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A Robust Approach to Risk Assessment Based on
Species Sensitivity Distributions

Gianna S. Monti,1 Peter Filzmoser2 Roland C. Deutsch3

The guidelines for setting environmental quality standards are increasingly based on
probabilistic risk assessment due to a growing general awareness of the need for
probabilistic procedures. One of the commonly used tools in probabilistic risk assessment
is the species sensitivity distribution (SSD) which represents the proportion of species
affected belonging to a biological assemblage as a function of exposure to a specific
toxicant. Our focus is on the inverse use of the SSD curve with the aim of estimating
the concentration, HCp, of a toxic compound that is hazardous to p% of the biological
community under study. Towards this end, we propose the use of robust statistical methods
in order to take into account the presence of outliers or apparent skew in the data, which
may occur without any ecological basis. A robust approach exploits the full neighbourhood
of a parametric model, enabling the analyst to account for the typical real world deviations
from ideal models. We examine two classic HCp estimation approaches and consider robust
versions of these estimators. In addition, we also use data transformations in conjunction
with robust estimation methods in case of heteroscedasticity. Different scenarios using real
data sets as well as simulated data are presented in order to illustrate and compare the
proposed approaches. These scenarios illustrate that the use of robust estimation methods
enhances HCp estimation.

KEY WORDS: Hazardous concentration, Box-Cox transformation, Model fit, Monte Carlo

simulations, Bootstrap, Robust Statistics

SUMMARY

The species sensitivity distribution (SSD) is a
commonly used tool in probabilistic risk assessment.
It represents the proportion of species affected
belonging to a biological assemblage as a function
of exposure to a specific toxicant. Different methods
exist to estimate the concentration, HCp, of a
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toxic compound that is hazardous to p% of the
biological community under study. Here, statistical
estimation methods are proposed which are robust
against outliers and more tolerant against strict
data requirements, like (log-)normal distribution. A
comparison between the traditional and the robust
approaches is addressed, especially in presence of
outliers or apparent skew in the data, which may
occur without any ecological basis. In addition, data
transformations are also used in conjunction with
robust estimation methods in case of heteroscedas-
ticity. Results show that the use of robust estimation
methods enhances HCp estimation.
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1. SPECIES SENSITIVITY
DISTRIBUTIONS

Environmental risk assessment is a scientific pro-
cess that identifies and evaluates adversely affected
environments, in particular living organisms and
their ecosystems. The purpose of risk assessment is to
assess the severity and the likelihood of undesirable
outcomes to the environment, which might arise due
to exposure to a toxic compound. Environmental risk
assessment may help risk managers to derive “safe”
exposure levels so that the chances of these outcomes
occurring are limited to an acceptable minimum e.g.
environmental quality standards determined accord-
ing to the European Water Framework Directive,
(10).

The large interspecies difference in sensitivity
delivers a high degree of uncertainty in the risk
assessment. To reduce this uncertainty it would be
opportune to test a wide number of species, however
it would be unfeasible from a practical point of
view. In this context, species sensitivity distributions
(SSDs) are used to quantify the variation in
sensitivity across species with probabilistic models
under certain data limitations (22).

SSDs are indeed a tool that describe the
interspecies variability in sensitivity to a toxic
compound through a statistical distribution function
such as the log-normal (2), the log-logistic (3) or the
log-triangular distributions (13). Less commonly, the
Weibull distribution (31) – the preferred choice for
heavy-tailed distributions – as well as nonparametric
methods (21,33) are also employed. Others have also
used interpolation techniques as the upper end of the
distribution is sometimes undefined (6).

The SSD is an extrapolation model (22,2) with the
aim of making inference from a few tested species
(believed to be representative of the corresponding
biological community) to the community level in
order to predict the environmental impact of con-
taminants. In practice, the SSD is estimated by
fitting a cumulative distribution function (CDF) to a
sample of effect concentrations (such as the median
effective concentration, EC50, or the no-observed-
effect concentration, NOEC) derived from acute or
chronic toxicity tests on the sample species, in which
the species are arranged from the most to the least
sensitive.

Of the two commonly used effect concentrations,
SSDs derived from NOEC are usually considered
more conservative than the ones derived from
EC50. However, one must be aware that NOEC

is not statistically determined, depends upon the
experimental design and has no biological meaning.
Whenever possible, statistically determined values
indicating low or negligible effect (e.g. effective
concentration of level 10, EC10, or 1, EC1) should be
preferred. The data necessary for reliable estimation
of these effect values are often not available or not
reported in the literature. For this reason, robust
statistical methods and their application as described
herein are developed using assemblages of EC50 data,
but would readily transfer to any other series of data.

In ecological risk assessment, SSD curves are
used in two ways, commonly known as the forward
and the inverse approach (30). The goal of the
former is to estimate the proportion of species
affected (potentially affected fraction - PAF) at a
pre-specified effective concentration. Conversely, the
inverse approach is used to estimate the effective
concentration associated with a PAF that is of inter-
est to risk assessors, and thus is helpful in deriving
environmental quality standards. In this context, the
estimator is called hazardous concentration of level
p (HCp) (30) and is defined as the concentration of
a certain toxic compound considered hazardous for
p% of species in a community. For our work presented
herein, the focus lies on the latter, inverse approach
and we will consider HCp-estimation for low values
of p such as 0.01, 0.05 and 0.10. We would also
like to emphasise that while in its original form,
HCp was derived from NOEC data, we use it as a
quantity derived from EC50 data due to the issues
with NOEC estimation stated above. However, our
methods do not depend on this choice and are readily
transferrable to NOEC data.

The SSD-approach is not without its problems
and the discussion on its applicability is lively
and several works in the literature have appeared
to contribute to the debate: Newman et al. (21)

describe that the use of the log-normal distribution
is frequently not supported in actual applications,
where lack of data and the presence of outliers or
skew can affect the quality of the model fit. An outlier
may occur due to variability in the measurement or
it may indicate an experimental error (in this case,
exclusion from the data set is warranted). If the
selected compounds have highly specific mechanisms
of action, then the organisms should be homogeneous
taxonomically when constructing an SSD curve. In
this context, an outlier could be a point that differs
from the others although there is no ecological
reason that leads to its elimination. Skewness can
be caused by different species behaviour for lower
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and higher concentration levels. Consequently, the
resulting HCp-estimates may fall at the low end
of the range of PAF values. Moreover, some data
sets may contain distinct taxonomic and ecological
groupings (21,34) such that the assumed unimodal
distributional model is not completely adequate.

As a first step in addressing these issues, an eval-
uation of the quality of the supplied data is highly
recommended before any data analysis (18). Proper
outlier detection in SSDs, however, is only marginally
discussed in Smith and Cairns (28), Gottschalk and
Nowack (14) and sometimes outliers are altogether
eliminated (17) reducing a frequently limited sample
size even further. However, influential observations
are of interest because their inclusion or exclusion in
the analysis may lead to substantial changes in the
numeric value of the HCp estimate.

In light of these issues, we propose a robust
approach to SSD curve estimation. The advantage
of this approach is that it exploits the full neigh-
bourhood of a parametric model, thus enabling the
analyst to account for typical real world deviations
from ideal models such as the classes of normal or log-
normal distributions. Robust statistical procedures
aim to improve upon the classical parametric
statistical results. This is done by taking into account
that the assumed models which are employed by
the analysts are only approximate. Robust inference
produces results that are stable with respect to
small changes in the data or to small model
deviations (20,16).

Robust methods and their theoretical justifica-
tion are widely used in statistics: from regression and
multivariate analysis to generalised linear models
and time series (20). Procedures for robust estimation
are widely available in various software packages,
such as the R package robustbase (25,29). To our
knowledge, this is the first attempt of incorporating
robust procedures in SSD analysis.

Herein, we focus on estimating of HCp by
examining robust analogues to the existing classical
statistical estimation methods. Furthermore, we also
consider Box-Cox transformations of the original
data in the presence of heteroscedasticity. We
illustrate the usual approaches to SSD and HCp
estimation in Section 2.1. Sections 2.2 to 2.4 expand
these using a range of robust approaches and data
transformations. In Section 3 we present several
case studies in order to illustrate and compare the
proposed methodology on real data. Section 4 reports
the results of an extensive Monte Carlo simulation
study with the aim to compare the proposed

approaches under controlled circumstances in terms
of HCp estimation. We conclude the presentation
with a brief discussion of our results. All statistical
computations described in the paper were performed
using the statistical software environment R (23).

2. STATISTICAL METHODS FOR SSD
ESTIMATION

2.1 SSD Model Formulation and Fitting
Approaches

Let n denote the number of different species
tested with respect to a certain compound and let
xi denote the effective concentration data, of the ith

species under study. Without loss of generality, we
will refer in the following to xi as an EC50 data point,
a median effective/hazardous concentration value.

As the collected EC50s are consequently ordered
in increasing fashion, we assume xi ≤ xj for 1 ≤ i <
j ≤ n. From these, the relative rank of each species,
the so-called plotting positions yi, are assigned to
each of the collected EC50s. Numerous formulæ for
these plotting positions have been suggested (27). As
the analysis assumes no a priori distribution of the
xi’s, we use Weibull plotting positions, yi = i/(n+1).
Furthermore, as species concentration levels, x, are
commonly log10-transformed in toxicological studies,
we arrive at the final data points (log10(xi), yi).

A generic model formulation to fit an SSD curve
to the observed data points (x, y) can be written as

y = F
(

log10(x),β
)

+ ε , (1)

where F (.,β) describes the relationship between
the (transformed) species concentration levels, x,
and the corresponding plotting positions, β the
unknown model parameters and ε the random error
structure of the model. To fit SSD models, one of
two approaches is generally used. The first, so-called
direct approach is based on the standard assumption
that EC50 values from the species in the environment
under study are distributed according to a log-
normal distribution (1,22). Therefore, a simple SSD-
curve model is given by

y = F
(

log10(x),β
)

+ ε = Φ

(
log10(x)− µ

σ

)
+ ε ,

(2)
where Φ(.) denotes the cdf of a standard normal
distribution and β = (µ, σ). This type of model (2)
is frequently used by the European Commission (9)

for fitting SSD-curves. The second approach applies
a probit transformation to the plotting positions and
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Table I . Coding scheme for the estimation methods based

on underlying model (PI–plug-in; PR–probit-regression) and

data transformation (log10(x)–log-transformed data; BC(x)–
Box-Cox transformation). The modifiers c– and r– refer to

the classic and robust approaches, respectively.
Transformation g(x)

Model log10(x) BC(x) rBC(x)

Direct c–PI, r–PI / /

Backward Regression c–PR,r–PR c–BC, r–BC r–rBC

base the SSD-curve on a simple regression model for
the data pairs (log10(xi),Φ

−1(yi)), i.e.

y = Φ(β0 + β1 log10(x)) + ε. (3)

While this formulation is in principle equivalent to
model (2), it allows for the use of the rich class
of standard linear regression models for statistical
inference (e.g. confidence intervals can be calculated
based on the assumption of normally distributed
errors). However, a major drawback of this approach,
as detailed in Hickey and Craig (15, Section 4.2),
is that the error terms are generally neither inde-
pendent nor homoscedastic. Nevertheless, the model
is quite popular and has been implemented by the
US EPA in their CADDIS software package (12) as
fitting a full model is recommended when a full
characterisation of the relationship between exposure
and PAF is desired as opposed to just deriving HCp
for a single pre-specified value of p. In the following,
we will refer to this model formulation as the inverse
or backward probit regression model (the term
backward regression refers to the fact that, unlike
common regression models, the plotting positions are
actually fixed, while the reported effective median
concentrations are the random quantities).

2.2 SSD Curve Estimation

When employing the direct approach, the two
parameters are estimated by the sample mean,
µ̂ =

∑n
i=1 log10(xi)/n, and the sample variance,

σ̂2 =
∑n
i=1(log10(xi) − µ̂)2/(n−1). Plugging these

estimators into (2) gives the so-called “classic” plug-
in estimator (11) of the SSD-curve (c–PI in Table I
). Conversely, the parameters of the inverse probit
regression approach are estimated by the method of
least-squares (LS), i.e. β̂LS = arg minβ

∑n
i=1 ri(β)2,

where ri = yi − β̂0 − β̂1g(xi), i = 1, . . . , n, denote
the residuals of the model fit. Inserted into (3)
these estimators yield the “classic” probit regression
estimator of the SSD curve (c–PR in Table I ).

For a robust SSD curve estimator using the
direct modelling approach (2), robust estimators of µ
and σ of the normal distribution are called for (20,16),
most commonly the median, µ̃ = medianj(log10 xj),
and the median absolute deviation (MAD), MAD =
1.4826 · mediani{ |log10 xi − µ̃| }, respectively. By
plugging these robust estimators into (2), we obtain
the robust plug-in SSD-estimator of the SSD curve
(r–PI in Table I ).

More options are available when employing the
inverse probit regression approach (3). At first, one
could employ robust parameter estimation which
typically uses the iteratively reweighted least squares
(IRWLS) algorithm minimizing an objective function

based on the residuals ri(β) = yi − β̂0 − β̂1g(xi).
Among many choices, we use the class of MM-
estimators (35). This class extends the so-called M-
estimator of the regression parameters defined as

β̂M = arg min
β

n∑
i=1

ρ

(
ri(β)

σ̂

)
. (4)

In this formulation, σ̂ is a robust scale estimator
of the residuals (depending on β) and ρ(.) is a
bounded loss function defining the contribution of
each scaled residual to the model fit (16). However, M-
estimators are sensitive to leverage points (outliers in
the domain of explanatory variables). A fully robust
HCp-estimator can be obtained using the class of
MM-estimators, which also achieve high (tuneable)
statistical efficiency. Their three-step computation is
outlined below (20):

(1) Determine an initial S-estimator (7)

of the regression parameters as
β̂S = arg minβ σ̂ (r1(β), . . . , rn(β)) ,

where σ̂ is an M-estimator of the regression
scale parameter found as the solution of
1
n

∑n
i=1 ρ

(
ri(β)
σ

)
= δ, with δ ∈ (0,∞) a

fixed constant.

(2) Based on the residuals from step 1, compute
an M-estimator for σ.

(3) Compute an M-estimator of the regression
parameters based on β̂S from step 1 and σ̂
from step 2.

Implementing MM-estimation in the inverse
probit regression model results in the robust probit
regression estimator (r–PR in Table I ).
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2.3 HCp Estimation

Once the SSD is derived, one may obtain an
estimator of HCp as the solution, x, of p =
F
(

log10(x), β̂
)
. When considering the direct ap-

proach defined in (2), HCp can be derived as (30,22)

log10(HCp) = µ− z1−pσ, (5)

where z1−p is the (1−p)th lower percentile point
of a standard normal distribution. Replacing the
unknown model parameters with their respective
estimators, classic as well as robust, yields the cor-

responding “plug-in” estimator, ĤCp. The standard
error may be approximated by the delta method (5)

when using the classic estimators. However, applica-
tion of the delta method for robust estimators is not
an easily applicable option and typically the standard
error is approximated by a bootstrap estimator (11).

Therefore, to better compare the classic and
robust plug-in estimators of HCp, we approximate
SE(HCp) via bootstrap and compute confidence
intervals via the Wald approximation:

ĤCp± z1−α/2SE(HCp). (6)

When considering inverse probit regression as
defined in (3), HCp is obtained by inverting the
predictive regression line, i.e.

log10(HCp) =
zp − β0
β1

. (7)

Once more, we can supply the parameter estimators
via the classic LS-method or the robust MM-
estimators to obtain ĤCp. As in the direct approach,
an estimator of SE(HCp) can also be best obtained
via bootstrap and the corresponding confidence
interval is computed as in (6).

2.4 Alternative Data Transformations

In cases where the log-normality assumption is
violated and the inverse probit regression model (3) is
used, the typical log10-transformation of the original
data is untenable. In these cases we suggest to use
the class of Box-Cox power transformations (4), which
extend the log10-transformation described above.
This kind of transformation is quite common in
bioassay studies (26,24) for heteroscedastic data. One
would therefore employ the transformation function
g(x) = (xλ − 1)/λ, λ 6= 0 on the original EC50s,
where λ is typically chosen by a profile likelihood
function. With this formulation, we obtain the
extended inverse probit regression model

y = Φ(β0 + β1g(x)) + ε. (8)

We wish to emphasise that for λ = 0 the classical
Box-Cox transformation is g(x) = ln(x), but in this
special case we take it to be the log10-transformation.
If implemented successfully, the transformed data
does follow approximately a normal distribution with
stable variance.

The Box-Cox transformation can be used for
both “classic” and robust SSD-curve and HCp-
estimation and we denote estimators using these
transformations by the acronyms c–BC and r–BC in
Table I , respectively.

Marazzi and Yohai (19) proposed also a robust
version of the Box-Cox transformation, choosing the
parameter λ via a robust residual autocorrelation
estimator. Therefore, we also combine the robust
SSD-curve estimator based on the inverse probit
regression with the robust Box-Cox transformation
to yield the final model r–rBC in Table I .

3. AN APPLICATION WITH REAL DATA

To demonstrate the applicability as well as
illustrating key differences in the models presented
above, we fit these to a data set of distinct species
tolerance values determined for an ecotoxicological
risk assessment (ERA) case detailed in De Zwart (8).

3.1 Origin and Selection of Toxicity Data

The aquatic ecotoxicity database described in
De Zwart (8) and in Hickey and Craig (15) comprises
30,369 acute (EC50 and LC50) and chronic (NOEC)
records spanning 3,442 different substances over
1,549 species. This database provides a wide set
of toxicity data, covering different endpoints and
laboratory test conditions. Eleven fish species and
34 toxic compounds (31 insecticides and 3 herbicides)
were selected. The endpoints for the different selected
species of fish were 96-h EC50 (96 hours test). We
have selected taxonomically comparable species in
order to avoid polymodality of data. Furthermore,
the selected compounds have a taxon-specific toxic
mode of action.

3.2 Statistical Analysis

For the purpose of illustrating the characteristics
of the methods from Table I , we selected four
different chemicals yielding four distinct scenarios:

Aldrin (no outliers): for this compound, the
recorded effective concentration values feature no
apparent outliers and can be well described as log-
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Fig. 1. Species sensitivity distribution estimates for the compound Aldrin (no outliers). The panel on the top left displays
the empirical distribution function using the Weibull plotting positions from Section 2.1 and concentrations on a log10-scale. In

addition, the SSD estimates of the classical (solid line) and robust (dashed line) plug-in estimators are superimposed. The middle

upper panel displays the classical (solid line) and robust (dashed line) inverse probit regression estimates on a transformed y-axis,
i.e. normal percentiles. These estimates are back-transformed to the risk scale in the top right panel. The estimates for classic (solid

line) and robust (dashed line) regression are displayed on the bottom left panel with transformed y-axis. The bottom center panel

displays the result for robust regression with robust Box-Cox transformation again on a transformed y-axis. All three estimates
are then presented as back-transformed estimates in the bottom right panel. Furthermore, all the SSD-curves are plotted only for

risk values of 5% (represented by the dotted horizontal line) and above.

Table II . Comparison of HC5 values (µg/L) calculated
from the estimated SSD curves for different chemical

compounds for the seven estimation methods: classic (c-) and
robust (r-) plug-in (PI), probit-regression for log-transformed

(PR) and (robust rBC) Box-Cox (BC) transformed data,

along with 95% confidence intervals (CI) based on 1000
bootstrap samples.

Compound

Method Aldrin Endrin Endosulfan Carbaryl

c–PI 3.63 0.27 0.42 1656

CI [2.89,4.30] [0.13,0.42] [0.16,0.69] [1245,2039]

r–PI 2.86 0.43 0.68 2485
CI [1.60,4.80] [0.11,0.94] [0.17,1.58] [1165,3980]

c–PR 2.75 0.14 0.18 1235

CI [2.32,3.16] [0.05,0.25] [0.02,0.41] [929,1504]

r–PR 2.73 0.10 0.85 1994
CI [2.27,3.15] [0.03,0.19] [0.35,1.59] [1514,2448]

c–BC 3.21 0.45 0.99 772

CI [2.84,3.52] [0.39,0.51] [0.94,1.03] [526,1005]

r–BC 3.29 0.45 1.08 718
CI [2.89,3.67] [0.38,0.51] [1.02,1.14] [453,964]

r–rBC 3.50 0.51 0.99 2409

CI [3.12,3.86] [0.43,0.58] [0.91,1.07] [1735,3004]

normal (see Figure 1). In this case, all methods
perform similarly and yield HC5 risk values between
2.7 µg/L and 3.6 µg/L (see Table II ). Further, note
that λ ≈ 0 for both, the standard as well as the
robust, Box-Cox transformations of xi, thus making
all regression based SSD-estimates indistinguishable
from each other. Table II also shows 95% confidence
intervals of HC5 (1) based on 1000 bootstrap samples.
These intervals are quite comparable, with the
exception of r-PI that are a bit wider than the others.

Endrin (skewness): this is an example of
a skewed distribution of effective concentrations
(see Figure 2). In this case a Box-Cox or robust
Box-Cox transformation proves useful as these
transformations yield a more linear data pattern on
the transformed concentration scale (see the upper
center as well as the bottom left and bottom center
panels in Figure 2). There is no practical difference
in the use of classical or robust regression. The
estimated HC5 risk values for the (robust) Box-
Cox are approximately 0.45 µg/L, while omitting
this transformation leads to a more conservative
value, i.e. 0.14 µg/L for the inverse probit regression
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Fig. 2. Species sensitivity distribution estimates for the compound Endrin (skewed data). For a detailed description of the six
panels refer to Figure 1.

(see Table II along with the corresponding 95%
confidence interval). Further, note the striking differ-
ences between robust and classical plug-in estimates
(upper left panel), with the former also yielding a
HC5 value close to 0.45 µg/L.

Endosulfan (one upper outlier): the pres-
ence of an upper outlier (see Figure 3) yields large
differences between the classical and robust SSD-
estimates except when a Box-Cox transformation
was used. Obviously, the classical methods are very
much influenced by the outlier and tend to be overtly
conservative for lower risk values. This is evidenced
by a HC5 estimate of approximately 1 µg/L for the
(reliable) robust methods, while the (non-reliable)
classic methods are much lower (see Table II ).
However, both classical as well as robust Box-Cox
transformations provide a transformation where the
outlier follows more or less a linear trend, and thus
no longer affects the classic regression estimate.
Therefore, the resulting HC5 values are very similar.

Carbaryl (two lower outliers): In this case
(shown in Figure 4), two lower outliers are evident.
As expected this leads to quite different fits between
the classical and the robust methods. The robust
HC5 estimates (both plug-in and inverse regression)
are both approximately 2000 µg/L or above, while
the classical methods yield more conservative (lower)
estimates (see Table II ). An interesting difference
can be found between the regression estimates

based on classical Box-Cox and robust Box-Cox
transformations: the non-robust version results in
a transformation where all data points are forced
into a linear trend, while for the robust version
the outliers are allowed to deviate from the trend
pattern of the remaining data points. The resulting
deviation is visible in terms of large residuals, and
the corresponding observations should be carefully
investigated since the two methods result in very
different HC5 estimates.

These four common scenarios provide a good
overview on the differences in SSD-curve estimation
between the methods introduced in Sections 2.1-
2.4. However, these scenarios do not allow for a
full characterisation and performance evaluation of
the HCp-estimators. For this reason, we perform an
extensive Monte Carlo simulation study outlined in
the next section.

4. SIMULATION STUDY

In the following simulation study we focus on
the estimation of HCp values, and compare the
performance of the models from Table I . Specifically,
we are interested in comparing low levels of risk,
i.e. HC1, HC5 and HC10, which represent the
concentrations of the toxicant hazardous to 1%, 5%
and 10% of the biological community, respectively.

In order to investigate the robustness of the HCp
estimators, we generated M = 2, 000 Monte Carlo
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Fig. 3. Species sensitivity distribution for the compound Endosulfan (one upper outlier). For a detailed description of the six
panels refer to Figure 1.
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Fig. 4. Species sensitivity distribution for the compound Carbaryl (two lower outliers). For a detailed description of the six
panels refer to Figure 1.

replications of the concentrations of n = 15 different
species from a pre-specified distribution (see below).
We evaluated the performance of the HCp estimators
in two ways:

(1) Distribution: we display all replications
within a pre-specified data distribution in
a boxplot for each of the methods. These

provide an overview of variability and bias

across methods of ĤCp .

(2) Coverage: for all simulation settings we
computed bootstrap-based confidence inter-
vals for HCp based on 100 bootstrap repli-
cations. In each setting, empirical coverage
rates were taken as the proportion of times
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that the 95% bootstrap-based confidence
interval covered the true HCp-value from
the corresponding distribution used in the
simulation run. Notice then that with the
target coverage rate of 0.95 the approximate
standard error of each estimated coverage
rate is

√
(0.05)(0.95)/2000 = 0.005 and does

not exceed 0.012.

To study the sensitivity of the estimation meth-
ods to the underlying data distribution, we simulated
data from six different distributions: log-normal and
normal distribution, both commonly assumed to
be underlying the data, two skewed distributions,
exponential and a chi-squared distribution, and two
more heavy-tailed distributions, t-distributions with
3 and 10 degrees of freedom (df). For each assumed
data distribution, the HCp value was determined as
the solution of p = F (x) and is hereafter referred to
as the “true” HCp value. The results for this first run
are displayed in Figure 5 (Distribution) and Table
III (Coverage). As the results are very similar for all
risk values in all our simulation runs, we only report
the ones concerning HC5 (complete results available
from the authors).

Figure 5, shows that the performance of the
estimators in terms of bias and mean squared
error depends strongly on the underlying data
distribution. While bias in estimation, i.e. the
difference between the pre-determined “true” value
of the parameter and its estimate, is evident
across all cases, it is most pronounced for the
exponential distribution, maybe due to the fact that
this distribution approaches zero exponentially fast.
The plug-in approaches perform well for log-normal
and symmetric distributions, but bias is evident
for skewed distributions. On the other hand, the
inverse probit regression methods performs better for
skewed distributions and are the methods of choice
for heavy-tailed distributions (t3, t10). The Box-
Cox transformations perform particularly well for
the normal and log-normal distributions, but may
introduce bias and larger variability in the other
cases. It should also be noted that the variability
in estimation is generally higher when using robust
methods.

Table III shows the empirical coverage rates
as derived from our simulations. The majority of
methods as applied to different distribution shapes
result in coverage rates frequently falling below
nominal coverage, that is they cover the actual HC5
value less often than the desired nominal coverage

Table III . Empirical coverage rates of the bootstrap c
onfidence intervals for HC5 based on the seven estimation

methods from Table I : classic (c-) and robust (r-) plug-in

(PI), probit-regression for log-transformed (PR) and (robust
- rBC) Box-Cox (BC) transformed data. The data was

generated from six different distributions and the target

coverage rate is 0.95.
Method

Model c-PI r-PI c-PR r-PR c-BC r-BC r-rBC

lnorm 0.92 0.99 0.96 1.00 0.91 0.97 0.90

norm 0.83 0.96 0.98 1.00 0.93 0.98 0.98

exp 0.46 0.79 0.72 0.90 0.74 0.87 0.72
chi5 0.62 0.89 0.90 0.97 0.81 0.92 0.81

t3 0.86 0.93 0.98 0.99 0.97 1.00 0.97
t10 0.93 0.98 0.99 1.00 0.98 1.00 1.00

rate of 0.95. This effect is most pronounced for cases
where the underlying data distribution is skewed and
is probably due to the fact that such distributions are
less suited to describe the gradual increase of affected
species at low concentrations (30). On the other hand,
coverage rates of 1 result from an upward bias of the
estimated confidence intervals, which are based on
the underlying skewed distributions.

We also investigated the same performance
criteria in the presence of outliers. We did this by
generating data from a mixed distribution, where
90% (80%) of the data points were generated from
a log-normal distribution with mean equal to 5
and standard deviation equal to 1 on the log scale
(“lnorm(5,1)”). The remaining 10% (20%) of the
simulated data points were generated as three types
of shift-outliers from a log-normal distribution with
standard deviation of 0.1 and mean values of 4, 6,
and 8, respectively. Thus, in the first case (mean 4)
the outliers are well within the range of the main
data distribution, while the other situations lead to
much heavier tails.

Comparing the results pictured in Figures 6 and
7, we come to similar conclusions for both outlier
scenarios: the approaches based on (robust) Box-Cox
perform quite well, independent from the position
of the outliers. Inverse probit regression leads to
small variance, but higher bias (underestimation),
depending on the position of the outliers. In case
of heavier tailed distributions, the robust plug-in
approach performs better than the classical one in
terms of bias and mean squared error.

Finally, the coverage of the 5 percent risk
value shown in Tables IV and V also show
a similar behaviour for the 10% and 20% outlier
cases. Generally, the robust methods are closer to
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Fig. 5. Empirical distribution results for ĤC5. The panels represent the empirical distributions for the methods from Table I

for each of six distributions (clockwise from top left): Lognormal(5,1), Normal(10,1), Exponential(5), t(10), t(3) and χ2(5). The

horizontal line in each panel indicates the true value of HCp, which corresponds to the theoretical pth percentile point, for the
respective underlying data distribution. For more details, please refer to the text.

Table IV . Average (trimmed) coverage of the 5 percent

risk value. The data are simulated from log-normal

distribution with one shift-outlier added. The estimation
methods are classic (c-) and robust (r-) plug-in (PI), and

probit-regression for log-transformed (PR) and (robust rBC)
Box-Cox (BC) transformed data.

Method

Model c-PI r-PI c-PR r-PR c-BC r-BC r-rBC

1*lnorm(4,0.1) 0.97 1.00 0.91 0.99 0.93 0.98 0.96
1*lnorm(6,0.1) 0.89 0.98 0.97 1.00 0.91 0.98 0.91
1*lnorm(8,0.1) 1.00 0.99 0.91 1.00 0.88 0.94 0.90

the nominal level than their classical counterparts.
Overall, method r-BC shows the best behaviour.

Table V . Average (trimmed) coverage of the 5 percent risk

value. The data are simulated from log-normal distribution

with two shift-outliers added.The estimation methods are
classic (c-) and robust (r-) plug-in (PI), and probit-regression

for log-transformed (PR) and (robust rBC) Box-Cox (BC)
transformed data.

Method

Model c-PI r-PI c-PR r-PR c-BC r-BC r-rBC

2*lnorm(4,0.1) 0.99 1.00 0.87 0.99 0.92 0.99 0.96
2*lnorm(6,0.1) 0.83 0.97 0.98 1.00 0.91 0.97 0.91

2*lnorm(8,0.1) 1.00 1.00 0.81 0.99 0.89 0.95 0.83

5. DISCUSSION AND CONCLUSIONS

We presented a range of possibilities that
extend the two common approaches (plug-in and
inverse probit regression) in SSD-curve estimation
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Fig. 6. Simulation results for the 5 percent risk value, compared to true value as determined by the simulation scenario. The

data are simulated from log-normal distribution, and one shift-outlier is added.
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Fig. 7. Simulation results for the 5 percent risk value, compared to the the theoretical 5th percentile point of the underlying

simulation distribution. The data are simulated from log-normal distribution, and two shift-outliers are added.

to robust methods. These include robust approaches
to parameter estimation as well as the often applied
Box-Cox data transformation.

Based on sample data, we illustrated that robust
methods manage to fit data with heavier tails well
and can therefore be viewed as a flexible modelling
approach able to cope with deviations from (log-
)normality. In the case of high outliers, our example
suggests that the robust SSD-curve estimators lead
to estimates that more closely approximate the em-
pirical data than the corresponding classic methods
– except for cases where a Box-Cox transformation is
employed. In these situations, the classical methods
are strongly influenced by the presence of outliers,
and tend to greatly underestimate HCp for small p.

If lower outliers are present, robust methods tend
to emphasise on the remaining data values leading
to generally higher estimates of HCp in the lower
tail. Specifically, regression estimators based on Box-
Cox transformations result in a linear trend while
the robust Box-Cox transformation yields a linear
trend only for the majority of the data which are not
considered as outliers.

In case of skewed distributions, Box-Cox trans-

formations on the data result in a more linear data
pattern and bias is further reduced by the use of
robust methods. Their combination is therefore the
preferred choice for skewed data.

In addition, we performed a detailed simulation
study in which we investigated the performance
of the different HCp estimators. Of these, the
robust probit regression for Box-Cox transformed
data had the best overall performance in terms of
bias, variability, reliability and coverage. In case
of ‘regular’ data patterns, a plug-in approach or a
robust inverse probit regression performs also well.
In conclusion, we have determined that the use of
robust methods can greatly enhance SSD-curve and
HCp estimation as these are apparently more flexible
in handling a wide range of data situations.

A few caveats need to be addressed: we observed
that the coverage rate of the confidence intervals
for HCp deviated in many cases from the nominal
coverage of 95%, even in situations where the
distributional assumptions were met. Additionally,
the empirical coverage rates are quite sensitive to
lowering the number of species under study as
indicated by a preliminary simulation study not
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discussed herein (results available from the authors).
We attribute these results to the fact that due
to the small number of data points generated
(which is frequently present in practice) the Wald-
type confidence intervals become inappropriate. As
observed from the boxplots, empirical sampling
distributions are rarely symmetric adding further
evidence to the inadequacy of this popular confidence
interval construction. Alternative confidence interval
methods are called for. However, universal confidence
interval construction methods for small sample sizes
are still an open research problem and would exceed
the scope of this paper.

One must also be aware that any point on the
SSD curve represents one species in the community
and that any species fills an ecological niche. The
SSD and HCp approach represents a substantial
improvement in comparison with the traditional
deterministic approaches for the definition of a
PNEC (Predicted No Effect Concentration) based on
a few toxicity data and the application of uncertainty
factors (see i.e. (9)). Nevertheless, the SSD approach
should not be used blindly as the presence of a
keystone or endangered species at the lower end of
an SSD curve may represent a critical situation (32).

Therefore, the presence of outliers may warrant
further investigation on whether these unusually high
or low values are due to methodological reasons or
the actual sensitivity of the species. Outliers are often
incorrectly interpreted as “wrong” measurements,
but in reality they can occur due to varying responses
across species. In many cases, however, we are not
dealing with obvious outliers being different from
the remaining observations, but with a distribution
that deviates from (log-)normality. Unlike strict
parametric approaches that rely on idealised model
distributions, robust methods are more flexible and
lead to reliable results even in case of such deviations.
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