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Al piccolo Giovanni

An expert is a person who has made all the mistakes
that can be made in a very narrow field.

— Niels Bohr






ABSTRACT

Textual knowledge is one of the main pillars of our society. Indeed,
human knowledge is often passed along using words. Since the inven-
tion of writing, humans have narrated and described their existence
with words over pieces of papers. This amount of knowledge builds
up to what the entire civilization has collected over more than 5’000
years. Historians and social and political scientists look for ways to
understand better this vast amount of collective knowledge that can-
not be manually explored.

To this end, researchers from machine learning, statistics and com-
putational linguistic have developed topic models, a suite of algo-
rithms that aim to annotate large archives of documents with the-
matic information. The popularity of these models is due to the fact
that they are unsupervised and that they are interpretable. Topic mod-
els analyze and summarize the main themes, or topics, of large col-
lections of documents, presenting the information in a compact and
understandable form.

Most topic models focus only on the words encoded in the docu-
ments. However, additional information can be introduced into topic
models to improve their performance. In fact, in many real-world
cases, we seldom have only the mere texts to analyze. Instead, we
have additional information or metadata related to the documents,
e.g., the document’s author, the date, hyperlinks to other documents,
a set of hashtags, mentions or labels. We can use this prior informa-
tion to help a topic model discover better topics. For example, know-
ing that a document cites another document increases our confidence
that the documents talk about the same topics. Also, topic models of-
ten ignore word order and contextual information, making it difficult
to infer high-quality topics.

Another problem in the field is related to the hyperparameters used
to train the topics models. These hyperparameters control the training
process and may have a significant impact on the performance and
results of the models. However, researchers usually fix them, thus pre-
venting us from discovering the best topic model on a given dataset.

In this thesis, we aim to tackle the mentioned problems. We intro-
duce novel families of topic models to obtain better performance. We
also explore the issues related to hyperparameter optimization by de-
signing and developing a novel tool to supply researchers with better
guidelines on how to train a topic model.
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INTRODUCTION

1.1 TOPIC MODELING

Textual knowledge is one of the main pillars of our society. Indeed,
human knowledge is often passed along using words. Since the inven-
tion of writing, humans have narrated and described their existence
with words over pieces of papers. This amount of knowledge builds
up to what the entire civilization has collected over more than 5’000
years. Historians and social and political scientists look for ways to
understand better this vast amount of collective knowledge that can-
not be manually explored.

To this end, researchers from machine learning, statistics and com-
putational linguistic have developed topic models, a suite of algo-
rithms that aim to annotate large archives of documents with the-
matic information. From the nineties, several topic models have been
proposed across the years. They have been applied to various do-
mains and tasks, becoming one of the major models in Natural Lan-
guage Processing (NLP). The popularity of these models is due to
their interpretability capabilities. Topic models analyze and summa-
rize the main themes, or topics, of large collections of documents, pre-
senting the information in a compact and understandable form.

But what is a topic? A topic can be defined as a subject that is
discussed, written about, or studied. In topic modeling, a topic is
seen as a cluster of words that make sense together. For example,
the list of words “learning, machine, deep, neural, network” can be easily
interpreted as a topic related to deep learning. The words “probability,
distribution, gaussian, variable, random” are related to probability the-
ory. Therefore, the objective of a topic model is to discover lists of
representative keywords from a document collection.

The problem setting is simple. We have a collection of documents,
and we want to figure out which are the main topics of the docu-
ments. The topic model takes as input the corpus of documents and
the number of topics one wants to discover, and the model returns
the topics, as the lists of keywords we have seen above. The set of
discovered topics provides a general view of the corpus. However, a
topic model can also specify the most significant topic (or topics) of
each considered document. For example, the main topic of this the-
sis is “topic modeling", but there is also a little of probability theory,
deep learning, and natural language processing. On the contrary, a
topic that will not be treated in this thesis is reinforcement learning.
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The strength of topic models is that they are unsupervised. They
do not require any a priori annotations. The required elements are
the corpus and the number of topics that we want to extract. This
(apparent) simplicity has led many researchers and practitioners to
use and apply topic models across the years over a wide range of
applications, tasks and domains (Albalawi et al., 2020; Jelodar et al.,
2018; Vayansky and Kumar, 2020).

1.2 RESEARCH CHALLENGES.

MODELING ADDITIONAL INFORMATION. All that glitters is not
gold. Despite what we usually see in topic modeling papers, the dis-
covered topics do not always make sense (Chang et al., 2009; Hu et al.,
2014). A topic model can often discover “bad” topics. These bad top-
ics can confuse two or more themes into one topic; two different top-
ics can be duplicated, or some topics are “junk topics” and make no
sense at all. Additional information can help reduce this issue, and
thus a challenging direction is the incorporation of information into
topic models.

In many real-world cases, we seldom have only the mere texts to
analyze. Instead we may have additional information or metadata re-
lated to the documents, e.g., the document’s author, the date, hyper-
links to other documents, a set of hashtags, mentions or labels. We can
use this prior information to help a topic model discover better top-
ics. For example, knowing that a document cites another document
increases our confidence that the documents talk about the same top-
ics. This information can sometimes be expressed in a relational form,
originating a graph of documents or words: a document that cites an-
other document, a web page that links to another web page, or a
word may be a synonym of another one. Many approaches extend
unsupervised topic models by incorporating this kind of relational
information. However, very few approaches investigate the impact
of modeling multiple sources of relational information (Yang et al.,
2016a; Zhao et al., 2017).

Nevertheless, domain experts and domain-specific information about
the documents are not always available resources, and a valuable so-
lution in these cases consists in using general information. A topic
modeling subfield already exploits publicly available resources about
language, including knowledge graphs, taxonomies, and pre-trained
word embeddings (Dieng et al., 2020; Li et al., 2017; Zhao et al., 2017).
Meanwhile, pre-trained language models are becoming ubiquitous
in Natural Language Processing, precisely for their ability to capture
syntactic and semantic information of the words in a sentence. Bidi-
rectional Encoder Representations from Transformers (BERT) (Devlin
et al., 2019), the most prominent architecture in this category, allows
us to extract pre-trained word and sentence representations. Their use
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has advanced state-of-the-art performance across many tasks. Topic
models could also benefit from the advantages that come from the
use of contextualized representations.

EVALUATION OF TOPIC MODELS. In parallel to the effort of in-
corporating information into topic models, we need to face another
fundamental problem: evaluating a topic model is not trivial. Topic
models can be evaluated in several ways: from downstream tasks,
such as document classification and information retrieval (Boyd-Graber
et al., 2017), to the analysis of the generated topics (Doogan and Bun-
tine, 2021; Lau et al., 2014a). Most of the evaluations disregard the
pre-processing of the texts, the evaluation metrics, and the hyperpa-
rameters of the models. These elements, especially the hyperparame-
ters, have a relevant impact on the performance of the models.

Indeed, topic models are usually controlled by hyperparameters,
whose values control the learning process. Fixing them prevents the
researchers from discovering the best topic model on a given dataset.
Yet, the evaluations of topic models are often limited to the com-
parison of models whose hyperparameters are held fixed (Doan and
Hoang, 2021) or explored with ineffective techniques, e.g. grid search.
Finding the best hyperparameter configuration will therefore guar-
antee a fairer comparison between the models.

However, discovering the best setting of hyperparameters may re-
quire high computational resources, especially without prior knowl-
edge of the hyperparameters. To the best of our knowledge, there
is no approach to transferring the knowledge acquired during the
hyperparameter selection experiments. Taking inspiration from meta-
learning techniques (Feurer et al., 2015; Jomaa et al., 2020), we can
investigate hyperparameters’ transferability from a document cor-
pus to an unseen one.

1.3 CONTRIBUTIONS

The major contributions of this research are the definition of new
methods for modeling additional information into topic models and
the study of fair evaluation and comparison methods for topic mod-
els, which consider the multiple aspects that impact on the topic mod-
els” performance. In detail,

1. we define a method for introducing relational information re-
lated to words and documents into topic models, which is easy
to implement, modular, and applicable to different topic mod-
els.

2. We propose a class of topic models that incorporate contextual
information from state-of-the-art language models, allowing the
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model to improve the topics” quality and perform zero-shot clas-
sification tasks.

3. We design and release to the NLP community a comprehensive
framework for evaluating and fairly comparing topic models,
which also allow us to investigate the different elements that
play a role in evaluating the models.

4. We define an approach to transfer the knowledge we have ac-
quired during the different models” evaluations to obtain topic
models that guarantee optimal results efficiently.

1.4 ORGANIZATION OF THIS THESIS

In the following, we detail each Chapter of this thesis. The publica-
tions related to each Chapter are listed in chronological order.

CHAPTER 1: INTRODUCTION. In this Chapter, we have introduced
the content of this thesis, outlining the main concepts and the most
relevant content. The rest of the Chapter will also outline the main
research questions that this research work aims to answer.

CHAPTER 2: PRELIMINARIES. In this Chapter, we explain the ba-
sic notions that are part of this research work. We give an overview
of topic modeling, focusing on the well-known probabilistic topic
model Latent Dirichlet Allocation. We also discuss the main types
of word and document representations, their differences, and the hy-
perparameters” optimization methods in machine learning models.

CHAPTER 3: RELATED WORK. In this Chapter, we explore related
approaches by analyzing two different areas: topic models and their
evaluation. We will detail the topic modeling approaches incorporat-
ing additional information and describe the different methodologies
and metrics for evaluating topic models. We will end this Chapter by
discussing the methods for estimating the hyperparameters in topic
models.

CHAPTER 4: MODELING RELATIONAL INFORMATION INTO CLAS-
sICAL MODELS. In this Chapter, we outline the ideas behind incor-
porating additional information into topic models. We focus on one of
the contributions of this research work, which is the incorporation of
information into the form of relationships into classical probabilistic
topic models.

The research questions answered by the following Chapter are:

Q4.1 How can we model additional document-level and word-level
relational information into classical topic models?
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Q4.2 Which is the impact of modeling document-level and word-
level relational information into topic models?

Methods and results described within this Chapter are based on the
following work, in which we show how to incorporate information
into classical topic models.

¢ Terragni, S., Fersini, E., & Messina, E. (2020). Constrained rela-
tional topic models. Information Sciences, 512, 581-594.

e Terragni, S., Nozza, D., Fersini, E., & Messina, E. (2020). Which
Matters Most? Comparing the Impact of Concept and Document Re-
lationships in Topic Models. Insights @ EMNLP 2020 (pp. 32-40).

CHAPTER 5: MODELING CONTEXTUAL INFORMATION INTO NEU-
RAL MODELS. This Chapter focuses on one of the contributions of
this research work, which is the introduction of the class of Contextu-
alized Topic Models. The models belonging to this class can improve
the quality of the topics and use transfer learning to address zero-
shot tasks. In this Chapter we aim to answer the following research
questions:

Q5.1 How can we incorporate context information into neural topic
models?

Q5.2 How can we exploit the cross-lingual capabilities of the multi-
lingual pre-trained representations for topic modeling?

Methods and results described within this Chapter are based on
the following work, in which we show how to incorporate pre-trained
contextualized representations into neural topic models.

e Bianchi, F, Terragni, S., & Hovy, D. (2021). Pre-training is a hot
topic: Contextualized document embeddings improve topic coherence.
ACL 2021 (pp. 759-766).

 Bianchi, F,, Terragni, S., Hovy, D., Nozza, D., & Fersini, E. (2021).

Cross-lingual contextualized topic models with zero-shot learning. EACL

2021 (pp. 1676-1683)

CHAPTER 6: HYPERPARAMETER OPTIMIZATION FOR THE COM-
PARISON OF TOPIC MODELS This Chapter focuses on the defini-
tion of a general framework based on hyperparameter optimization
for comparing topic models.

In this Chapter we aim to answer the following research questions:

Q6.1 Can we determine if a topic model can guarantee an optimal
trade-off between different performance measures?

Q6.2 Can a performance measure imply a competing or correlated
target for other performance measures?

7
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Results and methods described within this Chapter are based on
the following work, in which we propose our comparative framework
for topic modeling and the results related to the use of the proposed
framework:

¢ Terragni, S., Fersini, E., Galuzzi, B. G., Tropeano, P., & Cande-
lieri, A. (2021). OCTIS: Comparing and Optimizing Topic models is
Simple!. EACL 2021: System Demonstrations (pp. 263-270).

¢ Terragni, S., Fersini, E., & Messina, E. (2021). Word Embedding-
based Topic Similarity Measures. NLDB 2021 (pp. 33-45), Best Pa-
per Award.

¢ Terragni, S., & Fersini, E.(2021). An Empirical Analysis of Topic
Models: Uncovering the Relationships between Hyperparameters, Doc-
ument Length and Performance Measures. RANLP 2021 (pp. 1408-
1416).

¢ Terragni, S., Calendieri, A., & Fersini, E.(2021). The Role of Hy-
perparameters in Relational Topic Models: Prediction Capabilities vs
Topic Quality. (under review).

CHAPTER 7: BEYOND SINGLE-OBJECTIVE HYPERPARAMETER OP-
TIMIZATION This Chapter still focuses on comparing topic mod-
els and explores different research directions, originating from the
previous Chapter.

In this Chapter we aim to answer the following research questions:

Qy.1: Can we optimize the hyperparameters of a topic model to guar-
antee an optimal trade-off between different performance mea-
sures using multi-objective optimization?

Q7.2: Can we transfer the best hyperparameter configurations from a
dataset to an unseen dataset?

Results and methods described within this Chapter are based on
the following work:

¢ Terragni, S., Harrando, I, Lisena, P, Troncy, R., & Fersini, E.(2021).
Multi-Objective Bayesian Optimization for Hyperparameter Transfer
in Topic Modeling. (under review).

¢ Terragni, S., & Fersini, E.(2021). OCTIS 2.0: Optimizing and Com-
paring Topic Models in Italian is Even Simpler! (to appear).

CHAPTER 8: CONCLUSIONS. Finally, we end this thesis by provid-
ing conclusions to this work by highlighting the most critical content.
Eventually, we provide possible research directions that may start
from the results provided within this thesis.
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1.5 REPRODUCIBILITY

Recently, reproducibility has become a significant issue in Al and
NLP-related fields (Bianchi and Hovy, 2021). Thus, the experiments
run for this thesis can be replicated using codes and models freely
available online. In the following, we summarize the links to the
repositories for each chapter:

¢ Chapter 4:

— Document-Constrained Relational Topic Models: https://
github.com/MIND-LAB/Constrained-RTM

— Entity-Constrained Relational Topic Models: https://github.
com/MIND-LAB/EC-RTM

¢ Chapter 5:

- Contextualized Topic Models: https://github.com/MilaNLProc/
contextualized-topic-models

¢ Chapter 6 and 7:
- Optimizing and Comparing Topic Models is Simple (OC-
TIS): https://github.com/MIND-LAB/octis

- Comparative Analysis of Classical Topic Models: https://
github.com/MIND-LAB/Constrained-RTM


https://github.com/MIND-LAB/Constrained-RTM
https://github.com/MIND-LAB/Constrained-RTM
https://github.com/MIND-LAB/EC-RTM
https://github.com/MIND-LAB/EC-RTM
https://github.com/MilaNLProc/contextualized-topic-models
https://github.com/MilaNLProc/contextualized-topic-models
https://github.com/MIND-LAB/octis
https://github.com/MIND-LAB/Constrained-RTM
https://github.com/MIND-LAB/Constrained-RTM




PRELIMINARIES

In the following chapter, we introduce the foundations of this re-
search work. This chapter should give the reader most of the required
knowledge to access the rest of this work. We begin this chapter with
an overview of topic modeling and word and document representa-
tions. Then, we provide an overview of probabilistic topic models,
which is the focus of this thesis, and we eventually end the chapter
with an overview of methods for selecting the hyperparameters of
topic models.

2.1 TOPIC MODELING

Topic models are a class of models that provide an automatic way
to analyze the main themes of large volumes of texts. A topic model
describes a corpus of documents through a set of fixed topics, where
each topic is represented by its most significant words. Figure 2.1
sketches how a topic model works, along with its input and outputs.

Topic indicators

TOPIC 1 TOPIC 2 TOPIC3
learning probability reinforce
machine distribution learning
deep gaussian reward
neural variable agent
network random g-learning

TOPIC

MODEL —|

Corpus of documents Distribution of topics in each document

Figure 2.1: Overview of topic modeling. A corpus of documents is given
as input and the model returns the list of topics and the topic
representations of the documents.

A topic model presents the information in a compact and inter-
pretable form. For example, as seen in the picture, a topic charac-
terized by the words “learning, machine, deep, neural, network” can be
easily interpreted as a topic related to deep learning, or the words
“probability, distribution, gaussian, variable, random” are related to prob-
ability theory. However, a topic is not just an unordered list of key-
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words: each word of the vocabulary has a specific weight, or proba-
bility weight, that identifies the importance of the word in the topic.

Not only does a topic model summarize a corpus by lists of coher-
ent keywords, but each document can be described by the discovered
topics in different proportions. Indeed, a document is rarely charac-
terized by a single topic, rather it may talk about multiple topics. For
example, an NLP paper can contain 30% of linguistics and 70% of
computer science.

2.1.1  Relationship between Topic Modeling and Clustering

A topic model can be easily inserted into the categories of clustering
algorithms (Bishop, 2006). In fact, a topic model allows us to divide
the documents into a (usually, fixed) number clusters, i.e. the topics.
Moreover, this process is usually done in an unsupervised way, with-
out requiring any prior knowledge on the documents. We also expect
that the documents of a cluster are coherent between each other but
separated from the rest of documents, reflecting the notions of cohe-
sion and separation of clustering theory respectively.

We have mentioned that a topic model describes a document as a
mixture of different topics with different weights. This form of mod-
eling is the so-called soft clustering (which is the opposite of hard clus-
tering. In soft clustering, each document (or data point) can belong to
more than one cluster.

Despite the similarities between topic modelling and clustering al-
gorithms, topic models offer additional capabilities. A topic model
not only provides a soft clustering of the documents, but it provides
a way to making sense of the document corpus through the use of
topics.

Finally, we will see later in Section 3.4 that the evaluation of topic
models takes inspiration also from clustering evaluation. In fact, we
expect the topics to be coherent (i.e. their words must be related to
each other, similar to the concept of cohesion for clutering) and we
also expect the topics to be separated from the others (similar to the
concept of separation in clustering theory).

The two main elements in topic modeling are the documents and its
constituents, i.e. the words. To allow the topic model to deal with
these elements, we need to find a way to represent them under a
computational point of view. This Chapter is therefore organized as
follows: we will provide an overview of the main representation meth-
ods for words and documents in Section 2.2 and Section 2.3 respec-
tively. In this way, we will have the fundamentals to provide some
details on the focus of this thesis, i.e. probabilistic topic models, in
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Section 2.4. Since these models are usually controlled by hyperparam-
eters, we will also provide an overview of the main methodologies for
estimating the hyperparameters in topic models in Section 2.5.

2.2 WORD REPRESENTATIONS

Language is made of words that under a computational point of view
come from a vocabulary and we need to find ways to account for the
meaning of these words under a computational point of view. Nowa-
days, the most common way to represent words in NLP is to use vec-
tors in a vector space: words are embedded in a multi-dimensional
vector space and we can therefore interpret them as points in a space
that can be compared. The process of “embedding” words in the vec-
tor space is what brought the community to call these representations
word embeddings. "Word embeddings" is in fact the general term that
is used to refer to this kind of representations.

We can distinguish between two different ways of representing
words with vectors: we refer to the first as a local representation
and to the second one as a distributed representations (Ferrone and
Zanzotto, 2017). This distinction derives from one of the most vivid
debates in the Al field during the ‘8os on how to store conceptual in-
formation inside neural algorithms. Local representations are meant
to represent a single concept with the activity of a single neural unit.
On the other hand, distributed representations are meant to account
for a pattern of activity of more neural units (Hinton et al., 1986).

2.2.1 Local Representations

The simplest way to represent words in a way that is interpretable
from a machine consists in using one-hot encoding. In one-hot en-
coding, each word is represented by a single and unique vector. One-
hot encoding maps the i-th word of the vocabulary V to the vector
w; in a vector space R™, where n is the cardinality of the vocab-
ulary V and the i-th element of w; is set to 1, while all the other
elements are set to zero. We generally refer to this kind of vectors as
the one-hot vectors. For example, given the words of the vocabulary
V = {the, cat, is,on, table}, the word “cat” of the vocabulary V can
be represented as a vectors of zeros with only one 1 in the position in-
dexed by its own index in the vocabulary w, = (0,1,0,0,0) (i.e., “cat”
is the second element and thus the 1 will be in the second component
of the vector).

If we want to represent all the unique words in a text corpus, we
will then need a matrix whose dimension is V x V (where V is the
number of unique words). A one-hot encoded representation is sim-
ple but results in two main issues. First, the dimension of the matrix
grows as the number of unique words increases. Encoding all the
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words of the English vocabulary would generate a matrix of at least
170,000 x 170,000 entries. Related to this issue, the resulting matrix
is extremely sparse (each row is composed of all o-valued entries ex-
cept for one entry). Each vector is orthogonal to each other, therefore
not representing any type of relationship between words. It is instead
more convenient that word embeddings reflect and preserve certain
specific properties of language. For example, we may agree that the
word “cat" is more similar to "dog" than to “Rome". In the next sec-
tion, we will see how this problem can be addressed by distributional
representations.

2.2.2  Distributional Embeddings

Distributional semantics is an approach to semantics that advocates a
“usage-based” perspective on the computation of word meaning. Dis-
tributional semantics is based on the assumption that the statistical
distribution and the frequency of usage of words inside textual docu-
ments can reveal information about the meaning of words themselves.
The intuition that drove the development of the algorithms based on
distributional semantics is well described by a famous sentence that
was pronounced by J. R. Firth’s “you shall judge a word by the company
it keeps”(Firth, 1957). In other words, word meaning can be found in
the context (Lenci, 2008).

The definition of the concept "context" can vary widely across the
different algorithms. The simplest case of context is co-occurrence:
a word appears in the context of those words it co-occurs with. We
expect the words “cat” and “kitten” to occur in similar contexts and
thus being similar. Let us notice that also the words cat and dog could
co-occur in some contexts, thus making the two words similar, but
less similar than “cat” and “kitten” which co-occur more often. On
the other hand, words that occur in different contexts, such as “smart-
phone”, will not be similar to “cat”. This effect allows us to define a
graded similarity. In other words, the degree of semantic similarity
between two words wi and w; is a function of the similarity of the
contexts in which wq and w; usually appear. We in fact expect that
the meaning of the words “dog” and “cat” to be similar, since both are
domestic animals, have four legs, an owner, they eat, and so on.

Models that are based on distributional semantics aim to create rep-
resentations in which similar vectors should represent similar words
(i.e., words that occur in similar contexts). These algorithms take large
amounts of text in input to create these vector representations. Fig-
ure 2.2 shows an example of what a vector space model built under
the distributional hypothesis should create: “cats” and “dogs” are
similar words and tend to occur in similar contexts (e.g., those shared
by animals, those shared by house pets, etc...) and they tend to share
fewer contexts with words like “president”.
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dogs
cats

Cats are animals
Dogs are animals
The president is the United States

president

v

Figure 2.2: An example of word vector representation generated from text.

There are different ways to generate these representations. One
of the most famous model that can create distributional represen-
tations of words is Wordzvec (Mikolov et al., 2013). Word2vec is a
neural architecture that has been proposed in two different variants:
Continuous Bag-of-words (CBOW) and Skip-gram (SG). Both archi-
tectures are simple feed-forward neural networks with one hidden
layer, and they are trained over a large corpus of text. There are no
non-linearities between the layers (except for a softmax function to
compute the output scores of the network) and thus the projections
are linear. The training examples for the models are extracted from
text and are generally based on the concept of target word and con-
text words that appear inside the corpus within a fixed distance from
the target word: for example, in a sentence like “the cat is on the table”,
the word “cat” might be the target word and “the”, “is”, “on”, “the”,
“table” the context. CBOW gets the context words as input and it aims
at predicting the target words. Instead, SG is trained by considering
the task in the opposite way: given the target word the model, it aims
at predicting the surrounding words of the target. Once the models
have been trained, the word embeddings are extracted from the first
weight matrix of the neural network.

Word embeddings learned using the Wordzvec model exhibit a
good capability at capturing syntactic and semantic regularities in a
language (Mikolov et al., 2013). In fact, the introduction of Word2vec
represents a milestone for the NLP field. Different improved distribu-
tional embeddings models have been then proposed across the years
(Grave et al., 2018; Pennington et al., 2014) and have become ubig-
uitous in NLP (Khattak et al., 2019; Rezaeinia et al., 2019; Segaard
et al., 2019). However, these approaches have some limitations. De-
spite their capabilities of capturing syntactic and semantic regulari-
ties, it has been shown that these representations also capture bias in
language (Caliskan et al., 2017). Moreover, most of these models also
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assign to each word a single vector representation, following that they
compress all the senses of a word into a single vector.

2.2.3 Contextual Embeddings

The word representations we have seen so far are just static repre-
sentations of words: each word is associated with a single vector rep-
resentation, regardless of the context. However, words change their
meaning depending on the context in which they appear. Let us con-
sider the following two sentences “the Broadway play premiered yester-
day” and “two teams play a football match”. The word “play” in the two
sentences has two different meanings and syntactic roles.

Contextualized words embeddings aim at overcoming this issue
and capturing word meaning in different contexts. We therefore aim
to obtain two different vectors for the same word “play”. In partic-
ular, we want to obtain a vector representation for the word “play”
that is dependent on its context. Let be a document composed of
w1, W3,...,wN words. Then a context-dependent (or contextualized)
vector representation cy for the k-th word of the document is

ck = f(wilwy,wa, ..., wy) € RN (1)

such that the representation changes for different contexts and f is
function that maps the word to a continuous vector representation.

To obtain these vector representations we have to resort to the con-
cept of language modeling. Language modeling is the task of predict-
ing the next word given a sequence of words. For example, given the
following sentence “two teams play a football [BLANK]”, a language
model must predict the word in the [BLANK] position, which can
be “match”. It is intuitive that a language model is therefore required
to be able to express syntax (the grammatical form of the predicted
word must match its modifier or verb) and to model semantics.

More recent work, namely deep neural language models such as
ELMo (Peters et al., 2018), BERT (Devlin et al., 2019), and GPT-2 (Rad-
ford et al., 2019), have successfully created contextualized word rep-
resentations. Their internal representations of words are in fact called
contextualized word representations because they are a function of
the entire input sentence. The success of this approach suggests that
these representations capture highly transferable and task-agnostic
properties of language (Liu et al., 2019a).

ELMo (Peters et al., 2018) creates contextualized representations
of each token by concatenating the internal states of a bidirectional
LSTM trained on a bidirectional language modeling task. On the
other hand, BERT (Devlin et al., 2019) and GPT-2 (Radford et al., 2019)
are transformer-based language models (Vaswani et al., 2017). BERT
is bidirectional like ELMo, while GPT-2 is a unidirectional language
model. Each transformer layer of BERT and GPT-2 creates a contextu-
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alized representation of each token by attending to different parts of
the input sentence. BERT — and subsequent iterations on BERT (Liu
et al., 2019b; Sanh et al., 2019; Yang et al., 2019) — have achieved state-
of-the-art performance on various downstream NLP tasks, ranging
from question answering (Liu et al., 2019b; Yang et al., 2019), natural
language inference (Yang et al., 2019), and sentiment analysis (Sanh
et al., 2019; Yang et al., 2019).

A NOTE ON TRANSFER LEARNING The success of the models and
approaches mentioned before is due to their ability to capture seman-
tic and syntactic knowledge and then transfer this knowledge to a
wide variety of NLP tasks. Transfer learning is a means to extract
knowledge from a source setting and apply it to a different target
setting (Ruder, 2019). Indeed, there are some properties of language
that are task-agnostic and can be highly transferable.

The most successful style of transfer learning in NLP is sequential
transfer learning. Sequential transfer learning consists of two stages: a
pre-training phase in which general representations are learned on a
source task or domain followed by an adaptation phase during which
the learned knowledge is applied to a target task or domain. Pre-
trained representations are usually obtained from a large unlabelled
text corpus using a method of choice (Word2vec, ELMo, BERT, et
cetera). While the adaptation consists in adapting the representations
to a supervised target task using a smaller set of labelled data. One of
the advantages of transfer learning is in fact that we need less training
data for the adaptation, given that we already have the knowledge
coming from the pre-training phase.

There are two main paradigms for adaptation: feature extraction and
fine-tuning. In feature extraction the model’s weights are frozen and
the pre-trained representations are used in a downstream model sim-
ilar to classic feature-based approaches. Alternatively, a pre-trained
model’s parameters can be unfrozen and fine-tuned on a new task.
Pre-trained word vectors (such as Word2vec embeddings) are often
fixed and fed into a task specific model. Contextualized word rep-
resentations have significantly improved over non-contextual vectors
and they usually provide significant improvements when fine-tuned
with respect to the target task, on the condition that the target task is
not too distant from the source task (Peters et al., 2019).

Another exciting advantage of pre-training is related to its mul-
tilingual (Pires et al., 2019; Wu and Dredze, 2019) and multimodal
capabilities (Radford et al., 2021). In fact, it is possible to jointly train
contextual embedding models over multiple languages or multiple
modalities (e.g. text and images) without explicit mappings. This
would produce a model that is able to perform the so-called zero-
shot cross-lingual (or cross-modal) transfer. It refers to train a model in a
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source language (or modality), often a high resource language, then
transfers directly to a target language (modality).

2.3 DOCUMENT REPRESENTATIONS
2.3.1  Bag of Words

The Bag-of-Words (BoW) model is a document representation that
turns text in natural language into a fixed-length vector. We can ob-
tain the BoW representation of a document by first tokenizing the text,
i.e. dividing the words or phrases in tokens. Then we can create a vec-
tor, whose length is equal to the number of unique tokens in the texts.
The entries of this vector may be binary, thus indicating whether a
token occurs (value 1) or not (value o) in the considered document,
or can represent the counts of the tokens in the document. Let us
consider the sentences "The cat is on the table” and "The cat and the
dog are under the table”. The vocabulary is composed of the 10 unique
words: "The", "cat", "is", "on", "the", "table" "and, "dog", "are", "un-
der". Notice that "The" and "the" are two different words. Consider-
ing the previous order of the words, the binary BoW representations
of the two sentences are the following vectors: [1,1,1,1,1,0,0,0,0,0]
and [1,1,0,1,1,1,1,1,1,1]. On the other hand, if we want to con-
sider the counts, we will obtain the following vector representations:
1,1,1,1,1,0000,0 and [1,1,0,1,2,1,1,1,1,1].

Let us notice that the BoW model loses the contextual information
of a document. the sentences “the department chair couches offers”
and “the chair department offers couches” are represented by the
same bag of words, but have different meanings. We do not know
anymore in which position a given word appeared or which were
their surroundings words. Nonetheless, this kind of representation
can be useful from the point of view of the computational costs.

2.3.2 Distributed Representations of Sentences and Documents

Despite their popularity, bag-of-words representations have two ma-
jor weaknesses: they lose the ordering of the words and they also ig-
nore semantics of the words. For example, the words “cat,” “dog” and
“Rome” are equally distant in a bag-of-word representation. This is
analogous to the observations we made for the one-hot encoded rep-
resentations of words. Indeed, as seen before, we can address these
problems by resorting to distributed representations of documents.
To this end, we can use algorithms that maps a variable-length docu-
ment to a fixed-length distributed representation.

A simple strategy consists in representing the document as a con-
catenation or average of its surrounding words, and the resulting
vector is used to predict other words in the context (Bengio et al.,
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2006). Then the embedded document representation can be exploited
in downstream tasks, such as clustering and retrieval.

2.3.3 Contextualized Document and Sentence Embeddings

In the previous sections, we have seen that we can derive contextu-
alized representations of words using recent neural language mod-
els (Devlin et al., 2019). We can of course learn also contextualized
representations of documents, i.e. fixed-length representations that
derive from contextualized language models. For some time, transfer
learning in NLP was limited to pre-trained word embeddings, but re-
cent work has demonstrated strong transfer task performance using
pre-trained sentence embeddings (Cer et al., 2018). The most com-
monly used approach is to average the BERT (Devlin et al., 2019) out-
put layer or by using the output of the first token (the [CLS] token).
However, this common practice yields rather bad sentence embed-
dings (Reimers and Gurevych, 2019). Other approaches have been
investigated. One of the most used is Sentence BERT (Reimers and
Gurevych, 2019, SBERT), which is a modification of the pre-trained
BERT network that use siamese and triplet network structures.

2.4 PROBABILISTIC TOPIC MODELS

In the introduction of this Chapter, we have provided an overview of
topic modeling. Here, we will describe how the elements that com-
pose a topic model can be interpreted in probabilistic terms, originat-
ing the prominent class of probabilistic topic models (Blei, 2012; Zhai,
2017).

We have anticipated that topics are not just unsorted lists of key-
words. Instead, they are associated with a weight or, rather, a prob-
ability weight. We can in fact express a topic as a multinomial dis-
tribution over the vocabulary, where the most likely words are the
representative words of the given topic. We can therefore select the
top-n most likely words to represent a topic.

In addition, topic models also provide a lower-dimensional repre-
sentations of the documents in the space of the topics. Also this repre-
sentation can be interpreted as a probability distribution: a document
is in fact a multinomial distribution over the topics. In other words,
a document can talk about different topics in different percentages.
Reporting the example mentioned in the introduction, an NLP paper
can talk about 30% of linguistic and 70% of computer science.

The only observations usually provided to a topic model are the
documents and their words. We can imagine a generative process that
have generated the words of the documents. A generative process is
in fact the imaginary random process by which the model assumes
the documents are constructed through the sampling of their words
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(observed random variables). The latent topics (latent random vari-
ables), which have ideally produced the collection of documents, are
inferred by reversing the generative procedure of a text.

2.4.1 Latent Dirichlet Allocation (LDA)

To better explore these concepts, we now describe the most well-
known topic model Latent Dirichlet Allocation (Blei et al., 2003a,
LDA). This model makes the assumptions considered above: it rep-
resents the topics as mixtures of words in the vocabulary (i.e. multi-
nomial distributions over the vocabulary) and the documents as mix-
tures of topics (i.e. multinomial distributions over the topics). It also
assumes that each word in a document is associated with a single
topic.

LDA is a probabilistic graphical model. A graphical model can
be represented by a graph, graphically represented in "plate nota-
tion". Figure 2.3 reports LDA’s representation in plate notation. Here,
the nodes of the graph represent the random variables and an edge
between two nodes represents the conditional dependency relation-
ships among the variables. Observed variables are represented by
shaded circles (e.g. Wy q is the variable representing the words for
LDA, which are observed, and in fact is represented by a shaded
circle). Moreover, if a variable is contained into a plate, then the vari-
ables are replicated multiple times (as the number reported on the
corner of the plate). For more details on graphical models, we refer
to Appendix A.

@e

Figure 2.3: LDA in plate notation. The variable w,, 4, representing the n-th
word of document d, is observed, then it is represented by a gray
circle. While the other variables are unobserved, thus they are
represented by white circles. Variables are repeated if they are
included in a rectangle.

More formally, let be K the fixed number of topics, D the docu-
ments and V the unique words of the vocabulary. In LDA, the only
observations are the words w, and each word is associated with a
topic assignment z. The topic assignments z are i.i.d (identically and
independently distributed) drawn from a document-topic distribu-
tion 6 and word tokens are i.i.d. drawn from a topics” distributions
over words ¢. In other words, the words of the documents in LDA are
represented as BOWs, because the order does not count. The random
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variables 6 and ¢ are multinomial distributions and are controlled by
the Dirichlet priors « and (3 respectively.
The generative process of the documents in LDA is the following;:

for each topic k € K do
Draw a distribution over words ¢y|f ~ Dir(p)
end for
for each document d € D do
Draw a vector of topic proportions 64|« ~ Dir(«)
for each word w in document d do
Draw a topic assignment z,, 4|04 ~ Mult(84), where z,,4 €

{1,...,K}

Draw a word wnqlzna, ¢z, , ~ Mult(d,, ), Wna €1{1,..., VL

end for
end for
where Dir(-) and Mult(-) represent the Dirichlet and Multinomial
distributions respectively. The full joint distribution of LDA, given its
hyperparameters, is shown in Equation 2:

p(0,z, &, wlx, B) (2a)
=P(PIB)p(Ola)p(z/B)p(Wiz, d2) (2b)
document plate
K I D Nyg I
=] Ir@xB)-[]r0al®) [ ] plznalda)p(wnalzna, dz,,)
k=1 d=1 n=1
IWI I word plate I

(20)

The goal is to compute the posterior distribution of the latent vari-
ables, given the observed documents. Therefore, the generative pro-
cess of a document must be reversed in order to obtain the distribu-
tion of the hidden variables:

p(G,z, ¢),W|0€, B)
p(wle, )

p(6,z dlw, o, ) = (3)
The denominator of Equation 3 is intractable to be computed by
means of exact inference methods. In fact, the posterior probability
of LDA — and any other probabilistic topic model — is usually com-
puted by approximate inference algorithms.

TRAINING AND INFERENCE Different algorithms have been pro-
posed to optimize inference for LDA (Blei et al., 2003a; Griffiths and
Steyvers, 2004; Hoffman et al., 2010; Zhai et al., 2012). In the follow-
ing, we will report the two main foundation methods that are used
for training topic models. Although we will see the details of these
methods applied for LDA, these methods can be generalized to most
of probabilistic models.
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¢ Collapsed Gibbs Sampling (GS). Markov Chain Monte Carlo
(MCMC) methods are a class of approximate inference algo-
rithms, which are scalable and allow sampling from a large class
of distributions. One of the most widely used algorithms that
belongs to this category is Gibbs Sampling (GS) (Bishop, 2006).

The procedure starts from some initial state for the Markov
chain and, at each step, it replaces a value for i-th variable
with the value drawn from the distribution of that variable con-
ditioned on the values of the remaining variables. This proce-
dure is repeated through all the variables, for T steps. Given
p(z) = p(z1,22,...,2m) to sample, Gibbs sampling procedure
is shown below:

Randomly initialize z; :i=1,...,M

fort=1,...,Tdo

Sample zgtﬂ) ~plz Izgt),z;t), ... ,z,(\fl))
Sample zétﬂ) ~ p(zzlzgtH )’th), .. ,zl(\f[))

' t+1 t t
Sample zjt+1 ~p(zlzftT,. ..,zj(_1 ),z§+)1, .. .,zgvl))

t+1) t+1) _(t+1) (t+1)

Sample zg ~ p(lezg ,Z5 PR AVEED

end for

After sampling a sufficient number of samples, GS is proved to
converge to the exact posteriors. However, it is hard to estimate
how many iterations are required for the algorithm to converge.
Choosing a number of iterations which is too high can lead to
a computationally demanding execution for large-scale applica-
tions.

Collapsed Gibbs Sampling (CGS) consists of integrating out
the parameters, thus it samples from a distribution with one
or more of the conditioned variables integrated out. Collapsed
methods, also referred as Rao-Blackwellisation methods (Casella
and Robert, 1996), improve performance in terms of velocity in
reaching the target distribution.

CGS can be employed for LDA (Griffiths and Steyvers, 2004),
as both document-topic distribution 04 and word-topic distri-
bution ¢ can be calculated using just the topic assighments z.*
Instead of the full joint distribution p(z, w, 6, d|x, ) shown in

MNaz+x
n..+Ka

1 The topic assignments z are a sufficient statistics for 64 and ¢. Infact 04, =

+V
and ¢z = e
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Equation 2, 04 and ¢, are first integrated out, obtaining the
distribution p(z, w|x, 3) as it follows:

p(zwlx, B) (42)
= | po.z o wia, p) avas (4b)
JOJo
K D Ng
=| JIp@B) ] I]PWnalzna ¢z,0)dd  (40)
o d=1n=1
. D Ng
[T p@ale) [T plznaloa) a0 (4d)
YV d=1 n=1

Since 0 and ¢ only appear in the first and second terms, respec-
tively, these integrals can be performed separately. The joint dis-
tribution marginalized over 6 and ¢ then becomes:

p(z,wlx, B) (5a)

_ 2 TR o) TR Mk + )

a1 TTh_q M) T(Y kg Nak + o)
K

. H F(Z\\//v:1 Bw) H\\//V:I r(nwk + Bw)
k=1 va\\;/:1 I'(Bw) F(Z\\//\):] Nk + Bw)

where I'(-) denotes the gamma function.

(5b)

(50)

The goal of Gibbs sampling is to approximate the distribution
P(znalw, «, ). The resulting collapsed Gibbs sampling equa-
tion for LDA can be written as

—-nd

P(zna = tlz ™%, w) oc (N7 + “)M
where the superscript —nd signifies leaving the nth token of
the d-th document out of the calculation. This notation will be
used throughout this thesis. For simplicity, the hyperparameters
o and B are assumed to be symmetric. Further details about
collapsed Gibbs sampling for LDA can be found in (Griffiths
and Steyvers, 2004).

(6)

e Variational Inference. Variational inference is a class of deter-

ministic approximate techniques (Sun, 2013), which are an alter-
native to MCMC methods. The variational approach aims to ap-
proximate a posterior distribution by looking for a distribution
from a family of distributions which is tractable and is the clos-
est to the true posterior, where the closeness is generally mea-
sured by the relative entropy (or Kullback-Leibler divergence).

More formally, the aim is to minimize the kxr-divergence be-
tween the true posterior p(z|x, «) and the family of distributions
q(zlv):

v" = argmin KL (q(z|v)llp(zlx, «)) (7)
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where x and z are arrays of observations and latent variables
respectively, « is an array of fixed parameters and v is an array
of free variational parameters. The log-likelihood of p can be
limited by using Jensen’s inequality:

Z

_ p(x, z) plx,z
=log []E“ [ 402) ” > Fa [k’g[ 40 ” ©)

Thus Jensen’s inequality provides a lower bound, also called evi-
dence lower bound (ELBO), over the log-likelihood for an arbitrary
variational distribution q(z|v):

logp(x) =log U p(x, )] log [ EZ } (8)

logp(xlet) > Eq [log p(x, zla)] — Eq log q(z[v)] (10)

It can be shown that maximizing the lower bound is equiva-
lent to minimizing the KrL-divergence. The optimal values for
the parameters v can be obtained using standard nonlinear op-
timization techniques (Bishop, 2006).

One issue of the variational inference is the choice of the family
of distributions, which are to be simpler than the true poste-
rior. For instance, factorized distributions can be used, i.e. dis-
tributions whose hidden variables of interest are forced to be
independent. Such case is referred as mean field approxima-
tion (Parisi, 1988). Indeed LDA’s inference issue can be solved
by using a mean field variational approach. By dropping the
problematic edges and nodes, the simplified variational distri-
bution is as it follows:

q(6,zly, ) = q(Bly)q(zlT) (11)

where y and T are the variational parameters. The next step is to
find the optimal values for y and T, by solving the optimization
problem explained above.

Variational inference is by far faster than MCMC methods. How-
ever a variational method does not reach convergence, since the
selected distribution is just an approximation of the true poste-
rior, and finding a proper family of distributions can be difficult.

A relevant feature of probabilistic topic models is that they are modu-
lar and can therefore be extended. In the following Chapters, we will
see different extensions of topic models originated from LDA.

2.5 HYPERPARAMETER SELECTION

We will now provide the background on an essential topic for this
thesis. An important element of topic models is the hyperparameters.
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First, it is important to clarify the distinction between parameters and
hyperparameters, which are two recurrent terms in machine learning
models. A parameter is a internal variable of the model that can be
estimated or learned from the data. On the other hand, model’s hyper-
parameters cannot be learned during training but are set beforehand.

For example, let us consider LDA. The word-topic and the document-
topic probability distributions are parameters of the model, because
we estimate them during the training. While, the number of topics is
a hyperparameter because we have to set it before starting the train-
ing.> Hyperparameters strongly affect the results and performance of
a model. Let us imagine to compare the results of a topic model with
2 topics and a topic model with 500 topics, run on the same corpus.
The first model will return coarse-grained and separated topics, while
the other model will return finer-grained and possibly overlapping
topics. It is then important to carefully select the hyperparameters
by adopting an appropriate search strategy, which is computationally
tractable and effective.

Let us assume we have to find the optimum of an unknown ob-
jective function f. Then, we are considering the problem of finding a
global maximizer (or minimizer) of f:

x* = arg max f(x) (12)
xeX

where X is a design space of interest. This space can be composed
of hyperparameters of different types: categorical, continuous or also
conditional inputs.

In the following, we will talk about the most well-known tech-
niques for selecting the hyperparameters in machine learning. We
focus in particular on Bayesian Optimization, since it is a technique
we will extensively use in following Chapters.

2.5.1 Grid Search

The traditional way of performing hyperparameter selection is grid
search. It consists in an exhaustive search of the hyperparameters
through a manually specified subset of the hyperparameter space X.
Grid search exhaustively considers all parameter combinations, Then
the selected hyperparameter configuration is then one that returned
the best results, according to a performance metric.

There exist some topic models that are called non-parametric (Paisley et al., 2014;
Teh et al., 2004) and are able to estimate the number of topics from the data. More-
over, the (hyper)parameters « and 3, which respectively control the document-topic
distribution and topic-word distribution, can be considered as both parameters and
hyperparameters. They are usually set a priori (we will therefore call them hyperpa-
rameters in this specific case), but they can also be estimated from the data using
Expectation-Maximization techniques. Throughout this thesis, we will usually con-
sider o and 3 as hyperparameters.

25



26

PRELIMINARIES

Grid search is reliable on low-dimensional space (1-dimensional or
2-dimensional), but suffers from the curse of dimensionality (Bergstra
and Bengio, 2012). However, this technique can be parallelizable be-
cause the hyperparameter settings it evaluates are typically indepen-
dent of each other.

2.5.2 Random Search

Random Search instead selects the hyperparameter configurations to
test randomly. This approach generalizes to continuous and mixed
spaces. It can outperform grid search (Bergstra and Bengio, 2012).
Random search is in fact more efficient than grid search in high-
dimensional spaces if the objective function can be approximated
by another function with less variables (hyperparameters). If the re-
searcher could know ahead of time which subspaces would be impor-
tant, then they could design an appropriate grid, however this is not
always feasible.

Grid Layout Random Layout
3 5
@ @
[= £
i e
o ©
(=% [« %
- -
=4 s
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£ £
o ]
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e o] L @ Z
=] =)

Important parameter Important parameter

Figure 2.4: Grid and random search of 9 trials for optimizing a function with
low effective dimensionality (i.e. it can be approximated by an-
other function with lower number of hyperparameters). Source:
(Bergstra and Bengio, 2012).

Figure 2.4 shows a comparison between a grid search approach and
a random search approach, when two hyperparameters are involved
and one of the two hyperparameters (unimportant parameter) does
not change the objective function. It is evident that 6 of the total 9
trials of grid search are indeed ineffective. With random search, all the
trials explore distinct values of the objective function. This failure of
grid search is the rule rather than the exception in high dimensional
hyperparameter optimization.

Random Search is also parallelizable, and additionally allows the
inclusion of prior knowledge by specifying the distribution from which
to sample.
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2.5.3 Bayesian Optimization

Bayesian Optimization (Archetti and Candelieri, 2019; Snoek et al.,,
2012) is a sequential model-based optimization strategy for expen-
sive and noisy black-box functions. The basic idea consists of using
all the model’s configurations evaluated so far to approximate the
value of the performance metric (objective function) and then selects
a new promising configuration to evaluate. Figure 2.5 illustrates this
sequential process.

-

..... S, objective fn (f(-))

observation (x)

¥ acguisition max

acquisition function (u( <))

posterior mean (u( )

posterior uncertainty
(pal <) xal ) v

Figure 2.5: [llustration of the Bayesian optimization procedure over three
iterations. The plots show the mean and confidence intervals es-
timated with a probabilistic model of the objective function. The
acquisition functions is represented by the lower shaded plots.
The acquisition is high where the model predicts a high objec-
tive (exploitation) and where the prediction uncertainty is high
(exploration). Source: (Shahriari et al., 2016).

The two key components are the probabilistic surrogate model aimed
at approximating the performance metrics to optimize, and the acqui-
sition function that uses the mean of the surrogate model and the confi-
dence (i.e. its standard deviation) to select the next configuration. The
approximation is provided by a probabilistic surrogate model, which
describes the prior belief over the objective function using the ob-
served configurations. The next configuration to evaluate is selected
through the optimization of the acquisition function, which leverages
the uncertainty in the posterior to guide the exploration.
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We report the general BO algorithm in the following pseudo-code.

Table 2.1: A synthetic Bayesian Optimization algorithm.

INPUT:
mop, number of initial configurations (aka initial design)

M, number of configurations selected through BO

1: define the initial set of configuration X1.;m,

2: compute the performance metrics fy.m,

3iM 4 mo+ 1

4: while m < mo + M do

5. fit the probabilistic surrogate model on (Xj.;y, f1:m)

= update E[x];,) and S[x]m

compute the acquisition function ., (x), based on E[x]r, and S[x]m
select the next configuration according to X, 1 = argmax &m (x)
compute the associated performance metrics fiy 4 1

Xm+1 = Xtm U{xma}

10:  fma1 + from U{fmaet?}

11 M+« m+1

12: endwhile

OUTPUT:

-+

xT =xi- and f+ = fi+, where i* =argmax; fi—1.m

Elx];m and S[x];, denote, respectively, the mean and the standard
deviation of the prediction provided by the probabilistic surrogate
model after m evaluated configurations of the probabilistic topic model
under optimization. The next configuration to evaluate is the one
maximizing the acquisition function.

2.6 NOTATION

Table 2.2 summarizes the most important mathematical notation that
we use in this thesis. Other notations relevant for specific chapters
will be introduced when needed.

Note that we will also use subscripts and superscripts to generally
identify elements of a sequence (e.g., t; is the i-th topic of a list of
topics).
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Symbol Description Symbol Description

D set of documents K fixed number of topics

\% vocabulary Na number of words of document d

) word-topic distribution by distribution of topic k over the
vocabulary

0 document-topic distribution 04 distribution of topics in docu-
ment d

o Dirichlet hyperparameter for 6 B Dirichlet hyperparameter for ¢

w word variable Wnd the nth word in document d

z topic assignments variable Znd topic assignment of the nth
word of document d

Na. number of words associated N,. number of words associated
with the topic z in document d with the topic z in the corpus

Table 2.2: Main notations for LDA and its extensions.
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In this Chapter, we provide an overview of the topic models that en-
code additional information and the state-of-the-art approaches for
the evaluation of topic models. In particular, we will focus our at-
tention on two main sub fields: classical probabilistic topic models
originated from Latent Dirichlet Allocation and neural topic models,
i.e. probabilistic topic models based neural networks. We will there-
fore describe the extensions of LDA that encode additional informa-
tion in Section 3.1 and the main approaches of neural topic modeling
in Section 3.2. We will also focus on a particular category of top-
ics models which deal with multilingual corpora, called multilingual
topic models, in Section 3.3. Finally, we will describe the methods for
evaluating a topic model (Section 3.4) and for estimating its hyper-
parameters (Section 3.5). We will conclude with a summary of the
contributions of this thesis in Section 3.6 to outline the main research
issues addressed in this thesis.

3.1 BEYOND LATENT DIRICHLET ALLOCATION

Latent Dirichlet Allocation (Blei et al., 2003a, LDA) is the founda-
tion model of numerous topic models extensions (Chauhan and Shah,
2021). (For additional details on LDA, we refer the readers to Sec-
tion 2.4.) Due to its modularity, LDA can in fact be easily extended:
researchers can focus on a single module or building block of the
model to extend, keeping the other modules and inference process as
they are. As already anticipated, we can encode additional informa-
tion into LDA. This modification usually allows the model to obtain
better topics and better topical representations of the documents.

The extensions of LDA mainly regard the two fundamental ele-
ments of the topic model: words and documents. We will therefore
describe these two families of topic models the encode word infor-
mation and document information respectively, focusing on the most
relevant approaches for this thesis.

3.1.1  Modeling Word Information

LDA assumes that words in a document are identically and indepen-
dently distributed. In other words, a document is seen as a bag of
words. No additional information about words is encoded. However,
we do know that words in documents share some kind of relation-
ships, both syntactic and semantic. Several extensions of LDA try to
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encode this word information. We can roughly divide the approaches
into two categories: topic models that encode word-order (Fei et al.,,
2014; Gruber et al., 2007; Lindsey et al., 2012; Wallach, 2006; Wang
et al., 2007) and syntactic dependencies (Boyd-Graber and Blei, 2008;
Griffiths et al., 2004), and models that incorporate domain-specific
or semantic information (Andrzejewski et al., 2009, 2011; Chen et al.,
2013b; Yang et al., 2015¢).

In the following, we consider two of the main approaches for incor-
porating additional information into topic models, including word in-
formation, i.e. Constrained LDA (Yang et al., 2015c) and MetaLDA (Zhao
et al., 2017). We will use the notation defined in Section 2.6. Other no-
tation that is relevant to a specific model will be introduced when
needed.

CONSTRAINED LATENT DIRICHLET ALLOCATION (cLDA). Con-
strained LDA (Yang et al., 2015¢, CLDA) is an extension of LDA that
uses of a potential function to constrain the topics. Topics should
reflect the additional information incorporated into the model, e.g.
word correlations. We denote the information to incorporate into the
model by a set L." Each element 1 € L of the information set is
introduced into the model by a potential function f(z, w, d), which
represents a real-valued score for the hidden topic assignment z of
the word w in document d.
The information to incorporate L defines the score

&(z, L) = Hexp fi(z,w,d) (13)

A4Sy 1

that smooths the current topic assignment z. Since CLDA is an exten-
sion of LDA, the joint probability distribution of this class of topic
models is defined as follows:

p(w,z,y,0, [, B,m,v,L) (14a)

— P($IB) P(Blo)P(z]0)P(wiz, ) £(z,1) (14b)
Topic plate Document plate Potential
function

where the document and topic plate refer to the modules of LDA.
The potential function & can be factored out of the marginalized joint

The paper refers to the information regarding words or documents as to prior knowl-
edge. We realize that this term may create ambiguity, since it is often used in different
contexts (knowledge transfer, knowledge base, knowledge graph, et cetera). For the
sake of uniformity and to avoid ambiguity, we will use the term information instead.
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distribution, because it does not depend on the distributions ¢ and 6,
obtaining the following marginalized joint probability distribution:

pw,z,ylx, 3,m,v,L) (15a)
=Hp(w|z,¢)p(¢|rs)p(z|e)p(e|oc)a(z,L)demb (15b)
_&(z,1) ”p(w|z,¢)p(¢|rs)p(z|e)p(e|oc)ded¢ (150)

Potential functions can be defined to constrain elements of the topic
model to share or not share the same topics. Here we show the poten-
tial function that the authors propose to incorporate domain-specific
information as word constraints. Word-related information is repre-
sented as word must-link constraints and cannot-link constraints (An-
drzejewski et al., 2009). A must-link relation between two words in-
dicates that the two words tend to be related to the same topics, i.e.
their topic probabilities should be similar. In contrast, a cannot-link
relation between two words indicates that these two words should
not both be prominent within the same topic. For example, “quarter-
back” and “fumble” are both related to American football, so they
can share a must-link relation. But “fumble” and “bank” imply two
different topics, so they share a cannot-link.

The authors define two information sets for each word w in the vo-
cabulary: a must-constraint set L)}, containing words that must share
the same topics of w, and a cannot-constraint set L3, including words
that cannot share the same themes of w. Considering the above exam-
ple, a must-constraint set for the word "fumble" would be

Lt ple = tquarterback}
and analogously, a cannot-constraint set could be
I-fcumble = {bank}

Given the sets for must-constraints and cannot-constraints for each
word of the vocabulary, a potential function of sampling topic t for
the word w in document d can be defined as follows:

fm(z,w,d) = Y logmax(Anyz)+ Y log

uelyy veMS,

max(A, n,, ;) (16)

The information about the word w will make an impact on the con-
ditional probability of sampling the hidden topic z. Unlike standard
LDA where every word’s hidden topic is independent of other words
given 0, here the CLDA increases the probability that a word w will
be drawn from the same topics as those of w’s must-link set, and de-
creases its probability of being drawn from the same topics as those
of w’s cannot-link word set. Here A is a hyperparameter that controls
the strength of the relationships between the words. . For large A, the
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constraint is inactive for topics except those with the large counts. As
A decreases, the constraint becomes active for topics with lesser word
counts.

The advantage of CLDA is that different definitions of the potential
functions lead to models that incorporate different types of informa-
tion. This approach is simple to implement and modular. We will
later see how to incorporate document labels into LDA following a
similar method.

METALDA. MetaLDA (Zhao et al., 2017) is a model that can lever-
age arbitrary document and word information encoded in binary
form. Therefore, this model belongs both to the family of topic mod-
els that encode word information and models that encode document
information.

Let us recall that LDA uses the same Dirichlet prior for all the
document-topic distributions and the same prior for all the topic-
word distributions. In MetaLDA, each document has a specific Dirich-
let prior on its topic distribution, which is computed from the meta
information of the document (e.g. labels), and the parameters of the
prior are estimated during training. Similarly, each topic has a spe-
cific Dirichlet prior computed from the word meta information. More
specifically, the labels of a document d are encoded in a binary vec-
tor bg € {0, 1}Ldoc where Ly, is the total number of unique labels.
bai = 1 indicates label 1 is active in document d and vice versa. Simi-
larly, the L,y ,rq features of word token v are stored in a binary vector
gv € {0, 1}k ;. Therefore, the document and word meta informa-
tion are stored in a matrix B € {0, 1}P*tacc and G € {0, 1}V X Lyora
respectively.

At the document level, if two documents have labels in common,
their Dirichlet parameter «4 will be more similar, resulting in more
similar topic distributions 04. Similarly, at the word level, if two
words w and w’ have similar features, the priors By, and By, in
topic k will be similar and then we can expect that their ¢y, and
dxw could be more similar. Finally, the two words will have similar
probabilities of showing up in topic k. The word-level information
that the authors consider is derived from binarized pre-trained word
embeddings.

3.1.2  Modeling Document Information

Documents in a corpus may be associated with metadata (e.g. labels,
the authors, timestamps, links among documents). This information
can be introduced into the topic models to encourage documents with
the same metadata to be characterized by similar topic distributions.
Usually these models are called "supervised topic models", and they
can be divided in two categories. In downstream supervised topic
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Figure 3.1: MetaLDA in plate notation.

models (Blei and Jordan, 2003; Blei and McAuliffe, 2007; Wang and
McCallum, 2006), the response variable is predicted based on the la-
tent representation of the document. Downstream models are typi-
cally better at prediction tasks. Supervised LDA (Blei and McAuliffe,
2007) is the most well-know example of downstream supervised ap-
proach. It extends LDA by modeling the additional response variable
ya, that can be modeled in different types (e.g. real-values, categor-
icals or binary), and is conditioned on the topic assignments of the
document d.

Upstream supervised topic models go in the opposite direction: the
response variable is being conditioned to generate the latent represen-
tation of the document (Chang and Blei, 2009; Lacoste-Julien et al.,
2008; Li et al., 2015; Mimno and McCallum, 2007; Ramage et al., 2009,
2011; Rosen-Zvi et al., 2004; Yang et al., 2015¢; Zhu et al., 2012). These
models often lead to more interpretable topics (Yang et al., 2015¢).

These supervised approaches encode information of labels or mul-
tiple labels (Lacoste-Julien et al., 2008; Li et al., 2015; Ramage et al.,,
2009, 2011; Zhu et al., 2012), authors (Mimno and McCallum, 2007;
Rosen-Zvi et al., 2004) time (Blei and Lafferty, 2006; Wang and Mc-
Callum, 2006), or they model relationships among documents (Chang
and Blei, 2009; Chen et al., 2013a; Yang et al., 2016a; Zhang et al,,
2013).

We will now describe a variant of Constrained LDA that allows to
encode document information into topic models.
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LABELED LATENT DIRICHLET ALLOCATION (LLDA). Labeled LDA
(LLDA), as defined in (Yang et al., 2015b), is a model that introduces
information through the use of potential functions. Here, each piece
of information 1 € L is introduced into the model by a potential
function fy(z, d), which represents a real-valued score for the hidden
topic assignment z in document d. The information L defines a score
&(z, L) =[],  exp fi(z, d) that smooths the current topic assignment
z. The joint probability distribution of LLDA is then defined as fol-
lows:

P(w,z,0, dle, B, L) o P(wlz, §)P(PIB)P(z[0)P(6]x)E(z, L) (17)

LLDA defines a potential function that models a one-to-one corre-
spondence between a topic and a label associated to a document. This
correspondence is modeled with the function g : I' — K that maps a
label to its corresponding topic, where T is the set of labels. LLDA in-
troduces document-level information in LDA by including in its joint
probability distribution the following potential function:

fad) {1 if z=g(la) ()

—oo otherwise

where 14 € I specifies the document label.

Modeling Relational Information into Topic Models.

A particular category of topic models that encode document-level in-
formation consists in those topic models that consider the underly-
ing network structure in a document corpus (e.g. co-authorship net-
works, social networks, citation networks). These models usually as-
sume that linked documents are more likely to have similar topic
representations.

The main class of approaches is represented by Relational Topic
Model (Chang and Blei, 2009, RTM) and its extensions (Chen et al.,
2013a; Yang et al., 2016a; Zhang et al., 2013) that, grounding on La-
tent Dirichlet Allocation (Blei et al., 2003a, LDA), model each link as
a binary variable considering the existence (or absence) of a link be-
tween a couple of documents. Generalized RTM (Chen et al., 2013a)
can capture not only same-topic interactions between documents, but
all pairwise topic interactions, while Sparse RTM (Zhang et al., 2013)
aims at inferring sparse topics for each document by presenting a non-
probabilistic formulation of RTM. In (Yang et al., 2016a), RTM also
embeds the Weighted Stochastic Block Model (Aicher et al., 2015) to
identify groups of documents that are densely connected and should
talk about similar topics.

Other approaches are the regularized topic models (He et al., 2017;
Mei et al., 2008), which augment the topic model objective function
with a network regularization penalty that encourages topic mixtures
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of related documents to be similar, and Dirichlet Multinomial Regres-
sion (Mimno and McCallum, 2008) and its extensions (Hefny et al.,
2013; Wahabzada et al., 2010), which incorporate arbitrary features
by considering links as per-document attributes.

We will now focus on two of these main approaches, which will be
later used in the following Chapters.

RELATIONAL TOPIC MODELS Relational Topic Model (Chang and
Blei, 2009) derives from Latent Dirichlet Allocation and the mixed-
membership models (Erosheva et al., 2004). It exploits the former
model to represent the content of a document, i.e. words, and the
latter to model the network of documents. In particular, links are
modeled by a link probability function that depends on the topic as-
signments zq of two documents, modeling the idea that documents
with similar topic assignments of words are likely to be linked.
Therefore the observed documents” words wy, 4 and binary links yq4-

between them are generated by the following process:

for each topic k € K do
Draw a distribution over words ¢y|f ~ Dir(p)
end for

for each document d € D do

Draw topic proportions 04|« ~ Dir(«)
for each word w4 € d do
Draw topic assignment z,, 4104 ~ Mult(04)
Draw word wnalzng, ¢ ~ Mult(d, ,)
end for
end for
for each pair of document d,d’ € D, d # d’ do
Draw binary link indicator yqq/lza,z ~ P(-1za,25,M)

end for
where K is the fixed set of topics and D is the set of documents. The
random variable wy 4 represents the n-th word of document d and
Znd represents the topic assignment of the n-th word of document d.
The variable 04 is the topic distribution of document d, sampled from
a Dirichlet distribution with o prior, and ¢, is the word distribution
for the topic corresponding to the assignment z, 4, sampled from a
Dirichlet with prior (3. Finally, y 44 is the binary variable representing
the link between documents d and d’, drawn from a link likelihood
function.

Figure 3.2 shows the graphical model of RTM for only a pair of
documents, since it is difficult to represent the entire network of doc-
uments.

The link likelihood function can be defined in different ways; in
this thesis, we consider the sigmoid function, parameterized by coef-
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Figure 3.2: RTM in plate notation for a pair of documents. The observed
variables are the words w;, 4, like LDA, and links between docu-
ments, represented by yqg4-.

ficients 1 and intercept v. The likelihood that a link y between two
documents d and d’ exists is then computed as:

Vo(y=1)=o0n"(Zaoza!) +v) (19)

where o is the sigmoid function, the symbol o denotes the Hadamard
product (or element-wise product) and z4 is a vector, such that zg =
Nid Z: 2, znd, where Ny is the length of document d and z,4 de-
notes the n-th word in document d.

Being an extension of LDA, the joint probability distribution of
RTM is composed of the joint distribution of LDA and the term re-
lated to the links between documents. We mark the different modules
of the model for the sake of clarity. The joint probability distribution

is then as follows:

pw,z,y,0,®|x, 3,1,V) (20a)
=P(dIB)P(8]x)P(z[0)P(Wlz, d) s (ylz, w,n, V) (20b)
document plate
K I D Na I
— [T v(eult)- TTp0alew) T plznal@alp(wnaldzn) (200)
k=1 d=1 n=I
I L 1
topic plate word plate
- I Volvaalza,zanm,v) (20d)
d,d’'eD

d’'#£d
L

link function

Let us notice that the first four factors are the same as LDA’s full
joint distribution (equation 20c). In the original paper (Chang and
Blei, 2009), the term related to the topic plate is missing. This is due to
the fact that 3 does not represent the hyperparameter for the Dirichlet
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¢, but it is treated as a K x V-matrix parameter to infer. However, for
maintaining a coherent notation throughout this thesis, we consider
(3 as the prior of the word-topic distribution ¢.

Equation 21 represents the collapsed Gibbs sampling equation for
solving the problem of inference:

P(zna = tw,z "%y, &, B,v,1M) (21a)
- Newd +
o (NG + ) 7NIW+ WE (21b)
K —nd
Nt Nar N Nd’k)
H o —- —|—an77 (210)
d'2d (Nd Nd/. b Nd. Nd/.
Yga/=1
H ( Nt Nar i NEEde'k>
T—o| o5 +Y gk 4k
d'2d Nd. Nd’- S Nd- Nd/-
Yaa/=0
(21d)

where

¢ the superscript —nd indicates leaving the n-th word token of
the d-th document out of the calculation;

* W represents the number of unique words in the vocabulary;

* Ny, denotes the number of words associated with the topic z in
document d;

* N.. denotes the number of words associated with the topic z in
the corpus;

* N,,, denotes the number of occurrences of the word w associ-
ated with topic z;

¢ Ng,. denotes the number of words in document d.

The first term (21b) corresponds to the Gibbs sampling equation for
LDA, while the others represent the link probability function when
the link is present (21c) and when the link is absent (21d). The last
term (21d) is usually omitted, as the absence of a link between d
and d’ does not imply that there is evidence for ygqq4/ = 0. Therefore,
absent links are treated as unobserved, also decreasing the computa-
tional cost of inference.

RTM can be associated with two different type of tasks, depending
on the evidence the user is taking into account. If the words of docu-
ments are the evidence, the model can be used for a link prediction
task, suggesting citations, hyperlinks, friendships or influencers, ac-
cording to the specific context. Otherwise, using the links as evidence,
RTM can infer keywords from citations or interests of a user from its
social connections.
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WEIGHTED STOCHASTIC BLOCK RELATIONAL TOPIC MODEL (WS-
B-RTM). Instead of considering only the links between documents,
WSB-RTM (Yang et al., 2016a) assume that groups of strongly con-
nected documents, called blocks, also share similar topics. In particu-
lar, the model embeds the Weighted Stochastic Block Model (Aicher
et al.,, 2015, WSBM) to identify L blocks in which documents are
densely connected.

WSBM assumes that a document belongs to exactly one block. A
matrix Ay 1/ defines the weight of the link connecting two documents
in blocks 1 and 1’. This weight is generated from a Poisson distribu-
tion with parameter Q) which has a Gamma prior with parameters
a and b. WSB-RTM also puts a Dirichlet prior 7 on each block to cap-
ture the block’s topic distribution and use it as an informative prior
when drawing each document’s topic distribution.

Finally, a link between a pair of documents is not only dependent
on the topic assignments z (as in RTM), but also on the word lexical
features w, and on the inter-block link rates Q. We then obtain the
following link likelihood function of the link y between a pair of
documents d and d’:

Voly =1) =o' (ZaoZa!) + 1" (WaoWal) +pr1 Q1) (22)

where wy is a vector, such that wgq = Nid Y 2 1(Wna = V), wng de-
notes the n-th word in document d, and n, T and p are the weight
vectors and matrix for topic-based, lexical-based and link rate-based
predictions, respectively, and o is the sigmoid function.

pw,zy, 6,t, DA Q, umnw B,n7TpeQ ab,y)

Document plate

=Pl )P (1, 1Y) P(thy) P(Blos, t, ) Plwiz, p)P(z]8) - P(blB)

Block plate Word plate Topic plate

P(Alt, Q)P(Qla, b) Vs (ylz, w,m, T, 0, Q).

Inter-blocks plate

Link probability function
Ng

L D
=] [ptmlep(uiy) [ [ p(tal)p(@ale ta, m) [ [ plwnalde,,)-
1 d

n=1

K
P(znalda) [ p(dxlB) J] P(ALvita, QLI )P(QLLlG, b)-

k=1 LUeL
I YoWaalza,zar wa, wam,t e, Qi)
d,d’eD
d'£d

(23)

where 1 is the block distribution, controlled by the Dirichlet param-
eter vy.
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3.2 NEURAL TOPIC MODELING

In recent years, neural topic models have gained increasing success
and interest (Zhao et al., 2021), due to their flexibility and scalabil-
ity. Several topic models use neural networks (Gupta et al., 2020;
Larochelle and Lauly, 2012; Salakhutdinov and Hinton, 2009) or neu-
ral variational inference (Ding et al., 2018; Miao et al., 2017, 2016;
Mnih and Gregor, 2014; Srivastava and Sutton, 2017).

Traditional approximate inference methods (e.g. mean-field and
collapsed Gibbs) have the drawback that applying them to new topic
models, even if there is a small change to the modeling assump-
tions, requires re-deriving the inference methods, which can be time
consuming, and limits the ability of practitioners to freely explore
the space of different modeling assumptions. AutoEncoding Varia-
tional Bayes (AEVB) (Kingma and Welling, 2014) seems to be a nat-
ural choice for topic models, because it trains a neural network that
directly maps a document to an approximate posterior distribution,
without the need to run further variational updates. Then, from this
distribution, we can sample a lower-dimensional document repre-
sentation. A decoder network (generative model) reconstructs the
original input. We also call this architecture Variational AutoEncoder
(VAE). In general, the input of these models is the BoW vector repre-
sentation of the documents.

For additional details on neural topic models, we refer the readers
to the work of Zhao et al. (2021). We now focus of the main neural
topic modeling approaches of the state of the art.

NEURAL VARIATIONAL DOCUMENT MODEL (NvDM). The Neu-
ral Variational Document Model is composed of a Multi-Layer Per-
ceptron (MLP) encoder (inference network) that compresses the input
BoW document representation into a continuous latent distribution
and a softmax decoder (generative model) reconstructs the document
by generating the words indepedently. Each word is generated di-
rectly from the dense continuous lower-dimensional document repre-
sentation, sampled from the learned distribution. Figure 3.3 sketches
the architecture of NVDM.

More formally, the authors define a generative model with a latent
variable h.2 Let d € RY be the bag-of-words representation of a docu-
ment (where V is the size of the vocabulary) and d; € RV be the one-
hot representation of the word at position i. An MLP encoder q(h|d)
compresses document representations into continuous hidden vec-
tors (d — h). Then, a softmax decoder p(d/h) = ]_[]i\J:1 p(di|h) recon-

This variable corresponds to the topical document representation in LDA, which is
usually referred as the document-topic distribution 6. So the values of 6 are con-
strained to be non-negative and they need to sum up to 1. On the other hand, h
is unconstrained and continuous. We will therefore refer to 0 and h as to different
elements.
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Figure 3.3: High-level schema of Neural Variational Document Model.

structs the documents by independently generating the words (h —
{di}). T parameterizes the generative distribution p(dfh), while v are
the inference network parameters.

NVDM and LDA share the same generative process, with the excep-
tion that NVDM requires a Gaussian prior over the document-topic
representation of the documents instead of a Dirichlet prior for com-
putational reasons. The variational lower bound £ is derived as:

Ng

£ =Eq,ina) | Y_logpeldiln)| —Diclay(Wd)p(h)]  (24)
=1

where N4 is the number of words in the document and p(h) is a Gaus-
sian prior for h. During training, the model parameters T together
with the inference network parameters v are updated by stochas-
tic back-propagation based on the samples h drawn from q- (h|d).
For the gradients with respect to v, the authors reparameterize h =
4+ o- e and sample € ~ N(0,I) (Kingma and Welling, 2014). And
then the update of v can be carried out by back-propagating the gra-
dients w.r.t. u and o. Based on the samples h ~ q¢ (h|d), the lower
bound £ can be optimised by back-propagating the stochastic gradi-
ents w.r.t. 0 and ¢. Since p(h) is a standard Gaussian prior, the Gaus-
sian KL-Divergence D1 [q¢ (hld)|[p(h)] can be computed analytically
to further lower the variance of the gradients.

The conditional probability over words pg(dilh) (i.e. the decoder
network) is modeled by multinomial logistic regression:

exp{—E(di; h, 1)}

po(dilh) = (25)
U exp(—E(d;;h, 7))
where
E(di;h, 1) = —h"Rd; — bg, (26)

where R € R¥*IVI represents the topics representations and by, rep-
resents the bias term. Let us notice that we can extract the topical
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words from the matrix R: the words of the vocabulary with the high-
est weights Ry represents the most significant words of the topic k.

NVDM stands at the basis of different extensions of neural topic
models. In the following we will focus on two of the most prominent
NVDM extensions.

EMBEDDED TOPIC MODEL (ETM). The Embedded Topic Models (Di-
eng et al.,, 2020) aims to combine the benefits of LDA and word em-
beddings. It represents words and topics in the same embedding
space. In particular, it embeds the vocabulary in an [-dimensional
space (thus obtaining classical word embeddings). But also a topic k is
a vector vy € RL. Therefore yy is a topic embedding, i.e. a distributed
representation of the k-th topic in the semantic space of words.

In its generative process, the ETM uses the topic embedding to
form a topic distribution over the vocabulary. Specifically, ETM uses a
loglinear model that takes the inner product of the word embedding
matrix and the topic embedding. With this form, the ETM assigns
high probability to a word v in topic k by measuring the agreement
between the word embedding and the topic embedding. More for-
mally, let p the L x |V| word embedding matrix. In the generative pro-
cess of ETM, a word w;, 4 is sampled according to softmax(pTyZn Nk
where z,,4 is the topic assignment sampled from the document-topic
distribution of document d.

Another difference between ETM and NVDM is that the NVDM
uses a document real-valued latent vector, instead of a probability
latent vector (as LDA). On the contrary, ETM constrains the latent
variable h to lie in the simplex (its values are non-negative and sum
up to 1).

In addition, ETM can automatically learn the word embedding rep-
resentations or use pre-trained word embeddings. The use of pre-
trained word embeddings allows the model to add general informa-
tion and improve the coherence of the topics over ETM with learned
embeddings.

PRODUCT OF EXPERTS LDA (PRODLDA). ProdLDA addresses two
main issues in NVDM. The first challenge is related to the prior over
the latent distribution of the document. NVDM uses a Gaussian dis-
tribution because it can be reparameterized, as we have seen before.
To truly translate LDA into a neural topic model, we should assume
a Dirichlet prior over the document. Yet the Dirichlet prior is not a lo-
cation scale family, and that hinders reparameterization. To address
this problem, ProdLDA explicitly approximates the Dirichlet prior
using Gaussian distributions. In other words, the authors use an en-
coder network that approximates the Dirichlet prior p(6|«) with a
logistic-normal distribution (more precisely, this is softmax-normal
distribution).
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Another well-known problem of NVDM is the phenomenon of
component collapse, in which the encoder network becomes stuck
in a bad local optimum in which all topics are identical. To address
this issue, the authors used the Adam optimizer, batch normalization
and dropout units in the encoder network.

Moreover, LDA and ETM models the distribution p(wl6, $) as a
mixture of multinomials. (Srivastava and Sutton, 2017) note that this
assumption leads to predictions that are never sharper than the com-
ponents (the topics) that are being mixed. This can result in some top-
ics appearing that are poor quality and do not correspond well with
human judgment. To address this issue, the authors replace the word
probabilities with a weighted product of experts (Hinton, 2002) which
is capable of making sharper predictions than any of the constituents
experts by definition. More formally, the word-topic distribution ¢
of LDA becomes an unnormalized weight matrix and therefore the
conditional distribution of wy, is defined as

p(wnld, 0) = Categorical(o($0)) (27)

where o is a sigmoid function. This modification allows the topic
model to obtain a drastic improvement in topic coherence.

3.3 MULTILINGUAL TOPIC MODELING

Multilingual topic models are a subset of topic models that aim at
finding aligned topics in bilingual or multilingual corpora. Using
LDA or a classical topic model to extract topics from a bilingual cor-
pus will result in monolingual topics that do not explicit the rela-
tionship among words coming from different languages. Additional
information is then required in order to align the topics or the docu-
ments. Two main directions address the problem of multilingual topic
modeling: at the document level and at the word level.

MULTILINGUAL MODELS AT THE DOCUMENT LEVEL The first
strategy is to extract topics from parallel or highly comparable mul-
tiligual corpora, under the assumption that translations (or compara-
ble documents) share the same topic distributions. Polylingual Topic
Model (PLTM)(Mimno et al., 2009) is the most well-known example
and has extensively used and adapted in various ways for different
cross-lingual tasks. Models that transfer knowledge on the document
level have many variants(Hao and Paul, 2018; Heyman et al., 2016;
Krstovski et al., 2016; Liu et al., 2015). PLTM assumes that the tuples
of parallel (or closely comparable) documents share the same topic
distribution. Although, there is a specific word-topic distribution for
each language.
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MULTILINGUAL MODELS AT THE WORD LEVEL  Another approach
consists in modeling the connection between languages through words
using multilingual resources (such as dictionaries) (Boyd-Graber and
Blei, 2009; Jagarlamudi and Daumé, 2010; Wu et al., 2020; Zhao and
Xing, 2006). The use of dictionaries to model similarities across topic-
word distributions has been formulated in different ways as well.
ProbBiLDA (Ma and Nasukawa, 2017) uses inverted indexing to en-
code assumptions that word translations are generated from same
distributions. (Gutiérrez et al., 2016) use part-of-speech taggers to
separate topic words (nouns) and perspective words (adjectives and
verbs), developed for the application of detecting cultural differences,
such as how different languages have different perspectives on the
same topic.

3.4 EVALUATING A TOPIC MODEL

Evaluation of the results of a topic model is an important issue, due
to the unsupervised nature of the models. Many studies propose and
explore methods to assess a model from a qualitative and quantitative
perspective.

3.4.1  Quantitative evaluation

Human Evaluation

The simplest way to evaluate if the words of a topics are semantically
coherent is to make a group of human evaluators rate each topic on a
3-point scale (Doogan and Buntine, 2021; Newman et al., 2010). Alter-
natively, evaluators can rate the quality of the topics by performing
the following two tasks (Chang et al., 2009):

* Word Intrusion measures the cohesion of inferred topics. A
word is selected at random from a set of words with low prob-
ability in a given topic. Human subjects must identify the ex-
traneous word inserted into the topic, i.e. the less semantically
coherent word in the topic.

¢ Topic Intrusion measures how well the topic model has decom-
posed a document as a mixture of topics. Human subjects eval-
uate the title, a brief snippet from a document and four topics.
Three of the topics are the highest probability topics assigned to
the document, while the remaining is selected at random from
a set of low probability topics for the document. The evaluators
must identify the less related topic for the given document.
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Automatic Methods

HELD-OUT LOG-LIKELIHOOD AND PERPLEXITY Evaluation of the
probability of held-out documents (Wallach et al., 2009) is a method
based on likelihood estimation. A given dataset is split between a
training set and a testing set. Log-likelihood is evaluated given the
model trained with the documents belonging to the testing set:

D
L(w) =logp(wld, a) = ) logp(wald, «) (28)
d

The parameter 0 is omitted because it represents the topic distribu-
tion for the documents of the training set. The best model will be the
one which gives the highest probability. Another way of assessing a
topic model is to split each document of the dataset into two halves
and then estimate the log-likelihood of the second half of a docu-
ment, given the first half. In both cases, computing log-likelihood is
intractable; (Wallach et al., 2009) and (Buntine, 2009) explore methods
for estimating it efficiently.

Perplexity is an alternative metric derived from log-likelihood and
defined as:

ppx(w) = exp {— Lw) } (29)

number of words

Low values of perplexity are preferred here. However, Chang and
Blei (2009) show that a model with low held-out perplexity (and con-
sequently high held-out log-likelihood) does not imply more semanti-
cally coherent topics. Therefore, perplexity and log-likelihood are not
often used nowadays.

TOPIC COHERENCE Topic coherence is a measure for estimating
the quality of the inferred topics. It evaluates how related are the most
likely words composing a topic, usually the top-10 words. A wide va-
riety of measures have been proposed across the years. Topic coher-
ence metrics are usually based on word co-occurrences. These can be
computed on the original dataset ("internal topic coherence") or on
an another dataset ("external topic coherence"), e.g. Wikipedia, (New-
man et al., 2010; Roder et al., 2015).
Traditional topic coherence measures include the following;:

* Pointwise Mutual Information (PMI) is a measure commonly
used in information theory and statistics. In the field of topic
modeling, it is also known with the name of UCI coherence (New-
man et al.,, 2010). PMI is computed for each pair of words w;
and wj in a topic:

P (Wil Wj )

PMI(wi, wj) = log pwi)p(wj)

(30)
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A pointwise mutual information score is defined for all pairs of
N most probable words in the topic t:

N j—1
PMI-score(t) = T Z PMI(Wi, Wj) (31)
2 j=21=1

Finally, the results are averaged over all the topics. A model
which outputs topics whose rmi-scores are closer to o are to be
preferred.

* Normalized Pointwise Mutual Information (NPMI) is the nor-
malized version of PMI (Aletras and Stevenson, 2013). NPMI for
a pair of words in a topic is as follows:

PMI(Wyi, Wj)
—logp(wyi, wj)

NPMI(Wi, Wj) = (32)
Also for this metric, the higher the better. NPMI seems to be
better correlated with the human judgment than PMI and it is
the most used topic coherence metric.

Aletras and Stevenson (2013) introduced distributional semantic
similarity methods for computing coherence, calculating the distribu-
tional similarity between vectors for the top-N words of topics using
a range of different similarity measures (e.g. cosine). To construct the
vector space, they used Wikipedia English as reference corpus and
a window of + 5 words. (Roder et al., 2015) further studied distribu-
tional semantic similarity methods proposing different measures and
by varying the hyperparameters (e.g. window size) of the measures.
They correlated all the metrics with the human judgment and found
out that Cy score seems to be more consistent with human judgment
compared to other widely used metrics such as PMI. For the sake of
completeness, we report this measure, but recent work and the au-
thor of the original paper 3 reported that this measure seems to be
negatively correlated to other measures (Doogan and Buntine, 2021).

Although NPMI seems the measure to prefer, it is computationally
expensive, especially if the co-occurrence probabilities are computed
on a large corpus (e.g. Wikipedia). To this end, also measures based
on pre-trained word embeddings can be considered. We can consider
this word embedding-based measure as an external topic coherence,
but it is more efficient to compute than Normalized Pointwise Mutual
Information on an external corpus. For example, (Belford and Greene,
2019) compute the average pairwise cosine similarity of the word em-
beddings of the top-10 words in a topic using different pre-trained
embeddding spaces. Let be c(w;) and c(wj) the word embeddings of
the words w; and wj respectively (where c is the function that maps
the words to their corresponding word embedding), then the word

3 https://github.com/dice-group/Palmetto/issues/12
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embedding topic coherence for a topic of N words is computed as
follows:

N j—1

PMI-score(t) = TZZPMI c(wi), c(wj)) (33)
(%)

j=21i=1

TOPIC DIVERSITY AND SIMILARITY METRICS Topic diversity and
topic similarity are the two sides of the same coin. We usually expect
the topics to be well-separated from the others (topic diversity); but
sometimes we might also be interested in finding out topics which
are similar to a given topic (topic similarity). Indeed, we can often
convert a topic similarity measure in a topic diversity measure, and
vice versa.

Most of the topic similarity measures are based on word tokens
and usually adopt a list of top-N terms to estimate if two topics are
similar. In this category, we mention the following measures:

* Average Jaccard Similarity (JS). The ratio of common words in
two topics can be measured by using Jaccard Similarity (Deng
et al., 2012; Tran et al., 2013). The Jaccard Similarity (JS) be-
tween two topics t; and t;j, where each topic is a list of N words
{w1,...,wn}, is defined as follows:

[t Nt
Ity Uty

Is(ti, t5) = (34)
This measure varies between o and 1, where o means that the
topics are completely different, and 1 means that topics are sim-
ilar to each other.

¢ Proportion of Unique Words (PUW). Topic diversity can com-
puted as the proportion of unique words in the top-N words of
all topics (Dieng et al., 2020). Let K be the number of topics and
t; be the i-th topic descriptor composed of N words. The PUW
metric is defined as follows:

_ U]i<:1 [t
PUW = =~ (35)
This metric ranges between 1/K (when all the words are repli-
cated in all the topics) and 1 (when all the words composing
the topics are unique), and can be easily converted into a topic

similarity measure by computing 1 —ruw.

* Average Pairwise Pointwise Mutual Information (PMI). Ale-
tras and Stevenson (2014) present a similarity metric based on
Pointwise Mutual Information (PMI). The authors adapt the
PMI coherence to measure topic similarity by computing the av-
erage pairwise PMI between the words belonging to two topics.
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More formally, the PMI between the topics t; and t; is defined
as:

PMI(ti, tj) = % D> D emi(wv) (36)

uet; vet;y
where N is the number of words of each topic.

* Rank-biased Overlap (RBO). To consider the ranking of the
words, one can use Rank-Biased Overlap (RBO) (Webber et al.,
2010). It is based on a probabilistic model in which a user com-
pares the overlap of two ranked lists (that in our case corre-
spond to two topics) at incrementally increasing depth. The
user can stop to examine the lists at a given rank position ac-
cording to the probability p, enabling therefore the metric to be
top-weighted and consequently giving more weight to the top
words of a topic. The smaller p, the more top-weighted the met-
ric is. When p = 0, only the top-ranked word is considered. The
metric ranges from o (completely different topic descriptors) to
1 (equal topic descriptors).

RBO is based on the concept of overlap at depth h between two
lists, which is the number of elements that the lists share when
only the first h words are considered. For example, the overlap
at depth 2 between the lists 11 = {cat, animal, dog} and 1, =
{animal, kitten, animals} is 1. The average overlap is defined
as the proportion of the overlap at depth h over h. Therefore,
the RBO measure when evaluating two topics is computed as
the expected value of the average overlap that the user observes
when comparing two lists.

Other topic similarity/diversity approaches are instead based on
the probability distribution of the words denoting the topics, i.e. the
word-topic distribution usually referred as ¢. These metrics may be
sensitive to the high dimensionality of the vocabulary (Aletras and
Stevenson, 2014).

¢ Average Log Odds Ratio (LOR). Topic similarity can be com-
puted using the average log odds ratio (LOR) (Chaney and Blei,
2012), which is defined as follows:

LOR(i, d5) = ) IR o (hiw) LR o (Djw )l L0g(diw — Biwl (37)

wev
where 1 4 (x) is an indicator function defined as 1if x € A and o

otherwise. This metric computes the distance between the distri-
butions associated with two topics, so it is a dissimilarity metric.

¢ Kullback-Leibler Divergence (KL-DIV). A widely used mea-
sure to determine the similarity between two topics is the Kullback-
Leibler Divergence (AlSumait et al., 2009; Sievert and Shirley,
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2014), which measures the distance from a given topic’s distri-
bution ¢ over words to another one. It is defined as follows:

d)iw
(I)]'w

KL—DIV(di, b5) = ) diwlog

wevV

(38)

Notice that this metric is not symmetric and its domain ranges
from o (when two distributions are identical) to infinity. In fact,
this metric represents a dissimilarity score. Other metrics based
on computing the distance between distributions include the
Jensen Shannon Divergence and the cosine similarity (Aletras
and Stevenson, 2014).

These distribution-based measures suffer from the high dimension-
ality of the vocabulary, generating solutions that do not strongly cor-
relate with human judgment (Aletras and Stevenson, 2014).

TOPIC SIGNIFICANCE Sometimes a topic model can identify top-
ics which are more significant or relevant than others. To this end,
we can use topic significance measures to rank the topics (AlSumait
et al., 2009). These measures focus on the distributions of the topics
produced by a model. They compute the distance between the discov-
ered topics and three different definitions of "junk topics" in terms of
Kullback-Leibler divergence. Topic models that obtain higher values
on average are to be preferred..

¢ KL-Uniform (KL-U) measures the distance of each topic-word
distribution from the uniform distribution over the words. Sig-
nificant topics are supposed to be skewed towards a few coher-
ent and related words and distant from the uniform distribu-
tion.

¢ KL-Vacuous (KL-V) measures the distance between each topic-
word distribution and the empirical word distribution of the
whole dataset, also called “vacuous" distribution. The closer the
word-topic distribution is to the vacuous distribution of the sam-
ple, the lower is its significance.

¢ KL-Background (KL-B) measures the distance of a topic k to
a “background” topic, which is a generic topic that is found
equally probable in all the documents. Meaningful topics ap-
pear in a small subset of the data, thus higher values of KL-B
are preferred.

DOCUMENT CLASSIFICATION METRICS. A topic model can be
also evaluated on downstream tasks. For example, we can consider
the document-topic representations produced by the model and use
them as features to train a classifier on an annotated dataset. In this
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case, we can use the traditional classification measures. Here we re-
port the most common ones.

Let us consider a multi-class problem with C classes. Let be tp, tn,
fp, and fn the number of true positives, true negatives, false positives
and false negatives respectively. Then precision for a given class 1 is
defined as follows:

tp

PRECISION(1i) = tp+p (39)

and recall is defined as follows:

. tp
R -
ECALL(1) - (40)

F-measure, or F1 score, for a given class i is the weighted average
of the precision and recall, and it reaches its best value at 1 and its
worst score at 0. F-measure of class i is then defined as:

2-RecALL(i) - PRECISION(1)
RecALL(i) 4+ PrRECISION(1)

F-MEASURE(1) =

Given a multi-class problem, we can aggregate the F1 scores with
different strategies:

* Macro-F1. The average of the F1 score for each class is usually
referred to as Macro-F1 or Macro-average F1 score. It is then
defined as follows:

C
1
M -F1=— E - i
ACRrO-F1 c 2 F-MEASURE(1)

where Classes denotes the set of the classes.

* Micro-F1. The weighted average of the F1 score for each class
(where the weight corresponds to the size of the classes) is
called Micro-F1 or Micro-average F1 score, and it is then de-
fined as:

C
1
Micro-F1 = D Z [i| - F-MEASURE(1)

i=1

where D is the number of instances in the test set and |i| the
cardinality of class i.

3.4.2  Qualitative evaluation

The most straightforward way to qualitatively evaluate the results of
a topic model is to visualize the topics that the model have produced.
In particular, we can observe the top-N most likely words of a given
topic. Different works provide methods for a user-friendly visualiza-
tion of the topics, which also take into account the weight of each
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word of the vocabulary in the given topic (Chuang et al., 2012; Mur-
dock and Allen, 2015; Sievert and Shirley, 2014).

Some topic models can infer relationships between subsequent words
or phrases. This improves the interpretability of topics because a topic
is characterized by n-grams instead of single word tokens. We can
also enhance the human interpretability of a model that considers
topics as unigram distributions over words as well, while preserving
the advantages of a bag-of-words formulation. A strategy consists
in finding significant phrases related to a topic using multi-word ex-
pression discovery techniques (Blei and Lafferty, 2009; Manning and
Schiitze, 2001).

Otherwise, it is possible to enhance the interpretability of a topic
by automatically associating a label to the given topic. The simplest
method selects the most likely term in the word distribution ¢y of
the topic k. Several other approaches select the best candidate label
for a topic, using supervised rankers (Lau et al.,, 2011), approaches
based on word embeddings (Bhatia et al., 2016; Kou et al., 2015) or
on transformer-based pre-trained models (Popa and Rebedea, 2021).

3.5 HYPERPARAMETER SELECTION IN TOPIC MODELS

Concerning the problem of setting hyperparameters for topic models,
researchers have adopted different strategies. They usually select a
priori fixed values according to some domain knowledge. For exam-
ple, in the case of LDA, several approaches (Bao et al., 2009; Daud
et al.,, 2009; Mukherjee and Liu, 2012) fix the values of the hyperpa-
rameters « and {3 according to the work of Griffiths and Steyvers
(2004).

However, it has been shown that the same values do not apply to
every dataset (Wallach, 2008). Moreover, in most cases, there is no
prior knowledge of the distribution of the topics over the corpus and
this makes the choice of the hyperparameter configuration difficult.
Therefore, researchers usually select the best configuration of the hy-
perparameters using grid search techniques (Griffiths and Steyvers,
2004; Harrando et al., 2021; Pavlinek and Podgorelec, 2017). These ap-
proaches are easy to implement, parallelizable, and accurate in low
dimensional spaces, but they suffer from the curse of dimensional-
ity, as the number of the possible configurations grows exponentially
with the number of hyperparameters (Bergstra and Bengio, 2012).

Another option is to adopt fixed-point methods for estimating the
hyperparameters of a topic model (Asuncion et al., 2009; Wallach,
2008). The inference algorithm alternates between sampling latent
topics and inferring model hyperparameters. However, not every type
of hyperparameter can be estimated with these methods. With the ad-
vent of neural topic modeling, other types of hyperparameters need
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to be considered. These are mainly related to the network architec-
ture.

Bayesian Optimization techniques (Archetti and Candelieri, 2019)
can be superior to point estimates and grid search techniques (Snoek
et al., 2012), and it is designed for expensive objective functions. Yet,
a thorough investigation of BO methods in topic modeling is still
missing. We refer the reader to Section 2.5.3 for a detailed description
of Bayesian Optimization.

36 SUMMARY OF THE CONTRIBUTIONS OF THIS THESIS

Contributions of this research work are spread among different levels:

* a methodology for incorporating different types of relational in-
formation based on Relationa Topic Models (RTM) (Chang and
Blei, 2009) and Constrained LDA (CLDA) (Yang et al., 2015c¢),
which is modular and easy to apply to classical probabilistic
topic models (Chapter 4);

* the definition of a class of neural topic models that overcome the
BoW limitations of the current models to improve the quality of
the topics and address cross-lingual zero-shot prediction tasks
(Chapter 5);

* acomprehensive framework for a fair comparison between topic
models, based on hyperparameter optimization, which also al-
lows us to investigate the different elements that play a role in
the evaluation of the models (Chapter 6);

* amethod for an efficient evaluation between topic models based
on the transfer of the hyperparameters from a dataset to an
unseen one (Chapter 7).
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MODELING RELATIONAL INFORMATION INTO
CLASSICAL TOPIC MODELS

Most topic models consider the text as a unique source of informa-
tion. For example, Latent Dirichlet Allocation, which is still one of
the most used topic models, assumes that the words in the docu-
ments are the only evidence. However, we may know that two doc-
uments are written by the same author, or they are associated with
the same label. Indeed, in some practical cases, we have additional
information that can be incorporated into the model. We therefore
consider a first distinction between two types of information general
and domain-specific.

The first category of information includes taxonomies, vocabular-
ies, knowledge graphs, word embeddings. General information can
be collected from publicly available resources. This information can
be used for encouraging (or discouraging) two words or documents
to share (or not share) the same topics. For instance, the words “search”
and “engine” are more likely to be in the same topic than the words
“search" and “make-up”. Indeed, if two words are semantically re-
lated, they are more likely to share the same topic.

Regarding the second category of additional information, i.e. domain-
specific information, rather than just the words of the documents, we
may have metadata associated with documents. For example, two re-
lated books, because written by the same author, are more likely to
share the same topics. More generally, knowing that two documents
are related increases our confidence that the documents talk about
similar topics. Indeed, we just described a particular type of informa-
tion, which can be either general or domain-specific, that we will call
relational information. Words or documents often show a relational
structure in real-world cases. For example, two scientific papers may
be related by a citation, or two web pages may be related by a hyper-
link. We can also use this type of information to improve the quality
of the topic models’ results.

In this chapter, we will focus on two types of relational informa-
tion, namely relationships between documents and between words.
Regarding the relationships among documents, we have already men-
tioned citation networks and hyperlinked web pages, but we may also
have co-authorship networks or social networks of friends (where
each person is identified by the documents they have written). On the
other hand, the relationships among words may include semantic re-
lationships (e.g. synonyms, hyperonyms), syntactic relationships (e.g.,
word-order and syntax trees), or we may also have domain-specific
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information when a domain expert knows that two words must be
in the same topic. In general, knowing that two elements (words or
documents) are related implies that the related elements are more
likely to share the same set of topics. We will therefore consider two
categories of topic models: topic models that encode relational infor-
mation at the document level (Document-Level Relational Topic Models)
and models that encode relationships at the word level (Word-level
Relational Topic Models).

Researchers have proposed many topic models that include rela-
tional information across the years (Chen et al., 2013a; Guo et al., 2015;
Yang et al.,, 2015a, 2016b; Zhang et al., 2013; Zhu et al., 2013). How-
ever, they usually include only one type of relational information,
i.e. the links between documents or the relationships between words,
disregarding that documents can also provide some other prior infor-
mation. We will therefore investigate a methodology to incorporate
document-level and word-level relationships into classical probabilis-
tic topic models. In addition to this, we will investigate the impact of
modeling these different types of relationships into topic models.

RESEARCH QUESTIONS. In this chapter, we will therefore address
the following research questions:

Q4.1 How can we incorporate additional document-level and word-
level relational information into classical topic models?

Q4.2 What is the impact of modeling document-level and word-level
relational information into topic models?

The proposed topic models extend the well-known Document-level
Relational Topic Model, i.e.,, RTM (Chang and Blei, 2009). For a re-
view on RTM, we refer the reader to Section 3.1.2. The next sections
are organized as follows. We will define the class of the Constrained
Relational Topic Models (CRTM), an extension of RTM, and how to
incorporate additional information into RTM (Section 4.1). We will
show different variants of Constrained Relational Topic Models, one
modeling the relational information among documents and the other
modeling relational information among words and named-entities,
i.e., Document Constrained Relational Topic Models (D-CRTM, Section
4.2) and Entity Constrained Relational Topic Models (E-CRTM, Section
4.3) respectively. Since we propose different extensions of RTM, the
proposed class of topic models belongs to the family of Document-
Level Relational Topic Models. However, our modeling is modular
and can be applied to other classical topic models. Indeed, we will
show in Section 4.3 that our method for incorporating additional in-
formation can be easily applied both to LDA and to RTM.
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4.1 MODELING ADDITIONAL INFORMATION INTO DOCUMENT-
LEVEL RELATIONAL TOPIC MODELS

Most of the Document-level Relational Topic Models consider only
the document network information, disregarding that other types of
information deriving from domain-specific information can be en-
coded as well. Building upon RTM, we introduce the information at
the document level in the form of constraints through the definition
of a set of potential functions, inspired by Constrained LDA (Yang
et al.,, 2015¢, CLDA). For details on CLDA, we refer the reader to
Section 3.1.1.

The information to model is denoted by a set L. Each element 1 € L
of the information set is introduced into the model by a potential
function f{(z, d), representing a real-valued score for the hidden topic
assignment z in document d. The overall information L defines a score
&(z, L) =] [,¢, exp fi(z, d) that smooths the current topic assignment
z. The joint probability distribution of this class of topic models, to
which we will refer as Constrained Relational Topic Models (CRTM),
is defined as follows:

p(w,zy,0, dlx, B,n,v,L) (41a)

= P($IB) P(01o)P(210)P(wiz, ) o (ylz, w,n,v) £(z,1) (41b)
Topic plate Document plate Link function  Potential
function

The potential function & and the link probability function { can
be factored out of the marginalized joint distribution, because they
do not depend on the distributions ¢ and 0, obtaining the following
marginalized joint probability distribution:

p(W, ZIY|Cxl Brﬂ/ v, L) (42a)

~ [ [pwz, @Ip(@IBIp PO, 5z wn, (2 Lidodo
(42b)

—t(2,Libolyiz,w,n,v) | [ p(wlz, §)p(4IBIp(al0]p (el dods
(42¢)

The main goal of CRTM is to estimate the posterior distribution
P(zlw,y) = P(w,z,y)/ ) ,P(w,z,y). Since the evaluation of the de-
nominator is intractable, we need to use an approximate inference
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method for the inference. In particular, we use a collapsed Gibbs sam-
pler that leads to the following estimation:

P(an|wnd/ Zﬁnd/ Yy, &, Brn/ v, L) (43a)

:P(W, Znd, Zﬁnd/y|oc/ B/TL v, L) ( b)
P(w,z 9, ylo, B,m, v, ) ¥

P(W,an, d|cx [3 H II)O' Udd’ — ]|anlzd Zd/rT]/V)

P(W/Zﬁnder [3 d'£d ydd' = ”Zd Zd/rT]/V)
ydd/ 1
(43¢)
. wﬁ(ydd/ = O|Zﬂdlzgndrzd'/nlv) . Ey(zﬁndlzndl L)
d’'#d lp()'(ydd' = O|Z£ndzzd’/n/\/) Ev(z_‘nd/ L)
Yaa'=0
(43d)
N+ B
—nd ZndW
x ( d;lnd + OC) and + WB (436)
nznd Nd an Ngl?d Nd,k
o : + Sk, f
dgd (Nd. Ny, Z Ng Ng. (431)
Yaar=1
H 1_ nznd Nd’an + Z N:l‘]? Nd,k
Yaar=0
(438)
-exp (fi(zna, d)) (43h)

where

¢ the superscript —nd indicates leaving the n-th token of the d-th
document out of the calculation;

* W represents the number of unique words in the vocabulary;

* Ny, denotes the number of words associated with the topic z in
document d;

* N.. denotes the number of words associated with the topic z in
the corpus;

¢ N,,, denotes the number of occurrences of the word w associ-
ated with topic z;

¢ Ng4. denotes the number of words in document d.

Equation (43e) corresponds to the Gibbs sampling of the standard
LDA (Griffiths and Steyvers, 2004), equation (43f) represents the sig-
moid link likelihood function of RTM when a link exists, and equa-
tion (43g) denotes the link function of RTM when a link is absent,
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plus the incorporation of additional information by means of the po-
tential function. Let us notice that equations (43f) and (43g) related to
RTM deal with directed graphs, however it can be easily adapted to
deal with undirected networks, similarly to all the models that extend
RTM.

In the following sections, we will describe how to represent the
additional information set L and how to define potential functions to
incorporate document-level or word-level relationships in the form of
constraints.

4.2 MODELING DOCUMENT-LEVEL RELATIONAL INFORMATION
INTO DOCUMENT-LEVEL RELATIONAL TOPIC MODELS

We will now focus on how to incorporate additional information as
document constraints. The introduction of document constraints in-
stead of document labels can be more realistic in some cases. For
instance, labels may be unknown, but a user may know whether two
documents belong or do not belong to the same class (Basu et al.,,
2004). This formulation is also more general, as document constraints
imply labels, but vice versa does not hold. Therefore, we will propose
the class of models Document Constrained Relational Topic Models (D-
CRTM), which make use of potential functions, inspired by must-link
and cannot-link constraints described in (Andrzejewski et al., 2009),
that allow us to incorporate document constraints in RTM.

4.2.1 Definition of Information Sets

We define two information sets for each document d: a must-constraint
set L', containing documents that must share the same topics of d,
and a cannot-constraint set L§, including documents that cannot share
the same themes of d. For example, a must-constraint set for the book
titled Emma and written by Jane Austen could be

Emma = 1Sense and Sensibility, Pride and Prejudice}
which contains a set of books written by the same author. Analo-
gously, a cannot-constraint set could be

€ mma = (Divine Comedy}

which denotes a book that has not been written by Jane Austen.

In the following, we will propose two potential functions, which,
once instantiated in D-CRTM, will lead to the Unnormalized and Nor-
malized D-CRTM.
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4.2.2  Unnormalized Document Potential Function

We can encode document relationships by modeling the relationship
that exists between the words of two constrained documents. In par-
ticular, we assume that if two documents are must-constrained (i.e.
they must share the same set of topic assignments), then the words in
the documents must have similar topic distributions, i.e. p(zqlw, d) =
p(za:w’,d’), where w are the words of document d, and w’ are
the words of document d’. In other words, we model the idea that
the more the words of the documents belonging to the set L7 are
assigned to topic t, the higher the value of the potential function
fi(z = t,d) is. Analogously, a cannot-constraint between two docu-
ments indicates that their words should not share the same set of top-
ics. Therefore, if many words of two cannot-constrained documents
are assigned to the same topic, then the value of the potential function
will be low.

To model the previous ideas, we define the following potential func-
tion, named unnormalized potential function, as it takes into account the
absolute value of the document-topic counts. It is defined as follows:

1

f[ (Z, d) = Z log maxXx (}\/Nd/Z) + Z log m (44)
d’eD d'eD !
d'ELH1 d’EL‘é

where A is the hyper-parameter which controls the strength of each
L € L. Larger values of A imply that the constraint is active only for
those topic assignments that have large counts. The value of A must
be set for each piece of information according to the domain expert’s
confidence. The conditional probability of topic z, including the de-
fined document constraint potential function, can be estimated as:

P(znalw,z ™y, o B,m,v,L) ox (45a)
N*nd +B
Nﬁnd Zndw b
( dznd_‘_oc) Nznd' +WB (45 )
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d'2d Nd. Nd/. =1 Nd. Nd/.
Yaa/=0
(45d)
1
A, Ng/
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d’eD d’eD n
d’el} d'ely

where, similarly to Equation 4.1, the term (45b) corresponds to the
Gibbs sampling of the standard LDA, equation (45c) represents the
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sigmoid link likelihood function of RTM when a link exists, and equa-
tion (45d) denotes the link function of RTM when a link is absent,
and (45e) corresponds the incorporation of additional information
through the Unnormalized potential function.

The selection of the correct values for A is not trivial due to the
different lengths of the documents involved in a constraint. For ex-
ample, if we choose a value for A that is too large, a document with
a number of words less than A will not affect the probability p(zng =
t|wng,z ™4,y L), even if all the words of the documents are as-
signed to topic t.

To smooth the effect of the hyperparameter A, we propose a poten-
tial function that takes into account the length of the document in the
following.

4.2.3 Normalized Document Potential Function

The potential function that we propose hereby considers the propor-
tion of words in a document assigned to the same topic, rather than
the absolute values of the document-topics counts. We define the po-
tential function fi(z, d) as follows:

Naz
= > 10g< 1) — > log <M+1) (46)
d’eD d’eD
d'elLy d'el§
The conditional probability of topic z estimated by D-CRTM, in-
cluding the defined document constraint potential function, can be
specified as follows:
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In the following sections, we present an experimental investigation
to evaluate the capabilities of D-CRTM to discover hidden topics in
different collections of networked documents.
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4.2.4 Experimental Setting

To evaluate the performance of the proposed models, we conduct
several experiments using document labels as additional information
and we compare the performance of the D-CRTMs with different
baseline models” performance.

BASELINE MODELS. We validate D-CRTM-N and D-CRTM-U by
comparing the results on benchmark datasets against the following
models:

e LDA: Latent Dirichlet Allocation (Blei et al., 2003a) using col-
lapsed Gibbs sampling.

¢ RTM: standard RTM (Chang and Blei, 2009) that models only
the links between documents through the binary variable y,
without incorporating any other kind of domain-specific infor-
mation.

¢ Bi-RTM: RTM for bidimensional networks, where the first di-
mension is intended to represent the links of the document net-
work, modeled by the binary variable y, and the second dimen-
sion is designed to represent the must- and cannot-constraints
between documents, modeled by an additional binary variable c.
Its joint probability distribution is the following:

p(w,z,y,¢,0,®|x, B,1,v,1m,v')

D Nga K
=[Ir0al®) [ pWnal®=,.)p(znalda [ ] p(@kIB)
d=1 n=1 k=1
. H 11)6(9 dd'|Zd/ Zd’/T]/V)
d,d’eD
d’#d
: H 11)0"(Cdd’|Zd/Zd’/n//\//)

d,d’eD
d’#£d

(48)

where n’ and v’ are respectively the coefficient and the intercept
for the sigmoid function 1,/ that models the likelihood that a
constraint c44/ between two documents d and d’ exists.

For the sake of completeness, we also compared the proposed D-
CRTM models with a supervised model. In particular, we considered
Labeled LDA (LLDA) as defined in Section 3.1.2.

Let us notice that in some realistic cases, we only know that two
documents belong or do not belong to the same class, rather than
knowing that to which class a document belongs.
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BENCHMARK DATASETS. Since D-CRTM deals with networks of
documents and domain-specific information, the chosen datasets for
the validation phase must have two main features: an underlying
document-relational structure (e.g. citation links) and some domain-
specific information available (e.g. document labels) to derive the
semi-supervised constraints. Table 4.1 contains some statistics about
the selected benchmarks. Cora (McCallum et al., 2007) and M1o (Lim
and Buntine, 2014) are two datasets composed of 2708 and 4427 sci-
entific publications respectively, whose links are represented by cita-
tions. WebKB" is a dataset composed of 877 universities web pages
whose relationships are hyperlinks from a web page to another.

Dataset #docs #links  Density Type of #classes funique
link words
Cora 2708 5430 2.87-10~%  citation 7 1752
Mio 4427 5627 741.107%  citation 9 1592
WebKB 877 1131 14.72-10~* hyperlink 5 1830

Table 4.1: Statistics of the benchmark datasets Cora, WebKB, and M1o.

The three benchmarks have been pre-processed: words are stemmed,

stopwords and the least and most frequent words are removed. Only
the documents that link another document or are linked by a doc-
ument at least once are considered. Prior information has been in-
troduced in terms of constraints using a percentage of the possible
constraints between documents. In particular, if two documents d
and d’ randomly chosen share the same class label, we expect that
their words are assigned to similar topics, therefore a must-constraint
is introduced (i.e. document d is added to the must-constraint set of
d’ and document d’ is added to the must-constraint set of d). Con-
cerning LLDA, we first define a mapping between the set of topics
and the set of labels. Two documents d and d’ are randomly drawn
and the labels 1 and 14/ are incorporated as domain-specific infor-
mation, according to Equation (18).

4.2.4.1 Performance Measures

Each dataset is divided into a training set and a test set. The models
are evaluated on the test set by measuring their performance on a doc-
ument classification task. The K-dimensional representation of each
document output by the considered topic model, i.e. the document-
topic distribution 0, is used to train a linear Support Vector Machine
(SVM) classifier that predicts the document classes. For the experi-
mental evaluation, we considered both micro-F1 and macro-F1 mea-
sures as defined in 3.4.1.

1 http://www.cs.cmu.edu/~WebKB/ILP-data.html
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4.2.4.2 Parameter settings

Each experiment, with a given set of parameters, has been repeated
100 times. The performance measures have been averaged by the num-
ber of the samples, thus obtaining an average micro-F1 and macro-F1
measure. The hyperparameters o and 3 have been set equal to 50/K
and 0.1 respectively (as reported in (Griffiths and Steyvers, 2004)), for
all the considered models. The selected value of A for D-CRTM-U is
1. Each model has been trained for 1,500 Gibbs iterations.

The models have been validated by setting the number of topics
equal to the number of classes of the dataset and by varying the quan-
tity of information, i.e. the number of possible constraints, during the
training phase and, in a second stage, during the testing phase.

The maximum quantity of prior information in terms of constraints
D(D-1)
2

(where D is the number of documents), which represents
the maximum number of possible pairs among all the documents of
the dataset. The quantity of information introduced into the models is
expressed as a percentage, preferring low values to maintain the typi-
cal semi-supervised scenario. Thus, given a percentage p, the number
of constraints introduced into the model will be p - b (Dz*] ), rounded
down to the nearest integer. When the percentage of incorporated
information is equal to 0%, then D-CRTM and LLDA correspond to
RTM and LDA, respectively.

We used Support Vector Machines (SVM) to predict the ground
truth labels from the document-topic distribution of the documents.
In particular, we used the LibSVM implementation? for inducing the
linear SVM classifier.

The code of the proposed models is available at https://github.
com/MIND-Lab/Constrained-RTM.

4.2.5 Results

In the following, we consider the performance of each model with
an increasing percentage of prior information introduced only in the
training phase. In particular, we consider an experimental setting
with zero knowledge (0.0%), which corresponds to models that do not
encode any constraint (i.e. LDA and RTM), and we represent them in
the plots using the lines. The other models, i.e. BiIRTM, D-CRTM-U,
D-CRTM-N, and LLDA, are reported with different percentages of
information, and the bar plots represent them.

Let us notice that, in these experiments, zero additional informa-
tion is incorporated in the testing phase, as it often happens in realis-
tic cases.

2 LibSVM library: https://www.csie.ntu.edu.tw/~cjlin/1libsvm/
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Figure 4.1: Micro-F1 performance of the compared models on Cora.

QUANTITATIVE RESULTS. Figure 4.1 shows the performance of
the models measured using the micro-F1 on the dataset Cora, where
the number of constraints that are randomly selected ranges from
0.03% and 0.2% of the number of possible constraints. D-CRTM-N
outperforms the other models, increasing its performance as more
additional information is introduced, and it seems to decrease its
performance for larger quantities of constraints. We can also notice
that, while the performance of Bi-RTM is invariant for the quantity of
domain-specific information, LLDA gets at first an improvement with
a small contribution of additional information, then its performance
decreases for larger values. The performance of D-CRTM-U is worse
than the baselines LDA and RTM. This behavior may be related to
the fact that documents in Cora are long (the average length of a doc-
ument is 68.9 words). Therefore the value of the potential function,
which depends on the number of words associated with the current
topic, will be very high, allowing a small contribution to the rest of
the sampling.
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Figure 4.2: Micro-F1 performance of the compared models on M1o.
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In Figure 4.2, we show the results for dataset M10. D-CRTM-N has
a similar behavior with respect to the previous experiments, while D-
CRTM-U gets an improvement with a small insertion of constraints.
This is due to the lengths of the documents in M1o, which are short
(the average length of documents in M1o is 6.3 words). This makes
the introduction of the constraints more smoothed than in Cora. How-
ever, for larger quantities of additional information, the average per-
formance of D-CRTM-U gets worse. The introduction of the labels
allows LLDA to obtain a small improvement with respect to LDA,
meaning that associating each word of a labeled document to the
same topic does not improve the generalization capabilities of the
model. Bi-RTM has a higher performance as the quantity of addi-
tional information increases, although it requires many constraints
and its best performance is still lower than D-CRTM-N.
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Figure 4.3: Micro-F1 performance of the compared models on WebKB.

Figure 4.3 shows the performance of the models for the dataset We-
bKB. D-CRTM-N still has the same behavior as the previous datasets,
obtaining the best performance. Bi-RTM has a constant trend, while
the other two models get worse performances with respect to LDA
and RTM. The behavior of D-CRTM-U is similar to the one obtained
in Cora. In fact, also WebKB is composed of long documents. On the
other hand, LLDA has a lower performance with respect to Bi-RTM,
D-CRTM-N, and LDA.

We report in the following the results of the considered models
on the different datasets by introducing domain-specific information
both in the training and testing set. In particular, each combination of
values of percentage in training and testing has been considered. To
provide a concise visualization of the performance of the models, the
results have been averaged, and therefore Figure 4.4 reports the best
average performance for each model.

The two D-CRTMs significantly outperform Bi-RTM and the base-
lines LDA and RTM (with confidence of 95%). In particular, the two
proposed models have similar performance on M1o and WebKB, while
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Figure 4.4: Micro-F1 measure of the models across all the datasets. The plot
shows the best performance of the average behavior of the mod-
els, considering different percentages of constraints introduced
in the training phase and in the test phase.

D-CRTM-N outperforms its counterpart D-CRTM-U, because it can
handle the documents’ length issue of the Cora dataset. Bi-RTM out-
performs standard RTM and LDA, however in Cora and WebKB the
improvement in the performance is small, meaning that modeling the
document constraints using the link likelihood function \;+ may not
be a promising solution.

We do not report LLDA in this evaluation because, in LLDA, all of
the words of a labeled document are associated with the same topic.
This has the trivial effect of automatically labeling each document af-
fected by a constraint in the test set with the correct class. D-CRTMs
still have very promising results, and they can be applied in more re-
alistic cases, i.e. when we do not know the exact labels of documents,
but we know that two documents belong to the same class. In this
scenario, LLDA cannot be used.
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Figure 4.5: Macro-F1 measure of the models across all the datasets. The plot
shows the best performance of the average behavior of the mod-
els, considering different percentages of constraints introduced
in the training phase and in the test phase.

We show a further comparison in Figure 4.5, where the results are
reported in terms of macro-F1 measure, with additional information
introduced both in training and testing. We can easily notice that
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macro-F1 values are lower than the micro-F1 ones, highlighting that
all the models are negatively affected by the class/topic size. This
means that all the LDA-based models tend in general to fit better
those classes with higher cardinality at the expenses of the minority
classes.

This behavior is mainly motivated by the symmetric and positive
(> 1) values of the hyper-parameter « that regulates the correspond-
ing document-topic distribution 0. In fact, this setting implies having
the same prior distribution of topics (and classes) for each document,
originating therefore a posterior topic/classes distribution that is al-
most uniform and consequently balanced among different classes. In
Chapter 6 we will show how the choice of the hyperparameters have
an impact on the performance of the topic models.

Even if D-CRTM is sensitive to the hyper-parameter «, it still out-
performs the other baselines. The promising performance in terms of
macro-F1 is mainly due to its ability to smooth the posterior topic
distributions by the introduction of constraints.

Case-based

Genetic Algorithms
Neural Networks
Probabilistic Methods
Reinforcement Learning

Rule Learning

EREECNE

Theory

Figure 4.6: An example of the Cora network used during the training phase.
Edges represent either citation links or must-constraint, where
0.2% of additional information is incorporated. Nodes are col-
ored with respect to their actual class.

OBSERVATIONS ON THE NETWORK STRUCTURE. To show the com-
plexity of the network obtained by the combination of links and
must-constraints, we illustrate an example of the Cora benchmark.
Figure 4.6 shows an instance of a document network when 0.2% of
additional information is introduced during the training phase. In
particular, each node denotes a document, whose color represents
the actual document class. The edges denote either a citation link or
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a must-constraint. Since must-constraints are allowed only between
documents of the same class, this type of relationships forms seven
connected components that are visible by observing the network. On
the other hand, citations can exist either between same-class docu-
ments or documents belonging to different classes.

The density of the citation network, together with the density of the
constraints, can have an impact on the classifier’s performance, which
decreases when too much additional information is introduced. To
better clarify this issue, we consider the ego network of the document
40886 (where 40886 is the original identifier of the document in the
Cora dataset), as illustrated in Figure 4.7.

.

A
\
\
\
1 .
constraint
|

N
N, .
constraint

-

Bl Case-based
I Neural Networks

Figure 4.7: Ego network of document 40886 of the Cora dataset. The nodes
are labeled by the original identifiers of the dataset and edges
are labeled by the relationship type (citations are denoted by a
straight line and must-constraint by a dashed line). The node
color represents the actual class of a document, and the color of
the outline denotes the predicted class.

In particular, the color of the node represents the actual class of a
document, while the color of the outline denotes the predicted class
(e.g. documents 40886 and 429805 are classified as belonging to the
class “Neural Network”, but the first is correctly predicted while the
second is misclassified).

As expected, the proposed model D-CRTM-N encourages all the
purple nodes to have similar topic distributions, and the classifier
correctly predicts that all the documents belong to the class “Neural
Network”. Analogously, all the blue nodes are encouraged by both
the must-constraints and the citation links to have similar topic distri-
butions and are assigned to the same class, though the predicted class
is not correct. This error is likely due to the presence of citation links
between documents of different classes (e.g. the citation between doc-
uments 40886 and 429805) combined with the must-constraints. If a
document is misclassified, a must-constraint may propagate this error
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to all the other documents that are must-constrained to the misclassi-
fied ones.

This error could be reduced through the use of cannot-constraints,
which can be incorporated if two documents belong to different classes.
In this way, a cannot-constraint between two documents would allow
the topic distributions to be dissimilar, originating therefore a correct
classifier’s prediction.

4.3 MODELING WORD-LEVEL RELATIONAL INFORMATION INTO
DOCUMENT-LEVEL RELATIONAL TOPIC MODELS

We have shown in the previous part of the Chapter that incorporating
additional information related to documents can help to enhance the
topical representation of the documents, providing improvements for
document classification tasks. Since the discovered topic words, de-
rived from the word distributions, are strongly connected with the
topical representations of the documents, one may wonder if the in-
corporated relationships affect also the quality of the resulting topics.

Moreover, previous work proved that the introduction of additional
relational information between words improves the coherence of the
discovered topics (Chen et al., 2013b,c; Yang et al., 2015¢). This type
of relationship is commonly viewed as related to the concept of syn-
onym, but this is not always the case in a real-world scenario because
of word ambiguity. Following this intuition, it is thus important to
take into consideration the concept behind the word alongside the
word itself for understanding its relationship with other words, be-
cause it would permit to associate the same topic to words that are
actually related and not only synonyms. For example, it would be
possible to grasp that the word “engine”, when associated with the
concept of “search engine", is distant from “motor", but similar to
“information retrieval". Few works investigate the use of named en-
tities in topic models (Allahyari and Kochut, 2016; Kim et al., 2012;
Wang et al., 2017), but none of them addresses the problem as a rela-
tional setting. The constrained functions we have defined before can
be indeed applied to word tokens too (Yang et al., 2015¢).

Therefore, in this section, we would like to investigate the role of
two different types of relational information: (1) concept relationships
between words and named entities and (2) document-level relation-
ships extracted by a document network. The impact of these two
types of relational information is evaluated by extending traditional
topic models using different potential functions.

We therefore propose Entity Constrained Latent Dirichlet Allocation
(E-CLDA) and Entity Constrained Relational Topic Models (E-CRTM),
two classes of models aimed at incorporating entity-entity and entity-
word relationships in traditional topic models. Following the previ-
ous work (Terragni et al., 2020; Yang et al., 2015¢c), we constrain the
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joint distribution of LDA and RTM through the use of potential func-
tions that model entity-entity and/or entity-word relationships.

4.3.1  Definition of Information Sets

We define the vocabulary E containing the unique named entities of
the corpus, and the vocabulary W containing the unique words. We
derive the vocabulary I' as the union of the word and named entity
vocabularies. Similarly to D-CRTM, relationships are denoted by the
set of information L and each piece of information | € L is incorpo-
rated by a potential function fi(z, u), which represents a real-valued
score for the hidden topic assignment z of the word or named entity
token u.

We derive the information L from the similarities of embeddings in
a word and entity embedding space derived from Skip-Gram (Mikolov
et al., 2013). Given a word (and entity) embeddings training set com-
posed of a large but finite set A, the word (and entity) embeddings
model can be expressed as a mapping function C’ : T — RR*. For each
token u € T', we define a must-constraint set L}, containing words and
named entities that are likely to share the same themes of u. LJ}* is
defined as:

LT ={veTlsim(C'(u),C'(v)) > em} (49)

where sim is the cosine similarity between two vectors, and e, is a
given threshold. We also define a cannot-constraint set L5, that con-
tains the words and named entities that are not likely to share the
same themes of u. L is defined as:

LS ={v eTlsim(C'(w),C'(v)) < ec} (50)

where €. is a given threshold.
An example of a must-constraint set for the named entity

LS arifical = tArtificial neuron, perceptron}
Neural Network
which contains named entities that are likely to be assigned to the
same topic. Analogously, an example of a cannot-constraint set for
the same named entity is:

L arifical = (Olympic_Games, Athlete, medallist}
Neural Network

which denotes named entities related to sports and not to Machine
Learning.
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We report the joint distribution of the proposed models. Entity Con-
strained Latent Dirichlet Allocation (E-CLDA) defines the following
joint probability distribution:

P(u,z,0,®|x, B3,L) x (51a)
D Na
[Tr®ale) [T punal®z,,)p(znalba) (51b)
d=1 n=1
K
[Tr(@ulp) &z 1) (510)
k

where, differently from the joint probability distribution of LDA (Equa-
tion 2), the vocabulary set is I' and there is also the term representing
the potential function.

Similarly, the joint probability distribution of Entity Constrained
Relational Topic Models (E-CRTM) is defined as follows:

P(u,z,y, 0, ®|e, 3,1m,V,L) x (52a)
D Ng
[Ir0a) T] ptnal®-, )p(znalda) (52b)
d=1 n=1
K
HP(CDk|[3) H Vo(Ya,arlza,za,m, v) - &z, 1) (52¢)
k d,d’eD
a’#d

where 1 is the link probability function as defined in Equation 19.

4.3.2  Entity-Entity Potential Function

We specify an entity-entity potential function that models the relation-
ships between named entities. Let N,/ be the maximum between 1
and the topic-entities counts, i.e. the number of occurrences of e’ as-
signed to topic z. The function fi(z, u) is as follows:

Z logN_e/ + Z log N] ifuet
ze’

_ ! Lm i LC
filz,u) =< €7 i (53)
0 otherwise

The function increases the probability that the entity u will be as-
signed to the same topics as those of the entities belonging to L}*. Sim-
ilarly, the potential function decreases the probability that a named
entity u will be drawn from the same topics as those of entities con-
tained in the L¢,.

The models that can encode the Entity-Entity (EE) potential func-
tion will be referred to as E-CLDA-EE and E-CRTM-EE.
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4.3.3 Entity-Word Potential Function

Let N, be the maximum between 1 and the topic-word counts, i.e.
the counts of word w’ assigned to topic z. The following potential
function deals with relationships between entities and word tokens:

1
Z log Ny, + Z log ifuet
/o1 m I 1c Nzw’
w'eLy w'eLyy,
filzu) = { VW wew (54)
Z log N, + Z log ifuew
/ m ! c Nze’
e'ely] e'ely
e'eE e’€E

The potential function models the following cases:

e if u is a named entity, then we consider only the words that
are contained in u’s must- and cannot-constraint sets, i.e. L]}
and L¢;

e if u is a word, then we consider only the named entities that
are contained in u’s must- and cannot-constraint sets, i.e. L]}
and L¢.

The models encoding Entity-Word (EW) relationships are named E-
CLDA-EW and E-CRTM-EW.

4.3.4 Experimental Setting

Since our objective is to evaluate the contribution of the different in-
corporated relationships, we consider the proposed models (i.e., E-
CLDA-EE, E-CLDA-EW and E-CRTM-EE, E-CRTM-EW), and also the
baselines LDA and RTM. We also consider two neural counterparts
of LDA and RTM: Stacked Variational Auto-Encoder (SVAE) (Bai
et al.,, 2018; Miao et al.,, 2016) and Neural Relational Topic Model
(NRTM) (Bai et al., 2018).

The code of the proposed models is available at https://github.
com/MIND-Lab/ec- rtm.

DATASETS We perform the experimental investigation on two rela-
tional datasets Cora (McCallum et al., 2005) and WebKB3. Table 4.2
reports the basic statistics of the datasets.

DATASET PREPROCESSING. The identification of named entities in
the text is typically performed through a series of techniques that re-
fer to the task of Named Entity Recognition (NER) (Fersini et al., 2014;
Li et al.,, 2020; Ritter et al., 2011). Once the named entities are recog-
nized, the next step is to associate them to unambiguous concepts, as

3 www.Cs.cmu.edu/~WebKB/ILP-data.html
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Datasets ‘ #Docs ‘ #Links ‘ Document Type ‘ Link Type

Cora
WebKB

2,708

877 1,608 Webpage Hyperlink

5,278 | Title+Abstract Citation

Table 4.2: Statistics of benchmark datasets Cora and WebKB.

for example resources in a Knowledge Base. This process is known
as the task of Named Entity Linking (NEL) (Cucerzan, 2007; Dredze
et al., 2010; Nozza et al., 2019).

Here we use the DBPedia Spotlight tool (Mendes et al., 2011)
(with confidence = 0.5 and support = 0.0) to identify named enti-
ties in the text and associate them to DBPedia units. We added the
prefix “NE/” to each identified entity to discriminate it from words.
Then, we apply a common pre-processing technique to the text. We
lowercase the text, remove English stopwords and words occurring
less than 10 times, and filter out documents composed of less than 2
words. Details on the vocabulary composition are reported in Table
4.3. We consider only must-constraints, which have been extracted
from Wikipedia2Vec (Yamada et al., 2018).

‘ Processed corpus ‘ Unprocessed corpus
#unique #unique # unique entities # unique
entities words and words words
Cora 384 2,675 3,059 3,012
WebKB 355 1,874 2,229 2,247

Table 4.3: Summary of the vocabularies for the benchmark datasets before
and after the pre-processing phase.

HYPERPARAMETERS. Each experiment, with a given set of param-
eters, is repeated 100 times. The performance measures are averaged
over the number of samples. The hyperparameters « and 3 are set
equal to 50/K and 0.1 respectively (as reported in (Griffiths and Steyvers,
2004)) for all the considered models. All the compared models are
trained for 1,500 Gibbs iterations.

In our evaluation, we consider only must-constraint relations that
entities and words can generate. To select the most appropriate value
for the threshold e, we studied the performance of the topic coher-
ence of our models by varying the value of the parameter. The final
values for the models with the potential functions EE and EW are 0.8
and o.7 for the dataset Cora and 0.6 and 0.6 for WebKB. The selected
value for A is 1.
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| D | NPMI | Cv

‘ 10 ‘ 30 ‘ 50 ‘ 10 ‘ 30 ‘ 50 ‘ 10 ‘ 30 ‘ 50
LDA 0.816 | 0.736 | 0.654 | 0.098 | 0.080 | 0.071 | 0.399 | 0.389 | 0.386
RTM 0.814 | 0.747 | 0.666 | 0.099 | 0.082 | 0.071 | 0.348 | 0.391 | 0.392

E-CLDA-EE | 0.814 | 0.742 | 0.659 | 0.098 | 0.079 | 0.069 | 0.397 | 0.390 | 0.389
E-CLDA-EW | 0.817 | 0.740 | 0.660 | 0.094 | 0.079 | 0.070 | 0.395 | 0.389 | 0.387
E-CRTM-EE | 0.817 | 0.747 | 0.675 | 0.099 | 0.081 | 0.071 | 0.402 | 0.394 | 0.392
E-CRTM-EW | 0.820 | 0.746 | 0.671 | 0.098 | 0.082 | 0.072 | 0.340 | 0.392 | 0.392
SVAE 0.893 | 0.694 | 0.577 | -0.099 | -0.095 | -0.096 | 0.456 | 0.456 | 0.453

NRTM 0.857 | 0.525 | 0.381 | -0.083 | -0.082 | -0.082 | 0.442 | 0.447 | 0.446

Table 4.4: Topic diversity and coherence performance on the Cora dataset
with the number of topics equal to 10, 30, 50.

| KL-U | KL-V | KL-B

‘ 10 ‘ 30 ‘ 50 ‘ 10 ‘ 30 ‘ 50 ‘ 10 ‘ 30 ‘ 50
LDA 1.855 | 1.572 | 1.259 | 1.226 | 1.231 | 1.059 | 0.052 | 0.119 | 0.168
RTM 2.001 | 2.046 | 1.820 | 1.357 | 1.563 | 1.460 | 0.095 | 0.207 | 0.283

E-CLDA-EE | 1.845 | 1.520 | 1.375 | 1.225 | 1.238 | 1.066 | 0.052 | 0.119 | 0.167
E-CLDA-EW | 1.800 | 1.518 | 1.381 | 1.230 | 1.236 | 1.065 | 0.052 | 0.119 | 0.168
E-CRTM-EE | 2.033 | 2.082 | 1.849 | 1.362 | 1.564 | 1.472 | 0.095 | 0.205 | 0.280

E-CRTM-EW | 2.079 | 1.990 | 1.643 | 1.361 | 1.565 | 1.470 | 0.096 | 0.206 | 0.282

Table 4.5: KL-* performance on the Cora dataset with the number of topics
equal to 10, 30, 50.

METRICS We use KL-U, KL-V, and KL-B to measure semantic im-
portance and identify junk and insignificant topics (AlSumait et al.,
2009). We also measure how different the topics are from each other
by computing the Percentage of Unique Words (PUW) (Dieng et al.,
2020) on the 10-top words of the topics. Finally, we consider two met-
rics of topic coherence, i.e. NPMI (Aletras and Stevenson, 2013) and
Cv (Roder et al., 2015) that measure how much the 10-top words of
a topic are related to each other. The scores are computed using the
Palmetto toolkit* and Wikipedia> as reference corpus. We refer the
reader to Section 3.4 for additional details on the evaluation metrics.

4.3.5 Results

QUANTITATIVE RESULTS Tables 4.4, 4.5, 4.6 and 4.7 show the per-
formance of the models in terms of all the considered scores over
an increasing number of topics on the datasets.® Results show that

http://github.com/dice-group/Palmetto

English Wikipedia dump of the 23rd of May, 2019.

Computing the KL- metrics is impractical for SVAE and NRTM since they do not
model word- and document-topic distributions.
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| D | NPMI | Cv

‘ 10 ‘ 30 ‘ 50 ‘ 10 ‘ 30 ‘ 50 ‘ 10 ‘ 30 ‘ 50
LDA 0.761 | 0.617 | 0.538 | 0.039 | 0.040 | 0.030 | 0.378 | 0.379 | 0.379
RTM 0.760 | 0.608 | 0.532 | 0.043 | 0.043 | 0.036 | 0.377 | 0.380 | 0.380

E-CLDA-EE | 0.769 | 0.623 | 0.542 | 0.043 | 0.041 | 0.033 | 0.379 | 0.380 | 0.381
E-CLDA-EW | 0.764 | 0.651 | 0.547 | 0.042 | 0.038 | 0.033 | 0.376 | 0.381 | 0.382
E-CRTM-EE | 0.760 | 0.612 | 0.536 | 0.048 | 0.043 | 0.039 | 0.377 | 0.382 | 0.381
E-CRTM-EW | 0.759 | 0.639 | 0.543 | 0.045 | 0.042 | 0.036 | 0.377 | 0.382 | 0.384
SVAE 0.829 | 0.563 | 0.454 | -0.116 | -0.110 | -0.112 | 0.460 | 0.450 | 0.452

NRTM 0.734 | 0.360 | 0.283 | -0.114 | -0.117 | -0.119 | 0.454 | 0.455 | 0.458

Table 4.6: Topic diversity and coherence performance on the WebKB dataset
with the number of topics equal to 10, 30, 50.

| KL-U | KL-V | KL-B

‘ 10 ‘ 30 ‘ 50 ‘ 10 ‘ 30 ‘ 50 ‘ 10 ‘ 30 ‘ 50
LDA 1.695 | 1.256 | 1.130 | 1.054 | 0.943 | 0.775 | 0.069 | 0.142 | 0.199
RTM 1.986 | 1.795 | 1.430 | 1.202 | 1.239 | 1.109 | 0.119 | 0.225 | 0.303

E-CLDA-EE | 1.643 | 1.289 | 1.061 | 1.055 | 0.948 | 0.780 | 0.069 | 0.143 | 0.200
E-CLDA-EW | 1.736 | 1.345 | 1.075 | 1.062 | 0.981 | 0.784 | 0.069 | 0.138 | 0.198
E-CRTM-EE | 1.867 | 1.944 | 1.468 | 1.199 | 1.246 | 1.119 | 0.118 | 0.226 | 0.303

E-CRTM-EW | 1.979 | 1.786 | 1.646 | 1.199 | 1.294 | 1.127 | 0.117 | 0.217 | 0.302

Table 4.7: KL-* performance on the WebKB dataset with the number of top-
ics equal to 10, 30, 50.
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models that consider relational information generally obtain higher
performance than their non-relational counterparts. Differently, intro-
ducing the concept constraints in E-CRTM-EE and E-CRTM-EW mod-
els does not seem to provide significant improvements with respect
to RTM. This can be motivated by the fact that the constraint sets
additionally included in the E-CRTM models are already captured in
the word-topic distribution obtained by RTM.

Different behaviors can be observed for the Cy scores, for which
NRTM and SVAE obtain significantly higher performance. This op-
posite trend with respect to the other topic scores can be explained
by the fact that Cy rewards the presence of rare words even if they
are contained in junk topics as stated by the author of (Roder et al.,,
2015)7.

Models ‘ Top-10 words

LDA* problem genetic algorithms problems programming search
optimization fitness population space

RTM* genetic control programming fitness reinforcement popula-
tion algorithms paper environment behavior

E-CRTM-EE | NE/Genetic_programming programs NE/Genetic_algorithm
population fitness genetic evolutionary program NE/Evolu-
tion strategies

E-CRTM-EW | NE/Genetic_programming NE/Genetic_algorithm popula-
tion fitness genetic evolutionary NE/Evolution encoding op-
erator operators

SVAE koza NE/Multidisciplinary_design_optimization splice bits-
back NE/Genetic_programming fitness orientation NE/-
Ploidy NE/Exon coded

NRTM genetic reactive NE/Genetic_programming NE/Case case-

based neuroevolution ssa NE/Genetic_algorithm coevolution-
ary problemsolving

Table 4.8: Example of the topic “Genetic Programming" in Cora.

QUALITATIVE RESULTS In Table 4.8, we show the top-10 words
for Cora concerning an example topic “Genetic Programming" for E-
CRTM-EE, E-CRTM-EW, LDA, RTM, SVAE, and NRTM. To analyze
if the named entity annotation can contribute to topic interpretabil-
ity, we report the words of LDA and RTM (referred to as LDA* and
RTM*) run on Cora composed of words only. As expected from the
quantitative results, the topics extracted by the proposed models do
not significantly differ from RTM?*, further demonstrating the hypoth-
esis that the imposed constraints were already captured by the origi-
nal model.

Qualitative considerations can be made regarding the exploitation of

7 https://bit.ly/3jApSAC
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the novel entity-level modeling of the documents. While this repre-
sentation leads to topics containing explicit concepts (e.g., “NE/Ge-
netic_programming"), topics obtained by RTM* seem to be equally
interpretable because they can identify named entities in the form of
distinct words (e.g., “genetic, programming, algorithm"). Moreover,
the difference in representation is only evident when named entities
are composed of two or more words (e.g., “NE/Evolution" and “evo-
lution" are equivalent). The benefit of applying NEEL techniques for
recognizing named entities in topics may come in handy for automat-
ically providing links to KB (such as Wikipedia), at the computational
cost of discovering named entities. Moreover, the proposed potential
functions would allow users to artificially manipulate the model to
derive explanations for the topic assignments or force entities in the
same topic based on human domain knowledge.

Regarding SVAE and NRTM, their topics seem hard to interpret
from a qualitative perspective, confirming the results of the quantita-
tive evaluation.

4.4 SUMMARY OF THIS CHAPTER

In the following, we give a short summary of this chapter. In the in-
troductory section of the Chapter, we reported the following research
questions:

Q4.1 How can we incorporate document-level and word-level rela-
tional information into classical topic models?

Q4.2 What is the impact of modeling document-level and word-level
relational information into topic models?

To answer question Q4.1, we have defined potential functions to model
the relationships between documents (Section 4.2) and between words
and named entities (Section 4.3) in the form of constraints. We have
proposed two novel definitions of potential functions for modeling
document-level relationships, originating the models D-CRTM-U and
D-CRTM-N. These models produce accurate document representa-
tions, which improve the performance of the classical topic models
in document classification tasks.

We have also compared the performance of document-level rela-
tional topic models and word-level relational topic models, to esti-
mate the impact of these types of information on the quality of the
topics (Q4.2). Our results show that incorporating document relation-
ships can effectively help the model discover more coherent topics.
However, the incorporation of word-level relationships seems to be
not as effective. A qualitative inspection suggests that the word-level
relationships are already captured by the topic model and are there-
fore superfluous.



4.4 SUMMARY OF THIS CHAPTER

Let us notice that our modeling is flexible, modular and easy to
implement. It can be applied to other topic models, as long as they
belong to the category of probabilistic graphical models. Indeed, as
we have shown in Section 4.3, our method can be easily applied both
to LDA and to RTM.
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MODELING CONTEXTUAL INFORMATION IN
NEURAL MODELS

In recent years, Neural Topic Models (Dieng et al., 2020; Zhao et al.,,
2021) have gained increasing popularity due to their flexibility and
scalability. Most of these neural models still use Bag-of-Words (BoW)
document representations as input. These representations, though,
disregard the syntactic and semantic information of the words in a
document, the two main linguistic avenues to coherent text. In other
words, the models based on bag of words represent the input in an in-
herently incoherent manner. Although the bag-of-words assumption
makes sense from a point of view of computational efficiency, it is
unrealistic.

These observations are not novel in the topic modeling community.
As Wallach (2006) clearly exemplify, the sentences “the department
chair couches offers” and “the chair department offers couches” are
represented by the same bag of words, but describe different topics.
Knowing the context of the word “chair” makes it easier to assign the
correct topic. In this Chapter, we will therefore investigate methods to
model the context information into neural topic models to overcome
the limitations of the bag-of-words assumption.

From the Bigram Topic Model (Wallach, 2006), which incorporates
the notion of word order into LDA, other works tried to relax the BoW
assumption or enrich the word representations in classical topic mod-
els. For example, in Chapter 4 we have seen how to incorporate rela-
tionships between word tokens and named-entities in the text. Other
approaches use word relationships derived from external knowledge
bases (Chen et al.,, 2013b; Yang et al., 2015¢c), or pre-trained word
embeddings (Das et al., 2015; Dieng et al., 2020; Nguyen et al., 2015;
Zhao et al., 2017). However, enriching the representation of the BoW
in neural topic models is still an underexplored path. There exists
work on incorporating external information, e.g., via word embed-
dings (Dieng et al., 2020; Gupta et al., 2019, 2020), in neural topic
models, but static word embeddings do not take into consideration
the context of the considered words.

Meanwhile, pre-trained language models are becoming ubiquitous
in Natural Language Processing, precisely for their ability to cap-
ture context and the relationships of the words in a sentence. Bidi-
rectional Encoder Representations from Transformers (BERT) (Devlin
et al., 2019), the most prominent architecture in this category, allows
us to extract pre-trained word and sentence representations. Their
use as input has advanced state-of-the-art performance across many
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tasks. Consequently, BERT representations are used in a diverse set of
NLP applications (Nozza et al., 2020; Rogers et al., 2020a). Also, topic
models could benefit from the advantages that come from the use of
contextualized representations.

In addition, pre-trained representations are becoming extremely
popular for their transfer learning capabilities. Multilingual and multi-
modal models (Bianchi et al., 2021a; Radford et al., 2021; Yang et al.,
2020) can provide representations that can be applied to a wide vari-
ety of tasks in a few or zero-shot fashion. For example, we may use
multilingual embeddings to address cross-lingual tasks (Hu et al,,
2020), including dependency parsing (Schuster et al., 2019), named
entity recognition (Rahimi et al., 2019), sentiment analysis (Barnes
et al, 2018), and question answering (Artetxe et al., 2020). Tradi-
tional topic methods are language-specific and cannot be used in
a transferable manner. They rely on a fixed vocabulary specific to
the training language. Therefore, currently available topic models suf-
fer from two limitations: (i) they cannot handle unknown words by
default, and (ii) they cannot easily be applied to other languages -
except the one in the training data - since the vocabulary would
not match. Training on several languages together, though, results
in a vocabulary so vast that it creates problems with parameter size,
search, and overfitting (Boyd-Graber et al., 2014). Traditional topic
modeling provides methods to extract meaningful word distributions
from “unstructured” text but requires language-specific bag-of-words
(BoW) representations (Boyd-Graber and Blei, 2009; Jagarlamudi and
Daumé, 2010).

A cross-lingual setup proves ideal for transfer learning: provided
that the gist of topics is the same across languages, we can learn this
gist on texts in one language and then apply it to others. This setup is
zero-shot learning: we can train a model on one language and test it
on several other languages to which the model had no access during
training. Being able to exploit these multilingual representations in
topic modeling can indeed open the field to new exciting directions.

RESEARCH QUESTIONS. This Chapter will address the following
research questions:

Q5.1 How can we model context information into neural topic mod-
els?

Q5.2 How can we exploit the cross-lingual capabilities of the multi-
lingual pre-trained representations for topic modeling?

This Chapter is organized as follows. In Section 5.1 we will present
the class of contextualized topic models, a family of topic models
that incorporate context information in the form of contextualized
document embeddings. In Section 5.2, we will describe in detail the
so-called Combined Topic Model, a contextualized topic model that
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combines the input BoW representation with the corresponding con-
textualized document representations. We will then propose a vari-
ant of contextualized topic models, i.e., Zero-shot Topic Model, in
Section 5.3. This model can exploit multilingual representations for
predicting the topics of documents in unseen languages.

5.1 MODELING CONTEXTUAL INFORMATION INTO NEURAL TOPIC

MODELS

We introduce the class of Contextualized Topic Model (CTM) to in-
vestigate the incorporation of contextualized representations in topic
models. This class is built around two main components: (i) the neu-
ral topic model ProdLDA (Srivastava and Sutton, 2017) and (ii) Sen-
tence BERT (SBERT) representations (Reimers and Gurevych, 2019).
However, the method is agnostic about the choice of the topic model
and the pre-trained representations, as long as the topic model ex-
tends an autoencoder and the pre-trained representations embed the
documents.

PRODUCT-OF-EXPERTS LDA (PRODLDA). CTMs extend ProdLDA
(introduced in Section 3.2). This neural variational framework trains
a neural inference network to directly map the BoW document rep-
resentation into a continuous latent representation. Then, a decoder
network reconstructs the BoW by generating its words from the latent
document representation. The framework explicitly approximates the
Dirichlet prior using Gaussian distributions, instead of using a Gaus-
sian prior like Neural Variational Document Models (Miao et al.,
2016). Moreover, the authors replace the word probabilities with a
weighted product of experts (Hinton, 2002). This modification allows
the topic model to obtain a drastic improvement in topic coherence.

SENTENCE BERT (SBERT). The other main component that char-
acterizes Contextualized Topic Models is the contextualized docu-
ment embeddings. We use the sentence embeddings derived from
SBERT (Reimers and Gurevych, 2019)", a recent extension of BERT
that allows the quick generation of sentence embeddings. In partic-
ular, SBERT is a modification of the pretrained BERT network that
uses siamese network structures to derive semantically meaningful
sentence embeddings that can be compared using cosine similarity.
SBERT adds a pooling operation to the output of BERT to derive a
fixed-sized sentence embedding: we obtain the resulting sentence em-
bedding from the computation of the mean of all the BERT’s output
vectors.

Although this approach allows us to quickly obtain document em-
beddings, it has one limitation: if a document is longer than SBERT’s

1 https://github.com/UKPLab/sentence-transformers
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sentence-length limit, the rest of the document will be lost. However,
we will see later that encoding only the first tokens is sufficient to
enrich the document BoW representation and obtain more coherent
topics.

In the following sections, we will detail the two variants of Contex-
tualized Topic Models we have defined: the Combined Topic Model
(Section 5.2) and the Zero-Shot Topic Model (Section 5.3). We release
Contextualized Topic Models as a Python library.?

5.2 COMBINED TOPIC MODELS

The first variant of Contextualized Topic Models that we propose
is the so-called Combined Topic Models, which combines the input
BoW document representations with the corresponding contextual-
ized representations by concatenating the two representations. The
document representations are projected through a hidden layer with
the same dimensionality as the vocabulary size, concatenated with
the BoW representation. The rest of the architecture remains invari-
ant. The model will then learn to reconstruct the BoW representation
given the topical representation (sampled representation) of the doc-
ument. Figure 5.1 sketches the architecture of our model.

By concatenating the two representations, we encourage the docu-
ments with similar contextualized representations to be close to each
other, and therefore generate better topical representations.

5.2.1 Experimental Setting

Our objective is to show that the CombinedTM can improve the qual-
ity of the topics, thanks to the incorporation of contextualized repre-
sentations. In the following, we will present the experimental setting
of our experiments.

Dataset Docs Vocabulary Avg (Std) Document Length
20Newsgroups | 18,173 2,000 50.21 (140.30)
Wiki2oK 20,000 2,000 15.63 (4.59)
StackOverflow | 16,408 2,303 5.02 (1.76)
Tweets2011 2,471 5,098 8.56 (3.17)
GoogleNews 11,108 8,110 6.23 (1.86)

Table 5.1: Statistics of the datasets used.

2 The library is available at the following link: https://github.com/MilaNLProc/

contextualized-topic-models
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Figure 5.1: High-level schema of the architecture of CombinedTM.

DATASETS. We evaluate the models on the following five datasets:
20NewsGroups3, Wiki2oK (a collection of 20,000 English Wikipedia
abstracts), Tweets20114, Google News (Qiang et al., 2019), and the
StackOverflow dataset (Qiang et al., 2019). The latter three are al-
ready pre-processed. We use a similar pipeline for 20NewsGroups
and Wiki20K: removing digits, punctuation, English stop-words, and
infrequent words. We derive SBERT document representations from
unpreprocessed text for Wiki2ok and 20NewsGroups. For the others,
we use the pre-processed text.> See Table 5.1 for dataset statistics. The
sentence encoding model used is the pre-trained RoBERTa model fine-
tuned on SNLI (Bowman et al., 2015), MNLI (Williams et al., 2018),
and the STSb (Cer et al., 2017) dataset.®

METRICS. We evaluate each model on three different metrics: two
for topic coherence (NPMI) and an external word embedding-based
topic coherence (WE-TC, as defined in Section 3.4.1) and the Inversed
Rank-Biased Overlap metric (IRBO, Section 3.4.1) to quantify the di-
versity of the topic solutions.

3 http://qwone.com/~jason/20Newsgroups/

4 https://trec.nist.gov/data/tweets/

5 This can be sub-optimal, but many datasets in the literature are already pre-
processed.

6 stsb-roberta-large
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e NPMI is computed on the original corpus. As (Ding et al., 2018)
pointed out, though, topic coherence computed on the original
data is inherently limited. Coherence computed on an external
corpus, on the other hand, correlates much more to human judg-
ment, but it may be expensive to estimate.

¢ WE-TC provides an additional measure of how similar the words
in a topic are. We follow (Ding et al., 2018) and first compute the
average pairwise cosine similarity of the word embeddings of
the top-10 words in a topic, using (Mikolov et al., 2013) embed-
dings. Then, we compute the overall average of those values for
all the topics. We can consider this measure as an external topic
coherence, but it is more efficient to compute than Normalized
Pointwise Mutual Information on an external corpus.

¢ IRBO evaluates how diverse the topics generated by a single
model are. We define IRBO as the reciprocal of the standard
RBO (Terragni et al., 2021b; Webber et al., 2010). RBO compares
the 10-top words of two topics. It allows disjointedness between
the lists of topics (i.e., two topics can have different words in
them) and uses weighted ranking. Le., two lists that share some
of the same words, albeit at different rankings, are penalized
less than two lists that share the same words at the highest
ranks. IRBO is o for identical topics and 1 for completely dif-
ferent topics.

All the metrics are computed on the 10-most likely words of the top-
ics.

MODELS. Our main objective is to show that contextual informa-

tion increases coherence. To show this, we compare our approach

to ProdLDA (Srivastava and Sutton, 2017, the model we extend)?,

and the following models: (ii) Neural Variational Document Model

(NVDM) (Miao et al., 2016); (iii) the Embedded Topic Model (ETM) (Di-
eng et al., 2020), MetaLDA (MLDA) (Zhao et al., 2017) and (iv) LDA.

For a detailed descriptions of the neural models, we refer to Sec-
tion 3.2.

HYPERPARAMETERS CONFIGURATIONS.  We train all models with
similar hyperparameter configurations. The inference network for both
our method and ProdLDA consists of one hidden layer and 100-
dimension of softplus units, which converts the input into embed-
dings. This final representation is again passed through a hidden
layer before the variational inference process. We follow (Srivastava
and Sutton, 2017) for the choice of the parameters. The priors over the
topic and document distributions are learnable parameters. For LDA,

7 We use the implementation of (Carrow, 2018).
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the Dirichlet priors are estimated via Expectation-Maximization. In
detail:

* ProdLDA: We use the implementation made available by Car-
row (2018) since it is the most recent and with the most up-
dated packages (e.g., one of the latest versions of PyTorch). We
run 100 epochs of the model. We use ADAM optimizer. The
inference network is composed of a single hidden layer and
100-dimension of softplus units. The priors over the topic and
document distributions are learnable parameters. Momentum
is set to 0.99, the learning rate is set to 0.002, and we apply 20%
of drop-out to the hidden document representation. The batch
size is equal to 200. More details related to the architecture can
be found in the original work (Srivastava and Sutton, 2017).

* Combined TM: The model and hyperparameters are the same
used for ProdLDA with the difference that we also use SBERT
features in combination with the BoW: we take the SBERT em-
beddings, apply a (learnable) function/dense layer R'024 —
RIVI'and concatenate the representation to the BoW. We run 100
epochs of the model.

* LDA: We use Gensim’s® implementation of this model. The hy-
perparameters « and {3, controlling the document-topic and
word-topic distribution respectively, are estimated from the data
during training.

e ETM: We use the implementation available at https://github.
com/adjidieng/ETM with default hyperparameters.

* MetaLDA: We use the authors” implementation available at https:
//github.com/ethanhezhao/MetalDA. As suggested, we use the
Glove embeddings to initialize the models.? The parameters «
and {3 have been set to 0.1 and 0.01 respectively.

* NVDM: We use the implementation available at https://github.
com/ysmiao/nvdm with default hyperparameters, but using two
alternating epochs for encoder and decoder.

5.2.2  Results

We divide our results into two parts: we first describe the results for
our quantitative evaluation, and we then explore the effect on the per-
formance when we use two different contextualized representations.

8 https://radimrehurek.com/gensim/models/ldamodel.html
9 We used the s5o-dimensional embeddings from https://nlp.stanford.edu/
projects/glove/.
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Model | NPMI WE-TC IRBO | NPMI WE-TC IRBO

Wikizok ‘ ‘ 20NewsGroup

Ours 0.1823 0.1980 0.9950 | 0.1025 0.1715 0.9917
ProdLDA | 0.1397 0.1799 0.9901 || 0.0632  0.1554 0.9931
MLDA 0.1443  0.2110 0.9843 || 0.1300 0.2210 0.9808
NVDM -0.2038  0.0797 0.9604 || -0.1720  0.0839 0.9805

ETM 0.0740  0.1948 0.8632 || 0.0766  0.2539 0.8642

LDA -0.0481  0.1333 0.9931 || 0.0173  0.1627 0.9897
GoogleNews ‘ ‘ Tweets2011

Ours 0.1207  0.1325 0.9965 || 0.1008  0.1493 0.9901

ProdLDA | o.0110 0.1218 0.9902 || 0.0612 0.1327 0.9847
MLDA 0.0849 0.1219 0.9959 || 0.0122  0.1272 0.9956
NVDM -0.3767  0.1067 0.9648 || -0.5105  0.0797 0.9751

ETM -0.2770  0.1175 0.4700 || -0.3613  0.1166 0.4335

LDA -0.3250 0.0969 0.9774 || -0.3227  0.1025 0.8169
StackOverflow ‘ ‘

Ours 0.0280 0.1563 0.9805

ProdLDA | -0.0394 0.1370 0.9914
MLDA 0.0136  0.1450 0.9822
NVDM -0.4836  0.0985 0.8903
ETM -0.4132  0.1598 0.4788

LDA -0.3207  0.1063 0.8947

Table 5.2: Averaged results over 5 numbers of topics. Best results are marked
in bold.

QUANTITATIVE EVALUATION. We compute all the metrics for 25,
50, 75, 100, and 150 topics. We average results for each metric over
30 runs of each model (see Table 5.2). As a general remark, our Com-
binedTM provides the most coherent topics across all corpora and
topic settings, even maintaining a competitive diversity of the topics.
This result suggests that the incorporation of contextualized represen-
tations can improve a topic model’s performance.

LDA and NVDM obtain low coherence. This result has also also
been confirmed by (Srivastava and Sutton, 2017). ETM shows good
external coherence (WE-TC), especially in 20NewsGroups and Stack-
Overflow. However, it fails at obtaining a good NPMI coherence for
short texts. Moreover, IRBO shows that the topics are very similar to
one another. A manual inspection of the topics confirmed this prob-
lem. MetaLDA is the most competitive of the models we used for com-
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WikizoK ‘ 25 50 75 100 150
Ours 017* o0.19* o0.18% o019%* o0.17%*
MLDA 0.15 0.15 0.14 0.14 0.13
StackOverflow

Ours 0.05 0.03* o0.02* o0.02* 0.02%
MLDA 0.05* o0.02 0.00 -0.02  0.00
GoogleNews ‘

Ours -0.03* o0.10* o0.15% o0.18% o0.19%
MLDA -0.06 0.07 0.13 0.16 0.14
Tweetszo11 ‘

Ours 0.05% o.10* o.a11* o012% o0.12%
MLDA 0.00 0.05 0.06 0.04 -0.07
20NewsGroup ‘

Ours 0.12 0.11 0.10 0.09 0.09
MLDA 013* o013* o013* o013* o.12%

Table 5.3: Comparison of NPMI between CombinedITM (ours) and Met-
aLDA over various choices of topics. Each result averaged over
30 runs. * indicates statistical significance of the results (t-test,
p-value < 0.05).

parison. This may be due to the incorporation of pre-trained word
embeddings into MetaLDA. Our model provides very competitive re-
sults, and the second strongest model appears to be MetaLDA. For
this reason, we provide a detailed comparison of NPMI in Table 5.3,
where we show the average coherence for each number of topics; we
show that on 4 datasets over 5 our model provides the best results,
but still keeps a very competitive score on 20NewsGroup, where Met-
aLDA is best.

USING DIFFERENT CONTEXTUALIZED REPRESENTATIONS. Con-
textualized representations can be generated from different models
and some representations might be better than others. Indeed, one
question left to answer is the impact of the specific contextualized
model on the topic modeling task. To answer this question we re-run
all the experiments with CombinedTM but we used different contex-
tualized sentence embedding methods as input to the model.

We compare the performance of CombinedTM using two different
models for embedding the contextualized representations found in
the SBERT repository:*° stsb-roberta-large (Ours-R), as employed in the

10 https://github.com/UKPLab/sentence-transformers
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previous experimental setting, and using bert-base-nli-means (Ours-B).
The latter is derived from a BERT model fine-tuned on NLI data. Ta-
ble 5.4 shows the coherence of the two approaches on all the datasets
(we averaged all results). In these experiments, RoBERTa fine-tuned
on the STSb dataset has a strong impact on the increase of the coher-
ence. This result suggests that including novel and better contextual-
ized embeddings can further improve a topic model’s performance.

Wiki2zoK SO GoogleNews Tweetszo1x 20NewsGroup

Ours-R 0.18 0.03 0.12 0.10 0.10
Ours-B 0.18 0.02 0.08 0.06 0.07

Table 5.4: NPMI performance of CombinedTM using different contextual-
ized encoders.

5.3 ZERO-SHOT CONTEXTUALIZED TOPIC MODELS FOR CROSS-
LINGUAL PREDICTIONS

In Section 5.2, we have combined the contextualized representations
with the input BoW representation of a neural topic model. One may
wonder what happens if we instead replace the input BoW with the
contextualized embeddings.

It is true that traditional neural topic models, such as ProdLDA (Sri-
vastava and Sutton, 2017) and NVMD (Miao et al., 2016), take in input
the document BoW representations, which provide valuable symbolic
information; however, this information’s structure is lost after the first
hidden layer in any neural architecture. We, therefore, hypothesize
that contextual information can replace the input BoW representa-
tion.

Moreover, instead of using monolingual pre-trained representations
as in Section 5.2, we can use multilingual representations. This addi-
tional change allows us to address the two limitations mentioned in
the introduction of the chapter. In particular, (i) our approach solves
the problem of dealing with unseen words at test time since we do
not need them to have a BoW representation; moreover, (ii) the model
infers topics on unseen documents in languages other than the one
in the training data. The inferred topics consist of tokens from the
training language and can be applied to any supported test language.
In Figure 5.2, we sketch the architecture of our contextualized neu-
ral topic model. The final reconstructed BoW layer is still a component
of our model: the BoW representation is necessary for the model’s
training to obtain the topic indicators (i.e., the most likely words rep-
resenting a topic).

We refer to this model as ZeroShotTM. This model can be applied
to new languages after training is complete and does not require
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Figure 5.2: High-level schema of the architecture of ZeroShotTM.

external resources, alignment, or other conditions. Nonetheless, the
flexibility of the input means our model will benefit from any future
improvement of language modeling techniques. The multilingual ca-
pabilities of ZeroShotTM are extremely useful in low-resource set-
tings in which there is little data available for the new languages. Be-
cause multilingual contextualized representations exist for multiple
languages, it allows zero-shot modeling in a cross-lingual scenario. In-
deed, ZeroShotTM is language-independent: given a contextualized
representation of a new language as input,'* it can predict the topic
distribution of the document. The predicted topic descriptors, though,
will be from the training language.

5.3.1 Experimental Setting

Our experiments evaluate two main hypotheses: (i) we can define a
topic model that does not rely on the BoW input but instead uses con-
textual information; (ii) the model can tackle zero-shot cross-lingual
topic modeling.

MODELS. Regarding the first setting, our main objective is to show
that even if we remove the input BoW, we can keep a stable coher-
ence. To show this, we compare our approach with CombinedTM (the
model previously defined), ProdLDA (Srivastava and Sutton, 2017),
and LDA.

11 As long as a multilingual model - like multilingual BERT - covers it.
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DATASETS. We use datasets collected from English Wikipedia ab-
stracts from DBpedia.” The first dataset (W1) contains 20,000 ran-
domly sampled abstracts. The second dataset (W2) contains 100,000
English documents. We use 99,700 documents as training and con-
sider the remaining 300 documents as the test set. We collect the 300
respective instances in Portuguese, Italian, French, and German. This
collection creates a test set of comparable documents, i.e., documents
that refer to the same entity in Wikipedia, but in different languages.

We extract only the first 200 tokens of each abstract to reduce the
length limit’s effects in the tokenization process. In particular, we use
the SBERT embeddings using a multilingual model,’3 on this unpre-
processed text. We then remove English stop-words and use the most
frequent remaining 2,000 words to create the English vocabulary for
BoW model comparisons.

METRICS. Regarding the first experimental setting, we use NPMI
coherence (Lau et al., 2014b) to validate the model. While regarding
the quantitative evaluation of the cross-lingual experiments, we de-
fine the following metrics.

We expect the topic distributions over a set of comparable docu-
ments (e.g., in English and Portuguese) to be similar to each other.
We compare the topic distributions of each abstract in a test language
with the topic distribution of the respective abstract in English, which
is the training language. Note that the English test document is also
unseen, i.e., the training data does not include it. We evaluate our
model on three different metrics. The first metric is matches, i.e., the
percentage of times the predicted topic for the non-English test docu-
ment is the same as for the respective test document in English. The
higher the scores, the better.

To also account for similar but not exactly equal topic predictions,
we compute the centroid embeddings of the five words describing
the predicted topic for both English and non-English documents. Then
we compute the cosine similarity between those two centroids (CD).

Finally, to capture the distributional similarity, we also compute
the KL divergence between the predicted topic distribution on the test
document and the same test document in English. Here, lower scores
are better, indicating that the distributions do not differ by much.

HYPERPARAMETER SETTING.

e ProdLDA: As for the previous experiments, we use the imple-
mentation made available by (Carrow, 2018). We train the model
for 100 epochs. We use ADAM optimizer (with a learning rate
equal to 2e-3). The inference network is composed of a single

https://wiki.dbpedia.org/downloads-2016-10
We use the distiluse-base-multilingual-cased embeddings for this experiment available
on the authors’ repository.
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hidden layer and 100-dimension of softplus units. The priors
over the topic and document distributions are learnable param-
eters. Momentum is set to 0.99, the learning rate is set to 0.002,
and we apply 20% of drop-out to the hidden document repre-
sentation. The batch size is equal to 200. More details related to
the architecture can be found in the original work (Srivastava
and Sutton, 2017).

e ZeroShot TM: The model and the hyperparameters are the same
for ProdLDA. The model is trained for 100 epochs. We use
ADAM optimizer.

¢ Combined TM: The model and the hyperparameters are the
same used for ProdLDA. The model is trained for 100 epochs.
We use ADAM optimizer.

* LDA: We use Gensim’s' implementation of this model. The
hyperparameters « and 3, controlling the document-topic and
word-topic distribution respectively, are estimated from the data
during training.

5.3.2 Results on Hypothesis 1: Topic Quality

First, we want to check if ZeroShotTM maintains comparable perfor-
mance to other topic models; if this is true, we can then explore its
performance in a cross-lingual setting. Since we use only English text,
in this setting we use English representations.*>

Model NPMI (50) NPMI (100)
ZeroShotTM 0.1632 0.1381
Combined TM 0.1544 0.1409*
ProdLDA 0.1658 0.1285
LDA -0.0246 -0.0757

Table 5.5: NPMI Coherences on W1 dataset. * denotes the statistically signif-
icant results (t-test).

We compute the topic coherence (Lau et al., 2014a) via NPMI for
50 and 100 topics averaging models” results over 30 runs for all the
considered models. We report the results in Table 5.5. ZeroShotTM
obtains comparable results to CombinedTM and ProdLDA in this set-
ting. Contextualized embeddings can replace BoW input representa-
tions without loss of coherence.

14 https://radimrehurek.com/gensim/models/ldamodel.html
15 We use the bert-base-nli-mean-tokens model.
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5.3.3 Results on Hypothesis 2: Zero-shot Cross-Lingual Topic Modeling.

ZeroShotTM can be used for zero-shot cross-lingual topic modeling.
We evaluate multilingual topic predictions on the multilingual ab-
stracts in W2. We use SBERT to generate multilingual embeddings as
the input of the model.

Lang Matz2st KL25] CD251 | Matsof KLso|l CDsot
IT 75.67 0.16 0.84 62.00 0.21 0.75
FR 79.00 0.14 0.86 63.33 0.19 0.77
PT 78.00 0.14 0.85 68.00 0.19 0.79
DE 79.33 0.15 0.85 64.33 0.20 0.77

Lang Avg ‘ 78.00 0.15 0.85 ‘ 64.41 0.20 0.77

Ori Avg 76.00 0.15 0.84 69.00 0.19 0.79

Uni 4.00 0.75 — 2.00 0.85 —

Table 5.6: Match, KL, and centroid similarity for 25 and 50 topics on various
languages on W2.

Quantitative Evaluation

Since the predicted document-topic distribution is subject to a stochas-
tic sampling process, we average it over 100 samples to obtain a better
estimate.

AUTOMATIC EVALUATION  We use two baselines: the first one (Ori)
consists of performing topic modeling on documents translated into
English via DeepL.*® Let us notice that, while this is an easily accessi-
ble baseline, automatic translation may be expensive and may intro-
duce bias in the representations (Hovy et al., 2020). We compare the
predicted topics of each translated document to the ones predicted
for the original English document (as done above). The second base-
line is a uniform distribution (Uni): we compute all the metrics over
a uniform distribution (this baseline gives a lower bound).

Table 5.6 shows the evaluation results of our model in the zero-
shot context. Note that because we trained on English data, the topic
descriptors are in English. Topic predictions are significantly better
than the uniform baselines: more than 70% of the times, the predicted
topic on the test set matches the topic of the same document in En-
glish. The CD similarity suggests that even when there is no match,
the predicted topic on the unseen language is at least similar to the
one on the English testing data. Simultaneously, the predictions for

16 https://www.deepl.com/
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the contextualized model are in line with the ones obtained using the
translations (Ori Avg), showing that our model is capable of finding
good topics for documents in unseen languages without the need for
translation.

HUMAN EVALUATION. We rated the predicted topics for 300 test
documents in five languages (thus, 1500 docs including English) on
an ordinal scale from o0-3. A o rate means that the predicted topic is
wrong, a 1 rate means the topic is somewhat related, a 2 rate means
the topic is good, and a 3 rate means the topic is entirely associated
with the considered document.

Language | Average Topic Quality

English 2.35
[talian 2.29
French 2.22
Portuguese 2.26
German 2.19
Average 2.26

Table 5.7: Average topic quality (out of 3).

Table 5.7 shows the results per language. We evaluate the inter-rater
reliability using Gwet AC1 with ordinal weighting (Gwet, 2014). The
resulting value of 0.88 indicates consistent scoring.

Qualitative Evaluation

In Table 5.8, we show some examples of topic predictions on test
languages. Our model predicts the main topic for all languages, even
though they were unseen during training.

The predicted topic is generally consistent with the text. Le., the
topics are easily interpretable and give the user a coherent impres-
sion. In some circumstances, noise biases the results: dates in the ab-
stract tend to make the model predict a topic about time. Another
interesting case is the abstract of the artist Joan Brossa, who was both
a poet and a graphic designer. In the English and Italian abstract,
the model has discovered a topic related to writing. In contrast, in
the Portuguese abstract, the model has found a topic related to art,
which is still meaningful.
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5.4 SUMMARY OF THIS CHAPTER

In the following, we give a short summary of this chapter. In the
introduction of the Chapter, we started with the following research
questions:

Q5.1 How can we model context information into neural topic mod-
els?

Q5.2 How can we exploit the cross-lingual capabilities of the multi-
lingual pre-trained representations for topic modeling?

To answer Question Q5.1, we have defined the class of Contextual-
ized topic models, a family of models that incorporates context infor-
mation in the form of pre-trained contextualized embeddings. These
models guarantee an improvement in the coherence with respect to
state-of-the-art topic models. Moreover, results that compare different
types of contextualized representations suggest that including novel
and better contextualized embeddings can further improve a topic
model’s performance.

Concerning question Qs.2, we have shown that ZeroShotTM, a com-
ponent of the family of CTMs that replaces the input BoW represen-
tations with contextualized representations, can exploit multilingual
embeddings to address the task of cross-lingual topic modeling. The
model can indeed be trained on a corpus in a language and then can
predict the topics of documents in unseen languages.

These results pave the way to different research directions. This
model can be applied in low-resource settings, when we aim to pre-
dict the topics of a set of documents but the documents in the con-
sidered language are very few. The proposed model is also language-
independent: we can obtain the topics of documents without the need
to know or understand the target language. In addition, our results
suggest us that we can exploit the transfer learning capabilities of
document embeddings to other contexts: for example, we could use
multimodal representations, e.g. Image-Text representations (Radford
et al., 2021), to learn topics of a corpus of documents and zero-shot
predict the topics of instances of another modality (e.g. images).
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Lang | Sentence ‘ Predicted Topic

EN Blackmore’s Night is a British/Amer- | rock, band, bass,
ican traditional folk rock duo [...] formed

IT I Blackmore’s Night sono la band fon- | rock, band, bass,
datrice del renaissance rock [...] formed

PT Blackmore’s Night é uma banda de | rock, band, bass,
folk rock de estilo renascentista [...] formed

EN Langton’s ant is a two-dimensional | mathematics, theory,
Turing machine with [...] space, numbers

FR On nomme fourmi de Langton un au- | mathematics, theory,
tomate cellulaire [...] space, numbers

DE Die Ameise ist eine Turingmaschine | mathematics, theory,
mit einem zweidimensionalen [...] space, numbers

EN The Journal of Organic Chemistry, col- | journal, published,
loquially known as JOC or [...] articles, editor

IT Journal of Organic Chemistry & una | journal, published,
rivista accademica [...] articles, editor

PT Journal of Organic Chemistry é uma | journal, published,
publicagéo cientifica [...] articles, editor

EN The Pirate Party Germany (German: | political, movement,
Piratenpartei Deutschland) [...] party, alliance

PT Piratenpartei Deutschland (Partido Pi- | political, movement,
rata da Alemanha, [...] party, alliance

DE Die  Piratenpartei =~ Deutschland | political, movement,
(Kurzbezeichnung Piraten, [...] party, alliance

EN Joan Brossa [...] was a Catalan poet, | book, french, novel,
playwright, graphic designer [...] written

1T Fu lispiratore e uno dei fondatori | book, french, novel,
della rivista "Dau al Set"[...] written

PT Joan Brossa i Cuervo [...] foi um poeta, | painting, art, painter,

dramaturgo, artista pldstico [...]

works

Table 5.8: Examples of zero-shot cross-lingual topic classification in

various languages with ZeroShotTM.
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TOPIC MODELS” EVALUATION






HYPERPARAMETER OPTIMIZATION FOR THE
COMPARISON OF TOPIC MODELS

Although topic models are used in a vast range of applications, from
text exploratory purposes to information retrieval tasks (Boyd-Graber
et al., 2017), most of the investigations disregard the main elements
that influence the results generated by the models and, in particu-
lar, what is their effect on the performance. Several works explore
topic modeling over a range of different models, topics, and mea-
sures, but usually focus on classical topic models (Greene et al., 2014;
Stevens et al., 2012), e.g. Latent Dirichlet Allocation (Blei et al., 2003b),
and solely on a single evaluation measure (O’Callaghan et al., 2015;
Stevens et al., 2012). Doan and Hoang (2021) recently made an effort
to benchmark neural topic models, however, they seem to disregard
the importance of the hyperparameter selection.

In fact, the evaluations of topic models are usually limited to the
comparison of models whose hyperparameters are fixed. Yet, the hy-
perparameters that control the models can have a great impact on
their performance. Therefore, fixing them prevents researchers from
discovering the best topic model on a given dataset. In the latest years,
Neural Topic Models (NTM) (Dieng et al., 2020; Zhao et al., 2021) have
gained popularity. The problem of finding the best hyperparameter
configuration has become even more compelling, since topic models
based on neural networks are usually controlled by a high number
of hyperparameters. It is then critical to carefully select the hyper-
parameters by adopting a search strategy that is computationally
tractable and effective from a quantitative and qualitative perspec-
tive.

To this end, Bayesian Optimization (Archetti and Candelieri, 2019,
BO) seems to be an excellent solution to discover an optimal set of hy-
perparameters for a topic model. This method for finding the global
optimum of expensive objective functions assumes that the function
is unknown (also called "black-box"). We can indeed express a model
just in terms of its inputs, hyperparameters and output, and this al-
lows us to use Bayesian Optimization for any type of hyperparame-
ters (binary, categoricals, or continuous) and objective function.

In addition, exploring different hyperparameter configurations al-
lows us to empirically investigate the relationships among the dif-
ferent metrics, hyperparameters, models and datasets. For example,
we know that the Dirichlet prior over the document-topic distribu-
tion in LDA controls the sparsity of the distribution. Tackling this
hyperparameter will lead to document representations dominated by
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a few high-peaked topics or otherwise dominated by many topics
but less likely. This can have an impact on the performance of down-
stream tasks which use the topical representations of the documents
as features. We also expect that varying the value of a hyperparame-
ter will have different effects on datasets characterized by short texts
or long texts, and it will also have an effect on other performance
metrics. For example, a topic model that produces good document
representations with a given hyperparameter value may not be able
to produce coherent and diverse topics simultaneously.

RESEARCH QUESTIONS. In this chapter, we will therefore address
the following research questions:

Q6.1 Can we determine if a topic model can guarantee an optimal
trade-off between different performance measures?

Q6.2 Can a performance measure imply a competing or correlated
target for other performance measures?

This Chapter is therefore organized as follows; in Section 6.1 we
present how we can apply Bayesian Optimization to solve the prob-
lem of hyperparameter tuning in topic models. In Section 6.2 we
present the comparative framework OCTIS 1.0. We will then show
different directions of the use of Bayesian Optimization through a
comparative analysis of classical topic models in Section 6.3 and of
neural topic models in Section 6.4. Finally, we will conclude the Chap-
ter with some remarks and future directions in Section 6.5.

6.1 BAYESIAN OPTIMIZATION FOR TOPIC MODELING

The hyperparameters are fundamental ingredients in topic models.
Considering that the hyperparameter configuration of a topic model
can have a strong effect not only on the prior distribution of the pa-
rameters in the model, but also on their posterior distribution (George
et al., 2017), it is important to choose them carefully.

Bayesian Optimization is an excellent fit for our requirements. BO
is suitable for expensive and noisy objective functions (such as topic
models). Moreover, BO treats the objective function as a black box,
a system or function solely viewed in terms of its inputs and out-
puts and whose internal workings are invisible. In the case of topic
models, the black box takes as input a dataset and a set of hyperpa-
rameters values and returns the score of the chosen objective function
(e.g. topic coherence), computed on the output of the topic model (i.e.
the top-t topic words the document-topic distributions, and the topic-
word distribution). This means that we do not have to care of the
shape or features of the objective function, but instead, a black-box
approach generalizes to different objective functions.
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Figure 6.1: Illustration of the Bayesian Optimization process applied to topic
modeling.

Figure 6.1 depicts the process of Bayesian Optimization applied to
topic models. As mentioned before, the topic model takes as input
the document corpus and a proposed hyperparameter configuration,
and it returns the topics. This output will be used to compute the
score of the chosen objective function and the score will be used from
BO (along with all the past evaluation scores) to propose the next
hyperparameter configuration to evaluate.

The reader can refer to the pseudo-code reported in Table 2.1 for
a reference of the BO algorithm, and we refer to Section 2.5.3 for
additional details on Bayesian Optimization.

6.2 OCTIS: OPTIMIZING AND COMPARING TOPIC MODELS IS SIM-
PLE!

In this section we present OCTIS (Optimizing and Comparing Topic
models Is Simple)®, a unified and open-source evaluation framework
for training, analyzing, and comparing topic models, over several
datasets and evaluation metrics. To guarantee a fair comparison among
the models, we find the optimal hyperparameter configuration of the
models according to a Bayesian Optimization (BO) strategy, as ex-
plained in Section 6.1.

1 A video demonstration is also available at https://youtu.be/nPmiWBFFJS8E.
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6.2.1  System design and architecture

The proposed framework follows an object-oriented paradigm, pro-
viding all the tools for running a whole topic modeling pipeline. The
main functionalities of the proposed OCTIS are related to dataset
pre-processing, training topic models, estimating evaluation metrics,
hyperparameter optimization, and interactive web dashboard visual-
ization. Figure 6.2 summarizes the workflow involving the first four
modules (the dashboard interacts with all of them).

Raw Dataset

v

Preprocessing Hyper-parameter

Optimization
| Hyperparameter ?
Pre-processed Configuration Score
datasets /
Topic Modeling - Topic Model Evaluation
Output Metrics

Figure 6.2: Workflow of the OCTIS framework.

The framework can be used both as a python library and as a dash-
board. The python library offers more advanced functionalities than
the ones available in the dashboard. The modules that comprise the
OCTIS framework are detailed in the following sections.

DATASETS AND PRE-PROCESSING The first step of the topic mod-
eling pipeline is the pre-processing of the input dataset. OCTIS in-
cludes the following pre-processing utilities:

¢ reducing the text to lowercase;
* punctuation removal;

e lemmatization;

* stop-words removal;

¢ removal of unfrequent and most frequent words (according to
a specified word frequency or document frequency threshold);

¢ removal of documents with few words (according to a specified
word frequency or document frequency threshold).

These utilities include the most common techniques for pre-processing
text for topic modeling. However, some of these features may not
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be appropriate for specific domains and languages, e.g. requiring
language-specific or domain-specific stop-words.

OCTIS currently provides the following pre-processed datasets: 20
NewsGroups ?, M1o (Lim and Buntine, 2015), DBLP 3 and BBC News
(Greene and Cunningham, 2006). Moreover, we build and include two
Italian datasets from the Italian version of the Europarl dataset* and
from the Italian abstracts of DBPedia.> In particular, to build these
datasets we randomly sample 5000 documents from Europarl and we
randomly sample 1000 Italian abstracts for 5 DBpedia types (event,
organization, place, person, work), for a total of 5000 abstracts.

We report the statistics of the datasets in Table 6.1. Following the
original paper, we split the datasets into three partitions: training
(75%), validation (15%), and testing (15%).

Dataset Domain Language # Docs Avg. (Std.) # Unique
# words in docs  words

Forum .

20 Newsgroups English 16309 48.02 1612
posts

BBC News English 2225 120.12 2049

News

Mio Scientific English 8355 5.91 1696
papers

DBLP Scientific English 54595 5.4 1513
papers

DBPedia Abstracts ITtalian 4251 5.48 (11.76) 2047

Europarl Proceedings Italian 3616 20.63 (19.33) 2000

Table 6.1: Statistics of the pre-processed datasets.

The datasets already available in OCTIS, and accessible through
the web dashboard, have been pre-processed according to the length
and features of the documents. In particular, we removed the punc-
tuation, we lemmatized the text and filtered out the stop-words. We
removed the words that have a word frequency less than 0.5% for
20 Newsgroups and BBC News and less than 0.05% for DBLP and
M1io. We removed the words with a document frequency higher than
the 50% and less than the 0.1% for Europarl and 0.2% for DBPedia.
Subsequently, we removed the documents with less than 5 words for
20 Newsgroups, BBC News, Europarl and DBpedia and less than 3
words for the other datasets (M10 and DBLP).

Although OCTIS already provides some datasets, a user can upload
and pre-process any dataset using the python library according to
their needs.

2 http://people.csail.mit.edu/jrennie/20Newsgroups/

3 https://github.com/shiruipan/TriDNR/tree/master/data
4 https://www.statmt.org/europarl/

5 https://www.dbpedia.org/resources/ontology/
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toric MODELS OCTIS integrates both classical topic models and
neural topic models. In particular, the following traditional and neu-
ral approaches are available to be trained, optimized, and compared
(the models that are available in the web dashboard are marked with
*):

e Latent Dirichlet Allocation* (Blei et al., 2003b, LDA);®

* Non-negative Matrix Factorization* (Lee and Seung, 2000, NMF) ;6
* Latent Semantic Analysis* (Hofmann, 1999, LSI);®

e Hierarchical Dirichlet Process (Teh et al., 2004, HDP);®

e Neural LDA* (Srivastava and Sutton, 2017);”

¢ Product-of-Experts LDA* (Srivastava and Sutton, 2017, ProdLDA) ;7
¢ Embedded Topic Models* (Dieng et al., 2020, ETM);8

¢ Contextualized Topic Models (Bianchi et al., 2021b,c, CTM).”

Moreover, we defined a standard interface for allowing a user to in-
tegrate their topic model’s implementation. A topic model viewed as
a black box: it takes as input a dataset and a set of hyperparameters
values and returns the top-t topic words, the document-topic distri-
butions, and the topic-word distribution in a specified format.

EVALUATION METRICS. The proposed framework provides sev-
eral evaluation metrics. A metric can be used as the objective targeted
by a Bayesian Optimization strategy, or to monitor the behavior of a
topic model while the model is optimized on a different objective.
The performance of a topic model can be evaluated by investigating
different aspects, according to an evaluation metrics. The available
evaluation metrics include topic coherence (6), topic significance (3),
topic diversity (6), topic similarity (7) and classification metrics (4),
for a total of 26 evaluation metrics. In Appendix B, we propose novel
topic similarity measures based on word embeddings.

HYPERPARAMETER OPTIMIZATION. OCTIS uses Bayesian Opti-
mization to tune the hyperparameters of the topic models. If any of
the available hyperparameters is selected to be optimized for a given
evaluation metric, BO explores the search space to determine the opti-
mal settings. Since the performance estimated by the evaluation met-
rics can be affected by noise, the objective function is computed as the
median of a given number of model runs (i.e., topic models run with

6 https://radimrehurek.com/gensim/

7 https://github.com/estebandito22/PyTorchAVITM

8 https://github.com/adjidieng/ETM

9 https://github.com/MilaNLProc/contextualized-topic-models
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Features ‘ OCTIS Gensim STTM PyCARET MALLET TOMODAPI

Pre- v v v Vv v

processing

tools

Pre-processed v 4 Vv v 4

datasets

Classical topic v Vv Vv v v Vv

models

Neural topic Vv Vv

models

Coherence Vv Vv Vv Vv Vv

metrics

Diversity met- v

rics

Significance Vv

metrics

Classification 4 Vv V4 V4 Vv

metrics

Hyper- BO MLE grid-search MLE

parameters

tuning

Usage script, script  command line script command line script,
web dashboard API

Programming Python Python Java Python Java Python

Language

Table 6.2: Comparison between OCTIS and the most well-known topic mod-
eling libraries.

the same hyperparameter configuration) computed for the selected
evaluation metric.

We integrated into OCTIS most of the BO algorithms of the Scikit-
Optimize library (Head et al., 2018) to provide a robust and efficient
BO implementation. We integrated Gaussian Process and Random
Forest as surrogate models, while we included Probability of Im-
provement, Expected Improvement, and Upper Confidence Bound as
acquisition functions (Candelieri and Archetti, 2019; Frazier, 2018).

Instead of performing BO, a user can also use a random search
technique to find the best hyperparameter configuration. Since the
Bayesian Optimization requires some initial configurations to fit the
surrogate model, the user can provide the initial configurations, ac-
cording to their domain knowledge. Alternatively, a user can perform
a pure exploration of the search space using a random sampling strat-
egy. Different algorithms are available (e.g. Uniform Random Sam-
pling or Latin Hypercube sequence) for sampling the initial configu-
rations.

6.2.2  Existing frameworks

The existing topic modeling frameworks usually provide topic mod-
eling algorithms, while disregarding other essential aspects of the
whole topic modeling pipeline: pre-processing, evaluation, compari-
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son, and visualization of the results and, most importantly, the hyper-
parameter selection. In the following, we outline the existing frame-
works, highlighting their advantages and limitations. Table 6.2 sum-
marizes the main features of the existing topic modeling frameworks
and compares them with OCTIS.

MALLET(McCallum, 2002) and gensim® are the most known topic
modeling libraries and include several classical topic models. They
provide pre-processing methods and the estimation of the hyperpa-
rameters using maximum likelihood estimation (MLE) techniques.
These libraries do not include the recently proposed neural topic
models, and they just provide topic coherence metrics. STTM (Qiang
et al.,, 2018) is a java library that provides a set of topic models that
are specifically designed for short texts, providing several evaluation
metrics.

ToModAPI (Lisena et al., 2020) is a python API that allows for train-
ing, inference, and evaluating different topic models, also including
some of the most recent. However, it does not provide a method for
finding the best hyperparameter configuration of topic models. In-
stead, a tool that allows for optimizing the hyperparameter of a ma-
chine learning model is PyCARET (Ali, 2020). However, it employs
a grid-search technique to tune the hyperparameters. This approach
can be very time-consuming if the number of hyperparameters is high
and the search space is huge (Bergstra and Bengio, 2012).

OCTIS stands at the union of the features of the existing frame-
works: we integrated both classical and recent neural topic models,
providing pre-processing methods, evaluation metrics, and the pos-
sibility of optimizing the hyperparameters. Finally, a user-friendly
graphical interface to launch one or more hyperparameter optimiza-
tion experiments on a given topic model and on a specific dataset has
been provided.

6.2.3 System usage

OCTIS has been designed to be used as a python library by advanced
users, as well as a simple web dashboard by anyone.

EXAMPLE OF A USE CASE FOR THE PYTHON LIBRARY. The lines
of code below executes an optimization experiment that will provide
an optimal configuration of the hyperparameters « and 3 for LDA
with 25 topics by maximizing the diversity of the topics.

# loading of a pre-processed dataset
dataset = Dataset()
dataset.load("path/to/dataset")

#model instantiation
lda = LDA(num_topics=25)
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#definition of the metric
td = TopicDiversity()

#definition of the search space
search_space = {
"eta": Real(low=0.01, high=5.0),
"alpha": Real(low=0.01, high=5.0)
}

#define and launch optimization
optimizer=0ptimizer()
opt_result = optimizer.optimize(model, dataset, td, search_space)

6.2.4 Web-based dashboard

The dashboard includes a set of simple but useful operations to con-
duct an experimental campaign on different topic models. Here we
briefly explain the four main functionalities of the dashboard.

EXPERIMENT CREATION. First, a user can define an optimization
experiment by selecting the dataset, the topic model, the correspond-
ing hyperparameter to optimize, the evaluation metric to be consid-
ered by the BO (possibly other extra metrics to evaluate), and the
settings of the optimization process.

MANAGEMENT OF THE EXPERIMENTS’ QUEUE. The user can mon-
itor the queue of the experiments and see the corresponding progress.
The user can also pause, restart, or delete an experiment that has been
launched before. Additionally, the user can easily change the order of
the queue of the experiments, by allowing a given run to be executed
before others.
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Figure 6.3: Example of the best-seen evolution for an optimization experi-
ment.
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Figure 6.4: Example of box plot of an optimization experiment.

COMPARISON OF THE TOPIC MODELS. The user can select the
models to be analyzed and compared. At the first stage, one can ob-
serve the progress of the BO iterations, observing a plot that contains
at each iteration the best-seen evaluation, i.e. the median at each iter-
ation of the metric that has been optimized (see Figure 6.3). Alterna-
tively, a user can visualize a box plot at each iteration (see Figure 6.4)
to understand if a given hyperparameter configuration is noisy (high
variance) or not.

Figure 6.5: Example of word cloud of a topic.

ANALYSIS OF A SINGLE EXPERIMENT. A user can further inspect
the results of a specific topic model on a given dataset with respect
to the considered metrics, by analyzing a single experiment.

Here, a user can visualize all the information and statistics related
to the experiment, including the best hyperparameter configuration
and the best value of the optimized metric. They can also have an
outline of the statistics of the other extra metrics that they had chosen
to evaluate.

We provide three different plots for inspecting the output of a sin-
gle run of a topic model. Figure 6.5 shows the word cloud obtained
from the most relevant words of a given topic, scaled by their prob-
ability. Focusing on the distributions inferred by a topic model, Fig-
ure 6.6 shows the topic distribution of a document, and Figure 6.7
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Topic distribution of document number

Figure 6.6: Example of distribution of the topics in a selected document.

Weight of the word
Inetwork

- l for each topic

[ s 10
Topic

Figure 6.7: Example of the weight of the word “network" for each document.

represents an example of the weight of a selected word of the vocab-
ulary for each topic.
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In this Section, we will show how we can exploit Bayesian Optimiza-
tion to draw empirical observations on the performance of the models
and evaluation metrics. In particular, we want to investigate if an opti-
mal configuration of hyperparameters enables the models to simulta-
neously obtain good performance in terms of prediction capabilities
and significant topics from a qualitative perspective.

We focus our investigation on optimal hyperparameter settings re-
lated to a set of the most recent semi-supervised and document-level
relational topic models, previously defined in Chapters 3 and 4. As
previously seen, these approaches jointly model a network of doc-
uments (e.g. citations) and additional knowledge (e.g. labels) to ad-
dress a document classification task. To investigate the problem of
hyperparameters selection, we use a Bayesian Optimization (BO) ap-
proach.

We therefore consider the following models:
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¢ D-CRTM-N, defined in Section 4.2;

¢ D-CRTM-U, defined in Section 4.2;

e Bi-RTM, defined in Section 4.2;

* LLDA (Yang et al., 2015¢), defined in Section 3.1.2;

* RTM (Chang and Blei, 2009), defined in Section 3.1.2;

e WSB-RTM (Yang et al., 2016a), defined in Section 3.1.2;
e LDA (Blei et al., 2003b);

We recall that D-CRTM-N, D-CRTM-U, and Bi-RTM are extensions of
RTM that can incorporate some prior knowledge related to the docu-
ments’ labels. In D-CRTM-N and D-CRTM-U, prior knowledge is in-
corporated using constraints between documents: if two documents
share the same label, then the documents are related and are more
likely to share the same topics. While Bi-RTM uses an additional bi-
nary variable to model the idea that two documents that share the
same label are more likely to share the same topics. We also consider
an additional extension of RTM, known as WBS-RTM (Yang et al.,
2016a). This model uses the weighted stochastic block model (Aicher
et al., 2015) to identify blocks, i.e. subnetworks, in which documents
are densely connected.

We consider LDA (Blei et al., 2003a) as a fully unsupervised base-
line, RTM as a baseline that models only the network structure, and
Labeled-LDA (LLDA) (Yang et al., 2015¢) as a baseline that takes only
the labels into account.

HYPERPARAMETERS OPTIMIZATION. To validate the hypothesis
that optimal settings lead topic models to simultaneously obtain good
performance in terms of prediction capabilities and coherent topics,
a single-objective BO approach has been adopted to optimize the hy-
perparameters.

All the topic models” hyperparameters have been optimized via
BO, having a Random Forest (RF) as a probabilistic surrogate model
and Upper Confidence Bound (UCB) as acquisition function, using
the mean of the RF and the confidence (i.e. its standard deviation) to
select the next configuration.

1/2

UCBm (x) = EXlm + @mt “Sxlm (55)

where E[x];, and S[x];, are, respectively, the mean and the standard
deviation of the prediction provided by the probabilistic surrogate
model after m evaluated configurations of the topic model under op-
timization. The next configuration to evaluate is the one maximizing
UCB .
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In our comparative evaluation, the performance metric to be opti-
mized is the median of micro-F1 over 30 runs for each given model.
The number of initial configurations, used to fit the initial surrogate
model, is given by the initial configurations reported in Section 4.2
plus 4 randomly sampled via Latin Hypercube Sampling for each
topic model, a statistical method that improves on the coverage of the
search space.

In Table 6.3, we report a summary of the models, specifying if they
consider the network structure (N) and/or they incorporate label-
related knowledge (L), together with the hyperparameters that we
consider in our evaluation.

Table 6.3: Summary of the models and hyperparameters.

Models ‘ N ‘ L ‘ Hyperparameters
LDA (Blei et al., 2003a) o, B
LLDA (Yang et al., 2015b) vV B
RTM (Chang and Blei, 2009) v x, B
WSB-RTM (Yang et al., 2016a) v o, B,a’,a,b,y, blocks
Bi-RTM (Terragni et al., 2020) VIV B
CRTM-N (Terragni et al., 2020) VIV By
D-CRTM-U (Terragni et al., 2020) | v' | V' | o, B,p,A

We remark that « is a Dirichlet parameter controlling how the top-
ics are distributed over a document and, analogously, 3 is a Dirich-
let parameter controlling how the words of the vocabulary are dis-
tributed in a topic. The parameter p represents the quantity of prior
knowledge, expressed as a percentage. We follow the procedure de-
scribed in (Terragni et al., 2020) to define the quantity of prior knowl-
edge. Finally, A is an integer hyperparameter, that controls the strength
of the constraints introduced into D-CRTM-U. We set the value of «
to vary between o and 50/K (where K is the number of topics), fol-
lowing (Griffiths and Steyvers, 2004). We let 3 range between o and 1,
and we let p range between o and o.5. Finally, A ranges between 1 and
the average document length of the documents of the given dataset.

6.3.1 Experimental Setting

BENCHMARK DATASETS  We consider the same datasets previously
described for the experimental campaign of the document constrained
relational topic models in Section 4.2. Table 6.4 shows the statistics
about the selected benchmarks.

Following previous work, each dataset has been divided into a
training set and a test set. We train a linear Support Vector Machine
(SVM) to predict the document’s class using the document-topic dis-
tribution 0 of each document as its K-dimensional representation.
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Dataset #total #training #testing #total #training #testing s#classes #unique
docs docs docs links link link words
Cora 2708 2031 677 3448 3054 394 7 1752
Mio 4427 2966 1461 3057 2425 632 9 1592
WebKB 877 612 265 1516 1006 510 5 1830

Table 6.4: Statistics of the benchmark datasets.

PERFORMANCE MEASURES The evaluation metric for this task is
the Micro-F1, defined as the weighted average of the f-measure for
each class. For determining the interpretability of the extracted top-
ics, we consider five additional metrics: KL-B, KL-U, KL-V, NPMI
coherence and PUW diversity (as defined in Section 3.4).

6.3.2 Experimental Results

HYPERPARAMETER OPTIMIZATION DRIVEN BY MICRO-F1 In Ta-
ble 6.5, we report the Micro-F1 results by comparing the best initial
configuration and the optimal configuration identified by BO, also
reporting the corresponding 95% confidence intervals. We show the
median of Micro-F1 over 30 different runs, as it is the target perfor-
mance metric to optimize. The leftmost columns of the table report
the Micro-F1 values, both in terms of initial mean (), final mean (1*),
initial median (i), and final median (pt*). We also report in Table 6.6
the hyperparameter configurations discovered by the single-objective
BO approach for each model and dataset.

As expected, we can observe in Table 6.5 that, in most of the cases,
a global optimization search strategy improves the results in the con-
text of semi-supervised relational topic models for a classification
task. For the Cora and M1o datasets, all the models obtain an im-
provement that mostly ranges from 1% to 7% for p* with respect to 1.
Concerning the hyperparameters o and 3, it seems that lower values
are often preferred. In a classification task, we expect that the proba-
bility 0 has a very skewed shape, where the most probable topic will
then reflect the class to predict. With low values of «, the documents
are expected to follow a distribution that has few but high peaks.
Analogously, word-topic distributions that are skewed towards few
relevant words are preferred.

For the algorithms characterized by two hyperparameters, specifi-
cally RTM and LDA, we report a 3-dimensional representation of the
Micro-F1, as approximated by a Gaussian Process regression model,
with Squared Exponential kernel, fitted on the set of evaluated hy-
perparameters configurations. We have used a GP, instead of the REF,
just to have a smoother approximation of Micro-F1 to depict. A 3-
dimensional representation (Figures 6.8, 6.9 and 6.10) is reported for
each dataset, and separately for LDA and RTM. As the main result,
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Micro-F1
Dataset Model v u* o w
D-CRTM-U | 0.6144 £+ 0.0060 0.6780 + 0.0167 0.6152 0.6928
CRTM-N 0.6702 + 0.0103  0.6882 £ 0.0145 0.6765 0.7061
Bi-RTM 0.6220 + 0.0056  0.6228 + 0.0083 0.6196 0.6278
Cora WSB-RTM 0.6108 + 0.0176  0.6213 £ 0.0093 0.6108  0.6256
LLDA 0.6517 + 0.0062  0.6648 £ 0.0046 0.6529  0.6669
RTM 0.6158 + 0.0057  0.6235 £ 0.0062 0.6160  0.6256
LDA 0.5498 £ 0.0055 0.5966 £ 0.0078 0.5510 0.6012
D-CRTM-U | 0.6840 £ 0.0035 0.7194 £ 0.0089 0.6858 0.7238
CRTM-N 0.7164 £ 0.0030  0.7285 £ 0.0238 0.7139  0.7673
Bi-RTM 0.7251 £ 0.0077  0.7347 £ 0.0174 0.7286  0.7536
Mi1o WSB-RTM 0.3483 + 0.0184 0.6810 £ 0.0059 0.3737 0.6851
LLDA 0.4317 £ 0.0453 0.4968 £ 0.0347 0.5212 0.5359
RTM 0.6236 + 0.0070  0.6805 £ 0.0033 0.6280 0.6797
LDA 0.5330 & 0.0039  0.5915 £ 0.0057 0.5339  0.5941
D-CRTM-U | o.7577 £ 0.0050 0.7585 + 0.0049 0.7585 0.7585
D-CRTM-N | 0.7652 4+ 0.0059 0.7658 £ 0.0061 0.7623 0.7698
Bi-RTM 0.7546 £ 0.0060  0.7600 £ 0.0054 0.7547  0.7604
WebKB  WSB-RTM | 0.7125 & 0.0051  0.7453 + 0.0061 0.71320 0.7472
LLDA 0.7491 £ 0.0047  0.7492 £ 0.0059 0.7472  0.7509
RTM 0.7489 £ 0.0048 0.7600 *+ 0.0061 0.7509  0.7585
LDA 0.74201 £ 0.0035 0.7532 & 0.0064 0.7434 0.7547

Table 6.5: Document classification results in terms of Micro-F1. u and p*
denote the initial and the final mean of the Micro-F1. L and 1i* de-
note the initial and the final median of the Micro-F1. Bold values
denote the best results both for the mean and median Micro-F1
measure.

we can observe that Micro-F1 does not depend on (3. Moreover, it is
worth noticing that the shape of LDA and RTM for the datasets Cora
and M1o are quite similar, while for the WEBKB dataset we notice a
different behavior. As we can also observe in Table 6.7, the models
obtain the highest performance on the dataset WEBKB with « values
higher than 1.

TOPIC ANALYSIS Concerning the topic quality, we analyze the per-
formance of the considered models over the three datasets in Ta-
ble 6.7, using the qualitative metrics previously presented (NPMI,
PUW, KL-U, KL-V and KL-B). We report the results of the initial con-
figuration (I) and final configuration (F) for each model. Focusing on
the scores of the KL-B metric, we can first notice that in most of the
cases the best configuration identified by BO leads the models to ob-
tain better performance with respect to its initial counterpart. This
improvement is likely related to the target performance of BO: if we
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Dataset Model o4 B A P o’ a b b blocks
D-CRTM-U 1.353 o0.082 48 0.308 - - - - -
D-CRTM-N 0345 o0.062 -  0.155 - - - - -

Bi-RTM 0.253 0.247 -  0.246 - - - - -
Cora WSB-RTM  0.020 o0.517 - - 9.982 8.967 0.302 3.569 42
LLDA 0.015 0.669 -  0.467 - - - - -

RTM 0.218 0.496 - - - - - - -
LDA 0.043 0.944 - - - - - - -
D-CRTM-U o.107 o0.641 5 0.155- - - - - -

D-CRTM-N o0.012 0.015 - 0.133- - - - - -
Bi-RTM 0.003 0.705 -  0.483- - - - - -

Mio WSB-RTM  o0.704 1.023 - - 1.653 2.9341 0.537 3.036 11
LLDA 2.984 0.002 - 0.2435 - - - - -

RTM 0.031 0.094 - - - - - - -
LDA 0.013 0.9508 - - - - - - -
D-CRTM-U 9.868 o0.100 79 0.197 - - - - -

D-CRTM-N 8535 0.003 - o0.113 - - - - -

Bi-RTM 9.064 0.119 -  0.372 - - - - -

WebKB  WSB-RTM  1.114 1330 - - 0896 2.837 9.723 0.557 5
LLDA 5.033 0.763 -  0.015 - - - - -

RTM 7.257 0.080 - - - - - _ _
LDA 3.843 0.085 - - - - - - -

Table 6.6: Hyperparameter configurations identified by the single-objective
optimization experiments for document classification.

want to maximize the performance for the classification task, we then
intervene on the document-topic distribution 0. Since 0 is driven to
be spiked in correspondence of a given topic, any topic will never
be a “background” topic (i.e. equally likely over all the documents).
Therefore, when optimizing with respect to prediction capabilities,
the models are able to also improve the KL-B metric ensuring a good
topic quality.
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Figure 6.8: Approximated Micro-F1 for LDA (left) and RTM (right) for the
Cora dataset.

The other metrics KL-U, KL-V, PUW and NPMI seem to have an
opposite behavior with respect to KL-B: in most of the cases, the
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‘ Models Configuration NPMI PUW KL-U KL-V KL-B
D-CRTM-U F 0.105 0.563 1.342 0.551 0.898
I 0.112 0.743 1.695 0.897 0.323
D-CRTM-N F 0.122 0.564 1.342 0.593 1.372
I 0.107 0.662 1.639 0.800 0.213
BIRTM F 0.115 0.669 1.466 0.730 0.889
I 0.113 0.676 1.511 0.736 0.901
Cora - 6 8

WSB-RTM 0.115 0.614 1.199 0485 1.512
I 0.121 0.699 1.208 0.578 0.769
LLDA F 0.076 0.404 0.883 0.154 1.243
I 0.077 0.422 0.887 0.166 1.160
RTM F 0.114 0.661 1.340 0.599 0.978
I 0.115 0.694 1.632 0.840 0.777
LDA F 0.112 0.613 1.106 0.425 1.414
I 0.113 0.753 1.609 0.837 0.352
D-CRTM-U F 0.186 0.850 1.635 0.985 0.160
I 0.190 0.838 1.601 0.951 0.176
D-CRTM-N F 0.187 0.903 1.977 1.327 0.139
I 0.191 0.855 1.651 1.016 0.155
BIRTM F 0.185 0.872 1.715 1.070 0.157
I 0.187 0.874 1758 1.109 0.144

Mio F 856 8 68
WSB-RTM 0.191 0.856 1.833 1.1 0.253
I 0.191 0.784 0.900 0.437 0.691
LLDA F 0.185 0.799 1.077 0.539 0.298
I 0.187 0.835 1.285 0.707 0.259
RTM F 0.003 0.708 1.891 1.808 1.637
I -0.036 0.978 2.798 1.892 0.033
LDA F -0.016 0.729 0.704 0.406 1.966
I 0.027 0.808 1.305 0.774 0.521
D-CRTM-U F 0.186 0.850 1.635 0.985 0.160
I 0.190 0.838 1.601 0.951 0.176
D-CRTM-N F 0.187 0.903 1.977 1.327 0.139
I 0.191 0.855 1.651 1.016 0.155
BIRTM F 0.185 0.872 1.715 1.070 0.157
I 0.187 0.874 1758 1.109 0.144

WebKB F 856 8 68
WSB-RTM 0.191 0.856 1.833 1.1 0.253
I 0.191 0.784 0.900 0.437 0.691
LLDA F 0.185 0.799 1.077 0.539 0.298
1 0.187 0.835 1.285 0.707 0.259
RTM F 0.185 0.871 1.763 1.111 0.180
1 0.189 0.883 1.761 1.111 0.144
LDA F 0.188 0.849 1.696 1.046 0.273
I 0.194 0.834 1.130 0.597 0.213

Table 6.7: Comparison of topic quality on the three datasets. Letter F indi-
cates the best configuration identified by BO, while letter I denotes
the best initial configuration identified during random sampling.
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Figure 6.9: Approximated Micro-F1 for LDA (left) and RTM (right) for the
Mio dataset.
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Figure 6.10: Approximated Micro-F1 for LDA (left) and RTM (right) for the
WebKB dataset.

initial configuration leads to better performance in terms of these
considered metrics. Since the models are optimized with respect to
the micro-F1 measure affecting the document-topic distribution as
the K-dimensional representation of a document, KL-U, KL-V, PUW
and NPMI, which are metrics based on word-topic distribution, show
a decreasing topic quality trend. We can therefore conclude that a
model, whose hyperparameters are optimized for document classifi-
cation purposes, is not able to maintain good capabilities in terms of
topics interpretability and quality.

We report in Tables 6.8 and 6.9, the output of D-CRTM-N, being
the model that obtains the best performance on Cora, and LLDA that
obtains a comparable performance in terms of document classifica-
tion on the same dataset, but cannot guarantee a good trade-off with
respect to the other quality metrics (as we can observe in Table 6.7
and we will later observe in section 6.3.2). In particular, we report
the topic words of D-CRTM-N and LLDA with the hyperparameter
configurations that correspond to the best obtained Micro-Fi.

By analyzing Table 6.8, related to the D-CRTM-N model, we can
highlight that there is a good association between the class label and
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CLASS TOPIC WORDS NPMI

. learn system case design use reason
Case-Based Reasoning y &n 0.137

knowledg casebas problem plan

Genetic Algorithms genet algorithm problem use program o111

search learn evolv result optim

. . learn reinforc use problem algorithm
Reinforcement Learning P 8 0.090

method state control paper system

Probabilistic Methods model algorithm bayesian use network 0.089

estim method distribut belief problem

Theory learn algorithm use model tree problem 0073

gener set show concept

network learn use neural model algorithm

Neural Networks 0.064
system function method gener
Rule Learning learn program use induct paper system 0.058
exampl perform gener schedul
Average NPMI 0.0887
Average TOPIC DIVERSITY 0.5143

Table 6.8: Output generated by the D-CRTM-N model. The first column de-
notes the class associated to each topic, the second column shows
the topic words and the third column reports the corresponding
NPMI coherence. The words reported in bold denote the words
shared across different topics.

the topic words that allows us to easily understand the content of
each topic. Additionally, considering the NPMI coefficients of each
topic and the words reported in bold that denote their presence in
multiple topics, we can note a general good quality of the topics. Since
only 35% of the words are shared between the extracted topics, and
with an average NPMI equal to 0.0887, we can conclude that D-CRTM-
N extracts coherent and diverse topic descriptors.

LLDA (see Table 6.9) on the other hand, although it achieves an av-
erage NPMI equal to 0.0923 (which is greater than D-CRTM-N), suf-
fers of few limitations from the interpretation point of view. In fact,
the LLDA output is characterized by two topics that correspond to
the same class label and by 75% of the words that are shared between
the extracted topics. This suggests us that, even if LLDA has higher
performance from the NPMI point of view, it is not able to achieve
a good trade-off with respect to other measures such as diversity. In
conclusion, D-CRTM-N seems a promising model that provides the
most remarkable trade-off between the topic coherence/diversity met-
rics when optimizing with respect to the F1 measure.

The results achieved so far open new research opportunities. In par-
ticular, since relational topic models have shown in most of the cases
that prediction capabilities and topic interpretability have an opposite
trend, it could be worth exploring which estimation strategy between
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CLASS TOPIC WORDS NPMI

Case-based Reasoning learn system case use reason knowledg 0.137

casebas design problem plan

learn system design use case reason

Case-based Reasoning 0.116

knowledg casebas problem method

Genetic Algorithms genet problem algorithm use program 0.105

search learn result paper optim

learn reinforc algorithm problem use

Reinforcement Learning 0.086

method control state paper function

Rule Learning learn use program exampl induct logic 0.070

gener paper schedul method

Probabilistic Methods algorithm learn model use problem 0.068
(Theory) method network bayesian set gener
Neural network network learn use model neural algorithm 0.064
system function method gener
Average NPMI 0.092
Average TOPIC DIVERSITY 0.411

Table 6.9: Output generated by the LLDA model. The first column denotes
the class associated to each topic, the second column shows the
topic words and the third column reports the corresponding
NPMI coherence. The words reported in bold denote the words
shared across different topics.

constrained and multi-objective optimization (Horn and Bischl, 2016;
Paria et al., 2019) leads to an optimal trade-off between them.

MICRO-F1 VERSUS QUALITY MEASURES We further analyze the
trade-off between Micro-F1 and the other quality measures. It is im-
portant to remark that hyperparameter optimization has been per-
formed with respect to a single objective, that is Micro-F1, but it is
anyway important to investigate which is the algorithm offering the
best trade-off between document classification and interpretability.

Considering all the bi-objective pairs Micro-F1 vs one of the qual-
ity measures, this results into five different charts for each datasets,
comparing the approximated Pareto frontiers provided by the seven con-
sidered models. It is important to recall that a Pareto frontier P, into
a space spanned by two maximization objectives f1(x) and f2(x) — as
in our case — is given by

P ={(f1(x), f2(x)) : B(f1(x"), F2(x") s F1(x") > F1 () V F2(x") > F2(x) }.

It is also said that pairs on the Pareto frontier dominate all the others.
The set of points x associated to pairs laying on the Pareto frontier
is called Pareto set. In our case, a given point x is a hyperparameter
configuration. Since we have sequentially sampled hyperparameter
configurations, the resulting Pareto set and Pareto frontier can be only
regarded as approximations of the actual ones.
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Figure 6.11 is related to the Cora dataset and shows that there
does not exist a clear winner among the considered models. How-
ever, some interesting results emerge. We can observe that LDA is
always dominated by at least another algorithm. This result is rea-
sonable, since the model does not incorporate the labels or the links.
Among the CRTM models, D-CRTM-N always dominates D-CRTM-
U, except for the case Micro-F1 vs KL-B. As far as KL-B and NPMI
are considered as second objectives, the approximated Pareto frontier
of D-CRTM-N consists of only one point: this means that optimizing
Micro-F1 resulted equivalent to optimize KL-B or NPMI — that is this
two objectives resulted correlated with Micro-F1. We can also observe
that WSB-RTM and D-CRTM-N seem complimentary with respect to
the cases Micro-F1 vs NPMI, Micro-F1 vs PUW, and (by also including
D-CRTM-U) Micro-F1 vs KL-B. Thus, the union of their approximated
Pareto frontiers leads to the best unique approximated Pareto frontier,
dominating all the other algorithms.
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Figure 6.11: Pareto frontiers between accuracy (Micro-F1) and each one of
coherence measures on the Cora dataset.

Figure 6.12 is related to the M1o dataset and, also in this case, a
clear winner cannot be identified among the considered algorithms.
We can notice that D-CRTM-N dominates all the other algorithms
on two cases, specifically those having as second objective KL-U and
KL-V. Substantially, the same consideration could be made also in
the case Micro-F1 vs PUW, expect for a non-dominated pair for RTM
and one for Bi-RTM. As already observed on the Cora dataset, with
respect to KL-B as second objective, the approximated Pareto frontier
of D-CRTM-N consists of only one point: this means that optimizing
Micro-F1 resulted equivalent to optimize KL-B (i.e., KL-B is correlated
with Micro-F1).

Finally, Figure 6.13 is related to the WEBKB dataset. As for the pre-
vious two datasets, there is not a clear winner among the considered
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Figure 6.12: Pareto frontiers between accuracy (Micro-F1) and each one of
coherence measures on the M1o dataset.

models, even if D-CRTM-N resulted (again) the best option. More
specifically, D-CRTM-N dominates all the other algorithms, with the
following exceptions:

e WSB-RTM, in all the cases. The union of the two approximated
Pareto frontiers — the D-CRTM-N’s and the WSB-RTM's ones —
results in the best approximated Pareto frontier dominating all
the other algorithms (except for one LDA’s point in the Micro-F1
vs NPMI case);

e LDA, for just one point, in the case having NPMI as second
objective;

* with respect to PUW as second objective, the approximated
Pareto frontier of D-CRTM-N consists of only one point: this
means that optimizing Micro-F1 resulted equivalent to optimize
PUW on this specific dataset.

As a final consideration, optimizing the Micro-F1, only, allowed us
to identify accurate models, for each one of seven algorithms con-
sidered but, according to the a-posteriori Pareto efficiency analysis,
we can conclude that D-CRTM-N is the best-performing algorithm,
because it provides the most reasonable trade-off with the topic co-
herence metrics. On the other hand, WSB-RTM provides less accurate
results in terms of Micro-F1, but the topics appear to be the most
coherent.

This behavior may be due to the fact that WSB-RTM does not take
into account the knowledge related to the labels of the documents,
which provides a great improvement in the performance in terms
of Micro-F1. On the other hand, explicitly modeling blocks of docu-
ments, instead of just the relationships between pairs of documents,
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Figure 6.13: Pareto frontiers between accuracy (Micro-F1) and each one of
coherence measures on the WebKB dataset.

can help the topic models to account for those documents that are
similar but they are not considered as similar because there is not a
link between them (we way not have this information). Recognizing
that a group of documents belong to the same block, even if not all
the documents link to each other, encourages that the documents to
share the same topic distributions, thus improving the resulting topic
coherence.

64 COMPARATIVE ANALYSIS OF NEURAL TOPIC MODELS

We will now demonstrate that we can use Bayesian Optimization as
well for the other main class of topic models, i.e. Neural Topic Mod-
els. Neural Topic Models. For this category of models, the problem
of finding the best hyperparameter configuration has become even
more compelling, since topic models based on neural networks are
usually controlled by a high number of hyperparameters. We there-
fore perform an empirical analysis of recent NTMs by optimizing the
hyperparameters of the models with respect to different metrics. We
aim to investigate if the relationship between hyperparameters, docu-
ment length and performance measures, to finally understand under
which conditions we can exploit at best the potentiality of each model.

To this purpose, we use Bayesian Optimization (BO) (Archetti and
Candelieri, 2019), a well-known and efficient strategy for hyperpa-
rameter tuning, to determine the optimal hyperparameter settings for
four different evaluation metrics of five state-of-the-art NTMs. The
hyperparameter optimization allows us to guarantee a fair compari-
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son between the models and investigate their behavior with different
hyperparameter settings.

6.4.1  Methodology

As seen before, we adopt a single-objective Bayesian Optimization ap-
proach, using the comparative framework topic modeling OCTIS (Ter-
ragni et al., 2021a), to optimize the hyperparameters of five different
topic models with respect to four different evaluation metrics. Each
metric investigates a different aspect of a model.

Optimizing a model’s hyperparameters not only allows us to in-
vestigate the robustness of a model over different evaluation metrics,
but we can also investigate the performance of the optimized evalu-
ation metric on datasets with different features and the relationship
between the optimized evaluation metric and the other metrics.

TOPIC MODELS. In our investigation, we focus on the following
state-of-the-art topic models based on a neural variational frameworks.
We consider Neural LDA (Srivastava and Sutton, 2017, NeurLDA),
Product-of-experts LDA (Srivastava and Sutton, 2017, ProdLDA), the
Embedded Topic Models (Dieng et al., 2020, ETM), and finally we
use a variant of the family of Contextualized Topic Models (CTM),
namely the ZeroShotTM we have presented in Section 5.3.

Concerning ETM, following the original paper, we will refer to the
former version of the model as ETM, while the one that uses pre-
trained word embeddings (PWE) will be referred to as ETM-PWE.

We also consider the well-known Latent Dirichlet Allocation (Blei
et al., 2003a, LDA) as a baseline.

EVALUATION METRICS. We consider four evaluation metrics that
investigate different aspects of a topic model:

* Micro-F1 (F1): We train a linear support vector machine (SVM)
that predicts the document’s class using the topic distribution
0 of each document (given by each topic model) as its feature
representation.

¢ IRBO on the 10-top words of the topics (as defined in Section
5.2).

¢ NPMI computed on the 10-top words of the topics. The word
co-occurrences are computed on the original dataset.

¢ KL-Background (KL-B).
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6.4.2 Experimental Setting

DATASETS AND PREPROCESSING

127

To analyze the impact of the

length of the documents with respect to several models and perfor-
mance measures, we consider two different datasets: 20Newsgroup™®
(20NG), where each document is characterized by a long text, and
Mio (Lim and Buntine, 2015), which is composed of titles of scientific
papers, and therefore it represents a case study of short texts. We use

the datasets as provided in OCTIS.

BAYESIAN OPTIMIZATION AND MODEL SETTINGS.

We optimize

the models” hyperparameters using BO for each evaluation metric.
We trained each model 30 times and considered the median as the
evaluation of the function to be optimized. The initial configurations
are randomly sampled via Latin Hypercube Sampling and equal to
the number of the hyperparameters to optimize plus 2 (to provide
enough configurations for the initial surrogate model). The total num-
ber of BO iterations is 30 for LDA and 120 for the other models. We
use Random Forests as the surrogate model and the Upper Confi-
dence Bound (UCB) as the acquisition function.

We report the models” hyperparameters and their corresponding

ranges in Table 6.10.

Model Hyperparameter Range
LDA o prior [10~%, 10]

(3 prior [10—4, 10]

Dropout [o,1-107°]

Learning rate [107¢,1071]

Momentum [o, 1]
NeurLDA/ elu, leakyrelu, relu, rrelu,
ProdLDA/ Activation function —selu, sigmoid, softplus
CTM adadelta, adagrad, adam,

Optimizer rmsprop, sgd

# Neurons 100, 200, ..., 1000

# Layers 1,2,3,4,5

Learn priors true, false

Dropout [o,1-107°]

Learning rate [107¢,107"]

Weight decay [10-°,107 "]

elu, leakyrelu, relu, rrelu,

ETM/ Activation function selu, softplus, tanh
ETM-PWE adadelta, adagrad, adam,

Optimizer asgd, rmsprop

# Neurons 100, 200, ..., 1000
ETM Rho size 100, 200, 300

Table 6.10: Hyperparameters and ranges.

10 http://qwone.com/ jason/20Newsgroups/
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20NG Mio

F1* IRBO* NPMI* KL-B* F1* IRBO* NPMI* KL-B*

LDA 0.469 0.963 0.064  2.299 | 0.472 0.944 -0.089  2.343
NeurLDA | 0.339 1.000 0.067  0.907 | 0.420 1.000 -0.131 0.904
ProdLDA | 0.373 0.998 0.107  0.992 | 0.539 1.000 0.044 1.652
CTM 0.361 0.998 0.118 1.019 | 0.563 1.000 0.055 0.937
ETM 0.453 0.996 0.080  0.370 | 0.534 0.997 -0.028  0.532

ETM-PWE | o0.471 0.986 0.089  0.424 | 0.585 0.997 -0.070  0.201

Table 6.11: Median of each performance metric (columns) for each single-
objective optimization (rows).

Regarding LDA, we optimize the hyperparameters « and {3 priors
that the sparsity of the topics in the documents and sparsity of the
words in the topic distributions respectively. These hyperparameters
are set to range between 10~* and 10 on a logarithmic scale.

The hyperparameters of the neural models are mainly related to
the architecture of the network. For all the neural models, we opti-
mize the dropout (ranging between o and 1—107°) and the momentum
(ranging between o and 1). We optimize the learning rate, that is set to
range between 10%and 107", on a logarithm scale. We also consider
different variants of activation functions and optimizers.

Regarding NeurLDA, ProdLDA, and CTM in particular, we opti-
mize the number of layers (ranging from 1 to 5), and the number of
neurons (ranging from 100 to 1000). For simplicity, each layer has the
same number of neurons. Finally, we also consider the hyperparame-
ter learn priors that controls if the priors are learnable parameters.
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Figure 6.14: Metrics-metrics correlations.

We use the contextualized document representations derived from
SentenceBERT (Reimers and Gurevych, 2019). We use the pre-trained
BERT model fine-tuned on the natural language inference (NLI) task."*

Considering ETM and ETM-PWE, in addition to the hyperparame-
ters mentioned above, we only optimize the number of neurons (rang-
ing from 100 to 1000). We follow the original implementation, for
which the number of hidden layers is set to 1. For ETM-PWE, we
use pre-trained Word2vec word embeddings (Mikolov et al., 2013),

11 https://huggingface.co/sentence-transformers/bert-base-nli-mean-tokens

129


https://huggingface.co/sentence-transformers/bert-base-nli-mean-tokens

130

HYPERPARAMETER OPTIMIZATION FOR TOPIC MODELING

trained on the Google News corpus (3 million 300-dimension English
word vectors).

For the neural models, we set the batch size to 200 and we adopted
an early stopping criterion for determining the convergence of each
model. We set the remaining model parameters to their default values.
We set the number of topics to be discovered equal to the number of
classes available in each dataset, i.e. 10 for M10 and 20 for 20NG. For
running the experiments, we use OCTIS, which already integrates the
implementations of the considered models and metrics.

6.4.3 Empirical Analysis and Discussion

ROBUSTNESS OF NEURAL TOPIC MODELS. In table 6.11 we report
the median of the four evaluation metrics for each topic model ob-
tained by the best hyperparameter configuration. Rows represent the
optimized metric (marked as metric*), while columns denote the me-
dian of the evaluated metric. The overall best values for each metric
and dataset are reported in bold. First of all, we can observe that there
is not a model that outperforms the others for all the considered met-
rics. In fact, it seems that each topic model works better for a specific
metric.

In particular, LDA is the topic model that obtains the best perfor-
mance in terms of KL-B*, thus obtaining topics that are significant
rather than background topics. While, the topic models based on
the neural variational framework defined in (Srivastava and Sutton,
2017), i.e. NeurLDA, ProdLDA, and CTM, are the ones that obtain
the highest diversity. Regarding the topic coherence, CTM obtains
the best topic coherence for both datasets. In fact, it improves the per-
formance of ProdLDA (second-best model for the topic coherence)
through the incorporation of the contextualized pre-trained represen-
tations of the documents. Finally, ETM-PWE outperforms the other
models in terms of F1*, probably due to the contribution of the pre-
trained word embeddings.

Provided that each topic model seems to reach the best perfor-
mance only in a specific metric, it follows that they cannot simul-
taneously guarantee optimal performance for the other metrics. We
will further investigate the trade-off between different metrics in the
following analysis. A complete overview of the best configuration
of hyperparameters discovered by BO for all the models and for all
the considered evaluation measures is reported in Tables C.1, C.2, C.3,
C.4,C.5and C.6 in the Appendix C. This would allow a user to choose
a promising hyperparameter configuration for the evaluation metric
of their interest.

IMPACT OF THE DOCUMENT LENGTH. We can derive other in-
sights by analyzing Table 6.11 and comparing the two datasets. In
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particular, we highlight that for LDA the document length seems to
be an invariant when optimizing on the KL-B* metric. This insight
can be grasped by considering the KL-B* of LDA (i.e. 2.343 for M1o
and 2.299 for 20NG) that, not only are the best performance when
compared to the other models, but they suggest that LDA performs
well independently on the document length and therefore it guaran-
tees optimal KL-B* both on short and long documents.

Another important insight is about the F1 measures obtained by
LDA (0.472 and 0.469), ETM (0.534 and 0.453), and ETM-PWE (0.585
and 0.471), which seem to be not affected by the length of the docu-
ments. On the other hand, the results for the F1 measure for NeurLDA,
ProdLDA, and CTM (which are based on the same architecture) are
affected by the documents’ length, obtaining the best performance
for short texts. In these cases, when the models achieve a high F1 on
short documents (0.420 by NeurLDA, 0.539 by ProdLDA, and 0.563
by CIM), the performance on short documents is lower (0.339 by
NeurLDA, 0.373 by ProdLDA, and 0.361 by CTM).

When optimizing for the IRBO* metric, all the models succeed in
obtaining almost completely diverse topics, both for long and short
texts. The performance of IRBO* for LDA* is slightly affected when
dealing with short texts. Finally, we remark that CTM obtains an ex-
cellent topic coherence for both datasets, but, on the other hand, the
remaining models seem to be particularly affected when dealing with
short texts, assuming NPMI values inferior to o.

METRICS-METRICS CORRELATIONS. In Figure 6.14, we report the
correlations between the evaluation metrics when a single-objective
optimization policy is performed. The rows of the correlation matri-
ces denote the optimized metrics (F1*, IRBO*, KL-B¥, and NPMI¥),
while the columns the non-optimized evaluated measures (F1, IRBO,
KL-B, and NPMI). According to these results, we can observe if op-
timizing a model for a specific metric allows us for an increasing or
decreasing performance of the other metrics. In Figure 6.14, we re-
port the Spearman correlation coefficients between metrics using all
the runs of a given experiment.

Concerning LDA, when the model is optimized for the KL-B*, NPMI*,
or F1%, then the IRBO is positively correlated with these metrics. It is
then sufficient to optimize one of the other metrics to get also diverse
topics. This occurs in particular for the KL-B* and NPMI* on long
documents (0.87 and 0.98 respectively). It is also interesting to notice
that optimizing for KL-B* does not imply a maximization for the F1
and NPMI on long texts. To achieve better topic coherence and classi-
fication, we should consider background topics as well.

Focusing on NeurLDA, ProdLDA, and CTM, we do not observe
substantial differences between long and short documents. IRBO* is
not strongly correlated with the other metrics, especially for long doc-
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uments. This can be grasped by observing the coefficients IRBO* vs
F1, KL-B, and NPMI reported in Figure (6.14¢), (6.14f) and (6.14j).
On the contrary, optimizing NeurLDA, ProdLDA, and CTM for F1*,
NPMI* or KL-B* guarantees, in most of the cases, a good performance
on all the metrics both for short and long documents (Figure (6.14b),
(6.14€), (6.14¢) and (6.14f)).

Concerning ETM, the difference between long and short documents
is clear: the optimization of a given metric can be detrimental to the
majority of the other metrics when dealing with short documents.
In fact, the optimization of ETM w.r.t. IRBO* and NPMI* originates
correlation values with all the other metrics that are close to zero or
negative (Figure 6.14h). On the other hand, F1* and KL-B* seem not to
be affected by the difference of the datasets. This suggests that max-
imizing KL-B* or F1* implies good performance also for other pur-
poses. Focusing on long documents (Figure 6.14k), the optimization
of ETM w.r.t. F1*, KL-B*, and NPMI* originates positive correlation
values for all the other metrics. On the other hand, we can highlight
that optimizing the topic diversity IRBO* does not allow us to simul-
taneously obtain good performance on topic coherence (NPMI) on
long documents. Regarding ETM-PWE, we do not notice a clear dif-
ference between the two datasets. The introduction of the pre-trained
word embedding into the training process of the model seems to be
beneficial for all the metrics.

To summarize, optimizing the neural models according to the IRBO*
is not always convenient and may lead to incoherent topics or poor
document classification performance. Another important insight con-
cerns the optimization of F1*, which usually guarantees to maximize
IRBO, KL-B, and NPM], for both short and long documents, except
for LDA.

65 SUMMARY OF THIS CHAPTER

In the following, we give a short summary of this chapter. In the intro-
duction of the chapter, we reported the following research questions:

Q6.1 Can we determine if a topic model can guarantee an optimal
trade-off between different performance measures?

Q6.2 Can a performance measure imply a competing or correlated
target for other performance measures?

To answer these questions, we provide a solution based on Bayesian
Optimization. We propose to optimize the hyperparameters of topic
models using single-objective BO. Moreover, to make it accessible to
everyone in the NLP and ML community, we also release a python
library that integrates topic models, evaluation metrics, pre-processed
datasets, and hyperparameter optimization in the same place.
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We showed the effectiveness of BO on different sets of topic models
in Sections 6.3 and Sections 6.4. Our results show that for both cate-
gories of topic models, a single-objective optimization strategy leads
to optimize the target function (Q6.1), but this can be detrimental to
other evaluation metrics (Q6.2). We also analyzed the impact of the
Bayesian optimization by varying models, datasets and evaluation
metrics.

The comparative analysis and experiments that we have carried out
on different topic models have indeed several implications. In the fol-
lowing Chapter we will explore two fundamental directions: (1) the
use of multi-objective hyperparameter optimization for discovering
the best trade-off between different metrics and (2) hyperparameter
transfer from a dataset to an unseen dataset for a more efficient dis-
covery of the optimal hyperparameter configurations.
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BEYOND SINGLE-OBJECTIVE HYPERPARAMETER
OPTIMIZATION

In Chapter 6 we have seen how to use single-objective hyperparam-
eter optimization for guaranteeing a fairer comparison between the
models. Although this approach may be useful to identify the best
hyperparameter configuration for an evaluation metric, it disregards
possible competing objectives. Indeed, we may be interested into op-
timizing more than objective at the same time. In this context, a
multi-objective approach is ideal. This would allow researchers to dis-
cover the topic model that guarantees the best trade-off between the
different metrics of interest.

Moreover, although Bayesian Optimization is more efficient than
other methods (Snoek et al., 2012), the algorithm requires a fair
amount of iterations to guarantee the convergence to an optimal so-
lution, especially when the number of hyperparameter is large. Sim-
ilarly to an expert who selects the best hyperparameters given their
prior knowledge, we should look forward to adopting an automatic
method to exploit the knowledge we have acquired during our past
experiments to select a good hyperparameter configuration for a topic
model. We refer to this transfer learning mechanism as to hyperparam-
eter transfer. Testing if the hyperparameters can be transferred from
a dataset to an unseen dataset is by no means a necessary step that
would allow us to reduce the computational costs of the Bayesian
Optimization.

In this Chapter, we will therefore overcome the limitations of the
single-objective optimization approach and address the following re-
search questions:

Q7.1: Can we optimize the hyperparameters of a topic model to guar-
antee an optimal trade-off between different performance mea-
sures using multi-objective optimization?

Qy.2: Can we transfer the best hyperparameter configurations from a
dataset to an unseen dataset?

In this Chapter, we will apply a multi-objective optimization ap-
proach to different categories of topic models to reveal the trade-off
between different evaluation metrics in Section 7.1. We will also inves-
tigate an approach to transfer to best hyperparameter configurations
of a given metric to an unseen dataset in Section 7.2. This will also
allow us to investigate which dataset features may play a role in the
transfer learning process.
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7.1 MULTI-OBJECTIVE OPTIMIZATION FOR TOPIC MODELS (OC-
TIS 2.0)

Single-objective BO can be generalized to multiple objective func-
tions (Paria et al., 2019). Instead of having a single objective function
to optimize, we can formulate the problem in the following way:

x* = argmax(fy(x),f2(x),..., f(xn)) (56)
xeX
where N > 1 is the number of objective functions f; to optimize and
X is a design space of interest. As before, the space can be composed
of hyperparameters of different types: categorical, continuous or also
conditional inputs.

It is not always possible to optimize all the metrics jointly, but in-
stead some functions may be competing. For this reason, the final aim
of Multi-objective Optimization is to recover the Pareto frontier of the
objective functions, i.e. the set of Pareto optimal points. A point is
Pareto optimal if it cannot be improved in any of the objectives with-
out degrading some other objective. We also say that a point x; € X
dominates x, € X then x; beats or ties x, along every possible objec-
tive taken into consideration. More formally, a point x; dominates x;
iff fr(x1) = fa(x2)Vn € Nand In € N s.t. T, (x7) > f(x2).

Here, we will use a recent multi-objective methodology presented
in (Paria et al., 2019). This approach uses scalarization functions, which
convert multi-objective values to scalars. We refer the readers to the
original paper for additional details on multi-objective Bayesian opti-
mization.

We integrate this approach, with appropriate changes into OCTIS,
thus originating OCTIS vz.o0.

EXAMPLE OF USAGE OF OCTIS 2.0. We report a simple code snip-
pet that will run a multi-objective optimization experiment. This is
very similar to the single-objective approach. The users only needs to
provide a dataset, a model, the hyperparameter space (defined in a
configuration file) and the metrics to optimize.

# loading of a pre-processed dataset
dataset = Dataset()
dataset.fetch_dataset("M10")

#model instantiation
lda = LDA(num_topics=25)

#definition of the metrics to optimize
td = TopicDiversity()

coh = Coherence()

metrics = [td, coh]

#definition of the search space
config file = "path/to/search/space/file"
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#define and launch optimization

mmm = MOOptimizer(
dataset=dataset, model=model,
config _file=config_file,
metrics=metrics, maximize=True)

mmm.optimize()

This code will return the values of the hyperparameters correspond-
ing to the points on the Pareto front for LDA with 25 topics, discov-
ered by maximizing the diversity and the coherence of the topics on
the dataset M1o.

7.1.1  Experimental Setting

OBJECTIVE FUNCTIONS. In our investigation, we consider three
well-known objective functions that consider different aspects of a
topic model: the quality of the topics (NPMI), the diversity of the top-
ics (IRBO, Section 5.2), and the prediction capability of the model in
a classification task (F1). These three aspects are usually investigated
in the topic modeling literature (Chang et al., 2009; Dieng et al., 2020).
However, this set could be extended or reduced based on the needs
of the users’ needs.

All the considered functions must be maximized. NPMI and IRBO
are computed on the top-10 words of each topic. We use a polynomial
SVM and we compute the Micro-F1 measure. We will refer to this
metric as F1.

MODELS In our evaluation, we consider three distinct topic models,
chosen to be the representatives of different categories of topic mod-
els (Stevens et al., 2012; Zhao et al., 2021): classical probabilistic mod-
els, matrix factorization methods, and neural topic models. Due to
their different formulations, all the considered models are controlled
by different types of hyperparameters that we will detail later.

e LDA (as defined in 2.4).

* NMF (Non-Negative Matrix Factorization) (Paatero and Tapper,
1994) ' is a statistical method that reduces the dimensionality
of the input corpus of D documents, viewed as a matrix M of
shape D x |W|, where |[W/| represents the length of the vocabu-
lary. It aims at decomposing M as the product of two matrices
V and H, such that the dimension of V is |W| x K and that of
His D x K. The decomposed matrices must consist of only non-
negative values.

e ZeroShotTM (as defined in 5.3).

1 https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.
NMF . html
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DATASETS. We consider six datasets: 20 NewsGroups (20NG), AFP?,
BBC News (BBC), M1o, StackOverflow (SO)3, and SearchSnippets
(SS)* (Phan et al., 2008). These datasets pertain to different domains.
In the topic modeling literature, it is well-known that the length of the
documents can affect the performance of the topic models (Albalawi
et al., 2020). For this reason, we selected 3 datasets composed of long
texts (20NG, AFP, BBC) and 3 datasets composed of long texts (M1o,
SS, SO). Moreover, the AFP dataset is in French, while the others are
in English.

Datasets SS and SO are already preprocessed. The dataset source
refers to (Phan et al., 2008) for the dataset details; however the pre-
processing pipeline is not available. Datasets 20NG, M10, and BBC
are the ones available in OCTIS. We refer the reader to Section 6.2 for
details on the preprocessing. For APF, we followed the same prepro-
cessing pipeline, except we removed the words that have document
frequency lower than 1% and higher than 70% and we removed the
documents with less than 5 words.

For the sake of completeness, we report the main statistics of the
pre-processed datasets in Table 7.1 and the pre-processing details in
the Appendix. The datasets are split in training (70%), testing (15%)
and validation set (15%).

# Unique Avg doc
words  length (std)

Name # Docs # Labels

20NG 16,309 20 1612 48 (130)
AFP 26,599 17 2686 156 (174)
BBC 2,225 5 2949 120 (72)
Mio 8,355 10 1696 6 (2)
SS 12,295 8 4705 14 (5)
SO 16,407 20 2257 5(2)

Table 7.1: Characteristics of the considered datasets.

MULTI-OBJECTIVE HYPERPARAMETER OPTIMIZATION SETTINGS
We use the Dragonfly library (Kandasamy et al., 2020; Paria et al.,
2019) to simultaneously optimize topic quality (NPMI), topic diver-
sity (IRBO) and classification (F1). To obtain robust evaluations of
the objective metrics, we train each model 30 times and consider the
median of the 30 evaluations as the evaluation of the function to be
optimized. A number n of initial configurations is randomly sampled
via Latin Hypercube Sampling, with n equal to the number of hyper-
parameters to optimize plus 2 to provide enough configurations for

2 http://193.55.113.124/topic-model-api/dataset/afp_fr.tsv
3 https://github.com/qiang2100/STTM
4 https://github.com/qiang2100/STTM
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the initial surrogate model to fit. The total number of BO iterations
for each model is 125. We use Gaussian Process as the probabilistic
surrogate model and the Upper Confidence Bound (UCB) as the ac-
quisition function.

Model Hyperparameter Values/Range
All Number of topics [5, 150]
. —4
LDA o prior [107%,10]
[ prior [10-4,10]
Regularization factor [0, 0.5]
Li-L2 ratio [o,1]
NMF  Initialization method random, nndsvd, nndsvda, nndsvdar
Regularization V matrix, H matrix, both
Activation function softplus, relu, sigmoid, leakyrelu, rrelu, elu,
selu
Dropout [0, 0.95]
Learn priors true (1), false (o)
Learning rate [10-4,10" "]
CTM Momentum [0, 0.9]
Number of layers {1, 2, 3,4, 5}
Number of neurons {100, 200, ..., 900, 1000}

Optimizer adagrad, adam, sgd, adadelta, rmsprop

Table 7.2: Hyperparameters and ranges.

HYPERPARAMETER SETTING We summarize the models” hyperpa-
rameters and their corresponding ranges in Table 7.2. For each model,
we optimize the number of topics, ranging from 5 to 150 topics. Re-
garding LDA, we also optimize the hyperparameters « and 3 priors
that the sparsity of the topics in the documents and sparsity of the
words in the topic distributions respectively. These hyperparameters
are set to range between 10~* and 10 on a logarithmic scale.

The hyperparameters of NMF are mainly related to the regulariza-
tion that can be applied to the factorized matrices. The regularization
hyperparameter controls if the regularization is applied only to the
matrix V, or to the matrix H, or both of them. The regularization factor
denotes the constant that multiplies the regularization terms. It is set
to range between o and 0.5 (where o means no regularization). L1-
Lz ratio controls the ratio between L1 and L2-regularization. It ranges
between o and 1, where o corresponds to L2 regularization only, 1 cor-
responds to L1 regularization only, otherwise it is a combination of
the two types. We also optimize the initialization method for the two
matrices W and H.
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Since CTM is a neural topic model, its hyperparameters are mainly
related to the network architecture. We optimize the number of layers
(ranging from 1 to 5), and the number of neurons (ranging from 100
to 1000, with a step of 100). For simplicity, each layer has the same
number of neurons. We also consider different variants of activation
functions and optimizers. We set the dropout to range between o and
0.95 and the momentum between o and 0.9. Finally, we optimize the
learning rate, that is set to range between 10~% and 107!, on a loga-
rithm scale, and the hyperparameter learn priors that controls if the
priors are learnable parameters. We fix the batch size to 200 and we
adopted an early stopping criterion for determining the convergence
of each model. We use the contextualized document representations
derived from SentenceBERT (Reimers and Gurevych, 2019). In par-
ticular, we use the pre-trained RoBERTa model fine-tuned on STS>
for the English datasets and the multilingual Universal Sentence En-
coder® for AFP.

For all the models, we set the remaining parameters to their default
values.

7.1.2  Results

In the following, we discuss the results of the MOBO experiments
and the hyperparameter transfer experiments. We report the best 5
hyperparameter configurations for each model and metric on each
dataset in Appendix C.
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Figure 7.1: Best performance of the topic models for each evaluation metric
on the considered datasets.
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Figure 7.2: Pareto frontier for the metrics NPMI and IRBO for each model
on the considered datasets.
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Figure 7.3: Pareto frontier for the metrics F1 and NPMI for each model on
the considered datasets.

NO TOPIC MODEL WINS THEM ALL. Figure 7.1 reports the best
performance of the models for each metric and dataset obtained by
the MOBO experiments. It is important to notice that the hyperpa-
rameter configuration that allows a topic model to obtain the best
performance for a given metric may differ from the optimal hyperpa-
rameter configuration for another evaluation metric.

Regarding the models’ performance for the topic coherence (plot
on the left), we can observe that NMF outperforms the other models
in most cases. The stronger regularization in NMF generally leads to
sparse topics and this likely leads to higher coherence scores (Burkhardt
and Kramer, 2019). Considering the predicting capabilities of the mod-
els (central plot of Figure 7.1), CTM usually outperforms LDA and
NMF for short-text documents (M1o, SS), while LDA gets the best
results in long-text datasets (20NG, BBC, AFP). We note that CTM
incorporates contextualized representations originated by a limited
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Figure 7.4: Pareto frontier for the metrics F1 and IRBO for each model on
the considered datasets.

number of tokens, and not by the entire document. It follows that the
representations of CTM may not produce accurate results for long-
text documents. Finally, in the right plot of Figure 7.1, we observe
that CTM and NMF reach comparable topic diversity performance,
often getting topics that are totally different from each other.

As a concluding remark, except for the coherence, we showed that
it is difficult to determine an always-winning topic model when we
boost the performance of the models using multi-objective optimiza-
tion. This finding is consistent with other investigations (Korencic
et al., 2018; Stevens et al., 2012), despite that previous work did not
optimize the models” hyperparameters. This result raises a question
on the fairness of the past comparisons between topic models. This
contributes to the growing amount of negative results when review-
ing previously published work in light of new experiments (Rogers
et al., 2020Db).

CONFLICTING OBJECTIVES. Although considering the best perfor-
mance for each topic model can provide an indicator of its capabili-
ties, it is essential not to focus on a single metric, but rather to jointly
consider multiple objectives. Hereby, we show the trade-off between
a pair of metrics by plotting the Pareto frontier of the considered met-
rics. Figures 7.2, 7.3 and 7.4 show the frontier of each model for the
pairs of metrics (NPMI, IRBO), (F1, NPMI) and (F1, IRBO) respec-
tively.

We can observe that in most cases no model dominates the others,
i.e. there is not any Pareto frontier that is better than the others for all
the objectives. For example, if we consider the frontiers for NPMI and
IRBO on 20NG, the frontier of the models CTM and NMF dominate
LDA. However, CTM and NMF do not dominate each other. In other
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words, for the dataset 20NG, a user that aims at obtaining coherent
and diverse topics has to compromise between the two objectives.

In some cases, a topic model that outperforms the others for a given
metric performs very poorly considering other metrics. For example,
LDA on M1o obtains the best topic coherence but achieves a very low
F1 (<o0.2). Specifically, when considering F1 vs NPMI, we observe that
to obtain high performance for a given metric we need to degrade the
others, and vice versa.

These results enforce the idea of not limiting the experimental cam-
paign of topic models to a single-objective hyperparameter optimiza-
tion approach. Such methodology may lead to non-optimal results
for the metrics that are not optimized. Yet, we should advocate for
models that can guarantee the best trade-off among all the metrics of
interest.

THE COST OF THE HYPERPARAMETER OPTIMIZATION. Although
optimizing the hyperparameters of a topic model guarantees a fair
comparison with other models, this approach is computationally ex-
pensive. In our work, we used BO because it is more efficient than
other methods (Bergstra and Bengio, 2012; Snoek et al., 2012). Yet,
the process requires a fair amount of iterations to guarantee the con-
vergence to an optimal solution, especially when the hyperparameter
space is large. Moreover, we also run the models with the same hy-
perparameter configuration for 30 times to guarantee robust results. It
follows that replicating these results require time and computational
resources. In Table 7.3 we report an average estimation of the time ex-
pressed in minutes for an iteration of the hyperparameter optimiza-
tion for the considered models on the 20NG and M1o. The overall
running time of the optimization can vary depending on the number
of documents, the dimensionality of the vocabulary, on the selected
hyperparameters (e.g. the number of topics), and of course on the to-
tal iterations of the MOBO. For the details on the used architecture,
we refer to Appendix C.

Datasets

20NG Mio

LDA 3751 16.45
NMF 42.16 21.66
CTM 65.98 39.24

Table 7.3: Estimated minutes to complete one iteration of the MOBO for
20NG and Mio for each model.

In light of these observations, we argue that the knowledge that we
have acquired for this extensive experimental campaign needs to be
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exploited and transferred. This will lead to results that are more accu-
rate and obtained more efficiently. As previously mentioned, one di-
rection is to use the best hyperparameter configurations on a dataset
to initialize the hyperparameter optimization on the unseen target
dataset (Feurer et al., 2014). Here, we do not discuss this direction in
detail, but we will later show that hyperparameter transfer is effective
in some cases and it is therefore a promising solution to minimize the
computational cost to achieve optimal results on new datasets.

7.2 HYPERPARAMETER TRANSFER

The knowledge related to optimal hyperparameter configurations,
which we acquire during the multi-objective optimization, can be
transferred to an unseen dataset. his can be done in a zero-shot fash-
ion, i.e. evaluating the best hyperparameters on a dataset to a new
dataset. Another option is to use the the best hyperparameter config-
urations on a dataset to initialize the Bayesian optimization on the
target unseen dataset. Given that the configurations used to initialize
the optimization are close to the optimal configurations, the optimiza-
tion process will reach the optimal results in less time than with the
random initialization.

Our hypothesis is that an optimal hyperparameter configuration
is strongly dependent on some dataset features. We have also pre-
viously seen in Section 7.1 that the length of the documents have a
different effect on topic models. To prove this hypothesis, we follow a
simple and effective hyperparameter transfer approach, based on the
work of Feurer et al. (2014).

Let fi(x) with i = {1,..., N} denotes an objective function (here,
N = 3) and v!,...,vP denote the best hyperparameter configura-
tions discovered by MOBO for the previously seen datasets 1,...,D
respectively. Each y¢ is composed of the t best hyperparameters con-
figuration for the objective function f;. Feurer et al. (2014) define some
dataset features, also called metafeatures, and a similarity measure for
each feature, thus allowing to initialize the surrogate model of the BO
with the best hyperparameter configurations of the dataset that is the
most similar.

Here, we follow the opposite direction to show whether an optimal
hyperparameter configuration is consistent across different datasets
or not. We train a topic model on an unseen target dataset with the
best hyperparameter configurations y¢ of previously seen dataset d
for the given objective function f;. If a configuration can be effec-
tively transferred to every dataset (i.e. the best hyperparameter con-
figuration transferred from a dataset to the target one and vice versa
achieves performances that are close to the optimal ones), then it fol-
lows that the configurations are independent of the datasets” features.
Otherwise, if some configurations do not transfer well on a target
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dataset, it implies that the hyperparameter configurations are depen-
dent on the metafeatures.

7.2.1 Experimental Setting

We divide our experiments in three settings:

S1) First, we want to verify whether it is possible to transfer the
best hyperparameter configurations from a dataset to another
one. In this setting, we consider the 5 best hyperparameter con-
tigurations for each metric, model, and dataset obtained during
the multi-objective optimization experiments in Section 7.1. We
use the identified evaluations coming from a dataset to train a
topic model on a different target dataset. As before, to obtain
a robust result, we train the model with the same hyperparam-
eter configuration 30 times and consider the median of the 30
evaluations.

S2) We aim to empirically show what is the effect of using a good
set of initial configurations (ideally, the ones obtained from trans-
ferring the knowledge from the previous experiments), com-
pared to random initialization of the MOBO algorithm. There-
fore, we select a set of best hyperparameter configurations and
use these to initialize the MOBO process and compare them
with the initial random initialization. We expect that the ran-
dom initialization will require more iterations to get optimal
results.

S3) We will see that our experiments suggest that the language
seems to be invariant to the transfer of the hyperparameters.
Therefore, we will further explore this direction by comparing
the transfer of hyperparameters with a multilingual parallel
dataset. Similarly to the first setting of experiments, we con-
sider the 5 best hyperparameter configurations for each model
and dataset obtained from the multi-objective optimization ex-
periments performed on the new multilingual dataset (follow-
ing the same procedure of Section 7.1, but we focus only on
NPMI. We use the identified evaluations coming from a dataset
to train a topic model on a different target dataset. We train the
model with the same hyperparameter configuration 30 times
and consider the median of the 30 evaluations.

DATASETS. For the setting S1 and S2, we consider the same datasets
as the previous experiments in Section 7.1. While for the final setting
(S3), we consider additional parallel datasets, along with the already
used ones. In particular, we consider the dataset W1 that we have
used in Section 5.3, composed of 20,000 English DBpedia abstracts.
We randomly sample 5,000 documents. Since DBpedia abstracts are

145



146

BEYOND SINGLE-OBJECTIVE HYPERPARAMETER OPTIMIZATION

not parallel translations, we use Google Translate to obtain parallel
the documents in English (DB_EN), Italian (DB_IT), French (DB_FR),
German (DB_DE), Romanian (DB_RO), Spanish (DB_ES) and Por-
tuguese (DB_PT).

The additional parallel datasets have been pre-processed accord-
ing to the following standard procedure: we lowercase the text and
remove punctuation; we use language-specific lemmatizers to lem-
matize the text and remove the stop-words according to language-
specific stop-word lists; finally we remove words with a document
frequency lower than 0.1% and higher than 40% and we remove the
documents with less than 5 words.

# Unique Avg doc
words  length (std)

Name # Docs # Labels

20NG 16,309 20 1612 48 (130)
AFP 26,599 17 2686 156 (174)
BBC 2,225 5 2949 120 (72)
Mi1o 8,355 10 1696 6 (2)
SS 12,295 8 4705 14 (5)
SO 16,407 20 2257 5 (2)
DB_DE 4,996 - 3564 15 (4)
DB_EN 4,995 - 3431 20 (4)
DB_ES 4,996 - 3602 19 (4)
DB_FR 4,996 - 3685 20 (4)
DB_IT 4,992 - 3689 19 (4)
DB_PT 4,996 - 3621 19 (4)
DB_RO 4,997 - 3736 20 (4)

Table 7.4: Characteristics of the considered datasets.

7.2.2  Results

S1: HYPERPARAMETER CONSISTENCY ACROSS DATASETS. Inthe
following, we report the results related to the hyperparameter trans-
fer to an unseen dataset. This allows us to identify if the best hyper-
parameters are consistent across all the datasets. Figure 7.5 shows the
results for LDA, CTM and NMF for each metric. Each matrix repre-
sents the performance of a model when the best 5 hyperparameter
configurations are transferred from a dataset (columns) to the target
dataset (rows). We compute the average of the 5 runs and we nor-
malize each row. The diagonal of the matrix is then usually 1, since
it represents the best configurations identified by the multi-objective
optimization. We report the disaggregated results in the Appendix C.
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Figure 7.5: Setting S1: Heatmap matrices representing the performance
when transferring the 5 best configurations from a dataset to a
target dataset. The average of the runs is computed and each row
is normalized between o and 1.

Let us consider the transfer on LDA (first three matrices on top). Re-
garding NPMI, when we transfer the configurations from/to 20NG,
AFP, and BBC, the topic model obtains results that are similar to the
ones discovered by the previous MOBO experiments. Similar observa-
tions hold for the datasets M10o, SS and SO. We can therefore deduce
that the document length has an impact on the discovery of the best
hyperparameter configuration for topic coherence. We observe a sim-
ilar behavior for the IRBO performance, with the exception of the
BBC dataset. Although the values of the topic diversity are very close
to each other, the long-text datasets usually get similar performance
when the hyperparameters are transferred from long-text datasets,
and the same holds for short-text datasets.

On the other hand, concerning the F1 performance, we observe a
different trend: the configurations coming from BBC, M10, SS and SO
seem to be transferable to that group of datasets, while a configura-
tion coming from 20NG or AFP does not guarantee high performance
on the previous datasets. This suggests that the document length is
not the only feature that needs to be taken into consideration when
we transfer the hyperparameters.

Concerning the models NMF and CTM, we can observe different
patterns for each metric. For example, if we consider the topic coher-
ence in CTM, the configurations related to datasets 20NG, AFP, BBC
and SS have close performances, but are distant from M1o and SO.
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On the other hand, in NMF, the datasets 20NG, M10 and SO appear
to be similar to each other, and distant from the others. This might
be related to the fact that the topic models are regulated by differ-
ent types of hyperparameters, which have a different impact on the
models” objectives.

In the considered experiments, we transfer the hyperparameters of
a French dataset, i.e. AFP, to English datasets (and vice versa). The
AFP’s configurations transferred to another dataset can yield good
results, thus suggesting that the features that make two datasets suit-
able for a transfer for a given metric are likely to be independent
of the dataset language. This result is extremely relevant because it
would allow us to transfer the known best hyperparameter configura-
tions in low-resource settings, when the best hyperparameter configu-
ration for a dataset in a given language is not available or is expensive
to compute.
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Figure 7.6: LDA performance in terms on NPMI with MOBO initialized
with random configurations or with the configurations trans-
ferred from another dataset.

S2: RANDOM INITIAL CONFIGURATIONS VS TRANSFERRED INI-
TIAL CONFIGURATIONS. We will now empirically show what is
the effect of using a good set of initial configurations (obtained from
the transfer of knowledge from previous experiments), compared to
the random initialization.
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Figures 7.6a and 7.6b show the NPMI performance of LDA for the
first 30 MOBO iterations on the datasets 20NG and SS respectively,
when the random initialization is performed (random) or when the
MOBO is initialized with the best configurations deriving from an-
other dataset. In particular, we transfer the configurations from BBC
and AFP for 20NG and the configurations from M1o and SO for SS,
since these are the configurations that transferred better for the con-
sidered target datasets. Since the first 5 iterations are not ordered
chronologically, we just report the maximum of them.

We can observe from both figures that, when using the transferred
hyperparameters, the MOBO can achieve better results in just a few
iterations, outperforming the 30 iterations of the MOBO initialized
with random configurations. Therefore using the transferred config-
urations as initial ones can be helpful to obtain good results in less
iterations.

$S3: HYPERPARAMETER TRANSFER AMONG PARALLEL MULTILIN-
GUAL CORPORA. In the following, we report the results related to
the hyperparameter transfer to an unseen dataset considering the
multilingual parallel corpora. In this case, given the large number
of experiments to perform, instead of transfer the best configurations
for a single metric, we focus only on LDA and on the best configura-
tions with respect to NPMI with a threshold on the topic diversity (we
could not compute F1 on the datasets because labels are not available).
Given the previous experiments on S1, we expect that if we transfer
a hyperparameter configuration from a dataset to another parallel
dataset, then we will maintain similar results.

Figure 7.7 shows the results. As before, the matrix represents the
performance of the model when the best 5 hyperparameter configu-
rations for NPMI (with the topic diversity threshold of 0.8) are trans-
ferred from a dataset (columns) to the target dataset (rows). We com-
pute the average of the 5 runs and we normalize each row.

As expected, we can observe that the diagonal reaches always the
best value per row, meaning that the multi-objective optimization al-
lowed us to get an optimal result. Moreover, we can clearly observe
the lighter square in the top left of the matrix. The best hyperparam-
eters transferred from and to the multilingual datasets allow LDA
to get optimal results for the NPMI. On the contrary, if we transfer
from a DBpedia dataset to another non-DBpedia dataset, we rarely
obtain competitive results. These results confirmed our hypothesis
that the language might be an invariant for the transfer, but instead
what counts is more related to the statistics of the words and docu-
ments. It would be worth investigating in detail which are the main
important features that allows for a good transfer from a dataset to
another unseen dataset.
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target dataset

" dataset to transfer

Figure 7.7: Setting S3: Heatmap matrix representing the performance when
transferring the 5 best configurations from a dataset to a target
dataset. The average of the runs is computed and each row is
normalized between o and 1.

7.3 SUMMARY OF THIS CHAPTER

In the following, we give a short summary of this chapter. In the intro-
duction of the chapter, we reported the following research questions:

Q7.1: Can we optimize the hyperparameters of a topic model to guar-
antee an optimal trade-off between different performance mea-
sures using multi-objective optimization?

Q7.2: Can we transfer the best hyperparameter configurations from a
dataset to an unseen dataset?

To answer Q7.1, we investigated the role of a multi-objective op-
timization approach in topic models. We saw that multi-objective
optimization is effective to discover the best trade-off between dif-
ferent metrics. Moreover, as already confirmed by the experiments
of the previous Chapter, our results show that when we boost the
models” performance at the best of their capabilities, it is not possi-
ble to identify an always-winning topic model for each considered
objective, thus raising a question on the fairness of the past evalua-
tions and comparisons between topic models. This result is further
enforced when additional objectives are jointly considered.

Regarding Q7.2, we showed that, in some cases, it is possible to
effectively transfer the hyperparameters from a dataset to another.
This result paves the way to exciting future research directions. In fact,
the hyperparameter transfer allows researchers to avoid several and
expensive iterations of hyperparameter optimization. In fact, we also
empirically show that we can use the transferred configurations to
initialize the Bayesian Optimization process, reaching optimal results
with fewer iterations.



7.3 SUMMARY OF THIS CHAPTER

It is also worth further investigating which dataset features con-
tribute to a configuration transferable from a dataset to another. Our
results suggest that the document length plays a role in the transfer,
but other features such as the word and class distributions could be
important too. We also showed that the dataset features are likely
to be independent of the dataset language, leading to the use of hy-
perparameter transfer even to unseen datasets in different and low-
resource languages.
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In this thesis, we have defined and compared different methods for
incorporating information into topic models. We have started with
methods that incorporate document-level and word-level relational
information into classical probabilistic topic models. Our results have
shown that we can improve the quality of topics and the representa-
tion of the documents.

We also investigated the incorporation of context information into
neural topic models, to overcome their limitations related to the BoW
assumption. We used contextualized document representations that
allowed us to both improve the quality of the topics and address
cross-lingual tasks.

We also focused our attention on the evaluation of topic models,
proposing a comprehensive framework for evaluating and comparing
topic models, based on single-objective or multi-objective hyperpa-
rameter Bayesian Optimization. This method is generalizable to any
type of topic model and hyperparameters, and allowed us to investi-
gate the relationships between evaluation metrics, models, hyperpa-
rameters, and datasets. Although this method can handle expensive
objective functions, it still requires high computational resources. We,
therefore, explored the possibility of transferring the best hyperpa-
rameters configurations from a dataset to an unseen dataset.

I would also like to share my perspective on the accessibility and
usage of topic models. Latent Dirichlet Allocation with over 40’000
citations is by far the most cited and used topic model. Several mod-
els and approaches have been proposed over the years (including the
ones proposed in this thesis), much more sophisticated and complex
than LDA. Each time a researcher proposes a new topic model, they
claim to have surpassed the state of the art. Yet, everyone continues
to use LDA, even in contexts where we know it will not perform
optimally (Xue et al., 2020). Researchers and practitioners who are
not involved in the topic modeling field might not be aware of the
progress of this active and evolving field. State-of-the-art topic mod-
eling implementations are not always publicly released and, even if
they are, they are not necessarily accessible to everyone (or to most
of the audience of the practitioners). Unfortunately, this is a relevant
issue not only in the topic modeling field but also in the NLP com-
munity (Bianchi and Hovy, 2021).

While keeping this issue in mind, I tried to provide and release
topic models and libraries that are in fact accessible. I have just started
to see the effects of this decision. The libraries I contributed to have
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just reached over 1025 GitHub stars and over 120’000 downloads and
this assures me that we have been following the right direction. Hope-
fully, this will also lead the research in this field and related fields to
progress more quickly and efficiently.

FUTURE RESEARCH DIRECTIONS This thesis opens up to different
research directions, for example,

¢ as already mentioned, the approaches based on the modeling of
potential functions are modular and easy to implement. They
could be applied to a wide variety of classical topics models,
with slight modifications. Our experiments were limited to spe-
cific sources of information, but incorporating and modeling
other sources of information, both domain-specific or general,
could be investigated as well.

¢ We have shown that topic models can benefit from the use of
contextualized representations. Research about language mod-
els and document representations is rapidly evolving and grow-
ing. We are confident that our contextualized topic models can
further benefit from the novel and better contextualized embed-
dings that will be proposed in the future.

* Another exciting direction involves the transfer learning capa-
bilities deriving from the use of contextualized language mod-
els. We have seen that we can use multilingual representations
to train a topic model on a language and predict the topics on
unseen languages. These results can be further explored both
considering low-resource languages and other modalities (e.g.
images).

¢ Our experiments of comparison between different models raise
a question on the fairness of the past evaluations. This con-
tributes to the growing amount of negative results when review-
ing previously published work in light of new experiments. We
agree with Zhao et al. (2021) about the critical need of a bench-
marks for topic modeling.

* Finally, the choice of the right hyperparameters of a topic model
is still an open challenge. Bayesian Optimization can be still ex-
pensive and hyperparameter transfer seems to be a promising
direction. However, investigating which dataset features con-
tribute to a good transfer from a dataset to another is essential.
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PROBABILISTIC GRAPHICAL MODELS

In this Chapter, we will review some of the main notions related to
probabilistic graphical modeling. For a detailed analysis of probabilis-
tic graphical models, we refer the reader to (Koller and Friedman,
2009).

Probabilistic graphical models (PGM) are a rich framework for en-
coding probability distributions. A PGM approach to learning from
data is to imagine and mimic the true phenomenon that generated the
data. We will refer to this process as to "generative process". Usually
the phenomenon that generated the data is unknown and we want to
learn more about it. A PGM assumes the existence of a set of latent
(or unobserved) variables that represent the hidden structure under-
lying the observed data. In the case of topic modeling, the underlying
topics are the latent variable to infer.

A.1 PLATE NOTATION

Probabilistic graphical models use a graph-based representation as
the basis for encoding a complex distribution. In this graphical rep-
resentation, the nodes (circles) correspond to the random variables
(or the priors over the random variables), and the edges correspond
to probabilistic interactions between them, i.e. conditional dependen-
cies. A variable may be replicated for multiple times. To express this
idea, the variable may be inserted into a plate which indicates how
many times the variable may be replicated. Moreover, the circles may
be shaded, denoting an observed random variable, or not shaded, de-
noting an unobserved random variable.

We will illustrate this notation in Figure A.1 through the example
of Latent Dirichlet Allocation (Blei et al., 2003a, LDA), which will
be extensively used throughout the thesis. In this context, knowing
the meaning of each variable is not relevant. We can just notice that
W q is an observed random variable, while the others are unobserved.
Moreover, the variables wn4q and znq are replicated for Ny times.
Analogously, 0 is replicated for D times and ¢ is replicated for K
times. oc and (3 are the priors of 0 and ¢ respectively.

A.2 JOINT DISTRIBUTION
Given the graphical representation of a model, we can deduce the

joint distribution of the probabilistic model. We can do this because
the model clearly represents the conditional dependency relation-
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@e

Figure A.1: LDA in plate notation.

ships between the random variables. Therefore, the joint probability
distribution will be as follows:

p(0,z, &, wle, ) = p(PpIB)p(6le)p(2l6)p(wliz, ) (57)

which can be rewritten as follows, by replicating the variables:

p(6,z, &, wlx, B) = (58)
K D Na
[Tr(@B)- TTp@ale) [ ] plznal®a)p(Wnalzna, z,,)
k=1 d=1 n=1
(59)

A.3 POSTERIOR INFERENCE

The latent random variables, which have ideally generated the data,
are then inferred by reversing the generative process. This process is
called "inference".

Inference in PGM computes the posterior distribution, which is the
distribution of the latent variables after taking into account the ob-
served data. This is determined by Bayes’ rule:

(X|h, &) - (hlx)
P(X]e)

P(hX, @) = P (60)
where h represents the latent variables to infer, X the data (or evi-
dence) and « represent the priors over the random variables (or hy-
perparameters). In topic models, the posterior is usually intractable
because not obtained in a closed form distribution, so we need to
use approximate methods. In Section 2.4, we report two of the most
common ones.

A.4 CONJUGACY OF PROBABILITY DISTRIBUTIONS

It is often convenient to assume that the prior distribution of a ran-
dom variable comes from a family of distributions called conjugate
priors. The usefulness of a conjugate prior is that the corresponding
posterior distribution will be in the same family, and the calculation
may be expressed in closed form.

For example, the Dirichlet distribution is the conjugate prior distri-
bution of the categorical distribution (a generic discrete probability
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distribution with a given number of possible outcomes) and multi-
nomial distribution (the distribution over observed counts of each
possible category in a set of categorically distributed observations).
For a detailed explanation of the probability distributions, we refer
the reader to (Murphy, 2012).
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TOPIC SIMILARITY MEASURES

When a topic model automatically generates a set of topics underly-
ing a given corpus, few of them could be similar while others could
be different. For instance, a topic about technology, characterized by
the words “card video monitor cable vga", is more similar to the topic
“gif image format jpeg color" than one about animals (“cat animal
dog cats tiger"). Methods for automatically determining the similar-
ity between topics have several potential applications, such as the
validation of the quality of the topic modeling output for determin-
ing potential overlaps between pairs of topics (AlSumait et al., 2009)
and document retrieval based on topic proximity (Boyd-Graber et al.,
2017).

To estimate the similarity between topics, several metrics have been
introduced in the state of the art. Most of them are based on word to-
kens and usually adopt a list of top-N terms to estimate if two topics
are related. On the other hand, few approaches exploit the probability
distribution of the words denoting the topics to compute the similar-
ity between themes. These distribution-based measures suffer from
the high dimensionality of the vocabulary, generating solutions that
do not strongly correlate with human judgment (Aletras and Steven-
son, 2014). On the contrary, approaches that focus only on the word
tokens of a topic (Bianchi et al., 2021b; Tran et al., 2013) ignore that
two words could be lexicographically different but denoting a similar
meaning. For instance, the words cat and kitten should not be con-
sidered totally dissimilar. A preliminary investigation that partially
addressed the above problems has been introduced in (Aletras and
Stevenson, 2014). They represent the words of a topic as vectors in
a semantic space constructed from an external source or from the
corpus using Pointwise Mutual Information (PMI). However, this ap-
proach is computationally expensive, requiring to compute the prob-
ability of the co-occurrence for each pair of words in the corpus, and
does not take into account the more recent advances in Word Embed-
dings (Grave et al., 2018; Mikolov et al., 2013; Pennington et al., 2014),
that have already proved their benefits in several NLP applications
and topic modeling (Batmanghelich et al., 2016; Nguyen et al., 2015).
Moreover, this approach does not take into account that the topics
extracted are actually ranked lists of words, where the rank provides
useful insight. In particular, if two topics contain the same words but
at different ranking positions, this aspect should be considered when
evaluating the similarity of the generated solution.
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In this Chapter, we will therefore propose new topic similarity met-
rics that exploit the nature of word embeddings and take into consid-
eration topics as ranked lists of words. We demonstrate in the experi-
mental evaluation that these metrics can discover semantically similar
topics, also outperforming the state-of-the-art topic similarity metrics.

B.1 TOPIC SIMILARITY/DISTANCE MEASURES: STATE OF THE ART

Recall that each topic in probabilistic topic models is represented
as a multinomial distribution over the vocabulary, usually referred
to as word-topic distribution. Researchers usually consider the top-N
most probable words (from the word-topic distribution) to represent
a topic. This top-N ranked list of words can be called topic descriptor
(Belford and Greene, 2019). The word-topic distribution and topic de-
scriptors are the two key elements that can be exploited to estimate
the similarity between two themes.

The topic descriptor of a topic i will be referred to as t;, represented
by its top-N most likely words, i.e. ti = {vo,Vv1,...,VN_1}, Where vy is
a word of the vocabulary V. We will refer to the word distribution of a
topic i as ¢, which is a multinomial distribution over the vocabulary
V. In particular, ¢, represents the probability of the word v in the
topic 1.

In Section 3.4 we have already mentioned the existing metrics for
estimating the similarity or diversity of the topics. We can roughly
divide them into metrics that are based on the counts of the shared
word tokens, i.e. Average Jaccard Similarity (JS), Ranked-Biased Over-
lap (RBO), Average Pairwise Pointwise Mutual Information (PMI),
and metrics that are based on the probability distributions, i.e. Aver-
age Log Odds Ratio (LOR), Kullback-Leibler Divergence (KL-DIV).

In the following, we will propose several metrics that are based
on pre-trained word embeddings to overcome the limitations of the
existing metrics.

B.2 WORD EMBEDDING-BASED SIMILARITY

To overcome the absence of semantics in the traditional similarity
measures available in the state of the art, one can resort to the use
of word embeddings to capture conceptual relationships between
words. In the word embedding spaces, the vector representations
of the words appearing in similar contexts tend to be close to each
other (Mikolov et al., 2013). We can therefore exploit the nature of
word embeddings and define new metrics to estimate how much two
topic descriptors are similar.
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B.2.1 Word Embedding-based Centroid Similarity (WECS)

The simplest strategy consists of computing the Centroidi of two top-
ics t; and t; and then estimating their similarity. Let be t; the vector
centroid of the topic descriptor t; computed as the average of word
embeddings considering all the words belonging to the topic t;.

The Word Embedding-based Centroid Snmlanty between two top-
ics is estimated as WECS(ty, tj) = sml(tl, t ), where sim is a mea-
sure of similarity between vectors, i.e. cosine smnilarity.

B.2.2 Word Embedding-based Pairwise Similarity (WEPS)

An alternative to WECS consists of averaging the pairwise similarity
between the embedding vectors of the words composing the topic
descriptors. We define the similarity between two topics t; and t; as
follows:

WEPS(ty, 1) = N2 Z Z sim(wsy, wy ) (61)
vet uet;

where N represents the number of words of each topic, and w,, and
wy, denote the word embeddings associated with words v and u re-
spectively.

B.2.3 Word embedding-based Weighted Sum Similarity (WESS)

A simple way to combine the probability distributions and the word
embeddings is to compute the sum of the word embeddings of the
words in the vocabulary, where the sum is weighted by the probability
of each term in the topic. Then, we compute the similarity between
the resulting word embeddings.

More formally, let be by = 3 | o ¢y, - Wy, the weighted sum of the
word embeddings of the vocabulary for the topic i. Therefore, the
WESS for the topic i and j is defined as sim(b;, b;).

B.2.4 Word Embedding-based Ranked-Biased Overlap (WERBO)

We can extend the Ranked-Biased Overlap metric (Webber et al., 2010)
and define a new metric of similarity that is top-weighted and makes
use of word embeddings. Given the lists 1; = {cat, animal, dog} and
1, = {animal, kitten, animals}, the words cat and kitten are similar,
even though they are lexicographically different. It follows that their
overlap at depth 2 should be higher than 1. We therefore generalize
the concept of overlap to handle word embeddings instead of simple
word tokens.

Algorithm 1 shows how to compute the generalized overlap be-
tween two topic descriptors t; and t;. First of all, we compute the
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Algorithm 1 Calculate generalized overlap at depth h
Input: t;, t; topic descriptors composed of n words; h depth of the
list, where h <n

1: foru:=1,...,hdo

forv:=1,...,hdo
simwi, wl] = similarity(wi, wi)

end for

end for

overlap :=0

while sim is not empty do
max_value := max(sim)
wi,wl = get_indices(max_value)
remove all entries of w! and w), from sim
overlap := overlap + max_value

: end whilereturn overlap

e PN U AW N

R
R O

=
N

similarity between all the pairs of word embedding vectors w!, and
w), belonging to the two topics i and j (line 1-5). The associative ar-
ray sim (line 3) is indexed by the tuple (wi,wl) and contains all the
computed similarities. Subsequently (line 7-12), we process the asso-
ciative array sim to get the words that are the most similar, to then
update the overlap variable. In particular, the algorithm searches for
the tuple (wi,w)) that has the highest similarity in sim (line 8), re-
moves from sim all the entries containing wi, or wl, (line 9-10) and
finally updates the overlap by adding the highest similarity value
corresponding to the tuple (wi,wl) (line 12). For example, let us
compute the generalized overlap at depth 3 of the word lists 1; =
{cat, animal, dog} and 1, = {animal, kitten, animals}. The result
will be sim(animal, animal) + sim(cat, kitten) + sim(animals, dog),
because (animal, animal) are identical vectors and should be summed
first, then (cat, kitten) are the second most similar vectors, and fi-
nally (animals, dog) are the remaining vectors and should be summed
at last.

In the proposed algorithm, similarity (Wi, w)) is the angular sim-
ilarity between the vectors associated with the word embeddings re-
lated to the words u and v respectively'. Notice that this approach
is based on a greedy strategy that estimates the overlapping by con-
sidering first the most similar embeddings of the words available in
the top-h list. We will then refer to this approach as WERBO-M. In-
stead of computing the similarity between each word embedding,
an alternative metric can compute the centroid of the embeddings
at depth h. In this way, the overlap at depth h is just defined as

We use the angular similarity instead of the cosine because we require the overlap
to range from o to 1.
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similarity(ti, tj) - h, where t; and t; are the centroids of the top-

ics t; and t; respectively. We will refer to this metric as WERBO-C.

B.2.5 Weighted Graph Modularity (NGM)

We can rethink two topic descriptors in the form of a graph. Each
word represents a node in the graph, while the edges denote the
similarity between the words. Considering two topics composed of
their own words (nodes), the intra-topic similarity connections should
be higher than the extra-topic similarity connections with any other
topic. We can express this idea by using the measure of modularity,
which estimates the strength of division of a graph into modules (in
our case, topics).

Let G = (U, E) be a fully connected graph, where U is the words
related to t; and t; and E are weighted edges denoting the sim-
ilarity between pairs of word embeddings. In particular, an edge
weight is defined as Ay, = sim(w,,wy), where (u,v) € E, v,ue U
and sim(-,-) is the angular similarity between two word embeddings.
Given the graph G, originating from two topic descriptors t; and t;,
the Weighted Graph Modularity (WGM) can be estimated as:

1 kyvky
WGM(ti/ tj) = R E [Avu - gT]lvu (62)
v,uelU(G)

where k, and k,, denote the degrees of the nodes v and u respectively,
m is the sum of all of the edge weights in the graph, and 1,,, is an
indicator function defined as 1 if v and u are words belonging to the
same topic, o otherwise. Modularity ranges from -1/2 (non-modular
topics) to 1 (fully separated topics). Therefore, it should be considered
as a dissimilarity score.

B.3 EXPERIMENTAL INVESTIGATION
B.3.1 Experimental Setting

COMPARED MEASURES. Before proceeding with the description of
the validation strategy and the performance measures adopted for
a comparative evaluation, we summarize the investigated measures.
In particular, in Table B.1 we provide details about all the metrics,
reporting their main features:

- TD, which denotes if the metric considers the top-N words of
the topic descriptors;

- PD, that reports if the metric considers the topic probability
distribution;
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- WE, which indicates if the metric overcomes the limitation of
the discrete representation of words by using Word Embed-
dings;

- TW, that identify if the metric is top-weighted, i.e. the words at
the top of the ranked list are more important than the words in
the tail.

The measures’” implementations are integrated into the topic model-
ing framework OCTIS, available at https://github.com/mind-lab/
octis.

Similarity /Distance Measure TD PD WE TW
Jaccard Similarity (JS) (Tran et al., 2013) v

Rank-biased Overlap (RBO) (Webber et al., 2010) v v
Pointwise Mutual Information (PMI) (Aletras and Stevenson, 2014) v

Average Log Odds Ratio (LOR) (Chaney and Blei, 2012) 4
Kullback-Leibler Divergence (KL-DIV) (Sievert and Shirley, 2014) v

Word embedding-based Centroid Similarity (WECS) 4 4
Word Embedding Pairwise Similarity (WEPS) 4 4
Word Embedding-based Weighted Sum Similarity (WESS) v o/
Word Embedding-based RBO - Match (WERBO-M) 4 4 v
Word Embedding-based RBO - Centroid (WERBO-C) v 4 v
Weighted Graph Modularity (WGM) v v

Table B.1: Summary of the characteristics of the metrics. The newly pro-
posed metrics are reported in bold.

VALIDATION STRATEGY. To validate the proposed similarity mea-
sures, and compare them with the state-of-the-art ones, we selected
the most widely adopted topic model to produce a set of topics to
be evaluated. In particular, we trained Latent Dirichlet Allocation
(LDA) (Blei et al., 2003a) on two benchmark datasets, i.e. BBC news
(Greene and Cunningham, 2006) and 20 NewsGroups.?, originating
50 different topics per dataset.3 For the pre-processing, we removed
the punctuation and the English stop-words#, and we filtered out the
less frequent words, obtaining a final vocabulary of 2000 terms.
Given the topics extracted by LDA, we disregarded those with a
low value of topic coherence, measured by using Normalized Point-
wise Mutual Information (NPMI) (Lau et al., 2014a) on the dataset
itself as a reference corpus. Then we randomly sampled 100 pairs of
topics (for each dataset) that have been evaluated by three annotators,
by considering the top-10 words. In particular, the annotators have
rated if two topics were related to each other or not, using a value

http://people.csail.mit.edu/jrennie/20Newsgroups/

We trained LDA with the default hyperparameters of the Gensim library.

We used the English stop-words list provided by MALLET: http://mallet.cs.
umass.edu/


https://github.com/mind-lab/octis
https://github.com/mind-lab/octis
http://people.csail.mit.edu/jrennie/20Newsgroups/
http://mallet.cs.umass.edu/
http://mallet.cs.umass.edu/
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of o (not related topics) and 1 (similar topics). The final annotation
of each pair of topics has been determined according to a majority
voting strategy on the rates given by the three annotators.

For the metrics that are based on the topic descriptors, we consid-
ered the top-10 words of each topic. Regarding the metrics that are
based on word embeddings, we used Gensim’s> Word2Vec model to
compute the embedding space on the corpus with the default hy-
perparameters. The co-occurrence probabilities for the estimation of
PMI have been computed on the training dataset. For the metrics that
represent dissimilarity scores, such as KL-DIV, the LOR and WGM
metrics, we considered their inverse.

PERFORMANCE MEASURES. We evaluated the capabilities of all
the topic similarity metrics, both the ones available in the state of the
art and the proposed ones, by measuring Precision@k, Recall@k and
F1-Measure@k.

In particular, Precision@k (P@k) is defined as the fraction of the
number of retrieved topics among the top-k retrieved topics that are
relevant and the number of retrieved topics among the top-k retrieved
topics. Recall@k (R@k) is defined as the fraction of the number of
retrieved topics among the top-k retrieved topics that are relevant and
the total number of relevant topics. F1-Measure@k (F1@k) is defined
the harmonic mean between P@k and R@X, i.e.

Fl@k = 2(P@k - R@k)/(P@k + R@K). (63)

B.3.2 Experimental Results

Table B.2 shows the results for the BBC News dataset in terms of P@k,
R@k and F1@k by varying k for 1 to 5. As a first remark, we can see
that the metrics that are based on the shared word tokens only, i.e.
the Jaccard Distance (JD) and Rank-biased Overlap (RBO), achieve
the lowest performance. KL-DIV and LOR, which are based only on
the topic-word probability distributions, outperform the baselines JD
and RBO, but they are not able to outperform the proposed measures
that consider the word embeddings similarities. The most competi-
tive metric with respect to the proposed ones is the PMI, which ob-
tains comparative results to the word-embedding metrics for k = 2.
These results suggest that considering a richer representation of top-
ical words helps in retrieving semantically similar topics to a given
target topic. In particular, WERBO-M and WERBO-C reach the high-
est scores in most of the cases. This means that not only the meaning
of the words are important when evaluating the similarity of two top-
ics, but also the position of each word in the topic matters. In fact,

5 https://radimrehurek.com/gensim/

189


https://radimrehurek.com/gensim/

190

Toric SIMILARITY MEASURES

‘ ‘ State-of-the-art metrics ‘ Proposed metrics

| k| JD RBO PMI LOR KL-DIV|WESS WEPS WECS WERBO-M WERBO-C WGM

1 | 0818 0864 0955 0.846 0.909 0.909  0.955  1.000 1.000 1.000 0.818

v 2 | 0727 o0.705 0.864 0.769  0.750 0.795 0.841  0.841 0.864 0.864 0.795
g 3 | 0.652 0.667 0.803 0.667 0.652 0742 0.788  0.773 0.818 0.788 0.773
4 | 0.557 0.557 0.705 0.596  0.602 0.682 0.705  0.693 0.716 0.716 0.693

5 | 0482 0491 0.573 0492 0536 0.573 0582  0.582 0.582 0.582 0.573

‘ avg ‘ 0.647 0.657 0.706 0.674  0.690 0.740 0.774  0.778 0.796 0.790 0.730

1 | 0348 0364 0417 0423  0.402 0.409  0.417  0.439 0.439 0.439 0.379

M 2 | 0545 0.534 0.663 0.641 0587 0.614 0.648 0.648 0.659 0.663 0.621
g 3 | 0697 o0.712 0.871 o0.776  0.716 0803 0.856 0.833 0.879 0.845 0.833
4 | 0784 0.784 0.977 0885 0.848 0.951 0.977  0.966 0.989 0.989 0.966

5 | 0867 0879 0.989 o0.910 0.932 0.985 1.000  1.000 1.000 1.000 0.989

‘ avg ‘ 0.648 0.655 0.783 o0.727  0.697 0.752 0.780  0.777 0.793 0.787 0.758

1 | 0456 0479 0.539 0.521  0.517 0.524 0.539  0.570 0.570 0.570 0.480

v 2 | 0589 0.574 0.708 0.651 0.617 0.650 0.689  0.689 0.705 0.708 0.656
g 3 | 0.644 0.660 0.798 0.675  0.645 0.734 0.783  0.765 0.809 0.777 0.765
4 |0.627 0627 0786 0.677 0.673 0.762 0.786  0.775 0.797 0.797 0.775

5 |0.595 0.605 0.698 0.610 0.654 0.697 0.709  0.709 0.709 0.709 0.698

‘ avg ‘ 0582 0589 o0.706 0.627 0.621 ‘ 0.673 0.701  0.701 0.718 0.712 0.675

Table B.2: Precision@K, Recall@K and Fi-Measure@k on the BBC News
dataset.

WERBO-M and WERBO-C outperform the metrics WEPS and WECD
that do not take into consideration the rank of the words.

Table B.3 reports the results on the 20NewsGroups dataset. Here,
the obtained results are similar to the previous dataset. All the word
embedding-based metrics outperform the state-of-the-art ones. In par-
ticular, WERBO-C outperforms the other metrics or obtain compara-
ble results in most the cases. Even if WESS is the similarity metric
that obtains the best performance on average, the results obtained
by WERBO-C and WERBO-M are definitely comparable. Also on this
dataset PMI seems to be the most competitive metric, however the
word-embedding metrics metrics outperform it in most of the cases.

We report in Table B.4 two examples of topics evaluated by the
considered similarity /distance measures. The first example reports
two topics, that clearly represent two distinct themes, likely religion
and technology. In this case, all the proposed metrics can capture the
diversity of the two topics as well as the measure of the state of the
art. On the other hand, the second example reports two related topics
about technology. We can easily notice that while all the measures of
the state of the art suggest that the two topics are completely different
because of their low values (e.g. ]S = 0.053 and KL-DIV = -4.415), the
proposed metrics can capture their actual similarity.
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State-of-the-art metrics

Proposed metrics

| k | JD RBO PMI LOR KL-DIV | WESS WEPS WECS WERBO-M WERBO-C WGM

1 0.833 0.833 1.000 0.833 0.833 1.000  1.000  0.958 0.958 0.917 0.958

v 2 | 0646 0667 0813 o0.792 0.792 0.833 0.813 0.833 0.813 0.833 0.833
g 3 0.569 0.569 0.681 0.653 0.667 0.694 0.694  0.694 0.708 0.708 0.694
4 | 0458 0458 0.583 0.563 0.583 0583 0.583 0583 0.604 0.604 0.583

5 | 0.408 0408 0.492 0492  0.492 0.500  0.500  0.500 0.500 0.500 0.500

‘ avg ‘ 0.583 0.587 0.714 0.666 0.673 0.722 0718  0.714 0.717 0.713 0.714

1 | 0424 0424 0542 0375  0.396 0.542 0.542  0.500 0.500 0.459 0.500

y 2 | 0581 0591 0758 0.667 @ 0.737 0779 0.758  0.779 0.758 0.772 0.779
g 3 | o705 o0.701 0.869 0.793 0.848 0.89g0 0.890  0.890 0.904 0.904 0.890
4 | 0734 0734 0950 0.866  0.950 0.950  0.950  0.950 0.974 0.974 0.950

5 | 0807 0.807 0.974 0.946 0.974 0988 0.988  0.988 0.988 0.988 0.988

‘ avg ‘ 0.650 0.651 0.819 0.730 0.781 0.830 0825 0.821 0.825 0.819 0.821

1 0.522 0522 0.653 0487 0.501 0.653 0.653  0.612 0.612 0.570 0.612

v 2 | 0566 0580 o727 0.681 0.706 0.748 0.727  0.748 0.727 0.744 0.748
S 3 | 0587 0585 0709 0.670  0.692 0.725  0.725  0.725 0.739 0.739 0.725
4 | 0.527 0.527 0.674 0.640 0.674 0.674 0.674  0.674 0.696 0.696 0.674

5 | 0.510 0.510 0.610 0.607  0.610 0.621  0.621  0.621 0.621 0.621 0.621

‘ avg ‘ 0.542 0.545 0.675 0.617  0.637 ‘ 0.684 0.680 0.676 0.679 0.674 0.676

Table B.3: Precision@K, Recall@K and Fi-Measure@k on 20 NewsGroups.

Topic 1 Topic 2 Metrics Topic 1 Topic 2 Metrics
god ftp JS=o0 tiff window JS=0.053
christian fax RBO=0 gif application RBO=0.057
christianity pub PMI=-0.042 image manager PMI=o0.327
religion graphics ~ LOR=-3.204 format display LOR=-2.110
faith computer KL-DIV=-4.36416 | jpeg color KL-DIV=-4.415
christ software =~ WESS=-0.145 formats widget WESS=0.787
sin version WEPS=-0.0941 color mouse WEPS=0.402
people mail WECS=-0.183 images screen WECS=0.565
view gov WERBO-M=o0.472 | complex  button WERBO-M=0.651
paul mit WERBO-C=0.120 | resolution user WERBO-C=0.170
WGM=-0.102 WGM=-0.015

Ground Truth = unrelated topics

Ground Truth = similar topics

Table B.4: Qualitative comparison of the considered measures. Since KL-DIV,

LOR and WGM represent dissimilarity scores, they are reported
as their inverse.
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C.1 COMPARATIVE ANALYSIS BETWEEN NEURAL TOPIC MODELS

In this Section we report additional details on the comparative analy-
sis between neural topic models of Section 6.4.

c.1.1  Best Hyperparameter Configurations

We report all the best configurations of hyperparameters discovered
by BO for all the models and for all the considered evaluation mea-
sures in Tables C.1, C.2, C.3, C.4, C.5 and C.6. This would allow a user
to choose a promising hyperparameter configuration for the evalua-
tion metric of their interest.

C.2 HYPERPARAMETER TRANSFER

In this Section we report additional details on the hyperparameter
transfer experiments of Section 7.2.

c.2.1  Disaggregated Results

Figures C.1, C.2 and C.3 show reports the obtained value of the con-
sidered metric for the 5 best hyperparameter configurations that we
transferred from a dataset (x-axis) to the target dataset (— dataset
name).

o prior (3 prior Median

F1* 1.332 1.146 0.472

%
20NG IRBO 0.325 0.004 0.954
KL-B* 0.006 3.054 2.299

NPMI* 0.658 0.520 0.066

F1* 0.627 1.870 0.469
%
Mio RBO 0.349 9403 0.939
KL-B* 2-1074 9.614 2.343
NPMI* 0.005 1.531 -0.083

Table C.1: Best configuration of hyperparameters discovered by BO for LDA
for each evaluation measure.
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o . Learn Learnin
Activation = Dropout 8

Priors Rate
F1* sigmoid 0.0839 1 0.0097
20NG IRBO*  sigmoid 0.0839 1 0.0097
KL-B*  sigmoid 0.9481 1 0.0039
NPMI*  selu 0.0381 0 0.0208
F1* elu 0.0025 1 0.0611
. .
Mo IRBO*  sigmoid 0.0839 1 0.0097
KL-B*  rrelu 0.0198 1 0.0089
NPMI*  softplus 0.1664 0 0.0006
Momentum Num Num Optimizer
Layers Neurons

F1* 0.789 1 8oo adam

%
20NG IRBO*  0.789 1 800 adam
KL-B*  0.984 1 1000 sgd
NPMI*  0.949 3 600 adam
F1* 0.742 5 1000 adam

*
Mo IRBO*  0.789 1 800 adam
KL-B* o.512 5 100 adam
NPMI*  0.374 1 400 sgd

Table C.2: Best configuration of hyperparameters discovered by BO for
ProdLDA for each evaluation measure.
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Figure C.1: Training for LDA: * — d denotes that we transfer hyperparam-
eters from the dataset * to train LDA on the dataset d. The x-
axis reports the different datasets from which a configuration is
transferred.
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. . L L .
Activation  Dropout earn earning

Priors Rate
F1* sigmoid 0.084 0 0.0314
" . .

20NG IRBO sigmoid 0.062 1 0.0273
KL-B* elu 0.0003 0 0.0008
NPMI* sigmoid 0.130 0 0.0075
Fr* sigmoid 0.061 o 0.0129

S
Mio IRBO leakyrelu 0.125 0 0.0019
KL-B* selu 0.0003 0 0.0186
NPMI* selu 0.087 1 0.0002
Momentum Num Num Optimizer

Layers Neurons

Fi*o.575 1 1000 adam 0.339

5
20NG IRBO 0.667 1 400 adam
KL-B* 0.891 3 700 adam
NPMI* 0.797 1 800 rmsprop
F1* 0.756 1 800 rmsprop
Mio IRBO 0.859 2 200 sgd
KL-B* 0.269 2 600 adam
NPMI* 0.754 1 100 sgd

Table C.3: Best configuration of hyperparameters discovered by BO for
NeurLDA for each evaluation measure.
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Figure C.2: Training for CTM: * — d denotes that we transfer hyperparam-
eters from the dataset * to train CTM on the dataset d. The x-
axis reports the different datasets from which a configuration is
transferred.
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Learn  Learning

Activation Dropout Momentum
Priors Rate
F1* sigmoid 0.046 1 0.0018 0.751
£3
20NG IRBO leakyrelu 0.145 0 0.0922 0.336
KL-B* elu 0.013 0 0.0950 0.725
NPMI*  selu 0.064 0 0.0065 0.945
F1* sigmoid 0.190 1 0.0087 0.091
Mio IRBO*  sigmoid 0.084 1 0.0097 0.789
KL-B*  selu 0.088 1 0.0135 0.964
NPMI*  sigmoid 0.617 0 0.0010
Momentum Num Num Optimizer
Layers Neurons
F1* 0.751 1 700 adam
£33
20NG IRBO*  0.336 1 800 adam
KL-B*  o.725 5 300 rmsprop
NPMI*  0.945 1 1000 rmsprop
F1* 0.091 2 800 adam
£
Mio IRBO*  0.789 1 800 adam
KL-B*  0.964 5 800 adam
NPMI* o0.308 1 800 sgd

Table C.4: Best configuration of hyperparameters discovered by BO for CTM
for each evaluation measure.
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Figure C.3: Training for NMF: * — d denotes that we transfer hyperparam-
eters from the dataset * to train NMF on the dataset d. The x-
axis reports the different datasets from which a configuration is
transferred.
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Activation BOW Dropout Learning
norm Rate

F1* leakyrelu 1 0.315  0.006393

" . .
20NG IRBO sigmoid o} 0.919  0.000176
KL-B*  leakyrelu 1 0.044  0.027539
NPMI*  leakyrelu 1 0.009  0.004234
Fr* rrelu 1 0.058  0.006062

" . .
Mo IRBO*  sigmoid 0 0.206  0.000003
KL-B*  selu 0 0.602  0.003294
NPMI*  relu 1 0.500  0.005000

Optimizer Rho Hidden  Weight
size size decay
F1* adam 200 800  0.000005
*

»ONG IRBO sgd 200 300  0.000004
KL-B*  adagrad 300 300  0.000005
NPMI* adam 200 200  0.000005
F1* adam 100 600  0.000001
Mio IRBO*  adagrad 200 100  0.007168
KL-B* adam 300 1000  0.000155
NPMI* adam 300 300  0.000001

Table C.5: Best configuration of hyperparameters discovered by BO for ETM

for each evaluation measure.
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Activation BOW Dropout Learning
norm Rate
F1* elu 1 0.814  0.000008
*
20NG IRBO relu o} 0.918  0.000002
KL-B*  selu 1 0.157  0.004597
NPMI* elu 0 0.121  0.000331
F1* softplus 0 0.182  0.000042
e
Mio IRBO selu 1 0.406  0.008958
KL-B*  leakyrelu 1 0.051  0.013990
NPMI*  relu 1 0.500  0.005000
Optimizer Hidden Weight
size decay
F1* adam 700 0.000190
*
20NG IRBO adam 600 0.001485
KL-B* adam 1000 0.000076
NPMI*  rmsprop 1000 0.000004
F1* adam 800 0.000001
5
Mio IRBO adam 1000 0.002974
KL-B* adam 300 0.000002
NPMI* adam 300 0.000001

Table C.6: Best configuration of hyperparameters discovered by BO for ETM-
PWE for each evaluation measure.
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c.2.2  Best hyperparameters configurations

Tables C.7, C.8 and C.g report the 5 best hyperparameter configura-
tions for LDA for F1, NPMI, and IRBO respectively. Analogous details
are provided in Tables C.10, C.11 and C.12, C.13, C.14 and C.15 for
CTM and NMF respectively.

c.2.3 Computing Infrastructure

We ran the experiments on a machine equipped with 4 T1390 GPU,
CUDA v11.1, 512GB RAM, Intel(R) Xeon(R) CPU E5-2683 v4 @ 2.10GHz.
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Dataset o prior [ prior # Topics IRBO NPMI F1

20NG 0.0001  10.0000 20 0.95 0.061 0.397
20NG 0.0008  6.3062 26 0.953 0.058 0.424
20NG 0.0121  0.0001 21 0.95 0.057 0.408
20NG 0.0023  1.2349 27 0.961 0.057 0.428
20NG 0.0002  0.0002 19 0.946 0.055 0.403
BBC 0.1007  10.0000 32 0.827 -0.007 0.73
BBC 0.0863  6.7863 48 0.85 -0.007 0.742
BBC 0.1892  1.0099 66 0.861 -0.008 0.746
BBC 0.0080  3.0815 38 0.836 -0.008 o0.751
BBC 0.0002  0.0001 46 0.849 -0.009 0.627
AFP 0.0015  0.0001 46 0.976 0.145 0.942
AFP 0.0001  0.0001 49 0.976 0.144 0.94
AFP 0.0054  0.0008 44 0.976 0.143 0.941
AFP 0.0004  0.0010 50 0.977 0.143 0.942
AFP 0.1969  0.0002 46  0.977 0.143 0.944
SS 0.0001  4.8535 147 0.992 -0.093 0.603
SS 0.0003  9.1500 149 0.991 -0.094 0.538
SS 0.0119 10.0000 150 0.991 -0.094 0.567
SS 0.0001  10.0000 150 0.991 -0.095 0.518
SS 0.0001  10.0000 150 0.991 -0.096 0.506
Mio 0.0030  10.0000 150 0.974 0.101 0.142
Mi1o 0.0013  10.0000 150 0.972 0.098 0.106
Mi1o 0.0024 10.0000 150 0.973 0.098 0.144
Mio 0.0011  10.0000 150 0.974 0.097 0.141
Mio 0.0014 10.0000 150 0.972 0.097 0.141
SO 0.0007  10.0000 133  0.97 -0.008 0.093
SO 0.0019  10.0000 138 0.955 -0.012 0.094
SO 0.0004 10.0000 138 0.955 -0.024 0.093
SO 0.0004 10.0000 142  0.94 -0.024 0.093
SO 0.0002  10.0000 142 0.941 -0.025 0.093

Table C.7: Best 5 hyperparameter configurations for LDA on each dataset
for NPML.
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Dataset o prior 3 prior # Topics IRBO NPMI F1
20NG 0.0001  10.0000 20 0.95 0.061 0.397
20NG 0.0008  6.3062 26 0.953 0.058 0.424
20NG 0.0121  0.0001 21 0.95 0.057 0.408
20NG 0.0023  1.2349 27  0.961  0.057 0.428
20NG 0.0002  0.0002 19 0.946 0.055 0.403

BBC 0.1007  10.0000 32 0.827 -0.007 0.73
BBC 0.0863  6.7863 48 0.85 -0.007 0.742
BBC 0.1892  1.0099 66 0.861 -0.008 0.746
BBC 0.0080  3.0815 38 0.836 -0.008 0.751
BBC 0.0002  0.0001 46 0849 -0.009 0.627
AFP 0.0015  0.0001 46 0976  0.145 0.942
AFP 0.0001  0.0001 49 0976 0.144 0.94
AFP 0.0054  0.0008 44 0976  0.143 0.941
AFP 0.0004  0.0010 50 0.977  0.143 0.942
AFP 0.1969  0.0002 46  0.977 0.143 0.944
SS 0.0001  4.8535 147 0.992 -0.093 0.603
SS 0.0003  9.1500 149 0.991 -0.094 0.538
SS 0.0119  10.0000 150 0.991 -0.094 0.567
SS 0.0001  10.0000 150 0.991 -0.095 0.518
SS 0.0001  10.0000 150 0.991 -0.096 0.506
Mio 0.0030  10.0000 150 0.974 0.101 0.142
Mio 0.0013  10.0000 150 0.972  0.098 0.106
Mio 0.0024  10.0000 150 0.973 0.098 0.144
Mio 0.0011  10.0000 150 0.974 0.097 0.141
Mio 0.0014  10.0000 150 0.972 0.097 0.141
SO 0.0007  10.0000 133 0.97 -0.008 0.093
SO 0.0019  10.0000 138 0.955 -0.012 0.094
SO 0.0004  10.0000 138 0.955 -0.024 0.093
SO 0.0004  10.0000 142  0.94 -0.024 0.093
SO 0.0002  10.0000 142 0.941 -0.025 0.093

Table C.8: Best 5 hyperparameter configurations for LDA on each dataset

for Fi1.
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Dataset o prior 3 prior # Topics IRBO NPMI F1

20NG 0.1483  0.0083 150 0.994 -0.010 0.473
20NG 0.0446  0.0001 150 0.993 -0.005 0.455
20NG 0.0947  0.0002 150 0.993  0.005 0.399
20NG 0.0048  0.2000 150 0.993 -0.003 0.434
20NG 0.1961  0.0001 111 0.993 0.010 0.365
BBC 0.0001  0.0001 150 0.906 -0.021 0.357
BBC 0.0447  10.0000 150 0.906 -0.020 0.691
BBC 0.0001  0.0001 150 0.906 -0.021 0.348
BBC 0.0004  10.0000 150 0.906 -0.020 0.697
BBC 0.0003  0.0071 150 0.906 -0.020 0.325
AFP 0.1668  0.0002 150 0.987 0.103 0.953
AFP 0.0452  0.0001 148 0.987  0.107 0.948
AFP 0.0017  0.0001 149 0.986  0.107 0.943
AFP 0.0006  0.0015 150 0.986  0.107 0.943
AFP 0.0001  0.0001 150 0.986  0.107 0.943
SS 0.0990  0.4641 98 0.997 -0.256 0.557
SS 0.1242  0.0014 150 0.997 -0.273 0.577
SS 0.2860  0.0085 69 0.997 -0.265 0.579
SS 0.3039  0.9328 83 0.997 -0.220 0.611
SS 0.0052  0.3995 149 0.996 -0.236 0.553
Mio 0.1483  0.0001 150 0.987 -0.236 0.291
Mio 0.1496  0.018y 103 0.985 -0.252 0.556
Mi1o 0.0524  0.2615 102 0.985 -0.239 0.429
Mio 0.0130  0.0011 105 0.984 -0.209 0.500
Mio 0.0249  0.0001 117  0.984 -0.207 0.510
SO 0.1657  0.0001 64 0.996 -0.302 0.585
SO 0.0863  0.5342 81 0.995 -0.297 0.605
SO 0.0808  0.0037 92 0.993 -0.304 0.607
SO 0.0135  0.4842 68 0.993 -0.264 0.503
SO 0.0223  0.5298 62 0.993 -0.262 0.504

Table C.9: Best 5 hyperparameter configurations for LDA on each dataset
for IRBO.
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Dataset Activation Dropout Learn  Learning Momentum # Layers # Topics # Neurons Optimizer IRBO NPMI F1
Priors Rate

20NG  rrelu 0.000 ©O 0.0001 0.114 1 143 1000 rmsprop 0.989 0.024 0.480
20NG  elu 0.113 1 0.0020 0.489 2 53 600 adam 0.994 0.094 0.467
20NG  elu 0.061 1 0.0001 0.387 2 118 100 rmsprop 0.985  0.044 0.464
20NG  leakyrelu 0326 1 0.1000 0.808 1 63 400 rmsprop 0.995 0.082 0.464
20NG  rrelu 0.022 0 0.1000 0.200 1 64 200 adam 0.996  0.097 0.462
AFP leakyrelu 0.274 1 0.0626 0.116 4 148 1000 rmsprop 0989 0.104 0.926
AFP  rrelu 0322 1 0.0015 0.900 1 150 1000 rmsprop 0.993 0.101 0.923
AFP  rrelu 0354 O 0.0440 0.900 3 126 600 rmsprop 0.988 0.113 0.919
AFP  rrelu 0.115 1 0.0207 0.018 4 138 300 adam 0.991  0.112 0.917
AFP  softplus 0.000 0 0.1000 0.755 2 61 900 adam 0.995  0.145 0.913
BBC  rrelu 0312 0 0.0149 0.420 3 139 900 adam 0.988  0.000 0.901
BBC selu 0327 0 0.0025 0.720 3 150 600 adam 0.978 0.062 0.901
BBC selu 0.000 1 0.0055 0.061 1 9 800 rmsprop 1.000  0.066 0.899
BBC elu 0.606 0 0.0001 0.482 2 78 300 sgd 0.948 0.075 0.899
BBC rrelu 0.220 1 0.0013 0.900 1 6 900 rmsprop 1.000  0.004 0.894
Mio elu 0438 o 0.0012 0.012 1 16 1000 sgd 0.985 0.042 0.674
Mio selu 0.645 © 0.0006 0.748 1 15 800 sgd 0.973 0.048 0.670
Mio elu 0549 © 0.0025 0.012 1 24 300 rmsprop 0.980 0.026 0.665
Mio elu 0.708 1 0.0066 0.363 1 37 300 adam 0.971  0.023 0.664
Mio elu 0.640 1 0.0003 0.304 1 37 100 sgd 0.964 0.051 0.661
SO elu 0.367 1 0.0005 0.558 3 22 600 adam 0.990  0.042 0.732
SO selu 0.126 1 0.0004 0.377 1 44 700 adam 0.987 -0.019 0.721
SO elu 0577 1 0.1000 0.134 3 26 400 adadelta 0.972  0.034 0.717
SO sigmoid 0.727 1 0.0009 0.716 1 23 600 adam 0.974 0.050 0.715
SO elu 0.000 0 0.0001 0.840 2 19 600 rmsprop 0.996  0.043 0.714
SS elu 0452 1 0.0027 0.285 2 44 300 adam 0.991  0.011 0.809
SS selu 0777 1 0.0005 0.590 1 127 400 adam 0.977 0.023 0.807
SS leakyrelu 0.034 1 0.0721 0.054 2 26 800 rmsprop 1.000 -0.009 0.806
SS selu 0489 1 0.0057 0.084 2 59 800 rmsprop 0.992 -0.024 0.805
SS rrelu 0.562 1 0.0014 0.794 1 71 300 rmsprop 0.990 -0.012 0.804

Table C.10: Best 5 hyperparameter configurations for CTM on each dataset

for Fi1.
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Dataset Activation Dropout Learn Learning Momentum # Layers # Topics # Neurons Optimizer IRBO NPMI F1
Priors  Rate

20NG  elu 0.000 o 0.1000 0.859 1 27 1000 rmsprop 0.997 0.115 0.461
20NG  elu 0.127 o 0.0016 0.009 1 30 900 rmsprop 0.996  0.112 0.458
20NG  leakyrelu 0.000 1 0.0052 0.650 2 44 600 rmsprop 0.995 0.109 0.456
20NG  elu 0.000 1 0.0712 0.097 3 49 1000 adam 0.995 0.100 0.424
20NG  leakyrelu 0.356 o 0.0028 0.744 1 22 1000 rmMSprop 0.995  0.097 0.409
BBC  softplus 0.000 1 0.0018 0.306 1 18 400 adam 0.994 0.120 0.876
BBC softplus 0.272 o 0.0002 0.066 1 16 200 sgd 0.977 0.109 0.878
BBC  relu 0.003 1 0.0002 0.067 1 37 700 sgd 0.977 0.106 0.797
BBC elu 0.000 o 0.0001 0.500 3 10 300 sgd 0.984 o0.101 0.890
BBC elu 0.130 o 0.0001 0.453 4 26 200 sgd 0.972  0.091 0.890
AFP  rrelu 0.000 o 0.1000 0.105 4 129 900 adagrad 0.989 0.155 0.887
AFP  rrelu 0.000 o 0.0495 0.089 3 41 100 rmsprop 0.995 0.146 0.898
AFP  softplus 0.000 o 0.1000 0.755 2 61 900 adam 0.995 0.145 0.913
AFP  relu 0.000 o 0.0075 0.701 1 97 1000 rmsprop 0.994 0.144 0.896
AFP  relu 0.000 1 0.0875 0.856 4 58 600 adam 0.995 0.142 0.911
SS selu 0.802 1 0.0001 0.781 3 38 100 Trmsprop 0.952  0.031 0.757
SS relu 0.296 o 0.0001 0.640 1 42 100 rmsprop 0981 0.031 0.773
SS selu 0.360 o 0.0002 0.688 1 42 700 rmsprop 0.990 0.031 o0.801
SS selu 0.359 o 0.0001 0.643 1 34 800 rmsprop 0.991  0.030 0.802
SS selu 0.824 1 0.0002 0.469 1 105 400 rmsprop 0.969  0.029 0.802
Mio elu 0.640 1 0.0003 0.304 1 37 100 sgd 0.964 0.051 0.661
Mio  selu 0.645 o 0.0006 0.748 1 15 8oo sgd 0.973 0.048 0.670
Mio elu 0.438 o 0.0012 0.012 1 16 1000 sgd 0.985 0.042 0.674
Mio  leakyrelu 0.393 o 0.0005 0.111 2 22 700 sgd 0972  0.038 0.648
Mio  softplus 0.300 1 0.0006 0.694 2 30 800 sgd 0.974 0.036 0.657
SO sigmoid 0.013 1 0.0016 0.442 1 18 100 sgd 0.991  0.073 0.701
SO selu 0.000 1 0.0023 0.130 2 18 300 sgd 0.992 0.070 0.712
SO relu 0.000 1 0.0005 0.870 2 16 1000 sgd 0.993 0.062 0.679
SO rrelu 0.041 o 0.0050 0.305 2 19 200 sgd 0.990  0.060 0.690
SO leakyrelu 0.482 1 0.0004 0.154 1 17 8oo sgd 0.987  0.058 0.698

Table C.11: Best 5 hyperparameter configurations for CTM on each dataset
for NPML
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Dataset Activation Dropout Learn Learning Momentum # Layers # Topics # Neurons Optimizer IRBO NPMI F1
Priors  Rate
20NG  rrelu 0.0238 o 0.0078 0.741 3 5 400 rmsprop 1.000  0.021 0.215
20NG  softplus 0.4102 1 0.0580 0.270 2 5 600 rmsprop 1.000  0.013 0.203
20NG  rrelu 0.0000 1 0.0874 0.389 1 5 400 adagrad 1.000  0.004 0.235
20NG  rrelu 0.0402 o 0.1000 0.552 4 5 100 adagrad 1.000 -0.006 0.197
20NG leakyrelu 0.0000 1 0.0633 0.385 1 5 500 adam 1.000  0.016 0.242
BBC  rrelu 0.0225 1 0.0676 0.864 4 5 900 adam 1.000 -0.039 0.843
BBC  selu 0.0000 1 0.0055 0.061 1 9 800 rmsprop 1.000  0.066 0.899
BBC rrelu 0.2199 1 0.0013 0.900 1 6 900 rmsprop 1.000  0.004 0.894
BBC  relu 0.0000 o 0.0005 0.038 1 5 700 adadelta 1.000 -0.433 0.342
BBC  rrelu 0.0177 1 0.0792 0.819 1 5 9oo adagrad 1.000 -0.032 0.894
AFP  selu 0.6558 1 0.0060 0.540 1 5 600 rmsprop 1.000  0.051 0.657
AFP  leakyrelu 0.0000 1 0.0712 0.439 3 5 800 adagrad 1.000  0.033 0.667
AFP  rrelu 0.0000 1 0.1000 0.763 4 5 200 adagrad 1.000  0.025 0.665
AFP  leakyrelu 0.0000 o 0.0009 0.532 1 5 400 rmsprop 1.000  0.064 0.666
AFP  rrelu 0.0000 1 0.0712 0.807 2 8 500 adagrad 1.000 0.083 0.781
SS rrelu 0.0000 1 0.0578 0.455 4 17 700 rmsprop 1.000 -0.030 0.794
SS selu 0.0000 1 0.0013 0.900 5 5 800 adam 1.000 -0.105 0.549
SS selu 0.0000 1 0.0006 0.729 1 7 200 adam 1.000  0.005 0.694
SS relu 0.1055 1 0.0088 0.836 4 5 300 adam 1.000 -0.155 0.530
SS relu 0.8341 o 0.0010 0.900 2 5 1000 adam 1.000 -0.153 0.523
Mio  rrelu 0.0000 o 0.0086 0.791 1 5 700 adam 1.000 -0.083 0.496
Mio  leakyrelu 0.0329 o 0.0059 0.214 2 5 700 rmsprop 1.000 -0.101 0.478
Mio  selu 0.0000 1 0.0196 0.088 1 5 300 adam 1.000 -0.116 0.490
Mio  relu 0.0000 1 0.0489 0.157 1 5 400 adam 1.000 -0.134 0.492
Mio elu 0.6812 1 0.1000 0.013 1 6 300 adam 1.000 -0.073 0.520
SO softplus 0.3098 1 0.0001 0.527 3 5 600 rmsprop 1.000 -0.135 0.304
SO rrelu 0.4490 1 0.0167 0.602 1 5 300 rmsprop 1.000 -0.162 0.305
SO selu 0.5117 0 0.0233 0.752 1 5 400 rmsprop 1.000 -0.147 0.310
SO elu 0.1316 1 0.0006 0.405 2 5 900 sgd 1.000 -0.052 0.290
SO softplus 0.2041 1 0.0002 0.312 3 5 1000 rmsprop 1.000 -0.116 0.308

Table C.12: Best 5 hyperparameter configurations for CTM on each dataset
for IRBO.
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ADDITIONAL RESULTS

Dataset Reg. factor Li1/L2 Initialization Regularization # Topics IRBO NPMI F1
20NG 0.000  1.000 random H matrix 150 0.993 0.060 0.494
20NG 0.109  0.110 random H matrix 150 0.992  0.059 0.492
20NG 0.000 1.000 nndsvda H matrix 150 0.992 0.061 0.491
20NG 0.500 0.000 nndsvda V matrix 150 0.992 0.061 0.489
20NG 0.001  0.537 random H matrix 140 0.992 0.064 0.489

BBC 0.336  0.000 nndsvdar both 5 0.989 0.153 0.901
BBC 0.068  0.156 nndsvd V matrix 5 0.989 0.153 0.899
BBC 0.000 0.738 nndsvda both 5 0.989 0.153 0.899
BBC 0.000 0.000 nndsvda both 5 0.989 0.153 0.899
BBC 0487  0.000 random V matrix 5 0989 0.153 0.899
AFP 0.131  0.000 random both 150 0.994 0.188 0.944
AFP 0.139 0.280 random H matrix 147 0.994 0.186 0.944
AFP 0.050 0.991 random H matrix 150 0.994 0.184 0.943
AFP 0.314 0.000 nndsvdar H matrix 150 0.995 0.186 0.943
AFP 0.445 0.066 nndsvdar H matrix 148 0.995 0.185 0.943
SS 0.500 0.507 nndsvda V matrix 150 0.997 0.022 0.676
SS 0.000  0.174 nndsvd both 146 0.997 0.019 0.674
SS 0.000  0.021 nndsvdar H matrix 150 0.997 0.017 0.674
SS 0.015 0.000 nndsvdar both 150 0.997 0.018 0.674
SS 0.219  0.000 nndsvda V matrix 150 0.997 0.018 0.673
Mi1o 0.275 0.000 nndsvda H matrix 150 0.994 -0.191 0.599
Mio 0.000  0.408 nndsvdar both 150 0.994 -0.192 0.598
Mi1o 0.477  0.000 nndsvdar V matrix 150 0.994 -0.191 0.596
Mio 0.025 0534 nndsvd V matrix 150 0.994 -0.192 0.596
Mi1o 0.000  0.696 nndsvdar V matrix 146 0.994 -0.189 0.596
SO 0.390 0570 nndsvda V matrix 21  0.977 0.034 0.722
SO 0.428 0.563 nndsvdar H matrix 46 0.986 -0.075 0.721
SO 0.130  0.739 nndsvd H matrix 43 0.986 -0.067 0.721
SO 0.140 0.087 random V matrix 44 0.986 -0.070 0.721
SO 0.395 o0.730 nndsvdar V matrix 25 0.981 -0.004 0.720

Table C.13: Best 5 hyperparameter configurations for NMF on each dataset

for F1.



ADDITIONAL RESULTS

Dataset Reg. factor Li1/L2 Initialization Regularization # Topics IRBO NPMI F1
20NG 0.500 0.510 nndsvdar both 5 0983 0.169 0.150
20NG 0.423  0.555 nndsvdar both 5 0.984 0.166 0.156
20NG 0.409  0.303 nndsvda V matrix 9 0.988 0.156 0.325
20NG 0.312 0.350 nndsvda both 5 0.980 0.154 0.208
20NG 0.026 0.395 nndsvda H matrix 10 0987 0.154 0.339

BBC 0.500 0.788 nndsvda H matrix 28 0.992 0.190 0.833
BBC 0.429  0.344 nndsvd both 125 0.959 0.190 0.487
BBC 0.234 0.264 nndsvd V matrix 26 0.992 0.189 0.818
BBC 0.486  0.000 nndsvd H matrix 26 0.992 0.189 0.830
BBC 0.465 0.433 nndsvda H matrix 27 0.992 0.188 0.821
AFP 0.415 0.788 nndsvdar both 133 0.993 0.302 0.806
AFP 0.426  0.804 nndsvdar H matrix 20 0.994 0.280 0.900
AFP 0.114 0.078 random V matrix 24 0.994 0.276 0.906
AFP 0.000 0.705 nndsvdar both 28 0.994 0.275 0.904
AFP 0.000  0.000 random V matrix 24 0.994 0.274 0.907
SS 0.379  0.283 nndsvd both 146 0.994 0.076 0.512
SS 0.179  0.708 nndsvdar both 99 0.993 0.073 0.543
SS 0.293  0.255 nndsvdar both 87 0.995 0.073 0.570
SS 0.205  0.477 nndsvd both 150 0.994 0.072 0.548
SS 0.248 0.319 nndsvdar both 75 0.995 0.070 0.563
Mi1o 0.000  0.025 random V matrix 5 0.962 0.051 0.362
Mi1o 0.037 1.000 nndsvdar V matrix 9 0.994 0.049 0.430
Mio 0.120 0.854 nndsvd H matrix 15 0989 0.039 0.468
Mi1o 0.031  0.605 nndsvd V matrix 5 0981 0.032 0.368
Mi1o 0.080 1.000 nndsvdar H matrix 5 0981 0.032 0.369
SO 0.443 0.741 nndsvdar V matrix 12 0974 0.071 0.578
SO 0.090 0.673 nndsvdar both 10 0.975 0.070 0.484
SO 0.182  0.720 nndsvd V matrix 14 0.975 0.068 0.604
SO 0.440  0.612 nndsvdar H matrix 13 0.974 0.066 0.587
SO 0.018 0.378 nndsvdar V matrix 15 0.973 0.064 0.628

Table C.14: Best 5 hyperparameter configurations for NMF on each dataset
for NPML
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ADDITIONAL RESULTS

Dataset Reg. factor Li1/L2 Initialization Regularization # Topics IRBO NPMI F1
20NG 0.250  1.000 random V matrix 11  0.996 -0.207 0.056
20NG 0.443 0.980 random V matrix 87 0.996 -0.195 0.056
20NG 0.479  0.607 random V matrix 124 0.996 -0.193 0.056
20NG 0.204 0.795 random V matrix 131 0.996 -0.195 0.056
20NG 0.500 0.919 random V matrix 67 0.996 -0.196 0.056

BBC 0.390 0.786 nndsvd both 68 1.000 o0.077 0.301
BBC 0281  0.998 random V matrix 1.000 -0.431 0.227
BBC 0.500  1.000 random both 1.000 -0.431 0.227
BBC 0.500  0.478 random V matrix 57 0.998 -0.416 0.227
BBC 0.142  0.447 random H matrix 150 0.995 0.101 0.803
AFP 0.335 0.000 random H matrix 5 1.000 0.203 0.793
AFP 0.372  1.000 nndsvd V matrix 5 1.000 0.203 0.788
AFP 0.366  0.883 nndsvda V matrix 5 1.000 0.203 0.788
AFP 0.282  1.000 random H matrix 5 1.000 0.197 0.791
AFP 0.011  0.000 random H matrix 5 1.000 0.203 0.793
SS 0.072  0.018 nndsvda V matrix 5 1.000 0.050 0.400
SS 0.000 0.742 nndsvdar V matrix 5 1.000 0.050 0.401
SS 0.000  0.849 nndsvda H matrix 5 1.000 0.050 0.395
SS 0.199  1.000 nndsvdar V matrix 5 1.000 0.047 0.396
SS 0.323  1.000 nndsvd V matrix 5 1.000 0.047 0.392
Mio 0.500 0.182 random V matrix 5 0.998 -0.643 0.135
Mi1o 0.215 0.804 random V matrix 6 0997 -0.633 0.135
Mi1o 0.430 0.736 random V matrix 7 0996 -0.624 0.135
Mio 0.092  0.264 random V matrix 86 0.996 -0.514 0.135
Mi1o 0.140 0.789 random V matrix 70 0.996 -0.516 0.135
SO 0.278  0.116 nndsvdar V matrix 150 0.992 -0.231 0.696
SO 0.442 0.000 nndsvd H matrix 150 0.992 -0.231 0.699
SO 0.500  0.000 random V matrix 150 0.992 -0.233 0.697
SO 0429 1.000 nndsvda H matrix 5 0.991 -0.013 0.312
SO 0.183 0.000 nndsvda both 150 0.991 -0.227 0.698

Table C.15: Best 5 hyperparameter configurations for NMF on each dataset
for IRBO.
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