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ABSTRACT

Social demand for robots to be our partners in daily life has been rapidly increasing. Cognitive
robotics should play a major role in making robots our partners. To discuss the role of cognitive
robotics, we organized the round table in December 2020. This review paper aimed at clarifying
the role of cognitive robotics summarizing the discussion in the round table. The round table noted
that the existence of uncertainty in the continuous control loop is a source of the need for cognitive
robots and is the key factor that distinguishes cognitive robotics from the cognitive system in other
fields. This paper summarized the discussion focusing on the creation of several cognitive functions
without stopping even if the robots face novel uncertainty in daily life. We discussed information
generalization, active sensing, prediction, and language communication as the necessary functions
for future cognitive robots. One of the conclusions of the discussion is the importance of setting
primitive but concrete targets for cognitive robotics research as cognitive robotics problems. We
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should continue to discuss the setting of these targets as a grand challenge for cognitive robotics.

1. Introduction

What is the role of cognitive robotics? Today, the line
between automatic machines and what people commonly
call robots is becoming increasingly blurred. However,
robots were originally conceived as artifacts that move
in a more biological or animal-like manner. Therefore,
many robotics researchers are seeking to develop robots
that can live with us and help each other.

Recently, the social demand for robots to become our
partners has been rapidly increasing. For this purpose,
robots need to perceive the environment, understand
the surrounding circumstances, communicate with peo-
ple, and move safely sharing the same environment with
humans. Although the abstract argument that ‘a high
level of cognitive function is essential for those robots’ is
not in dispute, the kinds of required cognitive functions
remain an open question.

In psychology, cognition refers to the process of
acquiring knowledge and understanding through the
senses, thought, and experiences [1,2], implying that cog-
nition is mainly a one-way process from the perception
to the understanding of the environment. In the fields
of behavioral biology [3] and artificial intelligence [4],

which focus more on dynamic problems, the meaning of
cognition has become broadened to include not only the
one-way process of understanding a given situation, but
also the process of creating motion with the functions of
learning, memory, and motion controls as a signal loop.
We are very curious about how robotics will contribute
to improving the concept of cognition.

In 2014, the Technical Committee of Cognitive
Robotics (TC-CoRo) [5] was established at the IEEE
Robotics and Automation Society to encourage discus-
sion of cognitive robotics research. Prof. Giulio Sandini,
founding principal chair of TC-CoRo, stated at the time
when TC-CoRo was launched that cooperation among
various fields of science is essential for realizing a truly
useful cognitive system, and that robotics need to serve
as a ‘melting pot’ for integrating these sciences.

This message arises from the important feature of
robotics that all of the functions implemented in a con-
troller are embodied as robot behaviors in the real world.
We can observe and analyze the details of the imple-
mented functions in the behaviors beyond the theoretical
and abstract discussions. This feature of robotics pre-
vents the discussions of the conceptual functions from
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Figure 1. Conventional approach: Everything is modeled and the controller is designed to fit the model. Uncertainties such as modeling
error and measurement noise are dealt with by the robustness of the controller. Required control system: Higher level uncertainties such
as behavior targets in terms of context and communication with humans exist in the control loop. In this case, cognitive systems are

needed for robot control.

becoming too diverse and too general. Consider this fea-
ture in terms of the contribution of robotics to improve
the concept of cognition, robotics can provide a field to
connect the computation and the behaviors with physi-
cal contacts with environment and communication with
others, where we can discuss in-depth cognitive func-
tions including the existence of cognition in the process
and the role of cognition.

In order to clarify this role of robotics, we held an
on-line round table entitled “‘What is the role of the next
generation of cognitive robotics?’. In the round table, we
discussed the topic ranging from the basic skills for cog-
nitive functions to implementation in the real world (all
discussions are available at [6]).

In this paper, we summarize the discussions from the
round table to clarify the appropriate cognitive system
for robot control and the proper direction of cognitive
robotics research in the future. To summarize the discus-
sions from the round table, we first need to clarify why
cognitive systems are necessary from a robotics point of
view. In classical robotics, robots are controlled using
a system as shown in Figure 1(a). In this framework,
important information for control such as the robot bod-
ies, the environment, behavioral goals and constraint
conditions are modeled, and a controller matching to
the model is designed. One of the critical problems of
this model-based approach is the error from the model.
Even in a stable environment such as in a factory, as
long as the robot moves and that movement is mea-
sured by sensors, uncertain modeling errors and sensor
noise are inevitable. The common method for dealing
with these uncertainties is to design robustness into the
controller. Through the many discussions for modeling
methods and robust controller design, the model-based
approach has been a great success for creating robots that

have abilities superior to humans in quick and accurate
repetitive tasks in stable environments, as exemplified by
industrial robots.

However, as the applications of robots have become
more diverse, it has become increasingly difficult to
deal with the uncertainties by only controller robustness.
Especially in daily life, robots face uncertainties that are
qualitatively different from those in a factory, such as sit-
uations in which the environment is always changing or
behavioral goals can only be set in context. Interactions
with humans including communication using ambiguous
expressions are also important uncertainty in daily life.
These types of uncertainties cannot be dealt with by the
conventional robustness of the controller. At this stage,
we clearly recognize that cognitive functions are needed
for robots beyond the conventional robustness.

In the round table discussion, in addition to the high
class of uncertainties, we considered continuous control
as another important feature of the cognitive system in
robotics. In order for a robot to be a partner in daily life,
it must manage uncertainties in appropriate ways without
stopping control, even if the uncertainty is a completely
novel one.

These two points described in Figure 1(b) can be
the key problems of cognitive robotics. In other words,
the capability of overcoming novel uncertainties on-
line through robot body-environment interactions dis-
tinguishes cognitive robotics from cognitive systems in
other fields.

What are the key issues for continuous control with
uncertainties? In the round table, several important can-
didates for the key issues were raised, namely, general-
ization, active sensing, prediction and language commu-
nication. In this review paper, we discuss these topics
focusing on continuous control with uncertainties. As
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Figure 2. The objects and robots used in the experiments of [8,9]. The image on the left shows 500 objects. The robot is shown at the
top right. The bottom right shows the human-labeled categories of the objects used in the experiments.

mentioned above, the approaches to establish these func-
tions without stopping robot control in the real world
is the key problem for cognitive robotics. The discus-
sions in this paper review the various system for cognitive
robotics from this point of view and derive a future direc-
tion for research on cognitive robotics. Artificial intel-
ligence based on machine learning is also an important
tool for cognitive robotics. How to use various types of
tools in continuous control is also an important target of
discussion.

In Section 2, we first discuss the importance of
and the problems associated with environment informa-
tion generalization and derive an important approach
for using generalized information. We also discuss the
role of active sensing for information generalization. In
Section 3, we show the importance of prediction for
robots beyond the conventional dynamics-based predic-
tion when living with humans in the same environment.
In Section 4, we deepen our discussion on the possibili-
ties that language communication between humans and
robots creates. In Section 5, we conclude this paper by
showing the importance of building common targets for
cognitive robotics problems.

2. Environment understandings

2.1. Importance of information generalization for
cognitive robotics

How should a robot handle the environmental infor-
mation when the environment becomes complex? The
concept of ‘the complexity of the environment creates the
complexity of the behavior ’, as represented by Subsump-
tion Architecture [7] in which various reactive behaviors
are designed a priori, has many implications. However,
as another important approach, many cognitive robotics

researchers will agree with the idea that generalization
of the environmental information is an important solu-
tion for robots to understand the environment and move
in complex environments. Moreover, when the complex-
ity of the environment includes ambiguity in behavioral
goals and communication with humans, generalization
of the environmental information is necessary for robots.
In this section, therefore, we will summarize the several
approaches of information generalization to understand
the environment and discuss the appropriate functions
for robot controls in the complex environment.

2.2. Labeling for environment understanding

Labeling of the surrounding environment is an impor-
tant first step toward understanding the environment.
Several approaches have been discussed for labeling the
environment with robots. Nishihara et al. have succeeded
in grounding about 100 words to more than 500 objects
shown in Figure 2 through robot-human interaction
[8,9]. This study is based on the idea that object categories
can be learned unsupervised by co-occurrence of object
multimodal features. In other words, by clustering multi-
modal features, it is possible to extract the main features
that can represent the category and discard the features
that are not so relevant.

This result can be said to realize generalization. In
addition, linguistic information given by humans is also
an important clue for forming categories. However, since
robots do not have linguistic knowledge such as a lexi-
con in advance, that linguistic knowledge cannot be used
immediately. Robots need to segment human utterances
and learn what phonological patterns exist to acquire
words. The authors solved the problem of finding the
connection between them while learning this word and
the multimodal features obtained from the object at the
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Figure 3. Ahuman user is teaching an in-hand manipulation action on a specific object. The robot can then generalize the learned action

on different objects, e.g. smaller or larger objects. Adapted from [11].

same time. This mimics the process by which a baby, who
cannot understand the meaning of words at all, gradually
learns the names of objects statistically through inter-
actions with his parents. Furthermore, Miyazawa et al.
extended this idea to robot action learning [10]. This
showed that robots can generalize objects, their names,
and actions and connect them to each other at the same
time.

2.3. Sensitivity and insensitivity to the environment
for cognitive robotics

In the process of generalization of environmental infor-
mation, computation need to be ‘insensitive’ to the small
environmental changes. For instance, the teddy bear in
Figure 2 needs to be labeled as a ‘teddy bear’ even if
a small change occurs such as becoming slightly bro-
ken or dirty. The capability for insensitivity to small
changes is essential for a stable understanding of the
environment.

However, understanding the environment in a stable
way is not always an advantage. Stable understanding
may reduce the diversity of robot behaviors in response
to the complexity of the environment. This fact implies
that the robot behavior will become uniform and lack
the ability to adapt to environmental changes if the robot
uses only generalized information. The controller thus
requires aspects of both high and low sensitivity to the
environment.

Several approaches have been proposed for balanc-
ing stable understanding and reactive behavior control.
Solak et al. proposed a robust compliant controller for
dexterous in-hand manipulation by combining Dynami-
cal Movement Primitives for generalized movement with
Virtual Springs Framework for real-time feedback of the
contact forces measured on the robot fingertips [11].
They experimentally succeeded with in-hand translation
and rotation of unknown objects as described in Figure 3.
Choi et al. discussed the object handling problem by
combining controllers for reactive motion and for the
target posture setting [12,13]. This approach considered

realistic sensor modalities with reasonable delays in daily
life for each controller to create appropriate behaviors,
thereby creating dexterous handling motions.

Recently, deep reinforcement learning has been used
to learn in-hand manipulations of a Rubik’s cube with a
dexterous robotic hand [14]. Although it is impressive to
see how interesting strategies (e.g. finger gaiting, multi-
finger coordination, controlled use of gravity) would nat-
urally emerge in the robot behaviors to solve the task,
the approach requires to collect a large amount of anno-
tated data and the robot was not required to hold the
object against gravity with the fingers while manipulat-
ing it (i.e. the Rubik’s cube is held on top of the palm of
the robot hand). Interestingly, in [15] the reinforcement
learning procedure is combined with a low-level reactive
controller based on tactile feedback, permitting to learn
more complex in-hand manipulation tasks while mini-
mizing the amount of failures during learning. However,
none of these works have shown generalization to differ-
ent objects being manipulated. The work in [11] achieves
generalization to new objects by representing the object
movement using a virtual reference frame attached to the
fingertips, based on the Virtual Springs Framework. By
using this representation, in-hand manipulation actions
are learned from human demonstrations using Dynami-
cal Movement Primitives and then executed with a com-
pliant reactive controller that uses feedback of the contact
forces measured on the robot fingertips. The reported
experiments show that learned in-hand motions (e.g.
arbitrary translations and rotations) could be then exe-
cuted by the robot on different objects, as described in
Figure 3.

The combination of generalized information and reac-
tive control is useful not only in in-hand manipulation
but also in mobility control. Okajima et al. proposed
[16] bipedal walking control using generalized behav-
ior goals with reactive behavior tuning by tacit learning,
which is a behavior-based adaptation architecture [17].
They successfully turned the walking direction by chang-
ing the simple signals that represent the motion inten-
tions. Control loops of different frequencies in a single



control system can contribute to balancing the stability
and reactivity to environmental information. Miyazaki
et al. showed the stability of the bipedal walking control
dividing it into the two modes for singular perturbation
analysis [18]. They discussed the motion of the center
of gravity in the slow mode subsystem as a global loco-
motion factor, while each joint motion was dealt with
in a fast mode subsystem. Taniguchi and Nagai et al.
demonstrated that mobile robots can move around for
the purpose of shopping while symbolizing the objects
in the shop [19].

These research results suggest that one of the impor-
tant advantages of stable understanding by generalizing
environmental information is the autonomous setting
of behavior goals in the continuous control loop while
using reactive motions to adopt the behaviors to com-
plex environmental changes. The simultaneous use of
both functions with sensitive and insensitive to environ-
mental changes is likely to become more mainstream for
adapting to the environmental changes and for under-
standing the environment by using generalized informa-
tion.

2.4. Active sensing for effective perception

To achieve the generalization of information, the choice
of information, that is, which information to use and
which to discard, is also an important issue. When we
consider human senses, we are not only insensitivity to
environmental changes but we also unconsciously ignore
some of the environmental information for the purpose
of generalization. In the round table discussion, we posed
the question ‘When to stop sensing and start acting ?’
and discussed what combination of sensing and action
initiation is needed to produce appropriate sensing in
a complex environment. In this context, Prof. Dimitri
Ognibene mentioned the importance of active sensing.
He pointed out the limitations of the immediate and full
perception of any non-trivial environment because of
the sheer amount of data flowing in the sensors from
the environment even though we succeeded in creat-
ing well-organized information generalization system.
At the same time, sensory limitations, such as occlu-
sions, limited resolution, signal-to-noise ratio, and oth-
ers impede achieving the perception of the environ-
ment even with state-of-the-art sensors and algorithms
[20,21].

By extending control to robots’ own sensors, active
vision [21-26] represents a biologically inspired strategy
for dealing with sensory limitations. Directing the sen-
sors allows the robot to become sensitive to the relevant
parts of the environment, which may have been inacces-
sible till that moment, while obtaining insensitivity to the
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irrelevant ones that become inaccessible after the change
of sensory configuration, e.g. get out of the field of view.

Active vision can then be seen as a physical embod-
iment of the interaction between sensitivity and insen-
sitivity discussed before. By transferring parts of the
computational implementation of this complex interac-
tion to the physical level, active vision can have such
advantages that evolution appears to have etched it into
the anatomy of the human eye. Indeed, the eye has a
high-resolution area, fovea, that can maximize sensitivity
to relevant information and a low-resolution periphery
that helps directing the fovea [25,27]. Humans’ eye con-
trol also reflects the contextual optimization of sensitivity
and insensitivity: in fact humans follow different sensing
strategies when performing different tasks and access ‘on
demand’ the information most relevant for the current
state of the task [28,29].

However, this computational simplification is just a
supplementary advantage of active perception systems
that tackle the imperative of minimizing uncertainty
under unavoidable sensory limits [30]. While in some
relatively simple environments useful active perception
strategies can be implemented even by reactive con-
trollers, i.e. direct sensor-action mappings [31,32], in the
general case, active perception [33] may require repre-
sentations and computations [34] more complex than
those usually found in typical robot control tasks. This
is caused by the necessity to accumulate useful infor-
mation that could become inaccessible at the next time
step [27,35-38], and predict the next most informative
actions [39,40], all of which can be computationally hard
[41,42]. Considering its computational and representa-
tional demands as well as its crucial role for the employ-
ment of robots in non-trivial contexts [37,43,44] active
perception may be one of the main reasons to develop
‘cognitive’ robots [45].

‘Deciding when to stop sensing and start acting’ or, in
other words, the trade-off between gathering more infor-
mation or greedily performing the current best action,
which can also be seen as a formulation of the famous
exploration-exploitation dilemma [46,47], is an impor-
tant aspect of active perception. This aspect becomes
even more important when considering social interac-
tion and learning, two central requirements for cognitive
robots’ applications.

Another challenge comes from learning under active
perception conditions. Recently, several methods to
learn active perception skills in simulated environments
with realistic stimuli have been presented [37,43,44,48].
However, these approaches often permit several types
of simplifications leaving how to learn new active per-
ception skills in real environments still an open ques-
tion. Indeed, learning to overcome sensory limitations
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has been shown to present several theoretical issues [49].
Yet some experimental results show that both attention
and active perception may largely speed up learning and
improve generalization by exploiting their ability to be
insensitive to irrelevant stimuli [25,50].

2.5. Future direction of information processing for
cognitive robotics

As Prof. Doyle pointed out, biological control systems
can be represented by Bow-tie structure [51], in which
the dimensionality of the environmental input signals
is first reduced before several signal processing is per-
formed using the low-dimensional signals [52,53], and
then the signals are again taken back to a higher dimen-
sionality to achieve adaptive motor control in a complex
environment [54-57]. In biological control systems, it
seems that different levels of generalized signals are used
for different purposes from higher brain functions such
as behavior goal setting, decision making to the low-
level behavior controls such as force control, motion skill
tuning [58] and sensor integration. A biological system
can overcome novel uncertainties in continuous control
using these functions. Although the biological approach
is not the only solution, it is definitely a method that we
should learn from. We need to accelerate the discussion
on how to observe and analyze signals for more adap-
tive and stable behavioral control with understanding the
complex environment.

3. Behavior prediction
3.1. Appropriate prediction for cognitive robotics

One of the most important benefits of robots to be able to
use generalized information well may be the prediction of
future events. Prof. Sandini, founding principal chair of
TC-CoRo, proposed the concept of ‘Beyond Real-time’
[59] for cognitive robotics, suggesting that the ability
to move with predictions of future events beyond real-
time responses is essential for future cognitive robotics.
He stated that this capability is expected to lead to the
notion of cognitive safety, where humans and robots
can live in the same space with a high level of safety if
the robots can predict what the human will do or want
to do [60].

How are robots able to make prediction in the contin-
uous control loop while understanding the environment?
What is the critical difference from the predictions in data
science? The most important feature of the prediction
for robots is that the environment and scene are treated
as dynamics. This is strongly related to the concept of
Embodied Cognition [61-63], where the robot body,

movement, and interactions with the environment play
a significant role in cognition. However, if robots are
to become more active as our partners, ‘dynamics’ need
to have a more human-like meaning rather than simply
saying that they have bodies or movements.

3.2. Important dynamics for prediction of cognitive
robotics

One of the important dynamics of the external envi-
ronment for human-like cognition is changes in the
meaning of objects. The notion of affordance, which is
the concept that the environment affords us the mean-
ing of objects, is the key concept for the dynamics of
the environment in this scope. In terms of the impor-
tance of affordance in robot control, the review paper by
Prof. Lorenzo Jamone [64] has inspired several works in
robotics. Therefore, even though we do not examine it
in depth here, we expect that the robots may make pre-
dictions such as, ‘He will sit down on this table’ when
affordance is well implemented in the robot controller.

Another important type of dynamics for cognition
may be the internal state of the robot according to the
situation as well as the interpretation of the external envi-
ronment. At the round table, Dr Alessandra Sciutti raised
the issue on the importance of ‘embodied communica-
tion’. There are a variety of movements that humans
perform and process unconsciously in other agents. For
instance, when people look around, their eyes immedi-
ately reveal where the focus of their visual attention is,
and it is easy to predict which object they will most prob-
ably take from gaze analysis. Other examples of human
ability to understand implicit signals are the possibil-
ity to recognize someone’s emotional state from subtle
changes in their facial expression [65,66], their voice
[67], or even their body movements [68] or infer their
attention or arousal from a change in their pupil size
[69]. These kinds of predictions are made possible by the
motor regularities which all humans share in their motor
repertoire [70]. Implicit signals are so important for inter-
action because they represent the backbone of ‘emer-
gent coordination’ [71]: mutual adaptation, synchroniza-
tion, and anticipation which occur without awareness
and drastically reduce the cognitive load and delays in
interactions.

The importance of these embodied communications
has been recognized recently not only in cognitive sci-
ence and neuroscience but also in robotics and AI [72].
Robot cognition needs to allow for understanding the
movements of the human partners to enable anticipa-
tion of their intentions. Moreover, robots needs to be
able to plan motions transmitting similar signals [73]
to make the robot actions intuitively interpretable and
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These behaviors are known to be strongly related not
only to emotions but also to the brain higher functions
such as Sense of Agency (SoA) [75] and Time Percep-
tion (TP) [76,77], which have been attracting attention
in recent years for understanding humans’ behavior, and
these internal states are also concepts that can be dis-
cussed only in a continuous control system.

Although it is not known exactly what role plays in
humans, it is certain that they underpin the higher brain
functions of cognition and decision that lead to con-
sciousness. Is it necessary for the cognitive system of a
robot to have such functions? Although the importance
of SoA in robot behavior has not been fully discussed,
the merit of quantifying SoA for robots can be devel-
oped into a discussion of human-robot collaborations.
For instance, Ueda et al. [78] studied the relationship
between the amount of assistance and SoA of subjects
during an operation to quantify the appropriate assis-
tance level for autonomous driving systems. They showed
that a phenomenon similar to the so-called ‘uncanny val-
ley’ also occurs in the perception of SoA. In their experi-
ments, SoA increased up to a certain point as the amount
of assistance increased because the target object moved
more in accordance with intentions of the subject. How-
ever, when the amount of assistance exceeded a certain
level, the subject began to feel a sense of discomfort losing
SoA.
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As described in the paper [78], it is clear that humans
do not feel comfortable with excessive support by robots
though the appropriate level of robot support for humans
has not yet been clarified. Recently, mathematical mod-
els of SoA have been proposed [79], and we can say that
the groundwork for discussing SoA for robots has been
laid. To help each other sharing appropriate SoA between
humans and a robot could be one of the ideal visions for
the future.

3.3. Prediction beyond reality

Dr Sciutti introduced the appealing phrase ‘Beyond Real-
ity’ in the round table, suggesting that robots should not
perceive the world as it is but should have perceptual
and cognitive biases for collaboration with humans. It
is well known that human brains transform ‘real’ sen-
sory signals into the information what we want to sense,
which is sometimes called ‘anthropomorphic lens’. As
a result, perception of the temporal and spatial prop-
erties of actions or the environment can be inaccu-
rate [80], as demonstrated for instance by visual illu-
sions. However, these processes bring several advantages
for collaboration. For instance, when observing a pass-
ing action, the human doesn’t detect the details of the
motion, but naturally understands the features of the
action such as the action goal [81], which is more impor-
tant than the details for good collaboration. The notion
of beyond reality, therefore, could be an important index
for information generalization discussed in the previous
section.

4, Language communication
4.1. Language for cognitive robotics

Language communication is one of the most important
higher-order cognitive functions, as also highlighted in
the round table. Our social activities would not be possi-
ble without language communication, which allows us to
use abstract expressions without detailed definitions. The
ability is learned through communication with people,
beginning with reflexive voice responses and two-words
sentences in infants, and then naturally developing the
grammatical rules. Surprisingly, depending on how and
with whom we communicate in infancy, we can make
any language our mother tongue. The robots, therefore,
must learn and use languages to integrate into human
society.

Prof. Oseki pointed out that, in order to build cog-
nitive robots that process and learn natural languages
like people [82], we should ‘reverse-engineer’ human
language processing and learning, as advocated in the
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computational cognitive science literature. Specifically,
in the computational cognitive science of language,
computational models of language processing and learn-
ing are constructed from symbolic generative models and
artificial neural networks originally developed in natural
language processing (NLP), and then evaluated against
human behavioral and neuroimaging data experimen-
tally measured in cognitive and brain sciences. The key
idea here is that the fusion between the science-oriented
‘symbolist’ approach and the engineering-oriented ‘con-
nectionist’ approach to language processing and learning
will be important for the next generation of cognitive
robotics.

Prof. Oseki also presented recent results that demon-
strate that bigger state-of-the-art models called Trans-
formers [83], despite impressive performances via engi-
neering evaluation metrics, are not always ‘human-like’
relative to smaller counterparts trained on less train-
ing data [84], and symbolic-neural architectures called
Recurrent Neural Network Grammars (RNNGs) [85]
outperform Long Short-Term Memory (LSTM) base-
lines and, most importantly, generalize better to unseen
linguistic environments [86]. For future research, given
that language processing is an instance of information
processing ultimately realized in the human brain, the
‘hardware implementation’ level in Marr’s three levels of
description [87] must be integrated with the computa-
tional cognitive science of language processing and learn-
ing towards the computational cognitive neuroscience
[88] in order for cognitive robots to communicate with
humans in uncertain environments.

4.2. Cognition through language learning and
understanding

Language learning and understanding are also impor-
tant cognitive capabilities that robots should have. Prof.
Taniguchi pointed out the important feature of the role
of human language that distinguishes language com-
munication of human beings from that of other ani-
mals. Human cognition is adaptive not only adaptive
to the physical environment but also to the semiotic
environment. In many conventional discussions in cog-
nitive robotics, the terms ‘symbols’ and ‘symbolization’
have been used naively to refer to internal representa-
tion related to words. The discussion has been influ-
enced by the physical symbol systems hypothesis where
symbols are characterized as just a discrete token [90].
The notion of symbols in semiotics, e.g. semiosis in
Peirce’s semiotics, was ignored. Symbol systems should
be regarded as a dynamic system involving emergent
property, i.e. a symbol emergence system [91]. A robot
needs to have a cognitive capability to adapt to a symbol

emergence system to become able to communicate with
people in a long-term manner. This means a robot needs
to have language learning and understanding capability
at least [92]. Therefore, Prof. Taniguchi emphasized the
importance of adaptability in semiotic communication in
cognitive robotics.

Language is based on multimodal information, and
cognitive systems integrating sensor-motor information
will be a key for language communication. Learning a
language is not just a problem of dealing with text data.
We human beings understand the meanings of language
in relation to the real-world sensor-motor information
and generalized concept we form based on embodied
physical experiences and semiotic communications. For
example, when we try to understand a sentence, ‘please
go to the kitchen and bring me a bottle of water’ and
conduct the requested behavior, we need to relate the
words to a specific object, place, and behavior. This
means the wide range of language understanding, actu-
ally, is based on real-world multimodal sensor-motor
information.

Therefore, developing integrative cognitive systems is
a crucial step to realizing language communication in
cognitive robotics. Prof. Taniguchi argued that a prob-
abilistic generative model-based approach is promising.
Taniguchi et al. proposed a multimodal spatial con-
cept formation method called SpCoSLAM that integrates
localization and mapping, image and speech recogni-
tion, spatial categorization, and lexical acquisition into a
single probabilistic generative model (Figure 5) [93,94].
Recently, it becomes widely known that probabilistic
modeling and inference is a general idea of machine
learning. For example, the theory of control as probabilis-
tic inference (Cal) shows that reinforcement learning can
be regarded as an inference on a probabilistic generative
model [95]. SpCoNavi is a navigation method based on
SpCoSLAM and Cal [89]. SpCoNavi shows that learning
spoken terms and understanding sentences in an indoor
navigation task can be conducted purely based on robots’
sensor-motor multimodal information.

4.3. Importance of language for further advances of
cognitive robotics

For further progress, developing a totally adaptable inte-
grative cognitive architecture is crucial not only in gener-
alization, perception, and prediction but also in language
communication. Prof. Taniguchi suggested that SERKET,
a framework that can compose and decompose large-
scale probabilistic generative models, is useful for devel-
oping future cognition of robots [19,96]. Developing a
whole-brain probabilistic generative model is a future
challenge [97] (Figure 6).
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5. Conclusion for cognitive robotics problems

This paper reviewed the problems facing cognitive
robotics based on discussions at a round table held
in December 2020. The round table noted that the
interdisciplinary discussions are necessary for further
advances of cognitive systems and robotics can play the
role of embodying the cognitive functions in a con-
tinuous control loop with uncertainty. In this review

paper, we proceeded to discuss the necessary system
for cognitive robots based on key functions of ‘envi-
ronment understandings with generalized information’,
‘active sensing’, ‘prediction of future event’, and ‘language
communication’.

For environment understanding, we mentioned the
importance of both high and low sensitivity to
environmental inputs for achieving both stable under-
standing and adaptability to uncertainties. Information
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generalization is an important approach for stable under-
standing, which will lead the specified functions such as
autonomous behavior target setting.

In a complex environment, information generalization
may not be enough to perceive all information. The robot
should select the important and useful information by
active sensing. In addition to the information selection,
we clarified that active sensing will be useful for novel
learning architecture beyond perception.

Prediction of future events is an important function
that can be achieved based on environment understand-
ings. Even though it is well known that prediction based
on body dynamics is an important factor for robot con-
trol, more human-like prediction, which is sometimes
progresses beyond reality, is necessary for a smooth
collaboration with humans. These types of prediction
emphasize the embodiment of robots compared with the
prediction of data science that shows the event the most
likely-to-happen.

Language communication is another key skill for
future cognitive robots. Beyond information exchange,
language between humans and robots needs to have
adaptation with semiotic communication. We need fur-
ther discussion on the computational model of language.

Though the physical interactions between the body
and the environment always represent the real-time
event, it is known that the information processing
becomes more flexible to the uncertainties as the infor-
mation is gradually generalized. This implies that we can
keep remaining the uncertainties during continuous con-
trol when generalized information is used in the control
loop. The uncertainties sometimes include time indeter-
minacy, suggesting that future event can be the target
of control beyond reality. Therefore, the use of the var-
ious level of generalized information in a control loop
is a necessary condition for controlling robots from the
detailed motion control to normal life activities with us
as described in Figure 7, and we believe that this type
of control loop can be a melting pot of interdisciplinary
discussions.

Through the discussions, the roles of the next gen-
eration of cognitive robotics are getting clear. We,
human beings, can deal with uncertainties by some-
times responding reflexively and by sometimes behav-
ing with uncertainties using generalized information.
We do that by using various attractive functions such
as affordance, SoA, and language communication. Cog-
nitive robots must embody with their own approaches



because robots have different bodies, different com-
putational mechanisms, and different memory devices
from humans, rather than aiming for those functions
themselves.

In order to achieve the role of cognitive robotics, we
think that it is important for setting primitive but con-
crete targets for cognitive robotics research. As men-
tioned in the introduction, discussion based on behav-
ior in the real world is a significant feature of robotics.
To encourage further advances in cognitive robotics, we
need to set concrete behavior targets as needed for solving
important cognitive robotics problems. We will continue
to discuss the setting of these targets as a grand challenge
for cognitive robotics.
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