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ABSTRACT: Road casualties represent the leading cause of death among young peo-
ple worldwide, especially in poor and developing countries. This paper introduces a
Bayesian hierarchical model to analyse car accidents on a network lattice that takes
into account measurement error in spatial covariates. We exemplified the proposed
approach analysing all car crashes that occurred in the road network of Leeds (UK)
from 2011 to 2019. Our results show that omitting measurement error considerably
worsens the fit of the model and attenuates the effects of spatial covariates.
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1 Introduction

As reported by World Health Organisation in 2018, car crashes are responsible
for more than 1.35 million casualties each year, representing the leading cause
of death among people aged 5-29 years, particularly those living in developing
countries. In the last years, several authors developed sophisticated statistical
models to analyse the spatial distribution of car crashes at the areal level (e.g.
cities or census wards) and help the local authorities define safety measures.

Nevertheless, road casualties represent a classic example of events occur-
ring on a linear network. This paper presents a Bayesian hierarchical model for
car crashes developed on a network lattice that takes into account measurement
error (ME) in spatial covariates. In particular, a Conditional Auto-Regressive
(CAR) prior is introduced to adjust for ME in estimating road traffic volumes
within the classical ME model paradigm. The Integrated Nested Laplace Ap-
proximation (INLA) framework is adopted for inference. This approach was
found particularly convenient for large networks, as the one considered in
this paper, while MCMC techniques may be challenging and time-consuming
(Mufft et al., 2015).



2 Road network and car crashes

The statistical analysis introduced in Section 3 requires a specific data structure
that was obtained after several preprocessing steps briefly described hereafter.

The road network was built using data extracted from Open Street Map
(OSM), an online database that provides open-access geographic rich-attribute
data worldwide. We downloaded the street segments that pertain to the most
important® roads of Leeds and created a matrix of segments representing the
elementary units of the statistical model.

A street network can also be seen as a graph object whose edges represent
the road network segments and whose vertices are placed at junctions, inter-
sections, and boundary points (Barthélemy, 2011). We took advantage of the
graph representation to contract the street network removing redundant nodes,
edges loops, duplicated roads, and several isolated clusters of segments that
may create numerical problems (Gilardi et al., 2020). Furthermore, we cal-
culated the weighted edge betweenness centrality, a graph measure correlated
with the spatial distribution of commercial activities, which is usually adopted
to analyse congestion problems as a proxy for urban traffic (Barthélemy, 2011).
Finally, we derived the edges’ adjacency matrix, an essential ingredient for the
CAR prior used below.

We analysed all car crashes involving personal injuries that occurred in the
city of Leeds from 2011 to 2019 and became known to the Police Forces within
thirty days from their occurrence. First, we downloaded the data from UK’s
official road traffic casualty database. Then, we excluded those car crashes
that occurred farther than fifty metres from the closest road segment, and, fi-
nally, we projected the events to the nearest point of the network and counted
the occurrences for each segment. The final sample included 15826 events
distributed over 4253 segments covering approximately 1170 km.

3 Statistical methods

Lety;, i =1,...,n represent the number of car crashes that occurred on the ith
road segment. Following a classical hypothesis in the road safety literature, we
assume that y;|A; ~ Poisson(e;A;), where A; represents the car crashes rate and
e; is an exposure parameter equal to the geographical length of each segment.

*More precisely, we selected only those segments whose classification range from Au-
tostrada (i.e. Motorway) to Strada Comunale (i.e. Tertiary Road).



In the first level of the hierarchy, we define a log-linear structure on A;, i.e.
log(A;) = Bo+Bozi +Puxi +0; + 05 i=1,...,n, (1)

where By denotes the intercept, z; is an error free covariate representing the
road-type of each segment, x; is an unobservable error prone covariate repre-
senting the traffic volumes, while B, and [, are the corresponding coefficients.
Finally, ©; and ¢; denote spatially structured and unstructured random effects
that are modelled using a reparametrisation and a network re-adaptation of
Besag-York-Mollié (BYM) prior (Riebler et al., 2016, Gilardi et al., 2020).

The classical spatial ME model assumes that x; can be observed only via a
proxy, say w;, such that

wi=xi+ui+@i;i=1,...,n.

The terms u; and @; represent the ME and denote, respectively, spatially struc-
tured and unstructured random effects that are also modelled using the BYM
prior. In particular, parameter @; adds a spatial smoothing effect to the un-
observed covariate x;. In this paper, we assume that the edge betweenness
centrality measure can approximate the unobservable traffic volumes.

At the second stage of the hierarchy, we specified an exposure model that
relates x; with the error-free predictor:

Xi=0p+0o.zi+€;i=1,...,n. 2)

The parameter 0,y denotes the intercept, o, is the coefficient of the error-free
covariate, and €; is a normally distributed error component. Furthermore, we
assigned independent N (0, 103) priors to Bo, B., 0o, and a., i.e. the intercepts
and the coefficients assigned to z; in equations (1) and (2).

The third level completes the specification of the hierarchical model elic-
iting a N(0, 100) prior for By, i.e. the coefficient of the error-prone covariate, a
Gamma(1,5e-05) prior on the precision of #; and ¢;, and Penalised Complex-
ity priors for the parameters of BYM’s re-adaptation (Simpson et al., 2017).

4 Results and conclusions

We estimated the statistical model described in Section 3 using INLA method-
ology and compared the results with two simpler models: the first one com-
pletely ignores ME, while the second one adopts a classical ME without spatial
smoothing effects. We found that omitting ME greatly attenuates the impor-
tance of traffic volumes, and excluding the spatial smoothing terms worsens
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Table 1. Summary of DIC, posterior means

of fixed effects, and error-prone covariate. Figure 1. Map displaying the posterior

means of car crashes counts.

the fit of the model. Motorways were found less prone to car crashes than the
other road types, while the posterior distributions of fixed effects and com-
mon hyperparameters were found stable among the three models. We report in
Table 1 a short summary of fixed effects’ posterior means, while Figure 1 dis-
plays the posterior means of predicted counts. We can notice that it highlights
a few road segments close to the city centre that would require a more detailed
statistical analysis.
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