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 Abstract – Electroencephalography (EEG) has a relatively 

old history since Hans Berger in 1929 recorded the human brain 

activity for the very first time. Since then, a number of 

experiments had led to a strengthened employment of this 

technology both in the clinical practice and in the most advanced 

research platforms. Although amazing developments have already 

been achieved, no gold standards are available for the processing 

of EEG signals. However, EEG signal processing used in several 

applications of Brain-Computer Interface (BCI) has already 

promised unbelievable progresses. In the context of a specific BCI 

application, this paper deals with a particular kind of artifact due 

to electrode-pops that can degrade the EEG recordings and, 

consequently, make BCI give wrong outputs to patients operating 

it for their benefit in recovery or in daily life. 
 

 Keywords – EEG, BCI, electrode-pop artifact, online 

algorithm. 

I.  INTRODUCTION 

 Electroencephalography (EEG) [1] has a relatively old 

history and nowadays all Hospitals, clinical Institutes and even 

Universities have an EEG system to perform daily clinical 

assessments of several kinds of patients or to study the 

cerebral activity of healthy and impaired people in a relaxation 

status or during a task execution. Although its widespread 

availability, no gold standards for the analysis of the EEG 

traces are recognized all over the world. Instead most 

clinicians analyze by-eye only the cerebral activity of their 

patients being satisfied to observe macroscopic changes like 

epileptic seizures or alternating phases of more or less reactive 

awareness represented by larger or smaller oscillations in the 

frequency band around 10 Hz, the so-called α band. However 

research has already shown, in many years of study, that an 

amount of information is hidden in this complex combination 

of waves that EEG is. 

One of the most amazing fields of EEG employment is the 

Brain-Computer Interface (BCI): after a training period, a 

subject can learn to operate a computer to communicate in an 

alternative way with the external world or to move again by 

controlling a wheelchair or a robotic arm [2]. 

This paper deals with a specific kind of EEG artifact that can 

arise from the displacement of an electrode during recordings. 

This event can cause the subject to fail in operating a BCI – at 

least for a limited period of time - because of the artefactual 

analysis of the correspondent EEG signal affected by the huge 

abnormal peak and oscillations following the displacement. 

II.  ELECTRODE-POP ARTIFACT IN EEG RECORDINGS 

 EEG recordings at the scalp of a subject are a combination 

of useful signal and disturbance. To be precise, the former is 

constituted by the neural response of the subject to an 

experimental task or, simply, it carries the information about 

the status of the individual, and the latter is the sum of all the 

other components of the EEG traces. As mentioned before, 

there can be several causes of disturbance but, generally, they 

are classified as follows: 

a)  external interferences. The main element of this set is the 

power line noise that usually corrupts the EEG recordings. For 

this reason, a notch filter around 50 Hz or 60 Hz is 

implemented to remove this considerable interference during 

EEG evaluations or experimental sessions. 

b)  physiological interferences. They can be further divided 

into two subclasses: muscular and neural noises. Eye-blinks, 

eye-gaze changes, chewing, gnashing, swallowing and head 

slight movements are muscles activations that can compromise 

the whole recordings. Skin sweat can be also a relevant 

phenomenon to cope with sometimes. Finally, distractions, 

habituation and other collateral cognitive phenomena can 

elicitate neural populations of different cortical regions to 

spike and, at the scalp level, to show interfering waveforms. 

The latter are considered disturbance and are usually removed 

on the basis of their spatial and/or frequency occurrence. 

Then artifacts can occur either accidentally or along the 

whole recording. For instance, artefactual activity due to mains 

is usually present along the entire registration while muscular 

contraction is in the most cases a very short phenomenon that 

can seriously corrupt a relatively short-lasting recording 

segment. One of the most impacting causes of artifact is the 

so-called electrode-pop: although quite rare, this kind of noise 

can be completely superimposed over the low amplitude useful 

signal and make the identification procedure of the EEG 

characteristics almost impossible for a long time (tens of 

seconds). A typical example of its shape is captured by Fig.1 

where the usual abrupt negative fall, overshoot and slow-

oscillating return to baseline values are clearly visible. 

It can be easily expected that such an artefactual activity 

compromises any kind of automatic features identification. 

Cautions in order to avoid this kind of artifacts can be taken 

during the recording preparation: clinical technicians are 

trained to pay attention on this type of occurrence. 

Nevertheless electrode-pops can sometimes happen anyway. A 

hardware solution to cancel out this artifact has been proposed 

in [3] although without any quantification of its performance.  



Fig. 1 Signal with electrode-pop artifact. A detail. 

Several software solutions to remove artifacts have appeared 

in the past years [4-9]. The main objective of these solutions 

was to obtain a clear EEG signal for clinician eye-analysis. 

Our objective is somewhat different because we want to 

extract from EEG some real-time features to be used as 

feedback in BCI applications. 

Hereafter a new real-time signal processing algorithm is 

presented with the aim to identify and remove this electrode-

pop artifact before to estimate the EEG features required to 

assess the patient's status or to operate an EEG-based external 

device in a BCI fashion scheme. 

III.  REAL-TIME ALGORITHM FOR ELECTRODE-POP ARTIFACT  

 We consider the BCI treatment for motor recovery of the 

upper limb in stroke survivors described in [10], where the 

signal processing unit runs the world-spread software BCI2000 

[11] which does not care about the electrode-pop artifact. 

Unfortunately, some recorded sessions of the whole BCI 

treatment were affected by this electrode displacement. We 

remark that feedback to the patient should be given in real-

time based on Movement-Related Desynchronization (MRD) 

[12] of EEG signal. The presence of artifact prevents us to 

properly detect the MRD for several seconds. A new algorithm 

was designed and implemented with the goal to be performed 

in real-time during the BCI experiment and to reduce the time 

where MRD cannot be detected as short as we can. This 

algorithm has to be little time-consuming to allow the BCI 

system to process the remaining on-line analysis and provide 

the robotic feedback to the subject performing the experiment 

before he/she starts to execute the movement task. 

In order to quantify the algorithm performance, the signal-to-

disturbance-ratio (SDR) has to be computed. This would be 

possible only if a version of the same signal with and without 

the disturbance is available. To this purpose, a synthetic 

electrode-pop artifact was constructed and then added to a real 

EEG signal where no disturbance affected the trace. Then, the 

SDR is computed. 

The artifact shown in Fig.1 is typical for each class of EEG 

amplifiers. Indeed, the first part, spanning few tens of 

milliseconds, is directly related to the amplifier bandwidth, 

while the second part, which shows a damped oscillation, is 

due to the AC coupling of the electrode to the amplifier. 

Two different shapes of synthetic artifacts, similar to the real 

one, have been chosen for the following analysis and are 

displayed in Fig. 2 with a detail in Fig. 3. 

Fig. 2 Raw signal (black) and two different examples of synthetic artifacts. 

 
Fig. 3 Detail of Fig.2. 

We remark that the artifact has an amplitude two order of 

magnitude larger than the EEG signal. To cancel the effects of 

this large disturbance only a nonlinear procedure works. We 

considered two different algorithms: i) estimate the main pulse 

and canceling it or ii) detect the time instant when the main 

pulse starts and set the signal to zero until it returns to zero. 

The first solution would be more precise but it would require a 

bunch of computations and an accurate model of the artifact to 

estimate the main pulse with enough precision. On the contrary 

the second algorithm has two main steps: 1) compute the first 

derivative of EEG signal as the difference between each 

sample and the previous one, and 2) determines where the 

absolute value of the derivative is higher than a threshold for N 

consecutive samples. Indeed, the electrode-pop could be 

represented as the impulse response of the amplifier filter. The 

rise-time tr is related to the 3dB bandwidth Bs of the filter by 

the approximated relationship tr≈1/(3Bs). Hence, the rise-time 

span over N=Fctr consecutive samples, where Fc is the 

sampling rate of the EEG. As an example, if Fc is set to 512 Hz 

and Bs is 20 Hz, N is about 8. The beginning of the artefact is 

given by the first sample where the derivative is higher than 

the threshold and the end by the sample where the EEG signal 

returns to zero. Then, the EEG samples between these points 

are replaced by zeros and discarded from the MRD detection. 

The zeros substitution between the two zero-crossing points is 

justified by the concern that filtering can give rise to transient 

signals due to possible abrupt signal discontinuities at the 

artefactual interval edges. During the interval of time where 

artifact is removed no feedback is intended to be provided to 

the subject but the system is thought to be waiting for new 

reliable values. An example of application of this method is 

reported in Fig.4 where the sum of an original artifact-free 

signal (recorded from the FZ site on the scalp) and a synthetic 

electrode-pop  (black curve) is  displayed  along  with its first  



Fig. 4 Artifact-addicted EEG signal (black), its derivative (red) and the 

artefactual interval edges (cyan dots). 

 

derivative (red curve), and the two time instants labeled as the 

edges of the artefactual period are highlighted with cyan dots. 

After these two first steps, the standard BCI2000 or another 

procedure involving a high-pass filtering above 1 Hz can be 

run as usual. The latter leads to the cancellation of the large 

remaining slow oscillation following the huge negative abrupt 

fall just removed, bringing back the signal to fluctuate around 

reliable values again. The zeros-fulfilled artefactual interval is 

filtered too and small oscillations arise at the filter output: 

however this does not represent an issue since this period of 

time is completely discarded from the following analysis. The 

difference between the (7,14) Hz band filter output with a 

previous step of artifact detection and removal and the same 

output without that preliminary operation is plotted in Fig.5. 

The (7,14) Hz band filtered version of the original raw signal 

without the synthetic artifact is also reported in both figures as 

a comparison. Moreover, two magenta vertical lines define the 

artefactual interval that is discarded from the following 

analysis. 

Fig.5 shows that ideally-filtering a signal with an electrode-

pop artifact causes an evident non-causal response that 

compromises the following analysis. Moreover, a real case 

filter would also introduce a significant delay that must be 

limited to make the BCI feedback reliable. On the contrary, 

filtering the EEG signal with the artifact removed does not 

cause any significant disturbance. The latter considerations are 

confirmed by the analysis of the performance presented later 

on. 

Let us denote the original EEG signal filtered in the (7,14) Hz 

band as x while the filter output without the algorithm 

application as y1 and the same quantity with the artifact 

previously detected and removed as y2. Then e1 and e2 are 

defined as the following differences:  

e1 = y1-x  and  e2 = y2-x 

represent the errors between the filter output and the original 

artifact-free signal.  

In order to quantify the algorithm performance, the error 

energy Me, the signal energy Mx and the SDR (computed as 

the ratio between Mx and Me) at the filter output was computed 

over 256 samples-wide time windows. Such a window width 

was chosen to be the same as that used by the BCI2000 

software currently operating in the online procedure during the 

BCI experiment.  

Fig. 5. The original raw signal filtered in the (7,14) Hz band (black curve), the 

filter output after the application of the proposed algorithm (red curve), the 

filter output without any artifact detection algorithm (blue curve) and the 

artefactual interval (magenta vertical lines). 

Then the new algorithm was employed in an offline analysis to 

assess its effectiveness. The goal of this analysis was to detect 

the presence of MRD during the BCI experiment described in 

[10]. 

III.  RESULTS 

 Let s be the original raw EEG signal and a the synthetic 

artifact. The latter was implemented as the formula below: 

a(t) = A1exp(-t/τ1) + A2 exp(-t/τ2)cos(2πf0t+φ0), t>0 

where the constants A1, A2,  τ1, τ2, f0 and φ0 are reported in 

Table I for the two synthetic artifacts shown in Figs.2 and 3 as 

an example. 

In both the cases the synthetic artifact shapes are pretty close 

to that of the real one, but the “blue” artifact was selected to 

perform the following computations. 

Then the linearly combination of signal s with signal a (s+a) 

drives the filter in the (7,14) Hz band. If the signal s+a has 

been previously processed by the algorithm for the electrode-

pop artifact detection and removal, the filter output is y2, 

otherwise y1 is obtained. The above mentioned signal x is the 

filter output when the raw signal s drives the filter. The energy 

of the two errors e1 and e2, and the correspondent SDR1 and 

SDR2 were computed on the limited time intervals of 256 

samples and compared to assess the advantage of the 

application of the new algorithm. Fig.6 shows indeed the 

energy of the two different errors computed within the above 

defined windows shifting by 8 samples at time. 

The correspondent SDRs behaviors are displayed in Fig.7 

where the ratio between the signal energy Mx and the error 

(either e1 or e2) energy Me is computed over the same 256 

samples time interval. Fluctuations of the SDRs curves are due 

to those of the original EEG signal. From Fig.6 and the next 

Fig.7 the advantage to apply the algorithm to remove the 

electrode-pop artifact becomes definitely clear. 

In fact, from Fig.7 it can be noted that SDR2 is constantly 30 

dB larger than SDR1 and is suddenly higher than 0 dB after the 

artefactual interval where the signal was reset and its values 

discarded from the following MRD analysis. Indeed, it has to 

be incidentally mentioned again that the part of the EEG trace 

between the magenta edges is not taken into account for the 

following analysis of the MRD and, since the signal in the 

same interval was canceled, the correspondent SDRs values 



are unreliable. After proving the quantitative advantage of the 

proposed procedure, the algorithm will soon be tested in a real 

BCI application. 

TABLE I.  PARAMETERS OF SYNTHETIC ELECTRODE-POP ARTIFACT. 

 A1 

[μV] 

A2 

[μV] 

τ1 

[s] 

τ2 

[s] 

f0 

[Hz] 

φ0 

[rad] 

Blue 

artifact -1866 350 -0.3 -4 0.10352 0.55287 

Green 

artifact -1866 350 -0.2 -4 0.10352 0.55287 

 
Fig. 6 Energy of the errors at the filter output along with the mean energy 

level of the original artifact-free signal x (green line) and the artefactual 

interval (magenta lines). 

 
Fig. 7 SDRs at the filter output with the artefactual interval (magenta lines). 

It has to be recalled that the BCI platform taken into 

consideration was described in [10] and its aim was to improve 

the reaching movement accuracy in mild-impaired post-stroke 

chronic patients by means of a force feedback that acts as a 

mirror of the cerebral activity related to that action: roughly 

speaking, while the patient is performing a reaching task on a 

plane, a force feedback helps him/her in completing the 

movement only if the expected neural pattern, i.e. spatial and 

frequency features, is activated. In particular, the MRD is 

computed in real-time by the BCI2000 software as the 

normalization of the spectral power around 10 Hz estimated at 

the current time instant on mean and standard deviation of the 

analogous quantity gathered during the initial relaxation 

period. Moreover, these computations are performed on the 

basis of the recordings coming from specific locations, i.e. the 

sensorimotor cortex, on the subject's scalp. 

If an electrode-pop occurs, all these estimations become 

affected by abnormal values obtained by filtering the huge 

impulse present in the signal due to the temporary electrode 

displacement. Figs.8 to 10 shows the mean energy values 

obtained during the initial relaxation period, the movement and 

the correspondent MRD estimation. It has to be recalled from 

[10] that the more negative the values of the MRD, the more 

efficient the BCI training. Specifically, Fig.8 is plotted by 

analyzing the artifact-free dataset where x represents the signal 

coming from the FZ location. 

 
Fig. 8 MRD topography of an artifact-free EEG recording. 

Then, Fig.9 shows the disastrous effect of an electrode-pop 

artifact occurred in the FZ sensor during the initial rest period. 

The MRD values of this artefactual signal were computed 

based on y1. 

 Fig. 9 MRD topography of an artifact-addicted EEG dataset with a synthetic 

electrode-pop artifact on the FZ site. 

As clearly visible from Fig.9, an artefactually huge energy 

value is focused at the FZ location in the scalp frontal area. 

While energy distribution during the movement periods of all 

the following trials is almost within the range of normality, it 

can be easily expected that the normalization process based on 

the rest period will lead to unreliable estimation of the patient's 

cerebral activity, i.e. the MRD values, with a consequent 

feedback production not related to the physiological activity of 

the subject and thus useless for him/her motor training. 

Finally, Fig.10 reports the analogous energies distributions and 

MRD estimations gathered after the application of the 

proposed algorithm that removes the artefactual peak and 

correctly filters the remaining slow and large overshooting 

oscillation. Therefore the MRD value of the FZ termination 

was computed based on y2. The figure assesses, then, the 

benefit of such preliminary procedure to remove this kind of 

artifacts. Indeed, a focus of the activity in C3, Cp1 and C4 is a 

reasonable expectation since those sites are locations above 

the sensorimotor cortex: in fact, they belong to the cerebral 

area where the sensory and motor information is received from 

the external world, processed and transmitted again to the 

muscles, the final movement actuators. Moreover, energy 

values of the rest period are significantly lower than those of 

the previous case (Fig.9) when the electrode-pop artifact 

destroyed the EEG physiological waveforms. 

Fig. 10 MRD topography after removing the synthetic electrode-pop artifact 

from the same EEG dataset of Fig. 8. 



DISCUSSION 

The previous results assessed the necessity and the 

effectiveness of the algorithm proposed by the authors to 

detect and remove the electrode-pop artifact in real-time. From 

the topographical distribution of the MRD values displayed in 

Figs.8 to 10 it can be noted that a huge artifact like an 

electrode-pop occurred in one location of the scalp can 

compromise the MRD identification and, in particular, 

increase the number of false positive or false negative 

detections. Moreover, the effectiveness of the algorithm is also 

based on its real-time application: in fact, a simple difference 

operation between consequent amplitude samples (the first 

derivative step) and the check of its large decrease in few 

samples (less than 10, i.e. 20 milliseconds) allow the detection 

of the artifact due to an electrode pop. Furthermore this online 

identification comes at a very good performance since, as 

shown in Fig.7, the SDR2 is constantly much better than the 

procedure that excludes this detection (SDR1 curve). As 

expected, a constant increase of the SDR can be observed as 

far as the impact of the artifact on the informative signal 

decreases. As seen from Figs.6 and 7: the first part of the 

artefactual interval has to be excluded from the following 

analysis of the MRD because of its artifact abrupt negative 

slope. An additional interval of time where signal values have 

to be discarded can be roughly estimated in 1/B, where B is 

the filter bandwidth (B = 7 Hz in this particular case, then 1/B 

= 150 ms). In this prolonged period of time - lasting at most 

one second - the SDRs values are unacceptable (SDR1) 

because of the artifact presence or unreliable (SDR2) because 

of the signal cancellation in that period. But the most 

interesting note is that the proposed algorithm suddenly 

regains a good SDR into respect to the procedure without the 

artifact detection. As clearly visible from Fig.6, the error 

energy of the signal preprocessed with the electrode-pop 

algorithm becomes smaller than the mean energy of the signal 

immediately after the above defined interval, allowing a much 

early MRD identification. Concluding, it has to be one more 

time remarked that the proposed procedure removes only one 

second of the signal content from the analysis which is a fairly 

trade-off to have an artifact-free signal, while the current 

procedure should discard much longer time to wait for the 

SDR1 to reach 20 dB (that is the minimum value to have the 

error energy less than 1% of the useful signal energy, a 

satisfactory threshold for the MRD evaluations). Finally, it can 

be observed that if an artifact occurs during the initial long rest 

period (40 seconds long), both the standard procedure and the 

new one can correctly estimate the MRD value from the 

artifact-free remaining part of the rest recording. On the 

contrary, if it happens during a movement trial (lasting at most 

one second) it disastrously impacts and the current procedure 

can not estimate the MRD along several trials, while the new 

algorithm allows this operation just one second later, that is 

losing at most one trial (where the BCI feedback would be not 

provided). 

CONCLUSION 

In the context of the BCI platform described in [10] an 

algorithm to detect and remove in real-time rare but huge 

electrode-pop artifacts was implemented and tested. In 

particular the shape of this kind of artifacts was 

mathematically proposed and the performance of the algorithm 

shown in terms of SDR computed at the band-pass filter output 

that estimates the signal energy content in the (7,14) Hz band, 

the typical cerebral rhythms associated with a movement, its 

planning, observation or even imagination. The energy of the 

error at the filter output was also computed and this outcome 

further proves the reliability and efficiency of the algorithm: 

while the current online BCI procedure provides non-

physiology-related and, as a consequence, useless feed-backs 

to the stroke patient performing the rehabilitative exercise, the 

presented procedure allows to exploit the EEG data as early as 

one second after the electrode pop up event. This therefore 

confirms the convenience of the application of the new 

algorithm during the online BCI operations since it ensures a 

more reliable BCI feedback to the patient operating the 

system. 
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