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We propose a new strategy for the determination of the QCD coupling. It relies on a coupling computed 
in QCD with Nf ≥ 3 degenerate heavy quarks at a low energy scale μdec, together with a non-perturbative 
determination of the ratio �/μdec in the pure gauge theory. We explore this idea using a finite volume 
renormalization scheme for the case of Nf = 3 QCD, demonstrating that a precise value of the strong 
coupling αs can be obtained. The idea is quite general and can be applied to solve other renormalization 
problems, using finite or infinite volume intermediate renormalization schemes.

© 2020 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

Currently the best estimates of αs(mZ ) reach a precision be-
low 1%, with lattice QCD providing the most precise determina-
tions [1–8]. The main challenge in a solid extraction of αs by using 
lattice QCD is the estimate of perturbative truncation uncertainties, 
other power corrections, and finite lattice spacing errors which are 
present in all extractions (see also [9,10]).

A dedicated lattice QCD approach, known as step scaling [11], 
allows to connect an experimentally well-measured low-energy 
quantity with the high energy regime of QCD where perturba-
tion theory can be safely applied, without making any assumptions 
on the physics at energy scales of a few GeV. It has recently been ap-
plied to three flavor QCD, yielding αs(mZ ) with very high precision 
by means of a non-perturbative running from scales of 0.2 GeV 
to 70 GeV [8,12,9] and perturbation theory above. Although new 
techniques [13,14] have recently made possible a significant im-
provement over older computations [15,3,16] a substantial further 
reduction of the overall error is challenging.

In this paper we propose a new strategy for the computation 
of the strong coupling. It is based on QCD with Nf ≥ 3 quarks. 
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We take the quarks to be degenerate, with an un-physically large 
mass, M . They then decouple from the low-energy physics, which 
predicts our basic relation
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as we will explain in detail. Here uM = ḡ2
s (μdec, M) is the value 

of the coupling in a massive renormalization scheme at the scale 
μdec. The function ϕ(0)

s (ḡ(μdec)) = �
(0)
s /μdec relates the same cou-

pling and the renormalization scale μ = μdec in the zero-flavor 
theory and the function P gives the ratio �(0)

MS
/�

(Nf)

MS
. As shown in 

[17,18] P is described very precisely by (high order) perturbation 
theory. The scale μdec has to be small compared to M but is arbi-
trary otherwise. To make contact to physical units of MeV for the 
�-parameter, μdec has to be related to a physical mass-scale such 
as μphys = mproton (at physical quark masses). The use of interme-
diate unphysical scales [19] is of course possible.

In essence the above formula relates the Nf-flavor � parameter 
to the pure gauge one by means of a massive coupling. Since per-
turbation theory is used only at the scale M , it can be controlled 
by making M sufficiently large.

The main advantage of this approach is that the non-perturba-
tive running of αs from μdec to high energies is needed only in the 
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. 
pure gauge theory, where high precision can be reached, see [20]. 
It is connected to the three flavor theory by a perturbative approx-
imation for P , which is very accurate already for masses around 
the charm mass, M ≈ Mcharm [18].

Simulating heavy quarks on the lattice is a challenging multi-
scale problem, but defining the intermediate scheme, s, in a finite 
volume allows us to reach large quark masses M ≈ Mbottom.

2. Decoupling of heavy quarks

On general grounds, the effect of heavy quarks is expected to 
give small corrections to low energy physics [21]. Following [22], 
QCD with Nf heavy quarks of renormalization group invariant (RGI) 
mass M is well described by an effective theory at energy scales 
μ � M . By symmetry arguments, this theory is just the pure gauge 
theory [17]. Thus, dimensionless low energy observables can be 
determined in the pure gauge theory – up to small corrections. 
In particular this holds true for renormalized couplings in massive 
renormalization schemes [23],

ḡ(Nf)
s (μ, M) = ḡ(0)

s (μ) + O
(

M−2
)

. (2)

Here and below, O(M−k) stands for terms of O((μ/M)k), O((�/M)k)

Parameterizing the fundamental (Nf-flavor) theory in a massless 
renormalization scheme such as MS, eq. (2) also relates the values 
of the fundamental and effective couplings in the form [23]

[ḡ(0)

MS
(m�)]2 = [ḡ(Nf)

MS
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)
. (3)

In the chosen MS scheme, C is perturbatively known including 
four loops [24–28] and with our particular choice of scale,1 m� =
mMS(m

�), the one-loop term vanishes,

C(ḡ) = 1 + c2(Nf)ḡ4 + c3(Nf)ḡ6 + c4(Nf)ḡ8 + O(ḡ10) . (4)

This relation between couplings provides a relation between the 
�-parameters in the fundamental and effective theories [18]. Given 
the β-function,

βs(ḡs) = μ
dḡs(μ)

dμ
, (5)

in a (massless) scheme s, the �-parameters are defined by2
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s )−b1/(2b2
0)e−1/(2b0 ḡ2
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The function

1 The running quark mass in scheme s is denoted ms .
2 In our notation, the perturbative expansion of the β-function is β(x) = −x3(b0 +

b1x2 + . . .).
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is easily evaluated as explained in [18]. High precision is achieved 
by using the five-loop renormalization group functions [29–33].

Finally, the combination of eqs. (6), (2), (8) results in

ρ P (z/ρ) = �
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MS
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uM = ḡ2
s (μdec, M) , (12)

written in terms of the dimensionless variables

ρ = �
(Nf)

MS

μdec
, z = M/μdec . (13)

The current perturbative uncertainty in P (M/�) is of O(ḡ8(m�)). 
It vanishes together with the power corrections of order M−2 as 
M is taken large. This completes the explanation of eq. (1).

When evaluating the above quantities by lattice simulations, a 
multitude of mass scales are relevant:

• 1/L, the inverse linear box size,
• mπ , the pion mass,
• μphys ∼ μdec ∼ mproton, typical QCD mass scales,
• M ,
• a−1, the inverse lattice spacing.

Small finite size effects require 1/L � mπ , accurate decoupling is 
given when M 	 μdec and all scales have to be small compared 
to a−1. Such multi-scale problems are very challenging; they in-
evitably require very large lattices [18].

2.1. Ameliorating the multi-scale problem with a finite volume strategy

The multi-scale nature of the problem can be made manageable 
by using a finite volume coupling ḡs(μ) = gFV(μ) with [11]

μ = 1/L . (14)

The crucial advantages are:

1. There is no need for the volume to be large.
2. We can choose an intermediate value for the scale μdec. With 

μdec ≈ 800 MeV large quark masses M ≈ 6000 MeV can be 
simulated. Then the uncertainties in the perturbative evalua-
tion of P are negligible and the power corrections (μdec/M)k

are expected to be small [18].
3. One is free to choose a coupling definition that has a known 

non-perturbative running in pure gauge theory, e.g. a gradient 
flow coupling [12].

It remains that aM has to be small at large M/μdec.
Most finite volume couplings used in practice are formulated 

with Schrödinger functional (SF) boundary conditions on the gauge 
and fermion fields [34,35] (i.e. Dirichlet boundary conditions in Eu-
clidean time at x0 = 0, T , and periodic boundary conditions with 
period L in the spatial directions). In this situation, the decoupling 
effective Lagrangian [18] contains terms with dimension four at 
the boundaries, which are suppressed by just one power of M . We 
have to generalize the O(M−2) corrections in eq. (11) to O(M−k)

where k = 1 if a boundary is present [36]. Finite volume schemes 
that preserve the invariance under translations, using either peri-
odic [37] or twisted [38] boundary conditions, would show a faster 
decoupling with k = 2.
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3. Testing the strategy

We now turn to a numerical demonstration of the idea for 
Nf = 3. Our discretisation employs non-perturbatively O(a) im-
proved Wilson fermions, the same action as the CLS initiative [39]. 
The bare (linearly divergent) quark mass is denoted m0 and the 
pure gauge action has a prefactor β = 6/g2

0 . When connecting ob-
servables at different quark masses it is important to keep the 
lattice spacing constant up to order (aM)2. This requires setting 
g2

0 = g̃2
0/(1 + bg(g̃0)amq), where amq = am0 − amcrit and amcrit

denotes the point of vanishing quark mass. The bare improved cou-
pling g̃0 is independent of the quark mass [40,36]. We use the 
one-loop approximation to bg.

3.1. Choice of finite volume couplings

Several renormalized couplings can be defined in the SF using 
the Gradient Flow [14] (see [41] for a review of the topic). Our 
particular choice is based on

Emag(t, x) = 1

4
Ga

ij(t, x)Ga
ij(t, x) , (t > 0; i, j = 1,2,3) , (15)

i.e. the spatial components of the field strength3

Gμν(t, x) = ∂μBν − ∂ν Bμ + [Bμ, Bν ] (16)

of the flow field defined by

∂t Bμ(t, x) = DνGνμ(t, x) , Bμ(0, x) = Aμ(x) . (17)

Composite operators formed from the smooth flow field Bμ are 
finite [42] and thus

[ḡ(3)
GF (μ)]2 = N−1t2〈Emag(t, x)〉

∣∣∣x0=L/2,μ=1/L,
√

8t=cL

M=0,T =L
, (18)

is a finite volume renormalized coupling. Very precise results are 
available for ḡ(3)

GF in Nf = 3 QCD [12] and in the Yang-Mills the-
ory [20]. The constant N is analytically known [14], we take 
c = 0.3 and project to zero topology [43]; thus the coupling is ex-
actly the one denoted gGF in [12]. However, it is advantageous to 
apply decoupling to a slightly different coupling,

[ḡ(3)
GFT(μ, M)]2 = N ′−1t2〈Emag(t, x)〉

∣∣∣x0=L,μ=1/L,
√

8t=cL

T =2L
, (19)

where E is inserted a factor two further away from the bound-
ary and the M−1 effects are substantially reduced [44]. In con-
trast to large changes in the renormalization scale, changes of the 
scheme, ḡ2

GF ↔ ḡ2
GFT are easily accomplished numerically; they do 

not contribute significantly to the numerical effort or the overall 
error. After choosing a precise value for μdec by fixing the value of 
ḡ(3)

GF (μdec), the use of the two schemes is schematically shown in 
the graph

μphys � ḡ(3)
GF (μdec)

���

ḡ(3)
GFT(μdec, M) = ḡ(0)

GFT(μdec)

���
ḡ(0)

GF (μdec)

and explained in detail in the following section.

3 Using only the magnetic components reduces the boundary O(a) effects [14].
Table 1
At each L/a the bare coupling β = 6/g̃2

0 and the bare mass am0 = amcrit are fixed 
to have constant coupling, eq. (20), and vanishing quark mass [46,48]. Zm, bm are 
determined by simulations with different amq at fixed g0 [44].

L/a 6/g̃2
0 amcrit ḡ2

GF Zm bm

12 4.3020 −0.3234(3) 3.9533(59) 1.691(7) −0.43(3)

16 4.4662 −0.3129(2) 3.9496(77) 1.726(8) −0.50(3)

20 4.5997 −0.3043(3) 3.9648(97) 1.741(10) −0.48(4)

24 4.7141 −0.2969(1) 3.959(50) 1.770(11) −0.51(2)

32 4.90 −0.28543(4) 3.949(11) 1.814(16) −0.63(5)

3.2. Numerical computation

We fix a convenient value

[ḡ(3)
GF (μdec)]2 = 3.95 ≡ u0 . (20)

With the non-perturbative β-function of [12] and the relation to 
the physical scale μphys of [8,45]4 we deduce

μdec = 789(15) MeV . (21)

For this choice, the bare parameters, g̃2
0, am0 = amcrit(g̃2

0) are 
known rather precisely for several resolutions L/a [46], see Ta-
ble 1.

In order to switch to massive quarks of a given RGI mass, M =
z/L, we need to know amq which is the solution of

z = L

a

M

m(μdec)
Zm(g̃0,a/L) · (1 + bm(g̃0)amq)amq , (22)

where Zm is the renormalization factor in the SF scheme employed 
in [47] at scale μdec = 1/L, the ratio M

m(μdec)
= 1.474(11) in the 

same scheme is derived from the results of [47], and the term 
bm amq removes the discretisation effects of O(aM). We have com-
puted Zm, bm, listed in Table 1, by dedicated simulations [44].

As indicated above, the switch to massive quarks is accompa-
nied by the switch to ḡGFT in order to suppress linear 1/M terms: 
we evaluate

�M(u0, z) =
[

ḡ(3)
GFT(μdec, M)

]2

[ḡ(3)
GF (μdec)]2=u0

, (23)

z = M/μdec .

Here, with bare mass am0 set as explained, the condition
[ḡ(3)

GF (μdec)]2 = u0 fixes g̃2
0 to the values in Table 1.

We repeat the exercise for z = 1.972, 4, 6, 8, which correspond 
to M ≈ 1.6, 3.2, 4.7, 6.3 GeV.

It is left to perform continuum extrapolations of the function 
�M(u0, z), as illustrated in Fig. 1. They become more challeng-
ing at large values of z. We explore the systematics by imposing 
two mass cuts (aM)2 < 1/8, 1/4 and find compatible results, with 
the results with (aM)2 < 1/8 having significantly larger errors, at 
large values of M , where few points are left after the cut. We 
take the extrapolations using (aM)2 < 1/8 as our best estimates 
of the continuum values of �M(u0, z) (see second column of Ta-
ble 2).

The precise non-perturbative β-function β(0)
GF of Ref. [20] deter-

mines ϕ(0)
GF (ḡGF) in the relevant range of ḡ2

GF � 4. We connect to it 
from the scheme GFT by extra simulations, which evaluate ḡ(0)

GFT(μ)

at the same parameters g2
0, L/a where ḡ(0)

GF (μ) is known. After con-

4 The physical scale is set by a linear combination of Pion and Kaon decay con-
stants.
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Fig. 1. Continuum extrapolation of the massive coupling �M(u0, z). We apply two cuts (aM)2 < 1/8,1/4 in order to estimate the systematic uncertainty.
Table 2
Results for the massive coupling �M(u0, z) at different values of M and fixed 
μdec = 789(15) MeV. The perturbative factor P (M/�) is determined with five-loop 
running and including cl≤4 in eq. (4). �4 shows the effect of c4 in �(3)

MS
. The effect 

of c3 is larger by a factor 1.5 (for z = 1.972) to 3 (for z = 8).

z �M �
(0)

MS
/μdec

1
P (M/�)

�
(3)

MS
[MeV] �4 [MeV]

1.972 4.268(13) 0.689(11) 0.8000(48) 434(12) 2.0
4.0 4.421(13) 0.725(11) 0.6865(28) 393(11) 0.7
6.0 4.499(26) 0.743(13) 0.6283(26) 368(10) 0.4
8.0 4.523(40) 0.749(14) 0.5889(27) 348(11) 0.3
∞ FLAG19 (lattice) [1] 343(12)

tinuum extrapolation of those data with L/a = 12, 16, 20, 24 we 
find for 3.8 ≤ [ḡ(0)

GFT]2 ≤ 5.8 [44]

[ḡ(0)
GF ]−2 − [ḡ(0)

GFT]−2 = p0 + p1[ḡ(0)
GFT]2 + p2[ḡ(0)

GFT]4 ± 7 × 10−4 ,

with (p0, p1, p2) = (2.886, −0.510, 0.056) × 10−2. For each of the 
values �M in Table 2 we obtain uM = [ḡ(0)

GF ]2 from [ḡ(0)
GFT]2 = �M, 

insert into eq. (11) (with scheme s = GF) and solve (numerically) 
for ρ . The table includes �(3)

MS
as well as the influence of the last 

known term of the series eq. (4) which demonstrates that pertur-
bative uncertainties are negligible.

At present we have used a relatively modest amount of com-
puter time. Our largest lattice is just 64 × 323. A significant im-
provement, simulating lattice spacings twice finer, is possible with 
current computing power.

3.3. Results

According to Eq. (1), the values obtained for �
(3)

MS
approach 

the true non-perturbative value as M → ∞. We demonstrate this 
property in the plot of ρ , Fig. 2. While we see power corrections, 
these are small and the point with M ≈ 6 GeV is in agreement 
with the known number from [8] as well as with the FLAG aver-
age [1]. Rough extrapolations to the limit M → ∞ seem to make 
the agreement even better. This limit should be studied with even 
higher precision in the future.

4. Conclusions

In this letter we propose a new strategy to determine the strong 
coupling. It requires the determination of a renormalized cou-
pling in an unphysical setup with degenerate massive quarks at 
some low energy scale. The second ingredient is the determina-
tion of the �-parameter in units of the low energy scale in the 
pure gauge theory defined in terms of the same coupling. The steps 
are

i) Determination of a precise low energy scale, such as t0, in 
physical units.
ii) Definition of a suitable finite volume scheme s = FV with 
coupling g(3)

FV (μ, M) in the theory with three massive, mass-

degenerate, quarks. Determination of the coupling, g(3)
FV (μdec, 0)

in the massless case for μdec = O(1 GeV). The precise value of 
the decoupling scale μdec is irrelevant, but its value has to be 
known precisely with the help of i).

iii) Connection of g(3)
FV (μdec, 0) and g(3)

FV (μdec, M) for sufficiently 
massive quarks: z = M/μdec = 3 and larger.

iv) Determination of �(0)

MS
/μdec as a function of g(0)

FV (μdec) for val-

ues g(0)
FV (μdec) = g(3)

FV (μdec, M) from the previous step.
v) Application of decoupling of the three massive quarks in the 

form of eq. (1) with perturbative P to obtain �(3)

MS
.

As we have shown, there is a clear advantage: the essential part 
of the multi-scale problem (i.e. the determination of �/μ with μ
a low or intermediate energy scale) is done without fermions. The 
remaining problem, namely the limit of large M can be reached 
by two observations. First it is known that with a mass M of a 
few GeV, the perturbative prediction for P is very accurate [49,18]. 
Second we showed that with a suitable finite volume scheme one 
can reach masses of several GeV where the O(1/M2) corrections 
can be controlled.

The result is in good agreement with the more standard step 
scaling approach, but promises a higher precision.

What improvement can we expect? The preliminary extrap-
olation in Fig. 2 shows an improvement of about a factor two 
compared to the FLAG number. The limits a → 0 at fixed M in 
iii) and M → ∞ in iv) still need to be made solid by investing 
a bit more than the present rather modest numerical effort. One 
can assume that the final error at z → ∞ will not be bigger than 
the present one, but will contain a sound estimate of the system-
atics. Further, the errors in the figure at finite z are dominated 
by an about 1.4% contribution from the pure gauge �(0)

MS
/μdec of 

step iv) [20]. Its reduction down to about 0.5% requires a modest 
effort. At that point there remains an, at present 2%, uncertainty 
due to the fixing of μdec in physical units from steps i-ii), which 
we expect to reduce to about 1% by exploiting the newer CLS 
runs close to the physical point as well as more precise step scal-
ing functions of gGF for μ < μdec. As a bottom line a factor two 
improvement of the accuracy of the present world average is in 
reach.

As mentioned, other definitions of the finite volume coupling 
with other boundary conditions may be chosen. We have already 
employed two somewhat different ones, GF and GFT to optimize 
our setup.

An alternative approach relies on the decoupling of t0 [13] or a 
different low energy scale (see also [17,18]),
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Fig. 2. Values for ρ determined from the decoupling relation. As z = M/μdec gets larger, the approximations for ρ = �MS/μdec approach the FLAG result for �(3)

MS
in units 

of μdec = 789(15) MeV [1]. Filled symbols illustrate possible extrapolations M → ∞ (cf. Eq. (1)). The errors of these extrapolations show significantly smaller statistical 
uncertainties than the ones of the FLAG average (μdec gives a negligible contribution to the uncertainty in �(3)

MS
/μdec from FLAG), and may be reduced further with a modest 

computational effort in the Yang-Mills theory. (Note: the data both at finite M and the extrapolations M → ∞ has been slightly shifted horizontally for a better visualization.)
[�MS

√
t0(M)](Nf) P

⎛
⎝ M

�
(Nf)

MS

⎞
⎠ = [�MS

√
t0](0) + O(M−2) .

The r.h.s. is known [20], so �(Nf)

MS
can be determined once t0(M) is 

computed with at least three degenerate quarks in physical units. 
This requires a set of massive large volume simulations. Control-
ling discretization errors, power corrections and perturbative cor-
rections at the same time will require compromises but is worth 
exploring.

The idea presented here can easily be extended to other RGI 
quantities. A clear case is the determination of quark masses, 
where one can replace the running in the full theory by the one 
in the quenched approximation. On the other hand, four fermion 
operators will require to first study their perturbative decoupling 
relations and then to investigate the non-perturbative power cor-
rections.
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