collector draw-
ing a random coupon at integer time points, he draws a random coupon (from the same
distribution) at times given by a Poisson process with parameter 1. The times at which
any given vertex is drawn is then a thinned Poisson process, and the Poisson processes as-
sociated with different vertices are independent. The times at which any particular vertex
𝑣 ∈ 𝕂𝑛 is reached will also be a thinned Poisson process. Working in the continuous rather
than in the discrete setting simplifies calculations.

Suppose we are collecting coupons at times chosen according to a Poisson process with rate
1: let (𝒫𝑡)𝑡≥0 be a Poisson process with rate 1 =

∑︀𝐽
𝑖=1 𝑛𝑖𝑝𝑖, so that each Poisson event

associated with this process is a sampled coupon (infected individual). Thus 𝒫𝑡 represents
the total number of attempts to infect vertices by time 𝑡 (out of these vertices, some of
them may have been infected more than once, and we are only interested in the number of
different ones).

We denote the number of vertices of type 𝑖 infected by time 𝑡 by �̃�𝑖
𝑡, when we refer to the

continuous time process, while the notation 𝖭𝑖
𝑡 is kept for the number of vertices of type
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𝑖 infected up to time 𝑡 in the discrete time process. The relation between the continuous
versus discrete processes can be formalized in the following way:

�̃�𝑖
𝑡 := 𝖭𝑖

𝒫𝑡
and ̃︀𝒩𝑡 := 𝒩𝒫𝑡 and �̃�𝑡 := 𝖲𝒫𝑡 .

We also use the notation �̃�𝑡 = (�̃�1
𝑡 , . . . , �̃�

𝐽
𝑡 ). At times, it will be useful to enumerate the

vertices of 𝕂𝑛 as {𝑣1, 𝑣2, . . . , 𝑣𝑛}. With each vertex 𝑣𝑘 ∈ 𝕂𝑛, 𝑘 = 1, . . . , 𝑛 we associate
a Poisson process 𝒫𝑡(𝑘) which represents the number of times 𝑣𝑘 has been collected (or
contacted by an infected individual) by time 𝑡. Then (𝒫𝑡(𝑘))𝑡≥0 are independent Poisson
processes with rates 𝑝t(𝑣𝑘). More precisely {(𝒫𝑡(𝑘))𝑡≥0 : 𝑣𝑘 ∈ 𝕂𝑛, t(𝑣𝑘) = 𝑖} is a sequence
of 𝑛𝑖 independent Poisson processes with rate 𝑝𝑖, for any 𝑖 ∈ [𝐽 ]. Therefore, we can write
𝒫𝑡 =

∑︀𝑛
𝑘=1 𝒫𝑡(𝑘). For each 𝑘 = 1, . . . , 𝑛 denote by 𝐸𝑘 the time of the first event in the

Poisson process (𝒫𝑡(𝑘))𝑡≥0 associated with 𝑣𝑘 ∈ 𝕂𝑛, that is, the first time when vertex 𝑣𝑘
was reached and infected. The random variables (𝐸𝑘)𝑘=1,...,𝑛 are independent (because they
are associated to independent Poisson processes) and exponentially distributed with rate
𝑝t(𝑣𝑘). We are interested only in the number of different coupons sampled, that is, only in
the realization time of the first event in the Poisson processes mentioned above. With this
notation and in view of the independence, we have now an alternative way of writing �̃�𝑖

𝑡 as
sum of i.i.d. random variables: for 𝑖 ∈ [𝐽 ] we have

�̃�𝑖
𝑡 =

∑︁
𝑣𝑘∈𝕂𝑛;t(𝑣𝑘)=𝑖

1{𝐸𝑘≤𝑡}, and 𝐸𝑘 ∼ 𝐸𝑥𝑝(𝑝𝑖)

and hence

𝔼[�̃�𝑖
𝑡] = 𝑛𝑖ℙ[𝐸𝑘 ≤ 𝑡] = 𝑛𝑖(1− 𝑒−𝑝𝑖𝑡),

and
Var[�̃�𝑖

𝑡] = 𝑛𝑖

[︀
(1− 𝑒−𝑝𝑖𝑡)− (1− 𝑒−𝑝𝑖𝑡)2

]︀
= 𝑛𝑖𝑒

−𝑝𝑖𝑡(1− 𝑒−𝑝𝑖𝑡).

With this coupling, we are ready to proceed with limit theorems for the processes(︁
(�̃�1

𝑛1𝑠, . . . , �̃�
𝐽
𝑛𝐽𝑠

)
)︁
𝑠≥0

and the corresponding acquisition times
(︁
𝑇 1
⌊𝑛1𝑞⌋, . . . , 𝑇

𝐽
⌊𝑛𝐽𝑞⌋

)︁
𝑞∈[0,1)

as

𝑛 → ∞. In both random vectors, each random variable depends on 𝑛, but we will not write
the dependence explicitly in order to keep the notation simpler.

Continuous time-approximation of the coupon collector. The Poisson process (the
continuous coupon collector) 𝒫𝑡 receives a coupon each time an event occurs in (𝒫𝑡)𝑡≥0.
List the coupons in the order they are received by the Poisson process as 𝐶1, 𝐶2, . . .. The
distribution of the sequence 𝐶 = (𝐶𝑛)𝑛∈N is identical to that of the sequence of coupons
received by the (discrete-time) coupon collector (𝖭𝑡)𝑡∈N. Furthermore, the time 𝑡𝑚 at
which the continuous coupon collector (Poisson process) receives his 𝑚-th coupon is sharply
concentrated around 𝑚. Indeed, by a standard bound on the Poisson distribution, for any
𝜖 > 0

ℙ [|𝑡𝑚 −𝑚| ≥ 𝑚𝜖] = 𝑂

(︂
1√
𝑚𝜖2

𝑒−𝑚𝜖2/2

)︂
.

In particular, since 𝜏𝑛 grows with 𝑛, we have with high probability 𝑡𝜏𝑛 = (1 + 𝑜(1))𝜏𝑛. If
we denote by

𝜏𝑛 := inf{𝑡 ∈ ℝ | 𝒫𝑡 ≥ 𝜏𝑛} = 𝑡𝜏𝑛

the total duration of the Poisson process, then 𝜏𝑛 = 𝒫𝜏𝑛 .
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3.1 Limit theorems for infected individuals and acquisition times

For simplicity, we introduce some additional notation.

∙ We will write 𝗉 = (𝑝1, . . . , 𝑝𝐽) and 𝛾 := (𝛾1, . . . , 𝛾𝐽).

∙ We denote by 𝛽𝑖 =
𝛼𝑖
𝛾𝑖

= 𝑛𝑝𝑖.

∙ We write 𝑤𝑖(𝑠) := 𝛾𝑖(1− 𝑒−𝛽𝑖𝑠), and 𝗐(𝑠) := (𝑤1(𝑠), . . . , 𝑤𝐽(𝑠)), for 𝑠 ∈ R, so we have

⟨𝗐(𝑠), 𝟣⟩ =
𝐽∑︁

𝑖=1

𝛾𝑖(1− 𝑒−𝛽𝑖𝑠) = 1−
𝐽∑︁

𝑖=1

𝛾𝑖𝑒
−𝛽𝑖𝑠, (4)

where 1 is the all ones vector.

Proposition 3.1. Suppose that Assumption 1 holds. For every 𝑖 ∈ [𝐽 ], for the coupon’s
collector process (�̃�𝑖

𝑡)𝑡∈N we have the following weak convergence in the Skorohod space
𝒟([0,∞),ℝ) endowed with the standard J1 topology:{︂

1
√
𝑛𝑖

(︁
�̃�𝑖
𝑛𝑠 − 𝑛𝑖

(︁
1− 𝑒−𝛽𝑖𝑠

)︁)︁
; 𝑠 ≥ 0

}︂
𝑙𝑎𝑤−−→

{︁
𝖷(𝑖)
𝑠 ; 𝑠 ≥ 0

}︁
, as 𝑛 → ∞.

where, for every 𝑖 ∈ [𝐽 ], (𝖷
(𝑖)
𝑠 )𝑠≥0 is a centered Gaussian process with

Cov
[︁
𝖷(𝑖)
𝑠 ,𝖷

(𝑖)
𝑡

]︁
= 𝑒−𝛽𝑖𝑡

(︁
1− 𝑒−𝛽𝑖𝑠

)︁
> 0,

for all 𝑠, 𝑡 ∈ [0,∞) with 𝑠 ≤ 𝑡.

Proof. The claim follows from [2, Theorem 14.3], since �̃�𝑖
𝑡 =

∑︀𝑛𝑖
𝑘=1 1{𝐸𝑘≤𝑡} for i.i.d. random

variables 𝐸𝑘 ∼ 𝐸𝑥𝑝(𝑝𝑖), 𝑘 = 1, . . . , 𝑛𝑖.

Since with the Poissonization technique, the processes (�̃�𝑖
𝑡)𝑡∈N are independent (because

they are measurable functions of independent Poisson processes) we also have their joint
convergence as noticed in the following proposition.

Proposition 3.2. Suppose that Assumption 1 holds. For the (continuous) coupon’s collector
process (�̃�𝑡)𝑡∈N with 𝐽 different types of coupons and �̃�𝑡 = (�̃�1

𝑡 , �̃�
2
𝑡 , . . . , �̃�

𝐽
𝑡 ), we have the

following (joint) weak convergence in the Skorohod space 𝒟([0,∞),ℝ𝐽) endowed with the
standard J1 topology: {︂

1√
𝑛

(︁
�⃗�𝑛𝑠 − 𝑛𝖤𝑠

)︁
; 𝑠 ≥ 0

}︂
𝑙𝑎𝑤−−→ {𝖷𝑠; 𝑠 ≥ 0}

where the 𝐽-dimensional processes above are defined as

�⃗�𝑛𝑠 :=

(︃
�̃�1
𝑛𝑠√
𝛾1

, . . . ,
�̃�𝐽
𝑛𝑠√
𝛾𝐽

)︃
.
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The expectation vector 𝖤𝑠 is given by 𝖤𝑠 :=
(︀√

𝛾1(1− 𝑒−𝛽1𝑠), . . . ,
√
𝛾𝐽(1− 𝑒−𝛽𝐽𝑠)

)︀
, and

the 𝐽-dimensional stochastic process (𝖷𝑠)𝑠≥0 with 𝖷𝑠 = (𝖷
(1)
𝑠 , . . . ,𝖷

(𝐽)
𝑠 ) has independent

components 𝖷
(1)
𝑠 , . . . ,𝖷

(𝐽)
𝑠 which are centered Gaussian processes with covariances

Cov
[︁
𝖷(𝑖)
𝑠 ,𝖷

(𝑖)
𝑡

]︁
= 𝑒−𝛽𝑖𝑡

(︁
1− 𝑒−𝛽𝑖𝑠

)︁
> 0, for all 𝑠, 𝑡 ∈ [0,∞) with 𝑠 ≤ 𝑡.

Since ̃︀𝒩𝑡 =
∑︀𝐽

𝑖=1 �̃�
𝑖
𝑡, an immediate corollary of Proposition 3.2 is the following.

Corollary 3.3. We have the following weak convergence in the Skorohod space 𝒟([0,∞),ℝ)
endowed with the standard J1 topology:{︂

1√
𝑛

(︁ ̃︀𝒩𝑛𝑠 − 𝑛⟨𝗐(𝑠), 𝟣⟩
)︁
; 𝑠 ≥ 0

}︂
𝑙𝑎𝑤−−→

{︀
𝖷𝒩
𝑠 ; 𝑠 ≥ 0

}︀
where 𝖷𝒩

𝑠 is a centered Gaussian processes with

𝖢𝗈𝗏[𝖷𝒩
𝑠 ,𝖷𝒩

𝑡 ] =

𝐽∑︁
𝑖=1

𝛾𝑖 · (1− 𝑒−𝛽𝑖𝑠) · 𝑒−𝛽𝑖𝑡, for all 𝑠, 𝑡 ∈ [0,∞) with 𝑠 ≤ 𝑡.

For the vector of acquisition times processes
(︁
𝑇 1
⌊𝑛1𝑞⌋, . . . , 𝑇

𝐽
⌊𝑛𝐽𝑞⌋

)︁
𝑞∈[0,1)

of the continuous

time process we obtain a similar behavior. Recall that by 𝑇 𝑖
𝑛𝑖𝑞 := 𝑇 𝑖

⌊𝑛𝑖𝑞⌋ for 𝑖 ∈ ⌊𝐽⌋, we
denote the acquisition time of the ⌊𝑛𝑖𝑞⌋-th coupon of type 𝑖.

Proposition 3.4. Suppose that Assumption 1 holds. For every 𝑖 ∈ [𝐽 ], for the acquisition
times 𝑇 𝑖

𝑘 associated with the process �̃�𝑖
𝑡 of collecting vertices of type 𝑖, we have the following

weak convergence in the Skorohod space 𝒟([0, 1),ℝ)endowed with the standard J1 topology:{︂
√
𝑛𝑖

(︂
1

𝑛
𝑇 𝑖
𝑛𝑖𝑞 −

1

𝛽𝑖
log

1

1− 𝑞

)︂
; 𝑞 ∈ [0, 1)

}︂
−→

{︀
𝖡𝑖
(︀
𝜎𝑖(𝑞)

)︀
; 𝑞 ∈ [0, 1)

}︀
where, for 𝑖 ∈ [𝐽 ],

(︀
𝖡𝑖(𝜎𝑖(𝑞)

)︀
𝑞∈[0,1) is a standard Brownian motion with 𝜎𝑖(𝑞) = 𝑞

𝛽2
𝑖 (1−𝑞)

.

Proof. We have the following reciprocal equations that relate the distribution of the number
of collected coupons �̃�𝑖

𝑡 to the distribution of the arrival times 𝑇 𝑖
𝑠 of the respective coupons:

for every 𝑖 = 1, 2, . . . , 𝐽
{�̃�𝑖

𝑡 < 𝑠} = {𝑇 𝑖
𝑠 > 𝑡},

that is 𝑇 𝑖
𝑠 is a generalized inverse of �̃�𝑖

𝑡. For 𝑖 ∈ [𝐽 ], we write

𝑓𝑖(𝑞) :=
1

𝛽𝑖
· log 1

1− 𝑞
, 𝑞 ∈ [0, 1), and 𝑓−1

𝑖 (𝑠) := 1− 𝑒−𝛽𝑖𝑠, 𝑠 ∈ [0,∞),

so that 𝑓−1
𝑖 (𝑠) is the inverse of 𝑓𝑖(𝑠). We apply a Taylor series expansion to 𝑓𝑖 in �̃�𝑖

𝑛𝑠
𝑛𝑖

.

Indeed, there is 𝑞𝑠 ∈
[︁
min{�̃�𝑖

𝑛𝑠/𝑛𝑖, 𝑓
−1
𝑖 (𝑠)},max{�̃�𝑖

𝑛𝑠/𝑛𝑖, 𝑓
−1
𝑖 (𝑠)}

]︁
such that

𝑓𝑖

(︃
�̃�𝑖
𝑛𝑠

𝑛𝑖

)︃
− 𝑠 = 𝑓 ′

𝑖(𝑓
−1
𝑖 (𝑠))⏟  ⏞  

= −1

𝛽𝑖𝑒
−𝛽𝑖𝑠

·

(︃
�̃�𝑖
𝑛𝑠

𝑛𝑖
− 𝑓−1

𝑖 (𝑠)

)︃
+

1

2
𝑓 ′′
𝑖 (𝑞𝑠) ·

(︃
�̃�𝑖
𝑛𝑠

𝑛𝑖
− 𝑓−1

𝑖 (𝑠)

)︃2

. (5)
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If we show that for every fixed 𝑖 ∈ [𝐽 ]

sup
𝑠∈𝐶

𝑓 ′′
𝑖 (𝑞𝑠) ·

(︃
�̃�𝑖
𝑛𝑠

𝑛𝑖
− 𝑓−1

𝑖 (𝑠)

)︃2

−→ 0, in probability, as 𝑛 → ∞ (6)

for every compact set 𝐶 ⊆ [0,∞), then according to [8, Proposition VI.1.17 b)]

𝑓 ′′
𝑖 (𝑞𝑠) ·

(︃
�̃�𝑖
𝑛𝑠

𝑛𝑖
− 𝑓−1

𝑖 (𝑠)

)︃2

−→ 0

in law in the Skorohod topology as 𝑛 → ∞. So let 𝐶 ⊆ [0,∞) be compact, and denote by
𝑠0 the supremum of 𝐶. Choose 𝑞1 ∈ (𝑓−1

𝑖 (𝑠0), 1). From Proposition 3.1 we also have that
�̃�𝑖
𝑛𝑠
𝑛𝑖

→ 𝑓−1
𝑖 (𝑠) in probability as 𝑛 → ∞, uniformly on compact sets of R+, so

lim
𝑛→∞

ℙ

[︃
�̃�𝑖
𝑛𝑠0

𝑛𝑖
> 𝑞1

]︃
= 0.

Put 𝑀 := 𝑓 ′′
𝑖 (𝑞𝑠0) = sup𝑠∈𝐶 𝑓 ′′

𝑖 (𝑞𝑠). Observe that 𝑓 ′′
𝑖 (𝑞) = 1

𝛽𝑖(1−𝑞)2
> 0 is monotonically

increasing on [0, 1). Then

ℙ
[︀
𝑀 > 𝑓 ′′

𝑖 (𝑞1)
]︀
≤ ℙ

[︃
�̃�𝑖
𝑛𝑠0

𝑛𝑖
> 𝑞1

]︃
−→ 0,

i.e. 𝑀 is bounded in probability. Since the operator which maps a function 𝑥 : [0,∞) → ℝ
to sup𝑡∈𝐶 𝑥(𝑡) is continuous at continuous functions 𝑥 : [0,∞) → ℝ, the continuous mapping
theorem in its sharp version (see e.g. [2, Theorem 2.7]) implies (6). From (5) it follows that(︁
𝑓𝑖

(︁
�̃�𝑖
𝑛𝑠
𝑛𝑖

)︁
− 𝑠
)︁
and 𝑓 ′

𝑖(𝑓
−1
𝑖 (𝑠))·

(︁
�̃�𝑖
𝑛𝑠
𝑛𝑖

− 𝑓−1
𝑖 (𝑠)

)︁
have the same limit law, since the remainder

in the expansion converges to 0 in probability, and so Proposition 3.1 yields

√
𝑛𝑖

(︃
𝑓𝑖

(︃
�̃�𝑖
𝑛𝑠

𝑛𝑖

)︃
− 𝑠

)︃
𝑙𝑎𝑤∼ 𝑓 ′

𝑖

(︀
𝑓−1
𝑖 (𝑠)

)︀ 1
√
𝑛𝑖

(︁
�̃�𝑖
𝑛𝑠 − 𝑛𝑖𝑓

−1
𝑖 (𝑠)

)︁
⏟  ⏞  

𝑙𝑎𝑤−−→𝖷
(𝑖)
𝑠

𝑙𝑎𝑤−−→ 𝑓 ′
𝑖

(︀
𝑓−1
𝑖 (𝑠)

)︀
𝖷(𝑖)
𝑠 .

By [12, Theorem 1] this is equivalent to{︂
√
𝑛𝑖

(︁ 1
𝑛
𝑇 𝑖
𝑛𝑖𝑓

−1
𝑖 (𝑡)

− 𝑡
)︁
; 𝑡 ≥ 0

}︂
−→ −

{︁
𝑓 ′
𝑖

(︀
𝑓−1
𝑖 (𝑡)

)︀
· 𝖷(𝑖)

𝑡 ; 𝑡 ≥ 0
}︁
,

which, in turn is equivalent to{︂
√
𝑛𝑖

(︁ 1
𝑛
𝑇 𝑖
𝑛𝑖𝑞 − 𝑓𝑖(𝑞)

)︁
; 𝑞 ∈ [0, 1)

}︂
−→ −

{︁
𝑓 ′
𝑖(𝑞) · 𝖷

(𝑖)
𝑓𝑖(𝑞)

; 𝑞 ∈ [0, 1)
}︁
.

Observe now that, for 𝑝, 𝑞 ∈ [0, 1) with 𝑝 ≤ 𝑞

Cov
[︁
−𝑓 ′

𝑖(𝑝) · 𝖷
(𝑖)
𝑓𝑖(𝑝)

,−𝑓 ′
𝑖(𝑞) · 𝖷

(𝑖)
𝑓𝑖(𝑞)

]︁
= 𝑓 ′

𝑖(𝑝) · 𝑓 ′
𝑖(𝑞) · 𝑓−1

𝑖 (𝑓𝑖(𝑝)) ·
[︀
1− 𝑓−1

𝑖 (𝑓𝑖(𝑞))
]︀

=
𝑝

𝛽2
𝑖 (1− 𝑝)
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and hence

−
{︁
𝑓 ′
𝑖(𝑞) · 𝖷

(𝑖)
𝑓𝑖(𝑞)

; 𝑞 ∈ [0, 1)
}︁
= −

{︂
1

𝛽𝑖(1− 𝑞)
· 𝖷(𝑖)

− log(1−𝑞)/𝛽𝑖
; 𝑞 ∈ [0, 1)

}︂
=
{︀
𝖡𝑖
(︀
𝜎𝑖(𝑞)

)︀
; 𝑞 ∈ [0, 1)

}︀
,

in law in the Skorohod space, with 𝜎𝑖(𝑞) = 𝑞
𝛽2
𝑖 (1−𝑞)

. Therefore{︂
√
𝑛𝑖

(︂
1

𝑛
𝑇 𝑖
𝑛𝑖𝑞 −

1

𝛽𝑖
log

1

1− 𝑞

)︂
; 𝑞 ∈ [0, 1)

}︂
−→

{︀
𝖡𝑖
(︀
𝜎𝑖(𝑞)

)︀
; 𝑞 ∈ [0, 1)

}︀
and this proves the claim.

Since for each 𝑖 ∈ [𝐽 ], the random variables (𝑇 𝑖
𝑘) are measurable functions of �̃�𝑖

𝑘, and
�̃�1
𝑡 , . . . , �̃�

𝐽
𝑡 are independent, the random variables 𝑇 1

𝑛1
, . . . , 𝑇 𝐽

𝑛𝐽
are independent as well, so

we also have their joint convergence.

Proposition 3.5. Suppose that Assumption 1 hold. For the continuous time acquisition
process (𝑇𝑘)𝑘∈N with 𝑇𝑘 = (𝑇 1

𝑘 , . . . , 𝑇
𝐽
𝑘 ), we have the following (joint) weak convergence in

the Skorohod space 𝒟([0, 1),ℝ) endowed with the standard J1 topology:{︂(︂
1√
𝑛
𝑇𝑛𝑞 −

√
𝑛 log

1

1− 𝑞
𝖤[𝑇𝑛𝑞]

)︂
; 𝑞 ∈ [0, 1)

}︂
𝑙𝑎𝑤−−→ {𝖡(𝜎(𝑞)); 𝑞 ∈ [0, 1)}

where the 𝐽-dimensional processes above are defined as following:

𝑇𝑛𝑞 :=
(︁√

𝛾1𝑇
1
𝑛𝑖𝑞, . . . ,

√
𝛾𝐽𝑇

𝐽
𝑛𝐽𝑞

)︁
,

the expectation vector 𝖤 is given by

𝖤[𝑇𝑛𝑞] :=

(︂√
𝛾1

𝛽1
, . . . ,

√
𝛾𝐽

𝛽𝐽

)︂
,

and 𝖡(𝜎(𝑞)) := (𝖡1(𝜎1(𝑞)), . . . ,𝖡𝐽(𝜎𝐽(𝑞))) is a 𝐽-dimensional standard Brownian motion,
and 𝖡𝑖(𝜎𝑖(𝑞)) are independent for 𝑖 ∈ [𝐽 ] with 𝜎𝑖(𝑞) = 𝑞

𝛽2
𝑖 (1−𝑞)

.

4 Virus spread model as a random subtree of a MGW

We will now show how to obtain a virus spread model by coupling a coupon collector with
a multitype Galton-Watson process (MGW) with 𝐽 types. We will cut from the multitype
Galton-Watson tree T𝖬𝖦𝖶 nodes that correspond to vertices in 𝕂𝑛 that are reached by
more than one random walker. We will construct, on a joint probability space (Ω,ℱ ,ℙ)

∙ a multitype Galton-Watson process with offspring distribution matrix 𝐿, where the
row sums are (ℒ1, . . . ,ℒ𝐽), and 𝐽 ∈ N is the number of types,

∙ for each integer 𝑛, a coupon collector process with 𝐽 different types of coupons,
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∙ for each integer 𝑛, sequences (𝖲𝑡)𝑡∈N and (𝖭𝑡)𝑡∈N = ((𝖭1
𝑡 , . . . ,𝖭

𝐽
𝑡 ))𝑡∈N, with 𝖭0 = 𝖾𝑖0

for a fixed 𝑖0 ∈ [𝐽 ], 𝖲0 ∼ ℒ𝑖0 , and such that (𝖭𝑡, 𝖲𝑡)𝑡∈N is a Markov chain with
transition probabilities as in (2).

Notice that the situation here is slightly different from the situation in [4]. In [4] the
Galton-Watson process and the coupon collector were assumed to be independent and then
the sequence (𝖭𝑡,𝖲𝑡)𝑡∈N was constructed out of them (by pruning the Galton-Watson tree).
This is not possible anymore here: the types of the Galton-Watson process and the coupon
collector have to match and thus we cannot assume that these processes are independent of
each other.

In order to construct the processes mentioned above, we start with a multitype Galton-
Watson tree (T𝖬𝖦𝖶, t⋆) where t⋆ is the type function in the tree rooted at ∅ with t⋆(∅) = 𝑖0,
with offspring distribution matrix 𝐿, which has independent rows 𝐿(𝑖) = (𝐿(𝑖,1), . . . , 𝐿(𝑖,𝐽))
and distribution given as in (1). Also ℒ𝑖 =

∑︀𝐽
𝑗=1 𝐿

(𝑖,𝑗) represents the total offspring number

of a vertex of type 𝑖, and the random variables ℒ1, . . . ,ℒ𝐽 are independent but not identically
distributed. For the following construction it will be crucial that the types of the children
𝑣1, . . . , 𝑣𝑙 of each vertex 𝑣 of T𝖬𝖦𝖶 have an exchangeable distribution, i.e. the distribution
of (t⋆(𝑣𝜋(1)), . . . , t

⋆(𝑣𝜋(𝑙))) does not depend on the permutation 𝜋 : {1, . . . , 𝑙} → {1, . . . , 𝑙}.

Recursively, for 𝑡 = 0, 1, . . . we construct 𝑋(𝑡) ∈ T𝖬𝖦𝖶 representing the 𝑡-th tentative
infection, and disjoint subtrees 𝒯 ∘(𝑡), 𝒯 ⊞(𝑡), 𝒯 †(𝑡) ⊂ T𝖬𝖦𝖶. Note that if 𝑋(𝑡) has type
𝑖, then the corresponding infection attempt in 𝕂𝑛 is at a vertex 𝑢 with type 𝑖. Moreover,
if this infection attempt is successful (that is, 𝑢 was not infected before), then the further
infection attempts made by 𝑢 are represented by the children of 𝑋(𝑡). We define

𝒯 ∘(𝑡) =
𝐽⋃︁

𝑖=1

{𝑣 ∈ 𝒯 ∘(𝑡) : t⋆(𝑣) = 𝑖}⏟  ⏞  
:=𝒯 ∘

𝑖 (𝑡)

representing the set of vertices (written as a partition in vertices of types 𝑖 ∈ [𝐽 ], contained
in the set 𝒯 ∘

𝑖 (𝑡)) already infected by time 𝑡. The set 𝒯 ⊞(𝑡) is the set of tentative infections
scheduled but not performed by time 𝑡, that we write again as a disjoint union of vertices
of type 𝑖

𝒯 ⊞(𝑡) =

𝐽⋃︁
𝑖=1

{𝑣 ∈ 𝒯 ⊞(𝑡) : t⋆(𝑣) = 𝑖}⏟  ⏞  
:=𝒯 ⊞

𝑖 (𝑡)

.

Finally 𝒯 †(𝑡) represents the set of failed spreads (the set of failures in the coupon collecting
process), i.e. the part that we have to cut out from the MGW tree; we do not partition this
part into subsets with different types. At time 𝑡 = 0, we start with the following data: for
some fixed 𝑖0 ∈ [𝐽 ] and root ∅ of type 𝑖0
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⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

𝑋(0) = ∅ (the root of the MGW tree) with t⋆(∅) = 𝑖0

𝒯 ∘(0) = {∅} where 𝒯 ∘
𝑖0
(0) = {∅} and 𝒯 ∘

𝑖 (0) = ∅, ∀𝑖 ̸= 𝑖0

𝒯 ⊞(0) =
⋃︀𝐽

𝑖=1 {𝑣 ∈ 𝕋𝖬𝖦𝖶 : t⋆(𝑣) = 𝑖; |𝑣| = 1}⏟  ⏞  
:=𝒯 ⊞

𝑖 (0)

𝒯 †(0) = ∅

Given the process
(︀
𝑋(𝑡), 𝒯 ∘(𝑡), 𝒯 ⊞(𝑡), 𝒯 †(𝑡)

)︀
at time 𝑡, its value at time 𝑡+1 can be defined

as follows. If 𝒯 ⊞(𝑡) is non-empty, let

𝑣 = 𝑋(𝑡+ 1) = inf{𝑤 ∈ 𝒯 ⊞(𝑡)},

where the vertices of T𝖬𝖦𝖶 are sorted according to their generation, within the generation
lexicographically. The type 𝑗0 = t⋆(𝑣) determines the type of the vertex 𝑢 ∈ 𝕂𝑛 which
is hit by the infection attempt at time 𝑡 + 1. Each of the 𝑛𝑗0 candidates, i.e. each vertex
𝑤 ∈ 𝕂𝑛 with t(𝑤) = 𝑗0, has the same probability 1

𝑛𝑗0
of being hit. In particular, the

decision, whether this infection attempt is successful will be made at random independently

of (T𝖬𝖦𝖶, t⋆). Let n𝑗0 =
⃒⃒⃒
𝒯 ∘
𝑗0
(𝑡)
⃒⃒⃒
.

∙ With probability 𝐧𝑗0

𝑛𝑗0
, the infection attempt fails (resulting from sending the virus to

a vertex that was previously infected). Then we set⎧⎪⎨⎪⎩
𝒯 ∘(𝑡+ 1) = 𝒯 ∘(𝑡), i.e. 𝒯 ∘

𝑖 (𝑡+ 1) = 𝒯 ∘
𝑖 (𝑡) for all 𝑖 ∈ [𝐽 ]

𝒯 ⊞(𝑡+ 1) = 𝒯 ⊞(𝑡) ∖ {𝑣}
𝒯 †(𝑡+ 1) = 𝒯 †(𝑡) ∪ {𝑣}

(7)

which means that at time 𝑡+ 1 the vertex 𝑣, that was on standby, is now put in the
tree 𝒯 †(𝑡 + 1) with failures, and we have lost one piece of spread capacity without
infecting a new vertex. In this case we define 𝖭𝑡+1 = 𝖭𝑡, 𝖲𝑡+1 = 𝖲𝑡 − 1.

∙ With probability
𝑛𝑗0

−𝐧𝑗0

𝑛𝑗0
the infection is successful. Then⎧⎪⎨⎪⎩

𝒯 ∘
𝑗0
(𝑡+ 1) = 𝒯 ∘

𝑗0
(𝑡) ∪ {𝑣} and 𝒯 ∘

𝑗 (𝑡+ 1) = 𝒯 ∘
𝑗 (𝑡), for all 𝑗 ̸= 𝑗0

𝒯 ⊞(𝑡+ 1) = 𝒯 ⊞(𝑡) ∖ {𝑣} ∪ {𝑣1, . . . , 𝑣ℒ𝑗0 (𝑣)}
𝒯 †(𝑡+ 1) = 𝒯 †(𝑡)

(8)

where 𝑣1, . . . , 𝑣ℒ𝑗0 (𝑣) are the children of 𝑣 in T𝖬𝖦𝖶. In this case, in the tree 𝒯 ∘(𝑡+1)
of infected vertices, the vertex 𝑣 of type 𝑗0 will be added and it will be deleted from
the set 𝒯 ⊞ of stand-by vertices. In addition, to the later tree ℒ𝑗0(𝑣) = 𝐿(𝑗0,1)(𝑣) +
. . . + 𝐿(𝑗0,𝐽)(𝑣) offsprings of 𝑣 with the corresponding types will be added. We put
𝖭𝑡+1 = 𝖭𝑡 + 𝖾𝑗0 , 𝖲𝑡+1 = 𝖲𝑡 + ℒ𝑗0 − 1.

We proceed with the algorithm as long as 𝒯 ⊞(𝑡) is non-empty. If 𝒯 ⊞(𝑡) is empty then we
have no vertices on standby, and the process stops; so we set 𝜏𝑛 = 𝑡. The set

𝒯 ∘(𝑡) = 𝒯 ∘(𝜏𝑛) =
𝐽⋃︁

𝑖=1

𝒯 ∘
𝑖 (𝜏𝑛)
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is the set of vertices infected during the entire process.

The sequence (𝖭1
𝑡 , . . .𝖭

𝐽
𝑡 ,𝖲𝑡)𝑡∈N constructed above, up to time 𝜏𝑛, is a Markov chain with

transition probabilities as in (2). This follows from the fact that for any 𝑛 ∈ N, the type of
the vertex 𝑋(𝑡+1) in the above construction is distributed as ℙ[t⋆(𝑋(𝑡+1)) = 𝑗] = 𝛼𝑗 for
𝑗 ∈ [𝐽 ]. 𝑇 𝑖

𝑘 := inf{𝑡 ∈ N : 𝖭𝑖
𝑡 = 𝑘}. We also have that 𝜏𝑛 is a.s. finite and bounded by

𝜏𝑛 ≤ max{𝑇 1
𝑛1
, . . . , 𝑇 𝐽

𝑛𝐽
} and |𝒯 ∘(𝜏𝑛)| =

𝐽∑︁
𝑖=1

|𝒯 ∘
𝑖 (𝜏𝑛)|.

Again, for technical reasons and in order to obtain a complete coupon collector model, we
extend the sequences 𝖭𝑡 and 𝖲𝑡 beyond the end of the epidemic 𝜏𝑛. Hence for 𝑡 > 𝜏𝑛 we
choose a type Λ according to ℙ[Λ = 𝑗] = 𝛼𝑗 for 𝑗 ∈ [𝐽 ]. Then we let the collection of the

next coupon be successful and put 𝖭𝑡+1 = 𝖭𝑡 + 𝑒Λ with probability
𝑛Λ−𝖭Λ

𝑡
𝑛Λ

(independent of

anything else) and we let it fail with probability
𝖭Λ
𝑡

𝑛Λ
, in which case we put 𝖭𝑡+1 = 𝖭𝑡.

Consider now 𝐽 i.i.d. (infinite) sequences of vectors, also independent of each other: (ℒ̄𝑖
𝑙)𝑙≥1

with law ℒ𝑖, 𝑖 = 1, 2, . . . , 𝐽 and define for 𝑙 = 1, . . . , 𝑛𝑖

ℒ𝑖
𝑙 =

{︃
ℒ𝑖(𝑋(𝑇 𝑖

𝑙 )) if 𝑙 ≤ |𝒯 ∘
𝑖 (𝜏𝑛)|

ℒ̄𝑖
𝑙 if 𝑙 > |𝒯 ∘

𝑖 (𝜏𝑛)|.
(9)

This means that ℒ𝑖
𝑙 is the number of children of the vertex which represents the 𝑙-th infected

vertex of type 𝑖, if in the infective process we reached at least 𝑙 vertices of type 𝑖; otherwise
ℒ𝑖
𝑙 is the 𝑙 − 𝑡 element of the sequence ℒ̄𝑖

𝑙. We also use the following notation: for 𝑖 ∈ [𝐽 ],
let ℛ𝑖

𝑡 be the spread capacity revealed by vertices of type 𝑖 up to time 𝑡, that is:

ℛ𝑖
𝑡 =

𝖭𝑖
𝑡∑︁

𝑙=1

ℒ𝑖
𝑙, (10)

and as before, we also write ℛ̃𝑖
𝑡 = ℛ𝑖

𝒫𝑡
. The total capacity available at time 𝑡 ∈ N is

𝖲𝑡 =

𝖭1
𝑡∑︁

𝑙=1

ℒ1
𝑙⏟  ⏞  

=ℛ1
𝑡

+ . . .+

𝖭𝐽
𝑡∑︁

𝑙=1

ℒ𝐽
𝑙⏟  ⏞  

=ℛ𝐽
𝑡

−𝑡 =

𝐽∑︁
𝑖=1

ℛ𝑖
𝑡⏟  ⏞  

:=ℛ𝑡

−𝑡. (11)

Note that, by construction, for 𝑡 ≤ 𝜏𝑛, we have:

𝒩𝑡 =
𝐽∑︁

𝑖=1

𝖭𝑖
𝑡 = |𝒯 ∘(𝑡)| =

𝐽∑︁
𝑖=1

|𝒯 ∘
𝑖 (𝑡)|⏟  ⏞  
=𝖭𝑖

𝑡

and 𝖲𝑡 = |𝒯 ⊞(𝑡)|.

Remark that only 𝒯 ∘(𝑡) is a connected random tree, as subtree of T𝖬𝖦𝖶, but 𝒯 ∘
𝑖 (𝑡), 𝑖 ∈ [𝐽 ]

are not connected, they are only subsets of vertices of 𝒯 ∘(𝑡).
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Proposition 4.1. For each 𝑖 ∈ [𝐽 ] and 𝑙 ∈ [𝑛𝑖] the random variable ℒ𝑖
𝑙 has law ℒ𝑖. The

random variables (ℒ𝑖
𝑙)1≤𝑙≤𝑛𝑖,1≤𝑖≤𝐽 are independent (of each other) and also independent of

the acquisition times (𝑇 𝑖
𝑙 )1≤𝑙≤𝑛𝑖,1≤𝑖≤𝐽 . Also

𝜏𝑛 = inf{𝑡 ∈ N : 𝖲𝑡 = 0}.

Proof. The formula for 𝜏𝑛 follows from (11) and from the fact that 𝜏𝑛 is finite.

For the other claim, consider the system ℋ of functions  : {1, . . . , 𝑛} → {1, . . . , 𝐽} such
that

|{𝑘 ∈ [𝑛] | (𝑘) = 𝑗}| = 𝑛𝑗 , 𝑗 ∈ [𝐽 ].

Associate with each  ∈ ℋ a further function

�̄� : [𝐽 ]× [𝑛] → [𝑛] ∪ {∞}, (𝑖, 𝑘) ↦→ inf{𝑙 ∈ [𝑛] | |{𝑙′ ∈ [𝑙] | (𝑙′) = 𝑖}| ≥ 𝑘}

so that �̄�(𝑖, 𝑘) represents the 𝑘-th time that  takes the value 𝑖. Furthermore put

𝐻 =
⋂︁

𝑖1,𝑖2,𝑙1,𝑙2 : �̄�(𝑖1,𝑙1)<�̄�(𝑖2,𝑙2)

{︁
𝑇 𝑖1
𝑙1

< 𝑇 𝑖2
𝑙2

}︁
∩

⋂︁
𝑖1,𝑖2,𝑙1,𝑙2 : �̄�(𝑖1,𝑙1)>�̄�(𝑖2,𝑙2)

{︁
𝑇 𝑖1
𝑙1

> 𝑇 𝑖2
𝑙2

}︁
,

where 𝑖1, 𝑖2 run in [𝐽 ] and 𝑙1, 𝑙2 run in [𝑛𝑖1 ] and [𝑛𝑖2 ], respectively. Write

𝖳
[𝐽 ]
{𝑛1,...,𝑛𝐽} =

(︀
(𝑇 1

1 , . . . 𝑇
1
𝑛1
), . . . , (𝑇 𝐽

1 , . . . 𝑇
𝐽
𝑛𝐽
)
)︀
.

Our aim is to show that

ℙ
[︀
ℒ𝑖
𝑙 = 𝜆

(𝑖)
𝑙 for all 𝑖 ∈ [𝐽 ], 𝑙 ∈ [𝑛𝑖],𝖳

[𝐽 ]
{𝑛1,...,𝑛𝐽} ∈ 𝐵1 | 𝐻

]︀
=

𝐽∏︁
𝑖=1

𝑛𝑖∏︁
𝑙=1

ℙ[ℒ(𝑖) = 𝜆
(𝑖)
𝑙 ] · ℙ

[︀
𝖳
[𝐽 ]
{𝑛1,...,𝑛𝐽} ∈ 𝐵1 | 𝐻

]︀
(12)

for every  ∈ ℋ, 𝜆
(𝑖)
𝑙 ∈ N, 𝑖 ∈ [𝐽 ], 𝑙 ∈ [𝑛𝑖] and 𝐵1 ⊆ N𝑛. In order to see this put, for a fixed

 ∈ ℋ,

𝐾𝑙 := ℒ(𝑙)

�̃�(𝑙)
where �̃�(𝑙) := |{𝑙′ ∈ [𝑙] | (𝑙) = (𝑙′)}|

counts how often the type of (𝑙) has appeared in  up to time 𝑙. With this notation we
are then going to show

ℙ
[︁
𝐾𝑚 = 𝜆 | 𝐾1, . . . ,𝐾𝑚−1,𝖳

[𝐽 ]
{𝑛1,...,𝑛𝐽}

]︁
= ℙ

[︁
ℒ(𝑚) = 𝜆

]︁
. (13)

For this set 𝑇𝑙 := 𝑇
(𝑙)

�̃�(𝑙)
, and for 0 = 𝑘1 < 𝑘2 < · · · < 𝑘𝑚,𝑚 ∈ N, 𝑤 ∈ 𝒰∞, put also

𝐴 = {(𝑇1, . . . , 𝑇𝑚) = (𝑘1, . . . , 𝑘𝑚)} ∩ {𝑋(𝑘𝑚−1) = 𝑤} ∩ {𝑇𝑚 ≤ 𝜏𝑛}.

Then, on 𝐴, 𝑋(𝑇𝑚) = 𝑋(𝑘𝑚) is ℱ-measurable, where ℱ := 𝜎(𝐾1, . . . ,𝐾𝑚−1). In order to
see this we notice that an easy induction argument yields that

(𝑋(𝑡), 𝒯 ∘
1 (𝑡), . . . , 𝒯 ∘

𝐽 (𝑡), 𝒯 ⊞(𝑡), 𝒯 †(𝑡))
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is ℱ-measurable for 𝑡 = 1, . . . , 𝑘𝑚−1 on 𝐴 in the sense that the event

𝐴 ∩ {𝑋(𝑡) = 𝑤1} ∩
𝐽⋂︁

𝑖=1

{𝑤𝜈𝑖−1+1, . . . , 𝑤𝜈𝑖 ∈ 𝒯 ∘
𝑖 (𝑡)}

∩ {𝑤𝜈𝐽+1, . . . 𝑤𝜈𝐽+1 ∈ 𝒯 ⊞(𝑡)} ∩ {𝑤𝜈𝐽+1+1, . . . , 𝑤𝜈𝐽+2 ∈ 𝒯 †(𝑡)}

is measurable w.r.t. the trace-𝜎-algebra of ℱ on 𝐴 for any numbers 1 = 𝜈0 ≤ 𝜈1 ≤ · · · ≤ 𝜈𝐽+2

and 𝑤1, . . . , 𝑤𝜈𝐽+2 ∈ 𝒰∞. In particular,

𝑋(𝑘𝑚) = inf{𝑤 ∈ 𝒯 ∘(𝑘𝑚 − 1)} = inf{𝑤 ∈
𝐽⋃︁

𝑖=1

𝒯 ∘
𝑖 (𝑘𝑚 − 1)}

is ℱ-measurable on 𝐴. Notice that 𝑋(𝑘𝑚) > 𝑋(𝑘𝑚 − 1) = 𝑤. Next we will show that
the acquisition times 𝑇 𝑖

𝑙 , 𝑖 ∈ [𝐽 ], 𝑙 ∈ [𝑛𝑖] are independent of 𝐾1, . . . ,𝐾𝑛. For this we first
observe that on {𝑡 ≤ 𝜏𝑛} the sequence (t⋆(𝑋(1)), t⋆(𝑋(2)), . . . , t⋆(𝑋(𝑡))) is independent of
(𝐾1, . . . ,𝐾𝑛). Indeed,

ℙ
[︀
t⋆(𝑋(𝑡)) = 𝑗 | 𝑡 ≤ 𝜏𝑛, t

⋆(𝑋(1)), . . . , t⋆(𝑋(𝑡− 1)),𝐾1, . . . ,𝐾𝑛

]︀
=

∞∑︁
𝜈=1

𝜈∑︁
𝜇=1

𝑡∑︁
𝑡′=0

ℙ
[︀
𝑋(𝑡) = 𝑋(𝑡′)𝜇,ℒ(𝑋(𝑡′)) = 𝜈, t⋆(𝑋(𝑡′)𝜇) = 𝑗 | 𝐸

]︀
=

∞∑︁
𝜈=1

𝜈∑︁
𝜇=1

𝑡−1∑︁
𝑡′=0

ℙ
[︀
𝑋(𝑡) = 𝑋(𝑡′)𝜇 | 𝐸

]︀
·ℙ[ℒ(𝑋(𝑡′)) = 𝜈 | 𝑋(𝑡) = 𝑋(𝑡′)𝜇,𝐸

]︀
·ℙ[t⋆(𝑋(𝑡′)𝜇) = 𝑗 | 𝑋(𝑡) = 𝑋(𝑡′)𝜇,ℒ(𝑋(𝑡′)) = 𝜈,𝐸

]︀
where by 𝐸 we have denoted

𝐸 := {𝑡 ≤ 𝜏𝑛, t
⋆(𝑋(1)), . . . , t⋆(𝑋(𝑡− 1)),𝐾1, . . . ,𝐾𝑛}

and 𝑋(𝑡′)𝜇 denotes the 𝜇-th child of 𝑋(𝑡′). Putting

𝐸′ :=
{︀
𝑡 ≤ 𝜏𝑛, t

⋆(𝑋(1)), . . . , t⋆(𝑋(𝑡− 𝜇)), t⋆
(︀
𝑋(𝑡′)1

)︀
, . . . , t⋆(𝑋(𝑡′)(𝜇− 1)),𝐾1, . . . ,𝐾𝑛

}︀
we get

ℙ[t⋆(𝑋(𝑡′)𝜇) = 𝑗 | 𝑋(𝑡) = 𝑋(𝑡′)𝜇,ℒ(𝑋(𝑡′)) = 𝜈,𝐸
]︀

= ℙ[t⋆(𝑋(𝑡′)𝜇) = 𝑗 | 𝑋(𝑡) = 𝑋(𝑡′)𝜇,ℒ(𝑋(𝑡′)) = 𝜈,𝐸′]︀
= ℙ

[︀
t⋆(𝑋(𝑡′)𝜇) = 𝑗 | ℒ(𝑋(𝑡′)) = 𝜈, 𝑡 ≤ 𝜏𝑛, t

⋆(𝑋(𝑡′)1), . . . , t⋆(𝑋(𝑡′)(𝜇− 1))
]︀
= 𝛼𝑗

due to the properties of the multinomial distribution. So we get

ℙ [t⋆(𝑋(𝑡)) = 𝑗 | 𝑡 ≤ 𝜏𝑛, t
⋆(𝑋(1)), . . . , t⋆(𝑋(𝑡− 1)),𝐾1, . . . ,𝐾𝑛] = 𝛼𝑗 .

Furthermore, let 𝑈(𝑡) ∼ 𝑈(0, 1), 𝑡 ∈ N, be independent random variables (independent
of (𝐾1, . . . ,𝐾𝑛)) such that the transmission at time 𝑡 fails iff 𝑈(𝑡) ≥ (𝑛𝑗 − 𝗇𝑗)/𝑛𝑗 . Then
an easy induction w.r.t. 𝑡 shows that on {𝑡 ≤ 𝜏𝑛} the event {𝑇 𝑖

𝑙 = 𝑡𝑖𝑙 for all 𝑖 ∈ [𝐽 ], 𝑙 ∈
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[𝑛𝑖]} is 𝜎
(︀
t⋆(𝑋(𝑡)1), . . . , t⋆(𝑋(𝑡)ℒ(𝑋(𝑡))), 𝑈(𝑡)|𝑡 < 𝑡

)︀
measurable as long as max{𝑡𝑖𝑙 | 𝑖 ∈

[𝐽 ], 𝑙 ∈ [𝑛𝑖]} ≤ 𝑡. Since this holds for arbitrary 𝑡 ∈ N and since the random variables
t⋆(𝑋(𝑡)1), . . . , t⋆(𝑋(𝑡)ℒ(𝑋(𝑡))), 𝑈(𝑡), 𝑡 ∈ N are independent of 𝐾1, . . . ,𝐾𝑛, we get that
𝑇 𝑖
𝑙 , 𝑖 ∈ [𝐽 ], 𝑙 ∈ [𝑛𝑖] are independent of 𝐾1, . . . ,𝐾𝑛.

For every 𝑣 ∈ 𝒰∞ with 𝑣 > 𝑤, there is 𝐵2 = 𝐵2(𝑣) ∈ 𝜎(𝐾1, . . . ,𝐾𝑚−1) with {𝑋(𝑘𝑚) =
𝑣} ∩𝐴 = 𝐵2 ∩𝐴. Notice that t⋆(𝑋(𝑇𝑚)) = (𝑚). So for every 𝐵3 ∈ 𝜎(𝐾1, . . . ,𝐾𝑚−1) and

𝐵4 ∈ 𝜎
(︁
𝖳
[𝐽 ]
{𝑛1,...,𝑛𝐽}

)︁
with 𝐵3 ∩𝐵4 ⊆ 𝐴 and for every 𝜆 ∈ N we get

ℙ [{𝐾𝑚 = 𝜆} ∩𝐵3 ∩𝐵4] = ℙ [{ℒ(𝑋(𝑘𝑚)) = 𝜆} ∩𝐵3 ∩𝐵4]

=
∑︁

𝑣∈𝒰∞,𝑣>𝑤

ℙ[{ℒ(𝑣) = 𝜆} ∩ {t⋆(𝑣) = (𝑚)} ∩ {𝑣 = 𝑋(𝑘𝑚)} ∩𝐵3 ∩𝐵4]

=
∑︁

𝑣∈𝒰∞,𝑣>𝑤

ℙ[ℒ(𝑣) = 𝜆, t⋆(𝑣) = (𝑚)] · ℙ[𝐵2 ∩𝐵3] · ℙ[𝐵4]

= ℙ[ℒ(𝑚) = 𝜆]
∑︁

𝑣∈𝒰∞,𝑣>𝑤

ℙ[𝐵2 ∩𝐵3 ∩𝐵4]

= ℙ[ℒ(𝑚) = 𝜆]
∑︁

𝑣∈𝒰∞,𝑣>𝑤

ℙ[{𝑣 = 𝑋(𝑘𝑚)} ∩𝐵3 ∩𝐵4]

= ℙ[ℒ(𝑚) = 𝜆] · ℙ[𝐵3 ∩𝐵4].

Summing up over all possible values 𝑘1, . . . , 𝑘𝑚 and 𝑤 ∈ 𝒰∞ we can relax the assumption
𝐵3 ∩ 𝐵4 ⊆ 𝐴 to 𝐵3 ∩ 𝐵4 ⊆ {𝑇𝑚 ≤ 𝜏𝑛}. Since the sets 𝐵3 ∩ 𝐵4 with 𝐵3 ∈ 𝜎(𝐾1, . . .𝐾𝑚−1)

and 𝐵4 ∈ 𝜎(𝖳
[𝐽 ]
{𝑛1,...,𝑛𝐽}) form an intersection-stable generating system of

𝜎(𝐾1, . . . ,𝐾𝑚−1,𝖳
[𝐽 ]
{𝑛1,...,𝑛𝐽}), we get

ℙ[{𝐾𝑚 = 𝜆} ∩𝐵5] = ℙ[ℒ(𝑚) = 𝜆] · ℙ[𝐵5] (14)

for all 𝐵5 ∈ 𝜎(𝐾1, . . . ,𝐾𝑚−1,𝖳
[𝐽 ]
{𝑛1,...,𝑛𝐽}) with 𝐵5 ⊆ {𝑇𝑚 ≤ 𝜏𝑛}. Since (14) is trivial for

𝐵5 ∈ 𝜎(𝐾1, . . . ,𝐾𝑚−1,𝖳
[𝐽 ]
{𝑛1,...,𝑛𝐽}) with 𝐵5 ⊆ {𝑇𝑚 > 𝜏𝑛}, we can drop the assumption

𝐵5 ⊆ {𝑇𝑚 ≤ 𝜏𝑛} in order to arrive at (13). Applying (13) inductively, we get

ℙ[𝐾1 = 𝜆1, . . . ,𝐾𝑛 = 𝜆𝑛,𝖳
[𝐽 ]
{𝑛1,...,𝑛𝐽} ∈ 𝐵1] =

𝑛∏︁
𝑚=1

ℙ[ℒ(𝑚) = 𝜆𝑚] · ℙ[𝖳[𝐽 ]
{𝑛1,...,𝑛𝐽} ∈ 𝐵1]

and this shows (12). Summing up over all  ∈ ℋ, we get the claimed independence proper-
ties.

Finally, we can also state in our case of different types of vertices, a result similar to [4,
Proposition 2.1].

Lemma 4.2. If we denote by 𝖹𝖬𝖦𝖶
𝗍𝗈𝗍 =

⃒⃒
𝑉 (T𝖬𝖦𝖶)

⃒⃒
the total number of individuals in the

Galton-Watson process, then the full transmission event is asymptotically included in the
survival event in the sense that

𝖳𝗋𝖺𝗇𝗌𝑛 ⊂ {𝖹𝖬𝖦𝖶
𝗍𝗈𝗍 ≥ 𝑛}, where {𝖹𝖬𝖦𝖶

𝗍𝗈𝗍 ≥ 𝑛} ↓ 𝖲𝗎𝗋𝗏𝖬𝖦𝖶, 𝑛 → ∞.
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Conversely, the event of termination at time 𝑜(𝑛) in the epidemic model converges to the
event of extinction in the multitype Galton-Watson process.

Proof. The first claim follows directly from the construction. The converse claim is a con-
sequence of Lemma 4.3.

In the sequel we assume 𝖠𝗌𝗌𝗎𝗆𝗉𝗍𝗂𝗈𝗇 𝟤 holds, in order to ensure that the MGW is supercritical
and hence ℙ[𝖲𝗎𝗋𝗏𝖬𝖦𝖶] > 0. In fact, it is close to being necessary for ℙ[𝖲𝗎𝗋𝗏𝖬𝖦𝖶] > 0 – we
have only excluded the case ℒ1+ · · ·+ℒ𝐽 = 1 a.s., in which we would get very pathological
problems.

We want to show next, that also in the case of 𝐽 different types of coupons, the transmission
takes place on a macroscopic time level. The proof is more involved than the one in the
homogeneous case and uses a different idea.

Lemma 4.3. Suppose that Assumption 1 and Assumption 2 hold. There exists 𝜖0 > 0 such
that, for all 𝜖 ∈ (0, 𝜖0):

lim
𝑛→∞

ℙ
[︁
𝜏𝑛 ≥ 𝑛𝜖,𝖲𝗎𝗋𝗏𝖬𝖦𝖶

]︁
= ℙ

[︁
𝖲𝗎𝗋𝗏𝖬𝖦𝖶

]︁
= 1− 𝜎𝖬𝖦𝖶.

Proof. Put

𝜖1 :=

(︂
1− 1

𝜌(𝑀)

)︂
and 𝜖0 := min{𝛾1, . . . , 𝛾𝐽} · 𝜖1

and let 𝜖 ∈ (0, 𝜖0). Then there exists an 𝜖′ ∈ (0, 𝜖1) with 𝜖 = min{𝛾1, . . . , 𝛾𝐽} · 𝜖′. We have

{𝜏𝑛 ≥ 𝑛𝜖} ⊇ {|𝒯 ∘(𝜏𝑛)| ≥ 𝑛𝜖}

since |𝒯 ∘(𝑡)| ≤ 𝑡 for all 𝑡 ∈ N. In order to find a lower bound on the probability
ℙ
[︀
|𝒯 ∘(𝜏𝑛)| ≥ 𝑛𝜖, 𝖲𝗎𝗋𝗏𝖬𝖦𝖶

]︀
we construct a new process

(︀
𝒰∘(𝑟),𝒰⊞(𝑟),𝒰†(𝑟)

)︀
, 𝑟 ∈ N, sim-

ilar to (𝒯 ∘(𝑡), 𝒯 ⊞(𝑡), 𝒯 †(𝑡)). To this aim, given a fixed 𝑘 we let 𝑔𝑘 be the last generation
in the Galton-Watson process such that the total number of individuals ever born does not
exceed 𝑘, that is

𝑔𝑘 = max

{︃
𝑔 ∈ N

⃒⃒⃒⃒ 𝑔∑︁
𝑡=1

𝒵𝑡 ≤ 𝑘

}︃
.

Then

∙ at each epoch 𝑟, a new vertex of the GW tree is added to 𝒰∘(𝑟), until the process
reaches generation 𝑔𝑘 + 1;

∙ from generation 𝑔𝑘 + 1, vertices of the GW-tree are added with probability 1− 𝜖′;

∙ moreover, from generation 𝑔𝑘+1, as long as only a small fraction - smaller than 𝜖′ - of
the available ”coupons” of each type has been collected, the vertices that are added
to 𝒰∘(𝑟) are chosen from the ones in 𝒯 ∘(𝑡𝑟) (𝑡𝑟 is a function of 𝑟) .
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Now let 𝑘 = ⌈(log 𝑛)2⌉ and let
𝑘1 := 𝒵1 + · · ·+ 𝒵𝑔𝑘

denote the total number of individuals up to the 𝑔𝑘-th generation. We set(︁
𝒰∘(0),𝒰⊞(0),𝒰†(0)

)︁
:=
(︁
𝒯 ∘(0), 𝒯 ⊞(0), 𝒯 †(0)

)︁
and assume that (𝒰∘(𝑟),𝒰⊞(𝑟),𝒰†(𝑟)) has been defined for some 𝑟. Conditionally on
𝒰⊞(𝑟) ̸= ∅ we define (𝒰∘(𝑟 + 1),𝒰⊞(𝑟 + 1),𝒰†(𝑟 + 1)) by picking the element 𝑣 ∈ 𝒰⊞(𝑟)
of least generation, among elements of same generation the first one in the lexicographic
order, and distinguishing the following cases:

∙ If |𝑣| ≤ 𝑔𝑘, i.e. 𝑣 belongs to the first 𝑔𝑘 generations, then assume that the transmission
is successful, i.e.

𝒰∘(𝑟 + 1) := 𝒰∘(𝑟) ∪ {𝑣}
𝒰⊞(𝑟 + 1) := 𝒰⊞(𝑟) ∖ {𝑣} ∪ {𝑣1, . . . , 𝑣ℒ𝑖(𝑣)}
𝒰†(𝑟 + 1) := 𝒰†(𝑟),

where 𝑣1, . . . , 𝑣ℒ𝑖(𝑣) are the children of 𝑣 in the Galton-Watson tree 𝒯 .

∙ If |𝑣| > 𝑔𝑘 and 𝑣 ∈ 𝒯 †(𝑡 + 1) ∖ 𝒯 †(𝑡) for some 𝑡 ∈ {1, . . . , 𝜏𝑛} such that 𝖭𝑗
𝑡 ≤ 𝜖′𝑛𝑗

for all 𝑗 ∈ {1, . . . , 𝐽}, i.e. the transmission in the old 𝒯 -model is attempted at some
medium time and fails, then the transmission fails also in the new 𝒰-model, i.e.

𝒰∘(𝑟 + 1) := 𝒰∘(𝑟)

𝒰⊞(𝑟 + 1) := 𝒰⊞(𝑟) ∖ {𝑣}
𝒰†(𝑟 + 1) := 𝒰†(𝑟) ∪ {𝑣}.

∙ If |𝑣| > 𝑔𝑘, 𝑣 ∈ 𝒯 ∘(𝑡 + 1) ∖ 𝒯 ∘(𝑡) for some 𝑡 ∈ {1, . . . , 𝜏𝑛} such that 𝖭𝑗
𝑡 ≤ 𝜖′𝑛𝑗 for

all 𝑗 ∈ [𝐽 ], then let the transmission be successful with probability 1−𝜖′

(𝑛𝑖−𝖭𝑖
𝑡)/𝑛𝑖

, where

𝑖 = t(𝑣), conditionally on everything defined so far.

∙ If either 𝑣 ∈ (𝒯 ∘(𝑡 + 1) ∪ 𝒯 †(𝑡 + 1)) ∖ (𝒯 ∘(𝑡) ∪ 𝒯 †(𝑡)) for some 𝑡 ∈ {1, . . . , 𝜏𝑛} such
that 𝖭𝑗

𝑡 > 𝜖′𝑛𝑗 for some 𝑗 ∈ {1, . . . , 𝐽} or 𝑣 /∈ 𝒯 ∘(𝜏𝑛) ∪ 𝒯 †(𝜏𝑛), then the transmission
fails with probability 𝜖′ conditionally on everything defined so far and is successful
otherwise.

This construction is summarized in Table 1. If in any of these cases 𝑡 ∈ {1, . . . , 𝜏𝑛} with
𝑣 ∈ (𝒯 ∘(𝑡+ 1) ∪ 𝒯 †(𝑡+ 1)) ∖ (𝒯 ∘(𝑡) ∪ 𝒯 †(𝑡)) exists, then denote 𝑡+ 1 by 𝑡𝑟+1.

If 𝒰⊞(𝑟) = ∅, the process stops and we set 𝜌𝑛 = 𝑟. Put

𝑟0 := max
{︀
𝑟′ ∈ {1, . . . , 𝜌𝑛} | 𝑡𝑟 is defined for all 𝑟 ≤ 𝑟′

}︀
.

Then either 𝑟0 = 𝜌𝑛 or for the vertex 𝑣 ∈ T𝖬𝖦𝖶 chosen in the 𝑟0 + 1-st step there is no
𝑡 ∈ {1, . . . , 𝜏𝑛} with 𝑣 ∈ (𝒯 ∘(𝑡 + 1) ∪ 𝒯 †(𝑡 + 1)) ∖ (𝒯 ∘(𝑡) ∪ 𝒯 †(𝑡)). The latter however
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transmission in 𝒯 -model
successful

transmission in
𝒯 -model fails

generation ≤ 𝑔𝑘 transmission successful

generation > 𝑔𝑘
𝖭𝑗
𝑡 ≤ 𝜖′𝑛𝑗 for

all 𝑗 ∈ [𝐽 ]

transmission successful
with probability 1−𝜖′

(𝑛𝑖−𝖭𝑖
𝑡)/𝑛𝑖

transmission fails

generation > 𝑔𝑘
𝖭𝑗
𝑡 > 𝜖′𝑛𝑗 for

some 𝑗 ∈ [𝐽 ]
or 𝑡 not defined

transmission successful with probability 1− 𝜖′

Table 1: Summary of the construction of the 𝒰-model

means, that at the time step 𝑟1 ∈ {1, . . . , 𝑟0}, when 𝑣 was added to 𝒰⊞(𝑟), it was not added
to 𝒯 ⊞(𝑡), so the transmission in the 𝒯 -model at time 𝑡𝑟1 failed, while the transmission in
the 𝒰-model at time 𝑟1 was successful. This is possible in two cases: either the vertex 𝑣1
treated at time 𝑟1 belongs to the first 𝑔𝑘 generations or 𝖭𝑗

𝑡𝑟1
> 𝜖′𝑛𝑗 for some 𝑗 ∈ {1, . . . , 𝐽}.

Now assume that the event 𝖲𝗎𝖼𝖼𝑔𝑘 , that in the first 𝑔𝑘 generations all transmissions are
successful in the 𝒯 -model, occurs. Then 𝑣1 belonging to the first 𝑔𝑘 generations cannot
explain anymore that the transmission in the 𝒰-model at time 𝑟1 is successful, while the
transmission in the 𝒯 -model at time 𝑡𝑟1 fails, and we are left with the case that 𝖭𝑗

𝑡𝑟1
> 𝜖′𝑛𝑗

for some 𝑗 ∈ {1, . . . , 𝐽}. Since 𝑟0 ≥ 𝑟1 we get 𝖭𝑗
𝑡𝑟0

> 𝜖′𝑛𝑗 for some 𝑗 ∈ {1, . . . , 𝐽}. In
conclusion we have

𝖲𝗎𝖼𝖼𝑔𝑘 ⊆ {𝜌𝑛 = 𝑟0} ∪ {𝖭𝑗
𝑡𝑟0

> 𝜖′𝑛𝑗 for some 𝑗 ∈ {1, . . . , 𝐽}}.

Since 𝜏𝑛 ≥ 𝑡𝑟0 by the definition of 𝑟0 and since 𝖭𝑗
𝑡𝑟0

= |𝒯 ∘
𝑗 (𝑡𝑟0)| ≤ |𝒯 ∘(𝑡𝑟0)|, we get

ℙ
[︁
𝜏𝑛 ≥ 𝑛𝜖,𝖲𝗎𝗋𝗏𝖬𝖦𝖶

]︁
≥ ℙ

[︁
|𝒯 ∘(𝜏𝑛)| ≥ 𝑛𝜖,𝖲𝗎𝗋𝗏𝖬𝖦𝖶

]︁
≥ ℙ

[︁
|𝒯 ∘(𝑡𝑟0)| ≥ 𝑛𝜖, 𝖲𝗎𝗋𝗏𝖬𝖦𝖶

]︁
≥ ℙ

[︁
𝖭𝑗
𝑡𝑟0

> 𝜖′𝑛𝑗 for some 𝑗 ∈ {1, . . . , 𝐽}
]︁

≥ ℙ [𝜌𝑛 = ∞,𝖲𝗎𝖼𝖼𝑔𝑘 ] ≥ ℙ [𝜌𝑛 = ∞] + ℙ [𝖲𝗎𝖼𝖼𝑔𝑘 ]− 1.

In order to estimate ℙ[𝖲𝗎𝖼𝖼𝑔𝑘 ], put 𝛽 := max{𝛽1, . . . , 𝛽𝑛}. Notice that the probability that
in one step a new vertex is infected is bounded from below by 1−𝛽 ·𝑗/𝑛 given that 𝑗 vertices
have already been infected. Then

1− ℙ[𝖲𝗎𝖼𝖼𝑔𝑘 ] ≤ 1−
(︂
1− 𝛽

1

𝑛

)︂
· · · · ·

(︂
1− 𝛽

𝑘

𝑛

)︂
≤ 1−

(︂
1− 𝛽

𝑘

𝑛

)︂𝑘

∼ 𝛽
𝑘2

𝑛
→ 0,

since 𝑘2/𝑛 → 0 as 𝑛 → ∞.

Let us now turn to the probability of the event {𝜌𝑛 = ∞} that the process in the 𝒰-model
survives forever. For any vertex 𝑣 of the 𝑔𝑘-th generation, let 𝖲𝗎𝗋𝗏(𝑣) denote the event

that 𝑣 has infinitely many descendants in the 𝒰-model. Clearly {𝜌𝑛 = ∞} =
⋃︀𝒵𝑔𝑘

𝑙=1 𝖲𝗎𝗋𝗏(𝑣𝑙),
where 𝑣1, . . . , 𝑣𝒵𝑔𝑘

are the members of the 𝑔𝑘-th generation. Notice that the systems of
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descendants of these vertices form independent Galton-Watson trees that are independent
of the process 𝒰∘ up to time 𝑘1. This is a consequence of the fact that the remainder of an
i.i.d. sequence after a stopping time is again an i.i.d. sequence.

Observe that the offspring distribution of these Galton-Watson trees is given by �̄�(𝑖,𝑗) =∑︀𝐿(𝑖,𝑗)

𝑘=1 𝛿
(𝑖,𝑗)
𝑘 , where 𝛿

(𝑖,𝑗)
1 , . . . 𝛿

(𝑖,𝑗)

𝐿(𝑖,𝑗) are independent random variables with distribution

ℙ[𝛿(𝑖,𝑗)𝑘 = 1] = 1− 𝜖′ and ℙ[𝛿(𝑖,𝑗)𝑘 = 0] = 𝜖′ for 𝑖, 𝑗 = 1, . . . , 𝐽, 𝑘 = 1, . . . , 𝐿(𝑖,𝑗).

Hence the mean value matrix is (1 − 𝜖′)𝑀 , and in particular it has spectral radius bigger
than 1. So the probability of the event 𝖲𝗎𝗋𝗏(𝑣𝑙), that this Galton-Watson process survives,
is positive and independent of 𝑙 or 𝑛. Hence we get for any 𝑧 ∈ N that

ℙ[𝜌𝑛 < ∞] ≤ ℙ
[︁
{𝒵𝑔𝑘 ≤ 𝑧} ∪

(︁
𝖲𝗎𝗋𝗏(𝑣1)

∁ ∩ · · · ∩ 𝖲𝗎𝗋𝗏(𝑣𝑧+1)
∁
)︁]︁

≤ ℙ[𝒵𝑔𝑘 ≤ 𝑧] + (1− 𝛿)𝑧+1,

where 𝛿 := ℙ[𝖲𝗎𝗋𝗏(𝑣)] > 0. Therefore

lim
𝑛→∞

ℙ
[︁
𝜏𝑛 ≥ 𝑛𝜖,𝖲𝗎𝗋𝗏𝖬𝖦𝖶

]︁
≥ lim

𝑛→∞
ℙ[𝜌𝑛 = ∞] ≥ 1− lim

𝑛→∞
ℙ[𝒵𝑔𝑘 ≤ 𝑧]− (1− 𝛿)𝑧+1.

Since 𝑔𝑘 → ∞ as 𝑛 → ∞ almost surely and 𝒵𝑔 → ∞ as 𝑔 → ∞ almost surely conditioned
on 𝖲𝗎𝗋𝗏𝖬𝖦𝖶, where the latter is a consequence of [7, Section II, Theorem 6.1], we have that
the total number 𝒵𝑔𝑘 of individuals in the 𝑔𝑘-th generation tends to infinity as 𝑛 → ∞
conditionally on 𝖲𝗎𝗋𝗏𝖬𝖦𝖶 almost surely. So

lim
𝑛→∞

ℙ[𝒵𝑔𝑘 ≤ 𝑧] = lim
𝑛→∞

ℙ
[︁
𝒵𝑔𝑘 ≤ 𝑧,𝖲𝗎𝗋𝗏𝖬𝖦𝖶

]︁
+ lim

𝑛→∞
ℙ
[︁
𝒵𝑔𝑘 ≤ 𝑧, (𝖲𝗎𝗋𝗏𝖬𝖦𝖶)∁

]︁
= ℙ

[︁
(𝖲𝗎𝗋𝗏𝖬𝖦𝖶)∁

]︁
and thus

lim
𝑛→∞

ℙ
[︁
𝜏𝑛 ≥ 𝑛𝜖, 𝖲𝗎𝗋𝗏𝖬𝖦𝖶

]︁
≥ ℙ

[︁
𝖲𝗎𝗋𝗏𝖬𝖦𝖶

]︁
− (1− 𝛿)𝑧+1,

which shows the assertion, since 𝑧 ∈ N was arbitrary.

5 Law of large numbers

Let 𝜃 denote the unique solution in (0,∞) of

𝑓(𝜃) :=

𝐽∑︁
𝑖=1

E[ℒ𝑖] 𝛾𝑖(1− 𝑒−𝛽𝑖𝜃)⏟  ⏞  
:=𝑤𝑖(𝜃)

−𝜃 = 0, (15)

or written in another way ⟨E[ℒ],𝗐(𝜃)⟩ = 𝜃, where E[ℒ] = (E[ℒ1], . . . ,E[ℒ𝐽 ]) and

𝗐(𝜃) = (𝛾1(1− 𝑒−𝛽1𝜃), . . . , 𝛾𝐽(1− 𝑒−𝛽𝐽𝜃))

and ⟨E[ℒ],𝗐(𝜃)⟩ is the usual scalar product of the two involved vectors. Observe that
there is a solution, since 𝑓(0) = 0, 𝑓 ′(0) =

∑︀𝐽
𝑖=1E[ℒ𝑖]𝛾𝑖𝛽𝑖 − 1 = 𝜌(𝑀) − 1 > 0 due to

𝖠𝗌𝗌𝗎𝗆𝗉𝗍𝗂𝗈𝗇 𝟤, lim𝜃→∞ 𝑓(𝜃) = −∞ and 𝑓 is continuous. Moreover, the solution is unique,
since 𝑓 ′′(𝜃) = −

∑︀𝐽
𝑖=1E[ℒ𝑖]𝛾𝑖𝛽

2
𝑖 𝑒

−𝛽𝑖𝜃 < 0 for 𝜃 ∈ [0,∞) and therefore 𝑓(𝜃) = 0 can have at
most two solutions in [0,∞) and one of these solutions is given by 𝜃 = 0.
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Theorem 5.1. Let 0 < E[ℒ𝑖] < ∞, for all 𝑖 = 1, . . . , 𝐽 .

1. Then
𝜏𝑛
𝑛

−→ 𝜃1{𝖲𝗎𝗋𝗏𝖬𝖦𝖶} and
𝜏𝑛
𝑛

−→ 𝜃1{𝖲𝗎𝗋𝗏𝖬𝖦𝖶}

in probability as 𝑛 → ∞.

2. Also
𝒩𝜏𝑛

𝑛
−→ ⟨𝗐(𝜃), 𝟣⟩1{𝖲𝗎𝗋𝗏𝖬𝖦𝖶} and

̃︀𝒩𝜏𝑛

𝑛
−→ ⟨𝗐(𝜃), 𝟣⟩1{𝖲𝗎𝗋𝗏𝖬𝖦𝖶}

in probability as 𝑛 → ∞, where 𝒩𝑡 =
∑︀𝐽

𝑖=1𝖭
𝑖
𝑡 and ̃︀𝒩𝑡 =

∑︀𝐽
𝑖=1 �̃�

𝑖
𝑡.

Proof. Proof of 𝜏𝑛
𝑛 → 𝜃1{𝖲𝗎𝗋𝗏𝖬𝖦𝖶} in probability as 𝑛 → ∞.

We use a similar approach as in [4, Theorem 2.2]. We have ℛ𝑖
𝑡 =

∑︀𝖭𝑖
𝑡

𝑙=1 ℒ
𝑖
𝑙, where for

each 𝑖 = 1, . . . , 𝐽 , ℒ𝑖
𝑙 are i.i.d. distributed like ℒ𝑖 with E[ℒ𝑖] < ∞. Also �̃�1

𝑡 , . . . , �̃�
𝐽
𝑡 are

independent and for every 𝑖, �̃�𝑖
𝑛𝑠
𝑛 → 𝛾𝑖(1− 𝑒−𝛽𝑖𝑠) = 𝑤𝑖(𝑠) in probability as 𝑛 → ∞, and

�̃�𝑡 = 𝖲𝒫𝑡 =

𝖭1
𝒫𝑡∑︁

𝑙=1

ℒ1
𝑙 + . . .+

𝖭𝐽
𝒫𝑡∑︁

𝑙=1

ℒ𝐽
𝑙 − 𝒫𝑡.

Using that �̃�𝑖
𝑡 = 𝖭𝑖

𝒫𝑡
for all 𝑖 ∈ [𝐽 ], we can in turn write

�̃�𝑡 = 𝖲𝒫𝑡 =

�̃�1
𝑡∑︁

𝑙=1

ℒ1
𝑙 + . . .+

�̃�𝐽
𝑡∑︁

𝑙=1

ℒ𝐽
𝑙 − 𝒫𝑡.

Therefore

�̃�𝑛𝑠
𝑛

=
𝖲𝒫𝑛𝑠

𝑛
=

1

𝑛

⎛⎝�̃�1
𝑛𝑠∑︁

𝑙=1

ℒ1
𝑙 + . . .+

�̃�𝐽
𝑛𝑠∑︁

𝑙=1

ℒ𝐽
𝑙 − 𝒫𝑛𝑠

⎞⎠
=

∑︀�̃�1
𝑛𝑠

𝑙=1 ℒ
1
𝑙

�̃�1
𝑛𝑠⏟  ⏞  

→E[ℒ1]

· �̃�1
𝑛𝑠

𝑛⏟ ⏞ 
→𝛾1(1−𝑒−𝛽1𝑠)

+ · · ·+
∑︀�̃�𝐽

𝑛𝑠
𝑙=1 ℒ

𝐽
𝑙

�̃�𝐽
𝑛𝑠⏟  ⏞  

→E[ℒ𝐽 ]

· �̃�𝐽
𝑛𝑠

𝑛⏟ ⏞ 
→𝛾𝐽 (1−𝑒−𝛽𝐽𝑠)

− 𝒫𝑛𝑠

𝑛⏟ ⏞ 
→𝑠

→
𝐽∑︁

𝑖=1

E[ℒ𝑖]𝛾𝑖(1− 𝑒−𝛽𝑖𝑠)− 𝑠 = ⟨E[ℒ],𝗐(𝑠)⟩ − 𝑠

in probability, uniformly on compacts of ℝ+, where in the second line above we have applied
the weak law of large numbers for the sequences of involved random variables, and the last
line holds in view of the continuous mapping theorem. Now, for any 𝛿 > 0 and 𝜖 > 0, we
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have

ℙ
[︁⃒⃒⃒
𝜏𝑛 − 𝑛𝜃1{𝖲𝗎𝗋𝗏𝖬𝖦𝖶}

⃒⃒⃒
> 𝑛𝛿

]︁
= ℙ

[︁
|𝜏𝑛 − 𝑛𝜃| > 𝑛𝛿, 𝖲𝗎𝗋𝗏𝖬𝖦𝖶

]︁
+ ℙ

[︂
𝜏𝑛 > 𝑛𝛿,

(︁
𝖲𝗎𝗋𝗏𝖬𝖦𝖶

)︁∁]︂
≤ ℙ

[︁
|𝜏𝑛 − 𝑛𝜃| > 𝑛𝛿, 𝖲𝗎𝗋𝗏𝖬𝖦𝖶, 𝜏𝑛 ≥ 𝑛𝜖

]︁
+ ℙ

[︁
𝜏𝑛 < 𝑛𝜖,𝖲𝗎𝗋𝗏𝖬𝖦𝖶

]︁
+ ℙ

[︂
𝜏𝑛 > 𝑛𝛿,

(︁
𝖲𝗎𝗋𝗏𝖬𝖦𝖶

)︁∁]︂
.

On the right hand side of the above inequality, the second term tends to 0 as 𝑛 → ∞ in
view of Lemma 4.3. The third term vanishes also as 𝑛 → ∞, since 𝜏𝑛 is smaller than the
extinction time of the multitype Galton-Watson process, which is a.s. finite on the extinction

event
(︀
𝖲𝗎𝗋𝗏𝖬𝖦𝖶

)︀∁
. Finally, for the first term, by picking 𝜖 < 𝜃 − 𝛿, we have the following:

lim sup
𝑛→∞

ℙ
[︁
|𝜏𝑛 − 𝑛𝜃| > 𝑛𝛿, 𝖲𝗎𝗋𝗏𝖬𝖦𝖶, 𝜏𝑛 ≥ 𝑛𝜖

]︁
≤ lim sup

𝑛→∞

(︁
ℙ
[︁
𝑛𝜖 ≤ 𝜏𝑛 ≤ 𝑛𝜃 − 𝑛𝛿, 𝖲𝗎𝗋𝗏𝖬𝖦𝖶

]︁
+ ℙ

[︁
𝜏𝑛 > 𝑛𝜃 + 𝑛𝛿, 𝖲𝗎𝗋𝗏𝖬𝖦𝖶

]︁ )︁
≤ lim sup

𝑛→∞

(︁
ℙ
[︀
min{𝖲⌊𝑛𝑠⌋; 𝑠 ∈ [𝜖, 𝜃 − 𝛿]} ≤ 0

]︀
+ ℙ

[︀
𝖲⌊𝑛(𝜃+𝛿)⌋ > 0

]︀ )︁
≤ lim sup

𝑛→∞

(︁
ℙ [min{𝖲𝒫𝑛𝑠 ; 𝑠 ∈ [𝜖/2, 𝜃 − 𝛿/2]} ≤ 0] + ℙ

[︀
𝒫𝑛·𝜖/2 > ⌊𝑛𝜖⌋

]︀
+ ℙ

[︀
𝒫𝑛·(𝜃−𝛿/2) < ⌊𝑛 · (𝜃 − 𝛿)⌋

]︀
+ ℙ

[︁
𝖲𝒫𝑛(𝜃+𝛿/2)

> 0
]︁

+ ℙ
[︀
𝒫𝑛(𝜃+𝛿/2) > ⌊𝑛 · (𝜃 + 𝛿)⌋

]︀ )︁
= 0.

For the second inequality we have used that since 𝜏𝑛 = min{𝑡 ∈ N | 𝖲𝑡 = 0} we have
𝜏𝑛 ≤ 𝑡0 if and only if there is 𝑡 ≤ 𝑡0 with 𝖲𝑡 = 0. To see the third inequality observe
that 𝒫𝑛𝑠, 𝑠 ∈ [𝜖/2, 𝜃 − 𝛿/2] attains with probability one every integer from 𝒫𝑛𝜖/2 through

𝒫𝑛·(𝜃−𝛿/2). The final limit relation holds, since �̃�𝑛𝑠
𝑛 =

𝖲𝒫𝑛𝑠
𝑛 converges in probability to

⟨E[ℒ],𝗐(𝑠)⟩ − 𝑠 uniformly on compacts of ℝ+, and, moreover, ⟨E[ℒ],𝗐(𝑠)⟩ − 𝑠 > 0 for
𝑠 ∈ (0, 𝜃) and ⟨E[ℒ],𝗐(𝑠)⟩ − 𝑠 < 0 for any 𝑠 ∈ (𝜃,∞). This completes the proof of the first
part.

Proof of 𝜏𝑛
𝑛 → 𝜃1{𝖲𝗎𝗋𝗏𝖬𝖦𝖶} in probability as 𝑛 → ∞.

We write 𝜏𝑛 =
∑︀𝜏𝑛

𝑘=1𝐸𝑘 for independent, exponentially distributed random variables 𝐸𝑘 ∼
𝖤𝗑𝗉(1) with rate 1 and set 𝜃′ := 𝜃1{𝖲𝗎𝗋𝗏𝖬𝖦𝖶}. Pick any 𝜖 > 0. We first split the event[︀⃒⃒

𝜏𝑛
𝑛 − 𝜃′

⃒⃒
> 𝜖
]︀
intersecting it with 𝐴𝑛 :=

[︀⃒⃒
𝜏𝑛
𝑛 − 𝜃′

⃒⃒
≤ 𝜖

9

]︀
and its complement. Note that

on 𝐴𝑛, 𝜏𝑛 differs from
∑︀⌊𝑛𝜃′⌋

𝑘=1 𝐸𝑘 by a random variable which is the sum of at most ⌈𝑛𝜖/9⌉
exponentials of rate 1. Let 𝑊𝑛 be this variable (with its sign) so that 𝜏𝑛 =

∑︀⌊𝑛𝜃′⌋
𝑘=1 𝐸𝑘+𝑊𝑛.

ℙ
[︂⃒⃒⃒⃒
𝜏𝑛
𝑛

− 𝜃′
⃒⃒⃒⃒
> 𝜖

]︂
≤ ℙ

[︁
𝐴∁

𝑛

]︁
+ ℙ

⎡⎣⃒⃒⃒⃒⃒⃒ 1𝑛
⌊𝑛𝜃′⌋∑︁
𝑘=1

(︀
𝐸𝑘 − 1

)︀
+

⌊𝑛𝜃′⌋
𝑛

− 𝜃′ +
𝑊𝑛

𝑛

⃒⃒⃒⃒
⃒⃒ > 𝜖

⎤⎦ .

We already know that the first term vanishes, so we concentrate on the second one, which we
call ℙ(𝐵𝑛). We split the event by intersecting with 𝐶𝑛 :=

[︀
|𝑊𝑛/𝑛| ≤ 𝜖

3

]︀
and its complement.
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By the weak law of large numbers, ℙ[𝐶∁
𝑛] → 0, since |𝑊𝑛| is a.s. positive and bounded by a

sum of 𝑛𝜖/9 terms with mean 1. Now, use 𝜃′ − ⌊𝑛𝜃′⌋/𝑛 ∈ [0, 1/𝑛] to get

ℙ[𝐵𝑛 ∩ 𝐶𝑛] = ℙ

⎡⎣ 1

𝑛

⌊𝑛𝜃′⌋∑︁
𝑘=1

(︀
𝐸𝑘 − 1

)︀
> 𝜖− 𝑊𝑛

𝑛
,𝐶𝑛

⎤⎦
+ ℙ

⎡⎣ 1

𝑛

⌊𝑛𝜃′⌋∑︁
𝑘=1

(︀
𝐸𝑘 − 1

)︀
< −𝜖+

1

𝑛
− 𝑊𝑛

𝑛
,𝐶𝑛

⎤⎦ .

For the first term,

ℙ

⎡⎣ 1

𝑛

⌊𝑛𝜃′⌋∑︁
𝑘=1

(︀
𝐸𝑘 − 1

)︀
> 𝜖− 𝑊𝑛

𝑛
,𝐶𝑛

⎤⎦ ≤ ℙ

⎡⎣ 1

𝑛

⌊𝑛𝜃′⌋∑︁
𝑘=1

(︀
𝐸𝑘 − 1

)︀
>

2

3
𝜖

⎤⎦→ 0, as 𝑛 → ∞

since by the weak law of large numbers 1
𝑛

∑︀⌊𝑛𝜃′⌋
𝑘=1

(︀
𝐸𝑘 − 1

)︀
→ 0. For the second term

ℙ

⎡⎣ 1

𝑛

⌊𝑛𝜃′⌋∑︁
𝑘=1

(︀
𝐸𝑘 − 1

)︀
< −𝜖+

1

𝑛
− 𝑊𝑛

𝑛
,𝐶𝑛

⎤⎦ ≤ ℙ

⎡⎣ 1

𝑛

⌊𝑛𝜃′⌋∑︁
𝑘=1

(︀
𝐸𝑘 − 1

)︀
< −2

3
𝜖+

1

𝑛

⎤⎦→ 0,

by the same argument.

Proof of
̃︀𝒩𝜏𝑛
𝑛 −→ ⟨𝗐(𝜃), 𝟣⟩1{𝖲𝗎𝗋𝗏𝖬𝖦𝖶} in probability as 𝑛 → ∞.

Since �̃�𝑖
𝑛𝑠
𝑛 → 𝛾𝑖(1− 𝑒−𝛽𝑖𝑠) = 𝑤𝑖(𝑠) in probability, the law of large numbers together with a

random time change (see e.g. [2, p. 151]) and the first part of the proof yields

̃︀𝒩𝜏𝑛

𝑛
=

𝐽∑︁
𝑖=1

�̃�𝑖
𝜏𝑛

𝑛⏟ ⏞ 
→𝛾𝑖(1−𝑒−𝛽𝑖𝜃)1{𝖲𝗎𝗋𝗏𝖬𝖦𝖶}

−→ 1{𝖲𝗎𝗋𝗏𝖬𝖦𝖶}

𝐽∑︁
𝑖=1

𝛾𝑖(1− 𝑒−𝛽𝑖𝜃) = ⟨𝗐(𝜃), 𝟣⟩1{𝖲𝗎𝗋𝗏𝖬𝖦𝖶},

in probability, as 𝑛 → ∞. So this part of the proof is complete.

Proof of 𝒩𝜏𝑛
𝑛 −→ ⟨𝗐(𝜃), 𝟣⟩1{𝖲𝗎𝗋𝗏𝖬𝖦𝖶} in probability as 𝑛 → ∞.

Since �̃�𝑡 = 𝒩𝒫𝑡 for 𝑡 ∈ N and 𝜏𝑛 = 𝒫𝜏𝑛 , we have �̃�𝜏𝑛 = 𝒩𝜏𝑛 and the claim follows from the
previous one.

6 Central Limit Theorems

In this section we prove central limit theorems for the duration 𝜏𝑛 of the process and for
the total infected vertices at this time. We begin with a preliminary result.
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Theorem 6.1. For 𝑡 ∈ [0,∞), and 𝑛 ∈ N denote by

𝑍
(𝑖)
𝑛𝑡 =

1√
𝑛

(︁
�̃�𝑖
𝑛𝑡 − 𝑛𝛾𝑖 ·

(︁
1− 𝑒−𝛽𝑖𝑡

)︁)︁
𝑍𝒫
𝑛𝑡 =

1√
𝑛
(𝒫𝑛𝑡 − 𝑛𝑡) .

Then it holds{︁(︁
𝑍(1)
𝑛𝑠 , . . . , 𝑍

(𝐽)
𝑛𝑠 , 𝑍𝒫

𝑛𝑠)
)︁
; 𝑠 ∈ [0,∞)

}︁
→
{︁(︁√

𝛾1𝖷
(1)
𝑠 , . . . ,

√
𝛾𝐽𝖷

(𝐽)
𝑠 ,𝖡𝒫

𝑠

)︁
, 𝑠 ∈ [0,∞)

}︁
,

as 𝑛 → ∞ in law in the Skorohod space 𝒟([0,∞),ℝ𝐽+1) endowed with the standard J1 topol-
ogy, where (𝖷(1), . . . ,𝖷(𝐽),𝖡𝒫) is a centered Gaussian process with the first 𝐽 components
being independent and with covariances given by

Cov[𝖷(𝑖)
𝑠 ,𝖷

(𝑖)
𝑡 ] = (1− 𝑒−𝛽𝑖𝑠)𝑒−𝛽𝑖𝑡 𝑠, 𝑡 ∈ [0,∞), 𝑠 ≤ 𝑡,

Cov[𝖷(𝑖)
𝑠 ,𝖡𝒫

𝑡 ] = min{𝑠, 𝑡} · 𝛾𝑖𝑒−𝑠𝛽𝑖 𝑠, 𝑡 ∈ [0,∞),

Cov[𝖡𝒫
𝑠 ,𝖡

𝒫
𝑡 ] = min{𝑠, 𝑡} 𝑠, 𝑡 ∈ [0,∞).

Proof. The limit of
{︁
𝑍

(𝑖)
𝑛𝑠 ; 𝑠 ∈ [0,∞)

}︁
is given in Proposition 3.1. We next investigate the

limit of
{︀
𝑍𝒫
𝑛𝑠; 𝑠 ∈ [0,∞)

}︀
. Since 𝒫𝑡 is a Poisson process with rate 1, there are independent

random variables 𝐸𝑗 ∼ 𝐸𝑥𝑝(1), 𝑗 ∈ N with

{𝒫𝑡; 𝑡 ∈ [0,∞)} =

{︃ ∞∑︁
𝑘=1

1{
∑︀𝑘

𝑗=1 𝐸𝑗≤𝑡}; 𝑡 ∈ [0,∞)

}︃
.

By using Donsker’s invariance principle we first have that⎧⎨⎩ 1√
𝑛

⌊𝑛𝑠⌋∑︁
𝑗=1

(𝐸𝑗 − 1); 𝑠 ∈ [0,∞)

⎫⎬⎭ −→ {𝖡𝑠; 𝑠 ∈ [0,∞)} , as 𝑛 → ∞

in law in the Skorohod topology. We then obtain{︀
𝑍𝒫
𝑛𝑠; 𝑠 ∈ [0,∞)

}︀ law−→ {𝖡𝑠; 𝑠 ∈ [0,∞)}

in view of [2, Theorem 14.6], and we set 𝖡𝒫
𝑠 := 𝖡𝑠. Now let us turn to Cov[�̃�𝑖

𝑛𝑠,𝒫𝑛𝑡]. We
assume w.l.o.g. that the vertices 𝑣1, . . . 𝑣𝑛𝑖 are of type 𝑖, while the vertices 𝑣𝑛𝑖+1, . . . , 𝑣𝑛 are
not of type 𝑖. The time at which vertex 𝑣𝑘, 𝑘 = 1, . . . , 𝑛 receives the virus for the 𝑙-th time
can be modeled by 𝑡𝑘,𝑙 =

∑︀𝑙
𝑗=1𝐸𝑘,𝑗 , where again 𝐸𝑘,𝑗 , 𝑘 = 1, . . . , 𝑛, 𝑗 ∈ N, are independent

exponentially distributed random variables with rate 𝑝t(𝑣𝑘). Then{︁
�̃�𝑖
𝑡; 𝑡 ∈ [0,∞)

}︁
law
=

{︃
𝑛𝑖∑︁
𝑘=1

1{𝑡𝑘,1≤𝑡}; 𝑡 ∈ [0,∞)

}︃
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and

{𝒫𝑡; 𝑡 ∈ [0,∞)} law
=

{︃
𝑛∑︁

𝑘=1

∞∑︁
𝑙=1

1{𝑡𝑘,𝑙≤𝑡}; 𝑡 ∈ [0,∞)

}︃
.

Observe that 𝒫𝑡(𝑘) :=
∑︀∞

𝑙=1 1{𝑡𝑘,𝑙≤𝑡} ∼ 𝖯𝗈𝗂(𝑡𝑝t(𝑣𝑘)) and 1{𝑡𝑘,1≤𝑡} = 1{𝒫𝑡(𝑘)≥1}. For 𝑠 ≤ 𝑡:

1

𝑛
Cov[�̃�𝑖

𝑛𝑠,𝒫𝑛𝑡] =
1

𝑛

𝑛𝑖∑︁
𝑘=1

(︁
Cov

[︁
1{𝑡𝑘,1≤𝑛𝑠},𝒫𝑛𝑠(𝑘)

]︁
+Cov

[︁
1{𝑡𝑘,1≤𝑛𝑠},𝒫𝑛𝑡(𝑘)− 𝒫𝑛𝑠(𝑘)

]︁)︁
=

1

𝑛

𝑛𝑖∑︁
𝑘=1

(︀
E[𝒫𝑛𝑠(𝑘)]− E[𝒫𝑛𝑠(𝑘)] · E[1{𝒫𝑛𝑠(𝑘)≥1}]

)︀
=

1

𝑛

𝑛𝑖∑︁
𝑘=1

𝑠𝛽𝑖 · 𝑒−𝑠𝛽𝑖 = 𝑠 · 𝛾𝑖𝑒−𝑠𝛽𝑖 .

If 𝑠 ≥ 𝑡 we get

1

𝑛
Cov[�̃�𝑖

𝑛𝑠,𝒫𝑛𝑡] =
1

𝑛

𝑛𝑖∑︁
𝑘=1

Cov
[︁
1{𝑡𝑘,1≤𝑛𝑠},𝒫𝑛𝑡(𝑘)

]︁
=

1

𝑛

𝑛𝑖∑︁
𝑘=1

(︁
E[𝒫𝑛𝑡(𝑘)]− E[𝒫𝑛𝑡(𝑘)] · E[1{𝑡𝑘,1≤𝑛𝑠}]

)︁
=

1

𝑛

𝑛𝑖∑︁
𝑘=1

𝑡𝛽𝑖 · 𝑒−𝑠𝛽𝑖 = 𝑡𝛾𝑖𝑒
−𝑠𝛽𝑖 .

The covariances Cov[𝖷
(𝑖)
𝑠 ,𝖷

(𝑖)
𝑡 ] have been computed in Proposition 3.1. Hence the finite-

dimensional convergence of the processes of {𝑍(𝑖)
𝑛𝑠 ; 𝑠 ∈ [0,∞)} to {√𝛾𝑖𝖷

(𝑖)
𝑠 ; 𝑠 ∈ [0,∞)} for

all 𝑖 ∈ ⌊𝐽⌋ and of {𝑍𝒫
𝑛𝑠; 𝑠 ∈ [0,∞)} to {𝖡𝒫

𝑠 ; 𝑠 ∈ [0,∞)} imply the finite-dimensional conver-

gence of
{︁(︁

𝑍
(1)
𝑛𝑠 , . . . , 𝑍

(𝐽)
𝑛𝑠 , 𝑍𝒫

𝑛𝑠)
)︁
; 𝑠 ∈ [0,∞)

}︁
to
{︁(︁√

𝛾1𝖷
(1)
𝑠 , . . . ,

√
𝛾𝐽𝖷

(𝐽)
𝑠 ,𝖡𝒫

𝑠

)︁
, 𝑠 ∈ [0,∞)

}︁
.

In order to prove tightness of the involved processes, let 𝜖 > 0. Then there are sets
𝒦1, . . . ,𝒦𝐽+1 ⊆ 𝒟([0,∞),ℝ) which are compact w.r.t. the Skorohod topology such that

ℙ
[︁
(𝑠 ↦→ 𝑍(𝑖)

𝑛𝑠 ) ∈ 𝒦𝑖 for all 𝑛 ∈ N
]︁
≥ 1− 𝜖/(2𝐽)

ℙ
[︀
(𝑠 ↦→ 𝑍𝒫

𝑛𝑠) ∈ 𝒦𝐽+1 for all 𝑛 ∈ N
]︀
≥ 1− 𝜖/2.

Hence

ℙ
[︁
(𝑠 ↦→ (𝑍(1)

𝑛𝑠 , . . . , 𝑍
(𝐽)
𝑛𝑠 , 𝑍𝒫

𝑛𝑠)) ∈ 𝒦1 × · · · × 𝒦𝐽+1 for all 𝑛 ∈ N
]︁
≥ 1− 𝜖

and this implies tightness, so the claim is proved.

Let 𝑟𝑖(𝑛) :=
∑︀𝑛

𝑙=1 ℒ𝑖
𝑙 for 𝑖 ∈ [𝐽 ] and 𝑛 ∈ N.

Lemma 6.2. Denote for 𝑖 ∈ [𝐽 ]

𝑍𝐿
𝑖 (𝑛𝑞) = 𝑛−1/2

(︀
𝑟𝑖(𝑛𝑞)− 𝑛𝑞E[ℒ𝑖]

)︀
for 𝑞 ≥ 0

and
𝑍𝑁
𝑖 (𝑛𝑠) = 𝑛−1/2

(︁
�̃�𝑖
𝑛𝑠 − 𝑛𝛾𝑖(1− 𝑒−𝛽𝑖𝑠)

)︁
for 𝑠 ≥ 0.

If (︂{︀
𝑍𝐿
𝑖 (𝑛𝑞); 𝑞 ≥ 0

}︀{︀
𝑍𝑁
𝑖 (𝑛𝑠); 𝑠 ≥ 0

}︀)︂ law−→
(︂{︀

𝖸𝐿
𝑖 (𝑞); 𝑞 ≥ 0

}︀{︀
𝖸𝑁
𝑖 (𝑠); 𝑠 ≥ 0

}︀)︂ , as 𝑛 → ∞ (16)
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in the product topology of the Skorohod J1 topology under ℙ for some stochastic process
({𝖸𝐿

𝑖 (𝑞); 𝑞 ≥ 0}, {𝖸𝑁
𝑖 (𝑠); 𝑠 ≥ 0}), then the same holds also under ℙ

[︀
· | 𝖲𝗎𝗋𝗏𝖬𝖦𝖶

]︀
and

under ℙ
[︁
· |
(︀
𝖲𝗎𝗋𝗏𝖬𝖦𝖶

)︀𝖢]︁
.

Proof. Recall first the survival event 𝖲𝗎𝗋𝗏𝖬𝖦𝖶 =
{︁∑︀𝐽

𝑖=1 𝖹
𝑖
𝑡 > 0, ∀𝑡 ∈ N

}︁
, and 𝖹𝖬𝖦𝖶

𝗍𝗈𝗍 =∑︀∞
𝑡=0

∑︀𝐽
𝑖=1 𝖹

𝑖
𝑡 represents the total number of individuals of the MGW (𝖹𝑡)𝑡∈N. From (9)

we know that, for the event {𝖹𝖬𝖦𝖶
𝗍𝗈𝗍 ≤ 𝐴} for 𝐴 ≥ 0, the variables ℒ𝑖

𝑙 in the definitions of
𝑟𝑖(𝑡) coincide with ℒ̄𝑖

𝑙 for 𝑙 > 𝐴, so that conditionally on {𝖹𝖬𝖦𝖶
𝗍𝗈𝗍 ≤ 𝐴} for 𝑖 = 1, . . . , 𝐽 the

processes
⌊𝑛𝑞⌋∑︁
𝑙=𝐴

ℒ̄𝑖
𝑙 = 𝑟𝑖(𝑛𝑞)−

𝐴∑︁
𝑙=1

ℒ𝑖
𝑙

are independent of the 𝖬𝖦𝖶, and also independent among them. Moreover, for each vertex

𝑗 = 1, . . . , 𝑛𝑖 of type 𝑖 let 𝑌
(𝑗)
𝑙 , 𝑙 ∈ N, denote the arrival times of the infection attempts of

vertex 𝑖. Then

�̃�𝑖
𝑡 =

𝑛𝑖∑︁
𝑗=1

max
𝑙∈N

1{︁
𝑌

(𝑗)
𝑙 ≤𝑡

}︁.
Now the process

�̃�𝐴,𝑖
𝑡 =

𝑛𝑖∑︁
𝑗=1

max
𝑙∈N

1{︁
𝐴<𝑌

(𝑗)
𝑙 ≤𝑡

}︁
is independent of {𝖹𝖬𝖦𝖶

𝗍𝗈𝗍 ≤ 𝐴} and

sup
𝑡∈[0,∞)

⃒⃒⃒
�̃�𝐴,𝑖
𝑡 − �̃�𝑖

𝑡

⃒⃒⃒
≤

𝑛𝑖∑︁
𝑗=1

max
𝑙∈N

1{𝑌 (𝑗)
𝑙 ≤𝐴} ≤

𝑛𝑖∑︁
𝑗=1

∞∑︁
𝑙=1

1{𝑌 (𝑗)
𝑙 ≤𝐴}

and the right-hand side is a Poisson distributed random variable whose parameter does not
depend on 𝑛. We have then that the event {𝖹𝖬𝖦𝖶

𝗍𝗈𝗍 ≤ 𝐴} and the process(︀
(𝑍𝐿

𝑖 (𝑛𝑞))𝑞≥0, (𝑍
𝑁
𝑖 (𝑛𝑠))𝑠≥0

)︀
are asymptotically independent, thus also

(︀
𝖲𝗎𝗋𝗏𝖬𝖦𝖶

)︀∁
and(︀

(𝑍𝐿
𝑖 (𝑛𝑞))𝑞≥0, (𝑍

𝑁
𝑖 (𝑛𝑠))𝑠≥0

)︀
are asymptotically independent. Therefore(︃ {︀
𝑛−1/2

(︀
𝑟𝑖(𝑛𝑞)− 𝑛𝑞E[ℒ𝑖]

)︀
; 𝑞 ≥ 0

}︀{︁
𝑛−1/2

(︁
�̃�𝑖
𝑛𝑠 − 𝑛𝛾𝑖(1− 𝑒−𝛽𝑖𝑠)

)︁
; 𝑠 ≥ 0

}︁)︃

has the same limit in law under ℙ, under ℙ
[︁
· |
(︀
𝖲𝗎𝗋𝗏𝖬𝖦𝖶

)︀∁]︁
and hence also under ℙ

[︀
· | 𝖲𝗎𝗋𝗏𝖬𝖦𝖶

]︀
.

If 𝜎2
𝑖 := Var

[︀
ℒ𝑖
]︀
< ∞ for all 𝑖 = 1, . . . , 𝐽 , we define the following constants:

𝜎2
𝜏 =

∑︀𝐽
𝑖=1 𝜎

2
𝑖 𝛾𝑖(1− 𝑒−𝛽𝑖𝜃) +

∑︀𝐽
𝑖=1(E[ℒ𝑖]

√
𝛾𝑖)

2𝜎2
𝒩 ,𝑖 + 𝜃 − 2𝜃

∑︀𝐽
𝑖=1 𝛾

3/2
𝑖 𝑒−𝛽𝑖𝜃E[ℒ𝑖]

(1−
∑︀𝐽

𝑖=1 𝛽𝑖𝛾𝑖E[ℒ𝑖]𝑒−𝛽𝑖𝜃)2
(17)
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with 𝜎2
𝒩 ,𝑖 = 𝛾𝑖(1− 𝑒−𝛽𝑖𝜃)𝑒−𝛽𝑖𝜃,

𝜎2
𝜏 =

1

(1−
∑︀𝐽

𝑖=1 𝛽𝑖𝛾𝑖𝔼[ℒ𝑖]𝑒−𝛽𝑖𝜃)2

[︃
𝐽∑︁

𝑖=1

𝜎2
𝑖 𝛾𝑖(1− 𝑒−𝛽𝑖𝜃) +

𝐽∑︁
𝑖=1

(E[ℒ𝑖]
√
𝛾𝑖)

2𝜎2
𝒩 ,𝑖

+ 𝜃 ·

(︃
𝐽∑︁

𝑖=1

𝛽𝑖𝛾𝑖𝔼[ℒ𝑖]𝑒−𝛽𝑖𝜃

)︃2 ]︃

− 2𝜃

1−
∑︀𝐽

𝑖=1 𝛽𝑖𝛾𝑖𝔼[ℒ𝑖]𝑒−𝛽𝑖𝜃

(︃
𝐽∑︁

𝑖=1

𝛾
3/2
𝑖 𝑒−𝛽𝑖𝜃E[ℒ𝑖]

)︃(︃
𝐽∑︁

𝑖=1

𝛽𝑖𝛾𝑖E[ℒ𝑖]𝑒−𝛽𝑖𝜃

)︃
, (18)

and

𝜎2
𝑤 = 𝑐2𝑤

𝐽∑︁
𝑖=1

𝜎2
𝑖 𝛾𝑖(1−𝑒−𝛽𝑖𝜃)+

𝐽∑︁
𝑖=1

(1−𝑐𝑤E[ℒ𝑖])2𝜎2
𝒩 ,𝑖−2

(︃
𝐽∑︁

𝑖=1

(1−𝑐𝑤E[ℒ𝑖])𝑐𝑤𝜃𝛾𝑖𝑒
−𝛽𝑖𝜃

)︃
+𝑐2𝑤𝜃

(19)
with

𝑐𝑤 :=
1−

∑︀𝐽
𝑖=1 𝛽𝑖𝛾𝑖𝑒

−𝛽𝑖𝜃

1−
∑︀𝐽

𝑖=1 𝛽𝑖𝛾𝑖𝔼[ℒ𝑖]𝑒−𝛽𝑖𝜃
.

Theorem 6.3. Central Limit Theorems for 𝜏𝑛, 𝜏𝑛, and �̃�𝜏𝑛.
Suppose Assumption 2 holds, and 𝜎2

𝑖 := Var
[︀
ℒ𝑖
]︀
< ∞ for all 𝑖 = 1, . . . , 𝐽 , i.e. all entries of

the offspring distribution matrix 𝐿 of the 𝖬𝖦𝖶 have finite variances. Then we have

𝑛−1/2(𝜏𝑛 − 𝑛𝜃)
𝒟−→ 𝒩 (0, 𝜎2

𝜏 ) as 𝑛 → ∞

𝑛−1/2(𝜏𝑛 − 𝑛𝜃)
𝒟−→ 𝒩 (0, 𝜎2

𝜏 ), as 𝑛 → ∞

𝑛−1/2(�̃�𝜏𝑛 − 𝑛𝑤)
𝒟−→ 𝒩 (0, 𝜎2

𝑤), as 𝑛 → ∞

conditionally on 𝖲𝗎𝗋𝗏𝖬𝖦𝖶, i.e. under the probability measure ℙ
[︀
·|𝖲𝗎𝗋𝗏𝖬𝖦𝖶

]︀
, where

𝑤 := ⟨𝗐(𝜃), 𝟣⟩ =
∑︀𝐽

𝑖=1 𝛾𝑖(1−𝑒−𝛽𝑖𝜃) and 𝜎2
𝜏 , 𝜎

2
𝜏 , 𝜎

2
𝑤 are given by (17), (18), (19) respectively.

Proof. The random variables ℒ1, . . . ,ℒ𝐽 are independent by construction. By Proposition
4.1 (ℒ𝑖

𝑙)𝑙∈N is an i.i.d. copy of ℒ𝑖, and also independent of 𝖭𝑖
𝑡, so the random variables

ℛ𝑖
𝑡 =

∑︀𝖭𝑖
𝑡

𝑙=1 ℒ
𝑖
𝑙, for 𝑖 = 1, . . . , 𝐽 are independent as well, and we can apply for each of the

processes
{︀∑︀𝑛𝑞

𝑙=1 ℒ
𝑖
𝑙; 𝑞 ≥ 0

}︀
the Donsker’s invariance principle, and then a random time

change.

For simplicity of notation, for 𝑖 ∈ [𝐽 ] and 𝑛 ∈ N, let us write 𝑟𝑖(𝑛) :=
∑︀𝑛

𝑙=1 ℒ𝑖
𝑙 so that

ℛ𝑖
𝑡 = 𝑟𝑖(𝑁

𝑖
𝑡 ). By the Donsker’s invariance principle we have{︂

1√
𝑛

(︀
𝑟𝑖(𝑛𝑞)− 𝑛𝑞E[ℒ𝑖]

)︀
; 𝑞 ≥ 0

}︂
law−→

{︁
𝜎𝑖�̃�

𝑖
𝑞; 𝑞 ≥ 0

}︁
, as 𝑛 → ∞

in the Skorohod topology, where �̃�𝑖
𝑞 is a Brownian motion, and 𝜎2

𝑖 = Var[ℒ𝑖]. Let 𝖷
(𝑖)
𝑠 be the

centered Gaussian process from Proposition 3.1 which arises as scaling limit of �̃�𝑖
𝑛𝑠. Since
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the random variables ℒ𝑖
𝑙 are independent of 𝖭

𝑖
𝑛𝑠 we also have the following joint convergence:(︃ {︀

𝑛−1/2(𝑟𝑖(𝑛𝑞)− 𝑛𝑞𝔼[ℒ𝑖]); 𝑞 ≥ 0
}︀{︀

𝑛−1/2
(︁
�̃�𝑖
𝑛𝑠 − 𝑛𝛾𝑖(1− 𝑒−𝛽𝑖𝑠)

)︁
; 𝑠 ≥ 0

}︀)︃ law−→

(︃ {︀
𝜎𝑖�̃�

𝑖
𝑞; 𝑞 ≥ 0

}︀{︀√
𝛾𝑖𝖷

(𝑖)
𝑠 ; 𝑠 ≥ 0

}︀)︃

in the product topology, as 𝑛 → ∞, where both components are equipped with the Skorohod
topology. By Lemma 6.2 this convergence holds under ℙ

[︀
·|𝖲𝗎𝗋𝗏𝖬𝖦𝖶

]︀
as well. Using that,

by definition we have the sequence of equalities

𝑟𝑖(�̃�
𝑖
𝑛𝑠) = 𝑟𝑖(𝖭

𝑖
𝒫𝑛𝑠

) = ℛ𝒫𝑛𝑠 =

𝖭𝑖
𝒫𝑛𝑠∑︁
𝑙=1

ℒ𝑖
𝑙 =

�̃�𝑖
𝑛𝑠∑︁

𝑙=1

ℒ𝑖
𝑙 = ℛ̃𝑖

𝑛𝑠

and doing a random change of time ([2, Lemma p. 151]) in 𝑟𝑖(𝑛𝑞), we obtain{︂
1√
𝑛

(︁
ℛ̃𝑖

𝑛𝑠 − �̃�𝑖
𝑛𝑠E[ℒ𝑖]

)︁
; 𝑠 ≥ 0

}︂
law−→

{︁
𝜎𝑖�̃�

𝑖
𝑤𝑖(𝑠)

; 𝑠 ≥ 0
}︁
,

where we recall that 𝑤𝑖(𝑠) = 𝛾𝑖(1− 𝑒−𝛽𝑖𝑠). Hence{︂
1√
𝑛

(︁
ℛ̃𝑖

𝑛𝑠 − 𝑛𝛾𝑖E[ℒ𝑖](1− 𝑒−𝛽𝑖𝑠)
)︁
; 𝑠 ≥ 0

}︂
law−→

{︁
𝜎𝑖�̃�

𝑖
𝑤𝑖(𝑠)

+ E[ℒ𝑖]
√
𝛾𝑖𝖷

(𝑖)
𝑠 ; 𝑠 ≥ 0

}︁
.

Since the processes 𝑟𝑖(𝑡), 𝑖 = 1, . . . , 𝐽 , (and thus also the processes ℛ̃𝑖
𝑡) are independent, we

also have convergence in law for the sum ℛ̃𝑛𝑠 :=
∑︀𝐽

𝑖=1 ℛ̃𝑖
𝑛𝑠. Therefore the process{︃

1√
𝑛

(︃
ℛ̃𝑛𝑠 − 𝑛

𝐽∑︁
𝑖=1

E[ℒ𝑖]𝛾𝑖(1− 𝑒−𝛽𝑖𝑠)

)︃
; 𝑠 ≥ 0

}︃

converges in law to {︃
𝐽∑︁

𝑖=1

(︁
𝜎𝑖�̃�

𝑖
𝑤𝑖(𝑠)

+ E[ℒ𝑖]
√
𝛾𝑖𝖷

(𝑖)
𝑠

)︁
; 𝑠 ≥ 0

}︃
.

Now we know that at the end of the process (which occurs at time 𝜏𝑛) we have

ℛ̃𝜏𝑛 = ℛ𝜏𝑛 = 𝜏𝑛 = 𝒫𝜏𝑛 .

So 𝜏𝑛 is the point at which the process {ℛ̃𝑡 − 𝒫𝑡 | 𝑡 ∈ [0,∞)} becomes zero. Due to the
independence mentioned above together with the scaling limit for 𝑍𝒫

𝑛𝑠 from Theorem 6.1,
we get the convergence in law{︃

1√
𝑛

(︃
ℛ̃𝑛𝑠 − 𝒫𝑛𝑠 + 𝑛𝑠− 𝑛

𝐽∑︁
𝑖=1

E[ℒ𝑖]𝛾𝑖(1− 𝑒−𝛽𝑖𝑠)

)︃
; 𝑠 ≥ 0

}︃
law−→{︃

𝐽∑︁
𝑖=1

𝜎𝑖�̃�
𝑖
𝑤𝑖(𝑠)

+

𝐽∑︁
𝑖=1

E[ℒ𝑖]
√
𝛾𝑖𝖷

(𝑖)
𝑠 − 𝖡𝒫

𝑠 ; 𝑠 ≥ 0

}︃
,
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where 𝖡𝒫 is a Brownian motion independent of the family {�̃�𝑖}1≤𝑖≤𝐽 and correlated to
{𝖷(𝑖)}1≤𝑖≤𝐽 as in Theorem 6.1. By Theorem 5.1, both 𝜏𝑛/𝑛 and 𝜏𝑛/𝑛 converge in probability
to 𝜃1{𝖲𝗎𝗋𝗏𝖬𝖦𝖶}, with 𝑛𝑠 = 𝜏𝑛 and we deduce that

𝑛1/2 ·

(︃
𝜏𝑛
𝑛

−
𝐽∑︁

𝑖=1

E[ℒ𝑖]𝛾𝑖(1− 𝑒−𝛽𝑖𝜏𝑛/𝑛)

)︃
⏟  ⏞  

:=−𝑓(𝜏𝑛/𝑛)

𝒟−→
𝐽∑︁

𝑖=1

𝜎𝑖�̃�
𝑖
𝑤𝑖(𝜃)

+

𝐽∑︁
𝑖=1

E[ℒ𝑖]
√
𝛾𝑖𝖷

(𝑖)
𝜃 − 𝖡𝒫

𝜃

as 𝑛 → ∞, with 𝑓(𝑠) as defined in (15). Since 𝑓(𝜃) = 0, a Taylor series expansion around
𝜃 gives

𝜏𝑛
𝑛

− 𝜃 =
−𝑓( 𝜏𝑛𝑛 )

−𝑓 ′(𝜃)− 1
2(

𝜏𝑛
𝑛 − 𝜃)𝑓 ′′(𝐴)

for some 𝐴 ∈ [min{𝜏𝑛/𝑛, 𝜃},max{𝜏𝑛/𝑛, 𝜃}]. By the law of large numbers, Theorem 5.1, we
have 𝑓 ′(𝜃) + 1

2(
𝜏𝑛
𝑛 − 𝜃)𝑓 ′′(𝐴) −→ 𝑓 ′(𝜃) as 𝑛 → ∞ in probability. Thus

𝑛−1/2(𝜏𝑛 − 𝑛𝜃)
𝒟−→ 1

−𝑓 ′(𝜃)
·

(︃
𝐽∑︁

𝑖=1

𝜎𝑖�̃�
𝑖
𝑤𝑖(𝜃)

+

𝐽∑︁
𝑖=1

E[ℒ𝑖]
√
𝛾𝑖𝖷

(𝑖)
𝜃 − 𝖡𝒫

𝜃

)︃
∼ 𝒩 (0, 𝜎2

𝜏 ),

with with 𝜎2
𝜏 defined as in equation (17) and 𝜎2

𝒩 ,𝑖 = 𝛾𝑖(1− 𝑒−𝛽𝑖𝜃)𝑒−𝛽𝑖𝜃 and this completes
the first of the three claims.

Using that 𝜏𝑛 = 𝒫𝜏𝑛 together with Theorem 6.1 we also get

𝑛−1/2(𝜏𝑛 − 𝑛𝜃) = 𝑛−1/2(𝒫𝜏𝑛 − 𝜏𝑛 + 𝜏𝑛 − 𝑛𝜃)

𝒟−→ 𝖡𝒫
𝜃 +

1

1−
∑︀𝐽

𝑖=1 𝛽𝑖𝛾𝑖𝔼[ℒ𝑖]𝑒−𝛽𝑖𝜃
·

(︃
𝐽∑︁

𝑖=1

𝜎𝑖�̃�
𝑖
𝑤𝑖(𝜃)

+

𝐽∑︁
𝑖=1

E[ℒ𝑖]
√
𝛾𝑖𝖷

(𝑖)
𝜃 − 𝖡𝒫

𝜃

)︃
∼ 𝒩 (0, 𝜎2

𝜏 )

with 𝜎2
𝜏 given by equation (18) and this gives the second claim as well. Finally, for the third

claim we proceed as follows:

𝑛−1/2
(︁ ̃︀𝒩𝜏𝑛 − 𝑛⟨𝗐(𝜃), 𝟣⟩

)︁
= 𝑛−1/2

(︁ ̃︀𝒩𝜏𝑛 − 𝑛⟨𝗐(𝜏𝑛/𝑛), 𝟣⟩+ 𝑛⟨𝗐(𝜏𝑛/𝑛), 𝟣⟩ − 𝑛⟨𝗐(𝜃), 𝟣⟩
)︁
.

Now Theorem 6.1 together with

𝑛⟨𝗐(𝜏𝑛/𝑛)− 𝗐(𝜃), 𝟣⟩ =
𝐽∑︁

𝑖=1

𝛽𝑖𝛾𝑖𝑒
−𝛽𝑖𝜃(𝜏𝑛 − 𝑛𝜃) +𝑂

(︃
𝑛

(︂
𝜏𝑛
𝑛

− 𝜃

)︂2
)︃

and

𝑛1/2

(︂
𝜏𝑛
𝑛

− 𝜃

)︂2

−→ 0

in probability as 𝑛 → ∞ yields

𝑛−1/2
(︁ ̃︀𝒩𝜏𝑛 − 𝑛⟨𝗐(𝜃), 𝟣⟩

)︁
𝒟−→

𝐽∑︁
𝑖=1

√
𝛾𝑖𝖷

(𝑖)
𝜃 −

∑︀𝐽
𝑖=1 𝛽𝑖𝛾𝑖𝑒

−𝛽𝑖𝜃

1−
∑︀𝐽

𝑖=1 𝛽𝑖𝛾𝑖𝔼[ℒ𝑖]𝑒−𝛽𝑖𝜃
·

(︃
𝐽∑︁

𝑖=1

𝜎𝑖�̃�
𝑖
𝑤𝑖(𝜃)

+
𝐽∑︁

𝑖=1

E[ℒ𝑖]
√
𝛾𝑖𝖷

(𝑖)
𝜃 − 𝖡𝒫

𝜃

)︃
∼ 𝒩 (0, 𝜎2

𝑤),
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where we put

𝑐𝑤 :=

∑︀𝐽
𝑖=1 𝛽𝑖𝛾𝑖𝑒

−𝛽𝑖𝜃

1−
∑︀𝐽

𝑖=1 𝛽𝑖𝛾𝑖𝔼[ℒ𝑖]𝑒−𝛽𝑖𝜃

and 𝜎2
𝑤 is defined as in (19) and this completes the whole proof.

Corollary 6.4. Since �̃�𝑡 = 𝒩𝒫𝑡 for 𝑡 ∈ N and 𝜏𝑛 = 𝒫𝜏𝑛, we have �̃�𝜏𝑛 = 𝒩𝜏𝑛 and thus

𝑛−1/2(𝒩𝜏𝑛 − 𝑛𝑤)
𝒟−→ 𝒩 (0, 𝜎2

𝑤), as 𝑛 → ∞

with 𝑤 and 𝜎2
𝑤 as in Theorem 6.3.

7 Inhomogeneous versus homogeneous population

In this section we want to compare what happens in the uniform and non-uniform case. As
we have seen in Theorem 5.1, the results are apparently undistinguishable. On the event
𝖲𝗎𝗋𝗏𝖬𝖦𝖶, we have

𝜏𝑛
𝑛

→ 𝜃 and
𝑁𝜏𝑛

𝑛
→ 𝑝, in probability, as 𝑛 → ∞.

The difference lies in the computation of 𝜃 and 𝑝.

Homogeneous spread capacity. Let us first deal with the case where all individuals
have identically distributed spread capacities, let this law be ℒ. In a uniform population,
all individuals have the same susceptibility and 𝜃 is the solution of the equation

𝜃 = E[ℒ] ·
(︁
1− 𝑒−𝜃

)︁
.

Let 𝜃𝑢𝑛 be this solution: the corresponding fraction of infected individuals is then

𝑝 = 𝑝𝑢𝑛 := 1− 𝑒−𝜃𝑢𝑛 = 𝜃𝑢𝑛/E[ℒ].

In the non-uniform case, 𝜃 is the solution of the equation

𝜃 = E[ℒ]

(︃
1−

𝐽∑︁
𝑖=1

𝛾𝑖𝑒
−𝛽𝑖𝜃

)︃
.

We call this solution 𝜃𝛽 and we have 𝑝 = 𝑝𝛽 = 1−
∑︀

𝛾𝑖𝑒
−𝛽𝑖𝜃𝛽 = 𝜃𝛽/E[ℒ].

The following result says that in the non-uniform case, the epidemics dies out earlier and
spreads in a smaller portion of the population.

Proposition 7.1. For any fixed value of E[ℒ] > 1, and any choice of the parameters 𝛽𝑖,

𝜃𝛽 ≤ 𝜃𝑢𝑛 and 𝑝𝛽 ≤ 𝑝𝑢𝑛,

and equality holds if and only if 𝛽𝑖 = 1 for all 𝑖 ∈ [𝐽 ].
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0 𝜃𝑢𝑛𝜃𝛽

𝑝𝛽

𝑝𝑢𝑛 𝑦 = 𝑔(𝑥)

𝑦 = 𝑓(𝑥)

Figure 1: Inhomogeneous (solid) vs homogeneous (dashed)

Proof. If 𝛽𝑖 = 1 for all 𝑖 ∈ [𝐽 ] the statement is trivial. Let us assume that there exists
𝛽𝑖 ̸= 1. Define

𝑓(𝑥) = 1−
𝐽∑︁

𝑖=1

𝛾𝑖𝑒
−𝛽𝑖𝑥 and 𝑔(𝑥) = 1− 𝑒−𝑥.

Note that (𝜃𝑢𝑛, 𝑝𝑢𝑛) and (𝜃𝛽, 𝑝𝛽) are the intersections of 𝑦 = 𝑥/E[ℒ] with 𝑦 = 𝑔(𝑥) and
𝑦 = 𝑓(𝑥), respectively. It is enough to prove that 𝑓(𝑥) ≤ 𝑔(𝑥) for all 𝑥 ≥ 0 and equality
holds only at 0 (see Figure 1). The two functions are clearly equal at 0. Since the exp-
function is a strictly convex function and

∑︀𝐽
𝑖=1 𝛾𝑖 = 1, for 𝑥 > 0 we get

𝑓(𝑥) = 1−
𝐽∑︁

𝑖=1

𝛾𝑖𝑒
−𝛽𝑖𝑥 < 1− 𝑒−

∑︀𝐽
𝑖=1 𝛾𝑖𝛽𝑖𝑥 = 1− 𝑒−𝑥 = 𝑔(𝑥),

where we have used
∑︀𝐽

𝑖=1 𝛾𝑖𝛽𝑖 =
∑︀𝐽

𝑖=1 𝛼𝑖 = 1. This proves the statement.

Inhomogeneous spread capacity. When types differ in the expected spread capacity
E[ℒ𝑖], as well as in the susceptibility, then 𝜃 is the solution of

𝜃 = 𝑓(𝜃) :=

𝐽∑︁
𝑖=1

E[ℒ𝑖]𝛾𝑖(1− 𝑒−𝛽𝑖𝜃),

and 𝑝 = 1 −
∑︀𝐽

𝑖=1 𝛾𝑖𝑒
−𝛽𝑖𝜃. We want to compare this case with the case where all 𝛽𝑖 = 1 (

homogeneous susceptibility, inhomogeneous spread – E[ℒ𝑖] are unaltered). If we define

𝑔(𝑥) =
∑︁
𝑖

E[ℒ𝑖]𝛾𝑖(1− 𝑒−𝑥),

the parameters 𝜃𝛽 and 𝜃𝑢𝑛 are the 𝑥-coordinates of the intersection of 𝑦 = 𝑥 with 𝑦 = 𝑓(𝑥)
and 𝑦 = 𝑔(𝑥), respectively. Depending on the choice of the parameters, the ”homogeneous”
case (𝛽𝑖 = 1) may last longer or not, that is, both 𝜃𝑢𝑛 > 𝜃𝛽 and 𝜃𝑢𝑛 < 𝜃𝛽 are possible
scenarios. Indeed there are examples where the inhomogeneous setting, compared to the
homogeneous one, has:

a) a shorter epidemics involving a smaller percentage of cases;
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b) a longer epidemics involving a smaller percentage of cases;

c) a longer epidemics involving a larger percentage of cases.

Here are examples of the three possible situations described before.

a) Take 𝐽 = 3, 𝛾𝑖 = 1/3 for all 𝑖, E[ℒ1] = 1, E[ℒ2] = 2, E[ℒ3] = 4, 𝛽1 = 2, 𝛽2 = 0.5,
𝛽3 = 0.5, then 𝜃𝑢𝑛 ≈ 2.0255, 𝜃𝛽 ≈ 1.2139, 𝑝𝑢𝑛 ≈ 0.8681, 𝑝𝛽 ≈ 0.6073.

b) Take 𝐽 = 3, 𝛾𝑖 = 1/3 for all 𝑖, E[ℒ1] = 1, E[ℒ2] = 2, E[ℒ3] = 4, 𝛽1 = 0.6, 𝛽2 = 1.2,
𝛽3 = 1.2: 𝜃𝑢𝑛 ≈ 2.0255, 𝜃𝛽 ≈ 2.0703, 𝑝𝑢𝑛 ≈ 0.8681, 𝑝𝛽 ≈ 0.8482.

c) Let 𝐽 = 2, 𝛾1 = 𝛾2 = 1/2, E[ℒ1] = 0.2, E[ℒ2] = 3.6, 𝛽1 = 0.6, 𝛽2 = 1.4, 𝜃𝑢𝑛 ≈ 1.4578,
𝜃𝛽 ≈ 1.6964, 𝑝𝑢𝑛 ≈ 0.7672, 𝑝𝛽 ≈ 0.7728.

Notice that in the inhomogeneous setting we cannot have a shorter epidemics involving
a larger percentage of cases. Indeed, if 𝜃𝛽 < 𝜃𝑢𝑛, then the convexity of the exp-function
implies

𝑝𝛽 = 1−
𝐽∑︁

𝑖=1

𝛾𝑖𝑒
−𝛽𝑖𝜃𝛽 < 1− 𝑒−

∑︀𝐽
𝑖=1 𝛾𝑖𝛽𝑖𝜃𝛽 = 1− 𝑒−𝜃𝛽 < 1− 𝑒−𝜃𝑢𝑛 = 1−

𝐽∑︁
𝑖=1

𝛾𝑖𝑒
−𝛽𝑖𝜃𝛽 = 𝑝𝑢𝑛.
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Figure 2: Equal groups, second more susceptible

One may also wonder what happens if we compare an epidemics which is inhomogeneous
both in the spread and susceptibility, with the case where the 𝛽𝑖 are unaltered and the spread
capacities are homogeneous in the sense that all types have the same spread capacity ℒ,
with E[ℒ] =

∑︀
𝑖 𝛾𝑖E[ℒ𝑖]. It is not difficult to find examples where the homogeneous case

lasts longer (or less) than in the inhomogeneous case.
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Simulations. Below we give the plots of some simulations, which agree with our theo-
retical results. In all simulations we have 𝑛 = 500 and we run 200 simulations. Moreover,
the spread capacity is homogeneous with expectation 2.5 (1/2 being the probability of 4
attempts and 1/4 each the probability of 0 or 2 attempts). The probability of extinction of
the associated GW process is 0.2711. There are two subpopulations which differ in suscep-
tibility. We have the histograms of the frequencies of 𝑁𝑛(𝜏𝑛)/𝑛 and of 𝜏𝑛/𝑛. We also plot
a scatterplot of the numbers of infected of the two types, with the two lines 𝑦 = 𝑥 · 𝛾2/𝛾1
and 𝑦 = 𝑥 · 𝛽2/𝛽1.

In the first example depicted in Figure 2, 𝛾1 = 0.5, 𝛾2 = 0.5, 𝛼1 = 1/3 and 𝛼2 = 2/3. The
limiting values are 𝜃 = 2.12261 and 𝑝 = 0.849044.
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Figure 3: Larger group is more likely

In the second example depicted in Figure 3, 𝛾1 = 0.25, 𝛾2 = 0.75, 𝛼1 = 1/3 and 𝛼2 = 2/3.
The larger group is more likely to be chosen as a target, but single individuals in this
group are less likely to be hit than individuals in the other group. The limiting values are
𝜃 = 2.20202 and 𝑝 = 0.880807.

In the third example depicted in Figure 4, 𝛾1 = 0.75, 𝛾2 = 0.25, 𝛼1 = 1/3 and 𝛼2 = 2/3.
The larger group is less likely to be chosen as a target, and single individuals are less likely
to be hit than individuals in the smaller group. The limiting values are 𝜃 = 1.54723 and
𝑝 = 0.618904.
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Figure 4: Larger group is less likely
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