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Abstract

In this thesis we construct the one-dimensional topological sector of N = 6 ABJ(M) theory
and study its relation with the mass-deformed partition function on S3. Supersymmetric
localization provides an exact representation of this partition function as a matrix integral
and it has been proposed that correlation functions of certain topological operators are
computed through derivatives with respect to the masses. We present non-trivial evidence
for this relation by computing the three- and four- point functions up to one loop and the
two-point function at two loops, successfully matching the matrix model expansion at weak
coupling and finite ranks. As a by-product, we obtain the two-loop explicit expression for
the central charge cT of ABJ(M) theory. We then shift our attention to the study of the
infrared phases of two-node quiver Chern-Simons theories with minimal supersymmetry in
three dimensions. We discuss both the cases of Chern-Simons levels with the same and with
opposite signs, where the latter case turn out to be more non-trivial. The determination of
their phase diagrams allows us to conjecture certain infrared dualities involving either two
quiver theories, or a quiver and adjoint QCD3.
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Overview

One of the most important achievements of Theoretical Physics is the Standard Model, a
theory which allows us to describe with huge precision the properties of the fundamental
particles we find in nature. The main framework used for describing such a successful theory
is relativistic Quantum Field Theory (QFT).
Despite the great success for its reliable predictivity, Quantum Field Theory is as much
powerful as difficult to study. Indeed, thanks to perturbation theory, whose physical in-
tuition is given by Feynman diagrams, is possible to obtain many informations about the
behavior of quantum fields when interactions are weak and, very rarely, strong.
Many of the open problems in theoretical physics are indeed intrinsically related to strongly
coupled systems, first of all, the confinement phenomenon [1, 2] occurring in Quantum
Chromodynamics (QCD) in the low-energy, or large-distances, limit. For this reason, in the
last three decades, many efforts have been dedicated to the study of similar, but much more
constrained, theories [3] for which having some grasps of non-perturbative phenomena is
possible. In this sense, supersymmetry and conformal symmetry have played a pivotal role
in gaining some intuitions, and often analytic control, on the strongly coupled dynamics [4,
5]. Supersymmetry is in fact a powerful tool which relates bosonic and fermionic particles
of a physical model. This highly non-trivial relation among the fundamental degrees of free-
dom heavily constraints both the perturbative and non-perturbative dynamics of the models
and allows for huge simplifications in the computation of observables such as the correlation
functions or the partition function of the theory. Indeed, thanks to supersymmetry, it is
sometimes possible to formulate an exact description of the model by reducing the infinite-
dimensional path integral computing the partition function, to a finite-dimensional integral,
which is usually called matrix integral or matrix model. This can be achieved through a very
powerful mathematical procedure called localization [6, 7] as we will discuss in what follows.
In this context, a special role is also played by BPS operators, namely operators preserv-
ing a certain fraction of supersymmetry. Indeed, their correlation functions constitute the
most important set of protected observables of the theory since protected operators enjoy
robustness against quantum corrections to their quantum numbers. An analogous role is
played by conformal symmetry, whose importance and broad applicability, has lead to many
non-trivial results concerning the dynamics of theoretical, statistical and condensed matter
physics models. The dynamics of conformal field theories (CFTs) is so constrained that any
n-point function can be recursively reduced to a linear combination of n−1-point functions,
where the coefficients, together with the quantum numbers of the fields, constitute the set
of CFT data. At the level of the operators this property is known as the operator product
expansion (OPE). This powerful property, combined with the so called crossing symmetry
for four-point functions, allow one to rephrase the problem of solving a CFT into the de-
termination of the complete set of CFT data. This is the philosophy behind the conformal
bootstrap program [8–12].
From a more abstract perspective, conformal field theories manifest themselves when we try
to explore the landscape of QFTs, or equivalently, their space of couplings. In particular,
when we vary the couplings of a theory by implementing some relevant deformations, we

xi



xii OVERVIEW

trigger the so called renormalization group (RG) flow [13], a complicated path whose (fixed)
endpoints, if they exist, are exactly described by conformal invariant theories. In this sense
we can see a generic QFT as nothing but a deformation of a certain original CFT, therefore
we are safely allowed to think at CFTs as the mother theories of all QFTs. This is one of
the main reasons why it is important to study and classify all the conformal field theories.
It is possible for different QFTs in the high-energy, or ultraviolet (UV), limit to flow to the
same CFT in the low-energy, or infrared (IR), limit. This property, known as universality,
plays a fundamental role in the formulation of the so called IR dualities [14, 15]. Such du-
alities find their most important application in three spacetime dimensions, by giving some
prescriptions to relate, in a very non-trivial way, different quantum (gauge) field theories
exhibiting a non-perturbative dynamics in the IR regime.
Many of the concepts presented above are discussed in this thesis, which constitutes an
attempt to explore the features of supersymmetric and conformal field theories (SCFTs) in
three dimensions when both the high and low-energy limits are considered.

In the first part of this thesis we will focus on a family of three-dimensional N = 6
SCFTs, also known as ABJ(M) theories, which are particularly relevant in the explicit re-
alization of the AdS4/CFT3 correspondence [16–18], since they possess M-theory duals on
AdS4× S7/Zk or type IIA string theory duals on AdS4×CP3, depending on the particular
range of the coupling constants [19, 20]. We will focus however on purely field-theoretic
aspects of ABJ(M) theories by giving a complete and explicit characterization of its one-
dimensional topological sector, a protected sector consisting of a completely solvable set
of space-time independent correlation functions. Thanks to its peculiar properties, the dy-
namics will be fully accessible in the perturbative regime and, thanks to supersymmetric
localization, also in the non-perturbative regime.
Topological sectors are in general particularly relevant because one can extract useful infor-
mation regarding the quantum theory, like CFT data, bounds on numerical factors involved
in the bootstrap technique, coefficients of Witten diagrams in the AdS duals, or computing
certain exact quantities interpolating between the weak and strong coupling regimes [21–24].
A prototypical example of the topological sector appears in N = 4 SYM in four dimensions
[25–27]. The dynamics of a particular subset of chiral primary operators and Wilson loops,
living on the same S2 embedded in the full space-time, is completely controlled by the zero-
instanton sector of the two-dimensional Yang-Mills theory [28]. All the correlation functions
do not depend on space-time positions and can be computed in terms of (multi)matrix mod-
els [29]. In three dimensions, general properties of the superconformal algebra suggest that
SCFTs with N ≥ 4 always contain a topological sector [22, 30]. In the N = 4 case, a
one-dimensional topological sector has been explicitly constructed in [31] as a family of
twisted Higgs branch operators belonging to the cohomology of a BRST-like supercharge.
As proved there, the cohomological supercharge can be used to perform supersymmetric
localization in a large class of N = 4 theories placed on S3. The result is a matrix model for
a topological quantum mechanics in which correlation functions can be computed in terms
of matrix-integrals. The existence of a one-dimensional topological sector finds interesting
applications also in the study of N = 8 and N = 6 three-dimensional theories where, due
to the enhanced supersymmetry, correlation functions of certain topological operators are
related to the stress-energy tensor ones in a particular kinematic configuration. The topo-
logical sector has thus played a notable role in performing a precision study of maximally
supersymmetric (N = 8) SCFTs through conformal bootstrap, allowing to compute exactly
some OPE data and constraining "islands" in the parameter space [22, 23, 32]. Here, we
will focus on the topological line of N = 6 U(N1)k × U(N2)−k ABJ(M) theory and study
the relation between correlation functions of dimension-one topological operators and the
mass-deformed matrix model of the theory.
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In the second part of this thesis we will shift our attention to more theoretical aspects of
the low-energy physics of three-dimensional quantum field theories with minimal supersym-
metry in the presence of a Chern-Simons term. Three-dimensional quantum field theories
with N = 1 supersymmetry indeed constitute a remarkable bridge between theories with
N = 2 supersymmetry, which are much more constrained thanks to holomorphy [33–35], and
genuine non-supersymmetric theories, whose dynamics is a challenging subject. Given that
we do not have neither non-renormalization theorems, nor localization techniques at our
disposal, it may appear that N = 1 supersymmetry does not give any advantage compared
to cases without supersymmetry. Nevertheless, in the recent years our understanding of
these theories has overcome a new twist [36–44] (see also [45–48] for earlier considerations).
In particular, new tools for studying phase diagrams of N = 1 theories were introduced and
applied to the analysis of IR dynamics of a vector multiplet coupled to matter in the adjoint
or fundamental representations [41, 42]. Among various interesting phenomena observed in
those examples, we mention the existence of walls in the parameter space, where the value
of a topological quantity, known as the Witten index, can jump, as well as the presence of
second-order phase transition points. Both features seem to be ubiquitous for known N = 1
theories and stem from the fact that the theories possess real parameters. This property
is also shared by N = 2 theories in three dimensions but, differently from the minimal
supersymmetric case, the Witten index is not allowed to jump when a wall is present [33].
For this purpose we initiate the study of the phase diagrams of three-dimensional N = 1
quiver gauge theories, i.e. theories whose gauge group is given by a product of several non-
Abelian factors, coupled to bi-fundamental matter. In particular, we restrict ourselves to
SU(2) × SU(2) and SU(2) × U(2) two-nodes quivers with a single bi-fundamental matter
multiplet. This simple setup allows for a detailed treatment and is still rich enough to
accommodate a variety of interesting phenomena. In particular, we reveal a rather non-
trivial phase structure of these theories and identify a collection of N = 1 superconformal
field theories (SCFT) describing their low-energy dynamics. Basing on our understanding
of phase diagrams, we are able to conjecture certain IR dualities, some of which can be
understood as the dualization of a node of the quiver, and some others as the confinement
of a node. Finally, we comment the time-reversal invariance property of the theory when
the gauge groups are the same, and the Chern-Simons levels are opposite. This symmetry
gives rise to certain non-renormalization theorems [39] which put strong restrictions on the
form of the effective superpotential.

We conclude the thesis with a brief summary and a discussion oriented to the possible
future directions.
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Chapter 1

Introduction

In this chapter we review some fundamental notions regarding the language which will be
used throughout this thesis, the one of Superconformal Field Theories (SCFTs), and we will
introduce a particular case of such theories, namely ABJ(M) theories.
In section 1.1 we review some general aspects of conformal field theories, in section 1.2 we
add susy to the previous discussion ending up with superconformal field theories. In section
1.3 we review some basic aspects of Chern-Simons and Chern-Simons-matter theories and
discuss some of their relevant supersymmetric versions. Finally, in section 1.4 we introduce
and discuss the main aspects of the ABJ(M) theory.

1.1 Conformal Field Theories

Conformal Field Theories are particular kinds of Quantum Field Theories enjoying con-
formal invariance. This additional requirement can be encoded in a bosonic extension of
the usual Poincaré group to the so called conformal group. In this thesis we will focus on
Euclidean (Super-)Conformal Field Theories in d = 3, thus we will now review the main
aspects of conformal symmetry when d ≥ 3.1 For a complete review on this topics see e.g.
[49–53].

1.1.1 Conformal Algebra

The conformal group is the group generated by those transformations for which, under a
generic coordinate transformation x′ = x′(x), the metric tensor transforms as

g′µν(x′) =
∂x′ρ

∂xµ
∂x′σ

∂xν
gρσ(x) = Ω(x)2gρσ(x). (1.1)

We notice that when Ω(x) = 1 and gµν = ηµν , we get back to the Poincaré group which thus
constitute a subgroup of the conformal group. Since the theories analyzed in this thesis are
defined on R3, we will restrict from now on to the flat space case, i.e. gµν = ηµν .
At the infinitesimal level, by considering a transformation of the form x′µ = xµ + εµ(x),
equation (1.1) can be recasted in the following differential condition

∂µεν + ∂νεµ =
2

d
(∂ · ε)ηµν . (1.2)

By acting on the above equation twice with respectively ∂ν and ∂ν and combining the result
with (1.1), we get the following expression

(ηµν�+ (d− 2)∂µ∂ν) (∂ · ε) = 0, (1.3)
1The d = 2 case it is a well-known very special case that deserves a separate discussion which we are not

going to make here.
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2 CHAPTER 1. INTRODUCTION

which, after contracting both sides with ηµν , becomes

(d− 1)�(∂ · ε) = 0. (1.4)

From the equations in (1.3) and (1.4) it is now easy to obtain the constraints

�(∂ · ε) = 0, ∂µ∂ν(∂ · ε) = 0, (1.5)

which fix the general structure of εµ(x), namely a polynomial at most quadratic in xµ. The
solution can be then finally expressed in the usual familiar structure as

εµ(x) = aµ + ωµνx
ν + λxµ − 2(x · b)xµ + x2bµ, (1.6)

which represents the most general form of the so called conformal Killing vector.
From (1.6) we can immediately read the infinitesimal transformation for translations (gen-
erated by Pµ and parametrized by aµ), rotations (generated by Mµν and parametrized by
ωµν), dilatations (generated by D and parametrized by λ) and the so called special confor-
mal transformations (generated by Kµ and parametrized by bµ).
We notice that the number of independent components of the parameters introduced above
are respectively d+ d(d−1)

2 + 1 + d = (d+2)(d+1)
2 which is the dimension of an so(2 + d)-like

algebra. The commutation relations satisfied by the generators are indeed

[D,Pµ] = iPµ, [D,Kµ] = −iKµ, [Kµ, Pν ] = 2i(ηµνD −Mµν)

[Mµν , Pρ] = −i(ηµρPν − ηνρPµ), [Mµν ,Kρ] = −i(ηµρKν − ηνρKµ)

[Mµν ,Mρσ] = i(ηµσMνρ + ηνρMµσ − ηµρMνσ − ηµσMνρ)

(1.7)

which actually describe an so(1, d+ 1) algebra. An elegant way to achieve this is to define
the following set of generators

Jµν = Mµν , Jµ,0 =
Pµ −Kµ

2
, Jd+1,µ =

Pµ +Kµ

2
, Jd+1,0 = D (1.8)

which satisfy the commutation relation

[JAB, JCD] = i(ηADJBC + ηBCJAD − ηACJBD − ηBDJAC), JAB = −JBA (1.9)

where A,B,C,D = 0, µ, d+ 1 with µ = 1, . . . , d and ηAB = diag(−1, 1, . . . , 1) is the metric
of the extended physical space R1,d+1. Is it now clear from (1.9) that the algebra generated
by JAB is so(1, d+1). In the same spirit one can show that in general, for Rp,q with d = p+q,
the conformal algebra is so(p+ 1, q + 1).

1.1.2 Correlators

At this point, it is reasonable to ask what is the spectrum of a CFT and what are the
observables that can be computed. For this purpose, let us introduce operators as the
irreducible representations of the above conformal algebra.
It is possible to notice from the relations in (1.7), that the generator of dilatations D
defines a real Cartan subalgebra R ' so(1, 1) of so(1, d + 1). This means that any other
generator belonging to the latter has some weight under its action. We call this weight
scaling dimension and indicate it with ∆. It is immediate to see that ∆P = 1, ∆K = −1
and ∆M = 0, thus Pµ and Kµ play the role of raising and lowering operator respectively for
∆.

In the usual radial quantization scheme2 for CFTs, the dilatation operator D plays the
role of the Hamiltonian of our theory. Since every physical state must have a bounded

2Since the cylinder Sd−1 × R and the Euclidean space Rd are conformally equivalent, we can quantize
a CFT either on the former or the latter. This implies that a CFT quantized on a d-dimensional cylinder
on equal time slices is perfectly equivalent to a CFT quantized on d-dimensional flat space on equal radius
slices.
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energy spectrum from below, there always exists one state which has the lowest possible
"energy", in other words there must exists a lowest weight state for ∆, namely a state
annihilated by Kµ. Such states, which we call (quasi-)primary states, sit also in irreducible
representations3 of the Lorentz algebra so(d). We shall indicate them as |[L]∆〉, where [L]
label the so(d) representation. At this point we define a so called conformal primary state
as a state satisfying the following conditions

Mµν |[L]∆〉s = (Σµν) s
r |[L]∆〉s ,

D |[L]∆〉 = −i∆ |[L]∆〉 ,
Kµ |[L]∆〉 = 0,

(1.10)

where Σµν is the spin matrix and r, s are indices in a suitable Lorentz representation.
As we saw above, Kµ and Pµ act as ladder operators for ∆, therefore, it is possible to
construct irreducible representations of the conformal algebra by acting with Pµ on primary
states. The generic structure of such states will be then

Pµ1 . . . Pµn |[L]∆〉 . (1.11)

States obtained in this way are called descendants and the set of primary states together
with their descendants form the so called conformal family.
From the discussion we made above, since we want to work in a theory of fields, we need now
to associate states to fields. This can be achieved thanks to the celebrated state-operator
correspondence which, when we consider the radial quantization scheme, is realized by
associating states living on the sphere to operators defined in the interior of it. Operators
inserted at the origin xµ = 0 are called primary operators ΦL,∆ and are explicitly associated
to primary states as follows

ΦL,∆(0) |0〉 ≡ |[L]∆〉 . (1.12)

At this point it is easy to show that the relations in (1.10) are correctly recovered if primary
operators satisfy the following conditions

[Mµν ,ΦL,∆(0)] = ΣµνΦL,∆(0),

[D,ΦL,∆(0)] = −i∆ΦL,∆(0),

[K,ΦL,∆(0)] = 0.

(1.13)

It would be tempting now to say that operators inserted away from the origin can be
associated to descendant states and, in fact, this is not completely true. Indeed states
associated to such operators turn out to be an infinite linear combination of descendant
states

|Ψ〉 ≡ ΦL,∆(x) |0〉 = eix·PΦL,∆(0)e−ix·P |0〉 = eix·P |[L]∆〉 =
∑
n

1

n!
(ix · P )n |[L]∆〉 , (1.14)

whereas descendant states are associated to the derivatives of operators computed at the
origin, for example

− i∂µΦL,∆(x)|x=0 |0〉 = [Pµ,ΦL,∆(0)] |0〉 = Pµ |[L]∆〉 . (1.15)

3Note that a primary state is unique only if we require that it is also an highest weight state of the
Lorentz group.



4 CHAPTER 1. INTRODUCTION

We are now ready to come back to our main discussion and introduce how operators
transform under the conformal group. Primary fields transform under the conformal group
as

Φ′i(x
′) = Ω(x)−∆D j

i (R(x))Φj(x) (1.16)

where D(R) is the proper representation of the Lorentz group and Ω is the conformal factor
we introduced in (1.1).
All the fields in a unitary CFT can only be primaries or descendants and, being descendants
obtained from primaries by acting with the momentum generator, all the relevant (local)
informations about the theory are captured by the dynamics of primary fields. For this
reason let us introduce correlators of primary fields as the main, but not unique, observables
of our theory.

In a conformal invariant theory, correlators are heavily constrained by conformal invari-
ance. As an example, by considering the two-point function of scalar primaries we get

〈φ1(x)φ2(y)〉 = f(|x− y|), (1.17)

thanks to rotation and translation invariance. From (1.16), is then easy to implement
invariance under dilatations, namely x′ = λx, and get

〈φ1(x)φ2(y)〉 =
C12

|x− y|∆1+∆2
. (1.18)

where C12 is some constant.
Recalling now that the finite form for a special conformal transformation is x′µ = xµ+x2bµ

1+2(b·x)+b2x2

and using (1.16) again, we can implement this transformation to constraint even more the
result above. At the end of the story, the two-point function of scalar primaries becomes

〈φ1(x)φ2(y)〉 =

{
C12

|x−y|2∆ if ∆1 = ∆2 = ∆

0 if ∆1 6= ∆2

(1.19)

Notice that, after a proper normalization of the fields, we can safely set C12 = 1.
The same game can be played with the next non-trivial correlator involving scalar primaries,
the three-point function. Again conformal invariance constraints its structure which turns
out to be

〈φ1(x)φ2(y)φ3(z)〉 =
C123

|x− y|∆1+∆2−∆3 |y − z|∆2+∆3−∆1 |z − x|∆3+∆1−∆2
(1.20)

where now C123 is a constant that cannot be fixed by any conformal symmetry. The fact
that the three-point function can be fixed up to a constant tells us that such a constant
represents something which is physically relevant for the theory. This is actually the case,
since all the higher n-point functions can be in principle fully determined once we know
all the three-point function constants for all the primaries of the theory and their scaling
dimensions4. Such quantities {Cijk,∆l} are usually called conformal data.
If we proceed with the four-point function of scalar primaries, we notice that conformal in-
variance can fix its structure up to a function of particular conformal invariant combinations
of the coordinates called cross-ratios. Explicitly we have

〈φ1(x1)φ2(x2)φ3(x3)φ4(x4)〉 = f (u, v)
4∏
i<j

x
∆/3−∆i−∆j

ij , u =
x12x34

x13x24
, v =

x12x34

x23x14

(1.21)
4We need to know also the representation of the Lorentz group under which they transform.
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where we used for shorthand notation that xij = xi−xj , ∆ =
∑4

i=1 ∆i and u, v are the two
inequivalent cross-ratios we can build out of four space-time coordinates.5

As we previously anticipated, the function f(u, v) can be fully determined once all the
conformal data are known. It general those data are not known at all and some other
constraints must be found in order to determine f(u, v).
By looking for example at (1.21) and imposing that all the scalar primaries appearing there
are the same, we get

〈φ(x1)φ(x2)φ(x3)φ(x4)〉 =
g(u, v)

x2∆
12 x

2∆
34

. (1.22)

The correlator is now manifestly invariant under permutations of xi and this fact leads to
the following consistency conditions

g(u, v) = g

(
u

v
,

1

v

)
, (1.23)

g(u, v) =
(u
v

)∆
g(v, u). (1.24)

The equations above derive from a more general result known as crossing symmetry equa-
tion, which states nothing but that the value of a n-point correlation function must be
independent of the channel we choose for computing it. This is the general idea on which
the conformal bootstrap [4, 12, 52] is based on.

1.1.3 Unitarity Bounds

The power of conformal invariance goes beyond the constraints we found above about ob-
servables. Indeed, for a unitary CFT, it also allows to constraint the scaling dimension
∆ of primary operators by simply requiring the non-negativity of the norm of every state
appearing in a conformal multiplet. 6

In Euclidean space, hermitian conjugation maps t → −t, which, in the radial quantization
scheme, is equivalent to the action of the inversion element I of the conformal group7.
At the level of conformal generators, hermitian conjugation should act by the same operator
and what results are the following transformations

P †µ = IPµI−1 = Kµ, K†µ = Pµ,

M †µν = Mµν , D† = −D.
(1.25)

It is easy to realize that the transformations above leave the algebra in (1.7) invariant.
In order to obtain the so called unitarity bounds, we can now compute the norms of cer-
tain descendants and impose the non-negativity of them. Let us start from the level-one8

descendants of scalar primaries. Assuming to normalize the norm of primary states to one,
we have

0 ≤ ||aµPµ |[φ]∆〉 ||2 = aµaν 〈[φ]∆|KµPν |[φ]∆〉
= aµaν 〈[φ]∆| [Kµ, Pν ] |[φ]∆〉
= aµaν 〈[φ]∆| 2i(ηµνD −Mµν) |[φ]∆〉
= |a|22i(−i∆) = 2|a|2∆

(1.26)

5Note that for a generic n-point function they are exactly n(n−3)
2

.
6For Euclidean theories this property is actually called reflection positivity.
7Formally, the inversion element does not belong to the connected component of the conformal group

being an O(1, d+1) transformation. This means that its finite action cannot be obtained by exponentiating
any generator in the so(1, d+ 1) algebra.

8The "level" refers to the number of times we apply the momentum generator to our primary field.
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where aµ is a rank-one tensor parameter and in the third inequality we used the conformal
algebra in (1.7). From the result obtained above, we get the expected constraint ∆ ≥ 0.
One can also proceed in computing the norm of level-two descendants and find

0 ≤ ||aµνPµPν |[φ]∆〉 ||2 = aµνaρσ 〈[φ]∆|KσKρPµPν |[φ]∆〉
= . . .

= 4∆(2(∆ + 1)aµνaµν − aµµaνν)

= 4∆(2(∆ + 1)d− d2).

(1.27)

where in the last equality we have chosen9 aµν = δµν . By putting together the results found
in (1.26) and (1.27), the final result for the unitarity bound of scalars primaries becomes

∆ = 0 or ∆ ≥ d

2
− 1. (1.28)

One could in principle compute norms at higher level but it turns out that the constraint
found in (1.28) is actually exact regardless the level we consider.
For generic representations |[ha]∆〉, one can compute the only non-trivial term in the third
line of (1.26), namely

〈[ha]∆|Mµν |[hb]∆〉. (1.29)

The expression above can be evaluated by exploiting the following trick

(Mµν)ab =
1

2
(V ρσ
µν )(Mρσ)ab = (V ·M)abµν (1.30)

where V is the generator of rotations in the vector representation of the Lorentz algebra
and we defined the inner product for generic representations as A ·B ≡ 1

2AabBab.
The inner product above can be recasted in a useful form when acting on the states in
(1.29), namely

V ·M =
1

2

(
(V +M)2 − V 2 −M2

)
=

1

2
(−C(V ⊗Rh) + C(V ) + C(Rh))

(1.31)

where Rh is the so(d) representation of |[ha]∆〉 and C stands for the quadratic Casimir. The
bound we get for ∆ thus becomes

∆ ≥ 1

2
(C(V ) + C(Rh)− C(V ⊗Rh)) . (1.32)

The most restrictive bound we can get for ∆ is the one for which C(V ⊗ Rh) assumes its
minimal value, therefore

∆ ≥ 1

2
(C(V ) + C(Rh)− C(Rmin)) . (1.33)

with Rmin ∈ V ⊗ Rh. Notice that the result found for scalars in (1.28) is the only more
restrictive case than the general rule of (1.33).
Primary states for which the inequality in (1.33) is strict give rise to the so called long mul-
tiplets, if instead the inequality becomes an equality then they give rise to short multiplets.

One important consequence of (1.33) is that, when the bound is saturated, we find the
so called null states. Primaries admitting this kind of states must saturate the bound and,
more importantly, their scaling dimension cannot acquire any correction at quantum level.
In other words, they represent some protected quantities. Some trivial examples are

9The starting point of the relations above is that the matrix of inner products should be non-negative.
Here we consider just the trace part, but the same result follows by taking the symmetric traceless part.
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• Massless scalar: PµPµφ = ∂µ∂
µφ = 0 =⇒ ∆ = d−2

2 ,

• Massless Dirac fermion: γµPµψ = /∂ψ = 0 =⇒ ∆ = d−1
2 ,

• Traceless stress-energy tensor: PµTµν = ∂µT
µν = 0 =⇒ ∆ = d,

• Conserved currents: PµJµ = ∂µJ
µ = 0 =⇒ ∆ = d− 1.

We can in general imagine the structure of a conformal multiplet as a function of the
scaling dimension of its primary state. The scaling dimension depends itself on the param-
eters of the theory and, when they are varied, it will in general change. When ∆ satisfies
the strict inequality of (1.33) the multiplet is long, but, when the bound is hit, a null state
will appear at a certain level l causing the multiplet to become short. This very important
phenomenon is usually called Recombination.
What happens in general is that short multiplets (or long multiplets with at least one short
multiplet) may merge and generate a long multiplet. Schematically we have

[ha]∆ + [h′]∆+l −−→ [ha]∆+ε, (1.34)

with ∆ saturating the unitarity bound and h′ being the Lorentz representation of the pri-
mary state filling the gap left by the first null state appearing in the short multiplet.
An instructive example is the following

[V µ]∆=d−1 ⊕ [φ]∆=d −−→ [V µ]∆=d−1+ε, (1.35)

which, on the field theoretic side, can be interpreted as

∂µJ
µ = 0 ⊕ O −−→ ∂µJ

µ = gO. (1.36)

The relation above corresponds to a deformation of the starting CFT implemented by turn-
ing on a coupling g and adding a relevant (marginal) operator O causing the current to be
no more conserved and, therefore, no more protected.

At this point we are ready to add more ingredients to the conformal field theory en-
vironment, such as supersymmetry, and discuss some important aspects of superconformal
field theories.

1.2 Superconformal Field Theories

In this section we want to briefly introduce supersymmetry and promote conformal field
theories to superconformal field theories. Nice reviews covering many aspects of supercon-
formal field theories are [54–58]. Many aspects of conformal field theories will hold also in
this context but some new important features will appear and enrich the set of tools at our
disposal for obtaining constrained, and sometimes also exact, results. Detailed reviews on
supersymmetry and its field-theoretical implications are [59, 60].

1.2.1 Supersymmetry

Supersymmetry is a fermionic symmetry which, roughly speaking, associates fermionic part-
ners to bosonic particles and viceversa. Such symmetry is generated by N spin−1

2 fermionic
generators QIα, where I = 1, . . . ,N , α = 1, 2, called supercharges10.

10In four dimensions we have Q but also Q̄, which are respectively ( 1
2
, 0) and (0, 1

2
) Lorentz spinors.
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From a more theoretical point of view, supersymmetry is the only known consistent exten-
sion to the well-known Coleman-Mandula theorem [61], which states that the most general
continuous symmetry group preserving the S-matrix11 has to have the following form

GCM = Poincaré× Internal Symmetries. (1.37)

The Coleman-Mandula theorem assumes that the algebra G involves only commutator and,
in fact, the only way to avoid this "no-go" theorem is indeed to introduce fermionic gener-
ators, as was shown by Haag, Lopuszanski and Sohnius [62]. For supersymmetric quantum
field theories therefore we have

GHLS = superPoincaré× Internal Symmetries. (1.38)

By focusing on the Poincaré algebra, its supersymmetric extension becomes

[Mµν ,Mρσ] = i(ηµσMνρ + ηνρMµσ − ηµρMνσ − ηµσMνρ)

[Mµν , Pρ] = −i(gµρPν − gνρPµ) {QIα, QJβ} = εαβZ
IJ

[Mµν , Q
I
α] =

1

2
(σµν) β

α Q
I
β {QIα, Q̄Jβ} = 2(σµ) β

α Pµδ
IJ

(1.39)

where ZIJ = −ZJI is the central charges matrix. For a generic number N of supersym-
metries, the algebra in (1.39) admits an (outer) automorphism given by rotations of the
supercharges, which is called R-symmetry. In general the maximal R-symmetry group is
U(N ) but it may happen that additional conditions reduce it to some of its subgroups.12

At this point, it is easy to realize that PµPµ is still a Casimir for the algebra in (1.39)
while WµW

µ is not13. This means that only the mass is a good quantum number for the
fundamental objects living in a supersymmetric theory and not the spin. Such fundamental
objects are called supermultiplets. Supermultiplets can be constructed by observing that
(suitable combinations of) Q and Q̄ play the role of ladder operators for the spin, just like
P and K do in the conformal case for the scaling dimension. Again, multiplets admitting
null descendant states are called short or BPS, otherwise they are called long.
With this notions at hand, let us introduce the supersymmetrization of the conformal algebra
we saw in (1.7) and discuss more in detail the structure of (super)conformal multiplets.

1.2.2 Superconformal Algebra

After having introduced the supersymmetric extension of the Poincaré algebra, one could
then ask what happens if we extend the same construction to the conformal algebra of (1.7).
The generalization is not as straigthforward as it seems, indeed there are some peculiari-
ties that should be mentioned. Firstly, the supersymmetry algebra can be extended to the
superconformal one only for d ≤ 6 space-time dimensions [63, 64]. Secondly, spinor repre-
sentations of the conformal group can be explicitly represented as two combined Lorentz
spinors14. This fact induces us to introduce a new set of fermionic generators S, called
superconformal charges15, which allow us to explicitly write the superconformal algebra in

11Assuming the usual axioms of quantum field theories like locality, causality, unitarity etc... .
12This is the case for example of N = 4 SYM theory, for which the U(1) inside U(4) is central. Moreover,

the scalars can be packed into a real six-dimensional antisymmetric representation which is allowed only for
SU(4) ' SO(6) and not U(4). An alternative explanation is that, when compactifying the ten-dimensional
SYM theory [3] on T6, we get the breaking pattern SO(1, 9) → SO(1, 3) × SO(6), which reproduces the
correct R- and space-time symmetries of the 4d theory.

13Where Wµ = 1
2
εµνρσpνMρσ is the usual Pauli-Lubanski pseudo-vector.

14In Minkowskian signature this happens because Cl(1, d− 1)⊗R Cl(1, d− 1) ' Cl(2, d).
15To avoid confusion, from now on, we will refer to S charges as superconformal charges and to Q charges

as Poincaré supercharges.
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a more confortable way (though less compact), namely in terms of bosonic generators and
Lorentz spinors only. Last but not least, in third instance, the R-symmetry is no more
simply an automorphism of the algebra but is in fact part of the algebra. This will clearly
have an impact on the classification of irreducible representations of the full superconformal
algebra.

For simplicity, we prefer focusing on the superconformal algebra in d = 2+1 dimensions
with N supersymmetries, since this will be the main setup for the thesis.
The Lie superalgebra corresponding to the above situation is osp(N|4) whose maximal
bosonic subalgebra is sp(4,R) ⊕ so(N ) ' so(2, 3) ⊕ so(N ). The first bosonic group is
nothing but the space-time symmetry algebra and so(N ) is now the R-symmetry algebra.
By switching to the three-dimensional spinor basis, the algebraic relations involving bosonic
generators become

[M β
α , Pγδ] = δ β

γ Pαδ + δ β
δ Pαγ − δ

β
α Pγδ ,

[M β
α ,Kγδ] = −δ γ

α K
βδ − δ δ

α K
βγ + δ β

α K
γδ ,

[M β
α ,M δ

γ ] = δ β
γ M

δ
α − δ δ

αM
β
γ ,

[D,Pαβ] = Pαβ ,

[D,Kαβ] = −Kαβ ,

[Kαβ, Pγδ] = 4δ
(α

(γ M
β)
δ) + 4δ α

(γ δ
β
δ)D ,

[Rrs, Rtu] = i(δrtRsu − δstRru − δruRst + δsuRrt) ,
(1.40)

whereas the relations involving fermionic generators are

{Qrα, Qsβ} = 2δrsPαβ ,

[Kαβ, Qrγ ] = −i(δ α
γ S

βr − δ β
γ S

αr) ,

[M β
α , Qrγ ] = δ β

γ Q
r
α −

1

2
δ β
α Q

r
γ ,

[D,Qrα] =
1

2
Qrα ,

[Rrs, Qtα] = i(δrtQsα − δstQrα) ,

{Sαr, Sβs} = −2δrsKαβ ,

[Pαβ, S
γr] = −i(δ γ

α Q
r
β − δ

γ
β Q

r
α) ,

[M β
α , Sγr] = −δ γ

α S
βr +

1

2
δ β
α S

γr ,

[D,Sαr] = −1

2
Sαr ,

[Rrs, Sαt] = i(δrtSαs − δstSαr) ,
{Qrα, Sβs} = 2i(M β

α + δ β
α D)δrs + 2δ β

α R
rs ,

(1.41)

where r, s, t, u = 1, . . . ,N indices for the vector representation of so(N ). For all the con-
ventions on spinor indices see for example [22, 65].

1.2.3 Multiplets and Unitary Bounds

Having the full superconformal algebra at our disposal, we are now allowed to study its
irreducible representations. Analogously to what we did for the conformal case, let us focus
in particular on its highest weight states, namely the so called superconformal primaries.
Irreducible representations are univocally identified by the set of Dynkin labels associated
to the maximal bosonic subgroup of the superconformal algebra so(2, 3)⊕ so(N ).
A generic irreducible representation will be hence identified by |∆, j, r〉 where ∆ is the usual
scaling dimension, j is the spin and r = (r1, . . . , rN

2
) are the R-symmetry Dynkin labels

(for more details see [56, 65]).
Like the conformal case, the generator K is still a lowering operator for D since again
∆K = −1. However, in the superconformal case, there are additional generators whose scal-
ing dimension is negative, indeed is easy to observe from (1.41) that ∆S = −1

2 . This means
that a superconformal primary state must be annihilated by both K and S generators.
By constructing the usual Chevalley basis for the sl(2) algebra associated to each Cartan el-
ement of the R-symmetry algebra, namely {Hi, E

+
i , E

−
i }, the highest weight state condition

becomes
{Kαβ, Sαr, J+, E+

i } |∆, j, r〉
h.w.s. = 0 (1.42)
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where J+ and E+ are raising operators for respectively the spin and the i−th R-symmetry
quantum number, with i = 1, . . . , N2 .
Once the h.w.s. is known, descendants states can be built by acting again with the mo-
mentum generator P and now also with the supercharges Q, since ∆Q = 1

2 . Also in the
superconformal case, multiplets whose h.w.s. is annihilated by one or more supercharges Q
are called short or BPS-multiplets16.
Analogously to what we saw in the conformal case, the structure of a multiplet depends
on the property of its superconformal primary, in particular on its quantum numbers. By
requiring again the non-negativity of the norms of descendant states, one can obtain the
superconformal versions of the unitarity bounds discussed in Subsection 1.1.3. For this pur-
pose, it is necessary to introduce the hermiticity properties of superconformal generators
which leave (1.40) and (1.41) invariant. These are precisely

(Pαβ)† = Kαβ, (Kαβ)† = Pαβ, (M β
α )† = M α

β , D† = D

(Qrα)† = −iSαr, (Sαr)† = −iQrα, (Rrs)† = Rrs.
(1.43)

Working out unitarity bounds for superconformal primaries for generic theories is tipi-
cally quite involved, nevertheless we can still make some general comments on the results.
Since there are more superconformal descendant than conformal ones, one expects that uni-
tarity bounds will be more restricting than in the conformal case. This is indeed obvious
since all P -descendants are always Q-descendants but not viceversa.
The general structure of superconformal bounds is the following

∆ ≥ f(j, r) (1.44)

where now the function f represents a generic linear combination of Lorentz and R-symmetry
quantum numbers. The most important thing to notice is that the function f(j, r) can be
written as a combination of other linear functions f(j, r) = f1(j) + f2(r) + δ(j,r), where δ is
a numerical constant depending on the representation of the considered primary.
This particular structure shows that there exists a much richer classification of supercon-
formal multiplets than of the conformal ones. Indeed, for the former case17, isolated short
multiplets may occur for specific values of f1(j), f2(r) or the space-time dimension d.
Those particular kinds of superconformal multiplets are indeed specified by a certain value
of ∆ which cannot be continuously connected to other values for which the bound is strictly
satisfied or saturated at the treshold. At the end of the day the possibilities are [56]

• Long Multiplets (L-type): ∆ strictly satisfies (1.44).

• Short Multiplets at the threshold (A-type): ∆ saturates the inequality (1.44).

• Short Isolated Multiplets (B,C,D-type): ∆ assumes a specific value which falls out
from the bound but for which the multiplet is still unitary.

The above families are visually summarized in Figure 1.1.
The classification we reviewed above gives some useful hints on the phenomenon of recom-
bination for superconformal multiplets. Indeed we have that an L-type multiplet always
fragments into at least an A-type multiplet with the same Lorentz and R-symmetry quan-
tum numbers when it hits the unitarity bound (∆ = ∆A). Moreover, it may happen that
isolated short multiplets, which in principle can recombine, become absolutely protected.

16Usually the word "BPS" is accompanied by a fraction which represents the number of supercharges
preserved by the primary state w.r.t. to the total number of supercharges of the theory.

17In the conformal case is easy to see that the only isolated short multiplet that can arise is for a scalar
with ∆ = 0, namely the trivial multiplet generated by the identity operator 1.
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Figure 1.1: Schematic representation of unitary superconformal multiplets (Figure taken
from [56]). When ∆ > ∆A we have L-type multiplets, when instead ∆ = ∆A we have an
A-type multiplet. For ∆ = ∆B,C,D we get the corresponding B,C,D-type multiplets.

When this happens, such multiplets remain always isolated for any exactly marginal defor-
mation18 of the SCFT and can never participate in any recombination rule. This fact thus
heavily constraints the physics of SCFTs when moving on the so called conformal manifold.

1.3 Chern-Simons Theories

Let us now shift our attention to another special kind of quantum field theories which will
be relevant for the arguments that will be discussed in what follows: Chern-Simons theories.
Some nice notes regarding Abelian and non-Abelian Chern-Simons theories can be found in
[66–69].
Chern-Simons theories [70] are theories which play a fundamental role both in Physics, being
a non-trivial gauge-invariant extension of Yang-Mills theories in odd dimensions, and Math-
ematics, being for example one of the most powerful tool to compute particular topological
invariants [71], e.g. knot invariants, for any three-dimensional oriented manifoldM3.

1.3.1 Abelian Theories

Suppose to consider a U(1) Chern-Simons theory. Its action is given by

SCS =
k

4π

∫
M3

d3x εµνρAµ∂νAρ, (1.45)

where the coupling k ∈ Z is called Chern-Simons level andM3 is a generic three-dimensional
oriented manifold. We notice that, a priori, there is no restriction on the possible values
that the level k can assume. The integrality condition will follow from requiring the gauge
invariance of the partition function as we will see in a moment.
The first thing we want to point out is that (1.45) actually describes a topological field
theory, namely the physics depends only on the topology of M3 and not on the choice of

18Exactly marginal deformations are deformations preserving the conformal invariance of the theory.
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metric. The action can indeed be written as an integral of a three-form overM3

SCS =
k

4π

∫
M3

A ∧ dA, (1.46)

for which there is no need to specify a metric.19

Another interesting property of (1.45) is that it is evidently Lorentz-invariant but less
evidently gauge-invariant. Indeed, under a gauge transformation Aµ → Aµ + ∂µα, the
action transforms as

δSCS =
k

4π

∫
M3

d3x εµνρ∂µ(α ∂νAρ), (1.47)

which vanishes for suitable boundary conditions. Nevertheless it is very important to un-
derstand what happens for a generic function α in a non-trivial topological setup.
By choosing indeed for example M3 = S1 × S2, the expression in (1.47) becomes δSCS =
2πnk, where we have 1

2π

∫
S2 F12 = n ∈ Z for U(1) gauge group. We see that, in general,

gauge invariance of the partition function eiSCS is achieved only for k ∈ Z.
At this point, Chern-Simons theory looks poor of physical content, in particular there

no local observables, being both the field-strength Fµν and the stress-energy tensor Tµν
vanishing. Despite these discouraging results, one can actually look for non-trivial observ-
ables which satisfy the strict conditions imposed by gauge invariance and topologicity of the
theory. Such observables are correlators of non-local gauge invariant objects called Wilson
loops.
Since the theory is topological, it is meaningful to define and compute observables on non-
topologically trivial space-time manifolds. We can consider the generic setupM3 = R×Σg

where Σg is a two-dimensional Riemann surface with genus20 g. The easiest example we
can consider is Σ1 = T2, for which Wilson Loops are defined as follows

Wi = exp

(
i

∮
γi

Ajdx
j

)
, (1.48)

where γi, with i, j = 1, 2, are the two inequivalent non-contractible cycles21 of the torus.
The quantization of the CS-theory on R×T2 allow us to find the following algebraic relation

W1W2 = e
2πi
k W2W1, (1.49)

from which we can infer two important aspects of the theory: The first one is that Wilson
Loops are operators satisfying a fractional statistics, usually called braid statistics, namely
they behave as anyonic particles22. The second one is that (1.49) is consistent if the theory
admits k degenerate ground states. For generic Σg the degeneracy must be kg, meaning
that the number of ground states heavily depends on the topology of the space-time.

19Another way to see this is the following: By introducing the curved-space Levi-Civita (pseudo-)tensor
and volume form, as 1√

−g ε
µνρ and d3x

√
−g respectively, it is straightforward to see that the metric depen-

dence always cancels out, leaving the action as in the flat space case.
20It is well-known that the topology of two-dimensional Riemann surfaces is completely determined by

its genus g or, equivalently, its Euler characteristic χ(g) = 2− 2g.
21This is because π1(T2) = Z⊕ Z.
22We can indeed couple the theory to a point-charge current Jµ =

∑
a J

µ
a , where

Jµa =

∮
γa

dxµaδ
(3)(x− xa), a = 1, 2, (1.50)

by inserting the usual interaction term Sint =
∫
d3xAµJ

µ. At the path-integral level, the deformation Sint

corresponds to the insertion of eiSint , which is exactly (1.48). The complete partition function of the theory
is then nothing but Z[J ] = 1

Z[0]
〈W1W2〉.
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Chern-Simons theory can be thought as a starting point for analyzing different field
theoretic aspects that arise when we deform the action in (1.45). The most simple but
non-trivial deformation is the insertion of a Maxwell term in the action

SCSM =

∫
d3x

(
− 1

4g2
FµνF

µν +
k

4π
εµνρAµ∂νAρ

)
. (1.51)

The classical equation of motion for the gauge field is

∂µF
µν +

kg2

4π
ενρσFρσ = 0, (1.52)

which, in terms of the dual field-strength Fµ = 1
2ε
µνρFνρ, can be rewritten as

(�−m2)Fµ = 0, (1.53)

where we definedm = kg2

2π . The above equation makes clear that the fundamental excitations
of the theory are massive, meaning that the theory we are considering is now non-trivially
gapped23. We notice that we can recover the dynamics of the pure CS-theory when the low
energy limit is taken. This consists in taking m = kg2

2π → ∞, for which all the massive
modes decouple and only low-energy probes, i.e. Wilson Loops, are left.

Adding Matter

We can now ask what happens if we couple fermions to the Maxwell-Chern-Simons theory
discussed above and we play the same game of looking at the low-energy theory. For this
reason let us briefly discuss discrete symmetries for fermions in three dimensions.
We can introduce the three-dimensional Clifford algebra spanned by the usual gamma ma-
trices in the Majorana basis24

γ0 = σ2, γ1 = iσ1, γ2 = iσ3, (1.54)

satisfying the relation

γµγν = ηµν − iεµνργρ, ηµν = diag(−1, 1, 1). (1.55)

The smallest irreducible representation has dimension 2[ d
2

] = 2 and is given by a two-
component (real) Majorana25 spinor χα. With the prescription χ̄ = χTγ0, we can write the
lagrangian for a Majorana fermion as

Lχ =
1

2
iχ̄/∂χ+

1

2
mχ̄χ. (1.56)

By defining parity and time-reversal symmetries26 as

P : x1 → −x1, χ→ iγ1χ, (1.57)

T : x0 → −x0, χ→ iγ0χ, (1.58)

we immediately see that the kinetic term in (1.56) is invariant whereas the mass term is not.
By thinking of the above theory as a point in the space of couplings, we see that turning

23The words "non-trivial" mean that non-trivial topological observables can be computed at arbitrary
low energy scales. The word "gapped" instead means that the difference between the energy of the vacuum
and of the first massive excitation is non-zero, in other words, the mass spectrum is not continuous.

24This means that we choose purely imaginary gamma matrices.
25A spinor ψ is Majorana if it satisfies the Majorana condition, namely that ψc = ψ. The corresponsing

conventions are taken from Appendix B of [72].
26These are both conventionally labelled as parity symmetries.
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on a mass term automatically breaks parity. The same happens for a Dirac fermion, where,
again, only the mass term in the lagrangian breaks parity.
It is obvious to notice that, since the corresponding action of P on the gauge vector is
P : A1 → −A1, which amounts to sending k → −k, the Chern-Simons term is odd under
a parity transformation, exactly as the fermionic mass term. As we are going to discuss
in what follows, this is not a coincidence, indeed there is actually a deep relation between
the Chern-Simons level k and the fermionic mass m. For the moment, let us discuss the so
called parity anomaly [73].

Let us consider for simplicity a single massless Dirac fermion coupled to a background
U(1) gauge field [74]. The action is

S =

∫
d3x iψ̄ /Dψ. (1.59)

This theory is classically P invariant but such symmetry is broken in a very subtle way at
quantum level. Indeed, the partition function of this theory is

Z[A] = sign(det
(
i /D
)
) · | det

(
i /D
)
|, (1.60)

where the sign of the Dirac operator is the difference between negative and positive eigen-
values, which must be suitably regularized.
A mathematically rigorous regularization comes from the Atiyah-Patodi-Singer theorem,
which allows to write

sign(det
(
i /D
)
) = e−iπ

η[A]
2 , (1.61)

where the functional η[A] is called the APS eta-invariant. This particular functional can be
suprisingly represented as a level-one CS-action, namely

πη[A] =
1

4π

∫
d3x εµνρAµ∂νAρ + . . . . (1.62)

where ". . . " stand for zero-mode contributions of the connection which can be neglected
for the purpose of this subsection. The appearance of a Chern-Simons term at quantum
level thus signals the breaking of parity invariance and therefore the anomaly previously
mentioned.
In conclusion, if we promote the background field Aµ to a dynamical field by adding a
CS-term with level k0 in the action, parity anomaly causes a highly non-trivial shift in the
CS-level as

k0 → k = k0 −
Nf

2
, (1.63)

where Nf is the number of fermions of the theory. Notice that k can be integrally or half-
integrally quantized whereas k0 must be integrally quantized because of gauge-invariance.

We can now deepen our discussion by studying what happens when a massive Dirac
fermion is coupled to a U(1) CS-theory and what is the resulting theory in the low-energy
limit. When we integrate out the fermion, we get a modification of the gauge action with
the following effective contribution

Seff = −i log det
(
i /D −m

)
= −iTr log

(
i /D −m

)
= −iTr

(
i/∂ −m

)
− iTr

(
1

i/∂ −m
γµAµ

)
− i

2
Tr
(

1

i/∂ −m
γµAµ

1

i/∂ −m
γνAν

)
+ . . . ,

(1.64)
where we have expanded around the classical solution Aµ = 0.
The first term in (1.64) is an overall constant, the second term vanishes, the third term is
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the one that contributes to the low-energy physics of the theory and, finally, all the other
contributions are zero because of the Coleman-Hill non-renormalization theorem [75].
The third term in the expansion above can be interpreted into a one-loop correction of the
gauge propagator therefore it can be evaluated in momentum space in the low-energy limit
and then brought back in coordinate space. What results is

Seff =
sign(m)

2
· 1

4π

∫
d3x εµνρAµ∂νAρ. (1.65)

We see that, analogously to what happens for the parity anomaly, the Chern-Simons level
get shifted, for a generic number Nf of Dirac fermions, as follows

k → kIR = k +
sign(m)

2
Nf , (1.66)

where kIR is the CS-level for the low-energy (IR) theory. We notice that, again, gauge-
invariance forces kIR to integrally quantized whereas k can be still integrally or half-
integrally quantized depending on the number of fermions we integrated out.

1.3.2 Non-Abelian Theories

In this subsection we would like to extend the discussion made in the previous subsections
to generic non-Abelian gauge groups G. The action of a non-Abelian Chern-Simons theory
reads

SCS =
k

4π

∫
M3

d3x εµνρ Tr
(
Aµ∂νAρ −

2i

3
AµAνAρ

)
=

k

4π

∫
M3

Tr
(
A ∧ dA− 2i

3
A ∧A ∧A

)
,

(1.67)

where again k ∈ Z and M3 is a generic three-dimensional oriented manifold. Exactly like
the Abelian case, also the non-Abelian theory describes a topological field theory, as one
can easily see from the second line of the above expression.
The integrality condition for k is still valid also for the non-Abelian case but the proof is
slightly more elaborated. Under a gauge transformation g ∈ G we have

Aµ → g−1Aµg + ig−1∂µg, (1.68)

to which corresponds the following variation of the action

δSCS = δS
(ab)
CS +

k

4π

∫
M3

d3x
1

3
εµνρ Tr

(
(g−1∂µg)(g−1∂νg)(g−1∂ρg)

)
= δS

(ab)
CS + 2πkw(g),

(1.69)

where the first term is nothing but the variation of the abelian CS-action (1.47), the second
term instead is the so called Pontryagin index, or simply winding number, of g. For an
exhaustive discussion on this topic see [76]. This quantity counts the number of times the
map g :M3 → G non-trivially wraps around G. The maps g not continuously connected to
the identity element27 are divided in equivalence classes called homotopy classes, precisely
labelled by w(g). By taking M3 = S3, all the homotopy classes for the so called third
homotopy group π3(G) which becomes π3(G) = Z for any compact simple group G. This
fact clearly implies that w(g) ∈ Z, therefore, by requiring the gauge invariance of the
partition function eiSCS , it follows that k ∈ Z.

27These gauge transformations are usually called large gauge transformations.
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The physical properties of non-Abelian CS-theory are, exactly like the Abelian case,
encoded in the correlators of Wilson Loops, which constitute the relevant topological ob-
servables of the theory. For the non-Abelian case, a Wilson Loop is defined as follows

WR[γ] = TrR

[
P exp

(
i

∮
γ
dxµAµ

)]
, (1.70)

where P stands for path-ordering, R is an irreducible representation of G and γ is a closed
curve inM3. In general one can take a disjoint union of r paths γi to form what is called
a link Lr. We can then associate to each γi an irreducible representation Ri and define a
generic Wilson Loop WRi [γi] which can be used to compute observables like

Z[M3, Lr] =
1

Z[M3, 0]

∫
DA eiSCS

r∏
i=1

WRi [γi]. (1.71)

Witten argued in [71] that this kind of observables must carry all the relevant topological
informations about the link Lr defined onM3. As a particular case he consideredM3 = S3

and G = SU(2), and computed the exact value of (1.71) obtaining what was already
understood by mathematicians as the Jones polynomial for the link Lr. The formula in
(1.71) thus constitutes a powerful generalization for computing topological invariants, also
known as knot invariants, for any link Lr inM3.

Adding Matter

As we did in the previous subsection, we can now add matter to this already rich environment
and look again at the low-energy theory after integrating out massive degrees of freedom.
Since also the non-Abelian CS-action is odd under the parity symmetry discussed previously,
coupling the theory to matter gives exactly the same results we discussed in the Abelian
case.
The first fact is that parity is still anomalous for f massless fermions coupled to a non-
Abelian background gauge field. By promoting it to a dynamical field indeed, we get a shift
which now depends on some additional group theoretic structures as follows

k0 → k = k0 −
1

2

∑
f

T (Rf ), (1.72)

where T (Rf ) is the Dynkin index28 of the real representation Rf in which the fermions sits.
In case the representation is complex or pseudo-real, the 1

2 factor must be dropped from the
above relation.
By coupling now f massive fermions to the non-Abelian CS-theory, we again find a formula
analogous to (1.66) which reads

k → kIR = k +
1

2
sign(m)

∑
f

T (Rf ), (1.73)

where again the same prescription for the 1
2 factor holds.

In what follows, we will apply the common practice of labeling CS-theories with the parity-
translated level k instead of the bare k0 level (usually called kUV ). Parity (or time) symmetry
hence will act on the level as simply k → −k.

28For the SU(N) case we have T (F ) = 1
2
and T (A) = N

2
for respectively the fundamental and the adjoint

representations.
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1.3.3 N = 1 Chern-Simons Theory

In this subsection we introduce the minimal supersymmetric version of the non-Abelian
Chern-Simons theory we discussed above. For doing this, let us introduce the so called
superspace formalism which is the most natural framework for defining and studying super-
symmetric theories and that we will employ in the second part of this thesis. A detailed
introduction to the three-dimensional superspace formalism can be found in [45].

Superspace is the supersymmetric extension of ordinary space-time, where the standard
bosonic coordinates xµ to which is associated the generator of translations Pµ, are accom-
panied by Grassmannian coordinates θα to which are associated the fermionic generators of
supertranslations Qα.
In three dimensions fermions transform in the fundamental representation of so(1, 2) ' sl(2)
which is real. They will be thus represented by a real (Majorana) two-component spinor ψα,
α = 1, 2. In spinor notation, vectors are represented as symmetric matrices vαβ or traceless
matrices v β

α . In this notation, superspace will be parametrized with (xαβ, θγ) where α, β, γ
denote spinor indices.
Spinor indices are raised and lowered by

Cαβ = −Cαβ =

(
0 −i
i 0

)
, (1.74)

with the conventions

ψα ≡ Cαβψβ, ψα ≡ ψβCβα, ψ2 ≡ 1

2
ψαψα. (1.75)

Differentiations in superspace is defined as

∂α ≡
∂

∂xα
, ∂αβ ≡

∂

∂xαβ
(1.76)

from which we get the following (anti-)commutation relations

∂αθ
β ≡ {∂α, θβ} = δβα, ∂αβx

γε ≡ [∂αβ, x
γε] =

1

2
δγ(αδ

ε
β). (1.77)

In the same spirit we define Grassmannian integration as follows∫
dθα = 0,

∫
dθαθ

β = δβα. (1.78)

Notice that, by taking a function depending on a single Grassmannian coordinate γ, it can
be Taylor expanded as f(γ) = f(0) + γf ′(0), since γ2 = 0.
If we then integrate such function over γ we get

∫
dγf(γ) = f ′(0) meaning that integration

and differentiation are equivalent for Grasmmannian coordinates.
This result therefore implies the following fundamental relation∫

dθα = ∂α. (1.79)

Since we want introduce a supersymmetric quantum field theory, we need to introduce the
concept of field in superspace, usually known as superfield. Superfields are represented as
functions Y (x, θ), which, as we saw above, can be Taylor expanded up to second order in
the θ coordinate as a set of function exclusively depending on space-time coordinates f(x).
The superspace symmetry group is the superPoincaré group and its associated superalgebra
acts on superfields as

Pαβ = i∂αβ, Qα = i(∂α − iθµ∂µα) (1.80)
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Superfields are objects transforming covariantly under supersymmetry transformations. It
is easy to show that their spinor derivatives ∂αY (x, θ) do not.
For this reason, it is indeed necessary to introduce spinor superderivatives

Dα ≡ ∂α + iθµ∂µα, (1.81)

such that DαY (x, θ) is still a superfield.
The most general action for a supersymmetric theory can be therefore define as

S =

∫
d3xd2θ f(Y,DαY, . . . ) (1.82)

where f is an arbitrary function of superfields.
For setting up a minimally supersymmetric CS-matter theory, we need to introduce the
scalar and the vector superfields. The scalar superfield is represented as

Φ(x, θ) = φ(x) + θψ(x)− θ2F (x), (1.83)

where φ and F are real one-component scalars and ψ is a real two-component fermion. Since
its components can be selected by using the rules

φ(x) = Φ(x, 0),

ψα(x) = DαΦ(x, 0),

F (x) = D2Φ(x, 0),

(1.84)

the canonical kinetic term can be written in components as

Skin = −1

2

∫
d3xd2θ DαΦDαΦ

=
1

2

∫
d3x

(
−φ�φ+ ψαi∂ β

α ψβ + F 2
)
.

(1.85)

Notice that the field F does not have a kinetic term, indeed it is an auxiliary field which
can be eliminated from the theory by imposing its equation of motion, i.e. F = 0.
Mass terms and interactions can be written by introducing the so called superpotential W(Φ)
which is in general a polynomial in the superfield Φ. The interaction term takes the form

Sint =

∫
d3xd2θ W(Φ) =

∫
d3x

(
W ′′(Φ)ψψ +W ′(Φ)F

)
. (1.86)

A key ingredient for building up a supersymmetric CS-theory is clearly the gauge su-
perfield Γα(x, θ) which we now introduce. For simplicity we can define its component from
a set of rules analogous to the ones in (1.84)

χα = Γα
∣∣, B =

1

2
DαΓα

∣∣,
Aαβ = − i

2
D(αΓβ)

∣∣, λα =
1

2
DβDαΓβ

∣∣, (1.87)

where we indicated with | that the terms must be evaluated in (x, 0). Exactly like the usual
gauge field, a gauge fixing can be implemented also in this case for eliminating unphysical
degrees of freedom which, in this case, are the χα and B fields. We are left hence with the
physical ones, the gauge vector Aαβ and its superpartner, the gaugino λα.
Bu defining also the superfield strength Wα = 1

2D
βDαΓβ , satisfying the Bianchi identity

DαWα = 0, one can write the Maxwell and the Chern-Simons terms respectively as

SM =
1

g2

∫
d3xd2θ WαWα, (1.88)

SCS =
k

8π

∫
d3xd2θ ΓαWα. (1.89)
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The generalization to the non-Abelian case follows immediately. The only non-trivial term
is the Chern-Simons one which reads

SCS =
k

8π

∫
d3xd2θ

(
ΓαWα +

i

6
{Γα,Γβ}DβΓα +

1

12
{Γα,Γβ}{Γα,Γβ}

)
. (1.90)

What we need to do now is to couple the gauge sector with the matter sector. The standard
way to do is to covariantize the superderivative by defining ∇α ≡ Dα + iΓα and thus
generalizing the matter kinetic term as

Skin = −1

2

∫
d3xd2θ ∇αΦ∇αΦ. (1.91)

Let us now apply some of the arguments we presented in this chapter to discuss the
relevant properties, which will be useful for the second part of this thesis, of the pure N = 1
SU(N)k CS-theory. We will discuss other relevant aspects of N = 1 CS-matter theories in
Section 3.1 and additional details can be found in Appendix B.2.

1.3.4 N = 1 SU(N)k Theory

The N = 1 SU(N)k Yang-Mills-Chern-Simons (YMCS) theory, discussed in detail in [46],
contains a vector multiplet only, consisting of a gauge field A and its superpartner λ, the
so called gaugino, namely a Majorana fermion sitting in the adjoint representation of the
gauge group.
The Lagrangian of the theory hence reads

L CS
N=1 = − 1

4g2
FµνF

µν +
k

4π
εµνρ Tr

(
Aµ∂νAρ −

2i

3
AµAνAρ

)
+ iTr

(
λ /Dλ

)
+mλλ. (1.92)

As we observed in Subsections 1.3.1 and 1.2.1, the propagating modes of such theory are
massive and, the gauge field A and the gaugino λ, since they belong to the same supermul-
tiplet, have the same mass29 m = −kg2

2π .
As we did for the cases discussed above, we can try to study the dynamics of the the-
ory in the low-energy limit, namely when the large k limit is considered. It is immediate
to see that, in this limit, fermionic massive modes decouple from the theory and can be
safely integrated out. Since we are integrating out a charged fermion, we get a shift of
the level k according to (1.73) with T (adj) = N and mg < 0. In this limit the resulting
gauge group of the theory is still SU(N) but the CS-level is now shifted to k − N

2 . The
resulting YMCS-theory, being a non-trivially gapped theory [77, 78], still admits bosonic
massive propagating modes which, in the deep low-energy limit, are again decoupled. The
only degrees of freedom surviving are thus topological and what results is an SU(N)k−N

2

CS-theory, which is in fact a topological theory.
It is in general highly non-trivial to understand the properties and the structure of the

vacua of a theory when different energy regimes are considered, in particular, whether super-
symmetry is preserved or not. A powerful tool which can be defined in any supersymmetric
theory for achieving this is the Witten index [79].
The Witten index is a topological quantity obtained from the usual definition of the parti-
tion function by inserting a certain term which weights in a different way the contributions
coming from fermionic and bosonic states. Explicitly it reads

IW = TrH(−1)F e−βH , (1.93)
29Remember that only kbare appear in the Lagrangian, and the parity-shifted level is used to label the

theory only.
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where H is the Hilbert space of physical states, β ∈ R+ is a parameter F is the fermion
number operator, namely an operator for which F |bos〉 = 0 and F |ferm〉 = |ferm〉. The
definition given above is well-defined and expicitly computable only when we put a theory
on a compact space, since the Hamiltonian acquires a discrete spectrum. It is then easy
to show that, because of supersymmetry, only zero energy states contribute to the index,
namely

IW = TrH(−1)F e−βH = TrH0(−1)F = nB − nF , (1.94)

where nB,F is the number of bosonic and fermionic ground states respectively. It is also
clear from the above expression that IW is independent of β and, more in general, of any
deformation of the couplings of the theory in the parameter space. This means that the
Witten index is actually topological invariant and it can be safely computed in any suitable
region of the parameter space.
An important consequence of the Witten index is that, if it is different from zero, super-
symmetry is preserved. This means that the theory always admit supersymmetric ground
states. Viceversa, if the index vanishes,i.e. the number of bosonic and fermionic ground
states is the same, we cannot conclude if supersymmetry is preserved or not30 and other
more sofisticated techniques are required.
In [46], it was shown that the Witten index (up to an overall sign31) for the N = 1
SU(N)k−N

2
vector multiplet theory is

I =
1

(N − 1)!

(
k − N

2
+ 1

)(
k − N

2
+ 2

)
...

(
k +

N

2
− 1

)
=

(k + N
2 − 1)!

(N − 1)!(k − N
2 )!

,

(1.95)

which is just the partition function of the low-energy TQFT discussed above on the torus.32

Since in [46] it was shown that in fact the expression (1.95) holds for all values of k, being the
index non-vanishing when k ≥ N/2, it is natural to conclude that the N = 1 SU(N)k theory
always flows to the (supersymmetric) SU(N)k−N

2
topological CS-theory when k ≥ N/2.

Things are much more complicated when instead 0 ≤ k < N/2, for which the Witten
index vanishes. In the same work it was indeed conjectured that, when 0 ≤ k < N/2,
supersymmetry is spontaneously broken and thus a massless Goldstino emerges in the IR
limit. This conjecture found significant support in the results of [36], where it was claimed
that, in addition to the GoldstinoGα, there must be topological degrees of freedom described
by a U

(
N
2 − k

)
N
2

+k,N
Chern-Simons theory33.

1.4 ABJ(M) Theory

In this last section we introduce the theory that will be discussed in the first part of the
thesis and that enjoys all the properties we previously discussed: ABJ(M) theory.
ABJ(M) theory is a three-dimensional superconformal Chern-Simons-matter theory with
N = 6 supersymmetries which realizes the AdS/CFT duality [16–18] when the near-horizon

30Supersymmetry is broken when there are no zero energy ground states, namely nB = nF = 0.
31As a general comment, the sign depends on the number of Majorana fermions with negative mass in

the theory, which we can call n−. The overall sign is then given by (−1)n− .
32Equivalently, it can be computed by counting the number of inequivalent Wilson lines of the theory.
33The fact that the Goldstino alone is not enough to describe the IR physics follows from the following

observations: at any value of the level k there is a 1-form symmetry in the UV moreover, for k = 0, the UV
theory enjoys the time reversal symmetry. There are ’t Hooft anomalies associated with both symmetries
that cannot be matched by the Goldstino only and some other d.o.f. are required.
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limit of N coincident M2-branes34 probing a C4/Zk singularity is taken [19]. The result-
ing geometry in this limit becomes AdS4 × S7/Zk, thus ABJ(M) is conjectured to play a
fundamental role in the understanding of the AdS4/CFT3 correspondence, by describing
its quantum field theory side at the conformal point. An equivalent gravity description is
conjectured to hold for Type IIA Superstring theory on an AdS4 × CP3 background. Since
in this thesis we will focus on its purely field-theoretic aspects, let us now briefly review
the local and non-local content of the theory and the main exact results that have been
obtained so far.

1.4.1 Main Aspects

As we said above, ABJ(M) theory is a superconformal CS-matter theory with N = 6
supersymmetries. The theory thus preserves 12 Poincaré supercharges and 12 supercon-
formal charges giving a total number of 24 preserved fermionic charges. As we reviewed
in Subsection 1.2.2, the superconformal algebra for such theories is given by the osp(N|4)
superalgebra. For ABJ(M) thus we have osp(6|4) whose maximally bosonic subalgebra35 is
thus sp(4)⊕ so(6) ' so(2, 3)⊕ su(4). The theory is moreover a U(N1)k × U(N2)−k quiver
gauge theory, or more specifically a class of theories, depending on the choice of the rank of
the gauge groups N1,2 and the CS-level36 k. In general it is usually referred to ABJ theories
[20] when N1 6= N2 and ABJM theories when N1 = N2 = N . We will mostly work in the
ABJ setup but for simplicity we will refer to it as ABJ(M).

The field content of ABJ(M) theory is given by two gauge vectors (Aµ) j
i and (Âµ) ĵ

î
transforming in the adjoint representation of the first and second gauge group respectively,
four scalar fields CI , C̄I and their corresponding fermionic partners ψαI , ψ̄

I,α transforming in
the (anti-)fundamental representation of the SU(4) R-symmetry group. The couple (C, ψ̄)
transforms in the bifundamental representation (N1, N̄2) of the gauge group, whereas the
conjugate fields (C̄, ψ) transform in the anti-bifundamental representation (N̄1, N2).
The dynamics of ABJ(M) theory can be studied by taking various limits of the coupling
k and the ranks of the gauge groups N1,2. The perturbative regime is obtained by taking
the k � 1 limit and keeping N1,2 fixed or also with N1,2 → ∞. The latter perturbative
limit is usually called planar limit and is particularly useful in the context of the AdS/CFT
correspondence for comparing the value of certain observables on both sides of the duality
[24, 80–83]. For this reason it is usually preferred to define the so called ’t Hooft coupling,
λ ≡ N

k , for which the λ,N → ∞ limit describes the duality between ABJ(M) and eleven-
dimensional Supergravity, i.e. the low-energy limit of M-Theory.

The action of the theory can be schematically represented as

S = SCS + Smatter + Spot, with Spot = Sbospot + Sfermpot , (1.96)

where the Chern-Simons and matter terms are, in Euclidean signature,

SCS = −i k
4π

∫
d3x εµνρ

[
Tr

(
Aµ∂νAρ +

2i

3
AµAνAρ

)
− Tr

(
Âµ∂νÂρ +

2i

3
ÂµÂνÂρ

)]
Smat =

∫
d3x Tr

(
DµCID

µC̄I − iψ̄IγµDµψI
)

(1.97)
34Such M2-branes are the fundamental dynamical objects, together with M5-branes, of M-Theory.
35Notice that this perfectly matches the isometries of the gravity backgrounds for both M-Theory and

Type IIA String theory.
36By taking for example k = 1, 2 and N = 2, one can recover the already known BLG model, an N = 8

three-dimensional superconformal CS-matter theory describing the worldvolume theory of two coincident
M2-branes manifestly preserving 16 supercharges.
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The full action with all the necessary conventions and supersymmetry variations are col-
lected in Appendices A.1 and A.2.
We can now notice from the explicit expression of SCS in the relations above, that ABJM
theory, differently from the case of CS-theory with matter discussed in Subsection 1.3.2,
does not suffer from parity anomaly. The reason is because, when N1 = N2, we can apply
the same parity symmetry together with a simultaneous exchange of the two gauge fields
leaving the action invariant. Nevertheless ABJM theory still suffers from another subtle
anomaly, called framing anomaly, which is a reminescent effect of the fact that, in pure
CS-theory, general covariance is necessarily broken at quantum level. This is because the
Faddeev-Popov gauge-fixing procedure forces us to introduce Grassmannian ghost fields
whose contributions to the 1-loop partition function are analogous to the ones in (1.60)
and (1.61). Being η[A] not a topological invariant if zero-modes are present, a gravitational
CS-counterterm can be introduced in order to regularize such zero-modes effect and restore
general covariance at quantum level. By putting together all the contributions, one ends up
with an overall phase in the partition function which is now completely topological but still
ambiguous37. Although ABJ(M) theory is not topological even at classical level because
of the presence of matter, such phase contributions are still present in the perturbative
evaluation of certain observables which we are now going to introduce.

Wilson Operators

The main observables we can compute in ABJ(M) are correlators of all the local fields we
introduced above. However, being it actually a Chern-Simons theory, even in the presence
of matter, we can still define Wilson lines and loops and compute their correlators as highly
non-trivial observables of the theory. Moreover, since ABJ(M) is a supersymmetric theory,
it is natural to ask if such non-local objects preserve all the supersymmetries of the theory
or at least a fraction of them. It is immediate to see that the Wilson loop defined in (1.70)
does not preserve any supersymmetry and thus cannot represent a protected quantity of the
theory. In order to avoid this conclusion, we need to introduce some generalized connection
involving the fields of the theory so that the number of preserved supersymmetries get
enhanced to some fraction. The general structure of a Wilson operator hence is

WR[γ] = TrR

[
P exp

(
i

∫
γ
dτL(τ)

)]
, (1.98)

where L(τ) is the generalized connection mentioned above and γ can be either a straight
line or a circular loop embedded in a three-dimensional locally conformally flat manifold
M3. By choosing the following purely bosonic connections

LB = Aµẋ
µ − 2πi

k
|ẋ|M J

I CJ C̄
I , (1.99a)

L̂B = Âµẋ
µ − 2πi

k
|ẋ|M J

I C̄ICJ , (1.99b)

where M J
I = diag(−1,−1, 1, 1) is the constant matrix coupling for scalars, and choosing

the contour γ to be a circle or a straigth line, one can define two Wilson operators WB[γ]

37The gravitational CS-term is still ill defined because, in three-dimensions, there is no canonical choice
of a spin structure and thus a Levi-Civita spin connection. Different choices are related by a shift of the
gravitational CS-term by 2πν where ν ∈ Z is the so called framing number. At the level of the partition
function we have [71]

Z → e
2πiνd

24 Z

where d is the dimension of the gauge group G. A more "perturbative" interpretation is given by the
fact that the regularization needed for evaluating observables, like vacuum expectation values of Wilson
operators, impose the introduction of a new support for the Wilson operator γε which may wrap around
the original path γ a non-trivial number of times. This number can be found to be exactly ν.
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and ŴB[γ] which preserve 4 supercharges out of 24 each, namely are 1/6 BPS [80, 82, 84].
The situation can be improved by placing the connections seen above into a single super-
matrix belonging to a U(N1|N2) gauge supergroup38, and compute its holonomy [85]. The
explicit expression of this superconnection is

LF =

 LB −i
√

2π
k |ẋ|ηI ψ̄

I

−i
√

2π
k |ẋ|ψI η̄

I L̂B

 , (1.100)

where ηI , η̄I are commuting spinors which allow for the insertion of fermion fields in the
superconnection. By settingM J

I = diag(−1, 1, 1, 1), choosing suitable expressions for ηI , η̄I

and the contour γ to be a circle or a straigth line, the corresponding Wilson operator is
shown to preserve half of the supercharges of the theory, i.e. is 1/2 BPS. We label this
operator as W 1

2
[γ].

The bosonic and fermionic Wilson operators defined above seem to be completely indepen-
dent object giving rise to independent vacuum expectation values. Actually, it was shown
in [85] that by merging the two bosonic Wilson operators into a single bosonic operator,
which we label as W 1

6
[γ], equipped with the following superconnection

LB =

(
LB 0

0 L̂B

)
, (1.101)

the bosonic and fermionic operators satisfy an highly non-trivial relation39

W 1
2
[γ]−W 1

6
[γ] = QV, (1.102)

where V is a complicated function of the ABJ(M) fields. This relation tells us that the two
operators are Q-cohomologically equivalent, namely sit in the same Q-cohomology class.
This implies that their properly normalized vacuum expectation value is exactly the same.
As we discussed above the beginning of this subsection, some observables in ABJ(M) can still
receive additional contributions due to the presence of the intrisic overall phase originated
by the framing anomaly. This is exactly the case for the Wilson operators we introduced
above, whose vacuum expectation value can be generically expressed as follows

〈W 1
2
, 1
6
[γ]〉ν = eiπΦ(N1,N2,ν) 〈W 1

2
, 1
6
[γ]〉0. (1.103)

As noticed in [7, 85], the framing factor can be always exponentiated and factorized so that
it is always possible to compare the results obtained with different prescriptions.

It is interesting to notice that both 1/2 and 1/6 BPS Wilson operators can be suitably
extended by considering respectively bosonic and fermionic one-parameter families [87] in
which γ is taken to be a generic circular path on S2 inside R3 whose location is parametrized
by an effective angular parameter ν0 ∈ [0, 1], called latitude. The bosonic operators in this
setup are found to be generically 1/12 BPS whereas the fermionic ones 1/6 BPS and their
maximally supersymmetric enhanced version can be recovered in the ν0 → 1 limit. By
computing the vev of such operators at two-loop order, the authors of [86] identified the ν0

contributions to the result to be exactly the same as the contributions of the same operators
computed at a generic framing ν. This result allowed them to conjecture the equivalence
between the effective latitude parameter ν0 and the framing number ν, making manifest the
surprising fact that ν have actually a non-integer nature.

38Notice that this procedure do not enhance the gauge group of the theory which has still to be U(N1)×
U(N2).

39To be precise, this relation holds for ν = 1 framing number. The cohomological equivalence at generic
framing number ν can be found in [86].
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1.4.2 Exacts Results

In general, all the observables of a theory can be evaluated in some perturbative limit by
just Taylor expanding the action in the path-integral to arbitrary loop levels and evaluating
all the correlators that contribute to the result. Of course this is a time-consuming process
and, moreover, it can be performed only when the perturbative series converges, which is
not generically true. We thus understand that some more efficient tools should be imple-
mented in order to obtain reliable results beyond perturbation theory only. Luckily, for
supersymmetric theories, one of such methods does exist and is the celebrated supersym-
metric localization procedure. Some useful reviews on this topic are [88–91].
The main advantage of supersymmetric theories is indeed that they enjoy a fermionic sym-
metry, i.e. supersymmetry itself, which can be used to heavily constraint certain observables,
like the partition function of the theory, such that their computation boils down to a finite-
dimensional integral from an infinite-dimensional one. This is the philosophy behind the
localization technique.
More practically, suppose to consider a non-anomalous Grassmannian symmetry of the the-
ory δ such that δ2 = δB, where δB can be either zero or a bosonic symmetry of the theory.
The Euclidean partition function of the theory can be thus deformed as follows

Z =

∫
M
DΦ e−S[Φ] → Zt =

∫
M
DΦ e−S[Φ]−tδV [Φ], (1.104)

where t is a real parameter and V [Φ] is a non-trivial functional of the fields of the theory
such that δBV = 0. By considering the derivative with respect to the parameter t we
surprisingly get, given all the assumptions above, that

∂Zt
∂t

= −
∫
M
DΦ (δV ) e−S[Φ]−tδV [Φ] = −

∫
M
DΦ δ(V e−S[Φ]−tδV [Φ]) = 0. (1.105)

This can be achieved by thinking the variation δ to act as a translation along a fermionic
coordinate in the (super)space of fields and hence, by interpreting it as a derivative along
such a fermionic direction, the term above must vanish under suitable assumptions on the
regularity of fields at the boundary of the field space40.
The result obtained above tells us that the deformed partition function Zt is actually in-
dependent of the parameter t, therefore it is possible to compute it at t = 0, i.e. the
undeformed partition function, in any limit of t.
The most useful limit we can consider is the t→∞ limit, in which the dominant contribu-
tions to the partition function come from the field configurations for which the −tδV term
is maximized. Assuming that the bosonic part of the functional V satisfies the inequality
δV ≥ 0, the dominant contributions will be given by the field configurations Φ0 satisfying
the equation

δV [Φ0]
∣∣
bos

= 0. (1.106)

A canonical choice for the expression of the functional V is

V =
∑
ψ

(δψ)†ψ, (1.107)

whose variation essentially tells us that the bosonic zeros are nothing but Φ0 = δψ = 0,
i.e. the solutions of the fermionic BPS equations. The submanifold of field configurations
satisfying those relations is called localization locus and, if it is finite-dimensional, the origi-
nal path-integral becomes a finite-dimensional integral which can be much easier evaluated.

40If boundary contributions are present then the e−tδV factor should decrease rapidly enough to guarantee
the vanishing of the result. In some specific cases, non-perturbative effects can play a role in determine the
exact expression of the partition function as a matrix model. One example is [92].
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Such reduced integral is usually called matrix model.
It is important to mention that the evaluation of the path-integral can be done through
the usual saddle-point approximation by expanding the fields around the localization locus
as41 Φ = Φ0 + 1√

t
Φ̃, where Φ̃ are the fields fluctuations. The astounding result of this

procedure is that it actually gives an exact result, and not just an approximated one, for
the original undeformed partition function of the theory but also of the expectation value
of any observable satisfying δO = 0.

Supersymmetric localization has been implemented in numerous situations and the par-
tition function of N ≥ 2 theories on S3 [7] and N = 2, 4 theories on S4 [6] has been
successfully reduced to a finite-dimensional integral, i.e. a matrix model. The same proce-
dure has been implemented to obtain the explicit expression of the matrix model for other
observables, in particular Wilson Loops, for both the three- and four-dimensional cases.
Let us focalize on the three-dimensional case which will be the relevant case for the next
Chapter. In [7] the matrix model for ABJ(M) theory has been explicitly determined by
using the localization technique described above. The integral expression for the N1 6= N2

case reads [83, 85]

ZABJ(M)[S
3] = C(N1, N2)

∫ N1∏
i=1

N2∏
r=1

dλidλ̂r e
−ikπ(λ2

i−λ̂2
r)

×
∏N1
i<j sinh2 π(λi − λj)

∏N2
r<s sinh2 π(λ̂r − λ̂s)∏N1

i=1

∏N2
r=1 cosh2 π(λi − λ̂s)

(1.108)

where λi, λ̂r are the set of eigenvalues of the Cartan matrices corresponding to the two gauge
group factors and C(N1, N2) is the overall normalization coefficient whose slightly modified
version can be found in [83]. Notably in [93], it was put in evidence that the expression for
the ABJM matrix model can be alternatively interpreted as the canonical partition function
of a system of N non-interacting fermions with an ad hoc non-trivial one-particle density
matrix. This interpretation is usually referred to as the Fermi gas approach.
The authors of [7] also showed that by inserting the following quantity

W 1
6

=
1

N1

N1∑
i=1

e2πλi (1.109)

in (1.108), one obtains the matrix model computing the vacuum expectation value of the
1/6 BPS Wilson loop42 whose connection have been introduced in (1.99a). Analogously, by
substituting λ→ λ̂, N1 → N2 one obtains the same result for (1.99b). In the same fashion,
they proposed that also the vev of the 1/2 BPS Wilson loop can be computed from (1.108)
by inserting the following expression

W 1
2

=
1

N1 +N2

(
N1∑
i=1

e2πλi +

N2∑
r=1

e2πλ̂r

)
. (1.110)

Thanks to the previous results, the authors of [83] were able to obtain the strong coupling
planar and non-planar expressions of the ABJM (N1 = N2) free energy on S3 and the vevs
for both 1/2 and 1/6 BPS Wilson loops, finding perfect agreement with weak coupling holo-
graphic calculations. These results constitute a set of fundamental interpolating functions

41The normalization of the fluctuations is such that the kinetic term is always canonically normalized,
namely no parameter t should appear.

42This can be computed if the supercharge used for localizing the path-integral is also preserved by the
loop. This turns out to be true only if the Wilson loop constitutes an Hopf fiber of the sphere [7]. The Hopf
fibration of S3 is a particular non-trivial fiber bundle for which the base space is S2, the fiber is S1 and the
total space is S3. This is perfectly consistent with the fact that S3 = S1 × S2 locally but not globally.
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between the weak and strong coupling regime for the ABJM theory.
All the matrix model results for the Wilson loop insertions described above are necessarily
computed at framing ν = 1 (see Footnote 42). A very interesting proposal of a matrix
model describing the partition function of ABJ(M) and 1/2, 1/6 BPS Wilson loops inser-
tions at generic framing ν has been conjectured in [94]. This highly non-trivial conjecture
was accompanied by strong evidences like the three-loops computation of the vev of 〈W 1

6
〉ν ,

matching the already known expression for ν = 1, and the planar strong coupling evalua-
tion of the same loop, finding perfect agreement with the leading and next-to-leading order
holographic predictions.



Chapter 2

The Topological Line of ABJ(M)
Theory

As we saw in the previous chapter, ABJ(M) is a particular theory which enjoys many nice
properties like conformal, supersymmetry and parity invariance but also inherits some issues
coming from its Chern-Simons theory origin like framing anomaly and, by adding matter, the
lost of topologicity at classical and quantum level. In this chapter we address the problem
of recovering the topological properties for at least a subsector of the theory, by suitably
projecting some selected operators, such that their n-point correlators do not depend on
space-time coordinates. The projection procedure will be guided by the implementation of
the so called topological twist procedure, a technique that allows to consistently combine
space-time and global symmetries such that their correlators become invariant under a
suitably generalized translation called twisted translation. The set of operators satisfying
the previous condition populate to all effects a protected but also solvable sector, thanks to
which many exact data on the whole ABJ(M) theory can be efficiently extracted, like the
three-point function constants Cijk introduced in (1.20), or some interpolating functions
like the central charge of the theory cT .

The first implementation of a topological twist for constructing topological quantum
field theories (TQFT) goes back to the groundbreaking work of Witten [95], in which it
was shown how the application of the procedure to an ad hoc Euclidean four-dimensional
N = 2 SYM theory, allows one to render its stress-energy tensor a Q-exact object, which
automatically implies the quantum topologicity of the theory1. In the same work it was also
shown how this technique can be extended to any non-trivial element of the cohomology of Q
and thus any observable constructed out of it. Witten’s procedure was then adapted to other
supersymmetric theories for constructing topological subsectors hosting protected operators.
Some examples are the well-known two-dimensional chiral algebra sector introduced in [96]
existing in any four-dimensional N ≥ 2 SYM theory and the one-dimensional topological
sector existing in any three-dimensional N ≥ 4 theory [22], but explicitly probed only
in the N = 4, 8 cases. Precisely motivated by the latter case, we explicitly construct
the one-dimensional topological sector for the ABJ(M) theory, we study the dynamics of
certain chiral operators living in such sector and prove their topological nature at classical
and quantum level. In particular: in section 2.1 we review the formulation for all three-
dimensional N ≥ 4 theories, in section 2.2 we perform the topological twist and find the
explicit field realization for the chiral operators we mentioned above. In section 2.3 we
compute the main correlators of such operators up to two-loops for the two-point function
and in section 2.2.2 we compare the perturbative results with the exact results obtained
from the ABJ(M) mass-deformed matrix model.

1Assuming that the symmetry associated to the supercharge Q is non-anomalous and preserves the
vacuum.

27
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2.1 A Conjecture for 3D N ≥ 4 Theories

In this section we review the main aspects of the conjecture explored in [22–24, 31] regarding
the construction of the one-dimensional topological sector for N = 4 SCFTs, its relation
with the mass-deformed matrix model computed on S3 and its generalization to the whole
N ≥ 4 class. We then discuss the well-motivated speculations regarding ABJ(M) theory,
its topological sector and its relation with the corresponding mass-deformed matrix model
on S3.

The construction of topological sectors follows the original idea of Witten [95], in which
he gave an explicit recipe for constructing topological observables out of representatives
of certain Q-cohomology classes. The argument for which the partition function preserves
general covariance at quantum level can be easily imported to correlators as follows. By
picking up a Q-exact translation operators P ∼ {Q, Q̄} and non-trivial operators belonging
to inequivalent Q-cohomology classes, what roughly happens is that

∂x1〈O(x1) . . . O(xn)〉 = 〈[P,O(x1)] . . . O(xn)〉
= 〈{Q, [Q̄, O(x1)]} . . . O(xn)〉

= −
∑
i

〈[Q̄, O(x1)] . . . [Q,O(xi)] . . . O(xn)〉 = 0
(2.1)

where in the second line we applied the super-Jacobi identity and in the third line we
assumed a vacuum preserving Q. The result obtained above tells us that a generic n-point
function of non-trivial Q-closed operators must be independent of x1. It is straightforward
to see that the argument above can be extended to any space-time coordinate xi when they
are all restricted to lie on a one-dimensional submanifold M1 of M3. This automatically
implies that the correlator must be a function of the couplings of the theory only.
Despite the nice result obtained, the operators we considered above are in general charged
under R-symmetry, therefore the only consistent result for the correlator is actually zero.
A non vanishing result can be however recovered if we are able to appropriately compensate
the R-symmetry charge of the operators with the introduction of a generalized symmetry
under which all the operators are now neutral. The problem of finding neutral non-trivial
elements in the Q-cohomology is thus shifted to the determination of non-trivial neutral
elements in the cohomology of a so called twist or cohomological supercharge Q. This is
exactly what can be achieved by performing the topological twist we previously mentioned.
For simplicity, the operators satisfying the generalized neutrality condition will be called
from now on topological operators.

For three-dimensional N = 4 SCFTs such procedure has been successfully implemented
in [22] and a one-dimensional topological sector hosting non-trivial topological operators,
has been obtained. In the same work it was proven that these operators are always su-
perconformal primaries of certain short multiplets2 of the form Oa1...an(~0), whose scaling
dimension and R-symmetry quantum numbers are ∆ = j = n/2 and transform in the
(n+ 1, 1) of the SO(4) ∼ SU(2)H × SU(2)C R-symmetry group.
The most interesting aspect regarding the above protected sector is that it is deeply con-
nected with the localization procedure of the partition function of any three-dimensional
N ≥ 4 SCFT whenM3 = S3. Indeed, the localization procedure for such class of theories
can be in general performed by using the same fermionic charge as in [7], namely a super-
charge which belongs to a three-dimensional N = 2 sub-superalgebra of the corresponding
N = 4. However, in [31], it is shown how to equivalently carry out the same localization
procedure with the cohomological supercharge Q, which cannot lie in any N = 2 sub-
superalgebra, for determining a different but equivalent matrix model as in [7].

2In [22, 30] it was shown that the topological sector captures the half-BPS spectrum of the three-
dimensional theory. Topological operators indeed form a so called chiral ring of half-BPS operators.
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Since Q preserves both the partition function and the topological operators, as we reviewed
in Subsection 1.4.2, the localization procedure is allowed for determining the exact value
of the correlators of such operators. In [31] it is indeed shown that this can be achieved
by coupling the matrix model of the theory to a three-dimensional Gaussian model which,
once evaluated on Q-invariant configurations, can be further localized to a one-dimensional
Gaussian model placed on the great circle S1 inside S3.
All the local topological observables can be therefore represented as follows

〈O(x1) . . . O(xn)〉 =
1

|W|

∫
Cartan

dσ det
Adj,σ 6=0

(2 sinh(πσ))

∫
DO e−Sσ [O]〈O(x1) . . . O(xn)〉σ

(2.2)
where |W| is the order of the Weil group, Sσ is the partition function of the one-dimensional
model3 and O are the topological operators. Notice that when there are no insertions in
the one-dimensional partition function, the expression above can be reduced to the matrix
model computed in [7] without the CS-contribution to the partition function.
The powerful prescription given above for rigorously obtaining all the correlation functions
describing the one-dimensional topological sector, can be improved even more. What was
indeed noticed in [23, 31] is that the original N = 4 SCFT can be deformed by a full
supersymmetry-preserving adjoint-valued mass parameter ma coupled to part of the current
supermultiplet of the theory, such that localization is still accessible. The highly non-trivial
fact of this modification is that the mass deformation in the original three-dimensional
theory can be understood as a mass-deformation of the one-dimensional Gaussian theory
given by

− 4πr2ma

∫ π

−π
dτ Oa(τ). (2.3)

The direct implication of the above arguments is that the mass-deformed partition function
of the three-dimensional theory Z[m] actually computes the partition function of the one-
dimensional theory deformed by (2.3). This means that, by taking the derivatives of the
mass-deformed matrix model representing Z[m] with respect to the mass parameters ma,
what we get are integrated correlation functions of topological operators living on the great
circle S1 ⊂ S3. From the expression in (2.3), the exact prescription [23] will be given by〈∫ π

−π
dτ1 . . .

∫ π

−π
dτnO

a1(τ1) . . . Oan(τn)
〉

=
1

(4πr2)n
1

Z

∂n

∂ma1 . . . ∂man
Z[S3,ma]

∣∣∣
ma=0

,

(2.4)
where r is the radius of the sphere S3. Since the topological correlators are position inde-
pendent, the integrals on the l.h.s. can be trivially performed leading to the following final
recipe which will be used from now on

〈Oa1(τ1) . . . Oan(τn)〉 =
1

(8π2r2)n
1

Z

∂n

∂ma1 . . . ∂man
Z[S3,ma]

∣∣∣
ma=0

. (2.5)

The most intriguing interpretation of the equation above is that, in principle, if we knew
exactly all the local observables involving topological operators, namely we solved the one-
dimensional theory describing the topological sector, we would be allowed to reconstruct
the exact mass-deformed partition function of the three-dimensional theory on S3. This
interpretation could be seen as the three-dimensional analogous of the chiral algebra program
[96–98] for four-dimensional N ≥ 2 superconformal field theories.

The cohomological construction of the topological sector, together with the prescrip-
tion in (2.5), are valid also for N = 8 SCFTs [23]. We can indeed decompose the so(8)
R-symmetry algebra into so(4)R⊕so(4)F R-symmetry and flavour symmetry algebras, such

3The detailed discussion and all the relevant informations can be found in [31].
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that they can be seen as a subclass of N = 4 theories enjoying an so(4) flavor symmetry.
Moreover, by carefully decomposing representations of the N = 8 superconformal alge-
bra in terms of the ones of the N = 4 algebra, it is possible to find the corresponding
one-dimensional topological sector [22, 23]. In this case the relevant N = 4 supercurrent
multiplet belong to the N = 8 stress-energy tensor multiplet, consequently, topological op-
erators are intimately related to the stress-tensor of the N = 8 theory. Superconformal
Ward identities hence relate the two-point function 〈Oa(τ)Ob(0)〉 to the two-point function
of the stress-energy tensor Tµν , whose general structure is

〈Tµν(~x)Tρσ(0)〉 =
cT
64

(PµρPνσ + PνρPµσ − PµνPρσ)
1

16π2~x 2
, (2.6)

where Pµν = ηµν∇2−∂µ∂ν and cT is the central charge of the three-dimensional theory 4. In
particular, one obtains that the two-point function of topological operators is proportional
to the central charge cT of the N = 8 theory therefore making manifest the deep relation
between an interpolating function of the bulk theory from a protected sector.
Finally, the passages described above are shown to lead to the following formula for com-
puting the central charge of any mass-deformed N ≥ 4 SCFT on S3 [23, 24, 99]

cT = −64

π2

d2

dm2
logZ[S3,m]

∣∣∣
m=0

. (2.7)

The above formula is perfectly consistent being nothing but a particular case of a more
general independent formula, which has been proven in [100], relating the free energy of
any suitably deformed5 N ≥ 2 SCFTs on S3 to the coefficient of the two-point function
of the flavour currents of the theory. In the case at hand, topological operators are the
one-dimensional reduction of such currents.
The consistency of the two independent results for cT thus represents an alternative way
to prove the validity of (2.5), at least for n = 2. For the N = 8 theories this has been
discussed in detail in [23].

2.2 The ABJ(M) Theory Case

As we mentioned at the beginning of the chapter, we are interested in investigating the
previous results for ABJ(M) theory, which is exactly the three-dimensional superconformal
field theory lacking of such an explicit construction. Although we should expect things to
work similarly, a rigorous proof of the validity of identity (2.5) is still lacking due to the
absence of an off-shell formulation of the Chern-Simons sector6.
Some parallel additional steps have been undertaken in [24], where, assuming the validity of
the prescription (2.5) for ABJ(M) theory, some coefficients appearing in the Mellin ampli-
tudes of the dual eleven-dimensional supergravity and Type IIA supergravity theories have
been fixed by computing four-point functions of topological operators at strong coupling.

The starting point for approaching the ABJ(M) case is to introduce its field content in
theN = 2 language and turn on a mass deformation in the matrix model7 corresponding to a
(real) mass deformation, with mass spectrum (m+,−m+,m−,−m−) for the bifundamental
chiral multiplets (W1, Z̄1,W2, Z̄2) ≡ WI , I = 1, . . . , 4, in the ABJ(M) action. It follows
that, from the formula in (2.5) suitably adapted to the ABJ(M) case, derivatives of the

4 We conventionally set cT = 1 both for a real scalar field and a Majorana fermion.
5This recipe is valid also when we place the theory on the squashed sphere S3

b , where b is called squashing
parameter. In this case the central charge is given by the second derivative of the free energy w.r.t. to b.

6A proof of the validity of (2.5) in the ABJ(M) case will appear soon [101].
7The matrix model describing the mass-deformed partition function of ABJ(M) can be evaluated exactly

in the large N limit as it was shown in [102, 103].
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matrix model with respect to m± should provide integrated correlation functions of certain
topological operators constructed out of the superconformal primaries sitting in the stress-
energy tensor multiplet (for simplicity we set fermions to zero and consider only the bosonic
operators). Their explicit structure is determined to be

O J
I (~x) = Tr

(
CI(~x)C̄J(~x)

)
− 1

4
δ J
I Tr

(
CK(~x)C̄K(~x)

)
(2.8)

where CI is the scalar component of WI . Notice that the above operator is nothing but the
symmetric traceless part in the decomposition of the product of the two scalar fields sitting
respectively in the 4 and 4̄ representation of SU(4) R-symmetry, i.e. lives in the 15s irrep
of SU(4).
Superconformal Ward identities, like in the N = 8 case, then relate the two-point functions
of the operators in (2.8) to correlator (2.6) of the stress-energy tensor giving the following
expression

〈O J
I (~x)O L

K (~0)〉 =
cT
16

(
δLI δ

J
K −

1

4
δJI δ

L
K

)
1

16π2~x 2
(2.9)

Assuming that a one-dimensional topological sector, with the same characteristics as the
N = 4 case, does exist also in the ABJ(M) case, the operators in (2.8) are related to the
topological ones O(τ), localized on the great circle S1 ⊂ S3, by a suitable projection given by
the topological twist procedure previously mentioned. Therefore, by exploiting the twisted
version of the expression in (2.9), one can simply compute cT from perturbation theory
explicitly. In parallel, the equation in (2.7) is valid also for the ABJ(M) theory as follows

cT = − 64

π2

∂2

∂m2
±

logZ[S3,m±]

∣∣∣∣
m±=0

, (2.10)

and provides an alternative way to compute the same central charge. The matching of the
two independent expressions for the central charge allows us to conclude that (2.5) is valid
also in the ABJ(M) case.
In what follows we will thus explicitly construct the topological sector for the ABJ(M)
theory, determine the structure of topological line operators O and check the validity of the
identity (2.5) for ABJ(M) which reads

〈O(τ1)O(τ2)〉 =
1

4π4

∂2

∂m2
±

logZ[S3,m±]

∣∣∣∣
m±=0

(2.11)

This is achieved by matching the weak coupling expansion of the derivatives of the mass
deformed ABJ(M) Matrix Model with a two-loop evaluation of the two-point correlator
〈O(τ1)O(τ2)〉. Notice that this result will provide us the two-loop approximation of the
expression of the central charge of ABJ(M) in the weak coupling limit.

2.2.1 The Topological Twist

We choose for simplicity to perform our construction by selecting a straight-line parallel
to the x3-direction and parametrized as xµ(s) = (0, 0, s), with s ∈ (−∞,+∞) being its
proper time. All the fields of the original theory hence will decompose into irreducible
representation of the superconformal algebra preserving such sector. This is given by an
su(1, 1|3) ⊕ u(1)b superalgebra inside the original osp(6|4) one. The detailed classification
can be found in Appendix A.4.2, but let us present some preliminary facts regarding the
structure of the fields living in the one-dimensional sector.
The restriction described above causes all the fields to reorganize accordingly to the maximal
bosonic subgroups of su(1, 1|3) which is sl(2) ⊕ su(3) ⊕ u(1). The scalars CI , C̄I and the
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fermions ψI , ψ̄I , I = 1, 2, 3, 4, will in particular decompose into irreducible representations
of the SU(3) residual R-symmetry group, as

CI = (Z, Ya), C̄I = (Z̄, Ȳ a), ψI = (ψ, χa), ψ̄I = (ψ̄, χ̄a), (2.12)

where Ya(Ȳ a), χa(χ̄
a), a = 1, 2, 3, belong to the 3(3̄) of SU(3), whereas Z, Z̄, ψ, ψ̄ are

SU(3)-singlets. The gauge fields and covariant derivatives (see their definition in (A.12)),
split according to the new space-time symmetry as

Aµ = (A ≡ A1 − iA2, Ā ≡ A1 + iA2, A3), (2.13a)

Âµ = (Â ≡ Â1 − iÂ2,
¯̂
A ≡ Â1 + iÂ2, Â3), (2.13b)

Dµ = (D ≡ D1 − iD2, D̄ ≡ D1 + iD2, D3), (2.13c)

We are now ready to implement the twisting procedure for the line considered above
and identify the explicit structure of the topological operators we are looking for. We start
for simplicity by complexifying the su(1, 1|3) superalgebra so that we are allowed to take
complex combinations of the original generators and such that they can act faithfully on the
reduced operators we presented above. Its commutation relations are given in eqs. (A.26,
A.28, A.33, A.34).
In order now to perform the topological twist, we need to select an su(1, 1)(' sl(2)) subal-
gebra inside the complexification of su(3), which we will take to be generated by

su(1, 1) '
〈
iR3

1, iR1
3,

R1
1 −R3

3

2

〉
≡ 〈R+,R−,R0〉, (2.14)

obeying the following commutation relations

[R0,R±] = ±R±, [R+,R−] = −2R0. (2.15)

This is important for defining the twisted symmetry algebra which will allow for a non-
vanishing result of the correlators in (2.5). We can also define a u(1) factor generated
by

R̃ ≡ R1
1 +R3

3

2
, (2.16)

commuting with the algebra in (2.15). In practice, we have broken the complexification of
the original su(3) into su(1, 1)⊕ u(1).
With respect to this subalgebra, the supercharges split into two doublets (Q1, Q3) and
(S1, S3), and their hermitian conjugates (Q̄1, Q̄3), (S̄1, S̄3), which transform in the fun-
damental of su(1, 1) and have u(1) charges 1/6 and −1/6, respectively. The remaining
supercharges Q2, S2 (Q̄2, S̄2) are instead singlets with U(1) charges −1/3 (1/3).
The topological twist can now be performed by taking the diagonal sum of the one-dimensional
conformal algebra defined in (A.26) with the su(1, 1) algebra given in (2.14).
The resulting twisted generators are

L̂+ = P +R+, L̂− = K +R−, L̂0 = D +R0, (2.17)

which satisfy the following commutation relations

[L̂0, L̂±] = ±L̂±, [L̂+, L̂−] = −2L̂0. (2.18)

We shall denote this twisted conformal algebra on the line with ŝu(1, 1).
Under the new spin assignments induced by ŝu(1, 1), the supercharges Q3, S1 and their
hermitian conjugates are now scalars. In particular, the linear combinations

Q1 = Q3 + iS1, Q2 = S̄3 + iQ̄1 (2.19)



2.2. THE ABJ(M) THEORY CASE 33

define two independent nihilpotent supercharges, Q2
1 = Q2

2 = 0. Remarkably, the generators
of ŝu(1, 1) are Q-exact with respect to both charges. In fact, it is easy to check that

L̂+ =
{
Q1, Q̄3

}
=− i

{
Q2, Q

1
}

L̂− = −i
{
Q1, S̄1

}
=
{
Q2, S

3
}

L̂0 =
1

2

{
Q1,Q†1

}
=

1

2

{
Q2,Q†2

} (2.20)

The twisted generators L̂±, L̂0 and the charges Q1 and Q2 span a superalgebra, which
possesses a central extension given by

Z =
1

4
{Q1,Q2} =

1

3
M − R̃ (2.21)

where M is the u(1) generator defined in (A.29).

2.2.2 Q-Cohomology and Topological States

As we reviewed in Section 2.1, the topological sector of the ABJ(M) theory should contain
all the local8, gauge-invariant operators belonging to the cohomology of a nilpotent chargeQ
for which the twisted translations are Q-exact. This is the key ingredient for obtaining non-
vanishing constant correlators when we consider topological operators. Since both Q1 and
Q2 satisfies this property, we can choose either one of them or a suitable linear combination,
in any case the results will be independent of which charge we select.9 For this reason we
label any generic combination of cohomological charges as Q with no loss of generalities.
The defining conditions for an operator O(s) living in the cohomology of Q are

[Q,O(s)} = 0, O(s) 6= [Q,O′(s)}, (2.23)

where either commutators or anticommutators appear depending on the spin of O. The
above relations are nothing but the requirement that O must be a non-trivial operator in
the Q-cohomology, i.e. Q-closed but not Q-exact.
Such elements have to be selected among the irreducible representations of the one-dimensional
superconformal algebra su(1, 1|3) which are, as we saw in Subsection 1.1.2 classified at the
origin of the line. Therefore, the operators we are looking for have to satisfy the relations in
(2.23) when s = 0. In fact, an operator located at a generic point s can always be obtained
from the one evaluated at the origin by applying a twisted translation L̂+ as follows10

O(s) ≡ e−sL̂+ O(0) esL̂+ . (2.24)

Being the L̂+ generator Q-exact, topological operators O(0) and O(s) automatically belong
to the same Q-cohomology class.
As briefly reviewed in appendix A.4.2, the operators in an irreducible representation are
classified in terms of the conformal weight ∆, the u(1) charge m and the two R-symmetry
quantum numbers (j1, j2) corresponding to the two su(3) Cartan generators defined in
(A.37). We symbolically write |∆,m, j1, j2〉 to denote the corresponding state.

8For our purposes it is sufficient to consider local operators.
9A useful basis for performing explicit computations is

Q± =
1√
2

(Q1 ±Q2), Q̃± =
1√
2

(Q̄3 ∓ iQ1), S̃± =
1√
2

(−iS̄1 ± S3), (2.22)

for which the two equivalent twisted algebras completely split and the supercharges square to aQ-exact term,
i.e. the Z element of (2.21). Notice that {L̂+, L̂−, L̂0,Z,Q+,Q†+, Q̃+, S̃+} span an su(1, 1|1) superalgebra.

10Notice that the exponentiation of L+ is performed without the usual i coefficient because, in our
convention, the differential representation of the one-dimensional momentum operator in (2.17) is P = −∂s.
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Topological operators can be now easily identified by noting that L̂0 and Z, being Q-exact,
act trivially within each Q-cohomology class (their action on cohomological representatives
is always Q-exact). Therefore, operators obeying the condition (2.23) belong necessarily to
the zero eigenspaces of L̂0 and Z [22, 96]. In particular, in a unitary representation, any
element of the kernel of L̂0 must be annihilated by Q1 and Q2, thanks to the last equation in
(2.20). The problem is then reduced to determining the intersection N = Ker(L0)∩Ker(Z).
To this end, using the su(3) Cartan generators defined in (A.37), we rewrite L̂0 and Z given
in eqs. (2.17, 2.21) as L̂0 = D − (J2 + J1) and Z = 1

3

(
M − (J2 − J1)

)
. Therefore, a state

|∆,m, j1, j2〉 in a given irreducible unitary representation is an eigenvector of L̂0 and Z with
eigenvalues l̂0 = ∆− j2+j1

2 , 3z = m− j2−j1
2 .

This state will belong to N and define a topological operator if and only if

∆ =
j2 + j1

2
, m =

j2 − j1
2

. (2.25)

To identify operators whose quantum numbers satisfy the relations above, let us briefly
scan the content of long and shorts su(1, 1|3) multiplets. The detailed analysis can be found
in Appendix A.4.2. We will label multiplets from now on by using the notation of [55] but
a useful conversion scheme from this notation to the one in [56] can be found in the latter.
The first type of multiplets on which we focus are long multiplets, which we will denote with
A∆
m;j1,j2

. Those multiplets are characterized by unitarity constraints (A.42). The first of
the two constraints on the m quantum number is always incompatible with (2.25), whereas
the second one satisfies (2.25) at the threshold. Therefore, the superconformal primaries of
the A multiplets at the threshold certainly belong to the cohomology of Q.
Since topological operators are primary states of long multiplets for which the bound is
saturated, more attention is required for a detailed classification. As we reviewed in Subsec-
tions 1.1.3 and 1.2.3 indeed, when the threshold is reached, the recombination phenomenon
causes the A multiplets to split into short multiplets according to the decomposition rule
in (A.45). From (A.45) we can identify topological operators as superconformal primaries

of the short multiplets B
1
6
, 1
6

j2−j1
2

;j1,j2
.

Referring to their shortening conditions (A.47, A.51) we immediately see that eqs. (2.25)

are always satisfied by the superprimaries of B
1
6
,0

j2−j1
2

;j1,j2
and B0, 1

6
j2−j1

2
;j1,j2

, for generic values of

j1 and j2. The general result we have found is that topological operators are superconformal
primaries of the following three most general supermultiplets

B
1
6
, 1
6

j2−j1
2

;j1,j2
, B

1
6
,0

j2−j1
2

;j1,j2
, B0, 1

6
j2−j1

2
;j1,j2

. (2.26)

We observe moreover that no other contributions can arise from any descendant state of
B since the application of any supercharge preserving the topological sector would produce
either a trivial state or a state violating the constraints in (2.25). Furthermore we can
notice that, when j1, j2 or both vanish, these multiplets are even shorter and enhance their
supersymmetry becoming 1/2 BPS multiplets. With these results at hand, which are in
perfect agreement with the general findings of [22, 30, 104], let us now explicitly realize the
topological states we identified in terms of the local fields of the theory.
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Local Realizations

The primaries of the multiplets determined in the previous subsection can be explicitly
realized in terms of fundamental matter fields. In fact, by looking at tables A.2 and A.3, we
immediately realise that Y1 and Ȳ 3 provide two superconformal primaries of respectively
B

1
6
, 1
3

−j1
2

;j1,0
and B

1
3
, 1
6

j2
2

;0,j2
.

Using these two fundamental fields, the simplest gauge-invariant topological operator on
the line can be constructed as the following composite operator

O(s) ≡ e−sL̂+O(0)esL̂+ with O(0) = Tr
(
Y1(0)Ȳ 3(0)

)
, (2.27)

clearly obeying the conditions in (2.25) having [∆,m, j1, j2] = [1, 0, 1, 1].
Evaluating the twisted translation explicitly, this operator can be written, at a generic point
s on the line, as

O(s) = Tr
(
Ya(s)Ȳ

b(s)
)
ūa(s) vb(s), (2.28)

where ūa(s) = (1, 0, is) and va(s) = (−is, 0, 1), are the so called polarization vectors.
These vectors are exactly the projectors we need in order to explicitly realize the twisting
procedure at the level of the local untwisted fields and construct coordinate-independent
observables, as we discussed around equation (2.9). Notice that the two vectors are actually
orthogonal, namely ū(s) · v(s) = ūa(s)vb(s)δ

b
a = 0.

The contraction with the two polarization vectors leads to a linear combination of single
trace operators with coefficients that depend on the insertion points

O(s) = Tr
(
Y1Ȳ

3
)
− isTr

(
Y1Ȳ

1
)

+ isTr
(
Y3Ȳ

3
)

+ s2 Tr
(
Y3Ȳ

1
)
, (2.29)

analogously to what happens to certain superprotected operators in the four-dimensional
N = 4 SYM theory [85].
An immediate generalization of (2.27) is the following

On(0) = Tr

Y1(0)Ȳ 3(0) · · ·Y1(0)Ȳ 3(0)︸ ︷︷ ︸
n−times

 = Tr
(
Y1(0)Ȳ 3(0)

)n
, (2.30)

whose quantum numbers are [∆,m, j1, j2] = [n, 0, n, n].
These operators exhaust the spectrum of topological, gauge invariant local operators suit-
able for insertions on the topological line.
What makes O(0) in (2.27) special within the class of operators (2.30) is that it coincides
with the scalar chiral superprimary O2

4(0) we introduced in (2.8), appearing in the su-
permultiplet of the stress-energy tensor. As discussed at the beginning of this section, its
two-point function (2.9) is thus deeply related to one of the stress-energy tensor itself and
can be used to perturbatively evaluate the central charge cT of the theory.
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(a) (b) (c) (d)

Figure 2.1: Topologies of one-loop diagrams contributing to the correlators.

2.3 Topological Correlators: Perturbative Results

A crucial check of the position independence of the correlators described above comes from
their explicit perturbative evaluation. In particular, whether the topological nature is pre-
served at the quantum level is one of the main questions that can be addressed within this
approach. In fact, if the quantum operator is topological, the evaluation of a generic n-point
correlator will result in a function whose non-trivial dependence is at most on the coupling
constants of the theory. In this section we study the connected two-, three- and four-point
functions of the topological operators introduced in (2.28).
While three- and four-point correlators are evaluated up to one loop, we push the calcula-
tion for the two-point function up to two loops to provide a check of (2.11) at a non-trivial
perturbative order. Correlators are computed on the straight line and later mapped to the
great circle S1 of S3, in order to allow for a comparison with the localization results of
section 2.4.

2.3.1 Correlators on R

The perturbative evaluation of n-point correlation functions relies on the expansion of the
Euclidean path integral in powers of the coupling constants N1/k and N2/k. All the details
regarding the ABJ(M) Euclidean action, Feynman rules and all the related conventions, are
collected in Appendices A.1 and A.2.

Using the scalar propagator in (A.13), it is easy to obtain the tree-level results for
connected correlators

〈O(s)O(0)〉(0) = ūa(s) vb(s) 〈Tr
(
YaȲ

b
)

Tr
(
Y1Ȳ

3
)
〉(0) = −N1N2

(4π)2
(2.31)

〈O(t)O(s)O(0)〉(0) = ūa(t)vb(t)ū
c(s)vd(s)〈Tr

(
YaȲ

b
)

Tr
(
YcȲ

d
)

Tr
(
Y1Ȳ

3
)
〉(0) = 0

(2.32)

〈O(z)O(t)O(s)O(0)〉(0) = ūa(z)vb(z)ū
c(t)vd(t)ū

e(s)vf (s) ×

× 〈Tr
(
YaȲ

b
)

Tr
(
YcȲ

d
)

Tr
(
YeȲ

f
)

Tr
(
Y1Ȳ

3
)
〉(0) = 2

N1N2

(4π)4
(2.33)

In the non-vanishing cases, the space-time dependence at the denominator is, as expected,
precisely canceled by the contribution coming from the contraction of the untwisted opera-
tors with the polarization vectors.
One-loop diagrams contributing to the two-, three- and four-point functions are drawn in
figure 2.1. It is easy to realize that they all vanish due to geometrical reasons. Indeed, the
combination of the Levi-Civita tensor coming from the gauge propagator (A.15) and the
peculiar structure of polarization vectors causes the final result always to vanish.
The first non-trivial information comes therefore at two loops. We restrict the evaluation
to the two-point function, whose diagrams at this order are drawn in figures 2.2(a)-2.2(j).
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(a) (b) (c) (d)

(e) (f) (g)

(h) (i) (j)

(k) (l)

Figure 2.2: Two-loop diagrams for the two-point function. In (a) the white circle is the two-
loop correction to the scalar propagator, while in (b) the circle is the one-loop correction
to the gauge field propagator. Diagrams (h), (i), (j) and (k) sum up to provide the vertex
correction.

The corresponding algebraic expressions, including the combinatorial and color factors are
listed in appendix A.6. We evaluate the corresponding integrals by Fourier transforming to
momentum space. Potential UV divergences are regularized within the DRED scheme [105,
106]. This amounts to first perform the tensor algebra strictly in three dimensions to reduce
the integrals to a linear combination of scalar integrals and then analytically continue the
resulting integrals to d = 3 − 2ε dimensions. As usual, we also introduce a dimensionful
parameter µ to correct the scale dimensions of the couplings when they are promoted to d
dimensions.

Applying Mathematica routines11 based on the uniqueness method the momentum inte-
grals can be analytically evaluated, leading to the results listed in Appendix A.6.
Summing all the contributions, UV divergences cancel exactly 12 and we can then safely
take the ε→ 0 limit. The final result for the two-point function at two loops reads

〈O(s)O(0)〉(2) = −N1N2

(4π)2

(
1− π2

6k2
(N2

1 +N2
2 − 2)

)
(2.34)

11We are grateful to Marco Bianchi for sharing with us his routines.
12We note that, for dimensional reasons, all the diagramatic contributions have a dipendence on the

position of the form |µs|8ε. In principle, by expanding |µs|8ε ∼ (1 + 8ε log |µs| + · · · ), we could have
produced dangerous finite log |µs| terms that would have spoiled the topological nature of the operators at
quantum level.
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The highly non-trivial result obtained above gives us strong evidences for the quantum
topological nature of the operators (2.28).

The Central Charge cT

As we have already observed in Subsection 2.2.2, the scalar primary operators appearing in
(2.8) are nothing but the untwisted version of the topological operators we explicitly realized
in (2.28). This means that, by contracting both sides of the expression (2.9) with suitably
constructed polarization vectors, we can relate the perturbative expression of central charge
cT to the two-point function of topological operators we evaluated in (2.34).
For this purpose we write

O(s) = O J
I (0, 0, s)Ū I(s)VJ(s), (2.35)

where we defined, in the SU(4) notation, the following polarization vectors

Ū I(s) = (0, 1, 0, is) , VJ(s) = (0,−is, 0, 1). (2.36)

At this point it is easy to show that the expression in (2.9) can be rearranged as

cT = −64 (2π)2 〈O(s)O(0)〉 (2.37)

Inserting in (2.37) the perturbative result (2.34) for the two-point function, we obtain
the expansion of the ABJ(M) central charge at second order in the couplings and at generic
finite values of the ranks of the gauge group

c
(2)
T = 16N1N2

(
1− π2

6k2
(N2

1 +N2
2 − 2)

)
(2.38)

We note that, in the k → ∞ limit, it correctly reproduces the central for a free theory of
4(N1×N2) chiral multiplets, in agreement with our conventions (see footnote 4), while for k
fixed and N1 = N2 = 2, we correctly recover the two-loop approximation of cT in equation
(5.20) of [21].

2.3.2 Correlators on S1

If we assume that there are no conformal anomalies at quantum level, correlators of twisted
operators computed on a line embedded in R3 and on the great circle S1 ⊂ S3 should be
exactly the same13 [31]. In other words, it is reasonable to assume that (setting s = tan τ

2 )

〈O(s1) . . .O(sk)〉R3 = 〈O(τ1) . . .O(τk)〉S3 (2.39)

where O(s) is the operator in (2.28) on the line, parametrized by the proper time s, and
the operator O(τ) is its counterpart on the circle, parametrized by the proper time τ .
Topological operators on the circle are obtained by contracting the S3 operator localized on
S1 with polarization vectors ūa(τ), va(τ) on the great circle.
From the background independence of the topological correlators stated in (2.39), it is
easy to infer how the polarization vectors get mapped from the line to the great circle. In
fact, by taking into account that the ABJ(M) scalar fields transform under a conformal
transformation as Y1(s) = Λ

1
2Y1(τ), Ȳ 3(s) = Λ

1
2 Ȳ 3(τ), with Λ = cos2 τ

2 the conformal

13Notice that this is still an open problem when we are in presence of an extended defect. A well-known
example are the results, in the large N limit, of the vev of 1/2 BPS Wilson line and Wilson loop in N = 4
SYM.
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factor associated with the conformal transformation mapping the line into a circle (and
viceversa), and the cohomological identification O(s) = O(τ), we obtain

ūa(τ) = Λ
1
2 ūa(s(τ)) =

(
cos

τ

2
, 0, sin

τ

2

)
(2.40)

va(τ) = Λ
1
2 va(s(τ)) =

(
− sin

τ

2
, 0, cos

τ

2

)
(2.41)

Thanks to the discussion above, we can safely extend the formula for the central charge in
(2.37) to the following expression

cT = −64 (2π)2 〈O(τ)O(0)〉S1 , (2.42)

which will be our starting point for proving the validity of the identity (2.11) for ABJ(M)
theory up to two loops.

2.4 Topological Correlators: Matrix Model Results

In this section we explicitly reproduce the result for the central charge in (2.38) by consider-
ing the weak coupling expansion of the mass-deformed matrix model of ABJ(M) theory on
S3 [107, 108] and its second derivatives with respect to the masses as prescribed in (2.10).
This will be in turn a non-trivial two-loop check of the validity of (2.11).
We start by considering the mass-deformed version of the matrix model we introduced in
(1.108) for ABJ(M) theory [24, 99], which reads

Z =

∫
dλ dµ

eiπk
∑
i(λ2

i−µ2
i )
∏
i<j 16 sinh2 [π (λi − λj)] sinh2 [π (µi − µj)]∏

i,j 4 cosh
[
π(λi − µj) + πm+

2

]
cosh

[
π(λi − µj) + πm−

2

] (2.43)

where we dropped the irrelevant overall factor and the specific mass spectrum is the one
introduced in Section 2.2. Taking derivatives respect to m− (or equivalently with respect
to m+ since the matrix model is invariant under the m+ ↔ m− exchange) we immediately
find

∂2

∂m2
−

logZ[S3,m±]

∣∣∣∣
m±=0

=
Z ′′

Z
−
(
Z ′

Z

)2

(2.44)

where Z is the undeformed matrix model and its derivatives are given by

Z ′ = −
∫
dλ dµ eiπk

∑
i(λ2

i−µ2
i ) Z1−loop(λi, µj)

∑
i,j

tanhπ(λi − µj) (2.45)

Z ′′ =

∫
dλ dµ eiπk

∑
i(λ2

i−µ2
i ) Z1−loop(λi, µj) (2.46)

× π2

4

∑
i,j

tanh(π(λi − µj))

2

−
∑
i,j

1

cosh2(π (λi − µj))


with

Z1−loop(λi, µj) =

∏
i<j 16 sinh2 [π (λi − λj)] sinh2 [π (µi − µj)]∏
i,j 4 cosh(π (λi − µj)) cosh(π (λi − µj))

(2.47)

Since the integrand in Z ′ is odd under λ ↔ µ exchange, it vanishes once integrated. Thus
we only need to compute contribution (2.46). Performing the following change of variables

xi = π
√
kλi , yj = π

√
kµj , gs =

1√
k

(2.48)
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the relevant quantities become

Z =

∫
dX dY e

i
π

∑
i(x2

i−y2
i )f(x, y) (2.49a)

Z ′′ =

∫
dX dY e

i
π

∑
i(x2

i−y2
i )f(x, y)

π2

4

∑
i,j

tanh(gs(xi − yj))

2

−
∑
i,j

1

cosh2(gs (xi − yj))


(2.49b)

where dX, dY are the Haar measures and

f(x, y) =
∏
i<j

sinh2(gs(xi − xj))
g2
s(xi − xj)2

sinh2(gs(yi − yj))
g2
s(yi − yj)2

1∏
i,j cosh2(gs(xi − yj))

(2.50)

In order to compute Z and Z ′′, we find it convenient to canonically normalize them as
Z ′′ → Z ′′/Z0 ≡ Z ′′, Z → Z/Z0 ≡ Z where

Z0 ≡
∫
dXdY e

i
π

∑
i(x2

i−y2
i ) (2.51)

is the free partition function. By perturbatively expanding the integrands in (2.49) up to
g4
s ∼ 1

k2 , i.e. at two loops, and evaluating the normalized gaussian matrix integrals, we
obtain

Z ′′ = −π
2

4
N1N2

[
1 + g2

s

iπ

6
(N2 −N1)

(
1− (N2 −N1)2

)
− g4

s

π2

72

(
− 24 + 16N2

2 − 12N1(N2 −N1) +N4
2 + 6N2

2N
2
1 + 2N2N

3
1 −N4

1

+ (N2 −N1)6
)

+O(g6
s)
]

1

Z
= 1− g2

s

iπ

6
(N2 −N1)

(
1− (N2 −N1)2

)
− g4

s

π2

72

(
− 2(N2

2 −N2
1 ) + 8N2N1 − 5N4

2 + 2N2N1(N2 −N1)(8N2 − 7N1)− 3N4
1

+ (N2 −N1)6
)

+O(g6
s)

(2.52)
If we now substitute back gs → 1√

k
, the final result reads

1

π2

∂2

∂m2
−

logZ[S3,m±]

∣∣∣∣
m±=0

=
1

π2

Z ′′

Z
= −N1N2

4

(
1− π2

6k2
(N2

1 +N2
2 − 2) +O

(
1

k3

))
(2.53)

We can now substitute the result obtained above and find

cT = −64

π2

∂2

∂m2
−

logZ[S3,m±]

∣∣∣∣
m±=0

= 16N1N2

(
1− π2

6k2
(N2

1 +N2
2 −2)+O

(
1

k3

))
(2.54)

which beautifully matches with the result of (2.38).
In the next Subsection we present the two-loop result for the four-point function obtained
with the same technology as above.
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2.4.1 The Four-Point Function at Two Loops

From the general structure of the partition function in (2.43) it is easy to see that all the
odd-order mass derivatives evaluated atm± = 0 vanish identically due to symmetry reasons,
therefore, (2n + 1)-point functions of topological operators are expected to vanish at any
loop order. Notice that this is in agreement with our result for the three-point function in
section 2.3.
Even number of derivatives can be instead used to obtain predictions for (2n)-point functions
of topological operators at weak coupling.
The simplest case we consider beyond the two-point function is the four-point function. By
using the prescription (2.5), what we can write is

〈O(τ1)O(τ2)O(τ3)O(0)〉 =
1

(2π2)4

∂4 logZ

∂m4
−

∣∣∣∣
m±=0

=
1

(2π2)4

(
Z ′′′′

Z
− 3

(
Z ′′

Z

)2
)

(2.55)

Evaluating explicitly Z ′′′′ at order g4
s and using (2.52), we obtain a two-loop prediction for

the four-point topological correlator

〈O(τ1)O(τ2)O(τ3)O(0)〉 = 2
N1N2

(4π)4
− N1N2(N2

1 +N2
2 − 2)

192π2 k2
+O

(
1

k3

)
(2.56)

We note that up to one loop it agrees with our perturbative result (2.33), whereas the 1
k2

term constitues a non-trivial prediction which should be checked perturbatively.
We conclude by expressing how all calculations we performed throughout the present chapter
point towards the validity of the conjectured relation (2.11) and, more in general, the
ABJ(M) version of the formula in (2.5).
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Chapter 3

N = 1 Quivers

In this chapter we shift our attention to the study of minimally supersymmetric models in
three-dimensions, which interpolates physics from the highly constrained supersymmetric
world to the non-supersymmetric one. Three-dimensional theories with N = 1 supersym-
metry are not so distant from the non-supersymmetric ones since some exact approaches
like localization, non-renormalization theorems or the construction of protected sectors, are
not allowed. This fact increases the difficulties in exploring their non-perturbative regime,
nevertheless, a careful analysis of the minima of their superpotential allows for a rigorous
study of the structure of the phase diagrams. In some cases such phase diagrams show
identical phase transitions which uncover certain deep similarities among different theories
encoded in what are generally called infrared dualities (IR).
Infrared dualities are one of the most powerful tool which can be used for relating com-
pletely different, not necessarily supersymmetric, ultraviolet (UV) quantum field theories
in the low-energy limit. In particular, what happens is that, for some special submanifolds
of the phase diagram where a phase transition occurs, we are allowed to describe the same
critical phenomena with different physical prescriptions. Three-dimensional well-known ex-
amples of IR dualities, which are part of an infinite duality web, are the Particle-Vortex
duality, between the XY-model and the Abelian-Higgs model1, or the so called Bosonization
duality, between the U(1)1 Abelian-Higgs model and a massive Dirac fermion coupled to an
abelian Chern-Simons background gauge field. Since three-dimensional gauge theories are
strongly coupled in the low-energy limit, it is generally hard to have an analytic description
of such phenomena. Relying on dual physical interpretations on one side may thus allow
for a much simpler effective description of the physics on the other side.

In what follows, we will study in detail the phase diagram of N = 1 Chern-Simons
quivers gauge theories coupled to bifundamental matter and propose new dualities arising
from the matching of certain second (or higher order) phase transitions. This chapter will be
organized as follows: In Section 3.1 we briefly review some specific aspects of N = 1 gauge
theories with different matter content, in Section 3.2 we compute the one-loop effective
superpotential for the SU(2)×SU(2) case in some physically relevant limits and in Section
3.3 we study the related phase diagrams. In Section 3.4 we try to extend the previous
analysis to the SU(2) × U(2) case and in Section 3.5 we propose some dualities involving
quiver theories, as well as the adjoint SQCD. Finally, in Section 3.6 we make some comments
regarding theories enjoying parity (time-reversal) symmetry.

1Notice that both these theories are described at the critical point by a CFT which is usually called
Wilson-Fisher model. The fact that a single "quantum" theory describes the physics at the critical point
for very different "classical" theories, it is usually known as universality.
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3.1 N = 1 Vector Multiplet Coupled to Matter

In this section we review some known facts regarding the N = 1 SU(N)k theory introduced
in Subsection 1.3.4, and U(N) variants thereof, coupled to different matter contents.
Since we are going to deal with U(N) CS-theories, we find useful to introduce the relative
standard notation for them.2

The U(N) gauge group is equipped with two different, but related, CS-levels and is com-
monly defined as

U(N)k1,k2 =
SU(N)k1 × U(1)Nk2

ZN
, (3.1)

for which consistency requires that k2 = k1 mod N . We note that while in general time-
reversal transformation maps a TQFT to a different TQFT, there are some of which turn
out to be invariant, with an example given by U(N)N,2N theories, or the already mentioned
ABJ(M) theory. This very important consequence is thus that different Chern-Simons
theories may actually describe the same TQFT. An important example of this phenomenon,
which will be used in what follows, is given by the Level-Rank duality (see [110] for a modern
discussion). The dual pair which will be relevant for us is U(N)k,k ↔ SU(k)−N .
Let us now briefly review what happens when we couple a matter multiplet transforming
respectively in the adjoint and in the fundamental representation of the gauge group.

3.1.1 Adjoined Matter Multiplet

An adjoined Matter multiplet consists of a real scalar and a Majorana fermion both trans-
forming in the adjoint representation of the gauge group. The Lagrangian we introduced in
(1.92) thus get modified by the following additional pieces

Lφkin = Tr (DµφD
µφ) (3.2)

Lψkin = iTr
(
ψ /Dψ

)
(3.3)

LY uk = ig
√

2 Tr ([λ, φ]ψ) (3.4)

Lm = Tr

(
1

2
m2φ2 +mψψ

)
(3.5)

where the last term is nothing but the (real) matter superpotential term introduced in (1.86)
written in components3. In what follows we will be interested in the tree-level superpotential
given by the mass term only.

The dynamics of an N = 1 vector multiplet coupled to a matter multiplet in the adjoint
representation, as a function of the matter mass parameter, was described in details in [37].
Here we review the SU(2) gauge group case, which will be relevant in the next sections of
this chapter.
For k ≥ 2 and m� 0, we can integrate out the matter multiplet and get the pure SU(2)k+1

vector multiplet. In the low-energy limit, this theory further flows to a supersymmetric
vacuum hosting the SU(2)k CS-theory where the gaugino, which has negative mass, has
been integrated out.
When we consider the m� 0 case instead, after integrating out the matter multiplet again,
we get the pure SU(2)k−1 vector multiplet, which flows to a supersymmetric vacuum hosting
now a SU(2)k−2 CS-theory. Thus, by computing the Witten index as prescribed in (1.95),
we immediately notice that there are two large mass asymptotic phases whose Witten index
is different. Since the Witten index is invariant under deformation of the parameters of

2Useful details can be found in Appendix C of [109] and [14].
3Notice that when m = − kg

2

2π
, we get the Lagrangian of a pure N = 2 vector multiplet.
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the theory, different asymptotic values indicate that non-trivial phenomena must occur in
between them.
The transition between these two phases happens in two stages: At m = 0 the effective
potential develops a flat direction, namely a moduli space of vacua emerges, and for small
and positive mass a new supersymmetric vacuum supporting a U(1)2k CS-theory appears.
Physically, this vacuum can be thought as coming in from the infinity of the field space
along the flat direction.
The Witten index of this theory is exactly the one that compensates the jump of its two
asymptotic values, restoring the matching of the Witten index on both sides of the phase
transition. This process can be physically interpreted as follows: At some finite mass value
m∗ these two vacua merge through a second order phase transition and produce a single
vacuum which is the one visible at large positive masses. As a final remark we notice
that the jump of the Witten index may happen when a flat direction is developed by
the superpotential, since it is ill-defined for a continuous set of vacua as we discussed in
Subsection 1.3.4, whereas when a phase transition occurs it consistently stays constant.

For k = 1, the m � 0 scenario is not much different from the previous case, indeed
we get a single supersymmetric vacuum supporting the SU(2)1 TQFT. On the contrary,
when m � 0, by integrating out matter, we get the SU(2)0 vector multiplet which breaks
supersymmetry [46]. The theory in the IR limit is then given by4

Gα + U(1)2. (3.6)

where Gα is the goldstino. Since the origin of this IR theory is subtle, let us discuss in detail
what happens when we try to chart its phase diagram.
At m = 0 the effective potential develops a flat direction, and for small positive mass we
find a new supersymmetric vacuum hosting a U(1)2 TQFT, which came in from infinity of
the field space. Using the fact that U(1)2 is time-reversal invariant [36] and applying the
Level-Rank duality (cf. [110]),

U(1)2
T-inv←−−→ U(1)−2

L-R←−→ SU(2)1, (3.7)

we recognise the same vacuum as the large positive mass one, therefore, we do not have
a phase transition in this case. We note that at positive and small mass values, the non-
supersymmetric vacuum hosting the Gα + U(1)2 theory coexists with the supersymmetric
one hosting the U(1)2 TQFT, meaning that the former is actually meta-stable.

Finally, for k = 0, in the m = 0 point we get the supersymmetry enhancement to
N = 2 and the theory shows a runaway behaviour [111]. For non-zero masses the runaway
behaviour stabilizes and the superpotential shows a single trivial supersymmetric vacuum
for both positive and negative masses.

3.1.2 Fundamental Matter Multiplets

In this section we review the structure of the phase diagram for U(2) and SU(2) vector
multiplets theories coupled to F matter multiplets in the fundamental representation, as a
function of the matter mass m (we assume that all flavours are given the same mass). This
is a particular case of the results in [41].
Let us first consider the case of U(2)k+1,k theories coupled to F fundamental:

• F = 1: At large positive mass, by integrating out the matter, we get a single vacuum
with U(2)k+ 3

2
,k+ 1

2
vector multiplet. For large and negative mass we get a single vacuum

with U(2)k+ 1
2
,k− 1

2
vector multiplet. In the intermediate phase 0 < m < m∗ (where m∗

4The origin of the U(1)2 topological theory is the one discussed at the end of Section 1.3.4.
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is some finite and positive value) in addition to the vacuum seen at negative masses,
a new vacuum with U(1)

k+
1
2
vector multiplet appears allowing for the compensation

of the asymptotic values of the Witten index. At m = 0 the superpotential shows flat
directions which, in the parameter space, can be represented as a wall. At m = m∗
a phase transition occurs and the two vacua merge reproducing the single asymptotic
vacuum.

• F ≥ 2: At large positive masses, we get a single vacuum with U(2)
k+

2+F
2 ,k+

F
2
vector

multiplet. For large and negative masses we get a single vacuum with U(2)
k+

2−F
2 ,k−F2

vector multiplet. In the intermediate phase 0 < m < m∗ in addition to the negative
masses vacuum, two new vacua appear from infinity [41].
The first vacuum hosts an N = 1 non-linear sigma model (NLSM), whose target
space5 is U(F )

U(F−1)×U(1) , coming from spontaneously broken SU(F ) global symmetry,
together with the decoupled U(1)k vector multiplet.
The second hosts instead an U(F )

U(F−2)×U(2) N = 1 NLSM. Again, at m = 0 a wall is
developed and at m = m∗ we find the phase transition locus.

A peculiarity of this type of models is that, in contrast to expectations, the three vacua
living in the intermediate phase merge in just a single phase transition [41] instead of two
distinct ones. This phenomenon was dubbed supercriticality.

We now briefly discuss SU(2)k+1 theories6 with F fundamentals. For large and positive
mass we get a single vacuum with SU(2)k+F

2
+1 vector multiplet, whereas for negative masses

we have the SU(2)k−F
2

+1 vector multiplet. In the intermediate phase with 0 < m < m∗,
in addition to the negative mass vacuum, a new vacuum come in from infinity through the
already discussed mechanism, supporting a Sp(F )

Sp(F−1)×Sp(1) N = 1 NLSM.
In [41], a family of dualities between SQCD theories was described. Among the proposed
dualities, we note the following7

U(2)2,1 + 2Φ←→ SU(2)−2 + 2Φ̃, (3.8)

which is obtained by substituting k = 0, Nf = N = 2 in their equation (6.1). This duality is
quite subtle and, if correct, has quite far-reaching consequences, such as the global symmetry
enhancement, on the U(2) side, from SU(2)×U(1) to Sp(2) at the IR fixed point. A puzzling
aspect about this duality is the mismatch of the phases when the theories are deformed away
from the fixed point by the mass deformation. In particular, while the U(2) theory has
three vacua in the intermediate phase (two of them being the NLSMs we described above),
the SU(2) theory has just two of them. The correctness of (3.8) thus implies giving up
supercriticality, e.g. due to non-perturbative corrections. This means that, for consistency,
there exists an intermediate phase where only two vacua merge on both sides.

While it is easy to get the vacua for large mass values, it is more subtle to understand the
dynamics in the intermediate phase for which one needs to know the effective superpotential
exactly. For this reason we turn to the evaluation of the effective superpotential for the two-
node quiver theories as described at the beginning of the chapter.

5We find useful to recall that, for NLSMs, the Witten index actually computes the Euler characteristic
of the target space manifold. By labellingMF,n ≡ U(F )

U(F−n)×U(n)
, one finds that IW = χ(MF,n) =

(
F
n

)
.

6It worths reminding that the global symmetry of the Lagrangian here is not just U(F ), but rather
Sp(F ), because of the pseudo-real nature of the SU(2) fundamental representation.

7We thank Adar Sharon for discussions on this duality.
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Figure 3.1: Feynman Supergraphs contributing to the 1-loop effective Superpotential.

3.2 Effective Superpotential for SU(2)× SU(2) Theories

In this section we consider the previously mentioned two-node quiver theories with SU(2)k1×
SU(2)k2 gauge group with one bi-fundamental matter multiplet. We compute the exact one-
loop effective superpotential, the superspace analogue of the Coleman-Weinberg effective
potential [76], by using the supergraph formalism8. The strategy presented here will closely
follow the one of [41]. To keep the discussion as general as possible, we start by considering
the G1×G2 case for the gauge groups and then specialize to the SU(2)× SU(2) case. The
generic structure of the effective superpotential is [41]

Weff =

∫
d3p

(2π)3
d2θ′ δ(θ − θ′)Σ(p, θ′)δ(θ′ − θ), (3.9)

where Σ, at the one-loop order, is given by the sum of the diagrams shown in Figure 3.1.
We note that the form of the series expansion is exactly the same as can be found in [76],
albeit with Feynman rules replaced by their superspace counterpart.
Let ΓAα , Γ̂Mα be vector multiplet superfields of the first and the second gauge groups respec-
tively; here A,M are colour indices and α is the spinor index. The general structure of
the YMCS gauge propagator can be found in (B.10). In our case we need the following
expressions

〈ΓAα (p)ΓB,β(−p)〉 = δAB
δβα(κ1D

2 + p2) + (κ1 − D2) pα
β

p2 (κ2
1 + p2)

≡ δAB(∆1)α
β, (3.10)

〈Γ̂Mα (p)Γ̂N,β(−p)〉 = δMN δβα(κ2D
2 + p2) + (κ2 − D2) pα

β

p2 (κ2
2 + p2)

≡ δMN (∆2)α
β, (3.11)

where κi =
kg2
i

2π . There are also three types of vertices joining two gauge multiplets and
two matter multiplets9 which partecipate in the computation. The corresponding Feynman
rules can be easily obtained from the explicit expressions of the covariant derivatives in
(B.12),(B.13) and read

Γ
(4)

ΓΓφ̄φ
= 〈ΓAα (p)ΓB,β(q)Φi

ĵ(r)Φ̄ l
k̂

(−p− q − r)〉 = −g
2
1

2
(T (A) n

i (TB)) l
n δ

ĵ
k̂ δα

β (3.12)

Γ
(4)

Γ̂Γ̂φ̄φ
= 〈Γ̂Mα (p)Γ̂N,β(q)Φi

ĵ(r)Φ̄ l
k̂

(−p− q − r)〉 = −g
2
2

2
(K(M ) n̂

k̂
(KN)) ĵ

n̂ δi δα
β, (3.13)

Γ
(4)

ΓΓ̂φ̄φ
= 〈ΓAα (p)Γ̂M,β(q)Φi

ĵ(r)Φ̄ l
k̂

(−p− q − r)〉 =
1

2
g1g2(TA) l

i (KM ) ĵ

k̂
δα
β. (3.14)

8A detailed discussion of the N = 1 superspace and supergraph formalism can be found in [45].
9As usually, there also exist a cubic vertex with two matter legs and one gauge leg but they do not

contribute since, in the Landau gauge, the gauge propagators are transverse, namely (∆1,2) βα Dβ = 0.
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Above, unhatted lower case letters i, j, ... are fundamental indices and A,B are adjoint
indices of G1, with TA being its generators. Similarly, hatted lower case letters are funda-
mental indices and M,N are adjoint indices of G2, with KA being its generators.
We can now proceed with the computation of Σ. For this purpose, we find useful to introduce
the following matrices

MAB = g2
1Tr Φ̄T (ATB)Φ (3.15a)

NMN = g2
2TrΦK(MKN)Φ̄ (3.15b)

GAM = −g1g2Tr Φ̄TAΦKM . (3.15c)

which allow us a more compact treatment of the computation.
We see indeed that Σ is given, at the leading order, by the sum of the one-loop contribu-
tions corresponding to Feynman diagrams appearing in Figure 3.1. With the help of the
expressions defined in (3.15), we find

Σ1-loop = −1
2 TrM ∆1 − 1

2 TrN ∆2 +

+ 1
4Tr (M ∆1)2 + 1

2Tr (G)†∆1G∆2 + 1
4Tr (N ∆2)2−

− 1
6Tr (M ∆1)3 − 1

2TrG
†∆1M ∆1G∆2 − 1

2TrG∆2N ∆2G
†∆1

− 1
6Tr (N ∆2)3 + ... ,

(3.16)

where the trace is taken over both spinor and colour indices for each gauge group respectively.
To simplify even more the contributions appearing above, we list the following identities
involving gauge propagators

(∆i)
α
α =

2(κiD
2 + p2)

p2(κ2
i + p2)

= δi,

(∆1) β
α (∆1) γ

β =
2(κ1D

2 + p2)

p2(κ2
1 + p2)

(∆1) γ
α = δ1(∆1) γ

α ,

(∆2) β
α (∆2) γ

β =
2(κ2D

2 + p2)

p2(κ2
2 + p2)

(∆2) γ
α = δ2(∆2) γ

α ,

(∆1) β
α (∆2) γ

β = δ1(∆2) γ
α = δ2(∆1) γ

α .

(3.17)

At this point, by tracing on spinor indices only, we can repackage the expression in (3.16)
in terms of the following additional matrices

M =

(
MAB GAN

(G†)MB NMN

)
, ∆ =

(
δ1 · 1N1×N1 0

0 δ2 · 1N2×N2

)
, (3.18)

where N1 and N2 are the dimensions of the fundamental representations of G1 and G2,
respectively. With this formalism at hand, we can write the generic one-loop contribution
for 2n external matter legs as

Σ
(n)
1-loop ≡ Tr(M∆)n. (3.19)

By summing over all the possible contributions, we get

Σ =
∑
n

Sn Σ
(n)
1-loop

= −1

2
Tr(M∆) +

1

4
Tr(M∆M∆)− 1

6
Tr(M∆M∆M∆) + ...

= −1

2
Tr log

(
1(N1+N2)×(N1+N2) +M∆

)
= −1

2
log det

(
1(N1+N2)×(N1+N2) +M∆

)
= −1

2
log
(

det
(
(1N1×N1 + δ1M)− δ1δ2G(1N2×N2 + δ2N)−1GT

)
· det (1N2×N2 + δ2N)

)
(3.20)
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where in the first step we used the following general formula for the symmetry factor asso-
ciated to each supergraph

Sn =
1

n!

(
−1

2

)n
(2n− 2)!! =

(−1)n

2n
. (3.21)

We now choose to restrict to the SU(2)×SU(2) case. In this setup we can further simplify
the result thanks to few helpful properties which we are now going to present.
We start noticing that, in this case, M , N , and G are all three by three diagonal matrices
therefore they all commute. In fact, by considering the expressions in (3.15), we have

MAB =
g2

1 Tr Φ̄Φ

4
δAB

NAB =
g2

2 Tr Φ̄Φ

4
δAB.

(3.22)

The above expressions thus allow us to simplify the result in (3.20) as

Σ = −1

2
Tr log

[
13×3 + δ1M + δ2N + δ1δ2(MN −GTG)

]
. (3.23)

Taking into account that the eigenvalues of GTG are given by(
g2

1g
2
2 det Φ det Φ̄

4
,
g2

1g
2
2 det Φ det Φ̄

4
,
g2

1g
2
2(Tr Φ̄Φ)2

16

)
, (3.24)

and introducing the notation

ρ ≡ Tr Φ̄Φ, B ≡ 2 det Φ, B̄ ≡ 2 det Φ̄, (3.25)

we can substitute the above results in (3.23) and obtain

Σ = − log

[
1 +

ρ

4
(g2

1δ1 + g2
2δ2) +

ρ2 −BB̄
16

g2
1g

2
2δ1δ2

]
− 1

2
log
[
1 +

ρ

4
(g2

1δ1 + g2
2δ2)

]
. (3.26)

At this point we can substitute everything in (3.9) and get the following complete one-loop
expression for the superpotential

W1-loop =−
∫

d3p

(2π)3
d2θ′δ(θ − θ′) log

[
1 +

ρ

4
(g2

1δ1 + g2
2δ2) +

ρ2 −BB̄
16

g2
1g

2
2δ1δ2

]
δ2(θ′ − θ)

− 1

2

∫
d3p

(2π)3
d2θ′δ(θ − θ′) log

[
1 +

ρ

4
(g2

1δ1 + g2
2δ2)

]
δ2(θ′ − θ).

(3.27)
In order to compute the expression above, we first need to deal with the θ integral. The
presence of delta functions allow us to compute it with the help of the following identities

δ2(θ − θ′)δ2(θ′ − θ) = 0,

δ2(θ − θ′)Dαδ2(θ′ − θ) = 0,

δ2(θ − θ′)D2δ2(θ′ − θ) = δ2(θ − θ′),
(3.28)

which tell us that only linear expression in D2 will contribute to the final result.
The effective superpotential thus formally becomes

W1-loop =−
∫

d3p

(2π)3
log

[
1 +

ρ

4
(g2

1δ1 + g2
2δ2) +

ρ2 −BB̄
16

g2
1g

2
2δ1δ2

]
|D2

− 1

2

∫
d3p

(2π)3
log
[
1 +

ρ

4
(g2

1δ1 + g2
2δ2)

]
|D2 .

(3.29)
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where |D2 means that we should reduce the functions ofD2 to linear ones, as explained above,
and then take the coefficient in front of D2. The reduction procedure can be performed with
the help of the identities in (B.7) and the following non-trivial relation [41]

(κD2 + p2)n|D2=
1

|p|
Im
(
(iκ|p|+ p2)n

)
, (3.30)

from which we can easily extract all the D2 coefficients.
Putting together all the recipes explained above and the results obtained in (3.17), the fully
reduced expression for the effective superpotential becomes

W1-loop =−
∫

d3p

(2π)3

1

|p|
Im log

[
1 +

ρ

2

(
g2

1

(p2 − iκ1|p|)
+

g2
2

(p2 − iκ2|p|)

)
+

g2
1g

2
2(ρ2 −BB̄)

4(p2 − iκ1|p|)(p2 − iκ2|p|)

]
− 1

2

∫
d3p

(2π)3

1

|p|
Im log

[
1 +

ρ

2

(
g2

1

(p2 − iκ1|p|)
+

g2
2

(p2 − iκ2|p|)

)]
.

(3.31)

Since we are interested in the classification of the supersymmetric vacua of the theory,
which are the minima of the superpotential, the derivatives of Weff with respect to ρ, B
and B̄ are clearly going to play a relevant role. Since we cannot compute the exact closed
form of (3.31) in full generality, we focus on the physically relevant limit only, namely the
asymptotic behavior at large field values. In this approximation, the leading results can be
obtained for the general case k1 6= −k2 with the help of the Mathematica software. The two
sub-cases in which we are interested in and that will be discussed in the next sections are

∂ρW1-loop =

−
F1+F4

ρ1/2 + O
(
ρ−3/2, (Bρ )2

)
if Bρ � 1,

−G− 3F1+F2

ρ1/2 + O
(
ρ−3/2

)
if B = ρ

∂BW1-loop =


F3B
ρ3/2 + BO

(
ρ−5/2, Bρ

)
if Bρ � 1,

G+ F2

ρ1/2 ,+O
(
ρ−3/2

)
if B = ρ.

(3.32)

Here F1, F2, F3, F4, G1 are functions of g1, g2, κ1, κ2:

F1 =
κ1g

2
1 + κ2g

2
2

16
√

2π
√
g2

1 + g2
2

, (3.33a)

F2 =
g2

1g
2
2

(
(κ1 + κ2)(g2

1 + g2
2)− 3(κ1g

2
2 + κ2g

2
1)
)

4
√

2π(g2
1 + g2

2)5/2
, (3.33b)

F3 =
g1g2(κ1g2 + κ2g1)

4
√

2π(g1 + g2)2
, (3.33c)

F4 =
g1κ1 + g2κ2

8
√

2π
(3.33d)

G =
g2

1g
2
2

4π(g2
1 + g2

2)
. (3.33e)

For the case of k1 = −k2 one can go a bit further and get not only the leading asymptotic
behaviour but the complete closed form expressions for ∂ρW1-loop and ∂|B|W1-loop in the
limits B → ρ and B → 0. All these results are collected in Appendix B.3.
As is explained in [37], the asymptotic behaviour of the effective superpotential is fully
determined by the one-loop contributions and does not receive higher-order corrections.
This fact implies that the results in (3.32) and (3.33) are actually exact.
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3.3 Phase Diagrams of SU(2)× SU(2) Models

In this section we classify and study in detail the vacua of SU(2) × SU(2) quiver theories
by starting from the results obtained in the previous section. This will allows us to discuss
their IR phases, which will be our starting point for the new dualities we propose at the
end of the chapter, and finally chart their complete phase diagrams.
Let us start by adding the one-loop effective superpotential we previously computed to the
tree-level mass term appearing in the Lagrangian. The final form of the superpotential we
are going to study hence reads

Weff = mTr Φ̄Φ +W1−loop. (3.34)

As we have already recalled, the supersymmetric vacua are given by the critical points of
the superpotential. They can be thus found by solving the following F-term equation

∂̄W = 0. (3.35)

In order to sistematically solve the above equation, we can put in a diagonal form the scalar
field in the matter supermultiplet, represented as a two-by-two matrix, by applying two
simultaneous gauge transformations. The final structure of a generic vacuum therefore will
be simply

Φ =

(
φ11 0
0 φ22

)
, (3.36)

where the common phase of φ11 and φ22 have been set to zero thanks to the U(1) baryonic
symmetry. The equation in (3.35) can be then expanded as

φ11∂ρW + φ22∂|B|W = 0,

φ22∂ρW + φ11∂|B|W = 0.
(3.37)

From the equations above one can then easily infer the following possibilities:10

1) The vacuum at the origin, φ11 = φ22 = 0.

2) ∂ρW = −∂|B|W 6= 0, φ11 = φ22.

3) ∂ρW = ∂|B|W = 0.

Since the analysis will heavily rely on the relative sign between the two CS-levels k1,2, we
find convenient to split the discussion into the sgn(k1) = sgn(k2) and sgn(k1) = −sgn(k2).

3.3.1 Chern-Simons Levels: Same Sign

In this subsection we deal with the case of CS-levels with the same sign. Without loss of
generality we assume that 0 ≤ k1 ≤ k2

11whereas we postpone the study of the k1 = k2 = 0
case, which requires a separate treatment.
When the mass parameter is large and positive, we can integrate the matter out and obtain
a single vacuum with the infrared theory given by

N = 1 SU(2)k1+1 × SU(2)k2+1. (3.38)

10There is also the possibility for which ∂ρW = ∂|B|W 6= 0, φ11 = −φ22, but this is gauge-equivalent to
the second one in the list.

11The situation of 0 ≤ k2 ≤ k1 is obtained by exchanging two nodes and the situation of 0 ≥ k2 ≥ k1 is
obtained by applying the time reversal transformation.



52 CHAPTER 3. N = 1 QUIVERS

This theory preserves supersymmetry and further flows to a topological CS-theory in the
IR, as we discussed in Subsection 1.3.4, which reads

SU(2)k1 × SU(2)k2 TQFT. (3.39)

The Witten index of this theory is computed by taking the product of the indices corre-
sponding to the two gauge group factors. The overall sign of the index is determined by the
number of fermions with negative mass (see Footnote 31). Therefore, taking into account
that there are six negative-mass Majorana gaugini, we get

WI+ = (k1 + 1)(k2 + 1). (3.40)

If the mass parameter is large and negative, we can again integrate the matter out, and
what results is

N = 1 SU(2)k1−1 × SU(2)k2−1. (3.41)

In order to understand the nature of this vacuum, we need to discuss all the different
possibilities depending on the values of k1 and k2. The resulting IR theories can then be
found accordingly:

• If k1, k2 > 1, the vacuum preserves supersymmetry and flows to a CS theory.

SU(2)k1−2 × SU(2)k2−2 TQFT, (3.42)

WI− = (k1 − 1)(k2 − 1). (3.43)

• If k1 = 1, k2 > 1, the vacuum breaks supersymmetry, and we get a Majorana goldstino
together with a decoupled CS theory,

Gα + U(1)2 × SU(2)k2−2 TQFT. (3.44)

• If k1 = k2 = 1, the vacuum breaks supersymmetry, and the IR theory is

Gα + U(1)2 × U(1)2 TQFT. (3.45)

• If k1 = 0, k2 > 1, supersymmetry is preserved, and the IR theory is

SU(2)k2−2 TQFT, (3.46)

WI− = −(k2 − 1). (3.47)

• If k1 = 0, k2 = 1, supersymmetry is again broken, and we get in the IR

Gα + U(1)2 TQFT. (3.48)

We note in particular that the m� 0 phase and m� 0 phase have different Witten indices.
In order to understand the transition between the large negative mass phase and the large
positive mass phase, it is useful to understand the dynamics near the point m = 0, where
the asymptotic behaviour of the superpotential changes and the Witten index can jump.
We start by observing that the vacuum of the first kind, namely at the origin of the field
space, φ11 = φ22 = v1 = 0, exists for m = 0 as well as for m small and positive or small and
negative. We identify this vacuum with the semiclassical vacuum we have seen at large and
negative mass. (It will be evident in a moment that this choice leads to a consistent phase
diagram providing the matching of the Witten index at the phase transition locus). This
vacuum either preserves supersymmetry or, if one of the CS levels is equal to one, breaks
it non-perturbatively. It is then expected to find new vacua appearing from the infinity of
the field space near the line m = 0, and whose total Witten index must be different from
zero. We thus initiate the search of these vacua, which must be either of the second or of
the third type.
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Non-Abelian Vacuum

We first turn to the analysis of the vacuum of the second kind, for which φ11 = φ22 = v2

for some real and positive v2, and ρ = B = B̄ = 2v2
2.

The equation ∂ρW = −∂|B|W hence turns into

−G− 3F1 + F2

ρ1/2
+m = −G− F2

ρ1/2
. (3.49)

We immediately notice that, thanks to the positivity of F1 (see (3.33)), we must necessarily
have m > 0. Therefore, when we move from the negative-mass region and cross the m = 0
line, a new vacuum is found, in precise accordance with our expectations. The expression
for the vev can be then easily found and is given by

v2 =
3F1√
2m

. (3.50)

Next we determine the effective low-energy theory of this vacuum. The vev

Φ =

(
v2 0
0 v2

)
, (3.51)

breaks the global baryonic symmetry U(1)B, thus we expect to see the corresponding Gold-
stone boson with its superpartner. The vacuum also breaks the gauge group to the diagonal
SU(2) with the induced CS-level equal to k1 + k2. The CS-level can receive quantum cor-
rections when massive fermions charged under the unbroken SU(2) are integrated out, so
we need to understand the fermionic mass spectrum.
The fermionic mass terms originate from the superpotential, from the gaugini-matter cou-
pling terms, and from the gaugini mass term, a supersymmetric counterpart of the CS-term.
The quadratic Lagrangian thus reads

Lψ2 =
∂2W

∂Φ̄îj∂Φkl̂

Ψ̄îjΨkl̂ +
1

2

(
∂2W

∂Φ̄îj∂Φ̄k̂l

Ψ̄îjΨ
c
k̂l

+ c.c.

)
+
(
ig1TrΨ̄λ1Φ + ig2TrΨ̄cλ2Φ̄ + c.c.

)
+

− κ1Trλ̄1λ1 − κ2Trλ̄2λ2,
(3.52)

where the indices are put on the same line for convenience, and scalars are assumed to
take their vev. While we are given fermions in representations of SU(2)× SU(2) group, it
is natural to decompose them into representations of the preserved diagonal SU(2) group.
The decomposition goes as follows,

Ψ ĵ
i =

1

2

[
ψaRe(σ

a) ĵ
i + iψaIm(σa) ĵ

i + (ψ0 + iψG)δ ĵ
i

]
, (3.53)

where we introduced two Majorana modes, ψ0 and ψG, neutral under the diagonal SU(2),
and two Majorana multiplets, ψaRe and ψaIm, transforming in the adjoint representation of
SU(2). Two other adjoint multiplets are provided by λ1 and λ2.
It follows from (3.52) that the mass of ψ0 and ψG are

m0 = 4v2
2

(
∂2
ρW + 2∂ρ∂BW + ∂2

BW
)

= m, (3.54a)

mG = 0, (3.54b)

thus we can identify the latter with the superpartner of the Goldstone boson associated
with the broken U(1)B. The mass of ψRe instead reads

mRe = 2∂ρW = −2G− 2m

(
1 +

F2

3F1

)
. (3.55)
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Notice that, since we must have that m > 0 from (3.49) and G > 0 by definition, it follows
that mRe must be negative.
Finally, ψIm, λ1, and λ2 mix with each other via the mass matrix 0 g1v2 −g2v2

g1v2 −κ1 0
−g2v2 0 −κ2

 . (3.56)

This mass matrix has one positive eigenvalue and two negative eigenvalues (one of the
eigenmodes with a negative eigenvalue can be identified with the gaugino of the unbroken
gauge group). Therefore, in total we have three multiplets with negative mass and one
multiplet with positive mass transforming in the adjoint representation of the unbroken
SU(2). By integrating them out we get a shift of the CS-level equal to −2.
With these results at hand, we are now ready to formulate the infrared dynamics of this
vacuum. Unless k1 = 0 and k2 = 1, it preserves supersymmetry, and the infrared dynamics
is described by

ΦG + SU(2)k1+k2−2 TQFT, (3.57)

where ΦG is the Goldstone supermultiplet. If, on the contrary, k1 = 0 and k2 = 1, super-
symmetry is spontaneously broken, and we get in the infrared

φG + Gα + U(1)2 TQFT, (3.58)

with φG being the Goldstone boson.

Abelian Vacuum

Next we consider the vacuum of the third kind appearing from infinity in the field space.
The condition ∂BW = 0 requires that B = 012. The condition ∂ρW then reads as

m− F1 + F4

ρ1/2
= 0. (3.59)

Since F1 +F4 > 0, as can be seen from (3.33), there are no solutions for m ≤ 0, whereas for
m > 0 we find

Φ =

(
v3 0
0 0

)
, v3 =

F1 + F4

m
. (3.60)

The next step is to study the IR dynamics of this vacuum. The U(1)B is preserved here,
and is generated by 13

i

2

(
1 0
0 1

)
⊕ i

2

(
1 0
0 −1

)
2

, (3.61)

and the gauge symmetry is broken to U(1), generated by

i

2

(
1 0
0 −1

)
1

⊕ i

2

(
1 0
0 −1

)
2

. (3.62)

where the subscripts 1, 2 indicate respectively the first or the second gauge group factor.
This Abelian gauge field inherits the CS-level 2(k1 + k2)14.

12One can first observe that B ≤ ρ, and from (3.32) we see that for B = ρ → ∞, ∂BW > 0, while
for B = 0, ∂BW = 0, as desired. It can be found then numerically that there are no more solutions for
0 < B < ρ.

13We note that this choice of the preserved U(1)B is not unique, and is defined up to an action of the
gauge transformation.

14The factor of two in front of the CS-levels is due to the different normalization between SU(2) generators
and the corresponding U(1) subgroup generator.
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Mode η χ ψ0 ψ+ ψ− λ1,0 λ1,+ λ2,0 λ2,+

Type M M D D D M D M D
U(1) 0 0 0 1 -1 0 1 0 1
U(1)B 0 0 1 1 0 0 0 0 1

Table 3.1: Fermion modes

We can now classify fermions according to their charges with respect to the unbroken U(1)×
U(1)B. The matter multiplet fermions and two types of gaugini can be decomposed as

Ψ =

(
η+iχ√

2
ψ+

ψ− ψ0

)
, λ1 =

1

2

(
λ1,0

√
2λ1,+√

2λc1,+ −λ1,0

)
, λ2 =

1

2

(
λ2,0

√
2λ2,+√

2λc2,+ −λ2,0

)
.

(3.63)
All the types of the modes (Majorana or Dirac) as well as their charges are summarized
in Table 3.1. The masses of fermions neutral under the U(1) gauge group are determined
as follows. By starting again from (3.52), we get that η and ψ0 masses come from the
superpotential,

mη = 2v2
3

∂2W
∂ρ2

= m,

mψ0 = v2
3

(
∂2W
∂B2

+
1

B

∂W
∂B

)
= 2v2

3

∂2W
∂B2

= 2m
F3

F1 + F4
,

(3.64)

whereas χ, λ1,0, λ2,0 mix with each other through the mass matrix 0 1√
2
g1v3 − 1√

2
g2v3

1√
2
g1v3 −κ1 0

− 1√
2
g2v3 0 −κ2

 . (3.65)

There are also mixing modes charged under the U(1) gauge group, in particular, ψ− mixes
with λc1,+ via (

0 i 1√
2
g1v3

−i 1√
2
g1v3 −κ1

)
, (3.66)

and ψ+ mixes with λ2,+ via (
0 −i 1√

2
g2v3

i 1√
2
g2v3 −κ2

)
. (3.67)

Both matrices have one positive eigenvalue and one negative eigenvalue which implies that
the U(1) CS-level does not get renormalized when these massive modes are integrated out.
We thus conclude that at low energies we get a pure Abelian CS-theory

U(1)2(k1+k2) TQFT. (3.68)

Let us now comment the results obtained so far. First, we were able to follow the appearance
of two new vacua as far as the line m = 0 is crossed. This process is controlled just by the
leading asymptotic of the effective superpotential, which in turn is determined by the one-
loop contribution only [37]. We thus conclude that we have rigorously derived the existence
of these vacua. Second, there might be supersymmetric vacua emerging for some values of
the parameters g1, g2,m, which don’t come from infinity, but rather appear at finite field
values. These vacua should have vanishing total Witten index, and their dynamics is a
priori governed by perturbation theory at all orders, and not just at one-loop level. We do
not have reliable tools to study them and, moreover, there are no consistency requirements
(i.e. Witten index matching) that would necessitate their existence.
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Phase Diagrams

We are now able to formulate the phase diagram of the theory under consideration. We start
with a generic case of k1 > 1 and k2 > 1, and the relevant phase diagram is schematically
depicted in Figure 3.2, where we attempt to reflect only its topology15.
At large and negative masses, up to them = 0 line, there is the supersymmetric semiclassical
vacuum described by

SU(2)k1−2 × SU(2)k2−2 TQFT, (3.69)

as we saw in (3.42). This vacuum is denoted on the figure as v−1 , and this phase corresponds
to the purple region. The Witten index of this vacuum is

WI1 = (k1 − 1)(k2 − 1). (3.70)

When we cross the wall at m = 0, two new vacua come in from infinity,

ΦG + SU(2)k1+k2−2 TQFT, WI2 = 0,

U(1)2(k1+k2) TQFT, WI3 = 2(k1 + k2),
(3.71)

giving us a phase with three vacua (the new vacua are v2 and v3, and the corresponding
region in Figure 3.2 is the light blue one). These three vacua must undergo, generically, two
second-order phase transitions (lines m∗ and m∗∗, which are actually functions of g1, g2),
merging into a single vacuum seen at large positive masses which we indicate with v+

1 .
These phase transitions are supposed to happen somewhere around
the origin of the field space, where the physics is strongly coupled,
and we do not have much control over it. The structure of vevs in
each vacuum suggests (see the figure on the right) that at the first
phase transition either v2 merges with v−1 , or v3 merges with v−1 :
we conjecture, basing on a duality proposed in Section 3.5, that the
first option is realized. In the intermediate phase we then still get
the Abelian vacuum v3 and some other vacuum, vq, which is guessed
to support again the SU(2)k1−2 × SU(2)k2−2 CS-theory (the yellow
region in Figure 3.2). At the second phase transition two vacua merge
and produce the large positive mass vacuum v+

1 .

m

g1

g2

m  0 m* m**

v1
-

v1
-

v2

v3

vq

v3
v1
+

Figure 3.2: Structure of the phase diagrams of the SU(2)k1 × SU(2)k2 quivers and, as will
be clearer later, the SU(2)k1 × U(2)k2,k3 quivers with either k1, k2 > 1, or k1 = 0, k2 > 1.
Dashed lines correspond to the second order phase transitions, while the solid line is the
wall. Supersymmetric vacua at each phase are indicated.

15In particular, various straight lines appearing on the figure should in practice be curved.
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Let us now discuss some special cases of the CS-levels

• If k1 = 1, k2 ≥ 1, the negative mass vacuum breaks supersymmetry. As soon as the
wall m = 0 is crossed, two supersymmetric vacua appear,

ΦG + SU(2)k2−1 TQFT, WI2 = 0,

U(1)2(k2+1) TQFT, WI3 = 2(k2 + 1),
(3.72)

at some value of the mass parameter they merge and give rise to the large mass
vacuum,

SU(2)1 × SU(2)k2 TQFT. (3.73)

The picture is illustrated in Figure 3.3.

m

g1

g2

m  0 m*

v2

v3
v1
+

Figure 3.3: Phase diagram for k1 = 1, k2 ≥ 1. Dashed line correspond to the second order
phase transition, while the solid line is the wall. Supersymmetric vacua at each phase are
indicated.

• If k1 = 0 and k2 > 1, the negative mass vacuum is supersymmetric and the theory
flows to

SU(2)k2−2 TQFT, WI0 = −(k2 − 1). (3.74)

When we cross the line m = 0, two supersymmetric vacua appear

ΦG + SU(2)k2−2 TQFT, WI2 = 0,

U(1)2k2 TQFT, WI3 = 2k2.
(3.75)

When m is increased, the resulting three vacua undergo two phase transition and
produce a supersymmetric vacuum with

SU(2)k2 TQFT. (3.76)

• If k1 = 0 and k2 = 1, the negative mass vacuum is not supersymmetric. When the
wall is crossed, there appears one supersymmetry-breaking vacuum (see (3.58)) and
one supersymmetric vacuum with

U(1)2 TQFT (3.77)

in the IR. Using the chain of dualities for TQFTs, we observe that

U(1)2 ←→ U(1)−2 ←→ SU(2)1, (3.78)

and so the new supersymmetric vacuum came in from infinity exactly reproduces the
semiclassical large mass vacuum. Therefore, in this case the theory does not undergo
any phase transition. (See Figure 3.4)
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m

g1

g2

m  0

v1
+

Figure 3.4: Phase diagram for k1 = 0, k2 = 1. The solid line correspond to the wall. The
supersymmetric vacum is indicated.

An important check of the picture that we are suggesting here is the matching of the Witten
indices at each phase transition locus. As an example, we can consider the case of k1, k2 > 1,
for which we have

WI1 + WI2 + WI3 = (k1 − 1)(k2 − 1) + 0 + 2(k1 + k2) = (k1 + 1)(k2 + 1). (3.79)

The right-hand side is nothing but the Witten index of the large mass vacuum WI+ we saw
in (3.40).

3.3.2 Chern-Simons Levels: Opposite Sign

Having understood the phase diagram for the case of CS-levels having the same sign, we
now turn to the study of the case where the CS-levels have opposite sign. Without loss of
generality we consider the first CS-level to be positive and the second to be negative. The
theory we are considering thus in fact is

SU(2)k1 × SU(2)−k2 , (3.80)

coupled as before to a bi-fundamental matter multiplet Φ, with k1, k2 > 0. We will also
assumefor simplicity that k1 > k2. The results of the following discussion are summarized
in Figure 3.5.

As before, it is useful to start the analysis by considering the large mass semiclassical
phases. For large and negative masses we find a supersymmetric vacuum with

SU(2)k1−2 × SU(2)−k2 TQFT (3.81)

in the IR (v−1 in Figure 3.5). In the large positive mass phase we see the following picture:

• When k2 > 1, we get a supersymmetric vacuum (v+
1 on Figure (3.5)) hosting a CS

theory,
SU(2)k1 × SU(2)−k2+2 TQFT. (3.82)

• When k2 = 1, SUSY gets broken, and the IR theory is given by

Gα + SU(2)k1 × U(1)2 TQFT. (3.83)

We first discuss in details the case of k2 > 1, and then comment on the changes in the
picture when k2 = 1.
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As soon as the large mass phases are understood, the next step is to study the behaviour
near the wall, at m = 0. Again, we see that the φ11 = φ22 = 0 vacuum exists on both sides
of the wall. It will again be natural to identify this vacuum with one of the large mass vacua,
however this time it is less obvious to decide which of the two should be chosen. We also
remark that, while moving along the line m = 0, three special points can be distinguished.
These are the points for which the asymptotic behaviour of the effective superpotential
(3.32) changes in a certain way, and are given by

F1 = 0,
g1

g2
=

(
k2

k1

) 1
4

, (3.84a)

F1 + F4 = 0,
g1

g2
= α, (3.84b)

F3 = 0,
g1

g2
=
k2

k1
. (3.84c)

Here α is the single positive root of the equation x4 − k2
k1

+ 2(x3 − k2
k1

)
√
x2 + 1 = 0, and we

note that for k1 > k2 we have

k2

k1
< α <

(
k2

k1

)1
4

(3.85)

As we did in the previous subsection, we now give a detailed discussion of the vacuuum
structure near the wall.

Non-Abelian Vacuum

We first search for the vacuum of the second type. The equation ρ = B = B̄ = 2v2
2 again

reduces to
− 3F1

ρ1/2
+m = 0, (3.86)

but now F1 changes the sign when g1, g2 are varied, indeed what happens is that

F1 ≷ 0,
g1

g2
≷

(
k2

k2

)1/4

. (3.87)

We thus conclude that a vacuum of the second type is still given by

v2 =
3F1√
2m

, (3.88)

and exists when either m > 0, g1

g2
>
(
k2
k2

)1/4
or m < 0, g1

g2
<
(
k2
k2

)1/4
(v2 in the orange,

light blue, grey and brown regions of Figure 3.5). At the point g1

g2
=
(
k2
k2

)1/4
the quantum

potential develops an asymptotic direction with zero energy. This is the first special point
mentioned above. The gauge and global symmetry breaking pattern in this vacuum is
the same as for the CS levels of the same sign, U(1)B is spontaneously broken, and the
unbroken gauge group is SU(2)k1−k2 . We can also apply the previously obtained results for
the fermionic mass spectrum, which does not undergo any changes.
The resulting low-energy theory again depends on the values of the levels:

• When k1 > k2 + 1, supersymmetry is preserved, and at low energies we get the
Goldstone multiplet and a CS-theory,

ΦG + SU(2)k1−k2−2 TQFT. (3.89)

• When k1 = k2 + 1, supersymmetry is broken, and we get in the IR

φG + Gα + U(1)2 TQFT, (3.90)

where φG is the Goldstone boson.
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Abelian Vacuum

Finally, we look for Abelian vacua. There is still a solution given by

Φ =

(
v3 0
0 0

)
, v3 =

F1 + F4

m
. (3.91)

Introducing the critical value g1

g2
= α such that F1(α) +F4(α) = 0, we see that the solution

exists either for m > 0, g1

g2
> α, or for m < 0, g1

g2
< α. At the point g1

g2
= α the quantum

superpotential again developes an asymptotic direction with zero energy.

m

g1

g2

m  0

v1
-

v1
- v2
v3
+

vq
v3
+

v1
+

vq
v2

v1
+ v2
v3
+

v1
+ v2
v3
- v4

AFD

AFD

AFD

Figure 3.5: Structure of the phase diagrams of the SU(2)k1 ×SU(2)−k2 quivers and, as will
be clear later, the SU(2)k1 × U(2)−k2,−k3 quivers with k1, k2 > 0 and k1 > k2. Dashed
lines correspond to the second order phase transitions, while the solid line is the wall.
Supersymmetric vacua at each phase are indicated.

We also note that, as follows from the definition of F4, α <
(
k2
k1

)1/4
. This means that

when we gradually move along the m = 0 line from the region with g1 � g2 to the region
with g1 � g2, we first see the flipping point for the Non-Abelian vacuum (where it moves
from the positive mass region to the negative mass region), and then the flipping point for
the Abelian vacuum.

To determine the IR physics of this vacuum, one has to reexamine the fermionic mass
spectrum. It follows from (3.64)-(3.67) that upon passing by the point g1

g2
= α, the charged

modes do not change mass signs (but one neutral Dirac mode does), thus the IR description
is given by

U(1)2(k1−k2) TQFT. (3.92)

However, this is not the end of the story. Indeed, when the point g1

g2
= k2

k1
is passed

by, a new solution for the equations ∂|B|W = ∂ρW = 0 is found. This can be seen in the
following way. We note that 0 ≤ |B| ≤ ρ, and

∂|B|W |B|=ρ > 0,

∂|B|W |B|=0 = 0,

for any values of the parameters. But ∂2
|B|W ∝ F3 changes the sign exactly at the point

g1

g2
= k2

k1
. In fact, when g1

g2
> k2

k1
then we have that ∂2

|B|W |B|=0 > 0, and so it is possible that
B = 0 is the only zero of ∂|B|W = 0. This reasonable claim is confirmed by the numerical
study of the superpotential. On the other hand, when g1

g2
< k2

k1
, ∂2
|B|W |B|=0 < 0, and so

there is at least one more solution with B 6= 0: the numerical study confirms that there is
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indeed only one such solution. This new vacuum still breaks the gauge group down to U(1),
but it also breaks the global U(1)B. The IR physics is thus represented by

ΦG + U(1)2(k1−k2) TQFT. (3.94)

Phase Diagrams

We now summarize the picture we suggest for the phase diagram, starting from the case
k1, k2 > 1 and keeping in mind the relation in (3.85). We recall that we started by deter-
mining the large mass phases, depicted by the purple and the green regions of Figure 3.5.
The next step was to understand the near-the-wall behaviour. When g1 � g2, there is just
one vacuum on the left from the wall, but two new vacua, the Non-Abelian and the Abelian
ones, appear on the right from the wall (orange regions of Figure 3.5). While moving down
along the wall, we encounter the first special point, after which the Non-Abelian vacuum is
found on the left from the wall, while the Abelian vacuum is still on the right: this corre-
sponds to the light blue and the yellow regions. In both these phases there is also a vacuum
at the origin. We do not have a weak coupling limit that would allow the direct study of
this vacuum, but we propose that its IR description is identical to the large negative mass
vacuum, v−1 , since it provides the correct Witten index, and automatically matches the UV
1-form symmetry ’t Hooft anomaly.

When we decrease g1

g2
even further, the second special point is found. While passing it,

we find that there is just one vacuum on the right from the wall (the green phase in Figure
3.5), and three vacua on the left: a vacuum at the origin together with the Non-Abelian
and the Abelian vacua discussed above (the grey phase in Figure 3.5). The vacuum at the
origin is now identified with the large mass vacuum.

If we go even further down the wall, the Abelian vacuum splits into two Abelian vacua
(v−3 and v4 in the brown region of Figure 3.5). The v4 vacuum was described above (3.94),
and v−3 does not differ much from v+

3 : in fact, only the counter-terms for background fields
associated to the global symmetry (e.g. the metric) are going to be different.

The special case of k1 > 1 and k2 = 1, is pretty much similar, and the resulting phase
diagram is depicted in Figure 3.6. We note though that in this case the large positive mass
phase (pink region) does not have any supersymmetric vacua, consequently there are just
two vacua in the grey phase and three vacua in the brown phase. It also implies that at
the transition line between the yellow region and the grey region two supersymmetric vacua
collide and, instead of producing a new supersymmetric vacuum, get lifted. In the other
special case, when k2 = k1 + 1, in the v2 vacuum supersymmetry is broken and so the phase
transition between the purple phase and the light blue phase is absent.

We conclude this section with the following observation. While sitting exactly at the
wall and moving along it, we notice that at the flipping point for v3 (the second special
point) the Witten index jumps (in fact, for k2 = 1 it vanishes below the flipping point,
while being non-zero above). This is consistent with the fact that an asymptotically flat
direction opens up at this point. Indeed, the transition can be arranged in the following
way: at the special point one vacuum goes away to infinity, while another vacuum comes
in from there. We thus conclude that exactly at the second flipping point there are no
supersymmetric vacua, and the model exhibits the runaway behaviour (however, there might
be meta-stable supersymmetry breaking vacua). The first flipping point does not show any
special behaviour for the SU(2) × SU(2) quivers, but, as we will see below, there is an
analogous phase transition at the first flipping point for the SU(2)×U(2) quivers. We thus
expect the following picture: when we move down along the wall, at the first flipping point
the supersymmetric vacuum goes away to infinity, and after this point the identical vacuum
comes in from infinity. Again, at the special point the runaway behaviour takes place.
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m

g1

g2

m  0

v1
-

v1
- v2
v3
+

vq
v3
+

vq
v2

v2
v3
+

v2 v3
-

v4

AFD

AFD

AFD

Figure 3.6: Phase diagram of the SU(2)k1 × SU(2)−1 quivers with k1 > 1. Dashed lines
correspond to the second order phase transitions, while the solid line is the wall. The
supersymmetric vacua in each phase are indicated.

3.4 Phase Diagrams of SU(2)× U(2) Models

In this section we discuss the phases of SU(2) × U(2) quiver theories, again with one bi-
fundamental matter multiplet. Even though in principle one should recompute the effective
superpotential for this case, we will appeal to a shortcut, and just assume that the vacuum
structure (and in particular the symmetry breaking patterns) are the same as we have seen
before. The main motivation for this assumption is that the Abelian factor inside U(2), for
large CS-level, does not modify the behaviour of the vacua.

3.4.1 Chern-Simons Levels: Same Sign

We start by considering the models of the form

N = 1 SU(2)k1 × U(2)k2,k3 (3.95)

with the coupling to bi-fundamental matter, and we will restrict ourselves with the case of
k1 ≥ 0, k2 > 1.
As before, we can readily understand the large mass phases. When the mass is large and
positive, we get the IR theory

SU(2)k1 × U(2)k2,k3+1 TQFT (3.96)

with the index16

WI+ = −(k1 + 1)(k2 + 1)|k3 + 1|
2

. (3.97)

When the mass is large and negative, few different cases can be discussed:

• When k1 > 1 and k2 > 1, there is one supersymmetric vacuum whose IR theory is
given by

SU(2)k1−2 × U(2)k2−2,k3−1 TQFT. (3.98)

16In the case of U(N)k2,k3 the Witten index reads

WI =
(k2 +N − 1)! k3

N ! k2!
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The Witten index is
WI− = −(k1 − 1)(k2 − 1)|k3 − 1|

2
. (3.99)

• When k1 = 1, supersymmetry is spontaneously broken, and the IR theory is given by

Gα + U(1)2 × U(2)k2−2,k3−1 TQFT. (3.100)

• When k1 = 0, we again see a supersymmetric vacuum hosting a CS theory,

U(2)k2−2,k3−1 TQFT, (3.101)

and the index is
WI− =

(k2 − 1)|k3 − 1|
2

. (3.102)

Following the familiar strategy, it is then useful to understand the dynamics near the wall,
m = 0, which we do now.

Non-Abelian Vacuum

By assumption, there again exists a vacuum of the form

Φ =

(
v2 0
0 v2

)
. (3.103)

The gauge group is still broken to SU(2) with the induced CS level k1 + k2, but since the
baryonic symmetry is now gauged, there are no Goldstone modes in the IR. In fact, the
would-be Goldstone boson superpartner ψG gets mixed with the U(1) gaugino via the mass
matrix (

0 −g2v2

−g2v2 −κ3

)
. (3.104)

We assume that the rest of the fermionic spectrum is qualitatively the same, and thus
the IR theory is given by

SU(2)k1+k2−2 TQFT. (3.105)

There are ten negative-mass Majorana modes, so the Witten index is

WI2 = k1 + k2 − 1. (3.106)

Abelian Vacuum

In the same way we expect to find a vacuum of the form

Φ =

(
v3 0
0 0

)
.

It breaks the gauge group to U(1)×U(1), and the induced CS levels are given by the matrix

K =

(
2(k1 + k2) −k2

−k2
1
2(k2 + k3)

)
. (3.107)

We can now use the fermionic charges and masses computed in Section 3.3.1 to obtain the
quantum corrections to the level matrix induced upon the integration out of the fermions:

KIR =

(
2(k1 + k2) −k2

−k2
1
2(k2 + k3) + 1

2

)
. (3.108)
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The Witten index of this vacuum is given (up to a sign) by the number of lines in the
corresponding Abelian CS theory,

WI3 = det KIR = −|(k1 + k2)(k2 + k3) + (k1 + k2)− k2
2|. (3.109)

The overall structure of the phase diagram is identical to the one depicted on Figures
(3.2),(3.3). We conjecture (following the pattern discussed in Section 3.3.1) that for k3 6= 0
at the intermediate (yellow) phase there is still the Abelian vacuum, as well as some other
vacuum, resulting from the merging of the Non-Abelian vacuum and the vacuum at the
origin. This quantum vacuum is expected to support a TQFT or/and a non-linear sigma
model with the Witten index fixed by the matching condition. When k3 = 1, the vacuum
structure becomes quite different, and will be discussed in Section 3.5.

3.4.2 Chern-Simons Levels: Opposite Signs

Next we discuss the models of the form

N = 1 SU(2)k1 × U(2)−k2,−k3 (3.110)

with, k1 > k2 > 1.
When the matter mass is large and positive, we obtain

SU(2)k1 × U(2)−k2+2,−k3+1 (3.111)

in the IR. There are three or four negative mass Majorana modes, depending on whether
k3 is positive or negative, so the index is

WI1 = −(k1 + 1)(k2 − 1)(k3 − 1)

2
. (3.112)

When instead the mass is large and negative, we find a supersymmetric vacuum with

SU(2)k1−2 × U(2)−k2,−k3−1 TQFT, (3.113)

WI1 = sgn(k3)
(k1 − 1)(k2 + 1)|k3 + 1|

2
. (3.114)

Non-Abelian Vacuum

Similarly to the SU(2) × SU(2) case, the non-Abelian vacuum is expected to exist on the
right from the wall for g1 � g2, and on the left from the wall for g1 � g2, with a flipping
point for some value of g1

g2
. The gauge group is broken to SU(2)k1−k2 . The masses of fermions

transforming in the adjoint representation don’t change upon the crossing of the flipping
point, there are always one of them with a positive mass and three with negative masses.
On the contrary, one of the neutral Majorana fermions change the sign of its mass, such
that there are seven negative-mass Majorana modes when m > 0 and eight negative-mass
Majorana modes when m < 0. We therefore get in the IR

SU(2)k1−k2−2 TQFT, WI = −sgn(m)(k1 − k2 + 1). (3.115)

Abelian Vacuum

Finally, we suppose that there is an Abelian vacuum supporting the U(1)×U(1) CS theory.
This vacuum is also expected to flip from one side of the wall to another at some value of
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g1

g2
(the second special point), and fermions charged under the unbroken gauge group do not

flip the signs of their masses, and so the level matrix is given by

K+
IR =

(
2(k1 − k2) k2

k2 −1
2(k2 + k3) + 1

2

)
. (3.116)

on both sides of the wall. Some neutral modes though flip their masses, so that the Witten
index is negative for m > 0 and positive for m < 0.

Decreasing the ratio g1

g2
even further, we expect to face the third special point where

a new Abelian vacuum with B 6= 0 appears (v4 in the brown region of Figure 3.5). This
vacuum preserves just one Abelian factor, and supports

U(1)2(k1−k2) TQFT (3.117)

in the IR. The Abelian vacuum discussed above also undergoes some changes when the third
special point is passed. Namely, one of the fermions charged under the second U(1) gets a
negative mass, which leads to the corrected level matrix:

K−IR =

(
2(k1 − k2) k2

k2 −1
2(k2 + k3)− 1

2

)
. (3.118)

The Abelian vacuum with the U(1) × U(1) gauge group and the level matrix given above
is denoted by v−3 in Figure 3.5.
The overall phase diagram looks quite similar to what is seen in Figures 3.5 and 3.6, despite
it is now harder to guess the vacuum at the origin in yellow and purple phases. We conjecture
that for k2 = 2, k3 = 1 it is given by the Abelian CS theory

U(1)2k1 . (3.119)

This conjecture is motivated by a duality discussed in the next section. Slightly more
generally, for k3 = 1 it is natural to expect that this vacuum supports the same TQFT in
the IR, as does the Abelian vacuum also existing in this phase, namely

[U(1)× U(1)]K TQFT, (3.120)

K =

(
2(k1 − k2) k2

k2 −1
2k2

)
. (3.121)

The two proposal are consistent, since, as can be easily verified, for k2 = 2 [U(1)× U(1)]K
is dual to U(1)2k1

The last comment concerns the dynamics at the special points. Similarly to the dis-
cussion at the end of Section 3.3.2, we observe two phase transitions, at the first and at
the second special points. As before, they are organized by first sending a supersymmetric
vacuum to infinity, and then receiving a new supersymmetric vacuum, generically with a dif-
ferent TQFT and Witten index, from infinity, with the runaway behaviour at the transition
point.

3.5 Dualities

The discussion of the previous two sections demonstrated that a generic three-dimensional
N = 1 quiver gauge theory has multiple second-order phase transitions with associated IR
fixed points. In this section we will provide few conjectures stating that certain CFTs that
appear as IR limits of different quiver theories may in fact be the same.
Some of such dualities were already used above to guess certain aspects of the phase diagrams
(namely, the vacuum structures in the intermediate phases).



66 CHAPTER 3. N = 1 QUIVERS

m

g1

g2

m  0

S1×SU(2)k-2

S1×SU(2)k-2

SU(2)k

[U(1)×U(1)]K

S1×SU(2)k-2

SU(2)k×U(2){2,2}

SU(2)k×U(2){2,2}

(a)

m

g1

g2

m  0

SU(2)k×SU(2)-2

SU(2)k×SU(2)-2

S1×SU(2)k-2

U(1)2k

SU(2)k×SU(2)-2

U(1)2k

SU(2)k+2

SU(2)k×SU(2)-2

S1×SU(2)k-2

U(1)2k

SU(2)k+2

S1×SU(2)k-2

S1

U(1)2 k
SU(2)k+2

S1×SU(2)k-2

MS

(b)

Figure 3.7: Phase diagram for the SU(2)k × U(2)2,1 quiver (a) and for the SU(2)k+2 ×
SU(2)−2 quiver (b).

3.5.1 Dualities between SU(2)× SU(2) and SU(2)× U(2)

The first pair of theories we consider is SU(2)k ×U(2)2,1 and SU(2)k+2 × SU(2)−2 quivers
with k > 0; the corresponding phase diagrams are shown in Figure 3.7, and the yellow phase
of 3.7(a) as well as the yellow and light blue phases of 3.7(b) are conjectures. We observe,
using the level-rank duality

SU(2)−2 ←→ U(2)2,2, (3.122)

that the transition in Figure 3.7(a) between the yellow and the green phases is identical to
the transition in Figure 3.7(b) between the light blue phase and the purple phase, with the
phases on both sides of the transition given by

S1 × SU(2)k−2 + SU(2)k × SU(2)−2 −→ SU(2)k × SU(2)−2. (3.123)

While making the conjecture about the vacua in the yellow phase of Figure 3.7(a), we as-
sumed that at the transition pointm = m∗ the non-Abelian vacuummerges with the Abelian
one, while the vacuum at the origin stays apart. This is in contrast with what was assumed
in Sections 3.3.1 and 3.4.1. The difference comes from the fact that here a new "branch" of
vacua, parametrized by the dual photon, emerges.
The space of possible vacua can be then visualized as the two-
dimensional space parametrized by the scalar vevs, together
with a cone attached at the origin (see the Figure on the right).
The angular direction of the cone is the dual photon, and the
radial direction gives the radius of the circle (which is not a
dynamical field, but rather a function of the parameters). It
is then possible that first the non-Abelian and the Abelian
vacua meet at the origin, and then the dual photon radius
(as a function of m) shrinks to zero, and the second phase
transition happens.

The second pair is SU(2)k × SU(2)2 and SU(2)k+2 ×
U(2)−2,−1 quivers with k > 0; the corresponding phase di-
agrams are presented in Figure 3.8, and the yellow phase of
Figure 3.8(a) is a conjecture. We propose that the "quantum"
vacuum vq in Figure 3.8(b) is given by

U(1)2(k+2) TQFT. (3.124)

Using again the level-rank duality (3.122), we again observe that the transition in Figure
3.8(a) between the yellow and the green phases is identical to the transition in Figure 3.8(b)
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Figure 3.8: Phase diagram for the SU(2)k × SU(2)0 quiver (a) and for the SU(2)k adjoint
QCD (b).
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Figure 3.9: Phase diagram for the SU(2)k × SU(2)0 quiver (a) and for the SU(2)k adjoint
QCD (b).

between the light blue phase and the purple phase,

SU(2)k−2 + U(1)2(k+2) −→ SU(2)k × SU(2)2. (3.125)

The two dualities we have just described can be obtained from the duality (3.8) by
gauging the flavour SU(2) (sub)groups on both sides.

3.5.2 Duality between SU(2)× SU(2) quiver and adjoint QCD

The first model considered here is the SU(2)k × SU(2)0 quiver, discussed in section 3.3.1.
The phase diagram can be found in Figure 3.9(a), where the form of the yellow phase is a
conjecture. The phases of the SU(2)k adjoint QCD were reviewed in Section 3.1, and are
depicted on Figure 3.9(b).

Evidently, the phase transitions between the yellow phases and the green phases are
identical, and this hints towards the possibility of the duality:

SU(2)k × SU(2)0 with a bi-fundamental ←→ SU(2)k with an adjoint. (3.126)

This duality if correct has a quite clear meaning. Assuming that the SU(2)0 node of the
quiver confines, we can describe the low-energy physics in terms of the bilinears

X = ΦΦ†, (3.127)
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which indeed transforms in the adjoint representation of SU(2)k. There is one point in
this picture that may seem disturbing. The quiver theory possesses the baryonic symmetry
U(1)B, and there are charged operators B = det Φ. Neither the symmetry, nor would-be
dual operators appear on the QCD side. This issue can be resolved in two ways: either the
quiver theory baryons happen to be massive, and do not appear in the IR fixed point, or
they are actually massless at the CFT point, but decouple from the rest. In the latter case
the QCD side should be supplemented by a decoupled free complex multiplet.

3.6 Time reversal invariant models

We have already mentioned that 3d N = 1 theories with time reversal invariance have a
beautiful property: their superpotentials admit only corrections odd under the action of T -
transformation [39]. It significantly restricts the possible form of the effective superpotential,
and sometimes superpotential even turns out to be fully protected.

Examples of T -invariant theories can be found also among the quiver theories. For
example, a two-node quiver with opposite CS levels,

N = 1 SU(2)k × SU(2)−k + a bi-fundamental, (3.128)

enjoys this property at the point g1 = g2, m = 017. It is easy to see that there are no parity
odd terms that could be written in the effective superpotential, implying that we have an
example with full protection at hands. In fact, one can check that the 1-loop superpotential
computed in Section 3.2 vanishes at this point. It follows that the theory has a moduli
space of vacua, which coincides with the classical one,

M = S1 × R2 / S2. (3.129)

At the origin of the moduli space we expect to find a SCFT. At a point away from the origin
the IR physics is described by three real massless moduli without any topological sector.

We can then deform the theory from the T -invariant point by turning on the mass term
or changing the ratio g1

g2
and study the resulting IR phases. The large mass phases for k > 1

are supersymmetric and are given by

SU(2)k × SU(2)−k+2 TQFT (3.130)

for large positive masses and

SU(2)k−2 × SU(2)−k TQFT (3.131)

for large negative masses. When k = 1, supersymmetry is spontaneously broken, and the
IR description is

Gα + U(1)2 × U(1)2 TQFT (3.132)

for large positive masses and the same for large positive masses, where the level-rank duality
(3.78) has been used.

We can also study behaviour near the wall and find that for g1

g2
> 1 two new vacua

appear when m > 0, while for g1

g2
< 1 we find them when m < 0. These are would-

be Abelian and non-Abelian vacua familiar from above, despite the fact that they do not
support any topological degrees of freedom. Still, they are not trivial and host S1 Goldstone
bosons: Abelian vacuum breaks spontaneously magnetic symmetry of the preserved U(1)
gauge group, while non-Abelian vacuum breaks the baryonic symmetry. The phase diagram
is depicted on Figure 3.10.

17To be more precise, T -transformation must be augmented by the exchange of two gauge group factors.
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Figure 3.10: Structure of the phase diagram for the SU(2)k × SU(2)−k quiver. Dashed
lines correspond to the second order phase transitions, while the solid line is the wall. The
supersymmetric vacua in each phase are indicated.
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Conclusions and Future Directions

In first part of the thesis, we have constructed the one-dimensional topological sector of
N = 6 ABJ(M) theory, taking a slightly different point of view with respect to previous
investigations [24, 112]. We started directly from the superconformal algebra su(1, 1|3) ⊕
u(1)b and obtained the relevant Q-cohomology in the same formalism. The topological
operators have been correctly identified as non-trivial neutral elements of such cohomology
which consistently turned out to be certain superconformal primaries of the one-dimensional
superalgebra. We have constructed gauge-invariant composite operators and computed their
correlation functions which have the interesting property of being related to the correlators
of the stress-energy tensor [24]. We have computed the two-point function at two loops and
the three- and four-point functions at one loop founding perfect agreement with suitable
derivatives of the mass-deformed matrix model of the partition function of ABJ(M) in the
weak coupling expansion. Our result strongly supports the proposal in [24] for which the
mass-deformed partition function of any three-dimensional N ≥ 4 SCFT is the generating
functional of the (integrated) topological correlation functions. As a by-product we have
also obtained the explicit expression for the central charge cT at two loops, for generic ranks
N1, N2.

A natural generalization of the results summarized above would concern the construc-
tion of topological operators inserted into the 1/2 BPS Wilson line, whose related defect
CFT has been examined in [113]. Defect conformal field theories supported on the 1/2 BPS
Wilson line have been studied in four-dimensional N = 4 SYM [114, 115] and its topo-
logical sector has been extensively studied in a series of papers [116–118]. In the ABJ(M)
case, since the relevant symmetry of the 1/2 BPS Wilson loop is exactly su(1, 1|3)⊕ u(1)b,
we expect that an explicit representation of the topological operators can be constructed,
although in terms of supermatrices, as done in [113]. A work in this direction is in progress.
Another interesting perspective would be to apply conformal bootstrap techniques in this
context. In the N = 4 case the OPE data in the relevant topological quantum mechanics
can be obtained or constrained imposing the associativity and unitarity of the operator
algebra [30, 119]. This procedure is dubbed mini-bootstrap (or micro-bootstrap in four-
dimensions [120]) because it concerns a closed subsystem of the full bootstrap equations.
The generalization to the N ≥ 4 case could give further hints on the underlying structure
of the topological quantum mechanics.

In the second part of the thesis, we have initiated the sistematic study of the IR phases
of three-dimensional N = 1 quiver theories. We have observed how the simplest possible
setup of a two-node quiver, namely with SU(2) gauge groups and one bi-fundamental mat-
ter multiplet, reveals quite rich and diverse physical pictures. We find the characteristic
features of theories with two supercharges observed previously in the literature: walls in
the parameter space at which the Witten index jumps, multiple phases with second order
phase transitions between them, vacua with spontaneously broken supersymmetry, which
can be either stable or meta-stable. Especially interesting phase diagrams are found in
theories whose CS-levels have different signs (Sections 3.3.2, 3.4.2). The study of the phase

71
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diagrams have allowed us to conjecture two generalized dualities which have been previously
conjectured for SQCD-like theories and can be obtained from them by gauging the flavour
symmetries on both sides. This tool for generating new dualities is well-known for theories
with greater amount of supersymmetry, but our results suggest that it is also applicable in
the landscape of minimally supersymmetric three-dimensional theories. The third duality
we discuss involves the confinement of a node, and corresponds to the situation for which
at low energies the physics can be described in terms of gauge-invariant (with respect to a
given node) composite operators in terms of the original matter field.
The results obtained in the present thesis offer directions for many generalizations. The most
obvious one is to consider multi-node quivers or quivers with higher-rank gauge groups, as
SU(N) or U(N), for which the structure of the phase diagrams is expected to be more
complicated reflecting the different structure of the one-loop superpotential. More general
dualities of [41] can then be used, together with the node-dualization technique, to con-
jecture new dualities between quivers. In this case, a more detailed analysis is required in
order to establish to which of the multiple SCFTs the duality applies.
Another interesting generalization would be to take several bi-fundamental matter mul-
tiplets. The resulting vacua will generically break flavour symmetries therefore the IR
description will be given in terms of non-linear sigma models, in addition to the topological
sectors which we have observed.



Appendix A

ABJM Conventions

We work in Euclidean space with coordinates xµ = (x1, x2, x3) and metric δµν . Gamma
matrices satisfying the usual Clifford algebra {γµ, γν} = 2δµν1, are chosen to be the usual
Pauli matrices

(γµ) βα ≡ (σµ) βα µ = 1, 2, 3 (A.1)

Standard relations which are useful for perturbative calculations are

γµγν = δµν + iεµνργρ (A.2)
γµγνγρ = δµνγρ − δµργν + δνργµ + iεµνρ (A.3)

Moreover, we define γµν ≡ 1
2 [γµ, γν ].

Spinor indices are raised and lowered according to the following rules

ψα = εαβψβ, ψα = εαβψ
β

with ε12 = −ε12 = 1. Consequently, we define (γµ)αβ ≡ εβγ(γµ) γα = (−σ3, iI, σ1) and
(γµ)αβ ≡ εαγ(γµ) βγ = (σ3, iI,−σ1). They satisfy (γµ)αβ = (γµ)βα and (γµ)αβ = (γµ)βα.

A.1 ABJ(M) Action

The Euclidean gauge-fixed ABJ(M) theory action has the following structure

S = SCS + Sgf + Smat + Spot. (A.4)

By using the conventions in [94] with a convenient rescaling of the gauge fields and the
corresponding ghosts, A→ 1√

k
A, Â→ 1√

k
Â, c→ 1√

k
c, ĉ→ 1√

k
ĉ, the explicit expression of

the action above reads

SCS = − i

4π

∫
d3x εµνρ

[
Tr

(
Aµ∂νAρ +

2i

3
√
k
AµAνAρ

)
− Tr

(
Âµ∂νÂρ +

2i

3
√
k
ÂµÂνÂρ

)]
(A.5)

Sgf =
1

4π

∫
d3x Tr

[
1

ξ
(∂µA

µ)2 + ∂µc̄D
µc− 1

ξ

(
∂µÂ

µ
)2
− ∂µ¯̂cDµĉ

]
(A.6)

Smat =

∫
d3x Tr

[
DµCID

µC̄I − iψ̄IγµDµψI
]

(A.7)

=

∫
d3x Tr

[
∂µCI∂

µC̄I − iψ̄Iγµ∂µψI +
1√
k

(
ψ̄IγµÂµψI − ψ̄IγµψIAµ

)
+

i√
k

(
AµCI∂

µC̄I − CIÂµ∂µC̄I − ∂µCIC̄IAµ + ∂µCIÂ
µC̄I

)
+

1

k

(
AµCIC̄

IAµ −AµCIÂµC̄I − CIÂµC̄IAµ + CIÂµÂ
µC̄I

)]
(A.8)
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Spot ≡ S6pt + S4pt

= −4π2

3k2

∫
d3x Tr

[
CIC̄

ICJ C̄
JCKC̄

K + C̄ICIC̄
JCJ C̄

KCK

+4CIC̄
JCKC̄

ICJ C̄
K − 6CIC̄

JCJ C̄
ICKC̄

K
]

(A.9)

−2πi

k

∫
d3x Tr

[
C̄ICIΨJΨ̄J − CIC̄IΨ̄JΨJ + 2CIC̄

JΨ̄IΨJ

−2 C̄ICJΨIΨ̄
J − εIJKLC̄IΨ̄J C̄KΨ̄L + εIJKLCIΨJCKΨL

]
(A.10)

where ε1234 = ε1234 = 1, for the su(4) generators we use the following relations

Tr
(
TATB

)
= δAB , [TA, TB] = ifABC T

C , (A.11)

and where the covariant derivatives have been defined as follows

DµCI = ∂µCI +
i√
k
AµCI −

i√
k
CIÂµ, DµC̄

I = ∂µC̄
I +

i√
k
ÂµC̄

I − i√
k
C̄IAµ

Dµψ̄
I = ∂µψ̄

I +
i√
k
Aµψ̄

I − i√
k
ψ̄IÂµ, DµψI = ∂µψI +

i√
k
ÂµψI −

i√
k
ψIAµ

(A.12)

A.2 ABJ(M) Feynman rules

The corresponding propagators at tree and loop orders, as needed for the two-loop calcula-
tions, are:

• Scalar propagator

〈(CI)iĵ(x) (C̄J)k̂
l
(y)〉(0) = δJI δ

l
iδ
ĵ

k̂

Γ(1
2 − ε)

4π
3
2
−ε

1

|x− y|1−2ε (A.13)

〈(CI)iĵ(x) (C̄J)k̂
l
(y)〉(1) = 0 (A.14)

• Vector propagators in Landau gauge

〈(Aµ)i
j(x) (Aν)k

l(y)〉(0) = δliδ
j
k i

Γ(3
2 − ε)
π

1
2
−ε

εµνρ
(x− y)ρ

|x− y|3−2ε

〈(Âµ)̂i
ĵ
(x) (Âν)k̂

l̂
(y)〉(0) = − δ l̂

î
δĵ
k̂
i

Γ(3
2 − ε)
π

1
2
−ε

εµνρ
(x− y)ρ

|x− y|3−2ε (A.15)

〈(Aµ)i
j(x) (Aν)k

l(y)〉(1) = δliδ
j
k

N2

k

Γ2(1
2 − ε)

π1−2ε

(
δµν

|x− y|2−4ε
− ∂µ∂ν

|x− y|4ε

4ε(1 + 2ε)

)
〈(Âµ)̂i

ĵ
(x) (Âν)k̂

l̂
(y)〉(1) = δliδ

j
k

N1

k

Γ2(1
2 − ε)

π1−2ε

(
δµν

|x− y|2−4ε
− ∂µ∂ν

|x− y|4ε

4ε(1 + 2ε)

)
(A.16)

• Fermion propagator

〈(ψαI )̂i
j(x) (ψ̄Jβ)l̂k(y)〉(0) = δJI δ

l̂
î
δjk i

Γ(3
2 − ε)

2π
3
2
−ε

(γµ)α
β (x− y)µ

|x− y|3−2ε (A.17)
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〈(ψαI )̂i
j(x) (ψ̄Jβ)l̂k(y)〉(1) = −δJI δ l̂îδ

j
k δ

β
α

(
N1 −N2

k

)
i

Γ2(1
2 − ε)

8π2−2ε

1

|x− y|2−4ε

(A.18)

We note that in the ABJ(M) limit, N1 = N2, the one-loop correction to the fermionic
propagator vanishes.

The vertices entering the perturbative calculations of Section 2.3 can be easily read from
terms (A.5), (A.8) and (A.10) of the action.

A.3 Euclidean osp(6|4) Superalgebra
In Euclidean signature the generators of the bosonic conformal algebra contained in the
osp(6|4) superalgebra satisfy the following commutation rules

[Mµν ,Mρσ] = δσµMνρ − δσνMµρ + δρνMµσ − δρµMνσ [Pµ,Kν ] = 2(δµνD +Mµν)

[Pµ,Mνρ] = δµνP ρ − δµρP ν [Kµ,Mνρ] = δµνKρ − δµρKν

[D,Pµ] = Pµ [D,Kµ] = −Kµ

(A.19)
The su(4) ' so(6) R-symmetry generators JIJ , with I, J = 1, . . . , 4, are traceless matrices
that satisfy the relation

[JI
J , JK

L] = δLI JK
J − δJKJIL (A.20)

The fermionic generators QIJα , SIJα satisfy the following anticommutation rules

{QIJα , QKL,β} = εIJKL(γµ)α
βPµ {SIJα , SβKL} = εIJKL(γµ)α

βKµ

{QIJα , SβKL} = εIJKL
(

1

2
(γµν)α

βMµν + δβαD

)
+ δβαε

KLMN (δJMJN
I − δIMJNJ)

(A.21)

and similarly for Q̄αIJ = 1
2εIJKLQ

KL
α and S̄αIJ = 1

2εIJKLS
KL
α .

The full osp(6|4) superalgebra is obtained by completing the picture with the mixed
commutators

[Kµ, QIJα ] = (γµ)α
βSIJβ [Pµ, SIJα ] = (γµ)α

βQIJβ

[Mµν , QIJα ] = −1

2
(γµν)α

βQIJβ [Mµν , SIJα ] = −1

2
(γµν)α

βSIJβ

[D,QIJα ] =
1

2
QIJα [D,SαIJ ] = −1

2
SαIJ

[JI
J , QKLα ] = δKI Q

JL
α + δLI Q

KJ
α − 1

2
δJI Q

KL
α [JI

J , SαKL] = δKI S
αJL + δLI S

αKJ − 1

2
δJI S

αKL

(A.22)
The bosonic generators in (A.19), (A.20) are taken to satisfy the following conjugation rules

(Pµ)† = −Kµ (Kµ)† = −Pµ D† = D (Mµν)† = −Mµν (JK
L)† = JL

K

(A.23)
whereas the fermionic ones are subject to the following hermicity conditions

(QIJα )† =
1

2
εIJKL S

KLα = S̄αIJ (SIJα )† =
1

2
εIJKL Q

KLα = Q̄αIJ (A.24)

The action of the su(4) R-symmetry generators on fields ΦI (Φ̄I) in the (anti-)fundamental
representation reads

[JI
J ,ΦK ] =

1

4
δJI ΦK − δJKΦI [JI

J , Φ̄K ] = δKI Φ̄J − 1

4
δJI Φ̄K (A.25)

The full analysis of the relevant multiplets of osp(6|4) is discussed in [104].
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A.4 The su(1, 1|3) Superalgebra

In this appendix we describe the immersion of the su(1, 1|3) superalgebra inside osp(6|4)
and the classification of its irreducible representations.

A.4.1 Details

The maximal bosonic subalgebra of su(1, 1|3) is sl(2)⊕ su(3)⊕ u(1), where sl(2) ' su(1, 1)
is the euclidean conformal algebra in one dimension and su(3) ⊕ u(1) is the R-symmetry
algebra. The su(1, 1) algebra is generated by {P ≡ iP3,K ≡ iK3, D} satisfying the following
commutation relations

[D,P ] = P, [D,K] = −K, [P,K] = −2D. (A.26)

The su(3) R-symmetry subalgebra is generated by traceless operators Rab, whose explicit
form reads

Ra
b =

J2
2 + 1

3J1
1 J2

3 J2
4

J3
2 J3

3 + 1
3J1

1 J3
4

J4
2 J4

3 −J3
3 − J2

2 − 2
3J1

1

 . (A.27)

These generators satisfy the algebraic relation

[Ra
b, Rc

d] = δdaRc
b − δbcRad. (A.28)

The spectrum of bosonic generators of su(1, 1|3) is completed by a residual u(1) generator
M , defined as

M ≡ 3iM12 − 2J1
1. (A.29)

We now move to the fermionic sector of the superalgebra. Since we have placed the
line along the x3-direction, the fermionic generators of the one-dimensional superconformal
algebra are identified with the following supercharges

Q12
1 , Q

13
1 , Q

14
1 , Q

23
2 , Q

24
2 , Q

34
2 and S12

1 , S13
1 , S14

1 , S23
2 , S24

2 , S34
2 (A.30)

It is useful to rewrite these generators in a more compact way, through the following defi-
nitions

Qk−1 ≡ Q1k
1 , Q̄k−1 ≡

i

2
εklmQ

lm
2 ,

Sk−1 ≡ i S1k
1 , S̄k−1 ≡

1

2
εklm S

lm
2 , k, l,m = 2, 3, 4

(A.31)

and make the shift Qk−1 → Qa, Q̄k−1 → Q̄a with a = 1, 2, 3, and similarly for the super-
conformal charges.

This set of generators inherits the following hermicity conditions

(Qa)† = S̄a, (Q̄a)
† = Sa,

(Sa)† = Q̄a, (S̄a)
† = Qa,

a = 1, 2, 3 (A.32)

and the following anti-commutation relations

{Qa, Q̄b} = δab P {Sa, S̄b} = δab K

{Qa, S̄b} = δab

(
D +

1

3
M

)
−Rba {Q̄a, Sb} = δba

(
D − 1

3
M

)
+Ra

b
(A.33)
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together with the mixed commutation rules

[D,Qa] =
1

2
Qa [K,Qa] = Sa [Ra

b, Qc] = δcaQ
b − 1

3
δbaQ

c [M,Qa] =
1

2
Qa

[D, Q̄a] =
1

2
Q̄a [K, Q̄a] = S̄a [Ra

b, Q̄c] = −δbcQ̄a +
1

3
δbaQ̄c [M, Q̄a] = −1

2
Q̄a

[D,Sa] = −1

2
Sa [P, Sa] = −Qa [Ra

b, Sc] = δcaS
b − 1

3
δbaS

c [M,Sa] =
1

2
Sa

[D, S̄a] = −1

2
S̄a [P, S̄a] = −Q̄a [Ra

b, S̄c] = −δbcS̄b +
1

3
δbaS̄c [M, S̄a] = −1

2
S̄a

(A.34)
From eq. (A.25) and definitions (A.27) it follows that the action of the SU(3) R-

symmetry generators on fields in the (anti-)fundamental representation is

[Ra
b,Φc] =

1

3
δbaΦc − δbcΦa, [Ra

b, Φ̄c] = δcaΦ̄
b − 1

3
δbaΦ̄

c. (A.35)

Notice that, as we introduced in the main text, the decomposition of the three-dimensional
superalgebra to the one-dimensional one comprehend a decoupled u(1)b factor generated by

B = M12 + iJ 1
1 . (A.36)

A.4.2 Irreducible Representations

In this appendix, we shall briefly review the classification of the multiplet of su(1, 1|3)
presented in [121]. We shall classify the states in terms of the four Dynkin labels [∆,m, j1, j2]
associated to the bosonic subalgebra su(1, 1)⊕su(3)⊕u(1). Here ∆ stands for the conformal
weight, m for the u(1) charge and (j1, j2) are the eigenvalues corresponding to the two su(3)
Cartan generators J1 and J2. We choose

J1 ≡
R2

2 −R1
1

2
= −2R1

1 +R3
3

2
,

J2 ≡
R3

3 −R2
2

2
=
R1

1 + 2R3
3

2
,

(A.37)

where we have exploited the traceless property Raa = 0 to remove the dependence on R2
2.

The commutations rules (A.28) implies that we can associate an sl(2) subalgebra with each
Cartan generator. In fact, the two sets of operators

{R2
1, R1

2, J1} ≡ {E−1 , E
+
1 , J1} , {R3

2, R2
3, J2} ≡ {E−2 , E

+
2 , J2} (A.38)

satisfy the following algebraic relations

[E+
i , E

−
i ] = 2Ji [Ji, E

±
i ] = ±E±i i = 1, 2 (A.39)

and define the raising and lowering operators used to construct the representations of su(3).
In the main text, we have chosen a different sl(2) to define the twisted algebra. We have
preferred to use the one generated by {R3

1, R1
3,−J1 − J2}, which treats the two Dynkin

labels (j1, j2) symmetrically. Moreover, the supercharges with this choice of basis possess
well-defined Dynkin labels, whose values are displayed in Table A.1.
When localized on the line, the ABJ(M) fundamental fields also have definite quantum
numbers with respect to su(1, 1)⊕ su(3)⊕ u(1). Their values are listed in Table A.2 for the
scalar fields and in Table A.3 for the fermionic ones.
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Generators [∆,m, j1, j2]

Q1 Q̄1

[
1
2 ,

1
2 ,−1, 0

] [
1
2 ,−

1
2 , 1, 0

]
Q2 Q̄2

[
1
2 ,

1
2 , 1,−1

] [
1
2 ,−

1
2 ,−1, 1

]
Q3 Q̄3

[
1
2 ,

1
2 , 0, 1

] [
1
2 ,−

1
2 , 0,−1

]
S1 S̄1

[
−1

2 ,
1
2 ,−1, 0

] [
−1

2 ,−
1
2 , 1, 0

]
S2 S̄2

[
−1

2 ,
1
2 , 1,−1

] [
−1

2 ,−
1
2 ,−1, 1

]
S3 S̄3

[
−1

2 ,
1
2 , 0, 1

] [
−1

2 ,−
1
2 , 0,−1

]
Table A.1: Table of Dynkin labels of fermionic generators. For a generic element vµ trans-
forming in a weight-µ representation, the Dynkin label corresponding to a generator Hi of
the Cartan subalgebra is defined as ji(vµ) ≡ 2[Hi, vµ].

Scalar fields [∆,m, j1, j2]

Z , Z̄
[

1
2 ,

3
2 , 0, 0

] [
1
2 ,−

3
2 , 0, 0

]
Y1 , Ȳ

1
[

1
2 ,−

1
2 , 1, 0

] [
1
2 ,

1
2 ,−1, 0

]
Y2 , Ȳ

2
[

1
2 ,−

1
2 ,−1, 1

] [
1
2 ,

1
2 , 1,−1

]
Y3 , Ȳ

3
[

1
2 ,−

1
2 , 0,−1

] [
1
2 ,

1
2 , 0, 1

]
Table A.2: Quantum number assignments to scalar matter fields of the ABJ(M) theory
defined in eq. (2.12).

Fermionic fields [∆,m, j1, j2]

(ψ)1 , (ψ)2 [1, 3, 0, 0] [1, 0, 0, 0]

(ψ̄)1 , (ψ̄)2 [1, 0, 0, 0] [1,−3, 0, 0]

(χ1)1 , (χ1)2 [1, 1, 1, 0] [1,−2, 1, 0]

(χ̄1)1 , (χ̄1)2 [1, 2,−1, 0] [1,−1,−1, 0]

(χ2)1 , (χ2)2 [1, 1,−1, 1] [1,−2,−1, 1]

(χ̄2)1 , (χ̄2)2 [1, 2, 1,−1] [1,−1, 1,−1]

(χ3)1 , (χ3)2 [1, 1, 0,−1] [1,−2, 0,−1]

(χ̄3)1 , (χ̄3)2 [1, 2, 0, 1] [1,−1, 0, 1]

Table A.3: Quantum number assignments to fermionic matter fields of the ABJ(M) theory
defined in eq. (2.12).

Finally we do not consider directly the gauge fields, but their covariant derivatives. Their
Dynkin labels are given by

D [1, 3, 0, 0] D̄ [1,−3, 0, 0] D3 [1, 0, 0, 0] (A.40)
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Therefore their action on an operator that is an eigenstate |∆,m, j1, j2〉 of the Cartan
generators simply shifts the the first two quantum numbers. Next we summarize the relevant
superconformal multiplets constructed in [121].

The A Multiplets

We start with the so-called long multiplets, denoted by A∆
m;j1,j2

. Their highest weight of
the representations, namely the super-conformal primary (SCP), is identified by requiring
that

Sa |∆,m, j1, j2〉hw = 0 S̄a |∆,m, j1, j2〉hw = 0 E+
a |∆,m, j1, j2〉

hw = 0 (A.41)

Then the entire multiplet is built by acting with the supercharges Qa and Q̄a. For unitary
representations, the Dynkin label of the highest weight are constrained by the following
inequalities

∆ ≥

{
1
3(2j2 + j1 −m), m < j2−j1

2
1
3(j2 + 2j1 +m), m ≥ j2−j1

2

(A.42)

At the threshold of the unitary region, these multiplets split into shorter ones because of the
recombination phenomenon. For m < j2−j1

2 the unitarity bound is for ∆ = 1
3(2j2 + j1 −m)

and one can verify that

A−
1
3
m+ 1

3
j1+ 2

3
j2

m,j1,j2
= B

1
6
,0

m,j1,j2
⊕ B

1
6
,0

m+ 1
2
,j1,j2+1

(A.43)

Equivalently, for m > j2−j1
2 one has

A
1
3
m+ 2

3
j1+ 1

3
j2

m,j1,j2
= B0, 1

6
m,j1,j2

⊕ B0, 1
6

m− 1
2
,j1+1,j2

(A.44)

For the particular case m = j2−j1
2 we have

A
j2+j1

2
j2−j1

2
;j1,j2

= B
1
6
, 1
6

j2−j1
2

;j1,j2
⊕B

1
6
, 1
6

j2−j1
2

+ 1
2

;j1,j2+1
⊕B

1
6
, 1
6

j2−j1
2
− 1

2
;j1+1,j2+1

⊕B
1
6
, 1
6

j2−j1
2

;j1+1,j2+1
. (A.45)

Above the symbols B
1
N
, 1
M

m;j1,j2
stand for a type of short multiplets (see below). The two

superscripts denote respectively the fraction of Q and Q̄ charges with respect to the total
number of charges (Q+ Q̄), which annihilates the super-conformal primary.

The B Multiplets

Let us now have a closer look to short multiplets. They are obtained by imposing that the
highest weight is annihilated by some of the Q and Q̄ charges. First we consider the case

Qa |∆,m, j1, j2〉hw = 0 (A.46)

from which we get three possible short supermultiplets

a = 3 ∆ =
1

3
(j1 + 2j2 −m) B

1
6
,0

m;j1,j2
(A.47)

a = 3, 2 ∆ =
1

3
(j1 −m), j2 = 0 B

1
3
,0

m;j1,0
(A.48)

a = 3, 2, 1 ∆ = −1

3
m, j1 = j2 = 0 B

1
2
,0

m;0,0 (A.49)
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according to the number of charges obeying the condition (A.46). Obviously we can also
consider the conjugate shortening condition

Q̄a |∆,m, j1, j2〉hw = 0 (A.50)

which yields short multiplets conjugate to the ones considered above

a = 1 ∆ =
1

3
(j2 + 2j1 +m) B0, 1

6
m;j1,j2

(A.51)

a = 1, 2 ∆ =
1

3
(j2 +m), j1 = 0 B0, 1

3
m;0,j2

(A.52)

a = 1, 2, 3 ∆ =
1

3
m, j1 = j2 = 0 B0, 1

2
m;0,0 (A.53)

Finally we may have mixed multiplets where the highest weight is annihilated both by Qa

and Q̄a. Those include

B
1
6
, 1
6

m;j1,j2
∆ =

j2 + j1
2

m =
j2 − j1

2
(A.54)

B
1
3
, 1
6

m;j1,0
∆ =

j1
2

m = −j1
2

j2 = 0 (A.55)

B
1
6
, 1
3

m;0,j2
∆ =

j2
2

m =
j2
2

j1 = 0 (A.56)

A.5 Supersymmetry Transformations

Here we list all the supersymmetry transformations, using both the original SU(4) formalism
and the SU(3) one, which are relevant for the construction of the twisted superalgebra, its
irreducible representations and multiplets.

A.5.1 SU(4) Notations

The ABJ(M) action in (A.4) is invariant under the following superconformal transformations

δCK = −ζ̄IJ,α εIJKL ψ̄Lα
δC̄K = 2ζ̄KL,α ψL,α

δψ̄K,β = 2iζ̄KL,α(γµ)α
βDµCL +

4πi

k
ζ̄KL,β(CLC̄

MCM − CM C̄MCL) +
8πi

k
ζ̄IJ,βCIC̄

KCJ

+ 2iε̄KL,βCL

δψβK = −iζ̄IJ,αεIJKL(γµ)α
βDµC̄

L +
2πi

k
ζ̄IJ,βεIJKL(C̄LCM C̄

M − C̄MCM C̄L)

+
4πi

k
ζ̄IJ,βεIJMLC̄

MCKC̄
L − iε̄IJ,βεIJKLC̄L

δAµ =
4πi

k
ζ̄IJ,α(γµ)α

β

(
CIψJβ −

1

2
εIJKLψ̄

K
β C̄

L

)
δÂµ =

4πi

k
ζ̄IJ,α(γµ)α

β

(
ψJβCI −

1

2
εIJKLC̄

Lψ̄Kβ

)
(A.57)

where the parameters of the transformations are expressed in terms of supersymmetry and
superconformal parameters as

ζ̄IJα = Θ̄IJ
α − xµ(γµ) βα ε̄

IJ
β (A.58)

We recall that they satisfy ζ̄IJ = −ζ̄JI , and are subject to the reality conditions ζ̄IJ = (ζIJ)∗

with ζIJ = 1
2εIJKLζ̄

KL.
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If we set ε̄IJ = 0 in (A.57) we obtain N = 6 supersymmetry transformations. Expressing
them as

δΦ = [Θ̄IJQ̄IJ ,Φ] = [ΘIJQ
IJ ,Φ] (A.59)

for a generic field Φ, it is easy to realize that the QIJ supercharges (or equivalently Q̄IJ)
satisfy the osp(6|4) algebra (A.21) under the identification Pµ = i∂µ.

A.5.2 SU(3) Notations

The generic supersymmetry transformation defined in (A.59) can be specialized to the
su(1, 1|3) supercharges (Qa, Q̄a) defined in (A.31,A.33). For a generic field Φ̃ in a given
representation of the su(3) R-symmetry algebra it reduces to

δΦ̃ = [θaQ
a + θ̄aQ̄a, Φ̃] (A.60)

under the parameter identification

θa = 2 Θ1
1(a+1) (A.61)

θ̄a = −i εa+1,b+1,c+1Θ2
b+1,c+1 a, b, c = 1, 2, 3 (A.62)

From the variations in (A.57) we can easily read the supersymmetry transformations of
the ABJ(M) fundamental fields reorganized in su(3) R-symmetry representations (see eqs.
(2.12) and (2.13)). Comparing these transformations with the general variation defined in
(A.60) we obtain the action of the supercharges on the fields, which takes the following form

• Scalar fields

QaZ = −χ̄a1 Q̄aZ = 0 QaZ̄ = 0 Q̄aZ̄ = iχ1
a

QaYb = δab ψ̄1 Q̄aYb = −iεabcχ̄c2 QaȲ b = −εabcχ2
c Q̄aȲ

b = −iδbaψ1 (A.63)

• Fermions

Q̄aψ
1 = 0 Qaψ1 = −iD3Ȳ

a − 2πi

k

(
Ȳ alB − l̂BȲ a

)
(A.64a)

Qaψ2 = −iDȲ a Q̄aψ
2 = −4π

k
εabcȲ

bZȲ c (A.64b)

Q̄aχ
1
b = εabc D̄Ȳ

c Qaχ1
b = iδabD3Z̄ +

4πi

k

(
Z̄Λab − Λ̂ab Z̄

)
(A.64c)

Qaχ2
b = iδab DZ̄ Q̄aχ

2
b = −εabcD3Ȳ

c − 2π

k
εacd

(
Ȳ cΘd

b − Θ̂d
b Ȳ

c
)

(A.64d)

Qaψ̄1 = 0 Q̄aψ̄1 = −D3Ya −
2π

k

(
Ya l̂B − lBYa

)
(A.64e)

Q̄aψ̄2 = −D̄Ya Qaψ̄2 =
4πi

k
εabcYbZ̄Yc (A.64f)

Qaχ̄b1 = −iεabcDYc Q̄aχ̄
b
1 = δabD3Z +

4π

k

(
ZΛ̂ab − ΛabZ

)
(A.64g)

Q̄aχ̄
b
2 = δba D̄Z Qaχ̄b2 = iεabcD3Yc +

2πi

k
εacd

(
YcΘ̂

b
d −Θb

dYc

)
(A.64h)
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• Gauge fields

QaA3 = −2πi

k

(
ψ̄1Ȳ

a − χ̄a1Z̄ + εabcYbχ
2
c

)
Q̄aA3 =

2π

k

(
Zχ1

a − Yaψ1 − εabcχ̄b2Ȳ c
)

QaA = 0 Q̄aA = −4π

k

(
Yaψ

2 − Zχ2
a − εabcχ̄b1Ȳ c

)
QaĀ = −4πi

k

(
ψ̄2Ȳ

a − χ̄a2Z̄ − εabcYbχ1
c

)
Q̄aĀ = 0

QaÂ3 = −2πi

k

(
Ȳ aψ̄1 − Z̄χ̄a1 + εabcχ2

cYb

)
Q̄aÂ3 =

2π

k

(
χ1
aZ − ψ1Ya − εabcȲ cχ̄b2

)
QaÂ = 0 Q̄aÂ =

4π

k

(
ψ2Ya − χ2

aZ − εabcȲ cχ̄b1

)
Qa ˆ̄A = −4πi

k

(
Ȳ aψ̄2 − Z̄χ̄a2 − εabcχ1

cYb

)
Q̄a

ˆ̄A = 0

(A.65)

where we have defined the bilinear scalar fields

(
Λba 0

0 Λ̂ba

)
=

(
YaȲ

b + 1
2δ
b
alB 0

0 Ȳ bYa + 1
2δ
b
a l̂B

)
(

Θb
a 0

0 Θ̂b
a

)
=

(
YaȲ

b − δba(ZZ̄ + YcȲ
c) 0

0 Ȳ bYa − δba(Z̄Z + Ȳ cYc)

)
(
lB 0

0 l̂B

)
=

(
ZZ̄ − YcȲ c 0

0 Z̄Z − Ȳ cYc

)
(A.66)

A.6 Two-loop Integrals

In this appendix we list the integrals corresponding to the two-loop diagrams in figures
2.2(a)-2.2(l), dressed by their color factors.
Diagram 2.2(a) contains the two-loop correction to the scalar propagator. This has been
computed in [94] and reads

C(N1, N2) ≡ + +

+ +

=
N1N2

k2

(
N2

1 +N2
2 − 4N1N2 + 2

) ( π
3ε

+ 2π +O (ε)
)

+
N1N2

k2

(
N2

1 +N2
2 − 2

)(
−4π

3ε
+ π

(
π2 − 8

)
+O (ε)

)
+
N1N2

k2
(N1N2 − 1)

(
−8π

3ε
+ 4π(π2 − 20π) +O (ε)

)
(A.67)

To compute the contributions of the other diagrams it is sufficient to rely on Feynman
rules listed in appendix A.2, together with the product of polarization vectors. Explicitly,
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we find

(2.2(b)) = −s2 Γ6
(

1
2 − ε

)
32π7−6ε

N2
1N

2
2

k2

∫
ddxddy

xµyν

(x2)
3
2
−ε(y2)

3
2
−ε ((x− s)2)

1
2
−ε ((y − s)2)

1
2
−ε

×

 δµν[
(x− y)2

]1−2ε − ∂µ∂ν
[
(x− y)2

]2ε
4ε(1 + 2ε)


(A.68)

(2.2(c)) = s2 Γ4
(

1
2 − ε

)
Γ2
(

3
2 − ε

)
128π7−6ε

N1N2

k2
((N1 −N2)2 − 2N1N2 + 2) ×∫

ddxddy

(x2)
1
2
−ε(y2)

1
2
−ε ((x− y)2)2−2ε ((x− s)2)

1
2
−ε ((y − s)2)

1
2
−ε

(A.69)

(2.2(d)) = s2 Γ6
(

1
2 − ε

)
Γ2
(

3
2 − ε

)
256π10−8ε

N1N2

k2
(N1 −N2)2 εµνηερστ ×∫

ddxddyddzddw
(x− y)η(z − w)τ

((x− y)2)
3
2
−ε ((z − w)2)

3
2
−ε ((x− s)2)

1
2
−ε ((y − s)2)

1
2
−ε (z2)

1
2
−ε(w2)

1
2
−ε

× ∂µ∂ρ
1

((x− z)2)
1
2
−ε
∂ν∂σ

1

((y − w)2)
1
2
−ε

(A.70)

(2.2(e)) = −s2 Γ6
(

1
2 − ε

)
Γ2
(

3
2 − ε

)
128π10−8ε

N1N2

k2
(N1N2 − 1) εµνηερστ ×∫

ddxddyddzddw
(x− y)η(z − w)τ

((x− y)2)
3
2
−ε ((z − w)2)

3
2
−ε ((x− s)2)

1
2
−ε ((w − s)2)

1
2
−ε (y2)

1
2
−ε(z2)

1
2
−ε

× ∂µ∂ρ
1

((x− z)2)
1
2
−ε
∂ν∂σ

1

((y − w)2)
1
2
−ε

(A.71)

(2.2(f)) = s2 Γ4
(

1
2 − ε

)
Γ2
(

3
2 − ε

)
16π7−6ε

N1N2

k2
(N1N2 − 1) ×∫

ddxddy

(x2)
1
2
−ε(y2)

1
2
−ε ((x− y)2)2−2ε ((x− s)2)

1
2
−ε ((y − s)2)

1
2
−ε

(A.72)

We note that in the large N1, N2 approximation we obtain (2.2(f)) = −4(2.2(c)), in
agreement with the results in [122].

(2.2(g)) = −s2 Γ5
(

1
2 − ε

)
Γ2
(

3
2 − ε

)
128π

17
2
−7ε

N1N2

k2
(N2

1 +N2
2 − 4N1N2 + 2) εµρσεµνη ×∫

ddxddyddz
(x− z)σ

((x− z)2)
3
2
−ε

(x− y)η

((x− y)2)
3
2
−ε
×

∂ρ
1

((y − z)2)
1
2
−ε

∂ν
1

((y − s)2)
1
2
−ε

1

(x2)
1
2
−ε(z2)

1
2
−ε((x− s)2)

1
2
−ε

(A.73)
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(2.2(h)) = 0 (2.2(i)) = 0 (A.74)

(2.2(j)) = s2 Γ5
(

1
2 − ε

)
Γ3
(

3
2 − ε

)
128π10−8ε

N1N2

k2
(N2

1 +N2
2 − 2) ερντερησενµϕετχξ ×∫

ddxddyddzddw
(x− z)ϕ(y − z)ξ(w − z)σ

((x− z)2)
3
2
−ε ((y − z)2)

3
2
−ε ((w − z)2)

3
2
−ε

× ∂η
1

((w − s)2)
1
2
−ε

∂χ
1

((x− y)2)
1
2
−ε

∂µ
1

((x− s)2)
1
2
−ε

1

(y2)
1
2
−ε(w2)

1
2
−ε

(A.75)

(2.2(k)) = s2 Γ6
(

1
2 − ε

)
Γ2
(

3
2 − ε

)
256π10−8ε

N1N2

k2
(N1N2 − 2) εµνεερστ ×∫

ddxddyddzddw
(x− y)ε(z − w)τ

((x− y)2)
3
2
−ε ((z − w)2)

3
2
−ε

1

((w − s)2)
1
2
−ε

× ∂ρ
1

((x− z)2)
1
2
−ε
∂ν

1

((y − z)2)
1
2
−ε
∂σ

1

(w2)
1
2
−ε

×

[
∂µ

1

((x− s)2)
1
2
−ε

1

(y2)
1
2
−ε
− ∂µ 1

(x2)
1
2
−ε

1

((y − s)2)
1
2
−ε

]
(A.76)

(2.2(l)) = −s2 Γ4
(

1
2 − ε

)
Γ2
(

3
2 − ε

)
32π7−6ε

N1N2

k2
(N1 −N2)2

×
∫

ddxddy

((x− s)2)1−2ε ((x− y)2)2−2ε (y2)1−2ε

(A.77)
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The explicit results for the expressions above, in the ε→ 0 limit, are

(2.2(a)) =
N1N2

k2

1

128π2

[
−
(
N2

1 +N2
2 + 4N1N2 − 6

) 1

ε
(A.78)

+ (N2
1 +N2

2 − 2)
(
π2 − 2(3 + log 2)

)
+ 4(N1N2 − 1)

(
π2 − 2(11 + log 2)

) ]
|µs|8ε

(2.2(b)) = −N1N2

k2
(N1N2 − 1)

(
π2 − 12

)
16π2

|µs|8ε (A.79)

(2.2(c)) =
N1N2

k2

(
N2

1 +N2
2 − 4N1N2 + 2

)( 1

128π2

1

ε
+

1 + log 2

64π2

)
|µs|8ε (A.80)

(2.2(d)) = 0 (A.81)

(2.2(e)) = −N1N2

k2
(N1N2 − 1)

(
5π2 − 48

)
96π2

|µs|8ε (A.82)

(2.2(f)) =
N1N2

k2
(N1N2 − 1)

(
1

16π2

1

ε
+

1 + log 2

8π2

)
|µs|8ε (A.83)

(2.2(g)) = −N1N2

k2

(
N2

1 +N2
2 − 4N1N2 + 2

) (π2 − 12
)

128π2
|µs|8ε (A.84)

(2.2(h)) = 0 (A.85)
(2.2(i)) = 0 (A.86)

(2.2(j)) =
N1N2

k2
(N1N2 − 1)

(
π2 − 12

)
48π2

|µs|8ε (A.87)

(2.2(k)) =
N1N2

k2

(
N2

1 +N2
2 − 2

) (π2 − 12
)

192π2
|µs|8ε (A.88)

(2.2(l)) = −N1N2

k2
(N1 −N2)2 1

64
|µs|8ε (A.89)
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Appendix B

N = 1 Gauge Theories

B.1 Group Theory Conventions

Let us list here some useful group-theoretical conventions which will be used throughout
the Chapter 3.
The su(2) Lie algebra is defined through the usual relation

[τA, τB] = iεABCτC (B.1)

where A,B,C are adjoint indices. We choose τA ≡ 1
2σ

A, where σA are the Pauli matrices,
so that the canonical normalization

Tr
(
τAτB

)
=

1

2
δAB (B.2)

holds. We make also use of the following notation

τ (AτB) ≡ 1

2
{τA, τB}, τ [AτB] ≡ 1

2
[τA, τB] (B.3)

Since we are considering a quiver gauge theory with the matter sitting in the (anti-)bifundamental
representation of G1 × G2, namely (R̄, R) and (R, R̄) respectively, we recall the action of
G on them. The gauge group transformations U ∈ G1 and V ∈ G2 will then act in the
following way

(Φ′) ĵ
i = (UΦV †) ĵ

i , (Φ̄′) j

î
= (V Φ̄U †) j

î
(B.4)

and at the level of algebra we have

δ(A)Φ ĵ
i = i

[
g1(T (A)) k

i Φ ĵ
k − g2Φ k̂

i (K(A)) ĵ

k̂

]
, δ(A)Φ̄ j

î
= i
[
g2(K(A)) k̂

î
Φ̄ j

k̂
− g1Φ k

î
(T (A)) j

k

]
(B.5)

where g1,2 are the two gauge couplings for G1,2 and T (A), K(A) are generators of the g1, g2

Lie algebras respectively.

B.2 Superspace Conventions

The complete set of conventions can be found in [41, 45].
Here we complement the relations we stated in Subsection 1.3.3 with all the necessary
ingredient we exploited for obtaining the results discussed in the main text.
The graded commutation relation for derivatives is

{Dα, Dβ} = 2i∂αβ (B.6)

where ∂αβ is the ordinary spacetime derivative. Derivatives also satisfy the following useful
identities

∂αγ∂βγ = δαβ�, DαDβ = i∂αβ + CαβD
2

DαDβD
α = 0, D2Dα = −DαD

2 = i∂αβD
β, (D2)2 = �

(B.7)
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B.2.1 N = 1 Gauge Theories

The most generic kinetic terms for three-dimensional supersymmetric gauge theories are
Chern-Simons and Yang-Mills ones. In the N = 1 notation, the Lagrangian for such terms
reads

LCS-YM = − k

4π
Tr
(

2iΓα∂αβΓβ + ΓαDαD
βΓβ

)
+

1

2g2
Tr
(

Γα�Γα − iΓα∂αβD2Γβ
)

(B.8)

which, with some effort, can be recasted in the following gauge-fixed form

LgfCS-YM =− k

4π
Tr

(
2iΓα∂αβΓβ +

(
1− 1

β

)
ΓαDαD

βΓβ

)
+

1

2g2
Tr

((
1 +

1

α

)
Γα�Γα − i

(
1− 1

α

)
Γα∂αβD

2Γβ
) (B.9)

By taking the Landau gauge-fixing limit (α, β → 0) one can obtain the final form for the
CS-YM gauge propagator, which reads

∆ β
α = g2 δ

β
α(κD2 + p2) + (κ−D2)p β

α

p2(κ2 + p2)
, κ =

kg2

2π
(B.10)

Matter is coupled through the following action

Smatter = −1

2

∫
d3xd2θ (∇αΦ̄)(∇αΦ) (B.11)

where in our setup, the covariant derivatives take the following explicit form

∇αΦi
ĵ = DαΦi

ĵ − ig1 ΓAα (TA)i
k
Φk

ĵ + ig2 Γ̂Mα Φi
k̂(KM )k̂

ĵ (B.12)

∇αΦ̄ i
ĵ

= DαΦ̄ i
ĵ
− ig2 Γ̂Mα (KM )ĵ

k̂
Φ̄ i
k̂

+ ig1 ΓAα Φ̄ k
ĵ

(TA)k
i (B.13)

B.3 Effective superpotential at k1 = −k2

When the CS-levels are equal by the absolute value but opposite, one can compute deriva-
tives of the superpotential explicitly. Introducing k1 = −k2 = k, κ1 =

kg2
1

2π , κ2 =
kg2

1
2π , we get

for B → ρ:

∂ρW1-loop = −
(g2

1 + g2
2)(κ1 − κ2)

[
(9g4

1 + 22g2
1g

2
2 + 9g4

2)ρ+ 6(g2
1 + g2

2)(κ2
1 + κ1κ2 + κ2

2)
]

16π(2κ1κ2 + ρ(g2
1 + g2

2))
√

(k1 + k2)2 + 2ρ(g2
1 + g2

2)

ρ→∞−→ −(κ1 − κ2)(9g4
1 + 22g2

1g
2
2 + 9g4

2)

16π
√

2
√

(g2
1 + g2

2)ρ1/2
, (B.14a)

∂|B|W1-loop =
g2

1g
2
2(κ1 − κ2)ρ

4π(2κ1κ2 + ρ(g2
1 + g2

2))
√

(k1 + k2)2 + 2ρ(g2
1 + g2

2)

ρ→∞−→ g2
1g

2
2(κ1 − κ2)

4
√

2π(g2
1 + g2

2)3/2ρ1/2
, (B.14b)
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and in the limit B → 0 the result is

∂ρW1-loop = − κ1 − κ2

8π(g2
1 − g2

2)2D

[
N1√

κ2
1 + 2g2

1ρ
+

N2√
κ2

2 + 2g2
2ρ

]
−

− (g2
1 + g2

2)(κ1 − κ2)(2κ2
1 + 2κ1κ2 + 2κ2

2 + 3ρ(g2
1 + g2

2))

16π(2κ1κ2 + ρ(g2
1 + g2

2))
√

(κ1 + κ2)2 + 2ρ(g2
1 + g2

2)

ρ→∞−→ −g1κ
2
1 − g2κ

2
2

8
√

2π
− κ2

1g
2
1 − κ2

2g
2
2

16
√

2π
√
g2

1 + g2
2ρ

1/2
, (B.15a)

∂|B|W1-loop =
g2

1g
2
2(κ1 − κ2)B

4π(g2
1 − g2

2)D

[
g4

1 + 3g2
1g

2
2√

κ2
1 + 2g2

1ρ
− g4

2 + 3g2
1g

2
2√

κ2
2 + 2g2

2ρ

]
ρ→∞−→ g1g2(κ1g2 − κ2g2)

4
√

2π(g1 + g2)2
. (B.15b)

where

D = (g2
1 − g2

2)2ρ− 4(κ2
1g

2
2 + κ2

2g
2
1). (B.16a)

N1 = g4
1(g2

1 − g2
2)3ρ− 4g8

1κ
2
2 + 4g2

1g
2
2κ

2
1(−g4

1 + g2
1g

2
2 + g4

2), (B.16b)

N2 = g4
2(g2

2 − g2
1)3ρ− 4g8

2κ
2
1 + 4g2

2g
2
1κ

2
2(−g4

2 + g2
1g

2
2 + g4

1). (B.16c)
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