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Abstract

Digital cameras record, manipulate, and store information electronically through
sensors and built-in computers, which makes photography more available to
final users which do not anymore need to rely on the use of chemicals and
knowledge of mechanical procedures to develop their pictures. Different types
of degradation and artifacts can affect images acquired using digital cameras,
decreasing the perceptual fidelity of images and making harder many image
processing and analysis tasks that can be performed on the collected images.
Three elements can be identified as possible sources of artifacts in an image:
the scene content, the hardware limitations and flaws, and finally the opera-
tions performed by the digital camera processing pipeline itself, from acquisi-
tion to compression and storing. Some artifacts are not directly treated in the
typical camera processing pipeline, such as the presence of haze or rain that
can reduce visibility of the scene in the depicted images. These artifacts re-
quire the design of ad hoc methods that are usually applied as post-processing
on the acquired images. Other types of artifacts are related to the imaging
process and to the image processing pipeline implemented on board of digital
cameras. These include sensor noise, undesirable color cast, poor contrast and
compression artifacts.

The objective of this thesis is the identification and design of new and
more robust modules for image processing and restoration that can improve
the quality of the acquired images, in particular in critical scenarios such as
adverse weather conditions, poor light in the scene etc. . . . The artifacts
identified are divided into two main groups: “in camera-generated artifacts”
and “external artifacts and problems”.

In the first group it has been identified and addressed four main issues:
sensor camera noise removal, automatic white balancing, automatic contrast
enhancement and compression artifacts removal. The design process of the
proposed solutions has considered efficiency aspects, due to the possibility of
directly integrating them in future camera pipelines.



The second group of artifacts are related to the presence of elements in
the scene which may cause a degradation in terms of visual fidelity and/or
usability of the images. In particular the focus is on artifacts induced by the
presence of rain in the scene.

The thesis, after a brief review of the digital camera processing pipeline,
analyzes the different types of artifacts that can affect image quality, and
describes the design of the proposed solutions. All the proposed approaches are
based on machine learning techniques, such as Convolutional Neural Networks
and Bayesian optimization procedure, and are experimentally validated on
standard images datasets.

The overall contributions of this thesis can be summarized in three points:
integration of classical imaging approaches with machine learning optimization
techniques, design of novel deep learning architectures and approaches and
analysis and application of deep learning image processing algorithms in other
computer vision tasks.
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Chapter 1

Introduction

In the photography field, camera manufacturers have moved their interest from
old analogical film cameras to the newer digital ones, which have brought a
simplification of the photographs development procedure. Digital cameras
record, manipulate, and store information electronically through sensors and
built-in computers, which makes photography more available to final users
which do not anymore need to rely on the use of chemicals and knowledge of
mechanical procedures to develop their pictures. To create an image of a scene,
digital cameras use lens systems that focus light from a scene onto a sensor
which converts analog information to digital one, which is then processed by
what is called the Digital Camera Processing Pipeline [120].

One important aspect of the pictures recorded and processed by cameras
is the final image quality. Different types of degradation and artifacts can
affect images acquired using digital cameras, decreasing the quality of an im-
age and making harder many image processing and analysis tasks that can be
performed on the collected images. Three elements can be identified as the
possible source of artifacts in an image: the scene content, the hardware limi-
tations and flaws, and finally the operations performed by the digital camera
processing pipeline itself, from acquisition to compression and storing. While
certain kinds of artifacts are not directly treated in the typical camera process-
ing pipeline, such as the presence of haze or rain in the image which can reduce
visibility and make other computer vision tasks much harder to perform, some
others are explicitly treated in the camera processing pipeline. However, even
if specific in-camera processing modules are designed to treat specific acquisi-
tion artifacts, due to the limitations of the standard approaches implemented,
some kind of artifacts can still occur in output images.
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1.1 Focus of this work

The objective of this thesis is the identification and design of new and more
robust modules for image processing and restoration that can improve the
quality of the acquired images, in particular in critical scenarios such as adverse
weather conditions, poor light in the scene etc...

The artifacts identified are divided into two main groups: “in camera-
generated artifacts” and “external artifacts”. In the first group it has been
identified and addressed four main issues: sensor camera noise removal, au-
tomatic white balancing, automatic contrast enhancement and compression
artifacts removal. The design process of the proposed solutions has considered
efficiency aspects, due to the possibility of directly integrating them in future
camera pipelines. The second group of artifacts are related to the presence of
elements in the scene which may cause a degradation in terms of visual fidelity
and/or usability of the images. In particular the focus is on artifacts induced
by the presence of rain in the scene.

The thesis, after a brief review of the digital camera processing pipeline,
analyzes the different types of artifacts that can affect image quality, and
describes the design of the proposed solutions. All the proposed approaches are
based on machine learning techniques, such as Convolutional Neural Networks
and Bayesian optimization procedure, and are experimentally validated on
standard images datasets.

1.2 Thesis outline

The thesis is structured in three parts. The first one gives an overview of
the image formation process, describing for first the Human Visual System
and then the mathematical model which describes the entire digital image
formation process. Then the typical digital camera color processing pipeline is
introduced alongside a detailed description of each module that composes that
pipeline. Finally, an overview of the types of artifacts that can affect images
is presented. This is the content of part I.

In part II are treated all the in camera generated artifacts identified. This
part is made of three different chapters. Chapter 5 presents a lightweight com-
binational approach to perform Automatic White Balancing operation, which
has been also extended to the video domain. In Chapter 6 is discussed a frame-
work for optimization of algorithms for contrast enhancement and correction
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that can be adopted to optimize the processing blocks in relation to user pref-
erences. Finally, in Chapter 7 an Auto-Encoder Neural Network for reduction
of JPEG artifacts introduced by compression operation is described, alongside
an extension on camera noise artifacts. All of the approaches presented in
these chapters are presented alongside an analysis of the corresponding prior
work and detailed tests and comparisons.

In part III are treated the artifacts identified as external artifacts related
to pictures taken during rainy weather conditions. Here two chapters are
present. Chapter 8 deals with the rain streaks and haze induced by the pres-
ence of rain. Here a Generative Adversarial Network for rain removal is first
described and then used to analyze the impact of this kind of artifacts on two
different computer vision tasks: Optical Character Recognition and Semantic
Segmentation. Instead, Chapter 9 deals with the problem of raindrop removal.
Here a new approach based on an autoencoder neural network that exploits
frequency-based decomposition is presented.

Finally, Chapter 10 ends the thesis summarizing the results obtained, re-
porting the conclusions, and giving the directions for future works. Bibliogra-
phy is given after this final chapter.

1.3 Scientific contributions

The main contributions of this thesis can be summarized into three different
groups: (i) integration of classical imaging approaches with machine learning
optimization techniques, (ii) design of novel deep learning architectures and
approaches, and (iii) analysis of the impact of deep learning in imaging tasks.

The list of the manuscripts produced during the Ph.D. period, published
or under review procedure, is reported in the next section. In this list are
reported extra publications and works that have not been included in the
thesis, which mainly covers the analysis and impact of color information in
different applications such as auto white balancing field (p#10 p#11) and
unsupervised learning (p#8) and image processing in unconventional shooting
conditions such as remote sensing scenario (p#9).

• Integration of classical imaging approaches with machine learn-
ing optimization techniques

When addressing the problem of designing processing blocks of a digi-
tal camera pipeline, methods performance and efficiency play an equally
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important role. Computational complexity and memory usage are big re-
strictions in the design process, making the use of deep machine learning
model in general impossible. Starting from these considerations, I have
selected two important steps of the digital camera processing pipeline
and designed new frameworks for efficient exploitation of machine learn-
ing inside digital camera processing blocks.

I’ve first designed and tested a combination framework for classical,
physical-based, auto white balancing approaches. In paper P#6 the
analysis of the proposed approach is done in terms of performances,
with evaluations with standard metrics and datasets, and in terms of
computational complexity and efficiency. The same framework, due to
the good results in terms of computational costs, has also been adopted
and tested in the field of video color constancy.

Another contribution regards the design and analysis of a framework for
optimization of image contrast enhancement algorithms with the use of
Bayesian Optimization strategy. Paper P#5 presents the results ob-
tained by adopting the proposed framework with simple and more com-
plex methods for image contrast enhancement. The framework has been
proposed for both post-processing image enhancement optimization and
onboard algorithm optimization.

• Design of novel deep learning architectures and approaches

Moving to what is called post-processing operations, where hardware
constraints are no more necessary since those kinds of operations can
be performed outside of the camera pipeline, three different approaches
have been designed exploiting deep learning techniques.

In p#1 I’ve designed a new approach for compression artifacts image
restoration, capable to treat jpeg artifacts at different magnitudes with-
out any additional information. A procedure based on mixed data for
training and in-depth analysis of the model alongside comparisons with
the state of the art approaches is presented.

In p#7 I have designed a new architecture for frequency decomposition-
based image restoration. Based on the analysis of raindrop artifacts’
appearance and impact on different frequencies of the corrupted images,
I have designed a new architecture, a new training procedure, and the
resulting approach has been widely analyzed and compared. My main
contribution here is the presentation of a model which only relies on
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image frequency information to restore the images, whereas the other
state-of-the-art approaches generally rely on extra information which
needs to be computed externally.

• Analysis of the impact of deep learning in imaging tasks

The last typology of contribution regards the analysis of the impact
of the application of image processing operations on other tasks that
can be considered after applying a certain digital processing pipeline
over images. In particular p#2 and p#3 present an analysis of the
impact of image processing deep learning operations on two different
computer visions tasks: Optical Character Recognition and Semantic
Segmentation. Here an analysis of the impact of rain and rain-induced
haze on those tasks, alongside an analysis of the effect of a deep learning
GAN-based approach is presented. These works have the objective of
showing a new way of analyzing deep learning approaches for image
restoration, with the intent of putting the basis for new possibilities in
driving the training of such kind of restoration models.

1.3.1 Articles

Published articles:

p#1 S. Zini, S. Bianco, and R. Schettini. Deep residual autoencoder for blind
universal jpeg restoration. IEEE Access, 8:63283–63294, 2020

p#2 S. Zini, S. Bianco, and R. Schettini. Cnn-based rain reduction in street
view images. In Proceedings of the 2020 London Imaging Meeting, pages
78–81, 2020. doi: doi.org/10.2352/issn.2694-118X.2020.LIM-12

p#3 S. Zini and M. Buzzelli. On the impact of rain over semantic segmen-
tation of street scenes. In Workshop on Metrification and Optimization
of Input Image Quality in Deep Networks, ICPR 2020, pages 597–610.
Springer, 2021

p#4 A. Abdelhamed, R. Timofte, and M. S. Brown. Ntire 2019 challenge on
real image denoising: Methods and results. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition Workshops,
pages 0–0, 2019

Submitted articles:
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p#5 S. Zini, M. Buzzelli, S. Bianco, and R. Schettini. A framework for con-
trast enhancement algorithms optimization. In Submitted at Interna-
tional Conference on Image Processing, 2022

p#6 S. Zini, M. Buzzelli, S. Bianco, and R. Schettini. Cocoa: Combining
color constancy algorithms for images and videos. Submitted at IEEE
Transactions on Computational Imaging, 2022

p#7 S. Zini and M. Buzzelli. Laplacian encoder-decoder network for rain-
drop removal. Submitted at Pattern Recognition Letters, Special issue
VSI:VETERAN, 2022

Extra publications:

p#8 S. Zini, M. Buzzelli, B. Twardowski, and J. van de Weijer. Planckian jit-
ter: enhancing the color quality of self-supervised visual representations.
In Submitted at International Conference on Machine Learning, 2022

p#9 T. Toizumi, S. Zini, K. Sagi, E. Kaneko, M. Tsukada, and R. Schettini.
Artifact-free thin cloud removal using gans. In 2019 IEEE International
Conference on Image Processing (ICIP), pages 3596–3600. IEEE, 2019

p#10 S. Bianco, M. Buzzelli, G. Ciocca, R. Schettini, M. Tchobanou, and
S. Zini. Analysis of biases in automatic white balance datasets. In
Proceedings of the International Colour Association (AIC) Conference
2021. Milan, Italy. AIC, pages 233–238, 2021

p#11 M. Buzzelli, S. Zini, S. Bianco, G. Ciocca, R. Schettini, and M. Tchobanou.
Analysis of biases in automatic white balance datasets and methods.
Submitted at Color Research and Application, 2022
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Part I

Color Image Processing Pipeline

This first part introduces the theory behind the formation of the images in
the Human Visual System (HVS) and the Digital Still Cameras (DSC). The
digital camera processing pipeline will be presented and each component will
be described to give a complete overview of the image generation process. The
analysis of each of the building blocks of the pipeline is based on the works of
[120] [141].
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Chapter 2

Image Formation

In this section is described the process of image formation in the Human Visual
System (HVS) and the way it is reproduced for the digital cameras. Here the
fundamentals are introduced in order to give a baseline knowledge to then
define, in section 3, the digital camera processing pipeline and its multiple
components.

Illumination
source 


I(λ)

Scene elements


R(λ)

Human Visual System

l(λ)


m(λ)

s(λ)


Digital Imaging System

r(λ)

g(λ)

b(λ)


Light rays
(photons)

Light rays
(photons)

Figure 2.1: The trichromatic output of the Human Visual System or Digital
Imaging System is given by the combination of multiple elements: the source
of illumination in a scene, the elements in the scene and the receptor sensible
to the light rays.
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2.1 Human visual system

In most of the cases, the camera image processing hardware and pipeline have
been designed on the natural design of human eyes. In that sense it is useful to
first introduce the way images are formed in the human eyes and brain to then
describe and analyse digital cameras design and imaging pipeline elements.

Gamma rays X-rays UV IR Radio waves

Wavelength in meters

380 780
Wavelength in nm

Visible light

10-10 10-8 10-4

Figure 2.2: The regions of the electromagnetic spectrum, highlighting the
optical spectrum which includes the visible and ultraviolet regions.

Visible light can be described as a function of power versus wavelength.
This function is called spectral distribution function, or spectrum. The color of
the light depends on the distribution of the energy over the visible spectrum;
different wavelengths appear different colors. Visible spectrum roughly spans
from λ = 380 nm to λ = 780 nm. The interpretation of different colors is
based on the wavelength of the electromagnetic waves that reaches the human
eyes. Wavelengths of value λ lower than 380 nm are called Ultra-Violets
(UV), while for values of λ higher than 780 nm the range is called Infra-Red
(IR). These ranges are not visible by humans but find large use in image
analysis, for example in medical imaging and radiology. The electromagnetic
spectrum spans the total range of wavelengths of electromagnetic radiation
from the shortest to the longest wavelength that can be generated physically.
This range of wavelengths spans practically from zero to near infinity and can
be broadly divided into regions as shown in Table 2.1, which includes radio
waves, infrared, visible, ultraviolet, X-rays, and gamma rays. This division is
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Table 2.1: Regions of the electromagnetic spectrum. Table from [206].

Wavelength range (nm) Frequency range (s−1) Description

0.1 nm 1020 − 1023 Gamma rays
0.1− 10 nm 1017 − 1020 X-rays
10− 380 nm 1015 − 1017 Ultraviolet
380− 780 nm 1014 − 1015 Visible
700 nm to 1 mm 1011 − 1014 Infrared
1 mm to 1 cm 1010 − 1011 Microwaves
1 cm to 100 km 103 − 1010 Radio waves
100− 1, 000 km 102 − 103 Audio frequency

not exact since there is a gradual transition from one region to the next, which
is shown schematically in Figure 2.2.

The formation of images in the viewer eyes is related to three main ele-
ments: the scene illuminant, which is the source of light in a scene, the objects
in the scene, which reflect the light coming from the scene illuminant, and the
light receptor in the human eyes.

The illumination in a scene is described by its spectral power distribution
curve, which shows the strength of the electromagnetic radiation at different
wavelengths λ. In figure 2.3 are shown few examples of spectral power dis-
tributions of common illuminant sources. The spectral power distribution is
denoted by I(λ).

When the electromagnetic radiation is emitted by the illuminant, it can be
absorbed, reflected or transmitted by object that collides with the radiation.
For different items the portion of radiation that is reflected or transmitted
varies with wavelengths and is an inherent characteristic of the objects ma-
terial, totally independent from the type of illumination in the scene. This
property can be characterized by a function of the wavelength, called object
spectral reflectance or spectral transmission, and it is denoted as R(λ). To il-
lustrate, the spectral reflectance corresponding to several typical object colors
have been plotted. These colors represent patches taken from the GretagMac-
beth Color Checker which is often used to test digital camera performances.
The spectral reflectance plots are shown in Figure 2.4. For each plot, the
y-axis denotes the fraction of light that is being reflected from the object.

Illuminance and object reflectance together determine what is called color
stimulus. The spectral power distribution determines the amount of energy
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Figure 2.3: Spectral power distribution of various common types of illumina-
tions: from left to right, top to bottom, sunlight (CIE standard D65), tungsten
light, fluorescent light, and light-emitting diode (LED).

that is incident to the object at every wavelength, while the spectral reflectance
(or transmission) dictates what fraction of that radiation is reflected (or trans-
mitted) and will then reach the eye of the viewer. Under the assumption that
objects present Lambertian surfaces, the radiance of an object can be described
as the product of the spectral power of the illumination and the spectral re-
flectance of the object, mathematically denoted as S(λ)

S(λ) = I(λ)R(λ) (2.1)

This model is an approximation that does not model all the kinds of possible
rough surfaces, but it is often good and frequently used when the characteris-
tics of the surface are unknown.

Finally the last element of the human visual system is the eye. The eyes
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Figure 2.4: Spectral reflectance of different color patches, under D65 illumi-
nant. Color spectral distributions taken from Munsell Color table.

have two different kind of receptors: the rods, which main aim is to give
an overall picture of the scene, and the cones, which are responsible for the
perception of colors. They help us resolve fine details in images, and are
responsible for photopic, or bright-light, vision. The cones are divided in
three different types:

• L-cones which have peak sensitivity towards the long wavelength section
of the visible spectrum,

• M-cones which have peak sensitivity towards the middle wavelength sec-
tion of the visible spectrum, and

• S-cones which have peak sensitivity towards the short wavelength section
of the visible spectrum.

13



Chapter 2. Image Formation

These three types of cone together gives humans the sensation of color vision.
The spectral sensitivity responses of the L-, M-, and S-cones respectively are
denoted as l(λ), m(λ) and s(λ). Cones sensitivity to different wavelength is
shown in Figure 2.5. It is interesting to observe that cones areas do not cover
disjoint sections of the visible spectrum, nor do they cover it entirely. In fact,
the responses of L-cones and M-cones overlap significantly, and all three curves
show low response to stimulus below around 400 nm and above around 650
nm.
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Figure 2.5: In the eyes, three type of cones are present, namely called Long,
Medium and Short cones (L, M, S). Each type of cone is sensitive to a different
range of the wavelength; in relation to the way those cones are stimulated by
the light reaching the eye, a certain color sensation is formed in human brain.

Under a fixed set of viewing conditions, the response of these cones can be
accurately modeled by a linear system defined by the spectral sensitivities of
the cones. When an object with spectral power distribution S(λ) = R(λ)I(λ)
is observed, each of the three cones responds to the stimulus by summing
up the reaction at all wavelengths. The response of the receptors can be
mathematically expressed as the triplet (L,M,S), called trichromatic response.

L =

∫ 700

400

l(λ)R(λ)I(λ) dλ

M =

∫ 700

400

m(λ)R(λ)I(λ) dλ

S =

∫ 700

400

s(λ)R(λ)I(λ) dλ

(2.2)
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This representation of the human eye response to the stimulus have an
important consequence in digital camera, which is that to represent color in-
formation only three values per pixel are needed.

If a standardized set of cone responses is defined, color may be specified
using a three-value vector, known as a tristimulus vector [151]. Because the
cone responses are difficult to measure directly, but nonsingular linear transfor-
mations of the cone responses are readily determined through color-matching
experiments, such a transformed coordinate system is used for the measure-
ment and specification of color.

2.2 Image in digital camera

The formation of the image in the camera sensor follow the same steps pre-
sented in section 2.1, with obvious difference in the final element of the chain,
involving a digital sensor instead of the human eye receptors.

Analogously to the human visual system, the image captured by a camera
sensor can be represented as ρ, a function depending on three physical factors:
the illuminant spectral distribution I(λ), the reflectance properties of the sur-
face where the light collides R(λ), (exactly as defined in the previous section)
and the sensor spectral sensibility C(λ). Given this notation is possible to
define the sensor response at position (x, y) as:

ρ(x, y) =

∫
ω

C(λ)Radiance(λ)dλ (2.3)

which, under Lambertian surface assumption, can be rewritten by splitting
Radiance as the multiplication of reflectance and illuminant spectral distribu-
tion as:

ρ(x, y) =

∫
ω

C(λ)R(λ)I(λ)dλ (2.4)

where ω is the wavelength range of the visible light spectrum (380 to 780
nm), ρ and C(λ) are K-component vectors, where K is the number of spectral
bands acquired by the sensor.

In consumer still-camera and video applications, color images are typically
obtained via a spatial subsampling procedure implemented as a Color Filter
Array (CFA), a physical construction whereby only a single component of the
color space is measured at each pixel location. Digital Still Cameras (DSC)
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Figure 2.6: Different possible CFA configurations. The disposition of the color
filters is an essential information for camera processing of the raw signal.

typically acquire images that are made of three different channels: the sensors
are designed in order to collect the color components corresponding to red,
green and blue components of the light signal. Photo-receptors of this kind of
sensors (tristimulus value based) are disposed in the CFA in different possible
configurations, such as the one called called Bayer pattern [20]. In Figure 2.6
is depicted the bayer pattern with possible color filter disposition. The three
component vector ρ = (ρ1, ρ2, ρ3) is referred as sensor or camera raw RGB =
(R,G,B) triplet.

In the vector space of digital camera, the reflectance spectrum R(λ) is
sampled uniformly in the range [λmin, λmax]: this sampling of the reflectance
spectrum leads to a discrete version of equation 2.4, that can be written as:

ρ(x, y) = R(x, y)IC (2.5)

If noise n and non-linearity N coming from the system are taken in con-
sideration the equation can be further extended to:

ρ(x, y) = N (R(x, y)IC + n) (2.6)

The noise considered in this formulation is additive but it can also be mul-
tiplicative or sensor dependent, making the formulation much more complex.
The complex formulation is usually not modeled for implementations of com-
mercial cameras, so will not be considered in this thesis [18].

An image can be considered as a 2-dimensional array, on M rows, N
columns and K spectral bands (usually called channels). Each entry of this
array is a K-channel vector pixel formed according to the model represented
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in equation 2.6. The value of the pixel is given by the reflectance spectrum of
the objects in the 3-dimensional scene, illuminated by the illuminant present
in the scene. If we denote as f the representation of the full-color image in
which each pixel is formed according to equation 2.6, we can further model
the image formed on the sensor as:

g = B{Hf} (2.7)

where B is the sensor color filter array (CFA) and H is the point spread
function (a blur effect) related to the optical system.

Given the description of how the image information is modeled and cap-
tured inside a digital camera, the next chapter will describe the different steps
that come after the acquisition to process the captured information to obtain
a final colored image.
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Digital camera pipeline

Image space rendering

Adjusted full-color image and color space conversion

CFA data processingSystematic sensor data correctionSensor, aperture and lenses

Focus &
exposure
control

Dark floor
subtractionLinearization Structured

noise reduction
Stochastic

noise reduction

Exposure and
White balance

correction

Stochastic color
noise reduction DemosaicingColor space

conversion

Tone-mapping
and gamma
correction

Edge 

enhancement Coring

Display on digital
device

Compress and store

Figure 3.1: Typical DSC processing pipeline. This chain of operators can
change by camera manufacturer to manufacturer.

The raw data acquired by a camera sensor, based on the model defined
in equation 2.6, pass through different steps of processing before becoming
a final full-color image. The computation chain inside of a digital still color
camera (DSC), also called Camera Processing Pipeline, is made of different in-
dividual computation blocks that can be ordered in a tons of possible permuta-
tions. From one camera manufacturer to others, this pipeline can substantially
change in the order and presence of operations and in the associated imple-
mentation. However, even if this problem seems to lead to infinite possible
solutions, the design of this camera pipelines is constrained by two important
factors: image quality must be maximized while compute resource use must
be minimized. It is the minimization of required computational effort that, in
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fact, severely restricts the number of degrees of freedom in the image process-
ing chain design problem. Consequently, image processing operations that are
highly effective may not be viable candidates for image processing chain for
constrained compute environments.

A basic DSC processing pipeline is shown in Figure 3.1. This pipeline will
be described piece by piece in the following of this section and represents the
baseline of the work presented in this thesis. This structure has been used for
the identification of possible limitations and bottlenecks presents in a hypotet-
ical pipeline, in order to design and develop new and more efficient blocks to
improve the image quality of existing DSC camera processing pipelines.

3.1 Sensor, aperture and lenses

CFA + Sensor

GR B

color filter

sensor cell

GR B

color filter

sensor cell

GR B

color filter

sensor cell

light

light light

Figure 3.2: Image sensor covered by a Bayer color filter array and the concept
of acquiring the visual information using color filters. Image from [120].

As introduced in section 3, cameras are designed to capture a tristimulus
(R,G,B) signal, by acquiring the information related to red, green and blue
wavelength ranges information of the light reflected by objects in a scene. To
perform such operation a set of three different sensors should be needed. In-
stead of building cameras with three different sensor, one for each wavelength,
camera manufacturers designed sensors with CFA places on top of sensor ele-
ments. The most commonly used CFA configuration is the Bayer pattern. In
Figure 3.2 is depicted the concept of acquiring light information using sensor
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cells with the CFA applied on top: the corresponding filter let the interested
wavelength to be acquired by the sensor. The RAW data collected by the
sensor will be structured with respect to the CFA applied.

In order to take a picture, control system interact with the sensor to deter-
mine the exposure and the focal position of the lens. These parameters needs
to be determined dynamically based on the content of the scene.

Exposure control usually requires characterization of the brightness of the
image: an over- or underexposed image will greatly affect output colors. In
relation to the amount of light measured in the scene, the exposure control
system changes the aperture size and/or the shutter speed to take a picture
with the right amount of light needed to obtain a well-exposed image. Outdoor
as well as indoor images taken with typical cameras can suffer from the problem
of limited dynamic range, in the case the scene have an excessively backlit or
frontlit. Dynamic range refer to the contrast ratio between the brightest and
the darkest pixel in the image. The human visual system (HVS) can adapt
to about four orders of magnitude in contrast ratio, while the sRGB system
and typical computer monitors and television sets have a dynamic range of
about two orders of magnitude. This limit leads to spatial details in darkest
area indistinguishable from black and spatial details in brightest areas from
white. This problem has been addressed in research in different ways: the most
intuitive approach is the one of capturing multiple pictures of the same scene
with different exposure values, and then combine the information in order to
obtain an high dynamic range (HDR) image [16].

Focus control can be performed with two types of approaches: active and
passive approaches. Active approaches typically use a pulse beam integrated
in the camera, near the lens system, called auto-focus assist lamp. This pulse
signal is used to estimate the distance of objects from the camera in order to
adjust the camera focus plane. Passive approaches are based on the informa-
tion present in the picture, such as spatial information, to determine the focus
of the scene.

A drawback in cameras that use only one sensor to capture three-channel
RGB images is the presence of aliasing. Aliasing introduces highly unpleas-
ant artifacts in the final images captured by the cameras and is in general
dependent on factors such has the CFA pattern used in combination with the
demosaicing process and the sampling resolution of the sensors. In order to
reduces those kind of artifact, usually camera manufacturers design cameras
with anti-aliasing filters. Those filters have the objective of reducing the Moiré
patterns that may occur due to the sampling process involved.
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3.2 Systematic sensor data correction

After acquiring raw sensor data, the next step is the processing of this data
in order to obtain a full-color image. The data collected by the sensor can be
affected by different kind of noise and artifacts due to hardware design limits
or issues that can occur in the sensor. For example, one first common step
performed by cameras is the defective pixel (also called dead pixel) correction,
a step that aim to fix missing information due to the presence of defective
sensor cells that may not record information during the process described in
section 3. This is just one of the processing blocks that are present in this first
group of operators.

3.2.1 Linearization

In equation 2.6 we introduced the symbol N to model non-linearities com-
ing from the camera image capturing system. These non-linearities are typi-
cally due the electronics involved and while most of the sensors in the market
adopted by camera manufacturer have a linear response, in some cases is still
necessary a step of data linearization. This process is performed in the cam-
era by using an Opto-Electronic Conversion Function (OECF) that maps the
input nonlinear data to a linear space. This correction transforms the raw
measured data (typically with an 8-bit precision) into linear space (of higher
bit precision, typically 12 or 16-bit). The linearization process corresponds to
the inverse of N in equation 2.6.

3.2.2 Dark floor subtraction

An assumption that is often made is that a sensor cell receiving no light (e.g.
with the camera cap on the lens) will register a value of zero, corresponding
to black. Unfortunately, this assumption is not real since due to the thermal
noise and other kinds of noise nonphoton related coming from the electric na-
ture of the sensor, in no light conditions produces nonzero values. This noise
is one contributing component to the term n in equation 2.6. To account
this problem, a dark floor value is calculated for the specific camera, and is
subtracted from the collected CFA image. This is the first step in the cam-
era pipeline, after the linearization process. This process corresponds to the
subtraction of a constant value from each pixel collected value; alternatively a
spatial-dependent set of value can be subtracted from the collected image. In
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general, to avoid data clipping and quantization errors in shadow regions, the
subtraction operation is done in order to not remove completely the undesired
bias in the pixel data, but instead some residual biases are maintained.

This approach of subtracting the dark floor, using a value computed before,
can be achieved using a “lens cap shot” or the capture of a good-quality matte
black test card. Alternately, if the sensor has shield pixels around its perimeter,
these values can be interrogated at the time of capture. This last approach has
the added benefit of characterizing the dark floor at the actual circumstances
of the camera at the time of capture. It should be noted that dark floor is a
function of exposure index (ISO), shutter time and the ambient temperature.

3.2.3 Structured noise reduction

The assumption that the dark floor is constant across the entire image capture
is a simplification that is valid only if the user expectation is suitably lax
enough. There are many potential causes to why the dark floor is not constant
all across the extent of the sensor, apart from physical flows of electronic
components. For example the proximity of the sensor to heating parts of the
camera will warm one part of the sensor, producing non uniform dark floor
noise. At this point the problem is now to subtract a dark floor mask from the
collected CFA image. This mask is created either in the factory or during a
dark field shot (i.e., closed shutter) that may be automatically captured during
power up of the camera.

Dark floor subtraction operation tends to address low-frequency structured
noise better than high-frequency structured noise. One of the most significant
type of high-frequency noise is the defective pixel. Usually a sensor presents
a certain number of defective pixels: whole columns and rows of pixels might
be nonfunctional. Even if the sensor has been picked in factory as a defective
free one, over time it is possible that pixel became defective. Those pixels can
be divided in two categories: the ones which are completely nonfunctional,
leading to zero values when light impact to the corresponding cells, and the
ones which are partially functional, which may still respond to light, but with
a significantly different gain factor from the majority pixel population of the
sensor. This second type of defective pixels is more problematic with respect
to the first one. Defective pixels of the first category can be easily mapped
out in the factory and their locations stored in the camera firmware. Defective
pixels of the second category or those of the first category that are formed
after the camera has left the factory are more difficult to address. Since the
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identification of defective pixel is a particularly difficult task, one may be
forced to treat all unidentified defective pixels with stochastic noise cleaning
methods [160, 164, 3]. However, the main method of defective pixel masking is
to replace defective pixel values with the average values from known working
neighboring pixels.

A final class of structured noise to be discussed deals with variations in the
thickness of the CFA color filters across the surface of the sensor. These are
usually a consequence of flaws during sensor construction process. As a result,
an image of a featureless neutral field may exhibit low-frequency variations in
color. Because this is a stable phenomenon, it can be mapped in the factory
and stored in the camera firmware. The correction is performed like the dark
floor subtractions, with the difference that in this case each channel has its
own separate mask.

3.3 CFA data processing

In this stage of the camera processing pipeline, the focus is on the reduction
of stochastic noise and correction for exposure and white balance errors that
may occur during the time of image capture. These two operations can be in
arbitrary order in the pipeline since can be considered independent. This is
principally related to the fact that stochastic noise reduction is mainly con-
cerned with the high-frequency spatial component of the image data while
the exposure and white balance correction will be focused on using the low-
frequency spatial component to the image.

3.3.1 Stochastic noise reduction

In the camera processing pipeline, most of the operators act as signal ampli-
fiers. For example, looking at Figure 3.1, color correction, tone scale and
gamma correction, and edge enhancement are signal amplifier operations.
Moving further back along the processing pipeline, CFA interpolation (De-
mosaicing) operation can act as a signal amplifier. In addition, this operation
maybe linear or adaptive (non-linear), in which case the robustness of the al-
gorithm could be affected by the presence of the noise in the CFA image data.
The noise reduction is then performed before the demosaicing operation.

Due to the fact that for each pixel only one color channel value is available,
it is particularly difficult to exploit the partial correlation between the color
channels of the images. For this reason stochastic noise reduction is often

24



Chapter 3. Digital camera pipeline

achieved by using single-channel grayscale image processing techniques (such
as low-pass filters, sigma filtering [107], and median filtering), and a different
stochastic color noise reduction operation is performed after the demosaic-
ing operation as shown in Figure 3.1. Conceptually, the CFA image data is
split into three or more color channel components by collecting pixels of like
color into each component, as explained in section 3.1. At this point, each
component can be treated as an individual grayscale image and treated for
noise reduction in the preferred way. After noise reduction, the components
can be recombined together in order to obtain the original CFA image data
configuration.

3.3.2 Exposure and white balance correction

The human visual system is able to constantly and automatically adjust the
apparent exposure and white point of what it sees, while digital cameras do
not have such innate functionality: such adjustments must be performed al-
gorithmically. The goal of such algorithms is to render neutral areas in the
scene as regions of equal code values for all color channels in the final image.
Sometimes the processes of exposure correction and white balance correction
are referred to collectively as scene balance correction.

These adjustments can be divided in two groups: adjustments in response
to user inputs and automatic adjustments based on collected data. In the
first case, the user can specify a specific exposure compensation (measured in
stops) and a specific scene illuminant (e.g. daylight, tungsten, neon etc...), and
then, with this specific information the CFA image can be directly modified.
For exposure, all the pixels values will be equally modified by the appropriate
scale factor. For white balance correction, there would be a set of three scale
factors, each for one of the channels.

In the second case the only data available is the one collected by the camera
while capturing the image. In this second scenario the processing is performed
by automatic exposure (AE) and automatic white balancing (AWB) algorithms
[68, 163]. The way the CFA image is processed is the same as done by the
algorithms in the first group, but in this scenario the scale factors (one for
the exposure correction, three for the white balance correction) are estimated
by those automatic algorithms. In the case of AWB, most of the simplest
approaches are based on heuristic statistical models such as the gray world
hypothesis [169].
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3.4 Adjusted full-color image and color space

conversion

In this stage of the digital processing pipeline, the CFA image has already
been treated in order to reduce structural and stochastic noise, has been prop-
erly white balanced. From now on, the processing steps will assume these
conditions.

In this block the CFA image is converted into a full-color image and it will
then converted into a known, calibrated color space.

3.4.1 Demosaicing

Full-color image means that each pixel in the image has a color specification
triplet. The process for the creation of this kind of image, starting from the
CFA image data is called demosaicing, or CFA interpolation. Demosaicing is,
by far, the most computationally intensive step in the processing pipeline.

There are two general approaches to the problem of CFA interpolation.
The first is to use standard linear interpolation methods. The most common
approach is to combine neighboring pixel values of the same color in some
straightforward method to produce an estimate for the missing pixel value.
This method can take the form of a convolution operation and implement
such standard practices as pixel replication, bilinear interpolation, or bicubic
interpolation. If, on the other hand, there is some understanding of the cross
color channel correlation of the data, more than one color may be used in this
process [48].

The second approach to CFA interpolation is to use nonlinear adaptive
methods. With these systems, the segmentation of image data into lumi-
nance and chrominance channels becomes more important because the deci-
sions made by the algorithm are generally keyed off the fine spatial detail in
the image. As a result, the luminance channel is interpolated first by using
some form of edge detection of the luminance data to determine the precise
manner of interpolation from pixel to pixel [97, 98, 167, 84]. Once the lu-
minance channel is fully populated, the chrominance channels are generally
treated with the linear approaches previously described.

The result of the demosaicing operation is a full-color image, in a ”camera”
color space. The generated color space, in general, do not correspond to a
standard calibrated color space, but instead to a sensor depended color space:
it is defined by the spectral sensitivities of the camera image capture hardware.
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This problem will be addressed in the color space conversion step, but first,
another denoising step for the full-color image is necessary.

3.4.2 Stochastic color noise reduction

During the stochastic noise reduction applied to CFA image data, the color
channels were treated as separate and independent grayscale channels. Now
that all the color channels are fully populated, another facet of stochastic noise
emerges. A texture that might be acceptable in the context of a single-channel
image is deemed not acceptable when matched with similar, but different,
textures in the other color channels. In an RGB image the stochastic noise
corresponds to color variations in the images. This effect is most pronounced
neutral (gray) areas of the images because of the color fluctuations, and is also
more noticeable than the light-dark fluctuations in a single-channel image. The
purpose of this block in the digital camera pipeline is handle this problem.

The simplest approach may be to, again, treat each color channel as an in-
dependent grayscale image and then clean these components separately. How-
ever, this may not be overly effective and tends to miss the whole point. It
is far better to transform the image into a luminance-chrominance representa-
tion (assuming it is not already so), and then, the luminance and chrominance
channels can be noise-cleaned in any appropriate manner. Generally, the lu-
minance data will require a significantly different cleaning modality from that
used for the chrominance data. If the same method is used, at least the tunings
of the operation will be quite different.

Because this is a color noise reduction operation, its is possible that an ap-
proach prefers to work only on the chrominance channel to perform the noise-
cancelling operations, while letting the luminance information untouched. If
there is a reason, the luminance channel can also be noise-cleaned at this time
using any method applicable to single channel grayscale images.

3.4.3 Color space conversion

The next step is the one of transforming the image into a standard calibrated
color space. There are a number of possible destination color spaces to trans-
form the image in, which are suitable for the most different purposes. The
industry has standardized on the sRGB [157] color space, which has been de-
signed for video, or soft-display, devices. However, since sRGB is itself a color
transform from the CIE 1931 XYZ [47] color space, it’s first necessary to con-
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vert the full-color image from the camera color space to CIE 1931 XYZ and
eventually in the sRGB color space.

CIE 1931 XYZ space (pages 101 to 110 in [87]) is a color space defined by
standardized x̄(λ), ȳ(λ), and z̄(λ) color matching functions. The first part of
the color correction process is to transform the image data from camera color
space into CIE 1931 XYZ space. Assuming an RGB camera color space, the
operation becomes a 3 × 3 matrix multiply:XY

Z

 =

a11 a12 a13
a21 a22 a23
a31 a32 a33

Rcamera

Gcamera

Bcamera

 (3.1)

Since the camera color space is strictly related to the specific sensor re-
sponse to light stimulus, the coefficients of the transformation matrix are com-
puted in the factory through a regression process using measured camera RGB
tristimulus values of color patches with known XYZ tristimulus values. Once
the XYZ tristimulus values have been computed, they can be transformed to
sRGB tristimulus values with a standard matrix as follows:RsRGB

GsRGB

BsRGB

 =

 3.2410 −1.5374 −0.4986
−0.9692 1.8760 0.0416
0.0556 −0.2040 1.0570

XY
Z

 (3.2)

Concatenating the two matrices the entire color transformation can be
summarized as a single matrix multiplication:RsRGB

GsRGB

BsRGB

 =

b11 b12 b13
b21 b22 b23
b31 b32 b33

Rcamera

Gcamera

Bcamera

 (3.3)

whereb11 b12 b13
b21 b22 b23
b31 b32 b33

 =

 3.2410 −1.5374 −0.4986
−0.9692 1.8760 0.0416
0.0556 −0.2040 1.0570

a11 a12 a13
a21 a22 a23
a31 a32 a33


It is important to note that, until this point in the digital camera processing

pipeline, all of the processing operations are designed to be explicitly used on
linear space data.

28



Chapter 3. Digital camera pipeline

3.5 Image space rendering

The last steps of the processing pipeline are targeted at producing the final
image to be displayed on a device. This means preparing the image to be
displayed on a visualization device or compress and stored in a digital memory.
The step of color space transformation, discussed in the previous section, is
the first step in this direction. The process continues with the transformation
of the image in a non-linear space, suitable for video devices. After that, there
are different proprietary steps, aimed at image appearance enhancement: edge
enhancement or sharpening and coring. These techniques are mostly heuristic
based and require considerable fine-tuning.

3.5.1 Tone-mapping and gamma correction

As has been discussed in section 2.1, the human visual system’s ability to
adapt to a wide range of scene luminances. This characteristic of the HVS,
as for the compensation of scene illuminant, is not a innate functionality of
digital cameras, and so must be duplicated into cameras algorithmically. In
this specific case, the overall contrast of the scene must be adjusted so that
the image as viewed on the soft display device looks similar to the original
scene viewed under illumination that was typically a hundred times as bright,
if not more. Added to this, the image data must be transformed to account
for the nonlinearity of the video display.

CV

output

CV

input

CV

output

CV

input

CV

output

CV

input

(a) (b) (c)

Figure 3.3: Examples of tone-mapping functions: (a) idealized S-curve func-
tion, (b) function with suppressed shadow response, (c) scene specific function.
Image from [120].
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The first operation, the tone mapping (or scaling), adjusts the contrast of
the image. It is usually implemented as a fixed lookup table that is applied
equally to the red, green, and blue channels. It assumes the input data is in
a linear space that has been properly exposure corrected. There are generally
two classes of tone mapping functions: the first class consists of fixed trans-
forms that are installed in the factory and used on all images in the same way,
the second consists of tone scale transforms that are generated dynamically on
an image-by-image basis. There may be a single transform or a small family
of fixed transforms, with each family member assigned to a different exposure
compensation step. The shape of the fixed transform curve is typically “S”
shaped as showed in Figure 3.3 [87]. The second class of functions are based
on the consideration that the dynamic range of HVS is significantly greater
than any current digital camera. A partial solution to this dilemma is to create
custom tone scale functions that render both shadows and highlights at the
expense of the midtones, which are visually less important in high dynamic
range scenes. There are many ways of algorithmically producing such a tone
scale based on histogram analysis of the image [78, 69]. The final tone mapping
becomes a simple point transformation of the image data:

R′
sRGB = T (RsRGB)

G′
sRGB = T (GsRGB)

B′
sRGB = T (BsRGB)

(3.4)

The second operation is the gamma correction. This standard transform is
also defined in the sRGB specification [157] and accounts for the fundamental
photometric nonlinearity of the displays. This transform is essentially a simple
power relationship:

X ′′
sRGB =

{
12.92X ′

sRGB forX ′
sRGB ≤ 0.00304

1055X
′(1/2.4)
sRGB − 0.055 forX ′

sRGB > 0.00304
(3.5)

where X ′
sRGB is RsRGB , GsRGB , or BsRGB normalized to [0, 1].

Equation 3.5 is a point transform and can be concatenated with the tone
scale correction to produce a final single point transform to perform both
operations simultaneously:

X ′′
sRGB = V (X ′

sRGB) = V (T (XsRGB)) = G(XsRGB) (3.6)
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3.5.2 Edge enhancement

The essential purpose of edge enhancement (also called sharpening) is to
amplify the high-frequency spatial components of an image to make it look
sharper. Because noise has also high-frequency characteristics, attention must
be given to the question of controlling noise amplification during edge enhance-
ment.

The two main approaches to edge enhancement are direct convolution and
unsharp masking. The direct convolution method consists of extracting a high-
frequency record from the image via convolution with a high-pass kernel. Some
scaled amount of this high-frequency record is then added back to the original
image to produce the sharpened result:

A′ = A+ k(A ∗ h) (3.7)

where A is the original image, h is the high-pass convolution kernel, k is a
scale factor, and A′ is the resulting sharpened image.

In the case of unsharp masking, the high-frequency record is created by
computing the difference between the image and a blurred (low-pass) version
of itself:

A′ = A+ k(A− A ∗ b) (3.8)

where A is the original image, b is the low-pass convolution kernel, k is a
scale factor, and A′ is the resulting sharpened image. These two operations
produce mathematically equivalent results when confined to the world of linear
shift-invariant systems.

3.5.3 Coring

input

output

(a)

input

output

(b)

input

output

(c)

Figure 3.4: Examples of coring functions. Image from [120].
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Chapter 3. Digital camera pipeline

In order to control noise amplification during the edge enhancement pro-
cess, the high-frequency record needs to be noise-cleaned in some manner
prior to being added back to the original image [4, 83]. A coring function is
an amplitude noise cleaning operation and usually is used to noise-clean the
high-frequency record of the edge enhanced image. This function is a point
operation that, like the previously described tone scale correction, is usually
implemented as a lookup table. Examples of coring functions are depicted
in Figure 3.4. The shape of the coring function is heuristically determined
based on the fundamental noise characteristics of the digital camera system.
Modifying Equations 3.7 and 3.8, coring operation, C(·), can be added:

A′ = A+ kC(A ∗ h) (3.9)

A′ = A+ kC(A− A ∗ b) (3.10)
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Chapter 4

Artifacts in digital images

In section 3, an overview of the general digital camera pipeline has been pre-
sented, giving a general idea of how the processing operations inside a camera
are combined in order to obtain a final sRGB image. However, the images
that are obtained by applying a certain camera pipeline starting from RAW
sensor data are not necessary free from problems. In fact, a certain camera
pipeline, as already underlined during the description of some of the pipeline
blocks in section 3, could introduce noise and artifacts in the resulting sRGB
images. This can be related to multiple aspects: the relation between the
shooting conditions and the parameters of the algorithms used in the camera
pipeline, the kind of methods used in the pipeline and the way those meth-
ods are ordered. Considering the basic operations that have been discussed
previously, such as demosaicing, those operations may introduce some sort of
noise or artifacts in the processed image. In some cases the presence of these
kind of noise elements can be accentuated by the shooting conditions. If we
consider the example of a photo taken in low-light conditions, the final image
will probably suffer from sensor noise, due to the high ISO values and long
exposure time used for taking the image. If the camera pipeline blocks do not
take in consideration the specific scenario in which the photo has been taken,
the extra noise generated by the shooting conditions will not be removed, giv-
ing a non optimal result. This is the case in which the parameters of one of
the blocks are not optimal for the specific case.

Another problem can be the presence of elements in the scene that can
affect in some way the final sRGB image. Those elements are not related
to the behaviour of the camera pipeline elements or hardware limits of the
cameras, however they can reduce the overall image usability, more likely in
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situations where the image will be used by other automatic systems. This is
the case of images taken during hazy days or in underwater scenario. From this
example came out also the necessity to have a specific definition of quality in
relation to the final use of the images, which may vary in relation to a human
user or to automatic systems, and from one image analysis system to another.

In this section a taxonomy of artifacts and problems that can occur in
digital images is presented. This taxonomy is divided in two main classes, as
already introduced, in relation to the origin of the artifacts: in camera and
external image artifacts. A definition of image quality is also provided in order
to be able to define in which terms the images are considered problematic or
not, with the purpose of identify the possible improvements that can be done
in the camera digital processing pipeline, or in the post-processing steps.

4.1 In camera image artifacts

In the first group of artifacts are considered all the ones that came from the
operations performed in the digital camera pipeline. Here are reported arti-
facts coming from the application of the algorithms in an non optimal scenario,
where the general application does not suit the specific case, and the one com-
ing from flaws in the camera hardware or software application.

4.1.1 Image Noise

Noise in digital camera images usually appears as random speckles in otherwise
smooth regions, altering both tone and color of the original pixels. Typically,
noise is caused by random sources associated with quantum signal detection,
signal independent fluctuations, and inhomogeneity of the responsiveness of
the sensor elements. Noise increases with the sensitivity (ISO) setting in the
camera, length of the exposure time, and camera temperature. One example is
the case of low-light photography: to increase visibility in general sensitivity
and exposure time parameters are set to high values, leading to pictures with
a lot of noise. The level of noise also depends on characteristics of the camera
electronics and the physical size of photosites in the sensor. Larger photosites
usually have better light-gathering abilities, thus producing a stronger signal
and higher signal-to-noise ratio. Noise can be seen as fluctuations in intensity
(luminance) and color(chromaticity), and can be handled separately in the
luminance and chrominance domain. The generally adopted way to model
this kind of noise is the additive noise model [18]. In the additive noise model,
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each pixel of the ideal image is contaminated by a random value drawn from
a certain underlying noise distribution Zd; this random quantity adds to the
original ideal signal, generating the noisy observed image N(x, y):

N(x, y) = I(x, y) + η(x, y) (4.1)

The term η(x, y) which is added to the ideal value I(x, y) is generated by
the contribution of many overlapping noise sources. Because of the central
limit theorem, a common assumption is to model the contribution of all noise
sources as zero-mean Additive White Gaussian Noise (AWGN). Eventually,
the noisy term N(x, y) is then observed and recorded.

In Figure 4.1 are shown a noisy image and three de-noised version. As can
be seen removing color noise can be done without any big problem (Figure
4.1c), while suppressing luminance noise can result in unnatural looking images
and excessive blur.

(a) (b)

(c) (d)

Figure 4.1: Cropped parts of a color checker image captured with ISO 1600
setting: (a) captured noisy image, (b) luminance noise suppression, (c) color
noise suppression, and (d) both luminance and color noise suppression.
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4.1.2 Demosaicing artifacts

One of the most important steps in the camera pipeline previously described
is the demoisaicing operation, which consents to obtain a full-color image
starting from the CFA image data. The interpolation process, as described in
section 3.4.1, it is used to merge the information coming from the sensor with
the CFA pattern applied, and to obtain for each pixel an RGB triplet which
represents the RGB stimulus for each pixel of the final image. As already
described, there are different possible way to approach the task of CFA image
data interpolation, and each approach leads to a similar but different final
result. The final full-color image can be affected by the presence of distortion,
due to the algorithm adopted in the interpolation process. The color patterns
that can occur are called zipper effects. Figure 4.2a shows an example of these
kind of artifacts. These effects can usually be seen along abrupt edges when
pixels from both side of an edge are used in demosaicing.

In addition to zipper effect, another kind of artifacts related to the demo-
saicing process are aliasing artifacts or color moiré patterns. These artifacts
usually constitute large, visually annoying regions, as can be seen in Figure
4.2b and 4.2c. These artifacts cannot be therefore removed using traditional
low-pass filters which rely on local image characteristics. Aliasing artifacts
appear in areas where the resolution limit of the sensor has been reached and
where color sampling prevents correctly detecting orientations of edges in an
image. This is particularly true in fine texture regions, where aliasing artifacts
often take the form of repeating patterns of false colors.

Finally the last kind of problem that can come from this step in the cam-
era processing pipeline is the blur. This problem corresponds to an apparent
resolution loss and is generally caused by demosaicing with insufficient edge-
preserving characteristics. An example is shown in Figure 4.2d.

Demosaicing artifacts vary in their characteristics, appearance and size.
Considering the complexity of the problem of reversing color sampling in ar-
eas with difficult structural content, demosaicing artifacts may never be fully
avoided in real-life situations. Therefore, many digital camera designers focus
on achieving trade-offs between noise, image sharpness, demosaicing artifacts
and processing time rather than emphasizing any of these issues.

4.1.3 Coloration shifts

Image sensors are calibrated for certain light characteristics. Whenever an
image is shot under light of a different color temperature from those for which
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(a) (b)

(c) (d)

Figure 4.2: Typical demosaicking defects: (a) zipper effects, (b) and (c) alias-
ing artifacts, and (d) blur effects.

sensors were calibrated, the image coloration is shifted from the perceived
coloration of a scene. This is well observable in the case of neutral (i.e., achro-
matic) colors, particularly white, which is one of the most recognizable colors
due to high and approximately equal contributions of all three color primaries.
The main difference with color shifts from noise and demosaicing artifact, is
the global impact on the entire image, while the previously presented arti-
facts are local variation in the images. The white balancing block, discussed
in section 3.3.2, operates over the input image in order to produce images
with natural color tint, compensating for unnatural (global) variations in the
collected image.

Digital SLR cameras offer to the users the possibility to manually set the
white balancing preferences for each shot. Alternatively the color balance can
be automatically adjusted using Auto White Balancing (AWB) algorithms.
Those algorithms generally exploit scene information to make an estimate of
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the illuminant of the scene, and uses this estimate to correct image color tint.
Those algorithms can fail in the estimation process leading to images that may
look bluish or reddish, respectively called cold or warm. Those kinds of wrong
images are not visually pleasing as the one obtained by manually setting the
illuminant information.

(a) (b) (c)

Figure 4.3: Coloration shifts due to different white balance settings: (a) cool
appearance, (b) neutral, (c) warm appearance.

4.1.4 Exposure shifts

Another problem that can affect appearance of the captured images is the
exposure shift. As seen in section 3.1, to control the amount of light that
reaches the camera sensor, the camera adjusts the aperture of the diaphragm,
the sensor exposure time and sensor sensitivity (ISO) value. By deciding how
long to leave the shutter open and how much to open it, the camera (or the
photographer in manual mode) controls the period for which the sensor is
exposed to the light to collect photons. The other way to control the amount
of light perceived by the sensor is by adjusting the sensor sensitivity (ISO)
value. High ISO values lead to high light sensor sensitivity and then brighter
images. The combination of these three parameters determine the exposure
of the image captured. Depending on exposure settings, the appearance of
images can range from dark, which is the effect known as underexposure, to
bright, which is referred to as overexposure. The imaging community uses a
measure called Exposure Value (EV) to specify the relationship between the
aperture (f-number), F , and exposure time, T :

EV = log2

(
F 2

T

)
= 2log2(F )− log2(T ) (4.2)
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The exposure value 4.2 becomes smaller as the exposure duration increases,
and it becomes larger as the f-number grows. Figure 4.4 shows images of the
same scene captured with different exposure settings.

Digital consumer devices make use of ad-hoc strategies and heuristics to
derive exposure setting parameters. Most auto-exposure algorithms work in
this way:

1. Take a picture with a pre-determined exposure value (EV pre );

2. Convert the RGB values to luminance, L;

3. Derive a single value Lpre (like center-weighted mean, median, or more
complicated weighted method as in matrix-metering) from the luminance
picture;

4. Based on linearity assumption and equation 4.2, the optimum exposure
value EVopt should be the one that permits a correct exposure. The
picture taken at this EVopt should give a number close to a pre-defined
ideal value Lopt , thus:

EVopt = EVpre+ log2(Lpre)− log2(Lopt) (4.3)

The ideal value Lopt for each algorithm is typically selected empirically.
These methods, however, often fail in complex scenarios with different

subjects having different reflectivity, due to their blindness with respect to the
content of the captured scene. After acquisition phase, typical postprocessing
techniques try to realize an effective enhancement via global approaches, such
as histogram specification, histogram equalization and gamma correction to
improve global contrast appearance. However such kind of approaches may fail
in hard case scenarios of images, such as images with double-exposure (areas
over exposed and areas underexposed in the same image) or some special cases.

4.1.5 Image compression artifacts

The final step of the digital processing pipeline corresponds to the final visu-
alization of the sRGB images. The image processed by the pipeline can be
both displayed on a digital visualization device or stored in digital memory. In
the latter case, the image is generally compressed in using JPEG compression
format, which can reduce the size of original files ten-fold, and for images with
solid color backgrounds even more. The amount of compression is defined

39



Chapter 4. Artifacts in digital images

(a) (b) (c)

Figure 4.4: Influence of exposure settings on image quality: (a) underexposure,
(b) normal exposure, and (c) overexposure.

(a) (b) (c)

Figure 4.5: Impact of JPEG compression at different compression ratio: (a)
quality factor 10, (b) quality factor 50, and (c) uncompressed file.

by the settings of the compression algorithm. JPEG compression is a lossy
compression algorithm. This means that part of the information is lost with
respect to the original RAW data collected by the image. In general there
is a trade-off between the amount of compression and the final quality of the
image, in order to reduce the space occupied in the storing system by the
image without loosing too much information and obtaining images that still
look good enough.

Due to lossy coding, JPEG-compressed images typically have a blocky
appearance which is often referred to as image compression artifacts. These
artifacts (and basically also compression abilities of JPEG) result from casting
away neighboring pixels with similar luminance and chrominance components
in a manner which prevents recovering their original values. Since JPEG
and other lossy compression formats ruin fine details and edges, compression
artifacts are considered by many a bigger problem than sensor noise.
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Figure 4.5a and 4.5b demonstrate the effect of compression on the image
quality. As shown in figure, compressing full-color data using JPEG produces
block artifacts and reduces original structural content. It also suppresses po-
tential demosaicing artifacts due to the low-pass nature of lossy compression.
Figure 4.5c shows that compression artifacts can be avoided by using lossless
coding.

4.2 External image artifacts and deterioration

This second group contains all the artifacts and distortions from the interaction
of elements of the scene with the lens system and eventually with the sensor.
These type of degradation can be dived in two groups: one containing the
artifacts coming from distortions related to the lenses and focus plane, and
another one related to elements in the scene that do not directly interact with
the camera system.

4.2.1 Lens related artifacts

The very first step of the digital processing pipeline is the collection of sensor
data. The only element in between the scene and the camera sensor in a digital
SLR camera are the lenses. The lens system has the objective of refract light
in order to concentrate light rays on the camera sensor, in order to collect
light data for the formation of the image. Light rays, after being reflected by
objects in the scene reaches the camera sensor by passing trough the camera
lenses which, due to their design, refract light rays in order to focus in a specific
point, called focal point. This process by which the light rays are guided to the
sensor is not artifact free, since different distortions can occur due to physical
aspects related to refraction and the way light is transmitted. Those artifacts
are chromatic aberrations, vignetting and flare effects.

Chromatic aberrations are coloured green, red, purple or blue halos which
are highly visible around high-contrast edges in the captured images. This
artifacts are caused by the fact that, in a compound lens systems, the indi-
vidual lens elements have different refractive indices for different wavelengths.
This causes the fact that not all wavelengths converge to the same point after
travelling through the lens, producing the color artifacts in the images. In
Figure 4.6b are shown examples of chromatic aberration artifacts. Two types
of chromatic aberrations can be identified: Longitudinal Chromatic Aberra-
tion and Transverse Chromatic Aberration. Figure 4.6a depict, in a single
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lens example, the two types of aberrations and the effect of both aberrations
combined together.
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Figure 4.6: Chromatic aberration: in the first row is depicted an exaggerated
version of the occourence of the two tipes of abeeration LCA and TCA, in
the second row examples of chromatic aberration from a lens test chart. Top
images from [171]

Other two kinds of defects coming from the lenses are vignetting and flare.
Flare is a type of artifact that occurs when the stray radiation from a bright
source enters the lens: many internal lens (and even sensor) reflections can
occur and then, when this radiation is finally picked up by the sensor, it
causes the image to be ‘washed out’. When the bright radiation source itself
is in the field of view of the camera, bright spots might appear in the image.
These spots in general appear in a row, due to the multiple lenses inside the
compound lens system. The solution to this problem is simple: to prevent the
radiation source from appearing in the camera’s field of view by changing the
camera position or focal length, or reducing the aperture in order to reduce
reflection inside of the lens system.

Vignetting is the phenomena that corresponds to a decrease of brightness
towards the edge and corners of the images. Natural vignetting is associated
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with the natural illumination falloff when radiation hits the sensor and is un-
avoidable anytime there is a standard lens in combination with a rectangular
sensor. When the radial decrease of image illumination is purely natural or
optical, it is easy to correct since it is inherent to lens design. Together with
natural vignetting, optical vignetting is an unintentional vignetting that cre-
ates a gradually darkened image towards the corners. Luckily, it is easy to
correct using image processing algorithms by using camera- and lens-specific
profiles that can counteract these types of vignetting. Figure 4.7 shows exam-
ples of both Flare and vignetting effect on the final images.

(a) (b)

Figure 4.7: Examples of flare (a) and vignetting (b) effects.

4.2.2 Atmospheric and environmental elements

The last group of problems that can affect an image is the one regarding scene
related elements. The implicit assumption that has been done in the previous
section is the one that the pictures are always taken in good visibility condi-
tion, with a clear vision of the scene content, where the only type of artifacts
and problems can come from the processing steps. However, in most of the
cases the pictures taken by cameras, from Digital SLR cameras to security
camera or cameras mounted on cars etc... , are taken in the most diverse
atmospheric conditions, from clear sunny days, to foggy or rainy ones. This
aspect introduces a new set of conditions that can affect the overall quality
of the images taken. Images of foggy scenes tend to be with low contrast and
reduced visibility of objects far from the camera, while in the case of pictures
taken in rainy days have a combination of elements which can occlude infor-
mation and refract light rays before reaching the camera sensor, generating
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unpleasing artifacts. These type of elements are not only unpleasing from
the aesthetic point of view but can constitute a problem in some specific sce-
narios like the case of automotive or video security: occluded information or
unrecognizable objects can become a serious problem for self-driving cars.

(a) (b) (c)

Figure 4.8: Images taken in adverse atmospheric conditions: the visibility is
affected by the presence of external elements such as mist and rain droplets.

These types of artifacts are in general treated after obtaining the sRGB
full-color images, in what is called post-processing step. The way the reduction
of defects and artifacts or enhancement of visibility is performed depends in
general on the final purpose of the images. Programs for image post-processing
offers to photographers the possibility to apply algorithms for haze-removal or
contrast stretch, but the way those modules operates may not suit more task-
related cases like the ones mention before.

4.3 Image quality

To determine how good an image is, in terms of presence of artifacts, overall
beauty or usability, it is necessary to have a definition of image quality. Defin-
ing what image quality is, is an hard task, due to the fact that the meaning of
quality differ in relation to the final use of the image. For example, an image
that is modified in order to enhance the edges to make them easier to get rec-
ognize for an autonomous system, will probably not be considered as a good
or beautiful image by a photographer. This specific case is the one in which
the definition of quality is related to the concept of usefulness. We can mainly
identify three definitions of image quality, that can be considered when eval-
uating an image: usefulness, naturalness and fidelity. As shown in figure 4.9,
the definition of quality can be a mixture of these tree main concepts.

In general, the image quality can be defined as the weighted combination
of all of the visually significant attributes of an image, such as sharpness,
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Figure 4.9: Different definitions of image quality. On the three axis are re-
ported the three main definitions of image quality: usefulness, naturalness and
fidelity. Even if we give these three definitions, as can be seen, different tasks
can consider image quality as a mixture of those concepts.

colorfulness, presence of geometrical distortions, and so on [33]. Technical
image quality is often described in terms of a limited set of attributes, each
representing different local and global aspects of the imaging experience as
well as geometrical attributes like optical distortion and so on. The set of
attributes can vary from task to task, and also the relevance of each attribute
can change, as in the previous example, where the edge sharpness can be seen
in different ways in relation to the automotive point of view or the one of a
photographer. In general a perfect image (in relation to the specific task) is
the one free from all visible defects.

As seen in the previous sections, image quality of a picture taken with a
digital camera is influenced by both camera performances, including shoot-
ing conditions and construction flaws or limitations, and scene content. The
analysis of the image quality in terms of artifacts or defects is performed us-
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ing different metrics, each of which, in general, considers one of the multiple
aspects regarding the image quality.

Quality metrics can be divided in two main groups: full-reference and no-
reference. The first group contains all the metrics which uses a reference image
to evaluate the considered one. For example metrics like Peak to Signal Noise
Ration (PSNR) or Structural Similarity Index Metric (SSIM) [181, 12, 13] are
metrics which compare each pixel of an image with a corresponding reference.

Given a reference image f and a test image g, both of size M × N , the
PSNR between f and g is defined by:

PSNR(f, g) = 10log10

(
2552

MSE(f, g)

)
(4.4)

where

MSE(f, g) =
1

MN

M∑
i=1

N∑
j=1

(fij − gij)
2 (4.5)

The PSNR approaches infinity as the MSE approaches zero; this show that
higher PSNR means higer imag quality.

The metrics in the second group instead make an evaluation based only on
the image which we want to analyze. In this group there are also new kinds of
metrics based on neural networks, which for each image gives a score of image
quality modeled on user perceived quality and other attributes of the images.
An example is the Naturalness Image Quality Evaluator (NIQE) [126].

In the next chapter for each approach presented will be introduced the
metrics used to evaluate image quality. Since each work is related to a different
type of artifact and to a different point of the digital processing pipeline,
different metrics will be used, in relation to the specific problem treated.
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Part II

Addressing in-camera generated
artifacts

As seen in Section 4.1, a certain number of image artifacts come from the
application of digital processing steps present in the digital camera processing
pipeline. In this chapter, the objective is the correction or replacement of the
work done by the processing steps presented in Figure 3.1, by exploiting the
power given by machine learning.

In particular in this chapter are treated the problem of the color cast coming
from the white balancing step, the image exposure and contrast correction, and
finally the compression artifacts and the introduction of noise, which as seen
in the previous chapter can come from multiple steps of the digital processing
pipeline.

Few aspects play an important role in the design of these processing ap-
proaches: the computational complexity and the memory load of the proposed
solutions. Since the objective is the one of applying machine learning to the
internal processing step of the digital processing pipeline, in the case in which
the solution should potentially replace an already existing block, the computa-
tional complexity and hardware demands should be taken into consideration.
These aspects have been considered in the design process of the solutions pro-
posed in Chapters 5 and 6, leading to lightweight approaches which however
exploit the possibilities given by machine learning.

For each of the different processing blocks treated in this chapter an anal-
ysis of the specific associated artifacts and existing approaches is presented,
alongside an overview of datasets, metrics, and the description of the proposed
solutions and related experiments.
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Chapter 5

Combination of AWB
algorithms for single image and
video illuminant estimation

The term chromatic adaptation refers to the human visual system’s capabil-
ity to adjust to widely varying colors of illumination to approximately pre-
serve the appearance of object colors. Digital cameras, or more in general
image capturing systems, cannot adjust the relative responsivities of their red,
green, and blue imaging layers in the way the human visual system adjusts
the responsivities of its color mechanisms. Humans perceive relatively little
change in the colors of objects when the illumination is changed from day-
light to incandescent. Computational color constancy aims at reducing the
chromatic dominant in a digital image, originated from the light source that
illuminates the scene. This goal is typically pursued through the develop-
ment of an algorithm for illuminant estimation. A deeper discussion about
the relationship between human chromatic adaptation and camera AWB can
be found in Colour appearance models by Mark Fairchild [58]. The research
community has been tackling the problem of computational color constancy for
several years, designing a disparate set of approaches, which range from hand-
crafted methods based on low-level image statistics, to data-driven methods
based on middle-to-high level analysis. Each individual approach necessarily
exploits a specific set of biases and rationales. Due to the ill-posed nature of
the problem, in fact, color constancy is not mathematically solvable without
relying on additional assumptions on the imaged content. For example, the
edge-based color constancy framework by van de Weijer et al. [169] describes
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with a unified formulation several low-statistics algorithms that are based on
different assumptions: the gray-world hypothesis, which assumes that the av-
erage reflectance in a scene is achromatic, the white patch hypothesis, based
on the assumption that the reflectance achieved for each of the color channels
is equal, or the gray-edge hypothesis, according to which the average of the
reflectance differences in a scene is achromatic. Gamut mapping methods are
based on the rationale of taking image data captured under an unknown light
to a gamut of reference colours taken under a known light. More recent data-
driven methods, such as deep learning solutions, implicitly operate higher-level
abstractions, by both exploiting statistical biases in the training data, as well
as associations with the semantics of the image content. However the most
recent and performing methods are increasingly computationally and memory
demanding, and require large dataset to be properly trained. The latter point
is often taken in low consideration but it is known that most recent methods
are sensor-dependent, and therefore need to be retrained for different sensors.

Since different color constancy methods often rely on different assump-
tions, they can be expected to provide different and uncorrelated outputs, and
to consequently perform better on different types of input. The illuminants
estimated by these methods, being influenced by the underlying assumptions,
can then be considered as image-describing features, and thus properly com-
bined through a fusion strategy for improved color constancy. This approach
has been successfully adopted in a wide range of domains, from change de-
tection algorithms for background segmentation [28], to saliency estimation
methods [31], to color constancy itself [40, 24, 108]. One of the main draw-
backs of the fusion approach is often represented by the inference time, as
it requires running multiple independent algorithms on the same input, and
subsequently combining the results with a sufficiently-advanced fusion strat-
egy. This aspect becomes particularly problematic in a video-oriented domain,
where time is considered critical. In such a scenario, therefore, it is fundamen-
tal to select efficient input methods, and to develop an efficient combination
strategy. Barron et al. [15] report a threshold of 30 frames per seconds (FPS) to
consider an algorithm viable for application in the camera viewfinder stream.
The same threshold is also commonly accepted in other fields, such as respon-
sive systems for assisted driving [123]. Even in an off-line color constancy
setup, where live-feedback is not required, a fast computation is still critical
for the processing of long video sequences.

In the work presented in this section , assuming to have a set of input
color constancy methods, not necessarily the most effective ones, the design of
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a very efficient late-fusion combination strategy is presented. The presented
approach is able to reach an accuracy close to the best algorithms in the state
of the art, keeping at the same time the computational burden also suitable
for the real time video domain. The proposed single-frame lightweight com-
bination strategy has been applied to a selection of methods based on simple
image statistics [169], proving to be effective even when an extremely limited
amount of training data is available. The proposed solution outperform other
combination strategies on a standard dataset for single-frame color constancy,
and reach an illuminant estimation accuracy comparable to more sophisticated
solutions.

Morover, an extension of the single-image fusion strategy that exploits a
Long Short-Term Memory (LSTM) module to handle varying-length video se-
quences is presented in this section. Experiments on the recent Burst Color
Constancy dataset (BCC) [139] show that: i) exploiting the temporal com-
ponent after the combination gives better results than exploiting it before
the combination; ii) the proposed method outperforms other strategies that
can be implemented to exploit the temporal component; iii) the proposed
method is able to reach an illuminant estimation accuracy on video sequences
comparable to more sophisticated and computationally-demanding solutions
specifically designed for video applications.

The proposed solution has also been evaluated in terms of inference time,
showing how the combination represents a negligible overhead on the com-
putational time required by the combined algorithms. By optimizing the
redundancies of the underlying set of input methods, the model is able to
reach real time performance at 31 frames per seconds. Finally, are presented a
series of experiments aimed at analyzing the behavior of the proposed combin-
ing method, and at assessing the individual contribution of each underlying
method towards the final illuminant estimation.

5.1 Related Works

5.1.1 Single-frame combinational illuminant estimation
methods

Combinational illuminant estimation methods give an estimate of the scene
illuminant by combining the estimates given by a set of input methods. Com-
binational illuminant estimation methods have been reviewed in [109], where

51



Chapter 5. Combination of AWB algorithms for single image and video
illuminant estimation

they have been categorized into two main classes on the basis of the informa-
tion they use as input: direct combination methods provide their final estimate
as a combination of the estimates given by the input methods to be combined;
guided combination methods exploit additional information extracted from
the input image, in terms of semantic class or features, together with the the
estimates given by the input methods to be combined. DC methods have been
further grouped into supervised combination (SC) and unsupervised combi-
nation (UC) methods: the former ones have a training phase to learn how
to combine the estimates given by the input methods, while the latter ones
directly combine them without any training phase.

Concerning the direct combination methods (DC), Cardei and Funt pro-
posed two combining methods [40]: Simple Committee, belonging to the UC
methods since the combination is performed by simply averaging the estimates
of the combined algoriths, and LMS Committee, belonging to the SC methods
where the combination weights are learned in a Least Mean Squares optimiza-
tion.

Bianco et al. [24] proposed a set of different DC-UC methods by exploit-
ing the spatial positions of the estimations to be combined. Considering the
estimates as points in the space, Nearest-X averages the estimates of the X
algorithms that are closest between each other. The Nearest-X% combination
averages all the estimates for which the distance between any pair of them
is below (100 + X)% of that between the two closest ones. The No-N-Max
method instead averages the estimates excluding the N estimates having the
highest distance from the other estimates. The last method they propose is the
Median combinational strategy that selects the estimate having the smallest
total distance from all the others.

Li et al. [108] proposed two DC-SC methods: the first uses an Extreme
Learning Machine to perform the combination, while the second exploits a
Support Vector Regression.

Guided combination (GC) methods exploit additional information extracted
from the image to drive the combination: in [23] each image is described by a
set of low-level features related to color, texture, and edge distribution and ex-
ploits tree-based image classifier trained on indoor, outdoor, close-up classes;
[25] uses general-purpose features and problem dependent low-level features
without the need of a proxy constituted by semantic classes; a similar ap-
proach is used in [73], that exploits texture and contrast summarized in terms
of the Weibull parameterization; [170] uses high-level visual information to im-
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prove illuminant estimation by modelling the image as a mixture of semantic
classes, such as sky, grass, road, and building; [119] use rough 3D scene ge-
ometry to model an image in terms of different geometrical regions and depth
layers.

Given the success of the above combining methods Li et al. [110] proposed
a multi-cue method that combines the information provided by different cues,
e.g. properties of the low-level RGB color distribution, mid-level initial illu-
minant estimates provided by subordinate method, and high-level knowledge
of scene content, within the framework of a tree-structured group joint sparse
representation.

Subhashdas et al. [158, 159] propose a hybrid multi-class dynamic weight
model with an ensemble of classifiers: their method classifies images into sev-
eral groups and uses a distinct dynamic weight generation model (DWM) for
each group. The DWM generates dynamic weight using an image feature that
has a correlation with the capability of the input algorithms used for combi-
nation.

5.1.2 Video illuminant estimation methods

Although frame-based illuminant estimation methods can be applied also to
videos and/or image sequences on a per-frame basis, there are only a few
methods actually able to exploit the temporal component to produce a more
robust illuminant estimate.

Yang et al. [187] extract illuminant color from two distinct frames of the
same scene exploiting highlights on specular surfaces. Prinet et al. [135]
propose a probabilistic and more robust version of [187].

Wang et al. [177] propose a multi-frame illuminant estimation method by
clustering illuminant estimate coming from a standard method on each frame
into a number of video shots and then exploit a summary statistics to provide
a global estimate for the whole shot.

More recently, Barron et al. [15] extended their single frame method to
work on image sequences by building a smoothing model inspired by Kalman
filter in order to smooth wrong predictions that may happen on individual
frames.

The work of Quian et al. [137] is the first to actually exploit the informa-
tion available in the input sequence. They propose an end-to-end trainable
recurrent color constancy network that exploits AlexNet features and a Long
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Figure 5.1: Combination framework for illuminant estimation combination.
The framework is composed of two different steps: the first one corresponds
to the collection of the statistics-based approaches estimations, the second one
corresponds to the actual combination of the estimations previously collected.
As can be seen, the Single-Image model and the Video model shares the same
architecture for the first combination part: the two models differs for the
different heads. In the Single-Image case, the head is made of only one linear
layer, used to map the nf/4 features to the output dimensionality. For the
Video model, the nf/4 features are further processed by a LSTM to exploit
the temporal nature of the video sequence. The details of the video sequence
processing are shown in figure 5.2.

Short Term Memory (LSTM) recurrent neural network to process sequential
input frames. Their method has been then improved [139] by exploiting a more
powerful backbone network for the semantic feature extraction, and using a
2D LSTM that provides more effective spatial recurrent information.

5.2 Proposed Method

The proposed solution consists of a framework for the non-linear combination
of illuminant estimations, using a small neural network composed of few hidden
layers in a multilayer perceptron (MLP) architecture. The general idea is to
exploit the different assumptions related to different illuminant estimation
algorithms. Two variants of this model have been designed: a single-image
illuminant estimation version, and a video estimation version operating on
multiple input frames. In this section the framework both configurations are
presented, with the respective architectures and the objective function adopted
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for training.

5.2.1 Single-Image model

The proposed framework for illuminant estimations combination is illustrated
in Figure 5.1. The procedure is divided into two steps: the first step consists
in performing the initial illuminant estimation using a given set of algorithms,
in order to collect the different estimations to be combined. The second step
corresponds to using our multilayer perceptron, called COCOA, to obtain the
corresponding non-linear combination of the input estimations.

The COCOA network is a multilayer perceptron model made of four linear
layers which uses Rectifying Linear Unit (ReLU) activation functions. The
structure of COCOA is represented in Figure 5.1. As can be seen from Fig-
ure 5.1 the number of perceptrons per layer is defined as a function of the
number of perceptrons in the first layer. In the proposed configuration the
nf has been setted at 256, obtaining a four-layer model with respectively 256,
128, 64, and 3 perceptrons.

Given a set of algorithms for combination, the COCOA model is trained by
giving as input the concatenation of the estimations, in normalized RGB space,
and compare the output combination with the ground truth. The number of
algorithms used to obtain the starting estimations determine the dimension-
ality of the first layer of COCOA.

5.2.2 Video model

Here is presented a variant of the proposed model, specifically designed for the
processing of video sequences.

In this scenario, for each frame in a given sequence, our model takes as
input a set of estimations, performed with a set of input illuminant estima-
tion methods, and extracts a vector of nf/4 features. This part of the model
corresponds to the first three layers of the single-image illuminant estimation
model. The resulting features are are then processed by a Long Short-Term
Memory module (LSTM).

For each frame, the LSTM module takes in input the representation given
by the MLP and generates a new set of features, representing the frame se-
quence until the last processed frame. For each frame of the sequence, the
MLP feature extraction step with the LSTM module temporal processing is
repeated, using as input the estimations of the input methods corresponding
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to the new frame, and the hidden state coming from the previous step of the
LSTM module (with exception for the first frame). The final results coming
from the processing of each frame is eventually passed to a final group of two
fully connected layers, which outputs the estimation for the entire sequence.
The video estimations combination process is depicted in Figure 5.2. As can
be seen from Figure 5.1, the model for the video estimation combination is
an extension of the original single-image model presented in Section 5.2.1.
Instead of having a final layer which maps the nf/4 representation to the out-
put dimensionality 3, there are new components which handle the multi-frame
nature of the video sequence.

Combo
MLP

LSTM LSTM LSTM

. . .

h0

. . .

R
G
B

Combo
MLP

Combo
MLP

h1

Frame #2Frame #1 Last frame

Initial
estimations

Video
combo illuminant

Figure 5.2: Combination of the illuminant estimations between frames of a
video sequence. For each frame the 6 estimations are first processed by the
Combo MLP component, then are given in input to the LSTMmodule. Finally
the processed features are sent to the last two layers, giving in output the final
estimation.

The LSTM is initialized with starting hidden state and starting cell state at
zero values, with hidden state dimension equal to nf/4. For the last two layers,
as can be seen in Figure 5.1, the number of output features for the two fully
connect layers is respectively nf/4 (64 in our configuration using nf = 256) and
3.
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5.2.3 Loss function

The two models are trained by minimizing the recovery angular error (ex-
pressed in degrees) between the output of COCOA and the ground truth il-
luminant associated to the image or to the video sequence. In the case of
the single-image model, there is a ground truth illuminant for each image in
the dataset, while for the video case scenario, for each video sequence in the
dataset there is a single ground truth illuminant triplet for the entire video
sequence. This is determined by the chosen datasets for experimentation, as
illustrated in Section 5.3.2.

The recovery angular error, which quantifies the illuminant estimation er-
ror, is represented by the angle between the vector given by the target illu-
minant triplet ρgt = (Rgt, Ggt, Bgt) and the one corresponding to the result of
the combination ρE = (RE, GE, BE). A generalization of the recovery angu-
lar error corresponds to what is called SAM in the context of satellite image
and spectral comparison metrics [6]. Given two illuminants ρE and ρgt, the
recovery angular error can be calculated as:

θ = arccos

(
(ρE · ρgt)

||ρE|| · ||ρgt||

)
(5.1)

5.3 Experimental Setup

5.3.1 Training setup

The COCOA architecture is written in Pytorch 1.7.0 and trained on an NVIDIA
Titan V with 12 GB of memory. Training was performed using the Adam [104]
optimizer; for the single image scenario starting learning rate is set at 0.003
and weight decay of 1e-5, while for the multi-frame training the starting learn-
ing rate used is 1e-4 and weight decay of 1e-5. Both models were trained for a
total amount of 3000 epochs. These hyper parameters have been empirically
determined among different training runs.

5.3.2 Datasets

To train and evaluate the performance of the COCOA model, different setups
and datasets for the image and video tasks are used. For single-image illumi-
nant estimation the 569 images of the Shi-Gehler reprocessed dataset [72, 153]
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have been adopted, while for the video illuminant estimation task the 600 se-
quences of the Burst Color Constancy dataset (BCC) from Qian et al. [139]
have been used.

For the evaluation of the single-image illuminant estimation on the Shi-
Gehler dataset has been adopted the original three-fold cross validation di-
vision, as done previously by [86, 15]; the validation has been performed by
randomly selecting the 20% of the training images for each fold. For the video
dataset has been used the original dataset division provided by the authors,
for training and test. To validate the model, 20% of the video sequences from
the training set have been randomly selected and used.

5.3.3 Combined input methods

For each image or frame, have been collected six different illuminant estima-
tions from different statistics-based algorithms:

• Shades of Gray (SoG)

• General Gray World (gGW)

• Gray Edge 1st order (GE1)

• Gray Edge 2nd order (GE2)

• Gray World (GW)

• White point (WP)

This particular selection aims at creating an overall illuminant estimation
pipeline that is also practical, i.e. by relying on simple input methods, its
computational complexity remains low and suitable for a real-time application,
as shown in Section 5.4.4. The illuminant estimation using those models have
been performed using the framework from van de Weijer et al. [169], which
offers a single equation to perform the illuminant estimation corresponding to
different assumptions over the images. The general hypothesis is described as:(∫ ∣∣∣∣∂nfσ(x)

∂xn

∣∣∣∣p dx)1/p

= ken,p,σ (5.2)

where n identifies the derivative order, σ is the standard deviation for a Gaus-
sian filter, and p is the order of the Minkowski norm. To specialize the be-
haviour of the six algorithms listed above, the parameters of Equation 5.2
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have been selected as shown in first columns of Table 5.1 (COCOA) , follow-
ing [26]. An alternative set of parameters is also investigated, by fixing all free
parameters to 1 (columns COCOA-fast). This experiment is driven by several
motivations: 1) to avoid relying on arbitrary parameters that were potentially
optimized to a specific dataset, 2) to speed up the computation by only exploit-
ing small convolutional kernels, and 3) to further speed up the computation
by sharing common processing steps among multiple methods. As it can be
observed from the table, this second set of parameters has the Shades of Gray
algorithm collapse into a Gray World, thus reducing the effective total number
of input methods from six to five.

Table 5.1: Parameters for each illuminant estimation algorithm. The free
parameters that can be changed without switching to a different method are
highlighted in boldface.

COCOA COCOA-fast
n p σ n p σ

Shades Of Gray (SoG) 0 4 0 0 1 0
Gray World (GW) 0 1 0 0 1 0
Gray Edge 1st order (GE1) 1 1 6 1 1 1
Gray Edge 2nd order (GE2) 2 1 1 2 1 1
general Gray World (gGW) 0 9 9 0 1 1
White Patch (WP) 0 ∞ 0 0 ∞ 0

The camera black level is subtracted from all images, and these are sub-
sequently rescaled to have their maximum side be 256 pixels long. After this
pre-processing, each image has been eventually fed into each one of the al-
gorithms, obtaining a total amount of six estimations per image. These six
estimations are first normalized and then concatenated and used as input for
the COCOA model. A series of preliminary experiments have been conducted
to define the most appropriate normalization strategy, including L2 normal-
ization, green channel normalization, and conversion to various chromaticity
representations. The final configuration, adopted throughout all our experi-
ments, relies on green-channel normalization. The final output of the network
consists of an RGB triplet corresponding to the non-linear combination of the
input estimates.
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5.4 Experimental Results

5.4.1 Combinational single-image illuminant estimation

In this section is for first presented the improvement induced by the proposed
COCOA-IH with respect to the input methods described in Section 5.3.3,
and then is shown the comparison of the results with the application of other
combinational methods in the state of the art. The combinational methods
belong to the three categories identified in Section 5.1: direct combination us-
ing unsupervised combination (DC-UC), direct combination using supervised
combination (DC-SC), and guided combination (GC). In order to perform a
fair comparison, all the compared methods consider the same set of input
methods (and parameters) as our COCOA-IH solution. The only exception
is the Multi-Cue (MC) method by Li et al. [110], whose code is not available
for reproduction, and whose reported results are based on the same methods
although with slight variation in the choice of parameters.

The results in terms of average, median and maximum angular error statis-
tics on the Shi-Gehler dataset are reported in Table 5.2. Our COCOA-IH
model is able to reduce by 32% the mean angular error with respect to the
best input method (GE1) and by 58% with respect to the worst one (WP),
thus suggesting a good ability at feature selection and combination. An in-
depth analysis of the impact of each underlying input method is provided in
Section 5.4.5. From the reported results it is possible to see that COCOA-IH is
also able to outperform by a large margin the other compared combinational
methods belonging to all analyzed groups. The version of our model with
fast parameters, COCOA-IH-fast, produces generally equivalent results with
respect to COCOA-IH in this setup.

In Figure 5.5 are shown the three images of the Shi-Gehler dataset on
which COCOA-IH obtains the worst results, while the three images on which
it obtains the best results are reported in Figure 5.6. It is possible to notice
how the worst results correspond to images with colored background/objects
and to a scene with multiple illuminants. The best results instead correspond
to images in which the underlying assumptions of the individual methods used
by COCOA-IH are more likely to be satisfied.

To further analyze the performances of the proposed combination frame-
work COCOA-IH have been trained with reduced versions of the training set
of the Shi-Gehler dataset. The sizes considered are determined by successively
halving its original size from 1, corresponding to the original size, to 1/32. For
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Table 5.2: Results of combinational single-image illuminant estimation algo-
rithms, in terms of angular error on the Shi-Gehler dataset, and comparison
with the combinational algorithms in the state of the art. Algorithms are di-
vided into direct combination with unsupervised combination (DC-UC), direct
combination with supervised combination (DC-SC), and guided combination
(GC).

Method Mean Med. Max

In
p
u
t

Shades of Gray (SoG) (0,4,0) 4.58 2.58 22.79
Gray World (GW) (0,1,0) 4.78 3.65 24.91
Gray Edge 1st order (GE1) (1,1,6) 3.94 2.85 23.37
Gray Edge 1st order (GE1-fast) (1,1,1) 4.09 3.15 18.91
Gray Edge 2nd order (GE2) (2,1,1) 4.12 3.31 17.77
general Gray World (gGW) (0,9,9) 4.40 2.89 22.40
general Gray World (gGW-fast) (0,1,1) 4.79 3.67 25.03
White Patch (WP) (0,∞,0) 6.36 3.93 45.78

D
C
-U

C

Simple Committee [40] 4.18 3.00 20.55
Nearest-2 (global) (N2) [24] 3.93 2.88 19.99
Nearest-2 (per image) (N2) [24] 4.04 2.54 22.07
Nearest-10% (global) (N-10%) [24] 3.98 2.63 20.80
Nearest-10% (per image) (N-10%) [24] 4.01 2.55 21.97
Nearest-30% (global) (N-30%) [24] 3.98 2.68 21.49
Nearest-30% (per image) (N-30%) [24] 4.02 2.65 22.65
No-1-max (global) (N1M) [24] 4.03 2.84 20.57
No-1-max (per image) (N1M) [24] 3.96 2.71 21.32
No-2-max (global) (N2M) [24] 3.98 2.63 20.80
No-2-max (per image) (N2M) [24] 3.90 2.49 20.83
Median (global) (MD) [24] 3.94 2.85 23.37
Median (per image) (MD) [24] 3.89 2.66 20.83

D
C
-S
C

LMS Committee [40] 4.27 2.62 68.72
Extreme Learning Machine (ELM) [108] 4.40 3.25 21.15
Support Vector Regr. (lin) (SVRL) [108] 3.51 2.87 16.51
Support Vector Regr. (rbf) (SVRR) [108] 3.26 2.45 18.16
COCOA-IH (this work) 2.66 1.78 21.45
COCOA-IH-fast (this work) 2.64 1.86 16.23

G
C

Natural Image Statistics comb. (NIS) [73] 4.07 2.98 20.37
Bianco et al. 2010 [25] 4.09 2.93 20.44
Bianco et al. 2008 [23] 3.89 2.63 20.68
Multi-Cue (MC) [110] 3.25 2.20
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each training set size, five different random selections (runs) are performed: in
Figure 5.3 is reported a plot with the average angular error and its standard
deviation for each trained model, averaged over the different runs performed.
In the same plot are reported the performances of the best input algorithm
combined by COCOA-IH (i.e. Gray Edge 1st order) as a dashed line. As
can be seen in the plot the best performance are obtained when all the data
available for training in the original splits of the Shi-Gehler dataset are used
(i.e. about 378 images, averaged over the three cross validation folds). As ex-
pected as the training set size is reduced the average angular error increases.
Nevertheless, even reducing the training set to 1/8 of its original size, which
corresponds to a total of about 48 images (to be further split into the actual
training set and validation set according to a 80%-20% ratio), COCOA-IH still
performs better than the best input method combined. For smaller training
sets the average angular error rapidly degrades, showing no advantage of us-
ing COCOA-IH over the best input method combined for a training set size
equal to 1/16 of its original size, corresponding to a total of about 24 images
to be further divided into train and validation. The performed experiment
shows how the proposed method COCOA-IH can improve over the best input
method, even when the number of images available for training is scarce.

5.4.2 State-of-the-art single-image illuminant estimation

With this experiment are compared the performance of the proposed COCOA-
IH with respect to individual state of the art algorithms for single-image il-
luminant estimation on the Shi-Gehler dataset. The 21 compared methods
belong to three different groups on the basis of the type and level of training
they need. The first group encompasses the parametric methods: Bright Pix-
els (BP) [96], Cheng et al. [45], and Grey Pixel (edge) [186]. In the second
group there are learning-based methods that require no supervision in terms
of illuminant ground truth: Buzzelli et al. (global normalization and channel
normalization) [35], and Quasi-Unsupervised [22]. The third group comprises
the fully-supervised methods, that need a complete training on illuminant data
to properly operate: Bayesian [72], Spatio-Spectral (ML and GP) [43], Natural
Image Statistics [73], Exemplar-based [95], Chakrabarti (Empirical and End-
to-end) [42], Cheng et al. [46], Bianco et al. [29], FFCC [15], Oh and Kim
[130], CCC (dist+ext) [14], FC4 (AlexNet) [86], DS-Net (HypNet+SelNet)
[154], and Quasi-Unsupervised with Fine Tuning [22].

The results in terms of average, median and maximum angular error statis-
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Figure 5.3: Performance of COCOA-IH in terms of average angular error re-
ducing the training set size as a ratio of the classical data partition of the
Shi-Gehler dataset. The dashed line represents the performance of the best
input algorithm used by COCOA-IH, i.e. Gray Edge 1st order (GE1).
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tics are reported in Table 5.3. It is possible to notice how the best results are
obtained within the group of supervised algorithms. The proposed method
with Image Head, i.e. COCOA-IH, compares favorably with the state of the
art, placing itself in the upper part of an hypothetical ranking, close to some
early CNN-based methods, despite it only combines unsupervised and para-
metric methods.

In addition to comparing methods across multiple statistics (mean, median,
maximum errors), an ideal assessment would involve the Wilcoxon signed-
rank test [183] to compare the entire error distributions, and thus provide a
level of statistical significance. This was, however, not possible due to the
unavailability of illuminant estimations for the compared methods (aggregate
statistics are reported from the corresponding publications). On the other
hand, it is possible to observe that, according to a literature survey by Gijsenij
et al. [74], a deviation of 1◦ in angular error with the ground truth is considered
below the level of what can be perceived by a human being [67], while the range
between 2◦ and 3◦ is considered detectable but still acceptable [60, 63].

5.4.3 Exploiting the temporal component

several solutions to exploit the temporal component have been investigated,
in order to process video sequences. In general, they can be classified as
embedding the temporal component before or after the combination of input
methods. Combining before (B) allows exploiting the temporal component
in each single input method, while combining after (A) means exploiting the
temporal information only once, at the combination level.

The investigated solutions are the following.

• Frame average: it is the simplest approach where the output illuminant
for a video corresponds to the average of the estimates on each frame.
If it is applied before (B) the combination, the estimates of each single
input algorithm are individually averaged to give the corresponding video
illuminant estimate; these estimates are then combined by COCOA-IH
to give the final estimate. If it is applied after (A) the combination,
COCOA-IH is applied to the estimates given by the individual methods
to each frame, and the estimates by COCOA-IH for each frame are then
averaged to give the final estimate.

• Frame median: it is the same approach as the previous one but con-
sidering the median instead of the average operations to combine the
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Table 5.3: Comparison in terms of angular error with the individual, single-
image illuminant estimation algorithms in the state of the art on the Shi-Gehler
dataset. As a pedex to all the Mean and Median angular values, it is reported
its position in a hypothetical ranking.

Method Mean Med. Max

P
ar
am

. Bright Pixels (BP) [96] 3.98(18) 2.61(16)
Cheng et al. [45] 3.52(16) 2.14(13) 28.35
Grey Pixel (edge) [186] 4.60(20) 3.10(19)

U
n
su
p
. Buzzelli et al. (gl. norm) [35] 4.84(22) 4.12(22) 20.80

Buzzelli et al. (ch. norm) [35] 5.48(23) 4.81(23) 19.88
Quasi-Unsupervised [22] 3.46(14) 2.23(14) 21.17

S
u
p
er
v
is
ed

Bayesian [72] 4.70(21) 3.44(21)
Spatio-Spectral (ML) [43] 3.55(17) 2.93(18)
Spatio-Spectral (GP) [43] 3.47(15) 2.90(17)
Natural Image Statistics [73] 4.09(19) 3.13(20)
Exemplar-based [95] 2.89(11) 2.27(15)
Chakrabarti (Empirical) [42] 2.89(11) 1.89(11)
Chakrabarti (End-to-end) [42] 2.56(8) 1.67(8)
Cheng et al. [46] 2.42(7) 1.65(7)
Bianco et al. [29] 2.36(6) 1.44(5) 16.98
FFCC [15] 1.78(2) 0.96(1) 16.25
Oh and Kim [130] 2.16(5) 1.47(6)
CCC (dist+ext) [14] 1.95(4) 1.22(4)
FC4 (AlexNet) [86] 1.77(1) 1.11(2)
DS-Net (HypNet+SelNet) [154] 1.90(3) 1.12(3)
Quasi-Unsupervised + Fine Tune [22] 2.91(13) 1.98(12) 19.90
COCOA-IH (this work) 2.66(10) 1.78(9) 21.45
COCOA-IH-fast (this work) 2.64(9) 1.86(10) 16.23
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per-frame estimates.

• Gaussian weights with free standard deviation: it is an extension of the
first approach, where the combination weights are not uniform anymore
but are taken from a Gaussian distribution with a free standard devi-
ation σ. The Gaussian distribution is centered on the last frame and
therefore decreasing weights are given to the older frames. For simplic-
ity, all the sequences are extended to a common length by adding the
necessary number of dummy illuminant estimates at the beginning of
each sequence.

• Gaussian weights with free standard deviation and center: it is an exten-
sion of the previous approach, in which also the center x0 of the Gaussian
is a free parameter. Similarly to the previous approach, all the sequences
are extended to a common length.

• LSTM - Long Short-Term Memory: in this approach the temporal com-
ponent is exploited using LSTMs. When LSTMs are used before (B) the
combination, one LSTM is applied to each of the inputs of COCOA-IH
and the resulting model is trained end to end. When the temporal com-
ponent is exploited after (A) the combination, a single LSTM is used
and the model corresponds to the COCOA-VH described in Section 5.2.
LSTM (B) has been initialized with the same configuration as LSTM
(A). The main architectural difference is in the input and output fea-
ture size that in LSTM (B) have been set to 3, corresponding to the
dimensionality of the input estimations to be time processed.

The different approaches considered to exploit the temporal component are
tested on the BCC dataset [139]. The numerical results of this comparison are
reported in Table 5.4: it is possible to see that the best performance in terms
of both average and median angular errors are obtained by the COCOA-VH
which uses an LSTM to exploit the temporal component. More in general,
it is possible to see how the approaches that exploit the temporal component
after the combination (A) obtain better results than the corresponding versions
that exploit it before (B) the combination: on average this improvement is 1.1
degrees on the mean angular error, 0.8 degrees on the median angular error
and 3.2 on the maximum angular error, respectively corresponding to a 26.6%,
27.7% and 25.9% improvement.
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Table 5.4: Comparison of different solutions to exploit the temporal compo-
nent, tested on the BCC dataset. The “Time” column refers to before (B) or
after (A) the combination of input methods.

Method Time Mean Med. 95%-Quant

Frame average B 4.20 3.15 12.32
Frame median B 4.10 2.68 13.12
Gauss. weights (σ) B 4.23 3.03 12.37
Gauss. weights (σ, x0) B 3.98 2.90 11.51
LSTM B 2.77 2.06 8.46

Frame average A 2.83 2.11 7.79
Frame median A 2.88 2.05 9.12
Gauss. weights (σ) A 2.88 2.17 7.82
Gauss. weights (σ, x0) A 2.67 1.91 8.08
LSTM (COCOA-VH) A 2.61 1.66 8.81

5.4.4 State-of-the-art video illuminant estimation

In this experiment are compared the proposed COCOA-VH against state-of-
the art video illuminant estimation methods on the BCC dataset. The focus
here is on methods specifically designed for videos/image sequences (i.e. Prinet
et al. [135], RCC-Net [137] and BCC-Net [139]), as well as two existing tem-
poral extensions of supervised single-frame algorithms (i.e. T.GI for Grayness
Index [138] and T.FFCC for Fast Fourier Color Constancy [15]).

The numerical results in terms of average, median and 95%-quantile an-
gular error statistics are reported in Table 5.5. The results show how the
proposed COCOA-VH ranks second in terms of both the average and the me-
dian error, surpassing more complex methods. In Figure 5.7 are reported the
three sequences of the BCC dataset on which COCOA-VH obtains the three
worst results. For each sequence have been drawn the plot of the illuminant
estimated by each of the six combined algorithms on each frame of the se-
quence plotted as chromaticities in the ARC space [36] together with the final
estimate by COCOA-VH and the ground truth. The plots show how in the
initial frames the six estimates are closer to the ground truth and then start
to diverge from it, thus causing the drift of the final COCOA-VH estimate.
In Figure 5.8 are reported the three sequences of the BCC dataset on which
COCOA-VH obtains the three best results. From the plots it is possible to
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Table 5.5: Comparison in terms of angular error with the video illuminant
estimation algorithms in the state of the art on the BCC dataset.

Method Mean Med. 95%-Quant

Prinet et al. [135] 7.51 6.94 20.70
Temporal extended GI (T.GI from [139]) 4.73 2.96 17.42
Temporal extended FFCC [15] 3.35 1.70 17.41
RCC-Net [137] 2.74 2.23 8.21
BCC-Net [139] 1.99 1.21 6.34
COCOA-VH (this work) 2.61 1.66 8.81
COCOA-VH-fast (this work) 2.66 1.88 8.44

notice how these cases correspond to sequences on which the combined algo-
rithms already provide a good illuminant estimate. Concerning the content
of the sequences obtaining the worst and best results is possible to observe a
strong similarity with those reported in Figures 5.5 and 5.6. This is not sur-
prising since both COCOA-IH and COCOA-VH exploit the same set of input
illuminant estimation methods and they have the same backbone architecture,
just differing in the regression head.

As a further analysis the computational complexity of the compared meth-
ods have been measured, focusing on video illuminant estimation due to the
critical role that efficiency assumes in this domain: fast online processing al-
lows a direct feedback in the camera viewfinder, and fast offline processing
enables handling large amounts of video data. Given the heterogeneous na-
ture of the code available for the different methods, and the different hardware
on which they run (i.e. CPU vs GPU), in order to perform a fair compari-
son, the number of floating point operations for each compared method have
been calculated. In Figure 5.4 are plotted the average angular error reached
by each method reported in Table 5.5 with respect to the number of oper-
ations. From the plot is possible to observe how the proposed methods are
in the bottom left corner of the plot, providing the best trade-off between
illuminant estimation accuracy and computational complexity, with COCOA-
VH-fast being the one requiring the lowest number of operations, i.e. 16.6
millions of operations (M-Ops) of which just 0.56% are due to the actual non-
linear combination. In practice, COCOA-VH and COCOA-VH-fast work at
21.97 FPS and 31.48 FPS respectively, the latter fully reaching the real-time
threshold of 30 FPS [15, 123], with the bottleneck being the CPU-based im-
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Prinet et al.

Temporal extended GI

Temporal extended FFCC

RCC-Net

BCC-Net

COCOA-VHCOCOA-VH-fast

Figure 5.4: Plot representing the average angular error (in degrees) with re-
spect to the computational complexity (in terms of millions of operations) of
the methods reported in Table 5.5. The ideal point is in the bottom-left cor-
ner.

plementation of the input methods. A lower illuminant estimation error is
obtained by BCC-Net [139], that requires a number of operations that is two
orders of magnitude higher, i.e. 3277.1 M-Ops.

5.4.5 Sensitivity analysis

In this experiment a sensitivity analysis of COCOA-IH is performed, in order
to understand how a change in one of the six inputs affects the final output.

The sensitivity analysis is performed exploiting the ARC color space [36],
that has the property that euclidean distances correspond to angular errors.
Each of the six input have been individually changed, by modifying the esti-
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mate given by the corresponding algorithm from 0 to 0.1 radians (i.e. approx-
imately 5.7◦) in steps of 0.01 radians. The modification is performed along
36 directions, in order to cover the possible hues in 10◦steps. The dataset
considered is the Shi-Gehler reprocessed dataset [72], and for each possible
input modification the average angular error is computed. The six surfaces
obtained by considering all the possible input modifications of each input in-
dividually are reported in the top row of Figure 5.9. The bottom row of the
same figure reports the level curves of these surfaces. In all the plots the
corresponding crop of the ARC space is reported as a reference in order to
understand the sensitivity with respect to different hues. The center point of
all the six plots correspond to the case where no input is modified and thus
the result correspond to the average angular error reported in Tables 5.3 and
5.2 for COCOA-IH (i.e. 2.66◦).

From the plots reported it is possible to notice how in general there are
inputs with respect to which COCOA-IH is more sensitive, i.e. the third
and the fifth inputs respectively corresponding to GE2 and GW. This is also
numerically confirmed in Table 5.6 where the average slope for each surface
is computed. Furthermore is possible to observe how the sensitivity is not
isotropic for any of the inputs, but the surfaces are approximately symmetric
with an axis of symmetry passing close to the center of the plot and with a
different direction for each of the inputs. The approximate direction of the axis
of symmetry is reported for each surface in Table 5.6. In particular COCOA-
IH is very sensitive to changes in the red-cyan direction for what concerns
GE2 with an axis of symmetry approximately orientated at 80◦, while the
most sensitive direction with respect to GW is the green-purple direction with
an axis of symmetry approximately orientated at 30◦. It is also possible to
observe how COCOA-IH has a very low sensitivity with respect to the first
and the sixth inputs, i.e. SoG and WP. It is also possible to notice how there
is a region for each input able to obtain a lower average angular error with
respect to the one obtained when no change is applied to the inputs. This is
due to the fact that in the classical three-fold subdivision of the Shi-Gehler
dataset, the training and testing illuminants have a different distribution.

5.5 Summary

Computational color constancy has been addressed through the years with a
wide variety of approaches, often relying on different assumptions over the
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Table 5.6: Statistics of the sensitivity analysis of the COCOA-IH model with
respect to the individual inputs: average slope, the higher the more sensitive
is the model with respect to the corresponding input. Direction of axis of sym-
metry, that approximately corresponds to the direction of lowest sensitivity.

Input Average slope Axis of symmetry

SoG 1.4410 30◦

GE1 2.9751 10◦

GE2 6.1226 80◦

gGW 2.3920 30◦

GW 4.3267 30◦

WP 1.4736 20◦

(a) (b) (c) (d)

1

21.5◦

17.3◦

14.4◦

Figure 5.5: Visualization of the three images of the Shi-Gehler dataset on
which COCOA-IH obtains the three worst results. Input image (a); collage
image obtained from the six images respectively collected the illuminant esti-
mated by each of the six individual algorithms (b); image corrected with the
illuminant estimated by COCOA-IH, with the angular error overlaid in the
top right corner (c); ground truth, i.e. image corrected with the ground truth
illuminant (d).
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(a) (b) (c) (d)

1

0.03◦

0.11◦

0.12◦

Figure 5.6: Visualization of the three images of the Shi-Gehler dataset on
which COCOA-IH obtains the three best results. Input image (a); collage
image obtained from the six images respectively collected the illuminant esti-
mated by each of the six individual algorithms (b); image corrected with the
illuminant estimated by COCOA-IH, with the angular error overlaid in the
top right corner (c); ground truth, i.e. image corrected with the ground truth
illuminant (d).
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12.4◦

12.1◦

11.7◦

Figure 5.7: Worst 3 results of COCOA-VH on the BCC dataset. Column 1:
plot of the estimates given by the different combined algorithms across the
sequence; the blue dot represents the illuminant estimated on the shot frame
by COCOA-VH, while the red cross represents the ground truth. Column 2:
sequence frames corrected with the estimate given by the different combined
algorithms, respectively SoG, GE1, GE2, GGW, GW, and WP. Column 3:
shot frame corrected with the estimate by COCOA-VH. Column 4: shot frame
corrected with the ground truth illuminant.
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0.06◦

0.09◦

0.10◦

Figure 5.8: Best 3 results of COCOA-VH on the BCC dataset. Column 1:
plot of the estimates given by the different combined algorithms across the
sequence; the blue dot represents the illuminant estimated on the shot frame
by COCOA-VH, while the red cross represents the ground truth. Column 2:
sequence frames corrected with the estimate given by the different combined
algorithms, respectively SoG, GE1, GE2, GGW, GW, and WP. Column 3:
shot frame corrected with the estimate by COCOA-VH. Column 4: shot frame
corrected with the ground truth illuminant.
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(a) (b) (c) (d) (e) (f)

1
Figure 5.9: Sensitivity analysis of COCOA-IH with respect to the six inputs
individually. From left to right: SoG (a), GE1 (b), GE2 (c), GGW (d), GW (f),
and WP (g). Top row: surface representing how the average angular error on
Shi-Gehler dataset changes when the corresponding input is modified. Bottom
row: level curves of the corresponding surfaces in the top row.

input image. These approaches are increasingly computational demanding,
memory demanding, and data greedy. In this work have been proposed a
fusion strategy that efficiently exploits a variety of simple learning-free algo-
rithms for computational color constancy, combining them in order to provide
a lightweight solution that still achieves high performance. The proposed
solution, which can be specialized to either the image domain or the video
domain, has been thoroughly evaluated in a wide range of experimental se-
tups on standard benchmark datasets. The proposed combination strategy for
still images have been compared against other combining solutions achieving
top performance, and reaching an illuminant estimation accuracy comparable
to more sophisticated solutions. An exploration of different solutions have
been done, in order to exploit the temporal component available when an-
alyzing a full video sequence, and as a result a version of the model that
exploits a LSTM module to handle varying-length videos have been experi-
mentally defined. This solution has been tested against other algorithms for
video color constancy, both in terms of angular error and computational com-
plexity, achieving state-of-the-art performance. Knowing that adaptation to
new devices is a real need in the application domain, an analysis on the re-
duction of the number of training images with respect to the standard dataset
partition has been shown, demonstrating how the proposed solution is still
able to effectively combine the input methods. Finally, two types of sensitiv-
ity analysis have been conducted: one aimed at interpreting the combination
strategy learned by the proposed model, and another to understand how a
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change in the inputs affect the output. As future developments, the idea is
to further explore the possibilities of input combination when dealing with
different camera sensors, as well as the combination of more complex input
algorithms to further reduce the illuminant estimation error. Moreover, an
in depth study of the datasets for auto white balancing alongside algorithm
behaviour benchmark has been conducted and presented in [37, 32].
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Contrast enhancement
algorithms optimization

The tone-mapping operation is one of the last operations in the camera pipeline,
as described in Chapter 3 belonging to the group of the “image space render-
ing” operations. In general contrast enhancement has the purpose of improving
the perceptibility of objects in the scene by enhancing the brightness differ-
ence between objects and their backgrounds [59]. Contrast enhancements are
typically performed as a contrast stretch followed by a tonal enhancement,
although these could both be performed in one step. A contrast stretch im-
proves the brightness differences uniformly across the dynamic range of the
image, whereas tonal enhancements improve the brightness differences in the
shadow (dark), midtone (grays), or highlight (bright) regions at the expense
of the brightness differences in the other regions.

The problem of image contrast correction has been treated with different
approaches in the state of the art; gamma correction and histogram equal-
ization [75] are an example of often used approaches. Other approaches may
include transform based methods, exposure-based methods and image fusion
based methods. Most of the existing approaches for image contrast enhance-
ment rely on the values of one or more parameters to operate on images in
order to perform the correction steps. These parameters are in general tuned
manually on a set of different possible case scenarios or for specific images.

In this section a user-preferences based framework for contrast enhance-
ment algorithms optimization is proposed. The proposed framework is based
on the use of a logistic regressor, capable to model user preferences based on
the concept of image acceptability defined by Jaroensri et al.[91]. The logistic
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regressor score given to new images is used as objective function for bayesian
optimization for the selection of the best parameters of different algorithms
for image contrast enhancement. To perform the analysis of acceptability of
images, a pretrained VGG-16 CNN is adopted for deep semantic feature ex-
traction; the extracted features are used by the regressor model to perform
the regression task, in order to assign a score value to the newly analyzed im-
ages. In order to prove the potential application of this approach to the most
various contrast enhancement algorithm, a study of the performances of the
optimization procedure with three different contrast enhancement algorithm
is proposed. In the next section will be presented the framework, alongside
the analysis of the data used for the user preference modeling, followed by ex-
perimental results performed on test data using a task specific selected metric.

6.1 Related Works

The image contrast correction has been widely studied through the years and
several methods for adjusting image contrast have been developed. In general
two groups of contrast enhancement algorithms can be identified: global cor-
rection algorithms and local ones. The first group of algorithms is made of
approaches which globally enhance the content of the images, while the second
one contains approaches that differently enhances each pixel with respect to
the neighboring ones.

In the first group can be found approaches like Gamma correction and
Histogram Equalization. Gamma correction is a simple exponential correction
applied to each pixel of an image and which depends on the single param-
eter γ which corresponds to the exponent value of the function. Histogram
equalization [75] techniques work on the image histogram by reshaping it into
a different one with uniform distribution property in order to increase the
contrast. Multiple versions of histogram equalization technique have been
proposed in the years, trying to making it adaptive to the content of the im-
age [132], trying to preserve original image brightness while enhancing the con-
trast [103, 173, 149, 102], or incorporating models of perception [106, 127, 179].
Other approaches in this first group are the Exposure-based methods [17, 146],
which try to adjust the exposure level of an image using a mapping function
between the light values and the pixel values of interested objects, and im-
age fusion based methods [85, 113], which combine relevant information from
multiple images taken from the same scene in order to produce a final more
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informative one.

In the last years few approaches for image contrast enhancement exploiting
machine learning have been presented. Here can be found approaches which
exploits Neural Networks for the image enhancement [155, 5] and techniques
for hyperparaemter selection and optimization of specific algorithms [100, 39].

Finally, a work from Jaroensri et al. [91] in 2015 proposes a way to model
user preferences in order to determine when a processing operation in terms
of contrast and brightness modification can be considered acceptable or not.
This last work inspired the work presented in this section of the thesis.

6.2 Proposed Method

The proposed approach for the optimization of contrast enhancement algo-
rithms is based on the use of a logistic regressor trained on user preferences
data. A complete overview of the proposed approach is depicted in Figure 6.1.
The first component of this framework is a logistic regressor model based on
the work of Jaroensri et al. [91], which has the purpose of model user pref-
erences in terms of image acceptability. The acceptability criteria has been
defined on the basis of users subjective definition of image acceptability: in
order to model user preferences, Jaroensri et al. [91] selected a random group
of images from the Adobe fiveK dataset and modified them in terms of contrast
and brightness. Those different versions of each image has been labeled by a
pool of users, obtaining a dataset which can be adopted for the modelization
of the concept of image acceptability from users point of view. The logistic
regressor trained with this dataset has been used for the optimization process
of a simple contrast enhancement algorithm. The trained logistic regresson
gives a score which become the objective function to be maximized by the
optimization process. The image features used by the regressor to perform the
image classification are the ones extracted by a VGG-16 deep convolutional
neural network [156] pre trained on ImageNet dataset [52]. Due to the recent
achievements of deep neural networks, the idea is to exploit deep image repre-
sentation given by this kind of models to drive the regression process, instead
of relying on handcrafted features.

The second part of the proposed framework is the optimization process of
the parameters of different algorithms for contrast enhancement. The opti-
mization procedure adopts the user modeled definition of acceptability, rep-
resented by the regressor defined previously, to determine for each algorithm
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Figure 6.1: Overview of the proposed framework for contrast enhancement
algorithms optimization.

the best set of parameters to perform the enhancement operation. Three al-
gorithms have been selected in order to test the optimization procedure. Each
algorithm has been optimized in two ways: an optimization by using a training
dataset and an optimization per image, performed at processing time.

In this section a description of the logistic regressor model, the algorithms
used and the optimization technique will be presented.

6.2.1 User preference based regression

Image processing operations do not necessary lead to images that can be con-
sidered good or acceptable. In particular this situation can occur more easily
when the enhancement is performed by an automatic procedure, rather than
the case in which the processing is guided by a human user. An example of
images that can be considered acceptable or not after a processing operation is
shown in Figure 6.2. Defining when an image can be considered acceptable is
not an easy task, due to the subjective nature of the definition of “acceptable
image”: considering the examples reported in figure, for a human being it’s
easy to label the two images on the right as unacceptable due to the degra-
dation of the content of the images, but at the same time its hard to define
the degree of acceptability of the other two images on the left. One person
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✓ ✗

✓ ✗

Figure 6.2: Example of images that can be considered as acceptable or not after
a contrast enhancement operation. Images originally collected by Jaroensri et
al. [91].

may prefer the upper one, due to the more naturalness of the colors, while
another one can prefer the bottom one because of the higher contrast given
by the processing step.

Starting from these observation, Jaroensri et al. [91] proposed a way to
classify images in two classes, using a logistic regression model, based on user
preferences. They first defined an image processing procedure which modifies
contrast and brightness of images and then collected a dataset made of different
versions of the same images, processed with different contrast and brightness
parameters. To collect the data for the training of the logistic regressor, the
MIT-Adobe Fivek dataset [38] has been used and for each image multiple
versions using different combination of contrast/brightness parameters have
been generated. These images have been then labeled by non expert people
into two classes, acceptable and not acceptable. In their work, to make data
related to each image more understandable, a representation in a Cartesian
plane where the contrast and brightness parameters lies on the x and y axes is
used. Figure 6.3 shows the scatter plot of the data points collected for an image
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of the dataset: each point corresponds to a different version of the image. As
can be seen in figure, is possible to identify a “region of acceptability”, which
vary from image to image. With this new labeled dataset they trained a
regressor model, based on low level image content features, able to predict
for new images the “region of acceptability” and automatically classify the
impact of a processing step over images as acceptable or not. Starting from this
configuration, a new logistic regressor has been trained with the purpose to use
it as objective function of the optimization step, described in the next section.
Instead of using low level image features (such as Fraction of Highlight and
Shadow Clipping, Luminance Histogram, RMS Luminance Contrast etc...), a
deep convolutional neural network have been adopted, in particular has been
used the VGG-16 model. These new models permit a much faster training
procedure and inference step with respect to the low level feature extractor
previously used in the original work from [91]. The features obtained from
the deep neural network are used to train a tree ensemble using Logitboost
implementation from Matlab 2021a. Different versions of the regressor have
been trained in relation to the data augmentation operated over the dataset
from the work of Jaroensri et al. [91]. This analysis is decribed in section 6.3.1.

6.2.2 Parametric contrast enhancement algorithms

Given the definition of image acceptability, described in the previous section,
and given a model of user preferences capable to associate a score of accept-
ability to an image, is possible to design an optimization procedure in order
to maximize the score of an image, given a certain enhancement algorithm.

The proposed approach for algorithm optimization can be applied to any
kind of algorithm for contrast enhancement whose performance depends on
one or more parameters. In order to prove the efficiency of the user prefer-
ence driven optimization, three algorithms for contrast enhancement have been
tested. The first algorithm consists of a simple combination of two global oper-
ators: first the image is processed using a gamma function (with parameter γ),
and then an histogram stretching operation (with two parameters max value
and min value) is performed over the output of the gamma function. The sec-
ond one is a slightly different configuration which adopts a parametric S-curve
function defined by Kang et al. [100], dependent on two parameters, λ, which
determines the slope of the S-curve, and a which determines the flex point of
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the S-curve. The formula used by Kang et al. to specify the S-curve is:

y =

{
a− a(1− x

a
)λ if x ≤ a

a+ (1− a)(x−a
1−a

)λ otherwise
(6.1)

The last algorithm used is the one called Local Contrast Correction (LCC)
method by Schettini et al. [148], which is a local contrast enhancement algo-
rithm based on the use of bilateral filter to determines areas of images to be
lighten or darken. The parameters of this algorithm are α, which determines
the exponent of the exponential function applied to the luminance channel of
the input images, and the two sigma values σ1 and σ2 which are the parame-
ters of the bilateral filter function. This last algorithm works in YCbCr color
space.

The optimization of the algorithms parameters has been performed using
bayesian optimization approach (implementation from Matlab). The proce-
dure selects a set of values for each parameter, and then performs the contrast
enhancement step. The resulting image is then processed by the combination
of the deep CNN, which extracts the deep semantic features of the image, with
the trained logistic regressor, assigning an acceptability score between 0 and
1. The features extracted using the VGG-16 comes from the last convolutional
layer, after which an average pooling operation has been applied in order to
bring spatial resolution to dimension 1 × 1. The objective of the bayesian
optimization is the set of parameters that maximize the score given by the lo-
gistic regressor at the newly enhanced image. Two versions of each algorithm
have been optimized: one by optimizing over a training set and one which
is the optimization per image. In he first case the optimization is performed
offline, using a training set and optimizing the parameters on those data. The
resulting set of parameters is then used for the corresponding algorithm at
inference time. In the second scenario the opimization is performed directly
over the images at processing time. This operation leads to a set of parameters
specifically optimized for each new image.

6.3 Experimental setup

6.3.1 Dataset for user preferences modeling

In order to train the logistic regressor to be used as acceptability metric the
dataset presented by Jaroensri et al. [91] has been adopted. The dataset is
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"non-acceptable"
label outliers

"acceptable" label

outliersoriginal image

Figure 6.3: Example of possible outliers in the original version of the dataset.
As can be seen there are multiple data points labeled in a misleading way with
respect to the actual state of the image. Green dots correspond to images with
“acceptable” label, blue crosses correspond to images with “non acceptable”
label and the center of two blue axis correspond to the original image at
coordinates [0, 0].

made of binary human judgement of image quality of 500 images adjusted
to various configurations using brightness and contrast settings. The images
were taken from the MIT-Adobe FiveK Dataset [38]. The total amount of
data points collected is 301320, of which 241148 constitute the training set
while the remaining 60174 are used as test set. The original version of the
dataset offers for each one of the original 500 images, around 600 processed
versions. Those versions have been collected by first applying to the raw image
data the white balance and saturation of one of the expert retouchers from the
MIT-Adobe FiveK, then by performing contrast and brightness adjustments
using the procedure described in the original work [91].

In order to use this dataset for the training of the logistic regressor, which
is used as model of user preferences, two operations have been performed:

1. a data points cleaning procedure to remove outliers for the “acceptable”
and “non acceptable” labels.

2. a data augmentation procedure to balance positive and negative labels.

Due to the presence of an high amount of outliers, a cleaning procedure
has been performed, before augmenting the dataset. As can be seen in Figure
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Figure 6.4: Example of data points distribution in contrast/brightness space,
before (left) and after (right) the data cleaning procedure. As can be seen
most of the outliers have been removed. Green dots correspond to images with
“acceptable” label, blue crosses correspond to images with “non acceptable”
label.

6.3, in the areas where most of the images are labeled as acceptable ones,
few points with the non-acceptable label can occur. The same situation arises
in the areas with high concentration of points labeled as “non-acceptable”,
having in this case images mislabeled as “acceptable”. Looking at the images
corresponding to those point it’s easy to see how those points are misclassified
(Figure 6.3, on the right). In order to train the regressor model those points
have been removed from the training dataset. The cleaning procedure consists
of a density analysis in the brightness/contrast space, performed by dividing
the space in bins and counting the amount of positive labels in each bin. Using
a fixed threshold the points have then been removed obtaining a new set of
data points for each image. An example is shown in Figure 6.4.

Secondly, since in the original version the 600 data points per image col-
lected by Jaroensri et al. present an high disparity in the labels (around 75%
of the data points are labeled as not acceptable, while the remaining 25% are
labeled as acceptable), a data augmentation procedure has been applied in
order to balance the amount of positive and negative labels in the dataset. In
the specific case, for each of the original 500 images, the points with positive
label (acceptable editing) have been duplicated in order to reach the same
amount of points with negative label (non-acceptable editing).

The results achieved with the different versions of the training dataset can
be seen in Table 6.1. Due to the fact that the test set presents the same
unbalanced nature of the training set in terms of labels, macro accuracy has
been used to select the best configuration to be used for the optimization
procedure.
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Table 6.1: Analysis on the impact of the data augmentation and datapoint
cleaning procedure. Micro and Macro accuracies are reported due to the un-
balanced nature of the test set in terms of positive and negative labels.

Predictor
Data
balancing

Outliers
removed

Micro
accuracy(%)

Macro
accuracy(%)

Positive
accuracy(%)

Negative
accuracy(%)

Precision Recall F-Score

78.85% 64.26% 35.97% 92.56% 0.607 0.360 0.452
VGG16 ✓ 75.01% 73.19% 69.66% 76.72% 0.489 0.697 0.575

✓ ✓ 74.98% 73.33% 70.13% 76.54% 0.488 0.701 0.576

6.3.2 Dataset for optimization procedure test

The optimization procedure with the three algorithms has been performed
using the the test set of the dataset proposed by Jaroensri et al. [91]. For
each image the version corresponding to the origin of the contrast/brightness
space has been selected in order to be used as input image. Those images,
corresponding to the point [0, 0] (which will be called image[0,0]), are the raw
images from the Adobe fiveK dataset, on which only few steps of the processing
pipeline have been applied. In the original work the RAW images have been
white balanced and saturation have been adjusted using the parameters given
by one of expert from the Adobe fiveK dataset experts pool. This version is
considered the starting point for the contrast enhancement operation.

Starting from the image[0,0] and a set of random values for the algorithm
parameters, each of the three algorithms have been optimized using the result
of the logistic regressor as objective function. The optimization has been per-
formed using bayes optimization procedure for a total amount of 30 iterations.
In the case of optimization on training dataset, at each iteration 120 random
images are processed and evaluated. In the case of per-image optimization,
the procedure processed the same image for the total amount of 30 iterations,
always starting from the image[0,0].

6.3.3 Optimization evaluation metric

The evaluation of the results obtained from the optimization procedure has
been performed using a full reference metric. In order to select the most suit-
able metric to evaluate image contrast and brightness variation, exploiting the
procedure and the tid2013 dataset proposed by Ponomarenko et al. [133], a
set of possible suitable metrics have been analyzed. The tid2013 is a dataset
intended for evaluation of full-reference image visual quality assessment met-
rics. The tid2013 contains 25 reference images and 3000 distorted images.
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Table 6.2: Results of the correlation test performed on the images and MOS
provided in the TID2013 dataset. For each metric are reported the score of
the Spearman and Kendall correlation indexes.

Metric Spearman correlation Kendall correlation
VIF-P 0.85949 0.63792
PSNRHMA 0.65654 0.47296
PSNRHA 0.64522 0.47038
FSIM 0.4719 0.35828
MSSIM 0.46838 0.35522
FSIMc 0.46804 0.34966
PSNRc 0.46085 0.30902
NQM 0.45996 0.29276
SSIM 0.45513 0.34408
PSNRHVS 0.44283 0.30799
PSNR 0.44142 0.30825
PSNRHVSM 0.43625 0.30076
WSNR 0.42387 0.29921
VSNR 0.35144 0.23416

Reference images are obtained by cropping from Kodak Lossless True Color
Image Suite [62]. In order to determine which metric is the most suitable for
contrast and brightness enhancement analysis, each of the metrics analyzed in
the work of Ponomarenko et al. has been compared by only using the score
given to the images distorted under the label “Contrast change”. The scores
given by each metric are compared using the MOS collected for each image by
Ponomarenko et al. and by calculating the Spearman and Kendall correlation
scores. The collected correlation scores are reported in Table 6.2. From this
analysis the Visual Information Fidelity metric (called VIF-P) [152] has been
selected as the most suitable for the evaluation of the optimized algorithms
performances.

Since the VIF-P metric is a full reference metric, target images are needed
for the evaluation of the algorithms performances. Since the acceptability is
subjective concept, and since the dataset from Jaroensri et al. [91] provides
for each image multiple enhanced versions but not a target one, it is necessary
to select a reference image to perform the comparison. In order to select
reference images for each input one, a simple selection procedure has been
defined: considering only the positive labels, the version closest to the average
contrast/brightness data point has been selected as “average user preferred
image”. These images selected using this procedure are used as target for the
evaluation procedure. The higher is the value assigned by the metric to an
image, the closer the analyzed image is to the reference one.
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Table 6.3: Results in terms of VIF-P score and percentage of image improved
over the test set from [91]. P-values obtained for the t-test have been provided
to show statistical significance of the experiments.

Optimization Method Avg VIF-P STD p-value
Percentage of

improved images
- Original input 0.8162 0.1526 - -

Gamma correction + Histogram Stretch 0.8765 0.1537 0.0000 95%
on dataset Gamma correction + S-curve 0.8166 0.1542 0.9401 52%

Local Contrast Correction (LCC) 0.8645 0.1349 0.0000 80%

Gamma correction + Histogram Stretch 0.8582 0.1593 0.0000 85%
per image Gamma correction + S-curve 0.8405 0.1370 0.0069 66%

Local Contrast Correction (LCC) 0.8720 0.1444 0.0000 84%

6.4 Experimental results

Here are reported the performances obtained by the three algorithms opti-
mized. In table 6.3 are reported the average VIF-P score obtained on the test
set before the contrast enhancement step and the score obtained by the out-
put of each of the optimized algorithms. Two groups of scores are reported,
corresponding to the optimization on dataset and the optimization per image.

As can be seen from the table, the application of the optimization procedure
improves the quality of the output images with respect to the input ones.
Analyzing in details the three algorithms, different behaviours can be observed.
While for both the S-curve and LCC algorithms the per-image optimization
brings higher performances with respect to the optimization on dataset, the
behaviour with the gamma correction with histogram stretch operation is the
opposite. However, with the only exception given by the S-Curve approach
optimized on the dataset, the optimization procedure brings an improvement
in terms of average VIF-P. Looking at the percentage of images of which quality
improved, all of the algorithms have performed an improvement at least in 50%
of the cases. The best result in this sense is given by the Gamma correction
+ Histogram Stretch algorithm which improved the quality of the 95% of the
test images.

A more in detail picture of the distribution of differences of quality score
between the target images and the ones processed by the three algorithms
is shown in Figure 6.5. Here are reported the histogram of the differences
between the enhanced images score and the input images scores. Has can be
seen in this representation, Gamma correction + Histogram Stretch algorithm
brings the most noticeable improvement, alongside the LCC algorithm in the
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Figure 6.5: Distributions of the differences in VIF-P values between the en-
hanced images and the original input ones. From left to right are reported
Gamma + Histogram Stretch, Gamma + S-curve and LCC algorithms. Green
bars represent cases where the VIF-P difference is positive while orange ones
represent cases where the VIF-P value of enhanced images is the same or lower
with respect to the input ones.

per-image optimized version.
These results prove the effectiveness of using a user preferences driven

optimization procedure to improve the contrast and brightness in images, and
demonstrates how it can also be applied to different kind of algorithms.

6.5 Summary

In this section an optimization procedure for contrast enhancement algorithms,
based on a model of user preferences has been presented. The proposed ap-
proach is composed of two main blocks: a logistic regressor, which models user
preferences and which is used to guide the optimization process, and the actual
algorithm to perform contrast enhancement. In order to model user prefer-
ences a deep convolutional neural network has been exploited, in the specific
case a VGG-16, to extract the image features which have been used to train the
logistic regressor. A dataset augmentation procedure has been used in order
to clean the datset used for training and an evaluation of the performances has
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been provided. With the proposed logistic regressor, three different contrast
enhancement algorithms have been optimized, using Bayesian Optimization
approach. The optimization has been performed in two ways: optimization
on a training set and optimization per image. In the first case a single set of
parameters is obtained, making the inference operation a simple application
of the algorithm with the obtained parameters, while in the latter case the
optimization is performed at inference time, giving for certain algorithms bet-
ter results but increasing the inference time, due to the online optimization
procedure.

In order to analyze the results of the optimized models, an image quality
assessment metric has been selected. A procedure to determine which metric
suits most for the task has been adopted and as a result of the application of
this procedure the VIF-P metric has been selected and used for testing the
optimized algorithms. Finally a procedure to select an average preferred image
have been presented. Using the images selected with this procedure as target,
an analysis in terms of average performance improvement has been provided,
alongside a more detailed analysis of per image improvement. Experimental
results show the effectiveness of the proposed optimization procedure, showing
how for each considered algorithm, in both the optimization scenarios, an
improvement in terms of VIF-P has been obtained.
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JPEG blind artifact reduction

Image compression corresponds to the last step in the digital camera process-
ing pipeline, before storing the image collected. Image compression represents
a very active research topic due to the high impact of the data in a large num-
ber of fields, from image sharing on the web to the most specific applications
involving the acquisition of images and transfer to elaboration nodes. Specif-
ically, image compression refers to the task of representing images using the
smallest storage space possible.

Compression algorithms play a key role in saving space and bandwidth
for the memorization and transfer of large amounts of images. Two different
compression paradigms exist: the former is lossless image compression, where
the compression rate is limited by the requirement that the original image must
be perfectly recovered; the latter, more diffused, is lossy image compression,
where higher compression rates are possible at the cost of some distortion
in the recovered image. Among the lossy compression algorithms, the most
diffused and used is the JPEG compression algorithm.

The JPEG compression algorithm first converts the original RGB image
into YCbCr color space and processes the luma (luminance component) and
chroma (chromaticity component) channels separately. It divides the luma
channel of an input image into non-overlapping 8 × 8 blocks and performs
the Discrete Cosine Transform (DCT) on each block separately while down-
sampling the chroma components with a bilinear filter. The DCT coefficients
obtained from the luma channel are then quantized based on quantization ta-
bles and adjusted using the user-selected Quality Factor. The image is then
reconstructed from the quantized DCT coefficients by using the inverse DCT.
The described JPEG encoding operation introduces three kinds of artifacts in



Chapter 7. JPEG blind artifact reduction

the recovered images, related to the quality factor used for the compression:

i. blocking artifacts, which come from the recombination of the 8×8 blocks,
that are independently compressed without considering the adjacent blocks;

ii. ringing artifacts, which are most visible along the edges and are related
to the coarse quantization of the high-frequencies components;

iii. blurred low-frequencies areas, which is also related to the compression of
the high-frequencies in the DCT domain.

The presence of these kinds of artifacts represents a problem since the
general quality of the images is degraded resulting unpleasing for normal users
and for generic applications (e.g. projection, print, etc.), or even useless for
computer vision applications where the loss of information can be potentially
critic for the task [53, 27].

With the purpose of reducing these artifacts, in the last years, a lot of JPEG
artifact reduction algorithms have been proposed. These methods include both
traditional image processing pipelines [114, 142, 174, 8, 61, 90, 172, 116] and
machine learning approaches [54, 196, 41, 182, 70, 115, 197, 198, 162, 191],
both making great steps in the restoration of corrupted images. However,
these methods suffer from two main limits: the first one is that they need to
train a different model for each possible Quality Factor (QF), making them
not generally applicable to general images downloaded from the web unless the
QF used for compression is known; the second one, is that the great majority
of methods in the state of the art restores just the luma channel or do not
fully exploit the knowledge about the JPEG compression pipeline.

To address these problems, in this section I propose a new method for
the blind universal restoration of JPEG compressed images, based on machine
learning, specifically on convolutional autoencoders. The proposed approach
consists of two deep autoencoders respectively used for luma and chroma
restoration, that are able to restore images independently from the quality
factor used for the compression.

In the next sections the methodology will be described and an in depth
analysis of the robustness of restoration results at different Quality Factors
will be presented. Also a comparison with the state of the art approaches will
be discussed.
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7.1 Related Works

The task of JPEG compression artifacts removal has been faced in different
ways in the past years. The existing proposed methods can be broadly classi-
fied into two groups: traditional image processing methods and learning-based
methods.

The first group includes methods based on traditional image processing
techniques working both in the spatial and in the frequency domain. For spa-
tial domain processing, different kinds of filters have been proposed, with the
intent of restoring specific areas of the images such as edges [114], textures
[142], smooth regions[174], etc. Algorithms usually rely on information ob-
tained by the application of the Discrete Cosine Transform (DCT) transform
[8]. SA-DCT, proposed by Foi et al. [61], attempts to reconstruct an estimate
of the signal using the DCT of the original image together with the spatial
information contained in the image itself. However, SA-DCT is not capable to
reproduce details like sharp edges or complex textures. To overcome this limit
different restoration oriented methods have been proposed, like the Regression
Tree Fields based method (RTF) [90]. The RTF uses the results of SA-DCT
to restore images, taking advantage of a regression tree field model.

Following the success of the application of Deep Convolutional Neural Net-
works (Deep-CNNs) in image processing tasks, such as image denoising [196]
and Single-Image Super-Resolution [55], Deep-CNNs have been applied with
success to JPEG compression artifact removal task. The basic idea behind
Deep-CNNs is to learn a function to map a set of images from an input dis-
tribution, to the desired output one [77]. In the artifact removal case, the
objective is to map degraded images into another distribution without the
presence of the noise. The trained neural network obtained at the end of the
training process represents an approximation of the desired function for the
translation of the images from a distribution to another one.

The first attempt with this kind of model has been done by Dong et al.[54]
who proposed the ARCNN, a model inspired by SRCNN [55], a neural network
for Super-Resolution. This first attempt has been followed by DnCNN [196], a
CNN for general denoising task that has also been used on JPEG compressed
images, and CAS-CNN [41], a model proposed by Cavigelli et al., who pre-
sented a much deeper model capable to obtain higher quality images. Wang
et al. proposed D3 [182], a deep neural network that adopts JPEG-related
priors to improve reconstruction quality which obtained an improvement in
speed and performances with respect with to the previous models.
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In 2018 several new models for JPEG artifact removal have been presented,
showing interesting improvements in the quality of the results. Liu et al.
[115] proposed a Multi-level Wavelet CNN (MWCNN), a model based on the
U-Net architecture [143], trained and used for multiple tasks: compression
artifact removal, denoising, and super-resolution. Zhang et al. [197] developed
DMCNN, a Dual-Domain Multi-Scale CNN, which gains higher results quality
than the previous works, by using both pixel and frequency (i.e. DCT) domain
information. Galtieri et al.[70] and Yoo et al. [191] tried to address the problem
of JPEG compressed image restoration by employing a generative adversarial
network (GAN)[76] for artifact removal and texture reconstruction. Lastly,
two interesting methods have been proposed: S-Net, by Zheng et al. [198], a
method based on a “greedy loss architecture” to train deeper models capable
to outperform the previous state-of-the-art, and JBCBCR, the most recent
method proposed by Chen et al. [44], which restores JPEG images in YCbCr
space, exploiting the correlation between the information from both luma and
chroma components of the images.

7.2 Proposed Method

The methods in the state of the art mainly suffer from two limits: the first one
is that each machine learning model needs to know the JPEG compression
Quality Factor (QF) of each input image to properly restore a compressed
image; the second one is that the great majority of them are capable to restore
only the luma channel without considering the chroma components. Only the
two most recent methods try to restore also the colors of the images: S-Net
[198] which works on RGB space, and JBCBR [44] which tries to exploit the
distribution of the artifacts coming from the JPEG pipeline, working in YCbCr
space.

In this work, a method able to overcome both the aforementioned problems
is proposed. The first problem has to do with the way the models are trained:
all of the previously existing methods make the implicit assumption that the
compression quality factor QF that has been used to compress the input images
is known at restoration time. In fact, most of the previous models present
networks trained on datasets compressed on specific quality factors (the most
common being QF = 10, 20, 30 and 40). This way of training the models leads
to two limits:

- the models are capable to correctly restore only images at a specific
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QF, with the consequence that specific training for each quality factor
is needed;

- the QF used for the compression of the images is needed in order to select
a model and correctly restore the images since each model is trained at
a specific compression QF. This is usually an unknown information for
images coming from unknown sources (e.g. downloaded from the web),
thus largely limiting the usability of the models.

In order to overcome the necessity to know the compression quality factor,
we train the model on a dataset containing images compressed at different
QFs: this will make the model more generic and able to restore images taken
in the wild, i.e. without knowing the actual QF used. This objective poses
a challenge, since the training of such a quality independent model is much
harder than training on a single quality factor: for example, the model has to
learn if a strong edge present in the image is a JPEG artifact belonging to an
image with a low QF and thus should be corrected, or a real edge belonging
to an image with a high QF and therefore should be preserved. Preliminary
experiments, in fact, showed that just training a state of the art method with
images compressed at different QFs significantly deteriorates the restoration
performance with respect to the same method trained for a single QF.

The second problem concerns the way the previous models restore the
images: almost all of the previous state-of-the-art methods are trained on the
luma channel (Y channel of the YCbCr space) of the images. This approach
is based on the fact that the JPEG compression algorithm applies the DCT
to the Y channel, introducing ringing and blocking artifacts on the luma
channel, while the other Cb and Cr channels are just sub-sampled the bicubic
interpolation. The design and training of a model for the specific restoration
of the luma component and its subsequent application for the restoration of
the chroma components (as done for example by ARCNN [54]), introduces
chromatic aberrations and artifacts in the final result. S-Net[198] and JBCBR
[44] are the only methods considering this problem and instead of training a
model for the restoration of just the luma component, they work respectively
in RGB and YCbCr color spaces for restoring both luma and chroma.

To overcome this second limit and restore also the color information, simi-
larly to Chen et al. [44] the knowledge of how the JPEG compression pipeline
works has been exploited and so has been proposed the use of two models for
the image restoration in YCbCr space: the first model restores the Y channel;
the second model then uses the result as a Structure Map (i.e. a guide) for

95



Chapter 7. JPEG blind artifact reduction

LumaNet

ChromaNet

Y

Cb'

Cr'

Y'

Cb

Cr 

Concat Concat
RGB  

to 
YCbCr

YCbCr 
to 

RGB

IN OUT

Step 1: Y channel restoration

Step 2: Cb Cr channels restoration

Structure Map

Figure 7.1: Schematic representation of the proposed method: the input image
is first converted to YCbCr color space. The Y channel is restored with the
LumaNet and the result Y’ is concatenated with the original CbCr channels
to restore Cb’Cr’ with the ChromaNet. Restored Y’Cb’Cr’ channels are then
converted back to RGB color space.

the restoration of the chroma components. A schematic representation of the
proposed method is depicted in Figure 7.1. The input RGB image is converted
into YCbCr color space and the Y channel is separated from the Cb and Cr
channels. The Y channel is restored with a dedicated network, and the result
is channel-wise concatenated with the original Cb and Cr channels. This stack
is processed with a second network that produces as output the restored Cb
and Cr channels using the restored Y channels as a guide. The restored Y, Cb,
and Cb channels, the former coming from the first network and the latter ones
coming from the second network, are channel-wise concatenated and converted
from YCbCr to RGB to produce the final output.

7.2.1 Luma and Chroma Restoration Model

The vast majority of learning based methods for JPEG compression artifact
removal in the state of the art [54, 196, 41, 182, 115, 197] focus exclusively
on the luma component of the images. Generally, these methods perform
the compression artifact removal working on the Y channel of the images,
after converting them in YCbCr color space. These approaches do not take
into consideration the chroma aspects of the images, generating results with
aberrations in RGB space and low perceptual quality.

The JPEG compression algorithm, when operating with very low compres-
sion quality factors (e.g. QF ≤ 20) tends to change the colors of the input
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images in two different ways: hue change and spatial location change. As can
be seen in Figure 7.2, in the compressed version of the Cb and Cr channels, as
expected, the color resolution is reduced and also, for some elements, the color
position does not correspond to the one in the original uncompressed image.

In the last years, only two models tried to restore the images considering
also the chroma components. These methods are S-Net [198] and JBCBR [44].
While the first one tries to restore the information contained in the images in
RGB space, the second one exploits the YCbCr space, the same used for the
compression by the JPEG algorithm.

Keeping the above considerations in mind the method has been designed
for restoring both luma and chroma components of the compressed images
(see Figure 7.1). The method consists of two steps: the first step, after the
conversion of the input image into YCbCr color space, involves the restoration
of the Y channel alone, using a first model named LumaNet, and produces Y’
as output. The second step concatenates Y’CbCr along the channel dimension
and uses a second model named ChromaNet, to restore the CbCr channels.
This second step uses Y’ as a map of the structures present in the image (i.e.
a sort of guide) to condition the second network to recover the color hue and
contours, and produces Cb’Cr’ as output. The final output is obtained by
concatenating Y’Cb’Cr’ and converting them back to RGB. Both LumaNet
and ChromaNet are two different deep CNN Autoencoders both exploiting a
new revisited version of the Residual Blocks [82].

7.2.2 Deep Residual Autoencoder Architecture

Autoencoder architectures have been widely used in image processing tasks like
image-to-image translation [89], Super-Resolution [193], image inpainting [185]
and rain removal [136]. Autoencoders for image processing tasks generally
present a structure made by three parts: the encoder, which extracts features
from the n-dimensional input (usually one or three channels); a central part,
that performs feature processing; and the final decoder, which decodes the
processed features into the output image having the desired dimensions. Figure
7.3 shows a schematic representation of the proposed model, while a more
detailed description of its architecture is reported in Table 7.1.

The encoder, which consists of two convolutions followed by Leaky ReLU
activations, is followed by a central part for feature enhancement consisting
in a sequence of Residual-in-Residual Dense Blocks (RRDB) [178], a modified
version of the well known residual blocks originally introduced in the ResNet
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Figure 7.2: Visual example of how the JPEG compression algorithm, when
operating with very low compression quality factors, changes the colors of the
input images in two different ways: hue change and spatial location change.

architecture[82], that have been shown to perform well in other image process-
ing tasks, e.g. image super-resolution [112, 178]. The RRDBs blocks combine
multi-level residual learning and dense connection architecture: the RRDBs
are designed without the use of the Batch Normalization and the application
of the residual learning on different levels. The RRDBs are shown in Figure
7.4: each RRDB is made of five Dense Blocks, which use only convolutions
with Leaky ReLUs activation and dense skip connection structures, combined
together with other skip connections. Finally, the decoder is designed in a
symmetrical way with respect to the encoder part.

The same architecture has been used for both the networks for luma and
chroma restoration, but with some differences:

- different depth in terms of number of RRDBs used in the central part;
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Figure 7.3: Graphical representation of the architecture of the autoencoders
used for both the luma and chroma restoration.

- different feature extraction from the input in the encoder part.

For the restoration of the luma (Y channel), the number of central RRDBs
is set to five, while for the CbCr restoration the number of RRDB is decreased
to three. The second and more important difference is in the first layer of the
CbCr version of the network, which is a 3-dimensional convolutional layer.
Considering that the input of the CbCr-Net is the concatenation (along the
channel dimension) of the restored Y’ channel with the Cb and Cr channels,
we decided to use a 3D convolution to make the model capable to correlate
information about color and structures with the use of the same kernels for
all the information coming from the three input channels. The output of this
second network are the two restored Cb and Cr channels, which are then
concatenated with the restored Y’ channel, in order to obtain the complete
restored image.

In order to improve the quality of the generated results, as well as to
make the training process more stable, the proposed architecture includes the
following design choices:

- removal of Batch Normalization (BN) layers from the Residual Blocks;

- use of a residual scaling parameter in each Residual Block;

- initialization of the model weights using a scaled version of the Kaiming
initialization[81].

The removal of the batch normalization layers has been proved, in image
Super-Resolution [112] and image deblurring [129] tasks, to increase the per-
formances for the generation of images in terms of quality indexes (PSNR and
SSIM [181]). The removal of the BN layers, which improve the stability of the
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Table 7.1: Detailed architecture of the autoencoders used for both the luma
and chroma restoration. The number of RRDBs is B = 5 for the Y-Net and
B = 3 for the CbCr-Net.

Layer Filter size, Stride, Padding output channels

Conv2D 1x1, 1, 0 64

Encoder

Conv2D 3x3, 1, 1 64
LReLU - 64
Conv2D 3x3, 1, 1 64
LReLU - 64

RRDB x B

Decoder

Conv2D 3x3, 1, 1 64
LReLU - 64
Conv2D 3x3, 1, 1 64
LReLU - 64
Conv2D 1x1, 1, 0 1 / 2
Tanh - 1 / 2

training and the generated image appearance, makes, on the other hand, the
training of deep networks more difficult. To solve that issues two solutions
have been proved to work well: the so-called residual scaling (in the model
set to 0.2), to scale each residual in order to not magnify the input image in
a wrong way, and a small weight initialization, obtained by the application of
the Kaiming initialization, presented by He et al.[81], scaled by a factor 0.1.
As can be seen in Figure 7.4 the residual scaling is applied to the higher level
of the residual learning architecture, i.e. on the output of each dense block
and at the end of the RRDBs.

7.3 Experimental Setup

The training of the proposed method leads to two different Deep-CNNs respec-
tively for the restoration of the luminance and chroma components of JPEG
compressed images at generic quality (i.e. QFs). In order to evaluate the
results, the proposed model have been compared with the state of the art in
four different experimental setups:

1. known QF luminance restoration: comparison with the state-of-the-art
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Figure 7.4: Schematic representation of the architecture of the Residual-in-
Residual Dense Block (RRDB) [178].

methods which work only on the Y channel of the input images;

2. unknown QF luminance restoration: comparison to test the ability of the
models to restore images at intermediate QFs never seen during training;

3. restoration of areas with high and low details density: evaluation of the
performances of the state-of-the-art methods and the proposed one over
specific areas of the images, by dividing the images in patches classified
on high-to-low frequency (DCT domain) and high-to-low detail density;

4. color restoration: evaluation of the color restoration capability of the
model on the images converted in RGB space after the processing.

7.3.1 Dataset

The dataset used for training is the DIV2K dataset, a collection of high-
quality images (2K resolution), presented during the NTIRE2017 challenge
[7] for image restoration tasks. This dataset is made of a total amount of
900 images: 800 are used for training while the remaining 100 are used for
validation. The complete dataset contains also 100 images for testing. The
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ground truth of this last part has not been released after the challenge, and
therefore are not used in this paper.

With the purpose of increasing the amount of different texture and pattern
to show to the model during training, the DIV2K dataset have been combined
with the Flickr2K dataset [165], a collection of 2650 high-quality images
(same resolution as the DIV2K) collected from Flickr website.

In order to train the models on different quality factors, for each image in
the dataset have been compressed with 10 different compression levels, cor-
responding to the quality factors between QF = 10 to QF = 100, with step
10. The images have been compressed with the MATLAB standard library
function. In the training phase of the model, as a pre-processing operation,
the compressed images are read and converted into YCbCr space using the
Python Scikit-Image library (v0.14.0). The compressed version of the
training dataset contains 8000 images. The same operation has been applied
to the Flickr2K dataset for a total amount of 34k training images.

The evaluation of the model, for the luminance channel restoration, has
been done on the LIVE1[181], Classic-5, BSD500 [11] and Kodak Loss-
less True Color Image Suite[62], four benchmark datasets widely used
for JPEG artifact removal algorithm evaluation. For the evaluation of the be-
havior of the models with the unknown compression quality factor we adopted
the SDIVL [50], a dataset proposed for Image Quality Assessment task.

The evaluation of the color channels restoration has been done using the
Kodak Lossless True Color Image Suite[62], in the same way that has
been done by Chen et al. [44].

7.3.2 Evaluation metrics

The globally adopted metrics for the evaluation of the quality of images in
artifact removal tasks are PSNR, PSNR-B [190] (which focus the evaluation on
the blocking artifacts) and SSIM [181] indexes. For all of these three measures,
a higher value means better results. The PSNR and PSNR-B indexes give
information about the quality of the images in terms of noise and perceived
quality, with PSNR-B taking into consideration also the blocking artifacts;
SSIM index is an indicator of the quality of edges and structures contained in
the image. For all the three indexes considered a higher value means that the
content and the structures in the reconstructed image are more similar to the
ones in the target image.
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7.3.3 Training Details

All the training phase has been done on an NVIDIA Titan V GPU with 8 GB
of memory using PyTorch framework at version 0.4.1. The mini-batch size
has been set to 8 and each input image has been cropped to a patch size of
100 × 100 pixels. During the experiments we tried to train the network with
different crop sizes (32× 32, 50× 50, 100× 100 and 400× 400), observing how
training deeper networks with bigger patch size gives a boost on performances
over both PSNR and SSIM indexes.

We also explored the use of different numbers of RRDBs in the model: we
observed how with deeper models, using this specific kind of residual blocks,
the results got better and better, increasing the PSNR and SSIM values on the
validation set. The final structure uses five RRDBs for the Y channel restora-
tion model and three RRDBs for the CbCr model, where each convolution has
64 filters. We found this configuration to be the best one, with respect to the
patch size, the amount of RRDBs, the number of filters and the limits due to
the memory offered by the used board.

We trained the model using Adam optimizer [104] with β1 = 0.9, β2 =
0.999, with learning rate initialized at 2× 10−4 decreased after 200 epochs of
training by a factor of 2. The training has been performed using the L1 Loss
since allows us to achieve better PSNR results and to make the training more
stable.

7.4 Experimental Results

7.4.1 Restoration with known compression Quality Fac-
tor

We compared the proposed model with the state-of-the-art models ARCNN[54],
CAS-CNN[41], D3[182], and the more recent DMCNN[197], MemNet[162],
MWCNN[115], ARGAN[70], S-Net[198] and JBCBR [44].

Since the state-of-the-art methods operate only on the Y channel of the
images, in order to make a fair comparison, we used only the result coming
from the application of the LumaNet, without any integration of data from the
color components. The metrics are evaluated on the Y channel recovered by
the first network with the corresponding target images, using the MATLAB
standard libraries, over five different compression qualities: 10, 20, 40, 60, 80.
For each method, on all the datasets considered, we report the results taken
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Figure 7.5: PSNR-SSIM comparison of the state-of-the-art-models and the
proposed method. For both metrics higher value means better visual results.
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Figure 7.6: PSNR-SSIM comparison of the state-of-the-art-models and the
proposed method. For both metrics higher value means better visual results.

from the corresponding publication, except for ARCNN and MWCNN which
provide the source-code, that are then used for the evaluation. Since the
training of the proposed methods leads to a single model that can be used for
all the quality factors, we used the same model for the evaluation at all the
qualities previously mentioned. All the state-of-the-art methods compared,
instead, have a different trained model for each QF considered.

Table 7.2, 7.3, 7.4 and 7.5 respectively report the comparison on the
LIVE1, BSD500, Classic-5, and the Kodak Lossless True Color Im-
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Table 7.2: Comparison on test set LIVE1: for the methods in the state of the
art a different model is trained for each QF considered. The proposed method
uses the same model for all the QFs.

Quality
ARCNN

[54]
DnCNN
[196]

CAS-CNN
[41]

D3
[182]

DMCNN
[197]

MemNet
[162]

MWCNN
[115]

S-NET
[198]

ARGAN-MSE
[70]

ARGAN
[70]

CED-GT
[191]

Proposed model

10 29.13 29.19 29.44 29.96 29.73 29.45 29.37 29.87 29.47 27.65 26.54 29.98
20 31.40 31.59 31.70 32.21 32.09 31.83 31.58 32.26 31.81 29.99 29.33 32.34

PSNR 40 33.63 33.96 34.10 - - - 34.17 34.61 34.17 31.64 - 34.78
60 - - 35.78 - - - - - - - - 36.47
80 - - 38.55 - - - - - - - - 39.31
10 28.74 - 29.19 29.45 29.55 - 28.85 - 29.13 27.63 26.51 29.61
20 30.69 - 30.88 31.35 31.32 - 30.83 - 31.29 29.69 29.32 31.76

PSNR-B 40 33.12 - 33.68 - - - 33.33 - 33.42 31.17 - 33.96
60 - - 35.10 - - - - - - - - 35.51
80 - - 37.73 - - - - - - - - 38.26
10 0.823 0.812 0.833 0.823 0.842 0.819 0.832 0.847 0.833 0.777 0.767 0.851
20 0.886 0.880 0.895 0.890 0.905 0.885 0.891 0.907 0.897 0.864 0.854 0.908

SSIM 40 0.931 0.924 0.937 - - - 0.936 0.942 0.937 - 0.903 0.944
60 - - 0.954 - - - - - - - - 0.960
80 - - 0.973 - - - - - - - - 0.976

Table 7.3: Comparison on test set BSD500: for the methods in the state of
the art a different model is trained for each QF considered. The proposed
method uses the same model for all the QFs.

Quality
ARCNN

[54]
DnCNN
[196]

CAS-CNN
[41]

D3
[182]

DMCNN
[197]

MemNet
[162]

MWCNN
[115]

S-NET
[198]

ARGAN-MSE
[70]

ARGAN
[70]

CED-GT
[191]

Proposed model

10 29.10 - - - 29.67 - 29.50 29.82 29.05 27.31 26.00 29.92
PSNR 20 31.25 - - - 31.98 - 31.34 32.15 31.23 28.48 28.62 32.23

40 33.55 - - - - - 33.23 34.45 33.45 30.98 - 34.61
10 28.75 - - - - - 28.60 - 28.64 27.31 25.97 29.41

PSNR-B 20 30.60 - - - - - 29.84 - 30.49 29.03 28.58 31.39
40 32.80 - - - - - 31.04 - 32.34 30.16 - 33.34
10 0.819 - - - 0.840 - 0.835 0.844 0.806 0.749 0.731 0.847

SSIM 20 0.885 - - - 0.904 - 0.889 0.905 0.877 0.841 0.825 0.906
40 0.929 - - - - - 0.928 0.941 0.923 0.884 - 0.943

age Suite datasets for all the three metrics considered. As can be seen, the
proposed solution outperforms the state of the art on all the metrics. With the
proposed model we obtained improvements with respect to the state-of-the-art
methods on both general perceptual quality (PSNR/PSNR-B) and structure
reconstruction (SSIM) on the first two datasets. On the third and fourth ones,
we obtain improvement in both PSNR-B and SSIM, with comparable results
with respect to the best method in terms of PSNR.

Since each index focuses on different aspects of the restoration quality, each
index alone is not capable to summarize all the aspects of a good reconstruc-
tion. Therefore, we also compare the methods in a graph style-view, reported
in Figures 7.5 and 7.6 to correlate the two indexes. In order to obtain a more
pleasing perceived quality, both the metrics must obtain high values. It is
easy from this kind of view to see how the proposed method outperforms the
current state-of-the-art models even if a single model is used for all the QFs.
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Table 7.4: Comparison on test set Classic-5: for the methods in the state
of the art a different model is trained for each QF considered. The proposed
method uses the same model for all the QFs.

Quality
ARCNN

[54]
DnCNN
[196]

CAS-CNN
[41]

D3
[182]

DMCNN
[197]

MemNet
[162]

MWCNN
[115]

S-NET
[198]

ARGAN-MSE
[70]

ARGAN
[70]

CED-GT
[191]

Proposed model

10 29.04 29.4 - - - 29.69 29.68 - - - - 29.67
PSNR 20 31.16 31.63 - - - 31.90 31.78 - - - - 31.89

40 33.34 33.77 - - - - 34.05 - - - - 34.04
10 28.75 - - - - - 29.06 - - - - 29.35

PSNR-B 20 30.6 - - - - - 30.95 - - - - 31.43
40 32.8 - - - - - 33.20 - - - - 33.33
10 0.811 0.803 - - - 0.811 0.828 - - - - 0.829

SSIM 20 0.869 0.861 - - - 0.866 0.878 - - - - 0.882
40 0.91 0.9 - - - - 0.916 - - - - 0.917

Table 7.5: Comparison on test set Kodak Lossless True Color Image
Suite: for the methods in the state of the art a different model is trained for
each QF considered. The proposed method uses the same model for all the
QFs. The values marked with the symbol (⋆) are taken from [44] while the
other ones are obtained using the codes officially released by the corresponding
authors, and the evaluation code from [54].

Quality
D2SD
[116]

ARCNN
[54]

DnCNN
[196]

MemNet
[162]

MWCNN
[115]

JBCBR
[44]

Proposed model

Y

PSNR
10 30.28⋆ 30.01 / 30.56⋆ 30.75⋆ 30.96⋆ 30.82 / 31.19⋆ 31.03 31.10
20 32.45⋆ 32.31 / 32.78⋆ 33.09⋆ 33.29⋆ 33.10 / 33.47⋆ 33.31 33.44

PSNR-B
10 - 29.88 - - 30.63 30.82 30.93
20 - 32.06 - - 32.81 32.99 33.17

SSIM
10 - 0.818 - - 0.836 0.846 0.847
20 - 0.881 - - 0.896 0.902 0.904

7.4.2 Restoration with unknown compression Quality
Factor

Another kind of evaluation has been done about the capability of the models
to recover images at compression quality factors never seen during training.
In most of the real use-cases, the JPEG compression quality factor previously
applied to an image is not known: it is then important that a model can recover
the images without this prior information. On the other hand, if we are able
at least to estimate the compression quality factor of the input compressed
image, following the previous approaches we should train new models for each
specific quality factor needed, or use the model trained for the closest QF to
the desired one.

We compare the proposed model with the two state-of-the-art models for
which the code is available (i.e. ARCNN and MWCNN) in a specific selection
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Figure 7.7: Comparison on QFs not seen during training. For ARCNN and
MWCNN the models trained for QF=10 and QF=20 are tested on QF in the
range [5, 25]. The proposed model is trained for QF in the range [10, 100] with
steps of 10, and is tested on the same intermediate QFs not seen in training.

of cases. Since previous models have been trained on specific quality factors,
and the proposed one has been instead trained over quality factor from 10 to
100 in steps of 10, without the use of images with QFs in between, we decided
to test the model robustness on “never seen” artifacts. In order to perform the
evaluation coherently, for the state-of-the-art algorithm we used the pretrained
models for the nearest quality factor, for example, if the input image has been
compressed with QF = 17 we used the models trained for QF = 20. The
evaluation has been done only on the Luminance channel restores only with
the LumaNet, in the same way, that has been done for the known QFs. For
this evaluation we adopted the SDIVL dataset: for each image of the testset,
we applied all of the compression factors in the interval 5−25. The evaluation
is done in the same way it has been done in the previous section, by extracting
Y channel and measuring PSNR, PSNR-B, and SSIM indexes.

In Figure 7.7 are shown the results of the models on the SDIVL with all
the quality factors compression. As can be seen in those graphs the poposed
model shows a more stable behavior: the model is capable to restore images
at different QFs with more coherent and smooth behavior in relation to the
increase of the QF, in comparison with the other methods. Moreover, the
previous state-of-the-art models have difficulties to restore images at quality
factors distant from the trained one. It is particularly interesting to see how the
other models have difficulties to restore images at higher qualities with respect
to the QF used in training, in terms of structures in the images (Figure 7.7),
due to the more complex textures never seen by the models during the training
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Table 7.6: Comparison on test set LIVE1 by subdividing the image patches
on the basis of the frequency content in five classes from high to low.

ARCNN [54] MWCNN [115] Proposed model
Frequency PSNR PSNR-B SSIM PSNR PSNR-B SSIM PSNR PSNR-B SSIM
high 27.53 27.26 0.782 27.61 27.24 0.792 28.18 27.88 0.807
medium-high 25.00 24.66 0.685 25.24 24.67 0.700 25.64 25.18 0.729
medium 24.61 24.27 0.734 24.50 23.82 0.740 25.37 24.91 0.773
medium-low 25.92 25.49 0.794 25.91 25.24 0.803 26.73 26.21 0.827
low 27.08 25.93 0.840 26.72 25.27 0.849 27.81 26.52 0.864

Table 7.7: Comparison on test set LIVE1 by subdividing the image patches
on the basis of the detail density in five classes from low to high.

ARCNN [54] MWCNN [115] Proposed model
Edges frequency PSNR PSNR-B SSIM PSNR PSNR-B SSIM PSNR PSNR-B SSIM
high 23.20 22.94 0.667 23.42 22.82 0.683 23.87 23.45 0.716
medium-high 24.69 24.39 0.721 24.91 24.31 0.735 25.42 25.02 0.763
medium 25.68 25.22 0.758 25.94 25.26 0.772 26.41 25.86 0.794
medium-low 26.83 26.12 0.805 27.01 25.95 0.817 27.47 26.61 0.832
low 29.17 28.22 0.884 27.45 26.28 0.888 29.97 28.99 0.897

Table 7.8: Color restoration comparison on test set Kodak Lossless True
Color Image Suite. Evaluation of Cb and Cr channels restoration in terms
of PSNR.

Quality JPEG
SA-DCT

[61]
JBF
[172]

EJBF
[172]

JBCBR
[44]

Proposed model

Cb

10 36.14 37.83 37.38 37.39 39.16 39.30
20 39.02 40.69 40.34 40.45 41.99 42.22

Cr

10 36.00 37.57 37.16 37.20 38.92 39.04
20 38.99 40.47 40.01 40.24 41.64 41.89

phase.
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Input (JPEG, QF=10) ARCNN(*) MWCNN(*) JBCBR Proposed model Groundtruth

Figure 7.8: Visual comparison of image restoration result. The first and third
lines show the Luma channel (Y) restored by the models with the associated
PSNR and SSIM values, computed on the whole image; the second and forth
lines show the RGB colored version. For the models that can only recover
the Y channel (identified by the * symbol), the Cb and Cr channels are taken
directly from the original high quality corresponding ground truths crops.

7.4.3 High and low frequency areas restoration

In order to better understand if the proposed method performs better than
approaches in the state of the art only on certain image types, a further exper-
iment have been conducted: the images from LIVE1 testset, compressed at
QF = 10, have been divided into 64× 64 patches and have been classified into
five categories. The categories are obtained by equally diving the patches into
five bins with respect to both frequency and detail density. Patch frequency
is computed as the weighted average of the 2D Fourier Transform normalized
magnitude. Patch detail density is computed as the 2D average of the result
of the Canny edge detection. The results for the considered evaluation metrics
over the five categories of the frequency and detail density are respectively re-
ported in Table 7.6 and 7.7. From the results reported it is possible to notice
that the proposed method consistently outperforms the state of the art on all
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the frequency and detail density categories.

7.4.4 Color Restoration

The final evaluation is focused on the color restoration capability of the models.
The comparison has been done evaluating the Cb and Cr channels of the
recovered images, in the same way that has been done by Chen et al.[44]: the
chroma component of the restored images from the Kodak Lossless True
Color Image Suite, with QF = 10 and QF = 20, have been used in the
comparison. From the results reported in Table 7.8 in terms of PSNR it is
possible to see that the proposed model obtains better results than the other
methods. This is remarkable since, analogously to what has been done for
the previous experiments, the compared methods trained a different method
for each QF considered, while the proposed method uses a single model for
all QFs. A visual comparison of color image restoration results is reported in
Figure 7.8. In particular, it is possible to see how the methods that are trained
to recover full color images obtain much better visual results even on the luma
channel alone. In order to not perform an unfair visual comparison, for the
methods designed to recover just the luma channel, the Cb and Cr channels
are taken from the original uncompressed image.

7.4.5 Model complexity

In this section is presented a comparison of model complexity. In particu-
lar, have been compared the inference time for a single 512 × 512 × 3 on an
NVIDIA Titan V GPU, the PSNR score and the model size in terms of learn-
able parameters. The results are reported in Figure 7.9. They are divided
into two plots: the bottom one reports the comparison for the restoration of
the Y-channel, the top one reports the comparison for the restoration of the
Cb and Cr channels. For some methods, two sizes are reported: the full circle
represents the size for a single model (i.e. trained for a single QF) while the
empty circle represents the size of ten models, simulating the fact that at test
time more models are needed to cover all the possible QFs. The plots show
that the proposed solution compares favorably with respect to the state of the
art on all the aspects considered, showing also a very good trade-off between
PSNR and model size.
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Figure 7.9: Inference time for a 512 × 512 × 3 image on a NVIDIA Titan V
GPU. In the top plot the average PSNR on the Cb and Cr channels is reported,
in the bottom plot the PSNR on the Y channel is reported.
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7.5 Summary

In this section a deep residual autoencoder exploiting Residual-in-Residual
Dense Blocks (RRDB) to remove artifacts in JPEG compressed images have
been presented. The proposed method is blind and universal, i.e. it is in-
dependent from the QF used. The proposed model operates in the YCbCr
color space and performs a two-phase restoration of JPEG artifacts: in the
former phase, a first autoencoder exploiting 2D convolutions is used to restore
the luma channel of the input image. In the latter phase, the restored luma
is stacked along the channel dimension with the chroma channels of the in-
put image; then, a second autoencoder employing 3D convolutions uses the
restored luma channel as a guide to restore the chroma channels.

The main contributions of this work are: i) the design of a blind universal
method for the restoration of JPEG compression artifact that is independent
from the QF used; ii) the design of a model trainable end-to-end that fully
exploits knowledge about JPEG compression pipeline; iii) a thorough compar-
ison with the state of the art on four standard datasets at fixed QFs; iv) an
analysis of robustness of restoration results at QFs not used for training.

Extensive experimental results on four widely used benchmark datasets
(i.e. LIVE1, BDS500, CLASSIC-5, and Kodak) show that the proposed
model is able to outperform the state of the art with respect to all the eval-
uation metrics considered (i.e. PSNR, PSNR-B, and SSIM). This result is
remarkable since the approaches in the state of the art use a different set of
weights for each compression quality, while the proposed model uses the same
weights for all of them, making it applicable to images in the wild where the
QF used for compression is unknown. Furthermore, the proposed model shows
greater robustness than state-of-the-art methods when applied to compression
qualities not seen during training. Since preliminary experiments with the
same architecture proposed showed good results for the restoration of other
artifacts (i.e. noise removal, in the CVPRW NTIRE2019 challenge [2]), as fu-
ture work is to investigate its extension to other single and multiple distortions
[49]. To this end, techniques that are able to better interpret and understand
what the model has learned, such as what has been done in the framework of
image classification [128, 19], should be studied to be applied also in the image
processing domain.
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7.6 Model adaptation to other artifacts: sRGB

noise

One last step related to the model proposed for JPEG artifact reduction is
the one of trying to adapt it to other kinds of artifacts. Here in particular the
proposed solution has been adapted for image denoising. The main purpose
is to prove the potential use of such a model, with very limited changes, on
another image restoration task.

The proposed method works on YCbCr noisy images and gives as output
restored YCbCr images, so to adapt it to the denoising task, the pre-processing
step converts the input RGB images into YCbCr color space, and the post-
processing step converts the result back into the RGB color space. The entire
solution is made of two autoencoder neural networks: the first one is used
for the restoration of the luma channel (Y channel), while the second one
restores the chroma components (Cb and Cr channels) of the images, using
the restored luma channel as a “structure map” to guide the reconstruction.
Differently from the original method that was designed for JPEG restoration,
for the denoising task for both the first and second network the number of
Residual-in-Residual Dense Blocks (RRDBs) has been set equal to B = 5,
the input mini-batches size equal to 8, made of 100 × 100 pixel crops taken
from the training dataset. To increase the number of structures and textures
seen by the network, online data augmentation (random flipping and rotation)
has been applied to the input training crops, during the training phase. The
overview of the model is shown in Figure 7.10.

7.6.1 Training description

The dataset used for the training of this model is the SIDD-Medium dataset [1]
that consists of 320 noisy images in both raw-RGB and sRGB space with
corresponding ground truth and metadata. Each noisy or ground truth image
is a 2D array of normalized raw-RGB values (mosaiced color filter array) in
the range [0, 1] in single-precision floating point format. The metadata files
contained dictionaries of Tiff tags for the raw-RGB images. The Tiff data has
not been used in any way since the main purpose is to prove the potential
use of the previously defined model for JPEG restoration in this new scenario.
The validation data consisted of 1280 noisy image blocks (i.e., croppings) from
both raw-RGB and sRGB images, each block is 256×256 pixels. The testing
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Step 1: Y channel restoration
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Figure 7.10: Overview of the denoise model. The approach is an adaptation
of the JPEG artifact reduction proposed method to gaussian noise artifact
removal.

data consisted of 1280 noisy image blocks different from the validation block
but following the same format as the validation data.

To train this model, mini-batch size has been set equal to 8; each minibatch
is made of 100 × 100 pixel crops taken from the training dataset augmented
with online data augmentation random flipping and rotation. The model has
been trained with Adam optimizer, with a starting learning rate of 1× 10−4,
decreased by a factor 10 after 240k and 300K iterations. The model has been
developed in Pytorch v1.0.0 on a Nvidia Titan V with 12 GB dedicated RAM.

Snapshot ensemble technique has been used for the final testing phase,
combining the results of the best epoch of training of the proposed model,
combined with the results of two other epochs near to the best one in terms of
quality indexes. The results obtained by the best model have been averaged
with the results coming from two other checkpoints of the same model coming
from previous epochs with very close performances in terms of PSNR and
SSIM over the validation set. The ensemble operation has given a very small
boost on the performances in terms of PSNR index (0.005dB).

7.6.2 Experimental Results

To test the model adaptation performances, the proposed approach has been
used to participate in a Workshop challenge at CVPR 2019. The model has
been tested on sRGB images.

The proposed model competed with 220 different approaches and ended in
position 15 of the leader board. In table 7.9 are reported the respective PSNR
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Figure 7.11: Results of the NTIRE 2019 challenge. The plot represents the
final top 15 containing the best algorithms for single image noise removal of
sRGB images. The proposed model is IVL labeled one.

and SSIM values achieved by the proposed approach, while in Figure 7.11 is
reported a scatter plot showing the performances of the different approaches
in terms of PSNR and SSIM.

As can be seen from table 7.9, the proposed approach for JPEG artifact
reduction, once adapted for the new denoising task, achieves very good results
with respect to the best model in the ranking. In terms of SSIM index, the
difference is only of a total amount of 0.0026, while for the PSNR is of 0, 764
db. This behavior, even if the performances do not reach the results achieved
by the best method in the ranking, shows how is possible to adopt the proposed
per channel approach to similar kinds of artifacts, obtaining competing results
with respect to ad hoc designed approaches. Another interesting achievement
of the proposed approach is the result in terms of running time (expressed in
seconds per megapixel), which is significantly below the execution time of the
other proposed methods, with exception of “IID Research; Pervasive Visual
Intelligence”.

115



Chapter 7. JPEG blind artifact reduction

Table 7.9: Results and rankings of methods submitted to the sRGB denoising
track of NTIRE 2019 workshop.

Team / Method PSNR SSIM Runtime (s/Mpixel)
DGU-3DMlab 39.932(1) 0.9736(1) 0.5577
Eraser 39.883(2) 0.9731(2) -∼2
Eraser 39.818(3) 0.973(3) 3.416
HIT-VPC 39.675(4) 0.9726(7) -
VIDAR 39.611(5) 0.9726(5) 0.903
VIDAR 39.576(6) 0.9726(6) 0.903
BMIPL UNIST 39.538(7) 0.9727(4) 3.132
TTI 39.482(8) 0.9717(9) ∼ 2
TeamInception 39.415(9) 0.9721(8) 1.136
Meteor 39.248(10) 0.9712(13) 0.13
UIUC-IFP 39.242(11) 0.9717(10) 10.73
IID Research;
Pervasive Visual Intelligence

39.225(12) 0.9712(12) 0.0283

IVL 39.168(13) 0.971(14) 0.02
offire 39.117(14) 0.9714(11) 3.83
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Part III

Addressing external artifacts

The second type of artifacts and defects which can affect image quality is the
one corresponding to the elements external to the camera pipeline. As seen
in Section 4.2, image quality is not only dependent on the operations that
are done in the processing pipeline, but also on external factors such as the
presence of elements in the acquired scene or dependent to the light and the
lenses used by the capturing system.

In this part of the thesis, the artifacts treated are the ones caused by
weather conditions, such as rain and haze, which can affect the overall quality
and usability of an image. In particular, the work is focused on the reduction
of artifacts coming from taking a picture of a scene during a rainy weather.
In this scenario, images are usually affected by the presence of specific kinds
of artifacts, which occludes information making images less beautiful and us-
able. Moreover, to analyze also the usefulness aspect, a study of the impact
of artifacts and enhancement operation over the images has been done. Two
studies are presented: one related to the semantic segmentation task and an-
other one on optical character recognition. These two studies are described
in Sections 8.3 and 8.4, after the definition and proposal of an autoencoder
convolutional neural network for rain and rain-induced haze removal. The last
chapter is instead focused on the problem of raindrop removal, which is related
to the reduction of defects related to the presence of external elements which
lies over the lenses or a transparent surface in front of the camera, and which
cannot be controlled in any way by the user at shooting time and must be
addressed in post-processing steps.



Regarding the relation with the digital processing pipeline, since those pro-
cessing operations are not meant to be integrated directly in the digital pro-
cessing pipeline, computational complexity and hardware-related constraints
are not anymore strict as for the methods in part II. This fact permits the
design of methods that rely on deep learning and that may need more compu-
tational power to obtain the desired result.
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Chapter 8

Rain streak reduction &
downstream tasks

In the last years, low-level image processing has improved a lot with the intro-
duction of Convolutional Neural Networks, permitting to outperform classical
handcrafted methods in most tasks such as Super-Resolution, Image Denois-
ing, Image Colorization, Image Dehazing and Deraining. Those methods are
intended to enhance the input images that suffer from problems of different
nature in order to improve the quality and visibility as perceived by humans
or for subsequent automatic systems like automatic object detectors, etc. In
this section, the focus of the restoration is Image Deraining, where the objec-
tive is to remove rain from images taken during bad weather conditions, more
specifically in situations where the visibility is occluded by rain streaks and
haze. Note that the case in which there are raindrops over the camera lenses
has not been considered in this specific work but will be treated separately,
specifically is the focus of the work in section 9.

8.1 Related works

In the last years, a lot of CNN based models for single image deraining have
been presented. One of the first attempt in rain removal from single image
was presented by Eigen et al. [57]: this first approach was focused on the
removal of dirt and rain from a glass surface between the camera and the
scene content. Fu et al. [64], in 2017, designed a Convolutional neural net-
work for rainstreaks removal from single images: to train that model they
adopted a synthetic rainy dataset, spefically generated for the task. Again,
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Fu et al. [65] proposed another approach, based on the concept of residual
learning, which consent a lighter training procedure of models for rainy image
restoration. Yang et al. [188] presented a CNN model for rain detection and
removal from single images: this approach is based on a step of detection of
rainstreaks present in the images and then a removal process, based on the
result of the previous detection step. Quian et al. [136] presented the first
generative network, trained using adversarial training, for raindrop removal,
based on the concept of attention maps. Zhang et al. [194] proposed instead
a CNN model based on the estimation of rain density in the image in order to
drive the restoration process in relation to the amount of distortion presents
in the images. Again, Zhang et al. [195] proposed one year later another
approach for rainstreak removal, based on Conditional Generative Adversar-
ial Network, trained by using newly synthetic rainy dataset. Finally, Li et
al. [111] presented a benchmark of all the current state of the art models
for the deraining task, considering the different existing datasets and also the
possibility to improve detectors’ performances with different methods.

Inspired by this last work, the work presented in this section aims to see the
effect of this kind of processing on rainy street view images in order to improve
the performance of possible subsequent downstream task on the processed
images.

8.2 Proposed method for rainstreaks removal

Inspired by the results obtained by Convolutional Neural Networks and in
particular GANs in low-level image processing tasks such as Super Resolution,
Image Colorization, Image Inpainting, Noise Removal, etc... the decision has
been the one of using a U-Net style architecture trained using a discriminative
network in a conditional Generative Adversarial Network framework.

8.2.1 Network Details

The structure of the DeRaining CNN is based on the U-Net [143] architecture,
with the addition of skip connections as done for Pix2Pix network [88]. The
architecture is shown in Figure 8.2a. Based also on recent works related to
image enhancement, some changes have been made to the classical U-Net
architecture, in order to reduce the introduction of artifacts and improve the
quality of the final results:
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Discriminator Real /
Fake

De Rain

Figure 8.1: Training system with Conditional patchGAN.

• The normalization layers have been removed from the model, in order
to avoid the generation of artifacts, as done in [112] and [129].

• Max-pooling operation have been replaced with convolutions with 2-
pixel stride to reduce feature spatial dimensions, without losing useful
information for the restoration process.

• A combination of bilinear upsampling with 2D Convolution has been
adopted, to reduce artifacts coming from the application of the decon-
volutional layers in the decoder part of the network.

A patchGAN discriminative network have been used in order to train the
model in a GAN framework, trained with a Conditional GAN training ap-
proach [125], using both generated and input images as input to the discrim-
inator to better classify fake and real images, similarly to the discriminator
used for Pix2Pix.

The architecture is shown in Figure 8.2b while a scheme of the entire train-
ing method is shown in Figure 8.1.
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Figure 8.2: (a) U-Net style architecture of the generative network. The max
pooling layers have been replaced with convolutions with strides > 1 and the
upscaling operation is performed with Bilinear Interpolation combined with
convolutions. (b) PatchGAN style discriminative network architecture.

8.2.2 Loss Function

The loss function used to train the model is defined as:

Loss = λe ∗ Le + λadv ∗ Ladv + λp ∗ Lp. (8.1)

which is the combination of three loss functions, weighted by three different
weight values λe, λadv, λp

Given an image pair {x, y} with C channels, width W and height H (i.e.
C × W × H), where x is the input image and y is the corresponding target,
the three loss functions are defined as follows.

The per-pixel Euclidean loss, defined as:

Le =
1

CWH

C∑
c=1

W∑
w=1

H∑
h=1

||ϕE(x
c,w,h)− yc,w,h||22, (8.2)

where ϕE(·) is the learned network for rain removal.
The Perceptual loss [94] defined as distance function between features ex-

tracted from the target and output images, using the pre-trained VGG net-
work:

Lp =
1

CiWiHi

Ci∑
c=1

Wi∑
w=1

Hi∑
h=1

||ϕE(x
c,w,h)− V (yc,w,h

B )||22, (8.3)
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where V (·) represents a non-linear CNN transformation (VGG16 network).

Finally, the original GAN loss described as:

Ladv = Ex,y[logD(x, y)] + Ex[log(1−D(x,G(x)))], (8.4)

where G(·) is the trained generative network for image de-raining.

8.2.3 Training data

In order to train the model for the rain removal task, a dataset made of input-
target images created with synthetic rain masks has been adopted. The dataset
has been presented by Zhang et al. [195]: the entire dataset is made of 700
images, where 500 images have been randomly taken from the UCID dataset
[147] and 200 images are randomly chosen from the BSD-500 training set [10].
The validation has been performed with the images from the test set made
with 100 images, 50 from the UCID dataset and 50 from the BSD-500 dataset
[10].

For each image, a rain mask has been chosen (from a set of 10 different
ones) and applied. This operation has been manually done by Zhang et al.
[195] using Photoshop. Moreover, in order to test the models with “real” rainy
images, Zhang et al. collected a set of 50 natural images.

Since for the training phase the number of images is limited, both image
flipping and rotation have been used in order to augment the dataset. All of
the images have been cropped to a common size of 256 × 256, in the case in
which the images were bigger, and upscaled to that dimension, in the case in
which the images were smaller.

8.2.4 Training details

The model has been written in PyTorch v1.3.1 and trained on an Nvidia Titan
V GPU. The training has been done with batch size 8 for a total amount of
1K epochs. The model has been trained using Adam optimizer [104] with a
starting learning rate of 10−5 for both generative and discriminative networks.
For the balancing of the loss, in order to stabilize the training, λe, λp and λadv

have been respectively set to values 1, 0.1 and 6.6 ∗ 10−3.
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8.2.5 Synthetic Rain Augmentation

To reproduce semi-realistic rainy images, to be used for testing the model in
different downastream tasks, a procedure for the generation of random rainy
masks to apply over the target images has been defined. Differently from [195],
instead of using Photoshop to generate a limited number of masks to randomly
apply to the images, a MATLAB procedure to create a random rainy mask
generator has been designed: for each image generates a new mask, based on
some parameters randomly selected in ranges that have been defined empir-
ically, with respect to the original approach from [195] and the objective of
obtaining semi-realistic rainy images. The pipeline is represented in Figure 8.3.

Starting from an sRGB image, the process first generates a raindrop mask,
by choosing four parameters: d1 rain density, σ1 Gaussian filter dimension,
l1 streak length, α1 falling angle. After that, a rain streaks map is generated
using two parameters previously chosen for the first mask: l1 streak length and
σ1 falling angle, and two other ones chosen at this step: d2 rain density and
α2 Gaussian filter dimension. Eventually, an optional haze mask is generated.
These three masks are then applied to the image in order to obtain the rainy
version of the original input image.

Haze mask
generation

[optional step]

Rainstreak mask
generation

d2   rain density
�2  gaussian filter
l1    length
�1   angle

Raindrop mask
generation

d1   rain density
�1   gaussian filter
l1    length
�1   angle

Figure 8.3: Steps of the pipeline designed for the synthetic rain generation

8.3 Semantic Segmentation

The automotive field has seen a strong expansion in recent years, where a
crucial role is played by perception systems for autonomous vehicles and for
assisted driving. The development of computer vision techniques in this field
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potentially allows for a decrease of the production costs due to the exploitation
of inexpensive hardware, i.e. RGB cameras in place of depth sensors. Large
benchmark datasets such as the CityScapes dataset have proven to be ex-
tremely valuable in developing and testing automotive-related solutions, such
as networks for monocular depth estimation [30] and for semantic segmenta-
tion [122] of street scenes.

The specialized literature is mostly focused on either improving the model
accuracy, or in reducing the computational complexity of the involved models.
Relatively little effort has been put into investigating and quantifying the
impact of meteorological conditions over the method performance, including
phenomena that alter the image quality such as haze, rain, and changes in
illumination conditions. This is mostly due to the lack of appropriate datasets,
i.e. real-life photos acquired in bad weather conditions, and annotated for
computer vision tasks such as semantic segmentation. For this reason, in fact,
the analysis will resort to synthetic rain augmentation over annotated datasets
for the quantitative experiments presented in this section.

Valada et al. [168] presented a multi-stream deep neural network that
learns features from multimodal data, and adaptively weights different fea-
tures based on the scene conditions. The authors assessed semantic segmenta-
tion on the synthetic dataset Synthia [144] (which includes rainy scenes), but
did not offer a direct comparative evaluation on the presence and absence of
rain-induced artifacts. Khan et al. [101] created an entirely artificial dataset
for semantic segmentation in different atmospheric conditions, to be used as
training data for the task. In this section will be argued that although syn-
thetic data generation is essential in producing an adequately large database,
introducing synthetic rain artifacts over real images would instead offer the
grounds for an evaluation that is closer to a real-case scenario. Porav et al.
[134] focused on the removal of rain droplets, which by definition refer to the
artifacts introduced by a wet glass on a clear day. As such these are only
partially representative of real-case scenarios. Halder et al. [79] developed a
physics-based data augmentation technique, used to train more robust models
for semantic segmentation, although they offer no insights on the benefits of
rain-removal techniques. Recently, Li et al. [111] defined a unified benchmark
for images perturbed by rain streaks, rain drops, and mist, and tested different
methods for rain removal, including among the evaluation criteria the impact
over vehicle detection.
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8.3.1 Dataset and evaluation metrics

Experiments have been performed on the Cityscapes [51] dataset: a set of
urban street images annotated with pixel-wise semantic information. It is
composed of 5000 high-resolution images (2048×1024) out of which 2975, 500
and 1525 images belong respectively to train, validation and test subsets. An-
notations include 30 different classes of objects, although only 19 are typically
used for training and evaluation, plus a background class:

• road • pole • sky • bus
• sidewalk • traffic light • person • train
• building • traffic sign • rider • motorcycle
• wall • vegetation • car • bicycle
• fence • terrain • truck • (background)

The dataset is characterized by a vast diversity of scenes, with images taken
from different cities all with good or medium weather conditions.

Two metrics are used for model validation: avereage of class-wise Inter-
section over Union (IoU, also called Jaccard Index) and average class-wise
Accuracy. These are computed as:

IoU =
TP

TP + FP + FN
(8.5)

Accuracy =
TP

TP + FN
(8.6)

Where TP, FP and FN are, respectively, the number of True Positive, False
Positive, and False Negative pixels.

8.3.2 Experimental Results

In this section are analyzed the performance of the semantic segmentation
model in relation to the condition of the data involved (i.e. “clean”, rainy,
and rain-removed). The evaluation of the model has been done considering
the condition of data used for training as well as for validation.

Three version of the Cityscapes dataset have been considered for the anal-
ysis:

• Clean images: the original images from the Cityscapes dataset.

• Rainy images: images obtained using the synthetic mask generation
algorithm starting from the “clean” images.
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• Rain-removed images: images obtained by removing the rain from
the rainy images version of the Cityscapes, using the rain reduction al-
gorithm.

This analysis has been done with the purpose of studying how the level of
degradation in data can affect the performances of the segmentation algorithm
in inference time, and how it can affect the learning process of the model.

Table 8.1 and 8.2 report respectively the mean Accuracy and mean of
class-wise Intersection over Union.

Table 8.1: Accuracy of semantic segmentation on the Cityscapes validation
dataset: table shows the results in relation to the training data used for the
semantic segmentation network.

Accuracy Test data
Clean Rainy Rain removed

Clean 72.88% 24.73% 41.57%
Rainy 35.34% 35.75% 34.66%

Training data

Rain removed 69.75% 67.00% 67.96%

Table 8.2: Intersection Over Union of semantic segmentation on the Cityscapes
validation dataset: table shows the results in relation to the training data used
for the semantic segmentation network.

IoU Test data
Clean Rainy Rain removed

Clean 62.59% 15.00% 27.50%
Rainy 29.48% 29.31% 27.85%

Training data

Rain removed 58.03% 56.28% 57.64%

As can be seen from the tables, for what concerns the segmentation with
the model trained on “clean” (rain-free) images, the rain removal step helps to
improve the performance with respect to direct segmentation of rainy images.
While, as expected, with the “clean” validation images the segmentation algo-
rithm performs better than the other cases. It is interesting to notice how the
rain-removal pre-processing operation brings to an accuracy improvement of
16.84% and mIoU of 12.50% between the rainy images and the rain-removed
ones.
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For what concerns the other two training cases, the one with the rainy
training set and the one with the rain-removed training set, it’s possible to
observe a different behavior. In both of the cases, independently from the
validation dataset used, the performance of the segmentation model in terms
of accuracy an IoU does not change significantly. This behavior can be related
to the amount of information present in the images used for training. In
the first of these two cases, the network trained with the rainy images is not
able to perform better than 36% in terms of accuracy, and 30% in terms of
mIoU. Since during the training phase, part of the information in each image
is always occluded or corrupted, the model is not capable to learn correct
feature extraction for the classification of some specific classes. Looking at the
per-class mIoU analysis in Figure 8.4b, some of the classes have mIoU of 0%
or values very near to zero. As can be seen, for the three validation sets the
situation is the same for all the classes, behavior that shows how the limited
capability of the network to correctly segment element of the images is related
to the missing information during training time, and not related to the type
of validation data.

Similar behavior can be observed with the model trained with the rain-
removed images. In this case, the performance improves in terms of accuracy
and IoU due to the partially restored information in the training set, after the
use of the rain-removal model. However, the general behavior is the same as
the previous case: even if the model is tested with “clean” images, is not able
to perform better than the other two validation set cases, due to the missing
knowledge in the training images.

In Figure 8.4c it is possible see the per-class analysis: it is easy to observe
the same behavior of the model trained with the rainy images, but it is also
possible to observe an improvement in the segmentation of classes that were
not recognized by the model trained with rainy images. This improvement
is related to the enhancement of the training data due to the pre-processing
step over the training set. Aside, it is interesting how the training with the
rain-removed images has improved the results of the segmentation model with
respect to the one trained with “clean” images.

8.3.3 Visual inspection

Here is presented a visual inspection of the impact of rain and rain-removal
techniques over semantic segmentation. Figure 8.5 clearly shows the dete-
rioration in prediction accuracy introduced by rain-related artifacts (row c).

128



Chapter 8. Rain streak reduction & downstream tasks

0.00%

25.00%

50.00%

75.00%

100.00%

roa
d:

sid
ew

alk
:

bu
ild

ing
:

wall
:

fen
ce

:
po

le:

tra
ffic

 lig
ht:

tra
ffic

 si
gn

:

ve
ge

tat
ion

:

ter
rai

n: sk
y:

pe
rso

n:
rid

er: ca
r:

tru
ck

:
bu

s:
tra

in:

moto
rcy

cle
:

bic
yc

le:

AVG E
xc

el

test clean test rainy test derained

(a) Clean training set
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(b) Rainy training set
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(c) Rain-removed training set

Figure 8.4: Mean intersection over union value for each class of the Cityscapes
test set
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The strong texture of rain streaks completely changes the interpretation of the
road and sidewalk areas, which are mistaken as an obstacle (wall/fence). This
phenomenon occurs despite the strong intrinsic bias of the “road” class, that
appears in the plurality of training data pixels, and that occupies a consistent
area throughout different images. On top of this, small regions such as the
traffic signs and far-away vehicles are completely missed.

By processing the rain-augmented image using our rain-removal network,
it is possible to partially restore the accuracy of semantic segmentation in
some of the areas. As Figure 8.5d shows, the segmentation of the small cars is
almost completely recovered, and part of the road and sidewalk are correctly
identified. A qualitative and subjective evaluation of rain removal on the RGB
image shows arguably less impressive results, suggesting a disconnect between
perceived quality and usefulness for computer vision.

The best results, however, are obtained by retraining the semantic segmen-
tation network using images that were processed with the rain-augmentation
pipeline and subsequent rain-removal. In this case, the prediction in the same
scenario, as depicted in Figure 8.5e shows an excellent restoration of several
details, although some imperfections remain in the top-right corner of the
example image.

For the sake of completeness, a qualitative evaluation is performed over
two out-of-dataset real-life pictures, depicted in Figure 8.6. Specifically, are
reported semantic segmentation results over the original rainy images trained
with the “clean” version of the Cityscapes dataset (column a), and results
over rain-removed images trained with the rain-removed version of Cityscapes
(column b). These two extreme cases show the significant improvement in
segmentation quality that can be obtained by the joint application of our rain
removal network both on training data and inference data. The final results
still show some imperfections, which can be attributed to the different nature
of the image data when compared to the training set, both concerning rain
appearance, as well as the general content and format of the pictures.

8.4 Optical Character Recognition (OCR)

Optical character recognition (OCR) is defined as the automatic conversion of
images of typed, handwritten or printed text into machine-encoded text. OCR
technology is used in a wide variety of scenarios, from the automatic detection
of text from scanned document containing printed text as well as handwritten

130



Chapter 8. Rain streak reduction & downstream tasks

Correct class

Incorrect class

Ignored region

(a)

(b)

(c)

(d)

(e)

Figure 8.5: Impact of rain on semantic segmentation. Row (a) presents the
color coding for semantic segmentation, the ground truth for the analyzed im-
age, and the legend for error visualization. Rows (b) to (e) show, respectively,
the prediction on the original “clean” image, on the image with artificial rain,
on the image with rain removed, and once again on the image with rain re-
moved but using a semantic segmentation model trained on images processed
for rain and subsequent rain removal.

131



Chapter 8. Rain streak reduction & downstream tasks

(a) (b)

Figure 8.6: Visual assessment of rain (column a) and rain-removal (column
b) over real case images, using semantic segmentation trained respectively on
“clean” images, and images processed for rain-removal. Original images credit
Nick Út, and Genaro Serv́ın.
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sentences, to text recognition from photographs of documents, maybe taken
with smartphone cameras, or to recognition of text in photographed scenes.

In this second scenario, the focus is to analyze the impact of occlusions
such as rain streaks and rain induced haze in processes like optical character
recognition. To do so, the proposed model for rain streaks removal has been
tested on data specifically collected and labeled for the OCR performances
analysis, from two different points of view: perceived quality and text recog-
nition accuracy, before and after the image restoration step.

8.4.1 Rainy Street View Images Synthesizing

In order to test the capability of the processing operation to improve the results
of OCR methods, the performances of the proposed model have been tested
using images of street scenes containing text areas. To this end, the Street
View Text Dataset[176], which contains 350 images taken from Google
Street View with high variability in text from signs, have been selected.

Since none of these images has been taken in bad weather conditions (such
as rainy days, presence of haze or snow) each image have been synthetically
augmented with the procedure described in section 8.2.5. A set of parameters
are randomly chosen in a range of possible values, empirically defined, in
order to obtain the most realistic rainy images possible. The resulting dataset
has been called Rainy Street View Text Dataset (R-SVTD). Some
examples of the R-SVTD are shown in Figure 8.7.

8.4.2 Quality Comparison

The first comparison has been done using the most commonly used full ref-
erence image quality metrics, i.e. PSNR and SSIM. In Table 8.3 is reported
the comparison of the proposed method with other four methods in the state
of the art: Fu et al. CNN[64] and DDN [65], Yang et al. JORDER[188] and
Zhang et al. [194].

As can be seen from the table, the proposed method shows better results in
terms of both the image quality metrics considered: with respect to the state
of the art methods, the proposed solution achieved an improvement of +1.5328
dB in terms of PSNR and +0.0027 in terms of SSIM, while with respect to
the rainy input images the improvement of quality corresponds to +3.9642 dB
and +0.0911 respectively for PSNR and SSIM.
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Figure 8.7: Some images from the R-SVTD after the application of the ran-
dom rain mask with MATLAB. To improve the quality of the images, the
mask has been created by combining synthesized streaks and haze.
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Table 8.3: Comparison of the methods in terms of PSNR and SSIM indexes
for the Rainy Street View Text Dataset.

PSNR SSIM
Rainy 20.8128 0.7794
CNN [64] 17.6142 0.6196
DDN [65] 23.0897 0.8678
JORDER [188] 18.5631 0.7522
DID-MDN [194] 23.2442 0.8343
Proposed method 24.7770 0.8705

8.4.3 OCR test

Due to the lack of the possibility to make a quantitative comparison of the
model in terms of accuracy in text detection and recognition, the decision has
been the one of adopting the OCR system provided by Google Cloud Vision
API for a visual comparison. In Figure 8.8 there are some images and their
text detection results before and after the application of the proposed deraining
method.

As can be seen from the examples reported, the proposed deraining method
tends to improve the results of the OCR. In most of the cases, the OCR
is able to detect text areas that were not detected before, even if the text
recognition is not always completely correct. This improvement can be seen
mainly in the case of heavy rain conditions while in general in the other cases
the improvement is not that significant since the OCR used is capable to
correctly detect the text area. In those cases, the proposed deraining method
improves the recognition of few letters with respect to the rainy version. In
the 42% of the cases, i.e. 147 out of 350 images from the Rainy Street
View Text Dataset, the rain removal processing step improved the results
in terms of both text detection and recognition.

8.5 Summary

In this section the rainstreaks removal task has been presented alongside with
the definition of a Convolutional Neural Network model, based on the Pix2Pix
model, for image restoration. Alongside with the classical image quality eval-
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Figure 8.8: Some results over the Rainy Street View Text Dataset with the
relative bounding boxes and detected texts.
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uation of the results, the proposed method has been analyzed in terms of
improvements in performances of other downstream tasks that may benefit
from the presence of a pre-processing step: Semantic Segmentation and Op-
tical Character Recognition. In order to perform the analysis a pipeline for
synthetic rain generation has been defined in order to augment the Cityscapes
dataset and the Street View Text dataset, obtaining different versions of the
datasets for both training and testing.

Concerning the Optical Character Recognition task analysis, the proposed
model has been compared on a dataset composed by street view scenes, to
which have been added synthetically generated rain. This dataset has been
called Rainy Street View Text Dataset (R-SVTD). The comparisons
with the other state of the art methods shown that the proposed model out-
performs the previous obtained results in terms of PSNR and SSIM indexes,
with a respective improvement of +1.5328 dB and +0.0027. Tests on the R-
SVTD dataset showed how the model is capable to restore the structures of
the degraded images in order to improve the results of an OCR model used
after the restoration.

Regarding the Semantic Segmentation task analysis, the proposed rain
removal model has been trained in three different conditions: with “clean”
images, with images with artificial rain streaks, and with images processed
for removal of the artificial rain streaks. In the first case the experiments
show how the application of rain-removal on rainy images gives benefit for the
segmentation step of a model trained in optimal image conditions. The other
experiments, regarding the impact of the degraded information in the images
used for training the model, shows how the application of an enhancement
algorithm can improve the performance of the model at inference time. We
observed an improvement of 34% of accuracy and 30% of mIoU between the
model trained with the degraded images and the one trained with the enhanced
ones.

In the end have been obtained promising results that encourage to continue
working in this direction with a major focus on optimization of those methods,
specifically for those kind of tasks limited by the nature of the images.

As future step, is necessary to put the attention on some points that have
been highlighted by the experiments done. At the moment the model is trained
for the reconstruction of general content images since the training has been
performed on those kinds of contents. A first step can be related to the train-
ing of a model for the removal of rain in relation to the specific content or
information to restore, related to the subsequent downstream task. A second
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point is related to the fact that not in all of the cases the processing opera-
tion gained some improvement. In some cases, the models tend to introduce
artifacts. For example, in the OCR task analysis, the text that was originally
well recognized, change for some letters because of the wrong enhancement
during the processing. Putting attention on that fact, the next step should be
related to the reduction of undesired artifacts in the enhancement operation.
Another possible route to follow is the one that considers the use the results
of the downstream tasks as objective functions for the training of the models,
with the purpose to obtain CNNs to specifically improve the results related to
the next step of image analysis or processing.
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Raindrop Removal From
Camera Lenses

Adverse weather conditions negatively impact the perceived visibility of a
scene. In a street-driving scenario, for example, rain droplets adhering to
the glass surface of a car windshield might occlude crucial elements such as
obstacles, pedestrians, or traffic signs, and are generally distracting to the driv-
ing experience. In addition to hindering human vision, rain-induced artifacts
are also found to affect computer vision: several works in the the scientific
literature quantify the benefits of digital rain removal on a wide variety of
tasks, ranging from object detection [111], to semantic segmentation [199],
to optical character recognition [201]. The problem of image regression, in
its most general formulation, has been addressed with a wide variety of ap-
proaches through the years: from handcrafted solutions [184], to the more
recent exploitation of Convolutional Neural Networks (CNN) [105]. The latter
has involved general-purpose methods for image-to-image translation [88], as
well as domain-specific architectures such as the ones described in Section 9.1.
Compared to other artifacts such as rain streaks and rain mist, rain droplets
impose a significant and specific set of challenges, such as large occlusion ar-
eas and a wide variety of appearances, as show in Section 9.2. This work
is specifically focused on raindrop removal by designing a Laplacian encoder-
decoder neural network. The proposed solution allows to control the image
reconstruction process by producing the different levels of a Laplacian pyra-
mid decomposition of the expected clear (i.e. rain-free) image. This approach
avoids relying on commonly-used attention maps which are inherently limited
by misalignements between the rainy and clear image, a phenomenon observed
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by [9]. The proposed model is trained with multiple losses, evaluating the par-
tial reconstruction at each level of the pyramid. In the training procedure, the
derivation tree has been modified in order to prevent redundant gradient flow
for pyramid levels that impact more than one loss component. This novel for-
mulation, and its integration with the Laplacian decomposition, was found to
be optimal after comparative evaluation with several other alternatives, which
are reported in the experimental results. Future developments of the proposed
method are also suggested based on an in-depth analysis of the relationship
between Laplacian levels and rain removal.

9.1 Related works

The digital removal of rain-induced artifacts has been actively studied through
the years, resulting in an extensive scientific production. A recent review by
[189] presented a comprehensive analysis, ranging from solutions based on
explicit raindrop-appearance models ([71, 121, 188]), to data-driven ones (typ-
ically relying on deep learning: [64, 195]). [175] produced a similar overview
of existing approaches, with particular attention to rain removal in video se-
quences, providing direct links to papers, source codes, project pages, datasets,
and metrics. Rain-related artifacts can be organized in three macro categories
according to [111]: rain droplets, rain streaks, and rain mist. An image is said
to be affected by “rain droplets” (also referred to as raindrops) when the scene
is observed through wet glass: typically, a car windshield right after it rained.
This particular interpretation of the problem is the one addressed in this pa-
per, therefore an analysis of corresponding state of the art solutions is provided
in the current section. The term “rain streaks” refers instead to the visual ar-
tifacts of a scene directly observed when rain is currently pouring [21, 124, 93].
In this case, the terminal velocity of falling rain produces motion-blurred rain
streaks overimposed to the image. Finally, the task of rain-streak removal is
often treated in conjunction with the correction of “rain-induced mist”: in
the same scenario, in fact, rain streaks that are far away from the camera are
not individually discernible, and produce a global appearance equivalent to
that of airborne water [56]. Additionally, some recent works have focused on
the digital removal of snow flakes, training regression models either through
adversarial techniques [92], or more traditional learning procedures [118].

The specific field of raindrop removal is relatively recent, compared to rain
streak and mist removal. [184] developed an handcrafted approach to the
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problem: they focused on droplet detection, by analyzing color, texture, and
shape statistics of raindrop images. Based on these features, their solution
is to produce a first set of candidate raindrop regions, which is subsequently
pruned through a learning-based verification algorithm. The authors then re-
sorted to existing image inpainting solutions in order to restore the selected
image areas. A relevant contribution to the field has then been given by [136],
who in 2018 published a high-quality dataset that has since become the de
facto standard for this area of research. The authors also introduced a so-
called “attentive generative network”, trained in an adversarial configuration.
They injected a visual-attention map to both the generative and discrimina-
tive component of the network, in order to focus the image processing mainly
on corrupted areas. However, whenever attention maps are designed to target
explicit raindrop masks (a function of the difference between rainy image and
clear reference), they are inherently limited by misalignements between the
two images and moving objects, as observed by [9]. They consequently devel-
oped a physically-accurate computer-graphics engine to augment images with
artificial raindrops. Such technique allowed them to exploit existing datasets
unrelated to rain removal, in order to train a model that is able to simul-
taneously locate and remove raindrops in a self-supervised manner. Their
solution, based on a conditional generative adversarial network, is mainly de-
veloped for application to video sequences by exploiting motion cues. [140]
devised a so-called “double attention mechanism” to guide the learning and
inference of a Convolutional Neural Network in the task of raindrop removal.
Their approach relies upon the generation of a shape-driven attention map, to
locate raindrops based on a-priori knowledge on their shape properties. Such
attention map was applied using a channel recalibration mechanism, to prop-
erly weight the intermediate activations of their neural model. [80] released a
dataset of images augmented with physics-based synthetic raindrops, as well
as the associated raindrop masks. They defined a neural network for raindrop
detection which explicitly models the refraction and blurring components of
the raindrop itself. [150] explicitly modelled the blur level of rain droplets us-
ing a soft mask populated through an iterative procedure, and fuse it with the
input image through an attention mechanism. They also exploit multi-scale
analysis based on the observation that different scale versions of a rainy image
have similar raindrop patterns. In developing the final solution, experiments
with different strategies have been performed, and eventually have been de-
fined a neural network that, while not relying on attention maps, still produces
competitive or even superior results when compared to such methods.
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More specifically, the proposed approach to the digital removal of rain
droplets leverages a Laplacian decomposition of the input image, in order to
address the problem at different scales. Decomposing the input image with
various representations has been successfully exploited in the past for rain
streak removal while not for raindrop removal. [99] applied an image decom-
position based on morphological component analysis, specifically resorting to
bilateral filtering. They decomposed the image into a low-frequency and high-
frequency part, and focused on processing only the high-frequency component:
they exploited dictionary learning and sparse coding to further decompose it
into rain and non-rain components, in order to effectively remove the former.
Similarly, [161] also devised an approach that relies on image decomposition
for dictionary-based removal of rain streaks, but embedded and formulated the
decomposition-basis selection as an optimization problem instead of exploiting
bilateral filtering. [66] focused on reducing the computational complexity of
Convolutional Neural Networks for rain streaks removal by representing the
input image as a Gaussian-Laplacian pyramid, and by designing a so-called
“Lightweight Pyramid Network” (LPNet) based on a recursive and residual
structure.

This is the first time that image decomposition is exploited for raindrop
removal. In Section 9.2 and Section 9.3.3 is shown that this application is
particularly appropriate, as the variety of appearances of rain droplets can be
individually handled by exploiting the Laplacian-based image decomposition.

9.2 Proposed method for raindrop removal

Raindrops adhering to a transparent surface in front of the camera (like a car
windshield, or the camera lens itself) degrade the quality of the information
contained in the picture to different extents, depending on the camera focus:

1. In-focus raindrops. The degradation is manifested as blur over specific
areas of the image, affecting both low and high frequencies.

2. Out-of-focus raindrops. Two main effects can be identified:

• A degradation related to the refraction phenomena introduced by
the convex shape of the drop, that affects the low-frequencies.

• A drop contour degradation that is manifested as artifacts in the
high frequencies.
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Figure 9.1: Different kinds of raindrop and their impact on the overall image.
The ones in camera focus tend to introduce artifacts related to the sharp edges
of the single raindrops in combination with the refraction phenomenon. The
ones out of focus tend to remove information where the drops are located, by
blurring the corresponding image areas.
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Figure 9.2: Architecture of the proposed Laplacian Raindrop Removal CNN.
The number of features in output after the first convolution is set to f = 64.
The output of the different levels is combined by up-sampling the lower levels
and summing them to the higher frequencies, in order to obtain the final
output.

An example of in-focus and out-of-focus raindrops can be seen in the sec-
ond row of Figure 9.1. To model the degradation distribution over different
frequencies of the input image, the approach exploits the image Laplacian
pyramid decomposition [34], whose effect is also depicted in figure.
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9.2.1 Laplacian-based image restoration

Given an input image Irainy, the proposed encoder-decoder network G is de-
signed and trained to generate the corresponding levels ŷi of its Laplacian
pyramid decomposition, free of rain artifacts:

Ŷ = {ŷ1, ŷ2, ..., ŷN} = G(Irainy) (9.1)

where ŷN is the tallest level of the Laplacian pyramid, corresponding to the
low frequencies component. The final recomposed output Iderained is then
computed as:

Iderained = LŶ (1) (9.2)

LY (j) =

{
yN if j = N

yj + upsample(LY (j + 1)) otherwise
(9.3)

The proposed network architecture, depicted in Figure 9.2, is divided in
two main components: an encoder for the input Idrop, and a novel decoder
composed of multiple output branches, in relation to the specific formulation
of Laplacian pyramid levels.

The design of the encoder is partially inspired from the U-net model
by [143], with some relevant variations in the convolution and general struc-
ture. More specifically, the encoder is a sequence of two CONV-lReLU-CONV-
lReLU layers with a MaxPool operation, to extract features and to reduce the
spatial dimension. The activations are not reduced to spatial dimensions 1×1
as in the original U-Net architecture, but only reduced down by a factor of
4 (given by the presence of the two MaxPooling operation), to avoid losing
spatial information in the encoded features, which serves an important role in
image restoration.

The deepest part is a sequence of two CONV-lReLU blocks and four
CONV-lReLU blocks with dilation ([192]): these last six blocks of layers have
been added with respect to the original U-Net encoder structure, to increase
the model receptive field without reducing further the spatial feature dimen-
sionality. The dilation spacing increases as a power of two from the first layer
to the last one (2, 4, 8, 16). The depth of output features after the first con-
volution is set to f = 64, and the following ones are derived as indicated in
Figure 9.2.

The decoder, which addresses the actual restoration of the information
at different frequency bands, has been designed in relation to the number N
of levels of the Laplacian pyramid which have to be reconstructed. In the
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experiments, N has ebeen set to 3. The decoder is composed of branches of
two types: one dedicated to restoration of low-frequencies, two dedicated to
high-frequencies. The low-frequencies branch is a concatenation of six CONV-
lReLU with a final CONV(1×1) layer with a Sigmoid activation function to
map from the features space to the RGB color space. The output of this
branch corresponds to the deepest level of the Laplacian pyramid, which is
a low-resolution version of the rain-free image, and which will be combined
with the highest levels generated by the model according to Equation 9.1.
The high-frequencies branches are designed to restore the details and the fine
structures in the image. The corresponding Laplacian pyramid levels all share
common characteristics: values centered around zero and a general appearance
that is not as intelligible as that of the lower frequencies. For this reason, the
structure of this part of the model is composed of multiple sub-branches that
incrementally enhance the features from the deepest to the highest level of the
laplacian pyramid. Each higher branch is an extension with respect to the
previous level in the Laplacian pyramid, i.e. it takes the features decoded by
the preceding level to restore its own. The decoder blocks are composed of four
CONV-lReLU layers plus a transposed convolution, to upsample the features
for the higher Laplacian level, and a CONV(1×1) with a Tanh activation
function to map from feature space to RGB color space.

9.2.2 Laplacian loss function

Given a target rain-free image Iclear, the corresponding Laplacian pyramid
levels Y are extracted to be compared with the restored output Ŷ . The pro-
posed loss function Lossd reconstructs the restored image up to each level, and
compares it with the corresponding reconstructed target using the L1 norm
(|| · ||1):

Lossd =
N∑
i=1

||LY (i)− LŶ (i)||1 (9.4)

Instead of directly comparing the generated frequencies with the target
ones, the proposed approach reconstructs the image up to the specific level at
which the comparison takes place. This strategy, experimentally validated in
Section 9.3.2, is motivated by two purposes:

• Levels balance: the comparison at each branch is always performed on
complete RGB images. This guarantees a magnitude of error similar
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between the different branches, without the necessity to re-weight to the
different components of the loss for regularization purposes.

• Reconstruction context: instead of comparing images composed only
of details taken out of their original context, the comparison using the
reconstructed level can highlight differences in relation to the context
in which the details are located. This is expected to help the training
in detecting structures introduced by raindrops, in contrast to the ones
coming from elements of the actual scene.

It should be noted that, with the formulation expressed in Equation 9.4,
the evaluation of every Laplacian level impacts all the lower levels during the
gradient back-propagation. Therefore, higher levels effectively influence the
learning process multiple times. In order to prevent this phenomenon, the
flow of gradients during the training process has been modified, by inhibiting
the back-propagation on the lower branches, and maintaining it only for the
current branch.

9.3 Experiments

9.3.1 Experimental setup

To train and test the proposed model for raindrop removal, the dataset and
metodology adopted are the ones presented by [136]. This dataset has been
collected with the same procedure from [57] by placing a glass panel in front of
a camera, and taking pictures before and after spraying the glass with water.
The dataset contains a total amount of 1119 pairs of images depicting different
outdoor scenes. The dataset is divided into three main folders: the train
folder, containing 861 pairs of images, and two test folders: test b (249 image
pairs) and test a (58 image pairs, a subset of well-aligned images from test b).
The folder test a is commonly used for methods assessment and comparisons,
as done by [136, 140, 131, 80, 134]. The folder test b (without the images
contained in test a) is commonly used for internal validation.

The proposed encoder-decoder network has been trained with images from
the train folder, cropped at dimension 256× 256 pixels. The crops have been
collected using a sliding window with overlap equal to 128 pixels, generating
a total amount of 20664 training samples. To further augment the dataset,
online flipping and rotation (90◦, 180◦, 270◦) have been randomly applied to
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the images at training time. For validation and test, test b and test a folders
have been used, as done by [136], [140] and [80]. The model is written in
PyTorch v1.4.0, trained using an NVIDIA Titan V GPU with 12 GB of RAM.
The optimizer adopted is the Adam optimizer [104] with β1 = 0.9, β2 = 0.999
with a starting learning rate lr = 2 · 10−5 decreased by a factor 10× after 300
epochs of training, and weight decay set to 10−8.

Quantitative evaluation is performed using two full-reference quality assess-
ment metrics: Peak Signal-to-Noise Ratio (PSNR) [180] and Structural Simi-
larity Index Measure (SSIM) [181], both computed on the luminance channel
of images in the YCbCr color space. To be noted that SSIM was proven by [12]
to be better correlated with human opinion scores, compared to PSNR.

9.3.2 Evaluation of alternative training configurations

The Laplacian loss function Lossd defined in Section 9.2.2 based on the pro-
posed encoder-decoder network have been compared with a baseline devoid of
any Laplacian decomposition, and with two alternative loss functions that do
exploit the decomposition, but combine the resulting levels in different ways.
All four configurations, depicted in Figure 9.3, exploit the L1 norm to perform
the output-target comparisons, and are described in the following:

• Configuration a: a single loss for a classical encoder-decoder model with-
out Laplacian decomposition. Here the decoder defined in Section 9.2
has been completely replaced with a specular version of the proposed
encoder.

• Configuration b: a single loss exploiting the proposed Laplacian encoder-
decoder, but comparing only the final fully-reconstructed output with the
target image.

Lossb = ||LY (1)− LŶ (1)||1 (9.5)

• Configuration c: multiple sub-losses exploiting the proposed Laplacian
encoder-decoder, evaluating the output of each level individually, but
without the intermediate reconstruction.

Lossc =
N∑
i=1

||yi − ŷi||1 (9.6)
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Figure 9.3: Analysis of different training configurations for encoder-decoder
network: (a) comparison between the output of a classic encoder-decoder
model and the target, (b) comparison between the reconstructed output and
the target, (c) comparison between each level output and the corresponding
target level, (d) comparison between each reconstructed level of the pyramid
and the corresponding target.

• Configuration d: multiple sub-losses exploiting the proposed Laplacian
encoder-decoder, reconstructing the image at each level. This is the
definitive configuration, combining the sub-losses according to Equa-
tion 9.4.

Table 9.1 reports the results of the correspondingly-trained models in terms
of PSNR and SSIM. It is possible to observe how the use of a loss function
that is aware only of the final result (configuration b), is not enough to fully
exploit the power of the Laplacian decomposition. Such a model, without a
control on the output of the single levels, obtains worse results with respect
to a single encoder-decoder trained with the same distance function and with
no Laplacian decomposition (configuration a). Configuration c compares the
results of each branch with the corresponding target version, but without the

148



Chapter 9. Raindrop Removal From Camera Lenses

Table 9.1: Study on the training configuration: results achieved training the
proposed model using the different loss function configurations. Evaluation
performed on test a from the dataset by [136].

Training configuration PSNR SSIM

a: Single loss, classical encoder-decoder 30.14 0.9198
b: Single loss, reconstructed image 29.76 0.9200
c: Multiple sub-losses, individual levels 30.56 0.9252
d: Multiple sub-losses, reconstructed levels 31.12 0.9297

Laplacian reconstruction step for the corresponding levels. In this case, an
improvement is obtained with respect to both single-loss configurations a and
b. In this configuration, the training of each branch is directly related to the
reconstruction of a certain frequency band: each level is thus focused on the
restoration of certain details, without considering the other branches’ contri-
bution to the final restored image. However, due to the different nature of the
images generated at the different branches (low frequencies and high frequen-
cies), the magnitude of the sub-losses during training is different. Without
any weighting-based regularization, therefore, this configuration is potentially
suboptimal. The final version (configuration d) evaluates the results of each
branch, with respect to the lower levels results. Instead of simply comparing
the branches’ output, the image is first reconstructed up to the interested level,
and only then the loss is calculated. In this way, it is possible to compare the
results of each layer with the corresponding targets, and at the same time, the
losses at the different levels have similar magnitude. Moreover, with this kind
of image evaluation the details introduced by each branch are compared with
the target in relation to the general context of the image in which they are
located, instead of comparing only the map of details modified by the neural
network. This helps the neural network to better identify the presence of rain-
drops that must be removed, in comparison with textures coming from the
original scene.

9.3.3 Laplacian decomposition assessment

The impact of Laplacian decomposition on rain removal have been assessed,
by decomposing test a rainy images as described in Section 9.2, and replacing
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Table 9.2: Effect of replacing each Laplacian level with its perfect ground truth
version. For the “Rainy” columns, “base images” refers to the original images
in test a from [136]. For “Derained”, “base images” refers to the output of
the proposed rain removal network.

Rainy Derained
PSNR SSIM PSNR SSIM

Base images 24.10 0.8511 31.12 0.9297
Perfect level 1 24.61 (+2.1%) 0.9181 (+7.9%) 32.12 (+3.2%) 0.9781 (+5.2%)

Perfect level 2 24.60 (+2.1%) 0.8749 (+2.8%) 31.22 (+0.3%) 0.9402 (+1.1%)

Perfect level 3 28.95 (+20.1%) 0.8885 (+4.4%) 33.92 (+9.0%) 0.9389 (+1.0%)

each level independently with the corresponding clear version (i.e. the ground
truth). For each resulting version, both PSNR and SSIM metrics are computed
and compared with the full ground truth images. The results are shown in
Table 9.2 with the “Rainy” columns.

PSNR reports the greatest potential advantage when resolving the problem
at low frequencies (level 3). Conversely, the higher frequencies (level 1) have
potentially the greatest impact on SSIM, which was in fact specifically designed
to capture structural similarity. To be noted that the upper bound of SSIM is 1,
while PSNR has no upper bound. This first evaluation provides an indication
of how different errors are distributed across multiple levels. It is also possible
to observe that the proposed solution, reported as the “Derained” columns
for the base images, outperforms all the individual level replacements for the
rainy images, showing that it effectively brings an improvement at more than
one level.

It’s then possible to quantify the upper bound of improving the current
solution one level at a time, i.e. by determining the potential impact of per-
fectly restoring either of the levels from derained images. This is done, once
again, by replacing each level individually with the corresponding one from the
ground truth images. The results are shown in Table 9.2, with the “Derained”
columns, and in Figure 9.4 for a view of the entire distribution. For SSIM,
the largest possibility for improvement still appears to be working on level 1
(high frequencies). Interestingly enough, for PSNR can be observed a large
potential improvement by working both on level 3 and level 1. In general, this
suggests to focus on details at high frequencies, which would have a positive
impact on both evaluation metrics, and which is left as a direction for future
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Figure 9.4: SSIM and PSNR distributions corresponding to replacing each
Laplacian level of derained images (“base images”) with a perfect version from
the ground truth. The comparison is always performed with the full ground
truth. Kernel Density Estimation [145] is applied to the distributions to facil-
itate interpretability.

research.

9.3.4 Comparison with the state of the art

Here a comparison of the proposed Laplacian encoder-decoder network is
done with state of the art methods for raindrop removal: [57], AttentiveGAN
by [136], [140], [80], DURN by [117], [131], [150] and an image-to-image general
purpose method, named Pix2Pix [88]. The comparison, done in terms of stan-
dard measures PSNR and SSIM on test a and test b from [136], is reported
in Table 9.3, while Figure 9.5 presents a visualization in Cartesian representa-
tion (PSNR on x-axis and SSIM on y-axis). For both metrics, the higher, the
better restoration.

As it can be seen in Table 9.3, the proposed method outperforms the state
of the art solutions on the standard test set test a in terms of SSIM, and
achieves comparable performance for PSNR. [9] report the results of their
method on the test a set of the same dataset in terms of PSNR and SSIM values
as 31.94 and 0.945 respectively, thus obtaining good performance. However,
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Table 9.3: Quantitative evaluation of methods for raindrop removal on test a
and test b from the dataset by [136]. Results on test b are reported from [150].
Best result in bold, second-best underlined.

test a test b
Method PSNR SSIM PSNR SSIM

[57] 28.59 0.6726 - -
Pix2pix - [88] 30.14 0.8299 23.50 0.7150
AttentiveGAN - [136] 31.57 0.9023 24.92 0.8090
[131] 30.72 0.9262 - -
[140] 31.44 0.9263 - -
[80] 30.17 0.9128 - -
[134] 31.55 0.9020 - -
DURN - [117] 31.24 0.9259 25.32 0.8173
[150] 31.47 0.9235 25.35 0.8197
Proposed method 31.12 0.9297 25.40 0.8185

Table 9.4: Comparison of average inference time for different methods. The
proposed model was evaluated on an NVIDIA Titan V GPU. Other values are
reported from [150], evaluated on an NVIDIA RTX 2080Ti GPU.

Pix2Pix AttentiveGAN DuRN Shao et al. Proposed method

Time (s) 0.025 0.034 0.018 0.141 0.054

since their solution was trained on different data, the results are not directly
comparable. To further analyze the performance of the proposed model on
a larger dataset, the proposed solution have been tested on the test b set
from [136], comparing it with the results from other methods as reported
by [150]. As can be seen in Table 9.3, the proposed model outperforms the
state of the art in terms of PSNR, while the SSIM index reaches comparable
results with the model by [150]. Furthermore, it is interesting to notice the
performance drop of AttentiveGAN [136], which can be associated with sub-
optimal generalization effectiveness, observed when testing the model with a
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Figure 9.5: PSNR-SSIM comparison of the state-of-the-art-models and the
proposed proposed method on test a and test b from [136]. For both metrics
a higher value means better visual results.

higher number of images. In this sense, the proposed solution shows a more
stable behaviour, being capable to better generalize, and perform generally
better than the best performing ones on the smaller set test a.

An additional term for comparison is to account for the average running
time during the inference phase. In Table 9.4 is reported the timing assessment
performed by [150] on various methods, using an NVIDIA RTX 2080Ti GPU,
and compare these with the proposed model, evaluated using an NVIDIA
Titan V GPU, which is an inferior hardware configuration. The observations
that can be derived are limited by the differences in the experimental setup,
however, it is possible to observe that the proposed solution is faster than the
method by [150], while being in the same order of magnitude as the other
compared methods.

Concerning a visual comparison of the models, in Figure 9.6 and 9.7 are
reported some processed images from the test a set. The comparison was
performed against the methods from [136] (AttentiveGAN) and [140], whose
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code and models are publicly available. The images were selected in order to
highlight a variety of scene and droplet types. It is possible to observe that
the proposed encoder-decoder network produces a satisfactory restoration of
homogeneous areas, as well as regions occluded by large out-of-focus droplets,
while maintaining little-to-no artifacts related to refraction phenomena. To
further prove the effectiveness of the proposed solution, a test of the model
on an out-of-dataset scenario has bee performed. In Figure 9.8 are shown
two frames from a video sequence captured using a car dash camera, during
a storm. Once again the proposed approach is compared with AttentiveGAN
by [136] and the model by [140]. As can be seen, the proposed solution is
able to remove raindrops from the input images, which is particularly evident
in the second reported frame, at the same time preserving details (trees from
the first image) and avoiding the introduction of color artifacts (trees from the
second image).

9.4 Summary

In this last part of the thesis is presented an encoder-decoder neural network
for adherent raindrop removal, motivated by the perspective of improving the
visibility of an acquired scene. The described neural architecture takes advan-
tage of image decomposition, by generating the Laplacian pyramid levels of a
rain-free version of the input image. This formulation deconstructs a problem
that is inherently characterized by a variety of appearances, and allows the
proposed model to potentially address each frequency band with a different
strategy. Moreover, a loss function has been specifically designed in order to
takes into account the different nature of each Laplacian level, and has been
also shown its suitability in a comparison against other possible formulations
of the loss function itself. The effectiveness of this solution was also demon-
strated with respect to existing state of the art methods for raindrop removal,
which are outperformed in terms of structural similarity on a standard test
set.

To provide a direction for future research, investigative experiments have
been conducted to understand what components of the image offer the greater
chances at improving the model performance. The conclusion of these exper-
iments is that both SSIM and PSNR measures would benefit significantly by
focusing on the lowest level of the Laplacian pyramid, i.e. by improving the
reconstruction of high frequencies. In general, the current model could be fur-
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ther developed by exploiting alternative representations, and its efficacy could
be evaluated on other types of weather-related artifacts, including rain streaks
and snow.
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Figure 9.6: Visual comparison of methods for raindrop removal. The proposed
proposed model correctly restores information on uniform areas and near edges
coming from the original scene. Zoomed crops and the corresponding SSIM
maps are reported to facilitate the results interpretation.
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Figure 9.7: Visual comparison of methods for raindrop removal on heavily-
textured areas. The proposed model correctly reconstructs some of the com-
plex structures occluded by out-of-focus raindrops. Zoomed crops and the
corresponding SSIM maps are reported to facilitate the results interpretation.
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Figure 9.8: Results of rain removal on out-of-dataset images acquired with a
car dash camera during a storm. The proposed model is able to restore im-
ages from a real-world scenario, removing raindrops and restoring details and
structures corrupted by the presence of raindrops. Image credit Eli Christman
(https://flic.kr/p/285SQMa).
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Conclusions

This thesis had the objective of identify, design and test new and more robust
modules for image processing and restoration that can improve the quality of
the acquired images, in particular in critical scenarios such as adverse weather
conditions, poor light in the scene etc... To accomplish this objective, an
analysis of the digital camera processing pipeline and the possible artifact and
defects that can affect images taken by cameras has been done. The result of
the analysis led to the division of the image artifacts into two main groups:
“in camera generated artifacts” and “external artifacts”.

Regarding the first group, four different modules of the camera pipeline
have been identified and so new approaches exploiting machine learning have
been designed in order to substitute the original camera modules or correct
the image processed by those steps in the camera pipeline. For the second
group of identified artifacts, new machine learning approaches to post-process
the images have been designed, alongside in-depth analysis on the impact of
image processing approaches.

In camera generated artifacts

The first module is the Auto White Balancing one. In Chapter 5 a new
approach based on the concept of combinational technique exploiting simple
multi-layer perceptron is presented. The proposed model has been designed
with the purpose of obtaining a good compromise in terms of performance and
efficiency, due to the constraint of obtaining a procedure that can potentially
be integrated into digital processing pipelines. The proposed approach exploits
the assumption over the content of the images made by classical illuminant es-
timation approaches, such as Gray World, White Patch, Shades of Gray, etc..,
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by combining their different estimations into a new, more precise one. The
combination procedure is performed using a multi-layer perceptron model,
trained by backpropagation procedure using supervised learning techniques.
Two versions of the approach have been presented, one focused on perfor-
mances and another one focused on efficiency. These proposed configuration
has proved to give comparable performances with more heavy and complex
approaches in the state of the art. The proposed framework for combination,
due to its lightweight and efficient nature, has also been extended to temporal
color constancy, by the introduction of the use of long short term memory
(LSTM) modules. The extension has been tested on benchmark datasets for
temporal color constancy, achieving comparable results with respect to the
state-of-the-art approaches with high improvements in terms of efficiency.

The second module is described in Chapter 6 and covers the contrast cor-
rection and enhancement step of the digital processing pipeline. Here has been
presented an approach for contrast enhancement algorithms parameter opti-
mization, based on deep semantic features extraction and user preferences in
terms of image aesthetic. Exploiting a deep convolutional neural network, pre-
trained on a large image classification dataset, and a logistic regressor, user
preferences have been modeled on the basis of a dataset proposed by previous
work from Adobe [91]. To perform the training of the model two different
procedures, one for cleaning the data points used and another one to augment
the entire dataset have been designed and used. This model of user preferences
on processed images has been adopted as the objective function for the opti-
mization of three different algorithms for single image contrast enhancement.
The experimental results show the potentiality of the proposed framework,
by improving each algorithm performances in two different configurations of
optimization: an optimization based on a training dataset, which gives for
each algorithm a set of possible parameters which can be used directly on new
images, and a per image optimization procedure, where the parameters are
optimized for each new image. These two configurations show also how the
optimization procedure can be adopted for the optimization of efficient mod-
ules that can be directly integrated into the digital processing pipeline, and as
optimization of algorithms in post-processing scenarios.

The third and fourth artifacts considered are the JPEG compression arti-
facts and the camera noise. In Chapter 7 a new approach based on autoen-
coders neural network for blind JPEG artifact reduction has been presented.
The design of this model, which is intended to be used as a post-processing
step for image enhancement, is based on a combination of autoencoder neural

160



Chapter 10. Conclusions

networks which mimic the JPEG compression procedure in a backward way.
The proposed approach restores the luminance and chromaticity components
in two separate steps, first by enhancing luminance information, then using the
restored information as a guide map to perform the chromaticity component
restoration. The training of this model has been performed with a dataset
of images compressed with different compression factors, to make the model
blind and capable to restore any kind of JPEG compressed image. Experimen-
tal results on standard datasets show how the proposed approach outperforms
the state-of-the-art existing methods and that the proposed solution can gen-
eralize to test images that are compressed with compression factors never seen
in the training phase. With the main purpose of proving the potential use of
such a model on other image restoration tasks, with a very limited amount
of changes, the proposed JPEG compression artifact reduction approach has
been adapted to camera sensor noise removal. The adapted model has been
presented at the NTIRE 2019 workshop challenge, competing with more than
200 different methods and being included in the short list of the best methods.
Experiments show how the proposed adaptation can actually compete with ad
hoc designed models for noise removal, by simply using a different dataset and
with small modifications in the model architecture.

External artifacts

With the term “external artifacts” are referred all of the elements that can
affect final image quality that come from the scene and are not directly related
to digital processing steps. In this thesis have been considered the artifacts
related to images taken in rainy weather conditions. In particular have been
considered raindrops, rain streaks and rain-induced haze.

The first approach designed to treat artifacts belonging to this group is de-
scribed in Chapter 8. In this chapter, a method for the removal of rain streaks
and rain-induced haze from single images has been proposed and analyzed.
The main focus of this first chapter in this group is the analysis of image pro-
cessing methods using downstream computer vision tasks : optical character
recognition (OCR) and semantic segmentation. To perform the analysis, a
Generative Adversarial Network for rain streak removal has been proposed,
alongside a dataset augmentation procedure to generate synthetic rain. In the
OCR case scenario, the proposed model for rain removal has been adopted to
reduce rain in images from street views containing text: the images obtained
after the enhancement step have been analyzed using the canonical metrics
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for image perceived quality assessment and by analyzing the performances of
an OCR algorithm on both rainy and cleaned images. In the second case,
images from the Cityscape dataset have been augmented with synthetic rain
and then restored with the adopted model for rain reduction. Those images
have been processed by a convolutional neural network for semantic segmen-
tation and the obtained results have been analyzed in terms of accuracy and
intersection over union. The experimental results show how the application of
image processing operation can improve not only the perceived quality of the
images but also the usability aspect, giving benefits in terms of performances
of downstream tasks.

Finally, in Chapter 9 is proposed a new approach for raindrop removal from
camera lenses (or glass surfaces in front of camera) based on autoencoder neu-
ral network and image frequency decomposition. The model proposed in this
last chapter has been designed in order to process information at different
frequency bands, by restoring different levels of the Laplacian pyramid de-
composition of the input images. In this work, a new architecture has been
proposed, alongside multiple loss function configurations for the training of
such a model. Here an analysis of the impact of the different loss functions
has been done, and the final proposed method has been tested on standard
datasets. The experimental results showed how the proposed approach based
on the exploitation of the frequency analysis can obtain comparable or even
better results, in comparison to other more complex models which rely on ex-
ternal information to perform the restoration process, such as attention maps
or raindrop location maps.

In this thesis, the main focus of the optimization procedures presented were
the single modules of the camera pipeline. A future step can be the one of
generating digital processing pipelines optimized in order to have different
behavior for different kinds of scenarios: the final usage of the images can be
considered as the final objective of the processing operation. It is possible
to imagine optimizing not only the modules in relation to the single type of
artifact, but also the entire processing pipeline with respect to the general use
case scenario.
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