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Abstract

The rapid growth of technological products has led to an increasing volume of waste electrical

and electronic equipments (WEEE) which could represent a valuable source of critical raw materi-

als. However, current mechanical separation processes for recycling are typically poorly operated,

making it impossible to modify the process parameters as a function of the materials under treat-

ment, thus resulting in untapped separation potentials. Corona Electrostatic Separation (CES) is

one of the most popular processes for separating fine metal and nonmetal particles derived from

WEEE. In order to optimize the process operating conditions (i.e. variables) for a given multi-

material mixture under treatment, several technological and economical criteria should be jointly

considered. This translates into a complex optimization problem that can be hardly solved by

a purely experimental approach. As a result, practitioners tend to assign process parameters by

few experiments based on a small material sample and to keep these parameters fixed during the

process life-cycle. The use of computer experiments for parameter optimization is a mostly unex-

plored area in this field. In this work, a computer-aided approach is proposed to the problem of

optimizing the operational parameters in CES processes. Three metamodels, developed starting

from a multi-body simulation model of the process physics, are presented and compared by means

of a numerical and simulation study. Our approach proves to be an effective framework to optimize

the CES process performance. Furthermore, by comparing the predicted response surfaces of the

metamodels, additional insight into the process behavior over the operating region is obtained.
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I. INTRODUCTION

In recent years, the use of rules that govern experiments for technological improvement

(i.e. Design of Experiments - DoE) [1] has received renewed momentum through the uti-

lization of Computer Experiments [2]. These experiments are run on a computer code

implementing a simulation model of a physical system of interest such as in the process

of recovering waste printed circuit boards or in enzyme kinetics. In general a simulation

model, or simulator, consists of a set of many linear or nonlinear, ordinary and/or differen-

tial simultaneous equations, whose solutions may not be amenable to analytical expression.

Furthermore, runs of the simulator can be expensive and/or time-consuming. In this case,

the use of a surrogate model (metamodel) is suggested. These metamodels are simpler mod-

els which represent a valid approximation of the original simulator and usually are statistical

interpolators built from the simulated input-output data. Predictions at untried experimen-

tal points can then be made by metamodels and optimization techniques can be applied in

order to find best settings. The selection of a metamodel to approximate the true model

as accurately as possible is a crucial problem. Generally, polynomial surrogates are widely

used to model computer experiments [3]. However, the behavior of the data often cannot

be explained by these models. An alternative method is known as the neural network tech-

nique which allows the data to be fitted in a less constrained form [4, 5]. Another popular

technique is kriging, which has been widely used for the design and analysis of computer

experiments [6, 7]. With the aim of a detailed comparison between metamodels, in this work

we have analyzed the output of a specific experimental design with three different techniques

(i.e. polynomial regression, kriging and neural network models).

This analysis is applied to the Corona Electrostatic Separation (CES), which is a process

widely used in recycling for separating conductive from non-conductive fine particles ob-

tained from the shredding of waste electrical and electronic equipments (WEEE). The main

goal is to understand advantages and disadvantages of each model in support of the opti-

mization of the process parameters, ultimately aiming at implementing an in-line process

control framework. CES is defined as the selective sorting of charged or polarized bodies in

an electric field [8–10] and it represents one of the most effective ways for recycling metals

and nonmetals from WEEE with limited environmental impact. For example, this process

has been proposed as a viable alternative to pyrometallurgical processes in the recovery of
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metals from waste Printed Circuit Board (PCB).

WEEE is currently considered to be one of the fastest growing waste streams in the world,

growing at 3-5 % per year [11]. Electronic waste can represent a very important source of

key-metals for advanced technological products. For example, PCBs are called urban min-

eral resources, as 25% - 30% of their composition in weight is made of valuable metals such as

copper, tin, nickel, gold and silver. However, in order to successfully apply CES processes to

the separation of complex multi-material mixtures such as granular flows from finely shred-

ded PCBs, a tight control of the process parameters needs to be implemented. In order to

optimize the process parameters (i.e. variables) for a given multi-material mixture under

treatment, several technological end economical criteria should be jointly considered. This

translates into a complex optimization problem that can hardly be solved by a purely ex-

perimental approach. As a result, practitioners tend to assign process parameters by means

of few experiments based on a small material sample and to keep these parameters fixed

during the process life-cycle. This is mainly due to the lack of knowledge-based engineering

models and tools to support the design and operation of separation processes able to cap-

ture, with an acceptable level of confidence, all the major phenomena affecting the quality

of the output. In the literature attempts at implementing different control procedures have

been developed in order to optimize specific objectives functions [12, 13] based on simplified

process models and computer experiments [14, 15].

In this study, a reliable multi-body simulation model of roll-type Corona Electrostatic

Separation (CES) [16] is used to build a set of metamodels in order to conduct computer-

aided experiments for optimizing the process parameters. This solution will provide the

ability to optimize the process parameters with respect to the specific material mixture

under treatment, thus providing a degree of adaptability to these processes that is currently

not available in the recycling industry.

The paper is structured as follows. The engineering problem is described in Section 2.

Then, in Section 3, three metamodels for the response of physical experiments are introduced

and discussed. Section 4 presents the computer-aided approach to generate sampling plans

and its application is illustrated by the case study based on the CES simulator. The pre-

dictive abilities of the three metamodels are investigated and compared. A final discussion

concludes the paper in Section 5.
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II. ENGINEERING PROBLEM

Corona electrostatic separators are mainly used to separate conductors from insulators,

like copper from plastics, in shredded multi-material mixtures. The process physics is briefly

explained in the following. Particles are transported by a feeder on the rotating drum and

they are charged as they pass through an electrostatic field. More specifically, the separator

uses corona charging or ion discharging to establish a negative charge on particles when

particles pass between two high-voltage electrodes. Particles receive a discharge of electricity,

which gives the non-metals a high surface charge, causing them to be attracted to the rotor

surface until they are brushed down into the left bin. Metal particles do not get charged, as

the charge rapidly dissipates through the particles to the earthed rotor, so they fall into the

right bin under the effect of the centrifugal and gravitational forces. Ideally, if the separation

process were perfectly accurate, all the particles would be correctly classified. However,

due to the presence of mixed non-liberated particles and to random particle impacts, a

non-classified material flow is generated (middlings) consisting of particles that drop in the

central bin. The quality of the separation process depends on two sets of process parameters,

namely design parameters and controllable parameters. The design parameters include the

drum diameter, the position and the shape of the electrodes. The controllable parameters

include the drum rotational speed, the electrostatic potential, the feed rate, and the splitters

position. Moreover, the distribution of the input material characteristics (shape, density,

conductivity, degree of liberation) also affects the separation performance. Due to these

complex particle flow dynamics, the particles trajectories are far from being deterministic,

but a statistical distribution of the particles falling points at the bin level is usually observed.

Since the process physics is complex, modeling the trajectories of particles within CES

is of practical engineering interest. In the literature, several attempts have been made to

simulate particle trajectories in roll-type electrostatic separators [17, 18]. However, existing

recycling process models only focus on single particle trajectories and fail to model two major

causes for loss of efficiency in the separation process, i.e. (i) particle-particle and particle-

equipment interactions and impacts, and (ii) the presence of un-liberated particles in the

material flow. These limitations undermine the applicability of existing models in industrial

settings. More realistic models are needed to better capture the real behavior of the process

and to provide an accurate prediction of separation process performance. These motivations
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F igure 7: computed particles simulation. 
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The model has been tested under different operational conditions. The main scope is to understand 

the dependence with flow particles but also the behavior of other key parameters has been analyzed.  

Three flows generated in Chrono::Engine are examined. The initial conditions for Chrono::Engine 

used in three different simulations are radius with uniform distribution (0,3 - 0,9 mm) and flow 

equal to 10 ! 1.000 ! 10.000 particles/second. For every experiment the following values are 

calculated: 

 

! µ mean, 

! "#$%&'(&)(#(*+,&%,-'. 

! n° of metal trajectories. 

 

For constant functional parameters, an increase of the radius means a decrease  of the abscissa of 

the falling point. The gravity force prevails over the electric and aerodynamic forces. 

For greater speeds, centrifugal force anticipates the detachment point, and particle starts to fly with 

a greater velocity component along x axis.  
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correlated to the distance of the falling point. Instead, for non conductive particles there is a 

negative correlation.  In fact, the force that attracts the particle toward the grounded drum grows up, 

FIG. 1: Example of particle behaviour simulated by the CES simulation model.

has led to the development of a new multi-body simulation model [16, 19]. The simulation

is based on the Chrono::Engine (http://projectchrono.org) C++ simulation libraries,

which implement the Differential Variational Inequalities (DVI) approach. The non-smooth

dynamics method used for the simulator, rooted in the recent theory of DVI, can handle

up to millions of contacts between particles without requiring short integration time steps

[20]. Within the simulation, each particle is randomly generated with its own characteristics

by sampling from a particle flow ”DNA”, characterized by multiple attributes, such as

shape, material, orientation, and liberation degree. External forces, including aerodynamic,

electrical, centrifugal and gravitational forces are applied to these particles, determining

their trajectories. These realistic simulations, that have been validated in real industrial

settings, can support the designer to perform virtual experiments to test the behavior of the

system under specific mixture conditions and machine parameters, instead of running real

experiments. From an application point of view, this approach can reduce drastically the

number of real experiments and make the process flexible and adaptable to changes within

the material flow. An example of separation process computed by the CES simulator is

reported in Fig. 1.

However, simulations are usually time-consuming and it is still unpractical to rely on them
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for implementing in-line process control schema. To this purpose, the use of metamodeling

is particularly appealing for enabling “fast” in-line applications.

In this work we consider a typical industrial CES machine (Hamos KWS electrostatic

separator) with fixed design parameters, whose performance depends on the following con-

trollable parameters:

1) Electrostatic potential, or voltage, which ranges between -35.000 to -25.000 Volt;

2) Drum speed, or simply speed, which ranges between 32 to 128 rpm;

3) Feed rate, which ranges between 0.0028 to 0.028 kilograms per seconds (kg/s).

Furthermore the position of two splitters, S1 and S2, separating the collecting boxes of

conductive, middling and nonconductive products are considered. They have a fixed height

and can move along the horizontal coordinate with a range of variation between 0 and 20 cm

for both, divided into 60 possible positions. In the case under analysis the splitters are not

considered as physical bodies, unlike the particles or the drum, and the interaction of the

particles with these volumes is neglected. The positions of S1 and S2 are only considered in

the post-processing phase: knowing the coordinates of the falling point of each particle after

each simulation, the best position that maximizes an objective function is found, testing all

feasible combinations of S1 and S2. The outcomes (i.e. system responses) of the process

are: the recovery of conductive products in its collecting box (Rc,c), the grade of conductive

products in its collecting box (Gc,c), the recovery of non-conductive products in its collecting

box (Rnc,nc) and the grade of non-conductive products in its collecting boxes (Gnc,nc). For

the case of conductive products, the recovery is defined as follows:

Rc,c =
mc,c

mc,c +mc,m +mc,nc

, (1)

where mc,c is the mass of conductive products in its collecting box, mc,m is the mass of

conductive products in the middling box and mc,nc is the mass of conductive products in

the non-conductive box. Instead, the grade is:

Gc,c =
mc,c

mc,c +mnc,c

, (2)

where mnc,c is the mass of non-conductive products in the conductive box. Similarly, Rnc,nc

and Gnc,nc are defined as the mass of non-conductive products in its collecting box divided

7



by the sum of the mass of non-conductive products in all the boxes and the mass of non-

conductive products in its collecting box divided by the total mass in the non-conductive

box, respectively.

These system responses are in a trade-off and different possible solutions can arise while

searching for a process optimization. For instance an optimal solutions for recovery Rc,c can

negatively influence the performance of the separation process in terms of grade Gc,c. For

this reason, we selected a utility function, which assesses the material recycling potential

of a product. This approach is similar to Sherwood’s characterization of the relationship

between the price of a material and its concentration in its feed stream [11, 21], described

in Gutowski et al. (2008) [22]. The utility function, u, has been defined as:

u(φ1, φ2) = φ1(Rc,c, Gc,c) + φ2(Rnc,nc, Gnc,nc), (3)

where:

φ1(Rc,c, Gc,c) = (3.0649× (Gc,c)
2 + 1.5747×Gc,c + 1.6673)×Rc,c (4)

and

φ2(Rnc,nc, Gnc,nc) = 0.1× (3.0649× (Gnc,nc)
2 + 1.5747×Gnc,nc + 1.6673)×Rnc,nc. (5)

The constant values are chosen in order to fit copper economic values.

The utility function u(φ1, φ2) is then used to calculate the final system response, yi with

i = 1, . . . , E, where E is the total number of experimental points given by all controllable

parameters combinations, and should be maximized in order to optimize the electrostatic

separation process. Rc,c, Gc,c, Rnc,nc and Gnc,nc are computed using the simulators of the

CES process [16], previously described.

III. METAMODELS

A. Polynomial regression model

Polynomial regression models [23] are often used to approximate the dependence relation

between a set of variables and a response. This response represents the output of the system

and is measured by an identified variable Y and the v input variables (x1, x2, . . . , xv) describe

the features of the problem. This relation can be written as follows:

Y = f
(
x1, x2, . . . , xv

)
+ ε; (6)
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where f may be a smooth function of x1, x2, . . . , xv and ε represents a random noise in the

observable response.

The simplest polynomial model to explore the space approximating the function (6) is

the first-order polynomial model,

Y = β0 + β1x1 + β2x2 + · · ·+ βvxv + ε; (7)

where v variables are assumed to affect the response in a linear way without interac-

tions. The first-order polynomial model is likely to be appropriate when we are interested

in approximating the true response surface over a relatively small region of the independent

variable space in a location where there is little curvature in f . Often the curvature in

the true experimental surface is strong enough that the first-order model is inadequate. A

second-order polynomial model will likely be required in these situations. The second-order

polynomial model is a flexible model to describe experimental data in which nonlinear terms

are present. The nature of the experimental surface depends on the signs and magnitudes

of the coefficients in the following model:

Y = β0 +
v∑

i=1

βixi +
v∑

i=1

βix
2
i +

∑
i<j

βijxixj + ε (8)

The approach of least squares estimation for the β parameters is then generally used and

the adequacy of the fitted model is evaluated with the typical linear model diagnostics, such

as residual analysis, coefficient of determination and graphical methods.

B. Artificial Neural Network (ANN)

An Artificial Neural Network (ANN) [24] is an information processing paradigm that is

inspired by the way biological nervous systems, such as the brain, process information. The

structure of the information processing system is composed by a large number of highly

interconnected processing elements (neurons) working in unison to solve specific problems.

An ANN is configured through a learning process, which, as in biological systems, involves

adjustments to the synaptic connections that exist between the neurons.

The usual type of ANN consists of three groups, or layers, of units: a layer of input

units (i.e. variables) is connected to a layer of hidden units, which is connected to a layer
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of output units (system responses). When all the units are connected to one another and

information travels one way only, from input to output, the ANN has a single-layer feed-

forward architecture as represented in Fig. 2. Each hidden layer can be composed by a

different number of nodes.

Input variable x
1 

Input variable x
2 

Input variable x
3 

Input Layer Hidden Layer Output Layer 

System Response 

FIG. 2: Example of a single layer feed-forward neural network.

The influence of the inputs on the outputs is determined by the connection weights. The

connection weights are real numbers associated with each connection between units and they

determine whether it is possible for one unit to influence another. In order to train an ANN,

the weights of each unit should be adjusted in such a way that the error between the expected

output and the actual output is reduced. The most widely used method to determine the

best weights is the back-propagation algorithm [25], which minimizes this error by means of

a gradient descent method that selects the best combination of weights. The performance

of the algorithm depends on a weight decay parameter, λ, which is a regularization term

that tends to decrease the magnitude of the weights and avoids over fitting [24].

After the training, the output of an ANN is equal to:

Y = f
( v∑

i=1

wi × xi
)

; (9)

where wi is the connection weight of the input variable xi, with i = 1, . . . , v. The function f ,

which is called activation function or transfer function, is chosen before the training among
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a range of functions [26]. Here we have employed the sigmoid function defined as follows:

f(x) =
1

1− e−x
(10)

where x is a real number.

C. Kriging Model

The kriging methodology was originally proposed by a South Africa geologist, D. G. Krige

(1951) [27], for the analysis of geostatistical data and, nowadays, has become very popular

in several applied contexts [28, 29].

Following Sacks et al. (1989) [30], the kriging approach consists in treating the output of

a simulator as a realization of a stochastic process Y (x) such that Y (x) = µ(x)+Z(x). The

global trend is denoted by µ(x) and Z(x) represents the departure of the system response

Y (x) from the trend. More precisely, Z(x) is usually assumed to be a Gaussian stationary

process with E(Z(x)) = 0, a constant variance σ2
Z , and a non-negative correlation function

between two experimental points x1 and x2:

Corr[Z(x1), Z(x2)] = R(x1,x2). (11)

The correlation function should reflect the characteristics of the system response and one

of special interest is the power exponential family, which is defined coordinatewise to form

the correlation function in the v-dimensional space under the assumption of separability:

R(x1,x2|ψ) = exp

{
−

v∑
i=1

∣∣∣∣∣x1i − x2iθi

∣∣∣∣∣
pi}

, (12)

where, for i = 1, . . . , v, θi is a scale parameter, pi is the power parameter and ψ is the

vector having ψi = (θi, pi) as its i-th entry. A popular choice for the estimation of ψ is the

maximum likelihood estimate (MLE).

Two different types of kriging metamodels should be considered depending on the func-

tional form of the trend function [7]:

- Ordinary kriging: the trend is constant µ(x) = µ but unknown.
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- Universal kriging: the trend component depends on x and is modeled in a regressive

way

µ(x) =
v∑

i=1

fi(x)βi, (13)

where f1(), . . . , fv() are known functions and β = (β1, . . . , βv) is the vector of unknown

parameters.

In other words, in ordinary kriging, the trend is a simple unknown constant whereas

in universal kriging the trend varies and the coefficients of the regression equation that

describes this trend are unknown. In this work, we have employed the universal kriging

modeling approach with the simplest possible trend, that is, a first-order polynomial, letting

fi(x) = xi.

IV. COMPUTER-AIDED EXPERIMENTAL APPROACH

Following the general framework for computer experiments we proposed a computer-aided

experimental approach (see Fig. 3) which is based on the following main steps:

(i) Select the initial experimental batch of size n based on a sampling-based design [2];

(ii) Evaluate the design points with the simulator;

(iii) Estimate the metamodel on the simulated input-output data;

(iv) Select from the experimental region the best point which yields the highest predicted

system response value;

(v) Evaluate the best design point with the simulator and use it as the best setting.

A. Sampling-based design: Latin Hypercube Sampling (LHS)

Computer Experiments differ from traditional physical experiments in that repeated ob-

servations at the same set of input variables yield identical system response [2], therefore,

sampling techniques that spread design points are needed. Different sampling-based designs

are described in the literature [31] and one of the most used is the Latin Hypercube Sam-

pling (LHS) technique [32] or Latin Hypercube Design. Generally, to obtain an LHS design
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(i.e. statistical model) 

Identification of the  
best  design point 

 in terms of  
predicted system response 

Simulation model 

!"#$%&'%($)*%+%,-$&".&

/%*."*+(,0%12)(3#-4&

5%(3&678%*#+%,-(9",&:#+)3(9",&/;($%&

5(,<#,=>&

:%3%09",>&

?(*#(9",&

!%@&:%-&".&&

A(,B#B(-%&:"3)9",$&

Simulation model 

!"#$%&'%($)*%+%,-$&".&

/%*."*+(,0%12)(3#-4&

5%(3&678%*#+%,-(9",&:#+)3(9",&/;($%&

5(,<#,=>&

:%3%09",>&

?(*#(9",&

!%@&:%-&".&&

A(,B#B(-%&:"3)9",$&

SUM 2014, Second Symposium on Urban Mining 
 

 
Proceedings SUM 2014, Second Symposium on Urban Mining 
Bergamo, Italy; 19 – 21 May 2014 
 2014 by CISA Publisher, Italy 
 

The main parts forming the geometry from top are:  

 inlet hopper, 

 static electrode, 

 rotating-roll, 

 rotating brush, 

 two splitters, 

 three output bins for metal, middling and non metal particles. 

In the following figure it’s possible to observe the interior of the real machine. In the CAD model 

the static electrode is approximated with a cylinder because the analytical model for the electric 

field is valid for the geometry shown schematically in figure 1. 

 

 
 

F igure 6: real machine. 

3.1.2 Input parameters in the model  
 
The input parameters used in the model are summarized in table 1 and table 2. Simulated particles 

are spheres of metal (SnPb) and non metal (Polypropylene). 

 

              Table 1: mixture input parameters. 

Material Diameter 

[mm] 

Density 

[kg/m^3] 

Electrical conductivity 

[S/m] 

 (SnPb) 0,3 ÷ 0,9 8.400  6.428.000  

Polypropylene 0,3 ÷ 0,9 946  0  

 
              Table 2: operating model parameters. 

Electric Voltage  30 [kV] 

Angular velocity of rotating roll  50 [Rad/s] 

Particle flow  10 ÷ 10.000 [Particle/s] 

 
Next figure shows particles simulation obtained in Chrono::Engine. 

Implementation of the optimal setting in the real word 

Evaluation 

Evaluation 

FIG. 3: Computer-aided experimental approach.

consisting of n points, each dimension of the experimental region is divided into n equally

spaced intervals (e.g. [0, (1/n)], . . . , [(n − 1)/n, 1]), an interval is randomly sampled with-

out replacement from each dimension and a value is uniformly sampled from the interval,

obtaining one design point. This procedure is then repeated n times (see Fig. 4).

The uniform sampling of the co-ordinates of the design points meets the S-optimality

criterion, which consists in maximizing the harmonic mean distance from each design point

to all the other points in the design [33], in order to spread them as much as possible in the

experimental region.

In this work, the Latin hypercube design is applied and a batch of size n = 50 is selected

based on the S-optimal criterion. The batch is then tested on the CES simulator.

As a first exploratory analysis, a set of descriptive statistics have been computed in order
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FIG. 4: A Latin hypercube design with two variables, x1 and x2.

to get some insights into the frequency distribution of the system response. The maximum

value of the utility function reached with the Latin hypercube design is 6.928 and the

minimum is 4.383. The mean is 5.866 and the median is equal to 5.904; the first quartile is

5.319 and the third quartile is 6.358.

These values indicate a slightly left-skewed distribution and this particular shape can be

seen in Fig. 5(a). In Fig. 5(b) a box-plot is shown which summarizes the distribution of the

system response. The upper side of the box is the third quartile, instead the lower side of

the box is the first quartile. The line inside the box represents the median. The upper and

lower whisker are, respectively, the maximum and minimum values.

B. Optimized model selection procedure

In order to fine-tune the three metamodels, we applied different approaches to each.

For the polynomial model, starting from Eq. (8), we used a stepwise selection procedure

based on the Akaike Information Criterion (AIC) [34] in order to identify the significant

variables.

The resulting best model is:

Y = β0 + β1x2 + β2x3 + β3x
2
2 + β4x

2
3 + β5x1x2 + ε, (14)
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FIG. 5: Analysis of the system response

where x1 is the voltage, x2 the speed and x3 the feed rate, βi (with i = 0, . . . , 5) are the

regression coefficients and ε the random noise in the observable response, Y .

For the neural network and kriging models we applied a bootstrap procedure [35]. In the

case of the neural network, the bootstrap procedure is used to identify the best number of

nodes in the hidden layer and to set the decay parameter, λ. For the kriging model, it is

used to select the correlation function family.

The bootstrap procedure works as follows: from a subset, of the initial data set (of size

nt = 40), the parameters of a range of different model specifications are estimated. Then,

the different estimated models are used for predicting the system response associated with

the remaining experimental points (nv). At this point, the Mean Square Error (MSE) is

calculated for each specification. The MSE is defined as:

MSE =
1

nv

nv∑
i=1

(
Ŷi − Yi

)2
, (15)

where Ŷi is the ith predicted value of the system response. The procedure is repeated

B = 20 times, each one with a different re-sampling of the initial subset nt. Finally, the

specification of each statistical model with the minimum averaged MSE is selected.

The best selected network topology (see Fig. 6) involves one hidden layer with seven

neurons and a sigmoid activation function between the hidden layer and the output. The

training algorithm for the weight selection is the back-propagation algorithm with optimized

decay parameter λ = 0.1.
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FIG. 6: Best feed-forward ANN with 7 neurons in the hidden layer. The different line thickness

represents the importance of the connection arcs.

The best type of kriging model is based on the universal kriging approach and the selected

most representative correlation function is the power exponential family which has been

selected in accordance with minimum MSE obtained by applying the following correlation

functions: power exponential (MSE = 0.1037), exponential (MSE = 0.1145), Matérn 3
2

(MSE = 0.1351), Matérn 5
2

(MSE = 0.1551) and power exponential with all parameters

pi = 2 (MSE = 0.1394), with i = 1, . . . , 3.

C. Results

The three metamodels have been compared in terms of prediction accuracy by means

of a cross-validation approach. In our case, we randomly divided R = 50 times the initial

dataset into two subsets: a training set of size nt = 40 and a validation set of size nv =

10. Every time, the training set is used to estimate the coefficients and/or parameters
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of the metamodels. The resulting metamodels are used to predict the system response

of the validation set and then to evaluate their performance. The predictive performance

indicators selected to compare the metamodels are: the mean squared error (MSE ), the

mean absolute error (MAE ), the standard deviation of absolute error (St. AE ), the mean

absolute percentage error (MAPE ) and the standard deviation of absolute percentage error

(St. APE ).

AE =
∣∣∣Ŷi − Yi∣∣∣, i = 1, . . . , nv (16)

MAE =
1

nv

nv∑
i=1

AEi, (17)

St. AE =

√√√√ 1

nv − 1

nv∑
i=1

(
AEi −MAE

)2
(18)

APE =
∣∣∣ Ŷi − Yi

Yi

∣∣∣, i = 1, . . . , nv (19)

MAPE =
1

nv

nv∑
i=1

APEi, (20)

St. APE =

√√√√ 1

nv − 1

nv∑
i=1

(
APEi −MAPE

)2
(21)

where Ŷi is the ith predicted value of the response system in the rth re-sample.

In Table I, the averages of the performance indicators, over R = 50 runs, are reported.

From these results, the neural network shows better performance in terms of prediction

accuracy. Besides that, the ability of the kriging model to predict the unknown system

responses is comparable with the neural network. The selected polynomial model seems to

perform worse but still acceptably. In Fig. 7, the MSE distribution is shown.

Given these results, we estimated the three metamodels on the n = 50 available data

points selected by the LHS technique (see Sec. IV A).

In Fig. 8, 9 and 10, we show the different predicted response surfaces by means of contour

plots. Each contour plot represent the behavior of the response system varying two of the

three variables. The third variable is just kept fixed at the central value of its range.
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FIG. 7: Comparison of the MSE distribution for polynomial model (1), neural network (2) and

kriging model (3).

polynomial model neural network kriging model

MSE 0.0940 0.0906 0.0911

MAE 0.6421 0.6034 0.6063

St. AE 0.7618 0.7291 0.7332

MAPE 0.1113 0.1056 0.1055

St. APE 0.1325 0.1285 0.1282

TABLE I: Average values of the prediction performance indicators for the three metamodels.

The three metamodels give different levels of smoothness. In Fig. 8(a), the polynomial

model identifies a concave surface with a maximum response value in the region of the

minimum values for voltage and drum speed. The maximum is found in the same region

by the other two response surfaces obtained with the Neural Network (Fig. 8(b)) and the

kriging model (Fig. 8(c)), respectively. This result can be explained using forces balance.

More specifically, by increasing the magnitude of the voltage, the electric force acting on

booth particles is also increased, pushing metals far from the drum and attracting non-
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metals on the drum surface. Reducing the drum speed, the contribution of the centrifugal

force, which is a significant term, is reduced too, making the effects of the electrostatic forces

more evident.
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FIG. 8: Contour plots of voltage and drum speed, or simply speed.

In Fig. 9 the response surfaces as functions of feed rate and voltage are considered. The

polynomial model (Fig. 9(a)) is still a concave surface which leads to a specific region of

optimality. In other words, the feed rate, given minimum values of voltage, influences the

performance of the system. The neural network (Fig. 9(b)) identifies a slope surface with

maximum values when voltage is set at the minimum, and minimum values when voltage is

set at the maximum. In this case, the response surface is not affected by variations of the
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feed rate. The same situation occurs with the kriging model (Fig. 9(c)) which identifies less

straight contour lines but with the same feature.
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FIG. 9: Contour plots of voltage and feed rate.

In Fig. 10, drum speed and feed rate are studied. In Fig. 10(a) (polynomial model), a

stationary point is identified between 90 and 110 rpm and 0.015 and 0.018 kg/s. From 65

to 32 rpm the response system constantly increases towards maximum values when the feed

rate is between 0.015 and 0.020 kg/s. Instead, the neural network (Fig. 10(b)) considers the

feed rate non influential for the behavior of the response system and a slope between 50 and

75 rpm is identified. A similar slope is identified by the kriging model (Fig. 10(c)). However,

the feed rate affects the response system and there is also interaction between drum speed
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and feed rate, a feature absent from the other models. In fact, given minimum values of

speed, maximum values of response system are reached in correspondence of higher values

of feed rate.

The weak dependence of the response on the feed rate suggests two main remarks. Prob-

ably, the effect on the distribution of particles in the simulated flows, and consequently on

the objective function, is noticeable for very high values of the feed rate. These values have

not been tested. In fact, the experiments were carried out in the range expected from the

normal use of the machine. In addition, it is not possible to generalize this behavior of the

separation process because it is strictly linked to the specific properties of the material used

in simulations. The problem needs to be studied in greater depth, for a better understanding

of the physics of granular flows in terms of feed rate interaction with flow variability.

The three metamodels are slightly different in terms of predicted response surfaces. All of

them have individuated a similar behavior of the predicted response as a function of voltage

and drum speed but, concerning the influence of the feed rate, they have predicted different

situations.

In order to understand which of the three metamodels better locates the optimal control-

lable parameters combination, we applied a Simulated Annealing (SA) [36, 37] optimization

algorithm.

We ran the SA over the three metamodels obtaining identical results for the neural

network and the kriging models. The optimal setting of the controllable parameters found

in the polynomial response surface reflects the previous considerations and a different best

value for the feed rate has been selected.

Subsequently, the CES simulator was used to calculate the response of the all optimal

settings. Results reported in Table II show that the response from the simulated model is

the same. This suggests that the feed rate does not affect the response system, given the

minimum values of voltage and speed, as the neural network and the kriging model were

correctly predicting.

D. Kriging model Vs Neural Networks

Artificial Neural Networks (ANNs) are well-known models which have exhibited excellent

behavior in the resolution of complex problems. It is demonstrated that feedforward ANNs
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FIG. 10: Contour plots of drum speed, or simply speed, and feed rate.

are universal approximators, which means that an ANN can approximate, to any desired

degree of accuracy, any real-valued continuous function [38].

Despite the success of ANNs, one of the most common criticism of ANNs is that there

is no satisfactory interpretation of their behavior because they capture relations between

inputs and outputs with a highly accurate approximation, but no definitive answer has been

given about their inner workings.

Two important issues arise while applying modeling techniques to real applications: select

the most powerful modeling approach (e.g. in terms of prediction) and better understand the

problem under study. A large number of scientific papers are focused on comparing ANNs
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Optimal setting Predicted response Simulated response

polynomial model -35000 | 32 | 0.01704 7.304 6.925

neural network -35000 | 32 | 0.02778 6.899 6.925

kriging model -35000 | 32 | 0.02778 7.312 6.925

TABLE II: Optimal settings for voltage, speed and feed rate.

and kriging models [39–42], but we have found only a few theoretical works showing their

equivalence under certain conditions. For example, R. M. Neal (1996) [43] demonstrated that

some Bayesian regression models based on neural networks converge to a Gaussian processes

as the number of neurons in the hidden layer tends to infinity. This result has motivated the

use of Gaussian process models to problems which are typically addressed applying neural

networks, such as high-dimensional applications [44] or classification problems [45].

Furthermore, Beńıtez et al. (1997) [46] demonstrated the equivalence between fuzzy rule-

based systems (FRBS), developed using fuzzy logic, and ANNs. In their work it is shown

that ANNs can be encoded by a continuous FRBS.

Following a similar reasoning, we show that it is possible to empirically obtain an

equivalence-by-approximation between kriging models and ANNs. In other words, given

a simple single layer feed-forward neural network with a sigmoid activation function for the

hidden neurons and a linear one for the output neurons, there exists at least one universal

kriging model with power exponential correlation function which approximates the same

real function in a way similar to the neural network. This is possible by tuning the θ and

p parameters of the power exponential correlation function and the trend coefficients. In

Fig. 11, it is shown that a universal kriging model, correctly tuned, can approximate the

response surface predicted by the ANN fitted to our simulator output. In particular, the

kriging model has been estimated using the ANN predicted values of the first batch of data

(n = 50) selected by the LHS as response.

This approximation provides a handle to interpret the artificial neural network fitted on

our CES data. In fact, θ and p parameters have a clear influence on the power exponential

correlation function [47] and, consequently, on the universal kriging model. Furthermore,

as the two metamodels have shown a similar performance while optimizing the controllable

parameters combinations, this approximation is important for understanding whether a
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FIG. 11: Comparison between neural network response surface and the one approximated by the

kriging model.

different behavior in the whole experimental region reflects limitations of the metamodels

themselves or actual characteristics of the simulator.

In Table III, all the parameters of the models are reported. Model 1 collects the trend

coefficients, scale and power parameters and variance of the universal kriging model esti-

mated on the LHS design and Model 2 collects the same information for the universal kriging

model that approximates the single layer feed-forward neural network. Clearly, the variance

parameter of Model 2 is smaller, because the surface predicted by the neural network is

smoother than the original data.

An examination of the trend coefficients shows that the coefficient of the feed rate is

reduced by two orders of magnitude in Model 2, compared to Model 1, whereas the remaining

coefficients show little variation. If we plotted the correlation function in the direction of the

feed rate we would observe that the correlation of Model 1 decreases rather more sharply

than that of Model 2 and that the former is dominated by the latter over the operating

region, implying a greater degree of smoothness of Model 2. This indicates that Model 2

estimate of the feed rate effect on the predicted response depends mostly on a very weak

linear trend, with a high degree of smoothing (correlation is always above 0.75). On the

other hand, Model 1 captures the effect of the feed rate through the trend component, while
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TABLE III: Estimated trend coefficients, scale and power parameters and variances of the two

universal kriging models. Model 1 is the universal kriging model estimated on the first batch of

data (n = 50) selected by the LHS and Model 2 is the approximation of the artificial neural network

by means of the universal kriging model.

Trend

coefficients

Scale

parameters

Power

parameters
Variance

β0 β1 β2 β3 θ1 θ2 θ3 p1 p2 p3 σ2

Model 1 2.503 -0.0001 -0.012 10.151 12612.404 18.796 0.049 2.000 2.000 0.117 0.128

Model 2 3.583 -0.0001 -0.014 0.381 12409.871 12.597 0.049 1.186 1.994 2.000 0.048

keeping the long-term correlation above 0.4, still allowing for correlation between distant

experimental points. For both models, according to the trend component, the influence of

voltage is one order of magnitude greater than the influence of speed and the correlation

function of Model 1 dominates that of Model 2 in both directions, but without a substantial

difference.

This analysis leads to some important conclusions. First of all, an ANN may be expressed

in a more comprehensible way by means of a universal kriging model. Secondly, from the

application point of view, both the kriging model and the ANN have encoded a greater

sensitivity of the response to voltage, which can be crucial for the real CES process, because

small variations over the dielectric strength can cause an electrical discharge (by electric

arch) and, consequently, they can alter the electric field, thus affecting the quality of output.

Thirdly, the kriging model seems preferable to the ANN model, because it is capable of giving

some more information on the effect of the feed rate.

Finally, it is common to consider two sources of uncertainty associated with ANN out-

comes: uncertainty in training dataset and uncertainty in model structure [48]. Given these

uncertainty sources, it could be informative to explore the prediction error of ANN, and to

quantify how these sources might affect the prediction. Different studies [48, 49] have ex-

plored the behavior of ANN, investigating how to build confidence intervals and prediction

intervals. However, selection and application of construction methods for exploring un-

certainty in ANN depend on the purpose of the analysis and on computational constraints.

Given these limitations, it is not always possible to calculate confidence intervals and predic-
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tion intervals especially in real applications. A similar difficulty occurs in kriging modeling

when the form of the correlation function is not known. In this case, computational and

empirical techniques are recommended. A different situation arises when Z(x) is a Gaussian

stationary process with E(Z(x)) = 0 and constant variance σ2
Z and the form of correlation

function R(·|ψ) is known, depending on some parameters ψ. Under these hypotheses, an

unbiased predictor is obtained by minimizing the Mean Squared Prediction Error (MSPE)

and a closed form of prediction intervals is available. When ψ is unknown it must be es-

timated, and the work of Santner et al. (2003) [2] provides ways of taking the estimation

uncertainty into account.

V. CONCLUSIONS

The rapid growth of waste electrical and electronic equipments (WEEE) has led to an

increasing demand from experimental fields for efficient methods to improve material sepa-

ration processes, such as the corona electrostatic separation.

This work has addressed this issue by proposing a computer-aided methodology, derived

by computer experiments, and comparing three different modeling techniques: polynomial

regression, kriging and artificial neural network (ANN) models. Our numerical results in

Section IV C suggest that kriging and ANN models are equivalent in terms of optimization.

In fact, the optimal setting of the controllable parameters (voltage, drum speed and feed

rate) obtained by the two metamodels is the same. Furthermore, both models show the

importance of voltage, because its influence on the response is one order of magnitude

greater than the influence of speed. Where the kriging and the ANN models mainly differ is

in how they treat the feed rate. On the one hand, ANN considers the effect of feed rate on

the predicted response as weakly linear and as not-interacting with voltage or drum speed.

On the other hand, the kriging model reveals the effect of larger feed rates on the predicted

response. Therefore, considering the known physical properties of CES, the most suitable

metamodel seems to be the kriging model, which better describes some properties of the

CES process.

Another interesting finding of our analysis of the two metamodels is that it is possible to

empirically obtain a equivalence-by-approximation between the kriging and the ANN models.

In fact, by fine tuning the θ and p parameters of the power exponential correlation function
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and the trend coefficients in the kriging model, an approximation of the response surface

close to that predicted by an ANN can be obtained, which can aid interpretation of the

ANN fit.

With the objective of optimizing the response surface, further studies can be done in

the direction of sequential experimental design approaches. An interesting starting point

could be the work of Schonlau et al. (1998) [50] which is based on Bayesian optimization

for statistical models, typically stochastic processes, capable of handling highly nonlinear

relationships. The idea is that, using a sequential approach, after few evaluations of the

computer model (i.e. the CES simulator) one can improve the quality of the statistical model

and optimize the simulator using specific optimal criteria, such as the expected improvement

criterion.

Finally, we remark that our computer-aided methodology can be successfully applied

to CES to handle experiments with a higher number of process variables, with a different

level of accuracy, based on the chosen metamodel. More generally, we believe that further

exploration in this direction may generate valuable contributions to the optimization and

description of the recycling process of WEEE, because also other stages of this process,

taking place before separation, require modeling and optimization.

Acknowledgments

This work has been carried out as a part of the FIDEAS project (Fabbrica Intelligente

per la Deproduzione Avanzata e Sostenibile) co-funded within the Framework Agreement

between Regione Lombardia and CNR. The authors would like to thank the two anonymous

referees for their suggestions which helped to improve the quality of the work.

[1] Montgomery, D. C., Design and analysis of experiments, Wiley, 2004.

[2] Santner, T. J., Williams, B. J., and Notz, W. I., The design and analysis of computer experi-

ments, Springer, 2003.

[3] Alvarez, M. J., Gil-Negrete, N., Ilzarbel, L., Tanco, M., Viles, E., and Asensio, A., A computer

experiment application to the design and optimization of a capacitive accelerometer, Appl.

Stochastic Models Bus. Ind., Vol. 25, pp. 151-162, 2009.

27



[4] Fang, K.T., Li, R., and Sudjianto, A., Design and Modelling for Computer Experiments,

Chapman and Hall/CRC, London, 2006.

[5] Berni, R., De March, D., and Stefanini, F. M., T-optimality and neural networks: a comparison

of approaches for building experimental designs, Appl. Stochastic Models Bus. Ind., Vol. 29,

pp. 454-467, 2013.

[6] Pedone, P., Vicario, G., Romano, D., kriging-based sequential inspection plans for coordinate

measuring machines, Appl. Stochastic Models Bus. Ind., Vol. 29, pp. 133-149, 2009.

[7] Baldi Antognini, A., Giovagnoli, A., Romano, D., and Zagoraiou, M., Computer simulations

for the optimization of technological processes, In Erto P. (Ed.), Statistics for Innovation,

65-86, 2009.

[8] Ralston, O. C., Electrostatic separation of mixed granular solids, Elsevier, 1961.

[9] Kiewiet, C., Bergougnou, M. A., and Brown, J. D., Electrostatic separation of fine particle in

vibrate fluidized beds, IEEE Trans. Ind. Appl., Vol. 6, pp. 526-530, 1978.

[10] Taylor, J. B., Dry electrostatic separation of granular materials, Proceeding of the IEEE IAS

Annual Meeting, Vol. 35, pp. 1741-1759, 1988.
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