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Abstract  
The ability to replicate in vitro the native extracellular matrix (ECM) features and to control the three-
dimensional (3D) cell organization plays a fundamental role in obtaining functional engineered bio-
constructs. In tissue engineering (TE) applications, hydrogels have been successfully implied as 
biomatrices for 3D cell embedding, exhibiting high similarities to the natural ECM and holding easily 
tunable mechanical properties. In the present study, we characterized a promising photo-crosslinking 
process to generate cell-laden methacrylate gelatin (GelMA) hydrogels in the presence of VA-086 
photoinitiator using a ultraviolet LED source. We investigated the influence of  pre-polymer 
concentration and light irradiance on mechanical and biomimetic properties of resulting hydrogels. In 
details, the increasing of gelatin concentration resulted in enhanced rheological properties and shorter 
polymerization time. We then defined and validated a reliable photopolymerization protocol for cell 
embedding (1.5% VA-086, LED 2mW/cm2) within GelMA hydrogels, which demonstrated to support 
bone marrow stromal cells viability when cultured up to seven days. Moreover, we showed how 
different mechanical properties, derived from different crosslinking parameters, strongly influence cell 
behaviour. In conclusion, this protocol can be considered a versatile tool to obtain biocompatible cell-
laden hydrogels with properties easily adaptable for different TE applications. 
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1 Abbreviations  
TE – Tissue engineering 
ECM – Extracellular matrix 
GelMA – Methacrylate gelatine 
PI – Photoinitiator 
DPBS - Dulbecco’s phosphate buffer saline 
MA - Methacrylic anhydride 
VA086 - 2,2-Azobis (2-methyl-N-(2-hydroxyethyl)propionamide 
BMSCs - Bone marrow stromal cells 
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1. Introduction 

In the field of tissue engineering (TE), the ability of replicating in vitro the complexity of the 

native microenvironment is crucial to obtain functional bio-constructs. In the last two decades, 

2D standard culture methods have been recognized to be poorly representative of such in vivo 

complexity, e.g. exposing cells to non-physiological substrates in terms of mechanical stiffness 

1. Recently, a shift in paradigm has thus been observed towards the development of 3D cell 

culture models, attempting at better mimicking the native extracellular matrix (ECM). Among 

other materials, hydrogels exhibit high similarities to the natural ECM, which is characterized 

by an intricate network of proteins and polysaccharides 2. First, their high water content 

contributes at creating highly swollen and interconnected network structures, which allow for 

maximizing nutrient and gas transfers 3. Moreover, their mechanical properties, strongly 

dependent on their macromolecular structure as well as on the method and degree of 

crosslinking 4,5, can be easily tuned to the biomechanical characteristics of different soft tissues 

according to the specific application 6. Furthermore, the presence of functional groups allows 

to chemically modify the hydrogel structures and to add specific biofunctions attempting to 

resemble the variety of cues found in the native ECM 7. Hydrogels are thus highly versatile 

materials in many TE applications. 

A variety of synthetic 5,8-10 and natural 11-14 macromolecules have been used so far to fabricate 

hydrogel-based engineered environments 3, either as substrates for cellular seeding 13 or as cell-

laden 3D matrices 2. In particular, the fabrication of cell-laden hydrogels is tightly correlated 

to the biocompatibility of the crosslinking approach. Most chemical methods are not 

compatible with 3D encapsulation of viable cells, usually relying on cytotoxic chemicals or 
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enzymatic agents to trigger the polymerization 11. Thermal reticulation has been widely 

investigated as a biocompatible process for creating cell-laden hydrogels 15-17; however, the 

presence of living cells poses an upper temperature threshold to 37°C, generally resulting in 

relatively long crosslinking times. For this reason, additional rotating systems may be required 

to thermally crosslink cell-laden hydrogels in order to prevent cell tendency to settle down and 

thus achieve a uniform 3D cell distribution within the matrix 18. As an alternative, 

photopolymerization has been successfully investigated in several studies to obtain 3D cellular 

matrices within tens of seconds, by exposing a precursor polymer solution to a light source in 

the presence of a photoinitiator (PI)19,20. Although promising, the suitability of the 

photopolymerization process for embedding viable cells relies on the definition of optimal and 

biocompatible combinations of polymeric precursors, light source and PI. Among others, 

methacrylate gelatin (GelMA) has been widely investigated in the last few years in 

combinations with different PI molecules and lights sources 21. GelMA is indeed a cheap and 

easy to handle derivative of collagen, which presents both natural cell binding motifs, such as 

RGD and MMP-sensitive degradation sites, and different amino acid side-chain functionalities 

(carboxylic acid, amines, hydroxyl) which allow for further covalent modifications 11. Irgacure 

2959 is widely considered the golden standard for GelMA hydrogel cross-linking 11,21-23; 

however, with an adsorption peak around 320nm and a not negligible toxicity to cells, its use 

had to be accurately optimized for its limited biocompatibility properties 24. Recently, the use 

of a lower cytotoxic PI featuring a more conservative activation UV band (peak at 375nm) - 

namely VA-086 - was demonstrated for alginate-based hydrogels photopolymerization . 

Subsequently, we showed the possibility to successfully generate cell-laden GelMA hydrogels 

in the presence of VA-086 through an inexpensive ultraviolet LED source (emitting peak at 

385nm) 25. Considering the increasing interest around VA086-GelMA hydrogels for TE 



applications 26, a characterization of this promising photopolymerization process is thus 

required.  

In the present study, we systematically investigated different parameters to assess how the 

choice of degree of functionalization (methacrylic anhydride), pre-polymer concentration 

(GelMA) , and light irradiance influences VA086-GelMA hydrogels crosslinking, mechanical 

and biological properties. The final aim is thus to define a repeatable and reliable protocol for 

obtaining cell-laden VA086-GelMA hydrogels exhibiting controlled and versatile properties, 

easily tunable depending on the required application.  

2. Materials and methods 

2.1. Gelatin methacrylate synthesis and 1H NMR characterization 

Methacrylated gelatin (GelMA) was synthesized following a previously reported protocol 21 

(Fig.1a). Briefly, type A porcine skin gelatin (Sigma-Aldrich Corporation, St. Louis, Missouri, 

USA) was dissolved at 10% (w/v) in Dulbecco’s phosphate buffer saline (DPBS, GIBCO) 

solution (pH=7.5) at 50°C. Methacrylic anhydride (acrylate agent, MA, Sigma-Aldrich 

Corporation, St. Louis, Missouri, USA) was then added to the gelatin solution at a rate of 0.1 

ml/min until reaching the desired volume and allowed to react while vigorously stirring. After 

three hours, the reaction was quenched by adding pre-heated DPBS and the obtained solution 

was dialyzed for ten days against distilled water at 50°C throughout 12-14KDa cutoff dialysis 

tubing (Sigma-Aldrich Corporation, St. Louis, Missouri, USA). The solution was finally 

filtered, freeze-dried for 66 hours and stored at -80°C until further use. In the present study, 

two reactions were established by adding different amount of MA. In details, two batches were 

obtained by adding either 10% or 15% (v/v) MA to the gelatin solution, yielding low MA and 

high MA GelMA, respectively. 



The efficacy of the methacrylation reaction was determined by 1H-NMR analyzing the signals 

coming from the methacrylic moiety. In details, 30 mg of low MA, high MA and plain gelatin 

were dissolved in 0.6 mL of D2O; the sealed NMR tubes were heated to 70°C till complete 

dissolution. The spectra were recorded at 400 MHz on a Varian Mercury instrument. 

2.2. Hydrogel photopolymerization 

GelMA hydrogels were obtained by radical cross-linking of methacrylamide modified gelatin 

in the presence of a photoinitiator (PI) activated by a 1.8 W LED (385 nm; LZ4-00UA00, LED 

Engine, Inc.) light source (Fig. 1b). In details, the PI molecule 2,2-Azobis (2-methyl-N-(2-

hydroxyethyl)propionamide) (VA-086, Wako Chemicals GmbH, Germany) was dissolved in 

DPBS at room temperature at 1.5% (w/v). Subsequently, GelMA was added to the PI solution 

and mixed at room temperature until complete dissolution. Through a standard micropipette, 

20µl of this prepolymer solution were placed inside a Petri dish into a silicone cylindrical well 

(diameter= 6mm and height= 0.5mm) obtained by means of a biopsy puncher. The sample was 

thus irradiated using the LED source until complete polymerization, and the required time was 

recorded. A sample was considered fully polymerized whether it satisfied the following 

criteria: (i) it maintained a 3D shape without releasing macroscopic debris upon silicone 

template removal and (ii) it did not dissolved when immersed in PBS and incubated at 37°C 

up to 1 hours. The described photopolymerization protocol was fully characterized for both the 

previously synthesized materials (lowMA and highMA), by assessing the influence of different 

parameters on the cross-linking time. In particular, for each methacrylation degree, the 

considered parameters were (i) the irradiance of the light source (1.5-14 mW/cm2), and (ii) the 

GelMA concentration (5%, 7.5% and 10% w/v) in the pre-polymer solution (see Table 1). 

Furthermore, the effect of PI concentration (0.5%, 1%, 1.5% w/v) was evaluated on a GelMA 

concentration of 10% (w/v), for both methacrylation degree. Each condition was tested in 

triplicates and the polymerization times were recorded. 



2.3. Rheological characterization  

Rheological measurements were carried out with an AR 1500ex rheometer (TA Instruments, 

USA) using a cone-plate geometry (diameter= 2cm, truncation= 32um, working gap= 32µm). 

Dynamic shear oscillation tests were performed to evaluate viscoelastic properties of both low 

and high MA GelMA at 5%, 7.5% and 10% w/v in the prepolymer solution. Mechanical spectra 

were recorded at both 25°C and 37°C in a constant strain mode, with a deformation of 0.3% 

and incremental frequencies ranging from 0.01 to 10 Hz. Samples were obtained photo-

polymerizing 500 µl of GelMA pre-polymer (1.5% of VA-086) inside a 24-wells plate. The 

data represent the average of the storage (G’) and loss (G’’) modulus with standard deviation. 

2.4. Cell sorting and expansion 

Bone marrow stromal cells (BMSC) were isolated from bone marrow aspirates obtained from 

donors undergoing total hip replacement, after written consent. Bone marrow was centrifuged 

and cells were plated at a density of 1 x 105 cells/cm2 and cultured overnight. Suspended cells 

were then removed and adherent cells were expanded. BMSC culture was carried out in 

complete medium consisting of α-modified Eagle’s medium, 10% fetal bovine serum, 10 mM 

HEPES, 1 mM sodium pyruvate, 100 U ml−1 penicillin, 100 μg ml−1 streptomycin and 292 μg 

ml−1 L-glutamine (all GIBCO®) supplemented with 5 ng ml−1 fibroblast growth factor-2 

(Peprotech). When 70-80% confluence was reached, cells were harvested and frozen. At need, 

cells were then thawed, seeded at lower density (3 x 103 cells cm-2) and expanded again. 

Medium refresh was performed every four days.  

Primary human umbilical vein endothelial cells constitutively expressing green fluorescent 

protein (HUVEC GFP; Children’s Hospital, Boston, MA) were expanded in endothelial cells 

growth medium EGM-2 supplemented with the bullet kit which includes: 2% FBS, ascorbic 

acid, heparin, hydrocortisone and human growth factors (fibroblast, R3-insulin) including 



vascular endothelial growth factor (VEGF) (all LONZA®). Cells were passaged when 70-80% 

of confluence was reached and the medium exchange was performed every four days.  

A standard cell culture incubator, maintaining 5% of CO2 level and 37°C, was employed for 

cell culture. 

2.5. Cell embedding and 3D culture 

Biological validations were carried out to assess the influence of methacrylation degree and 

concentration of GelMA on 3D cellular behaviour. BMSCs were thus embedded within both 

low and high MA GelMA hydrogels at different concentrations (5%, 7.5% and 10% w/v), and 

cultured up to seven days. In details, the methacrylated gelatin was completely dissolved in a 

filtered 1.5% (w/v) PI solution, subsequently used to resuspend the previously trypsinized 

BMSCs at a final concentration of 2 x 106 cells/ml. The photopolymerization reaction was thus 

carried out as previously described maintaining sterile conditions, by irradiating the sample for 

5 minutes with a LED irradiance of 2 mW/cm2. Samples containing the same cell numbers 

were produced and frozen to be subsequently used as DNA references. The obtained cell-laden 

samples were incubated under standard culture conditions and cultured up to seven days, while 

refreshing media every 3 days. Cell metabolic activity and proliferation inside 3D hydrogels 

were then evaluated after 3 and 7 days in culture. In details, at the defined time points, each 

sample was washed in DPBS, placed in a new well, and incubated at 37°C in 10% v/v 

AlamarBlue solution (Invitrogen Corporation, Isbad, CA, USA). After 4 hours, the absorbance 

of the resulting solution at 570 nm was measured using a spectrophotometer (Victor X3, 

PerkinElmer, Waltham, MA, USA). The DNA in each sample was then evaluated by means of 

the CyQUANT cell proliferation assay (Invitrogen Corporation, Isbad, CA, USA). Samples 

were frozen at -80°C overnight and digested for 16 hours at 60°C with 250 µL of ProteinaseK 

(Sigma-Aldrich Corporation, St. Louis, Missouri, USA). After digestion, 5 µl of the sample 

and 195 µl of the working solution, previously prepared according to the manufacturer’s 



protocols, were placed into a 96 black multiwall plate. Sample fluorescence intensity was 

detected with a spectrophotometer at 485/538 nm and subsequently related to cell DNA content 

through a calibration curve. The reference samples were used to normalize DNA content in 

each sample. Finally, for each sample the metabolic activity value was normalized to the DNA 

content to assess the specific cellular metabolic activity.       

2.6. BMSC-HUVEC 3D co-culture  

To evaluate cell elongation and interaction within gels with different mechanical properties, 

co-cultures of BMSCs and HUVECs GFP were established with high MA for all GelMA 

concentrations (5%, 7.5% and 10% w/v). BMSCs were made fluorescent through a 10 minutes 

incubation in culture medium enriched with 5µl/ml of Vibrant (Invitrogen Corporation, Isbad, 

CA, USA). Cells were resuspended at a final concentration of 3 x 106 cells/ml in the pre-

polymer solution, maintaining a BMSC/HUVEC ratio of 1:1. The polymerization was 

performed as previously described and samples with either only BMSCs or HUVECs were 

established as controls. All the cell-laden samples were cultured in HUVEC culture medium 

and maintained in standard culture conditions for up to seven days, while medium change was 

performed every 3 days. Fluorescence images at different time points were collected.       

2.7. Statistical analysis 

Data are expressed as mean ± standard deviation, and statistical analyses (one-way ANOVA) 

were performed using GraphPad Prism v5.00 (GraphPad Software, San Diego, CA). 

3. Results 

3.1. Methacrylation assessment 

As previously described for MA-gelatin11, the presence of the methacrylic moiety before cross-

linking was assessed by 1H-NMR, since the resonances from the methacrylamide methylene 

protons occur in a region free from other signals due to the protein (5.2-5.7 ppm).  The degree 



of methacrylation was quantified for both materials using aliphatic signals as references as 

reported in Van Vlierberghe27, resulting equal to 6% and 11% for low and high MA GelMA, 

respectively. 

3.2. GelMA Photopolymerization 

To establish an optimal polymerization protocol for both previously synthesized materials (low 

and high MA), GelMA cross-linking time was assessed as a function of the LED irradiance at 

385nm, varying different pre-polymer parameters. First, the influence of the gelatin 

concentration was evaluated, maintaining VA-086 concentration at 1.5% (w/v). Figure 2a 

shows a comparison between polymerization times of samples obtained for GelMA 

concentrations of 5, 7.5 and 10% (w/v) for different irradiance conditions. Time values higher 

than 360s were considered too long for cell embedding procedure and, coherently, not reported. 

As expected, the polymerization time decreased increasing the irradiance for all the tested 

conditions. Maintaining constant the GelMA concentration, high MA GelMA resulted in 

shorter cross-linking time as compared to low MA GelMA. In details, for the 7.5% (w/v) 

GelMA, the polymerization time ranged from 67 sec for the high MA to 97 sec for the low 

MA, considering an irradiance of 14 mW/cm2. Furthermore, increasing the GelMA 

concentration the polymerization time decreased for both high and low MA GelMA. In 

particular, for low MA pre-polymers, an increase of GelMA concentration from 7.5% to 10% 

(w/v) led to a reduction in cross-linking times from 250sec to 160sec and from 100sec to 50sec, 

when samples were irradiated with 1.5mW/cm2 and with 14mW/cm2, respectively. Cross-

linking data of low MA GelMA at 5% (w/v) were discarded, being longer than 360sec. 

Likewise, for high MA GelMA, polymerization times decreased from 320sec to 140sec at 

1.5mW/cm2 and from 140sec to 35sec at 14mW/cm2, when GelMA concentration was 

increased from 5% to 10% (w/v). 
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To assess the influence of PI concentration on polymerization times, both high and low MA 

gelatins were tested, fixing GelMA concentration at 10% (w/v) and varying VA-086 

concentration from 0.5% to 1.5% (w/v). For both types of GelMA, increasing the VA-086 

concentration resulted in a drop of the cross-linking time among all irradiance intensities (Fig. 

2b). In details, the increase of VA-086 content in low MA pre-polymer (from 0.5% to 1.5%, 

w/v) caused the cross-linking time to drop from 300sec to 160sec and from 75sec to 50sec for 

irradiances of 1.5mW/cm2 and 14mW/cm2, respectively. Analogous behavior was found for 

high MA GelMA, where reaction times dropped from 250sec to 140sec and from 45sec or 

30sec at 1.5mW/cm2 and 14mW/cm2, respectively. Once again, considering samples obtained 

with the same PI concentration and polymerized with the same irradiance, higher MA GelMA 

samples were characterized by shorter cross-linking times. 

3.3. Mechanical properties 

Dynamic shear oscillation tests were performed on samples with low and high methacrylation 

degree at GelMA concentration of 5%, 7.5% and 10% (w/v), in order to assess the effect of 

GelMA functionalization and concentration on hydrogel mechanical properties. The elastic or 

storage modulus (G’) and the viscous or loss modulus (G’’) were measured at 37°C for radial 

frequencies ranging from 0.1-10 Hz to provide quantitative information on viscoelastic 

properties of samples at standard culture conditions. In general, storage moduli resulted higher 

than loss moduli for both low and high GelMA methacrylation at all concentrations tested, as 

shown in figure 3. Increasing GelMA concentration from 5% to 10% (w/v), while maintaining 

a constant methacrylation degree, resulted in an increase of both G’ and G’’, suggesting an 

enhancement of gel stiffness. Considering the storage modulus, GelMA samples  at equal 

concentration showed comparable G’ values, which was confirmed for both gelatin 

functionalization degrees (see supplementary data, Figure SI1). Moreover, temperature was 

found not to significantly affect hydrogel mechanical properties, as demonstrated by 



comparable results achieved at 25°C and 37°C for all the tested conditions (see supplementary 

data, Figure SI2).                  

3.4. Cell embedding and 3D culture 

BMSCs were embedded in both low and high MA GelMA featuring high, medium and low 

stiffness (5%, 7.5% and 10% (w/v), respectively), to assess the influence of GelMA properties 

on cellular behavior. Specific metabolic activity was evaluated after 3 and 7 days of culture, as 

shown in figure 4a. After 3 days in culture, BMSCs showed similar metabolic activity for all 

the conditions tested. After 7 days in culture, however, cells within high MA GelMA showed 

a higher cell metabolic activity as compared to the previous time point. In particular, metabolic 

activity of both 5% and 7.5% (w/v) GelMA samples had a statistically significant enhancement 

compared to corresponding samples at day 3. Conversely, cells cultured up to 7 days within 

low MA GelMA samples showed lower metabolic activity at all tested concentrations, 

compared to high MA GelMA samples. Furthermore cells within low MA GelMA at 10% (w/v) 

showed a statistically significant decrease in the metabolic activity from day3 to day7. Data 

relative to the lowest concentration (5% w/v) for low MA GelMA were not included due to 

premature degradation of samples. Concerning cell morphology, after 7 days of culture within 

high MA GelMA, BMSCs appeared more elongated in GelMA at 5% (w/v), while almost 

rounded in both the 7.5% and 10% (w/v) ones (Fig. 4b).   

3.5. BMSC-HUVEC 3D co-culture 

To evaluate the influence of hydrogel mechanical properties on cellular behavior, BMSCs and 

HUVECs GFP were encapsulated and co-cultured up to 7 days within high methacrylated 

GelMA featuring high, medium and low stiffness (5%, 7.5% and 10% (w/v), respectively). 

After 3 days in culture, HUVECs started to elongate within the 5% (w/v) GelMA (Fig. 5d), 

while maintaining a more round-shape in both 7.5% and 10% (w/v) GelMA samples (Fig. 5e 

and 5f). The maximum cell spreading was reached after 7 days of culture in 5% GelMA 



samples (Fig. 5g), in which the formation of a fully developed HUVECs network was detected. 

In the remaining gels (7.5% and 10% w/v), HUVECs appeared sparsely connected and did not 

form any network-like structure and BMSCs remained almost rounded for the whole culture 

period (Fig. 5h and 5i). Culturing BMSCs and HUVECs apart, on the contrary, resulted in 

isolated and round-shaped cells within all three GelMA concentrations tested and for all the 

seven days of culture (see supplementary data, Figure SI3).    

 

4. Discussion 

In the last few decades, several hydrogel formulations have been widely implied in TE as 

biomimetic materials for establishing in vitro 3D cell culture models 28. Their structural 

similarity to natural ECM together with the ease of tuning their biochemical and biomechanical 

properties make hydrogels suitable candidates for effectively replicating the complexity of 

tissues found in vivo 2-6. In this regard, considering the wide range of polymeric precursors and 

crosslinking methods used to fabricate biomimetic hydrogels, systematic studies aiming at 

elucidating the influence of all involved parameters on hydrogel properties are still required to 

fully exploit their potential in tissues replication. To date, several polymerization strategies 

have been successfully investigated 11,15-18, either for fabricating 3D scaffolds for further cell 

seeding 29 or directly for 3D cells embedding within matrices 7. Among these strategies, 

photopolymerization has been widely investigated and demonstrated to be a promising 

approach to obtain highly viable 3D cellular matrices 19,20. However, the definition of optimal 

combinations of polymeric precursors, light sources and photoinitiator molecules remains an 

open challenge, in terms of both biocompatibility and control over biomechanical and 

biochemical properties of hydrogels. 



In this paper, a commercially available UVA LED (emitting peak at 385nm), exhibiting 

negligible cytotoxicity effects 25, was employed as controlled light source to photopolymerize 

methacrylate gelatin hydrogels in combination with the photoinitiator (PI) molecule VA-086, 

highly activated at this wavelength 30. The VA-086 has previously been demonstrated to 

minimally affect cell viability both in its radical and inactive forms 25, making it a promising 

alternative to the widely used Irgacure 2959, highly activated at lower light wavelengths 

(adsorption peak around 320nm) 24. Here, the photo-crosslinking process for fabricating cell-

laden VA-086 GelMA-based hydrogels was deeply characterized, showing the influence of 

gelatin functionalization degree, polymer concentration and light irradiance directly on both 

mechanical and biomimetic properties of resulting matrices. Based on this characterization, we 

defined a reproducible protocol to homogeneously embed and culture primary cells within 3D 

GelMA hydrogels.  

The presented photopolymerization protocol was demonstrated to be highly effective for both 

the synthesized GelMAs allowing to obtain fully cross-linked samples within hundreds of 

seconds. In particular, in the perspective of cell embedding, we limited the investigation at 360 

sec. These short cross-linking times, indeed, were considered compatible with cell embedding 

procedure, avoiding cells from settling down. All the combinations of methacrylation degrees, 

polymer concentrations, VA-086 contents and photo-crosslinking times, resulted below the 

limiting time of 360s, except for those involving 5% lowMA GelMA. Moreover, while 

increasing LED irradiance resulted in lower cross-linking times, it was also showed to enhance 

the hydrogel porosity by means of N2 gas release as a result of UV radical induction 26 (see 

supplementary data, Figure SI4). Starting from this characterization, an optimal 

photopolymerization protocol was defined, fixing the LED irradiance at 2mW/cm2 and the PI 

concentration at 1.5% w/v, fulfilling both the biocompatibility and the matrix homogeneity 

requirements for all conditions tested. In details, samples were polymerized for 5 minutes 



subjecting cells to a total irradiation dose of about 600 mJ/cm2, which results much lower than 

the dosage previously demonstrated as not toxic to cells, i.e. 1800 mJ/cm2 26,30. As a remarkable 

advantage, the entire process was easily performed under sterile conditions by placing the 

samples within standard Petri dishes, thus taking advantage from the optical transparency of 

polystyrene to UVA. 

The use of gelatin-based biomaterials has become widespread thanks to their natural origin, 

low production cost and biocompatibility. However their suitability as 3D matrices for cell 

embedding and culturing also depends on their mechanical properties 31, which are influenced 

by the crosslinking parameters. For this purpose, a rheological characterization of GelMA 

hydrogels was carried out, showing how the increase of gelatin concentration directly increases 

sample stiffness, as a consequence of the availability of more cross-links per unit volume, in 

agreement with previously reported data 21. The correlation between crosslinking parameters 

and mechanical behaviour suggested the potentiality of the presented protocol to easily tune 

the stiffness of the cell-laden matrix according to the required application. In addition, the 

temperature was found not to significantly affect samples properties, revealing an insoluble 

network characterized by stable chemical bonds. This behavior, characteristic for a viscous 

solid with a well-developed network 21, was confirmed by the fact that storage moduli resulted 

higher than loss moduli for all conditions tested. 

It is then worth noting that the lower MA concentration used in this study, i.e. 10% (v/v), 

corresponds to the amount commonly adopted to achieve highly functionalized GelMA 32,33.  

Indeed, further increase in MA content (up to 15% (v/v) in this work) did not yield any 

significant variations neither in terms of chemical nor mechanical properties. Nonetheless, 

highMA GelMA resulted in an overall more repeatable photopolymerization protocol 

particularly at the lowest concentration tested (5% (w/v)), being this also eliciting from cell 

viability experiments. Such difference could be possibly related to a more homogeneous 



functionalization obtained for the highMA GelMA during the reaction, although a more 

specific study should be carried out.The photo-crosslinking method was exploited to generate 

GelMA hydrogels and study their behavior as biomimetic matrices for 3D embedding and 

culturing of both human BMSC and HUVEC GFP cells. Successful BMSCs embedding within 

both low and high MA GelMA samples revealed the potentiality of our protocol to obtain and 

culture biocompatible cell-laden hydrogels up to seven days supporting cell proliferation and 

spreading depending on mechanical properties. Cell behavior and viability results, after seven 

days in culture, showed how a higher gelatin functionalization resulted in more suitable 

environments for long term 3D cells culture, creating more stable hydrogel-networks. 

Moreover, specific cell metabolic activity and viability varied inversely with gel concentration: 

5% w/v GelMA samples indeed resulted more viable and metabolically active BMSCs, which 

also appeared more stretched after seven days in culture as compared to 7.5% and 10% w/v. 

This finding suggests that mechanical properties characterizing the lower hydrogel 

concentration better allowed these cell types to remodel and degrade the matrix. 

Finally, the presented combination of methacrylated gelatin, VA-086 photoinitiator molecule 

and UVA LED source was also investigated for generating multi-cell types models, co-

culturing BMSCs and HUVECs in 3D. Results obtained within the softer GelMA hydrogels 

showed to enhance the interactions between BMSCs and HUVECs when co-cultured, 

promoting the formation of well-established HUVECs network-like structures. In the same 

conditions, neither HUVECs nor BMSCs cultured alone were able to remodel the surrounding 

matrix at comparable levels, suggesting that the presented material could be considered a 

promising co-culturing model for further studies on these two cell populations. 

5. Conclusion 

In the present study, we fully characterized a highly biocompatible photo-crosslinking process 

to obtain uniform 3D cell-laden methacrylated gelatin (GelMA) hydrogels. We systematically 



reported how methacrylation degree, pre-polymer concentration and UVA irradiance influence 

mechanical and biological properties of final hydrogels. We introduced a photopolymerization 

protocol which could in perspective be considered a versatile tool for generating cell-laden 

hydrogel with easy tunable mechanical and biomimetic properties, depending on parameters 

setting during photopolymerization process.      
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Figure  

 

Figure 1. Methacrylated gelatin (GelMA) synthesis and cross-linking reaction. Gelatin 
monomers were reacted with methacrylic anhydride (MA) to replace lysine groups with 
methacrylate pendant groups (a). Hydrogel network was then created cross-linking GelMA 
using a LED light source in the presence of a photoinitiator (b). 



 
Figure 2. GelMA cross-linking time in function of LED irradiance. Comparison between 
polymerization times of GelMA samples obtained varying gelatin (a) or VA-086 (b) 
concentration for both low and high gelatin methacrylation degree. Error bars represent positive 
standard deviations. 



 

Figure 3. Storage (G’) and loss (G’’) modulus of cross-linked GelMA in function of 
frequencies at 37°C. Mechanical properties of low (a) and high (b) methacrylated GelMA. 
Sample photopolymerization was performed varying gelatin concentration (5%, 7.5%, 10% 
w/v) while maintaining 1.5% of VA-086 and using a 2 mW/cm2 irradiance. Axes are in Log 
scale and error bars identify both positive and negative standard deviation.        



 

Figure 4. Specific metabolic activity of BMSCs cultured up to 7 days within both low and high 
methacrylated GelMA at different gelatin concentrations (a). Cell laden GelMA samples were 
cross-linked with 2 mW/cm2 irradiance in the presence of 1.5% VA-086. Cell morphology after 
7 days of culture was also assessed. BMSCS embedded within high methacrylated 5% GelMA 
appeared more elongated (b), while 7.5% and 10% gelatin sample showed rounded cells (c, d) 
(Image scale bar= 200µm). 



 

Figure 5. Cell behaviour when co-cultured within high methacrylated GelMA hydrogel. 
HUVECs GFP and BMSCs (red) were co-cultured up to seven days within 5%, 7.5% and 10% 
(w/v) GelMA samples. Immediately after embedding, cells appeared rounded in all samples 
(a-b). After 3 days of culture HUVECs started to interact within 5% (w/v) gel (d) while 
maintained a rounded-shape in 7.5% and 10% (w/v) hydrogel samples (e-f). After 7 days, 
within 5% (w/v) GelMA samples, HUVECs developed a network-like structure (g), whereas 
in 7.5% and 10% (w/v) GelMA, HUVECs appeared sparsely connected and BMSCs remained 
rounded (h-i). Black and cell free regions resulted from N2 gas release during photo-
polymerization (Image scale bar= 500 µm (a-i) and 200µm for 10X magnifications). 


