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Abstract

The PhD research aimed to develop novel strategies able to better retrieve and interpret
the chlorophyll Solar-Induced Fluorescence (SIF) signal emitted by terrestrial vegetation
and inland waters at ground level, to advance the understanding of ecosystems structure
and functioning.

SIF metrics were defined taking advantage of the full SIF spectrum available from the
recently developed “spectrum-fitting” algorithm (SpecFit). The metrics were designed to
characterize the SIF spectrum in terms of red and far-red peaks maximum values (SIFred,
SIFfar−red), corresponding wavelengths and the spectrally integrated value (SIFINT ). SIF
typically evaluated in the O2-A (SIF760) and O2-B (SIF687) bands and reflectance indices
(used as proxies for canopy biophysical parameters) were compared to the SIF spectrum.
The reflectance indices selected were the NDVIred−edge, CIred−edge, NIRv and PRI. The
above-mentioned analysis were carried out at seasonal and diurnal scales, exploiting top-of-
canopy (TOC) spectral measurements acquired over three different crops. The SIF evaluated
at the peaks always shows a strong correlation with the corresponding O2 bands values,
while the SIFINT represents a more complete parameter characterized by peculiar dynamics.
At diurnal scale, the combined use of reflectance indices and TOC SIF metrics allows to
gain a better knowledge of the crops dynamics. Seasonally, the SIF and reflectance indices
show more similar temporal evolution along the growth-phases because they are mainly
driven by changes in the overall canopy biomass, chlorophyll content and incident light.
The reabsorption of the SIF within the canopy-leaf system affects the overall SIF spectral
shape and magnitude at this temporal scale. As demonstrated on the synthetic dataset,
the reabsorption effect prevents an accurate evaluation of the fluorescence quantum yield
(SIFyield). Correcting the TOC SIF spectrum for the reabsorption is pivotal. In this regard,
two different approaches were developed and tested. The parametric method enables to
correct SIF for the reabsorption (SIFRC) establishing parametric relationships with spectral
variables routinely measured at TOC. The method accuracy depends on the plant growth
phase, showing better results for medium-dense canopies. This behavior compromises the
application of the method on the full seasonal analysis. The second approach, based on
Fourier-Machine Learning algorithm, retrieves the SIFRC along with biophysical parameters
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of interest (i.e. LAI, Cab, SIFyield, aPAR) with a better accuracy for all the conditions
investigated. The two approaches outcomes were compared by considering synthetic
simulations and real field measurements. These methods were developed and tested
starting from different assumptions: the parametric method can be used in a simpler way
but it lacks accuracy for sparse conditions, while the Fourier-Machine Learning algorithm
is more complex but offer better results.

Regarding clear lake waters, a novel version of the Fluorescence Line Height approach
was implemented. The SIF proxy obtained agrees with the temporal evolution of other
conventional spectral indices (EPAR, R550 and [Chl-a]). Novel phytoplankton primary
production models were defined and tested adapting the vegetation Light Use Efficiency
model for inland waters. Promising results were achieved when the SIFFLH and a novel
photosynthesis efficiency proxy here introduced were considered (R2> 0.95).

In conclusion, this work allowed to develop new concepts and processing methods
towards a better interpretation of SIF at diurnal/seasonal scales in different ecosystems.
The approaches were prototyped on synthetic data and employed on real field measure-
ments. The results obtained highlight the relevance to retrieve the SIF spectrum and the
importance to employ SIF reabsorption correction methods to obtain relevant parameters
(i.e. reabsorption corrected SIFyield) better related with terrestrial vegetation functioning
and less affected from canopy structure. Concerning clear lake waters, this study has
demonstrated that hyperspectral and high frequency measurements allow to follow the
phytoplankton dynamics, particularly in clear sky days. Furthermore, the use of param-
eters linked to the SIF represents a promising approach in the phytoplankton primary
production monitoring and estimation in lakes.
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Chapter 1

Introduction

Chlorophyll-a (Chl-a) is a photosynthetic pigment contained in the chloroplasts of
terrestrial plants and in many aquatic phytoplankton taxa. Chl-a absorbs the incoming
solar light in the Photosynthetically Active Radiation spectral region between 400-700 nm.
Under non-stressed conditions, the absorbed light is primarily used to drive photosynthesis
in a process known as Photochemical Quenching (PQ). Photosynthesis is a highly regulated
process that dynamically adapts itself in order to optimize the use of light and avoid
potential damage to the photosynthetic apparatus (Pinto et al., 2020). The excess of absorbed
energy is rapidly dissipated through non-radiative (non-photochemical quenching, NPQ)
and radiative (i.e. Solar Induced Fluorescence, SIF) pathways (Porcar-Castell et al., 2014,
Hendrickson et al., 2004). Since PQ, NPQ and SIF emission are in direct competition for
the same excitation energy, the efficiency variations of each process affect the others (Baker,
2008). Therefore, SIF is closely related to the light harvesting process and responds promptly
to rapid changes in photosynthesis (Krause and Weis, 1991; Baker, 2008; Papageorgiou and
Govindjee, 2004). Unlike the other energy usage processes, SIF is an optical signal and
its spectrum covers a wavelength range in the VIS-NIR. It is emitted between 640-850 nm
and is characterized by two peaks around 685 nm and 740 nm, respectively (Meroni et al.,
2009). As an optical signal, SIF can be opportunely detected by remote sensing techniques
by means of sensors mounted on different platforms (e.g., ground-based measurements,
drone, airborne and satellite). In this regard, I refer to the reviews of Mohammed et al.,
(2019) and Gupana et al., (2021) for the terrestrial and aquatic ecosystems, respectively.

SIF represents a well-established and non-invasive approach in ecosystems monitoring
at several spatio-temporal scales. The Remote Sensing (RS) of SIF represents a consolidated
technique, widely employed in water bodies monitoring since 1960s (Mohammed et al.,
2019, Gower 2016). The Chl-a SIF emission from the oceanic phytoplankton is routinely used
to quantify phytoplankton abundance or biomass and for primary production estimations
(Falkowski and Kiefer, 1985, Hout and Babin, 2010; Maritorena et al., 2000). Furthermore, it
can be also exploited to detect potentially harmful algal blooms (Ruddick et al., 2019). On
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the other hand, the RS of SIF from terrestrial vegetation is more recent (Mohammed et al.,
2019), but it is rapidly emerging as a novel and promising approach to measuring plant
function (Porcar-Castell et al., 2014) due to its link to the photosynthesis.
The analysis of the RS SIF is more advantageous compared to more established methods
relying on the remote sensed reflectance (Verrelst et al., 2015). Historically, the analysis of
the reflectance spectrum provides estimations of plant biophysical parameters, such as the
leaf area index (LAI), chlorophyll (Chl) content and the fraction of the solar light absorbed
by the Chl-a pigments (fAPAR) (e.g. Baret et al., 2007; Malenovsky et al., 2009). Similarly, in
the aquatic ecosystems, the remote sensing Reflectance (Rrs) is used to infer the abundance
of phytoplankton (e.g. Smith et al., 1989, Brewin et al., 2017). Regardless of the ecosystem
considered, this information can be exploited to deduce the plant photosynthetic rates
(Meroni et al., 2009), but also to evaluate phytoplankton biomass and productivity (Hout
and Babin, 2010, Deng et al., 2017). However, photosynthesis is an actively regulated
process and its efficiency is highly variable. It adjusts according to the environmental
conditions by altering or rearranging the Chl-a pigments without any detectable changes
in reflectance spectrum (Meroni et al., 2009). In this sense, the SIF represents a more
direct and reliable proxy for photosynthesis, because it is emitted by the photosynthetic
machinery itself. In fact, the emission of light as SIF is in competition with photochemical
conversion and therefore SIF may allow a more accurate productivity estimation and earlier
stress detection than is possible from reflectance data alone (Campbell et al., 2008; Cesana
et al., 2021; Mohammed et al., 2019; Deng et al. 2017; Porcar-Castell et al., 2014).

Nevertheless, SIF is a complicated process and its retrieval from proximal and remote
sensed acquisitions is challenging. The SIF signal cannot be easily measured because it
is very weak and superimposed onto the radiance reflected by the target (Maxwell and
Johnson, 2000; Zhao et al., 2018). Thus, disentangling these two contributions is not trivial.
Despite the above-mentioned difficulties, the last few decades have seen great strides in
measurement techniques, retrieval algorithms, modelling of fluorescence-photosynthesis
and radiative transfer process (Mohammed et al., 2019).

Concerning the terrestrial vegetation, most of the implemented strategies retrieve the SIF
only in selected solar or telluric absorption bands and require hyperspectral measurements.
The oxygen absorption bands A (O2-A at 760 nm) and B (O2-B at 687 nm) are typically
exploited to detect far-red and red SIF (e.g., Celesti et al., 2018; Mazzoni et al., 2008; Meroni
et al., 2010; Mazzoni et al., 2010; Mazzoni et al., 2012, Verhoef et al., 2018; Cogliati et al.,
2015), whereas several Fraunhofer Lines in the far-red (740–755 nm) (e.g., Guanter et al.,
2012; Joiner et al., 2014) and near-infrared (771 nm) wavelengths (e.g., Sun et al., 2018;
Frankenberg et al., 2011) are examined to retrieve far-red SIF. In these features, indeed, the
irradiance is strongly attenuated and the contribution of the SIF emission in the radiance is
higher. The SIF retrieval in the far-red has been proved to be feasible from field spectroscopy
(e.g. Damm et al., 2010; Guanter et al., 2013; Rossini et al., 2016, Chang et al., 2020), airborne
imaging spectrometers (e.g. Colombo et al., 2018; Damm et al., 2014; Rascher et al., 2015),
and satellite remote sensing measurements (e.g. Guanter et al., 2014; Sun et al., 2018).
Conversely, the red SIF retrieval is more challenging because the signal observed from the
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spectrometer is much lower due to the strong reabsorption occurring within the leaves and
canopy. Specifically, the Chl-a’s absorption and emission spectra overlap in the visible red
spectral region, therefore, the SIF emitted in the red could be re absorbed in its path within
the canopy. The reabsorption process is strictly linked to several biophysical parameters
such as the amount of chlorophyll contained in the canopy (Cab) along with the leaf shapes
(canopy geometry) and area (LAI) that also influence the amount of incident light absorbed
from the canopy (aPAR). Specifically, the denser and more developed the canopy is, the
greater the red SIF attenuation. Nevertheless, recent studies demonstrate the possibility to
evaluate this value at different scales (e.g. Fournier et al., 2012; Liu et al., 2017; Rossini et
al., 2015). A combined analysis of red and far-red SIF would offer additional and more
direct information about plant physiology. The SIF spectrum, is the result of the emissions
of photosystems I and II (PSI and PSII) involved in the early stages of photosynthesis
(Mohammed et al., 2019). The major contribution in the red is attributable to PSII, while the
broad shoulder from 700 to 750 nm and the peak at 740 nm are due to both PSII and PSI.
PSII is directly linked with the first reactions, therefore, the corresponding SIF in the red
better follows the plant functional response to stress situations. Furthermore, as Verrelst,
et al., (2015) suggests, even more information related to photosynthetic activity could be
found in the full SIF emission spectrum than in the individual peaks. The SIF full spectrum
allows to properly estimate the fluorescence yield and then to obtain more information
about the photosynthetic efficiency. This concept motivated the recent development of
novel retrieval algorithms, specifically designed to evaluate the entire SIF spectrum. Until
now, the available methods have been mainly implemented and tested on ground level
measurements (e.g. Cogliati et al., 2019, Zhao et al., 2014). Although the full SIF spectrum
retrieval is feasible, its interpretation is currently under investigation. The processes of
reabsorption and scattering, occurring in the leaf-canopy system, affect the Top Of Canopy
(TOC) SIF magnitude and spectral shape (Guanter et al., 2014; Yang et al., 2020; Liu et al.,
2019; Siegmann et al., 2021). Thus, the SIF yield evaluated at TOC level (i.e. SIFTOCyield) might
not be completely representative for the actual photosynthetic efficiency (SIFyield). This
makes the physiological interpretation even more challenging.

Concerning aquatic ecosystems, the SIF emitted by the phytoplankton contained in
natural waters is characterized by a predominant contribution in the visible red spectral
region, with a peak around 685 nm (Gupana et al., 2021). Conversely, the far-red emission
is completely diminished by the strong water absorption (Gupana et al., 2021). The main
difficulty in the phytoplankton SIF retrieval is represented by the high variability of the
water body and its constituent bio-optical properties (Tenjo et al., 2021). The substances
contained in the water body, in addition to the phytoplankton, can affect the signal acquired
by the sensor in the spectral region where the SIF emission occurs (Gilerson et al., 2007).
Water bodies can be practically distinguished in: i) Case-1 waters, in which the optical
properties are determined primarily by the phytoplankton and they are related to the
Colored Dissolved Organic Matter (CDOM) and detritus degradation products and ii)
Case-2 waters where the optical properties are significantly influenced by constituents (e.g.
mineral particles, CDOM and microbubbles) whose concentrations do not covary with the
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phytoplankton (Mobley et al., 2004; Morel and Prieur, 1977). Oceanic waters usually belong
to Case-1, while inland and coastal waters are generally considered Case-2. Lakes, which
belong to Case-2, are typically characterized by a high degree of spatio-temporal variability
of the inherent optical properties and related compounds (Cesana et al., 2021). In this
framework, the phytoplankton SIF could be beneficial for monitoring water quality due to
the dynamic nature of such environments and their often intensively used shores (Gupana
et al., 2021). The Fluorescence Line Height (FLH) algorithm, developed by Gower (1980), is
still frequently used to retrieve the SIF from the water leaving radiance. The FLH method
combines three spectral bands opportunely selected in the red and far-red obtaining a
proxy that correlates well with the actual SIF amplitude (Gilerson et al., 2007). The accuracy
mainly depends on the position of the wavebands and the signal-to-noise of the sensor
used (Tenjo et al., 2021). At satellite scale, the FLH is routinely applied on measurements
acquired by ocean color sensors such as MODIS and MERIS/OLCI. In Case-1 water, the
proxy obtained is linked to the SIF signal and the Chl-a concentration, hence the SIF can be
used as a proxy for the phytoplankton biomass. Conversely, in more optically complex
waters, the few wavebands available, along with the medium spectral resolution, impair the
SIF retrieval (Gilerson et al., 2007). For this reason, the practical use of the SIF generated
from inland and coastal waters is still under-exploited (Gupana et al., 2021). Nevertheless,
hyperspectral measurements could potentially facilitate the decoupling of the different
optical components signal contributions, improving the SIF retrieval. Obtaining a valid SIF
proxy for optically complex water will help inland water monitoring and understanding.
Furthermore, it could be used to estimate the phytoplankton primary production (PP) also
in these environments.

Understanding the link between the SIF full spectrum and photosynthesis in terrestrial
vegetation and improving the SIF retrieval for primary production estimation from inland
waters are fundamental, specifically in view of the upcoming FLEX (FLuorescence EXplorer)
satellite mission of the European Space Agency (ESA), the launch of which is planned for
2025. FLEX is the first satellite mission specifically designed for terrestrial SIF measurements
(Drusch et al., 2016). It will provide measurements at a spectral and spatial resolution
enabling the retrieval and interpretation of the full chlorophyll fluorescence spectrum
emitted by terrestrial vegetation (Drusch et al., 2016). Although FLEX is mainly directed
toward over land applications the acquired hyperspectral measurements could be used for
scientific applications in coastal areas and inland waters, supporting the interpretation of
Sentinel-3 observations (Drusch et al., 2016).
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1.1 Objectives

SIF represents a promising tool to monitor both terrestrial and aquatic vegetation.
However, as previously mentioned, its retrieval and interpretation are challenging and
several complexities have been highlighted depending on the ecosystem considered. At
present, in terrestrial vegetation, a novel generation of algorithms allow to obtain the TOC
SIF full spectrum (e.g. Zhao et al., 2018; Liu et al., 2015; Cogliati et al., 2019; Verhoef et al,
2018; Celesti et al., 2018). Nevertheless, the possibility to gain more information about plant
functioning and productivity from the SIF full spectrum, with respect to the traditional
approaches (i.e. SIF evaluated in the O2 bands and reflectance-based indices) need to
be assessed. Current retrieval methods evaluate the TOC SIF, but the obtained spectrum
is severely affected by distortions due to the SIF reabsorption process, occurring within
the leaf-canopy system. This phenomenon further complicates the link between SIF and
photosynthesis. Therefore, correcting the TOC SIF spectrum for the reabsorption could
improve the evaluation of the SIF yield. On the other hand, aquatic ecosystems are very
dynamic and the signal acquired by proximal and remote sensors is strongly influenced
by the water body constituents. Specifically, Case-2 waters are currently under-studied
because of the strong presence of optically active pigments, other than phytoplankton,
that complicates the SIF retrieval. The advent of VIS-NIR hyperspectral observations
could potentially help to disentangle biotic (particle bearing Chl-a pigments) and abiotic
(suspended and dissolved matter) contributions in the signal acquired by the sensor. This
will contribute to improving the SIF retrieval algorithms, obtaining a valid proxy for
phytoplankton production estimation in optically complex waters.

In this context, the aim of my research consists in developing novel vegetation monitor-
ing strategies, based on the SIF signal, exploiting hyperspectral field measurements and
radiative transfer models at ground level. The specific objectives of this research can be
summarised as follows:

• characterizing the SIF full spectrum behavior at seasonal/diurnal scale in comparison
to SIF evaluated in selected bands and reflectance-based indices used as proxies for
different biophysical parameters (e.g, canopy chlorophyll content, leaf area index,
fraction of light absorbed by the canopy);

• investigating whether the SIFTOCyield approximates the SIF yield evaluated on the
spectrum corrected for the canopy reabsorption (SIFyield). Developing methodology
to correct the TOC SIF spectrum for reabsorption toward the estimation of the
SIFyield;

• improving the phytoplankton diurnal monitoring exploiting hyperspectral measure-
ments and a novel FLH parametrization specifically developed for clear lake waters.
Testing several phytoplankton primary production models exploiting hypersperctral
measurements and in-situ values in clear lake waters.
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1.2 Thesis Outlines

The objectives of the thesis are investigated in dedicated Chapters. Each Chapter is
organized as a scientific paper in which the theoretical background, the material and
methods, the results, the discussion and conclusions are presented.

In Chapter 2, novel SIF metrics defined on the full spectrum were compared with the
SIF evaluated in the two oxygen absorption bands (i.e. O2-A and O2-B) and to opportunely
selected reflectance-based indices. The analyses were carried out seasonally and diurnally
to better characterize the SIF full spectrum behaviour at different temporal scales. The ex-
perimental SIF full spectra used were retrieved from hyperspectral measurements collected
on the Italian site (Tuscany) of the ESA funded FLEXSense campaign, carried out in the
2018. In this framework, the spectral signal was acquired on three different crops, namely
forage, alfalfa and corn. Therefore, the SIF’s metrics potential variability due to the crop
considered was also investigated.

Chapter 3 focuses on the impact that reabsorption has on the TOC SIF spectral shape and
magnitude. A preliminary study was carried out comparing the TOC SIF to the fluorescence
generated at the photosystems level and therefore not affected by the reabsorption. The
analysis were performed on a synthetic dataset opportunely generated coupling the
MODTRAN5 and SCOPE radiative transfer models (RT). The reabsorption impact on the
TOC SIF was evaluated in different illumination conditions, canopy development stages
and plant physiological state exploiting the SIF metrics defined in Chapter 2. Furthermore,
the fluorescence yield evaluated at TOC scale (SIFTOCyield) was compared to the corresponding
values calculated on the photosystems level SIF spectra (SIFyield). The same synthetic
dataset was exploited to develop strategies able to correct the TOC SIF for the reabsorption
process (SIFRC). The first approach investigated was the parametric method in which
the SIFRC spectral shape was parametrized combining the SIF wavelengths emission with
constant values, TOC SIF metrics and regression coefficients. The second approach exploits
a Fourier based method coupled with a supervised Machine Learning (ML) algorithm. It
was developed in collaboration with the Laboratory of Advanced Bio-spectroscopy (Physics
Department “G. Occhialini”) of the University of Milano-Bicocca. The methods’ accuracy
and robustness were evaluated on the synthetic dataset and then they were applied on the
experimental spectral measurements investigated in Chapter 2.

The inland waters’ objective is addressed in Chapter 4. All the analysis described were
carried out on experimental measurements and water samples collected on Lake Maggiore
during the field campaign organized in 2019. Continuous hyperspectral measurements
were exploited to implement the FLH algorithm for inland waters applications. The phyto-
plankton temporal evolution was analyzed exploiting remote sensed indices and metrics
linked to the amount of light reaching the target (EPAR), the chlorophyll-a concentration
([Chl-a]OC4) and the fluorescence emission proxy (SIFFLH). Furthermore, the relations
between the remote sensed quantities and the laboratory analysis outcomes were employed
to develop and test several phytoplankton primary productivity (PP) models. The content
of this chapter is published on Sensors as: Cesana, I., Bresciani, M., Cogliati, S., Giardino, C.,
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Gupana, R., Manca, D., Santabarbara, S., Pinardi, M., Austoni, M., Lami, A. and Colombo,
R., 2021. Preliminary Investigation on Phytoplankton Dynamics and Primary Production
Models in an Oligotrophic Lake from Remote Sensing Measurements. Sensors, 21(15),
p.5072.

Chapter 5 is dedicated to the conclusions in which the main findings of the PhD
research, along with the future perspective, are summarized.





Chapter 2

Characterizing the SIF full
spectrum at Seasonal/Diurnal
scales for agricultural crops

2.1 Theoretical background

Indices evaluated from the remote sensed reflectance have been historically employed
to characterize and follow biophysical and phenology changes occurring in terrestrial
vegetation at different spatio-temporal scales (Grace et al., 2007, Zarco-Tejada et al., 2013,
Pettorelli et al., 2005). Nevertheless, the analysis of the remote sensed SIF emitted by
the Chl-a pigments is emerged as a novel and promising strategy to monitor terrestrial
vegetation dynamics (Mohammed et al., 2019). SIF offers more advantages compared
to the reflectance-based approach, because this signal is originating uniquely from the
vegetation and it is more related to plant physiology (Verrelst, Rivera, et al., 2015) inasmuch
as strongly linked to the photosynthesis process. Most of the reflectance indices have been
implemented in order to minimize the variability linked to the solar-target-sensor geometry,
along with the BRDF effects, and maximize the relation to the biophysical parameters, such
as the canopy chlorophyll content and structure, leaf area and composition and fraction
of solar light absorbed by the Chl pigments. Therefore, reflectance indices are mainly
characterized by slow changes in the temporal domain (Rautiainen et al., 2010; Verrelst et
al., 2012). SIF is also driven by the same biophysical parameters influencing the reflectance,
but in addition, it also depends on physiological fluctuations occurring during the day,
therefore it shows a diurnal dynamic (Amoros-Lopez et al., 2008; Zarco-Tejada et al., 2013).

As previously introduced in Chapter 1, the SIF retrieval is challenging regardless the
scale considered. Moreover, the strategies currently developed requires hyperspectral
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measurements and retrieve mainly the SIF in the far-red. Nevertheless, in the last years, a
new generation of SIF retrieval approaches have been developed to evaluate the fluorescence
emission between 640-780 nm from hyperspectral ground measurements (e.g., Zhao et al.,
2014; Zhao et al., 2018; Liu et al., 2015; Cogliati et al., 2015; Verhoef et al., 2018; Celesti et
al., 2018). In this Chapter, the SpecFit algorithm proposed by Cogliati et al., (2019) has been
applied on the experimental measurements collected during the ESA-funded FLEXSense
campaign carried out in the 2018. The algorithm retrieves the SIF and reflectance (R) full
spectra between 670 and 780 nm starting from the downwelling (Ld) and upwelling (Lu)
radiances. The SpecFit accuracy and robustness have been already tested on both synthetic
and field measurements in Cogliati et al., (2019). In particular, the experimental dataset
used to evaluate the SpecFit performances over different vegetations and illumination
conditions is the same used in this work. On the experimental full spectra obtained,
conventional and novel SIF metrics and reflectance-based indices have been defined.

The aim of the work described in this chapter is to investigate whether metrics defined
on the SIF full spectrum are more informative with respect to the SIF evaluated in the two
oxygen absorption bands. These novel metrics have been also compared to reflectance-
based indices used as proxies for specific crop’s biophysical parameters (i.e. fraction of
light absorbed by the canopy, chlorophyll content, photosynthetic activity) to assess their
behaviour at different temporal scales (i.e. seasonally and daily) and for different crop
types.

2.2 Material and Methods

2.2.1 Field measurements over different crops

The field hyperspectral measurements analysed were acquired in an agricultural area
placed in central Italy, in the province of Grosseto (Tuscany, Italy), during the ESA-funded
FLEXSense campaign carried out in the 2018. Hyperspectral incoming (Ld) and upwelling
(Lu) radiances were systematically collected over three different targets: forage, alfalfa and
corn. The forage was characterized by several growing stages, from bare soil up to dense
canopy (21st of February - 24th of May). Alfalfa acquisitions were performed from the 25th

of May to the 12nd of July over an already well-developed canopy. The only evident change
in the crop chlorophyll amount was linked to a cut around the end of June. Hyperspectral
measurements over corn started on 13th July and concluded on 31th August. Similarly, to
the forage, also corn was characterized by a continuous growth during the acquisition time
frame.

Field measurements were collected with the same instrument, a FLoX spectroradiometer
(by JB-Hyperspectral Devices, Germany). FLoX is particularly recommended for contin-
uous and long-lasting field measurements because requires only minimal user inputs
and maintenance. Moreover, its SNR, spectral coverage and resolution are designed in
agreement with the ESA FLEX mission instrument specification (Cogliati et al., 2019). FLoX
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is equipped with two spectrometers:

• QEPro optic (Ocean Optics, USA) characterized by high spectral resolution in the
wavelengths range in which the SIF emission occurs (650-800 nm), a FWHM of 0.30
nm and sampling interval (SSI) of 0.15 nm suitable for the top of canopy SIF retrieval;

• FLAME-s optic (Ocean Optics, USA) covering a spectral interval in the VIS-NIR with
a FWHM of 1.7 nm and SSI of 0.6 nm.

Both the spectrometers were housed in a Peltier thermally regulated box, keeping the
internal temperature lower than 25°C in order to reduce the dark current drift (Campbell
et al. 2019). The FLoX is designed for high temporal frequency acquisitions of about 5
minutes time interval.

The experimental set-up is schematically shown in Figure 2.1. The sensors collecting
the upwelling radiance were set at 1-3 meters height. Since the sensors were placed few
meters above the target, atmospheric corrections have been not applied on the spectral
measurements acquired. The experimental set-up were kept unchanged once installed
on the selected crop. The optic pointing downward was characterized by a FOV of 25°
and was placed perpendicular to the target (nadir viewing angle). Therefore, the average
circular region acquired by the sensor was about 0.25 m2. This optic consists into a
bare fiber measuring the target upwelling radiance in which both the crops reflected and
emitted contributions are present. Conversely, the incoming solar irradiance was collected
using a cosine receptor. The spectral measurements were acquired in accordance with the
protocol described in Cogliati et al., (2019). Each acquisition cycle consists into consecutive
measurements of the Ld, followed by Lu arising from the target and an additional Ld. The
signal is automatically optimized for each channel at the beginning of each measurement
cycle (lasting in 5 minutes) and two associated dark spectra are collected as well. Metadata
such as spectrometer temperature, detector temperature and humidity, GPS position and
time are also stored in the SD memory of the system. A quality criterion was used to
preliminary select measurements acquired in stable illumination conditions. Specifically,
the quality flag was automatically evaluated by the FLoX as the difference between the two
consecutive Ld acquired within the same collection cycle. Only measurements characterized
by a difference lower than the 1% have been considered for the analysis.

FLoX data collected were processed applying spectral and radiometric calibration
procedures to convert row digital counts to at-sensor calibrated radiances. Specifically,
two open-source R packages (https://github.com/tommasojulitta) were used to obtain the
incoming radiance to the surface (Ld), the TOC upwelling radiance (Lu) and the apparent
reflectance spectra. These packages also estimate the SIF in the O2-A and O2-B bands using
the SFM method (Meroni et al., 2009) and the PRI reflectance index. The radiances and the
SIF evaluated are measured in mWm−2nm−1sr−1.

All the analysis presented in this work were carried out on clear sky days selected by
analyzing the diurnal trend of the incoming radiance at 750 nm. The seasonal analysis has
been performed on spectra acquired in a 30 minutes interval centered in the solar noon.
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Conversely, in the diurnal analysis, spectra collected between the 07:00 and 17:00 (UTC
time) were used.

Figure 2.1: Location of the FLEXSense campaign site in Italy. Panels A, B and C show the three crops
investigated (forage, alfalfa and corn), the experimental set-up and the acquisition time intervals.



2.2 Material and Methods 13

2.2.2 Vegetation Reflectance Indices

The most widespread type of indices defined from remote acquisition are based on
mathematical combinations of reflectance bands selected within visible and near infrared
(NIR) spectral ranges. The main purpose of these indices is to synthetize the information
contained in the reflectance bands, to infer the vegetation biophysical characteristics,
minimizing soil, atmospheric and sun-target-sensor geometry sources of errors. In general,
this kind of indices is able to describe more than 95% of the vegetation biophysical
variability observed during the entire crop-growing season and they are closely related to
the green leaf biomass (Gitelson et al., 2003a; Gitelson et al., 2003b; Jiang et al., 2006). In
this work, canonical and novel reflectance-based indices have been investigated.

The NDVIred−edge (Normalized Difference Vegetation Index), introduced for the first
time by Viña and Gitelson (2005), was used because it is well correlated to the fraction of
light absorbed by the chlorophyll pigments (fAPAR), according to Li et al., (2020).

Most of the vegetation indices tend to be species specific and therefore are not robust
when applied across different crops, characterized by different canopy architectures and
leaf optical properties. Therefore, CIred−edge (Chlorophyll Index) was chosen because
insensitive to the crop type and exhibits a low sensitivity to soil background effects. Unlike
its canonical equation, defined by Gitelson et al., (2005), the CIred−edge used in this works
exploits the NIR reflectance evaluated in spectral range corresponding to 770-780 nm
instead of 790-800 nm, and the red-edge interval starting from 705 nm up to 715 nm.

To capture the changes in the photosynthetic activities, the Photochemical Reflectance
Index (PRI) was evaluated (Gamon et al., 1992; Campbell et al., 2019). PRI is typically
calculated as a normalized difference in the visible spectral range, utilizing reflectance at
the 531 nm, as compared to a reference band at 570 nm (Campbell et al., 2019). Diurnal
dynamics in PRI are mainly driven by changes in the xanthophyll cycle and illumination
levels (Peñuelas et al., 1995; Gamon et al., 1997). Therefore, at diurnal scale, the PRI
correlates well with the NPQ (Non-Photochemical Quenching). For this reason, it was
compared to the SIF metrics. Conversely, the PRI response over seasonal timescales is
more linked to changes in the photosynthetic pigment contents (e.g., chlorophyll and
carotenoids), in the canopy structure and background signal. Under these circumstances,
the relationship between PRI and the xanthophyll cycle is modified (Alonso et al., 2017).
Furthermore, the PRI is strongly correlated with the CIred−edge because they are both
mostly driven by the canopy chlorophyll, as reported by Campbell et al., (2019). Since,
these two reflectance indices brought the same information at seasonal scale, only the
CIred−edge was investigate.

The last index selected is the NIRv (near-infrared reflectance vegetation index), in-
troduced for the first time by Badgley et al., (2017), and originally used to evaluate the
reflectance fraction attributable to vegetation in mixed pixel. This novel index is computed
as the product between the NIR reflectance and the NDVI, using the spectral bands defined
in Wu et al., (2020). According with Sellers and coworkers, cited in Badgley et al., (2017),
NIR reflectance should be a more robust proxy for the fAPAR than NDVI, if it were only
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possible to disentangle the vegetation signal from the variation in non-vegetated back-
ground reflectance (Badgley et al., 2017). However, since NDVI itself is used to estimate
the vegetation cover, the NIRv is able to capture the fraction of NIR reflectance attributable
to the only vegetation because it better normalizes the variation in background reflectance
than NDVI and NIR alone. Moreover, NIRv correlates well to fluorescence because this
latter parameter is insensitive to background contamination and is strongly linked to the
GPP (Gross Primary Production), a fundamental proxy used to monitor the photosynthesis
activity. However, these strong relationships are true only at large time scales (i.e. monthly),
but require a modified NIRv definition in the diurnal analysis framework. Therefore, the
NIRv index was investigated only at seasonal scale. In this case, the NIRv correlates well
with the SIF as long as the observed canopy is not stressed. Furthermore, the NIRv only
gives the information related to canopy structure but it does not provide the physiological
information carried by the SIF.

Table 2.1 collects the indices used and the corresponding equations.

R-based spectral indices definition References

NDVIred−edge =
RNIR − Rred−edge
RNIR + Rred−edge

Viña and Gitelson (2005)

CIred−edge =

(
RNIR

Rred−edge

)
− 1 Gitelson et al., (2005)

PRI =
R531 − R570
R531 + R570

Gamon et al., (1992)

NDVI =
RNIR − Rred
RNIR + Rred

Tucker et al., (1975)

NIRv = NDVI ∗ RNIR Bagley et al., (2017)

Table 2.1: Reflectance-based indices. The PRI index used have been evaluated automatically by the
FLoX routine. The spectral bands used to estimate the other indices are 670-680 nm (red), 705-715
nm (red-edge) and 770-780 nm (far-red).



2.2 Material and Methods 15

2.2.3 SIF spectrum metrics

The SIF metrics were defined on the full spectra obtained using the SpecFit algorithm
proposed by Cogliati et al., (2019). This method allows to disentangle the SIF and R spectra
from the total radiance evaluated at TOC level in the 670-780 nm spectral window. SIF
and R are retrieved employing general-purpose mathematical functions that parametrize
their shapes in the VIS-NIR spectral region. Specifically, the surface reflectance spectrum is
modeled as a cubic-spline with 20 knots, while the SIF spectrum is approximated as a linear
combination of two Lorentzian functions centered in the red and far-red, respectively. The
algorithm combines the modeled SIF and R functions with the experimental Ld, obtaining
the upwelling radiance (Lu). The Lu modeled in this way is iteratively compared to the
corresponding experimental spectrum. In each iteration, the coefficients used to define the
SIF and R spectral shapes are optimized until the best matching between the modeled and
experimental Lu is reached. The Matlab source code of the present algorithm is available
for download thought to the git repository https://gitlab.com/ltda/flox-specfit.

The SIF metrics defined on the SpecFit full spectrum and investigated hereinafter can
be divided in two groups:

• conventional metrics, in which the SIF is evaluated in the two oxygen absorption
bands (i.e. O2-B at 687 nm and O2-A at 760 nm);

• novel fluorescence metrics, specifically the SIF evaluated at the two peaks (i.e. in
the red and far-red), the corresponding wavelength positions and the spectrally
integrated SIF over 670-780 nm. The SIF at the peaks was selected because linked to
the two photosystems PSI and PSII maximum emission. For the first time also, the
corresponding wavelength positions were investigated at seasonal and diurnal scales.
The spectrally integrated SIF, by definition, corresponds to the total amount of light
emitted as fluorescence in the FOV acquired by the sensor.

Table 2.2 collects the SIF metrics previously defined, while Figure 2.2 shown the metrics
over the full spectrum.
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Fluorescence metrics Description
SIF687 SIF value at 687 nm (O2-B band)
SIF760 SIF value at 760 nm (O2-A band)
SIFred SIF maximum emission in the red

SIFfar−red SIF maximum emission in the far-red
λred SIFred wavelength position

λfar−red SIFfar−red wavelength position
SIFINT spectrally integrated SIF over 670-780 nm

Table 2.2: Fluorescence metrics evaluated on the full spectrum.

Figure 2.2: Fluorescence metrics defined on the full spectrum. Black line corresponds to the incoming
radiance (Ld), red line to the top of canopy SIF, grey bands to the O2 absorption bands, grey
dashed lines to the wavelengths’ positions corresponding to the peaks in the visible red and far-red,
respectively. Black dots highlight the SIF metrics position on the full spectrum.
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2.3 Results

2.3.1 Seasonal analysis

2.3.1.1 Reflectance Indices

Figure 2.3 collects the seasonal trends of the reflectance indices. The PAR (Figure
2.3A), defined as the integral of the incoming radiance Ld over the Photosynthetically
Active Radiation spectral interval (400-700) nm, was used to track the illumination seasonal
changes.

Figure 2.3: Seasonal trend corresponding to the reflectance-based indices. Panel A contains the PAR,
Panel B shows the NDVIred−edge (in blue) and the NIRv (in red), Panel C displays the CIred−edge.
The temporal information is showed on the x axes as Day of the Year (DOY). Data showed have been
averaged over the 30 minutes interval around the solar noon. Dashed lines divide the different crop
time series: forage, alfalfa and corn, respectively.
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The indices investigated globally follow the PAR evolution in time. The only exception
is represented by the first three measurements acquired on corn, in which the PAR slightly
decreases in time, while the spectral indices increase. For all the crops investigated,
the trends associated to NDVIred−edge (Figure 2.3B), NIRv (Figure 2.3B) and CIred−edge
(Figure 2.3C) agree to each other. The forage time series consider the largest number of
clear sky days (10 days) and shows an initial growth, then followed by a saturation of the
indices’ values. Lower values correspond to acquisitions carried out around March and over
a crop in the first growing stages. The increase in the indices is clearly observed starting
from DOY 100 (Day Of the Year). This behaviour is probably due to an enhancement
of the light reaching the target (PAR), but also to a gradual development of the crop,
as suggested by the CIred−edge (linked to the canopy Chl content), NIRv (linked to the
vegetation contribution in the reflectance) and NDVIred−edge (linked to the fAPAR) trends.
Considering alfalfa, only five clear sky days were selected. All the indices show a minimum
around DOY 160. This trend is probably attributable to a change in the crop chlorophyll
content, rather than to a variation in the illumination reaching the target because the PAR
is almost constant in the temporal interval investigated. I remind that the alfalfa was cut
around the end of June, therefore, the indices trends agree with this last observation. Finally,
the corn times series is composed by four clear sky days. As observed for the alfalfa, the
PAR show values always around 400 Wm−2, but the indices investigated are characterized
by a monotonic increase in time consistently with an crop under development.

2.3.1.2 SIF full spectrum metrics

The seasonal trends of the SIF metrics linked to the fluorescence magnitude are collected
in Figure 2.4. As observed for the reflectance-based indices, also the SIF metrics values in-
crease with the PAR, because the greater the amount of light reaching the target, the greater
the fraction of light absorbed by the Chl-a pigments and then dissipated as fluorescence (in
not stressed conditions). However, both the increase of the incoming light and the amount
of chlorophyll content contribute to the growth of the SIF signal in the entire spectral region
in which fluorescence occurs. Therefore, lower values are observed in correspondence
of crops in the first stages of growing, such as forage (between DOY 50 and DOY 100)
and corn (DOY around 200). Conversely, values greater than 2 mWm−2nm−1sr−1 (SIF760
and SIFfar−red) and 100 mWm−2sr−1 (SIFINT ) were obtained over canopy well developed.
The same trend is observed also in the the SIF metrics evaluated in visible red spectral
region (Figure 2.4C). The metrics’ values always lie below 2 mWm−2nm−1sr−1, because
the SIF signal is here strongly diminished by the canopy reabsorption effect. Therefore, the
transition between sparse and dense vegetation, along with the corresponding chlorophyll
content increases, is less clear compared to the trends observed in Figure 2.4A and Figure
2.4B.
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Figure 2.4: Seasonal trend corresponding to the SIF full spectrum metrics. Panel A contains the PAR
(in blue) plotted together the SIFINT (in red), Panel B shows metrics evaluated in the far-red spectral
region (in blue SIF760 and in red SIFfar−red), Panel C displays the metrics defined in the visible red
spectral region (in blue SIF687 and in red SIFred). The temporal information is showed on the x axes
as Day of the Year (DOY). Data showed were averaged over the 30 minutes interval around the solar
noon. Dashed lines divide the different crop time series: forage, alfalfa and corn, respectively.

Focusing on the SIF760 and SIFfar−red metrics, they show the same seasonal trend,
regardless the crop considered. In particular, values referred to sparse canopies almost
overlap, as observed at the beginning of forage and corn time series. The variability
between the SIF evaluated at a specific wavelength (i.e. at 760 nm) and the fluorescence at
the maximum emission peak in the far-red is clearer when crops already developed are
considered. In this case, the increase of the chlorophyll content, and then of the canopy
biomass, determines a growth of the SIF signal in the far-red spectral region due to the
reabsorption and scattering processes.

Similarly to the fluorescence metrics defined in the far-red, the SIF687 and SIFred show
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the same temporal pattern regardless the crop considered. However, the differences in
terms of absolute values are smoothed by the SIF reabsorption occurring in the visible red
spectral region.

The qualitative correlations previously highlighted between the several SIF full spec-
trum metrics were quantitatively investigated in Table 2.3 and Figure 2.5. The linear
regressions showed in Figure 2.5 and the corresponding statistics were evaluated on the
values averaged around midday and for all the crops together.

Figure 2.5: (top) Comparison between the SIF metrics evaluated in the far-red spectral range. (bottom)
comparison between the metrics evaluated in the red spectral range. All the crops are displayed
together; the colored dots represent the whole acquired time series. Color bar contains the temporal
information. Black dots correspond to the spectral measurements averaged around the solar noon,
while the error bars are the standard deviations. Red lines are the linear regressions performed on
the averaged values.
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CASE ID Coefficients Fitting values Interval of confidence
A p1 1.31 (1.19 ; 1.42)

p2 0.23 (-0.11 ; 0.57)
B p1 72.44 (64.78 ; 80.10)

p2 18.51 (-3.16 ; 40.19)
C p1 55.64 (53.66 ; 57.61)

p2 5.36 (-2.34 ; 13.06)
D p1 1.03 (0.92 ; 1.14)

p2 0.06 (-0.06 ; 0.17)
E p1 237.50 (186.40 ; 288.50)

p2 -22.78 (-74.46 ; 28.90)
F p1 233.10 (193.8 ; 273.4)

p2 -38.11 (-81.21 ; 5.00)

Table 2.3: Coefficients obtained from the linear regressions performed on the comparison between
the SIF full spectrum metrics. The fits have been evaluated only on the values averaged around the
solar noon. The Case ID corresponds to the several Panels collected in Figure 2.5.

Strong linear correlations were observed when the SIF evaluated in the two O2 bands
(O2-A and O2-B) are compared to the corresponding metrics estimated at the SIF maximum
emission in the far-red and red. In particular, the regression line performed in the scatterplot
between SIF760 and SIFfar−red shows a slope (p1) equal to 1.31, R2 of 0.98 and RMSE equal
to 0.29 (Figure 2.5A). From the SIF687-SIFred comparison, a lower R2 has been estimated
(R2=0.95), but the values obtained are closer to the 1:1 (not showed in the figure) with a p1
equal to 1.03 and RMSE of 0.08 (Figure 2.5D).

The SIF metrics were also compared to the SIFINT values to verify whether the full
spectrum carries different information compared to the SIF evaluated at selected wave-
lengths. Both the SIF760 and the SIFfar−red linearly increase with the SIFINT (Figure 2.5B
and Figure 2.5C). However the SIFfar−red is more correlated to the SIFINT respect to the
SIF760, with a R2= 0.99 and a RMSE = 6.37. Concerning the visible red spectral region,
the link between SIF687, SIFred and SIFINT is more complex to interpret. When sparse
vegetation is considered (bottom left portion of the plot in Figure 2.5E and Figure 2.5F), the
SIFINT increase linearly with the other two metrics. For more developed canopies (top right
portion of the plot in Figure 2.5E and Figure 2.5F), the SIF687 and SIFred values are soften
by the reabsorption process. Their growth is then less pronounced compared to the SIFINT
one. These behaviours determine a change in the slope between the SIF metrics at a specific
wavelength and the SIFINT when different canopy structure are considered (e.g. Figure
2.5F). Considering the whole time series, SIF687 and SIFred are then less correlated to the
SIFINT respect to SIF760 and SIFfar−red. Specifically, the linear regressions performed on
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the scatterplot in Figure 2.5E and Figure 2.5F, show R2 equal to 0.81 (SIF687) and 0.83
(SIFfar−red).

For the first time, the wavelengths position corresponding to the SIF maximum emission in
the red and far-red were investigated (Figure 2.6). λred and λfar−red were compared to
the CIred−edge spectral index to evaluate their behavior for increasing chlorophyll content
values.

Figure 2.6: Experimental SIF peaks position trends for different CIred−edge values. (left) λred. (right)
λfar−red.Data showed have been averaged over the 30 minute interval around the solar noon. Blue
dots correspond to forage, red triangles to alfalfa and green square to corn.

All the λred estimated lie between 684 nm and 687 nm (Figure 2.6, left Panel). In the
forage case (blue dots) a clear variability with the CIred−edge is observed. Specifically,
an initial increase is then followed by constant λred values. The alfalfa peak positions
(red triangles) are grouped into a cluster probably because also the CIred−edge vary only
between 3 and 4. Finally, the corn values (green squares) are constant, regardless the
CIred−edge considered and show the lowest values compared to the other two crops.
Conversely, the λfar−red undergoes to a shift toward longer wavelengths for increasing
CIred−edge, with values lying between 735 nm and 745 nm (Figure 2.6, right Panel).
CIred−edge lower than 1 are linked to almost bare soil/sparse vegetation conditions.
However, also not considering the points characterized by CIred−edge below 1, the overall
λfar−red shift toward longer wavelengths is clear, specifically in the forage and corn cases.
Conversely, all the far-red peak positions evaluated for alfalfa are constant and lie around
740 nm. Focusing on the forage time series, because composed by the higher numbers of
days, the λred and λfar−red values mutually increase up to CIred−edge equal to 2. After
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this point, the λred declines, while λfar−red goes on shift toward longer wavelengths.
These different behaviours with the CIred−edge (and with the canopy chlorophyll content)
are probably linked to the SIF reabsorption. In case of sparse vegetation, the temporal
patter is dominated by the increase of the photosynthetically pigments concentration, while
in dense canopies the reabsorption prevails and strongly affects the SIF spectral shape.
Therefore, the emission in the visible red is uniformly soften and the λred are almost
constant. Conversely, the SIF contributions in the far-red increases with the CIred−edge
determining a λfar−red shift toward longer wavelengths.

2.3.1.3 SIF metrics and Reflectance indices relationships

Figure 2.7 shows the qualitative comparison between the reflectance-based indices and
the SIF metrics in order to evaluate their mutual evolution at seasonal scale and to highlight
links between couples of selected parameters. Each panel displays all the crops together in
order to examine the potential inter-crop variability. SIFred and SIFfar−red are strongly
correlated to SIF687 and SIF760, as demonstrated in Figure 2.5. Therefore, only the two
metrics evaluated in the O2 bands were selected for the comparisons. The lines showed
in Figure 2.7 help to follow the variables evolution in time and do not have a statistical
meaning.

Figure 2.7: Comparison between selected SIF metrics and R indices. Blue dots correspond to forage,
red triangles to alfalfa and green square to corn. Values displayed correspond to the values acquired
around the solar noon (not averaged).
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In all the cases investigated, the spectral indices and metrics evaluated on forage (blue
dots) and alfalfa (red triangles) have comparable values. Corn (green squares) shows, in
general, lower values except when the SIF687 row and the NIRv column are considered.
In these cases, there is no longer a difference between the three crops absolute values.
The SIF687 is strongly affected by the reabsorption and this effect smooths the potential
inter-crop variability, regardless the reflenctance index considered (Figure 2.7, second
row). In forage and corn, the SIF687 shows a saturated pattern, in which the lower values
correspond to the measurements acquired over crops not already developed. Concerning
the NIRv (Figure 2.7, third column), it has been selected because more linked to the signal
emitted by the vegetation respect to the NDVI. For this reason, it has been expected to
be correlated to the SIF. Linear correlations have been observed between the NIRv, the
SIF760 and SIFINT , while the link with SIF687 is probably affected by the reabsorption. The
NDVIred−edge was used as a proxy for the fAPAR and it increases with all the SIF metrics
considered at seasonal scale (Figure 2.7, first column). In particular, a linear relation was
observed between NDVIred−edge and SIFINT . Finally, the CIred−edge was selected because
linked to the canopy chlorophyll content and less affected by the vegetation types respect
to the NDVIred−edge (Figure 2.7, second column). However, the CIred−edge shows an
inter-crop variability, except in the SIF687 case. In general, this spectral index increase with
the SIF metrics, but a linear relation has been observed only in the comparison with the
SIF760.

A statistical study was performed by means of a Principal Component Analysis (PCA).
PCA is a highly suitable approach to explaining variations and potential links between
variables in a multivariate dataset. The tool (toolbox 1.5) used in this framework has been
developed and provided by the Chemometrics and QSAR Research Group of the Univer-
sity of Milano-Bicocca. Seven variables were investigated, specifically the six parameters
showed in Figure 2.7 (i.e. NDVIred−edge, CIred−edge, NIRv, SIF760, SIF687, SIFINT ) and
the PAR. The cumulative variance, in percentage, highlighted that more than the 90% of
the dataset information is contained in the first two components (see Figure 2.8). Figure 2.8
summarizes the PCA outcomes. Specifically, Figure 2.8A shows the scores on the first two
components, while Figure 2.8B the loadings
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Figure 2.8: Principal component analysis performed at seasonal scale. (A) Scores on the first two
principal components. Blue dots correspond to forage, red triangles to alfalfa and green square to
corn. Values displayed correspond to the values acquired around the solar noon. (B) Loadings on
the first two principal components. The seven variables on which the PCA has been performed are
displayed here.



26 Characterizing the SIF full spectrum at Seasonal/Diurnal scales for agricultural crops

Figure 2.8A collects all the measurements acquired in the 30 minutes interval around
the solar noon. The temporal information is highlighted as Day Of the Year (DOY), while
the different symbols and colors used allow to discern between the three crops investigated.
Each cluster, identified in Figure 2.8A, collects measurements characterized by similar
behaviours in time. For example, corn values acquired in consecutive days (i.e. DOY
199, 200 and 201) fall in the same cluster because the variables selected for the PCA were
almost constant in the time interval considered (see Figure 2.3 and Figure 2.4 as reference).
Concerning the first principal component (PC1) it seems to be related to the canopy
chlorophyll content. Following the forage time series (blue dots), the values acquired on
sparse vegetation (i.e., DOY lower than 90) are characterized by negative PC1. Conversely,
data linked to a denser canopy (i.e. measurements collected in DOY greater than 90) are
characterized by positive PC1 values. A similar pattern is observed for the corn case (green
square). Although the few clear sky days available (only four), a clear shift of the PC1
toward positive values is observed in the temporal interval considered. Concerning alfalfa
(red triangles), all the measurements show PC1 values greater than 0. However, the lower
PC1 value (close to zero) is observed for DOY 161, around the harvesting day. Again, this
trend supports the hypothesis that the first principal component is linked to the chlorophyll
amount, because the alfalfa was cut around DOY 160. Focusing on the second principal
component (PC2), there is a clear separation between measurements acquired on forage,
characterized by negative values, and the other two crops. Exploiting the temporal analysis
reported in Figure 2.3 and Figure 2.4, the PAR is the only parameter that varies for forage,
while is almost constant for alfalfa and corn. Therefore, the PC2 is probably linked to
changes in the illumination reaching the target.

Finally, the loadings plot (Figure 2.8B) highlights the correlations between the seven
variables investigated. All the points lie in the plot region characterized by positive PC1
values, therefore all the parameters considered are positively correlated to each other. This
result is supported by the relations displayed in Figure 2.7. Furthermore, a cluster is clear
on the right portion of the plot. The only two outliers are represented by the PAR and
SIF687. Points corresponding to NDVIred−edge, NIRv, CIred−edge, SIF760 and SIFINT are
very close to each other, therefore they are strongly positively correlated. As observed in
Figure 2.7, opportunely selected couples of these variables, lying in the above-mentioned
cluster, are linearly related. Concerning the second principal component in Figure 2.8B, the
SIF687 and SIF760 are negatively correlated. The SIFINT , instead, lies between these two
metrics, but it is closer to the fluorescence evaluated at 760 nm.
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2.3.2 Diurnal analysis

As introduced in the Theoretical background, both the reflectance-based indices and
the SIF signal are strongly influenced by the canopy’s biophysical parameters such as
the amount of solar light absorbed, the canopy chlorophyll content and geometry. To
minimize the variability linked to these parameters, the diurnal analysis presented have
been carried out selecting only the clear sky days characterized by similar illumination
conditions (i.e. PAR), chlorophyll values (i.e CIred−edge) and fAPAR (i.e. NDVIred−edge).
Exploiting the seasonal trend showed in Figure 2.3, the PAR is almost constant starting
from DOY 100. Since the alfalfa was cut, measurements acquired before DOY 160 have
been selected. In this time interval, the alfalfa NDVIred−edge and CIred−edge are similar to
the corresponding values acquired on forage in DOY 110, 111 and 112. Conversely, the corn
time series consists in only four clear sky days. To minimize source of error linked to the
soil contributions, the only DOY acquired on an almost developed crop was selected (DOY
217). Of all the possible days highlighted, the diurnal analysis was carried out on DOY 112,
DOY 145 and DOY 217, for forage, alfalfa and corn, respectively. The aim is to maximize
in this way the inter-crop differences linked to the vegetation types (i.e., C3 for the forage
and alfalfa; C4 for the corn) and canopy geometries (i.e. the corn have elongated leaves
mainly arranged on the vertical direction, while forage and alfalfa develop horizontally).
Furthermore, if the biophysical parameters are comparable, the differences between the
reflectance-based indices and SIF metrics are mainly ascribable to the plant physiological
status and photosynthetic activity.
The measurements displayed correspond to half-hour average. The error associated to each
point represents the standard deviation.

2.3.2.1 Reflectance Indices

The reflectance indices selected for the diurnal comparison are the NDVIred−edge
because linked to the fraction on light absorbed by the photosynthetic pigments (fAPAR),
the CIred−edge used as proxy for the crop chlorophyll content (Cab) and the PRI because
linked to the photosynthetic activity and correlated to the NPQ at diurnal scale. Similarly
to the seasonal analysis, the PAR was used to follow the evolution of the incoming light
during the day. All the variables trends are displayed in Figure 2.9, in which the temporal
information is shown on the x axes as fraction of the day (DAYfrac), while the symbols and
colors used help to discern between the three crops investigated.
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Figure 2.9: Diurnal trends of reflectance-based indices in three selected clear sky days (forage: DOY
112, alfalfa: DOY 145, corn: DOY 217). Blue dots correspond to forage, red triangles to alfalfa, green
squares to corn. Data shown correspond to half-hour average. Error bars correspond to standard
deviations. The temporal information is reported in fraction of the day, where 0.5 corresponds to the
solar noon.
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As expected, the PAR diurnal trends are typical of clear sky days, with values propor-
tional to the cosine of the local solar zenith angle (SZA) and a maximum around the solar
noon (i.e. DAYfrac of about 0.5). As previously introduced, the DOY selected show similar
PAR values, therefore it is possible to state that the variables comparison was carried out
under the same illumination conditions, assuming an atmospheric transmittance almost
constant in the three days investigated.

Focusing on the reflectance-based indices, an inter-crop variability was observed. While
forage and alfalfa always show similar (e.g. in the PRI) or overlapped values (such as in
the NDVIred−edge and CIred−edge), the corn spectral indices are characterized by different
absolute values. This discrepancy is evident when the CIred−edge is considered: forage
and alfalfa show almost constant values around 4, whereas in corn the points lie between 4
and 6. However, the described difference is attributable to the DOY chosen for corn. Due
to the limited days available, DOY 217 is simply characterized by a chlorophyll content
greater compared to the other two crops, that influences also the NDVIred−edge values. In
terms of temporal trends, the forage and alfalfa NDVIred−edge and CIred−edge are constant
throughout the day. This pattern is reasonable for the CIred−edge, because it is linked to
the Cab, that does not vary at diurnal scale. The NDVIred−edge is used as a proxy for
the fAPAR, that, by definition, is the ratio between the aPAR (i.e. light absorbed between
400-700 nm) and PAR. Under the same assumptions highlighted for the PAR, the aPAR is
theoretically characterized by a similar diurnal trend, with a maximum around the solar
noon. Therefore, their ratio is theoretically constant at diurnal scale, as observed for the
forage and alfalfa. Conversely, the corn shows a depression around midday. Although the
reflectance bands are opportunely combined to minimize the variability linked to the solar
position respect to the target-sensor and canopy geometries, in the corn case a dependence
to the leaves architecture is still evident. The clear depression observed around the solar
noon is probably ascribable to the more complex canopy structure and row plantation of
corn, respect to the forage and alfalfa cases.

Concerning the PRI, greater negative values occur around the solar noon for all the
crops investigated. This temporal interval is characterized by the maximum of the PAR,
that potentially provoke a stress condition due to the strong illumination. In this situation,
the plants can activate protection mechanisms to dissipate the excess of light absorbed by
non photochemical (NPQ) or radiative (SIF) pathways in order to avoid potential damages
to the photosynthetic machinery. At diurnal scale, the PRI is related to the NPQ and the
trend observed around the solar noon could be ascribable to the plant answer of a stressed
condition. The differences in terms of PRI values between crops could be linked to the
vegetation type considered. Forage and alfalfa are C3, while corn is a C4, where C3 and
C4 represent two of the three possible photosynthetic pathways existing among terrestrial
plants. Furthermore, these two photosynthetic pathways respond quite differently to
changes in the temperature.
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2.3.2.2 SIF full spectrum metrics

Figure 2.10 collects the diurnal trends evaluated for all the SIF metrics defined in Table
2.2. In addition, the PAR is shown in Figure 2.10A.

Figure 2.10: Diurnal trends of the SIF metrics in three selected clear sky days (forage: DOY 112,
alfalfa: DOY 145, corn: DOY 217). Blue dots correspond to forage, red triangles to alfalfa, green
squares to corn. Data shown correspond to half-hour average. Error bars correspond to the standard
deviations. The temporal information is reported in fractions of the day, where 0.5 corresponds to
the solar noon.

From a qualitative point of view, all the SIF metrics referred to the magnitude (Figure
2.10B-F), show the same diurnal pattern observed for the PAR. As expected, the SIF is
strongly driven by the amount of light reaching the target. As observed at seasonal scale,
the metrics evaluated in the O2 bands and at the peaks are strongly correlated to each other.
Similarly to the reflectance-based indices, the forage and alfalfa are characterized absolute
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values that almost completely overlap when the metrics in the far-red (Figure 2.10C and
Figure 2.10E) and the spectrally integrated fluorescence are considered (Figure 2.10B).
Concerning the SIF687 (Figure 2.10D) and SIFred (Figure 2.10F), they are characterized by
different values in the central part of the day, between DAYfrac 0.4 (∼ 10:00 UTC time) and
DAYfrac 0.6 (∼ 14:00 UTC time). Unlike the reflectance indices, the values associated to
corn always lie below the other two crops. This behaviour could be linked to the PRI trend
and then to the NPQ. In Figure 2.9 the PRI referred to corn shows the greater negative
values: in this case the NPQ dissipation is stronger compared to what observed for forage
and alfalfa. Since NPQ and SIF are dissipation processes occurring in competition, a
predominant non-radiative dissipation could determine a decrease in the SIF efficiency
and then to a lower fluorescence signal. Nevertheless, the strong differences between crops
observed in the SIF metrics displayed in Figure 2.10B, C and E could be not only be due to
the NPQ influence. More likely, also the plants canopy architecture potentially emphasizes
the diversity between corn and the other two crops values. Finally, the peaks wavelength
position was investigated at diurnal scale (Figure 2.10G and Figure 2.10H). In general,
they show an overall constant trend. However, an inter-crop variability was observed.
Concerning the λred, forage and alfalfa are characterized by the same values, lying around
685.5 nm. Conversely, corn shows a lower λred of about 684.6 nm. Focusing on λfar−red,
each crop is characterized by a different value. Specifically, 740 nm, 742 nm and 744 nm for
alfalfa, forage and corn, respectively.

2.3.2.3 SIF metrics and Reflectance indices relationships

The links between SIF metrics and reflectance indices at diurnal scale were assessed
statistically by means of a PCA. The variables selected and the results obtained are sum-
marized in Figure 2.11. Seven parameters have been used for the analysis, namely PAR,
NDVIred−edge, CIred−edge, PRI, SIF760, SIF687 and SIFINT . The data displayed correspond
to all the measurements acquired during the three clear sky days selected (DOY). The
different crops investigated are recognizable by means of the colors and symbols used. The
cumulative percentage shows that the first two principal components contain more than
the 81% of the dataset information.
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Figure 2.11: Principal component analysis performed at diurnal scale. (A) Scores on the first two
principal components. Blue dots correspond to forage (DOY 112), red triangles to alfalfa (DOY 145)
and green square to corn (DOY 217). Values displayed correspond to values acquired during the
day. (B) Loadings on the first two principal components. The seven variables on which the PCA was
performed are displayed here.
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Focusing on the scores plot (Figure 2.11A), it is clear that forage and alfalfa follow the
same pattern during the day. Specifically, all the measurements almost overlap and are
placed in the same portion of the plot. A faint variability between forage and alfalfa is
observed for values characterized by negative PC1 and PC2 values. Referring to Figure
2.9 and Figure 2.10, these two crops show different values around the solar noon, when
the PRI and the SIF metrics (except SIF760) are considered. Concerning the PC1, corn
is characterized by all negative values on the PC1. Focusing on the second principal
component, all the crops are characterized by PC2 values lying between -4 and 6. For this
reason, the PC2 is probably linked to the PAR (as already occurs at seasonal scale), because
similar in the three days selected. Conversely, the PC1 account the different chlorophyll
content, canopy geometry and vegetation type.

The plot showing the loadings (Figure 2.11B), highlights the potential links between the
seven variables investigated. The PAR and all the SIF metrics lie in the portion of the graph
characterized by PC1 and PC2 positive values. Therefore, they are positively correlated
on both the two principal components, as already observed in Figure 2.10. These metrics
are linked to the PRI. In particular, the PRI and SIF are negatively correlated on the PC2
because they compete for the same PAR energy. Focusing on all the reflectance-based
indices, NDVIred−edge and CIred−edge show a similar diurnal profile and therefore are
characterized by the same PC1 and PC2 values. They are completely uncorrelated to the
PRI. Finally, NDVIred−edge and the CIred−edge are negatively correlated to the PAR (and
then to the SIF metrics) on the PC1, because they have been formulated to minimize the
effect of the sun-target-sensor geometry.

2.4 Discussion

2.4.1 Seasonal analysis

The reflectance-based indices NDVIred−edge, CIred−edge and NIRv were preliminary
investigated to characterize the changes of the crops at seasonal timescale (Figure 2.3).
In particular, the analysis of their temporal evolution can be exploited to identify the
different crops growing stages because they provide information about the canopy structure
and chlorophyll content. According to Campbell et al., (2019), the NDVIred−edge and
CIred−edge increase in time is distinctive of a crop under development (i.e. growing
stage). In the mature phase, these indices saturate, afterward they tend to decrease during
senescence. The forage time series is the only one in which both the growing and mature
phases are observed (Figure 2.3B and Figure 2.3C). In particular, the transition between
the two stages approximately occurs around DOY 100. This day has been then used to
qualitatively distinguish between sparse vegetation (DOY lower 100) and medium-dense
vegetation (DOY greater than 100). In this case, the reflectance indices evaluated show
values greater than 0.4 (NDVIred−edge and NIRv) and 2 (CIred−edge). All the clear sky
days selected for alfalfa show indices values similar to those obtained for a medium-dense
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vegetation. Expect for the minimum observed around DOY 160, the small variability
between the indices values is coherent with a crop in a mature phase. The faint decline
observed is ascribable to a decrease in the canopy chlorophyll content, according to the
information carried by the CIred−edge (used as proxy for the Cab) and the NIRv (linked to
the signal attributable to the vegetation). Concerning corn, only four days compose the
time series. Nevertheless, the monotonic increase of all the spectral indices suggests a crop
in a growing phase. In particular, from a quantitative point of view, values around DOY 200
are typical of sparse vegetation. Conversely, the single measure acquired at DOY 217 was
probably collected on the dense vegetation. The novel reflectance index NIRv, introduced
by Badgley et al., (2017), shows seasonal trends in agreement with those observed for the
NDVIred−edge and CIred−edge, regardless the crop considered. The information inferred
by these indices, globally agree with the experimental dataset description carried out in
Section 2.2.1. Specifically, forage and corn are characterized by a continuous growth, while
alfalfa underwent to a cut around the end of June (i.e. ∼ DOY 160). Globally, the seasonal
trends of the reflectance indices agree with the ones reported in Campbell et al., (2019).

The SIF metrics evaluated on the full spectrum show seasonal trends in agreement
to those observed for the reflectance indices, specifically when the SIF in the far-red
spectral region (SIFfar−red and SIF760) and SIFINT are considered (Figure 2.4A and B).
Therefore, at seasonal scale, the fluorescence is mainly driven by the variations of the crop’s
biophysical parameters, such as the chlorophyll content and the fraction of light absorbed
by the target (fAPAR) (Porcar-Castel et al., 2014). According to the crops characterization
carried out, lower SIF values (< 2 mWm−2nm−1sr−1 for the SIFfar−red and SIF760 and
< 150 mWm−2sr−1 for the SIFINT ) are observed over crops in a growing phase and then
characterized by a sparse canopy. In this case, the differences between the SIF evaluated at
760 nm and the peak emission in the far-red values are minimal (Figure 2.4B). The seasonal
trend observed for the SIF760 agree with what found in Campbell et al., (2019) and Yang et
al., (2020). The discrepancy between SIFfar−red and SIF760 grows when medium-dense
vegetation is considered. This behaviour, clear at seasonal scale, is probably ascribable
to the increase of the SIF reabsorption within the leaf-canopy system. The fluorescence
absorption and emission spectra overlap in the visible red spectral region. Therefore, the
signal emitted in the red is re absorbed and re emitted at longer wavelengths (i.e. in
the far-red). Increasing the amount of pigments that absorb and the canopy density, the
probability of the SIF signal to be absorbed increase. Considering the SIF full spectrum, the
signal in the visible red is attenuated, while the contribution in the far-red wavelengths
grows. The red quenching is clear in Figure 2.4C (Campbell et al., 2019). Exploiting the
metrics evaluated at 687 nm (SIF687) and at the peak (SIFred), they show values always
lying below 2 mWm−2nm−1sr−1 and very close to each other. The reabsorption affects
also the SIF spectral shape. It is clear when the SIF maximum emission wavelengths are
compared to the CIred−edge (Figure 2.6). Using as example the forage time series, because
composed by the greater number of clear sky days, the λred increases up to CIred−edge
equal to 2 and then decreases to a constant value around 685.5 nm. The maximum λred is
observed in correspondence to the transition between sparse and medium-dense canopy.
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Conversely, λfar−red shows a monotonic growth with the CIred−edge in the two crops
characterized by a continuous development, namely forage and corn. From Figure 2.4 is
clear that the SIF metrics evaluated in the O2-A and O2-B are strictly correlated to the
fluorescence values estimated at the maximum emission in the far-red and red, respectively.
This qualitative outcome is supported by the quantitative analysis shown in Figure 2.5 and
values collected in Table 2.3. In particular, SIFfar−red is linearly correlated to the SIF760.
The regression line performed gives R2 = 0.98, RMSE = 0.29, slope (p1) of 1.31 (± 0.12)
and intercept (p2) close to 0 (p2 = 0.23 ± 0.34). Similarly, the linear regression performed
on the SIFred-SIF687 comparison gives R2 = 0.95, RMSE = 0.08, p1 = 1.03 ± 0.11 and p2
= 0.23 ± 0.15. Therefore, at seasonal scale, the SIF evaluated at the peaks emission bring
the same information of SIF760 and SIF687. The metrics estimated at a specific wavelength
were also compared to the SIFINT in order to investigate whether the full spectrum is more
informative. SIFINT is linear related to both the SIF760 and SIFfar−red, with R2 equal to
0.92 and 0.99, respectively. These results are expected because the far-red contribute in the
full spectrum prevails compared to the red, especially for dense canopy in which dominates
the reabsorption. Similarly, the SIF687 and SIFred are linearly correlated to the SIFINT , with
R2 equal to 0.81 and 0.83, respectively. However, the values referred to a sparse canopy
(i.e. grouped in bottom left part of the plot in Figure 2.5E and F) show a different slope
compared to the metrics evaluated on a more developed canopy (top right of Figure 2.5E
and F). During the growing phase, the SIF in the red mutually increase with the SIFINT .
Conversely, when the strong reabsorption occurs, the SIF in the red is quenched, while
the SIFINT continuously increases due to the far-red contributions to the full spectrum.
Therefore, even though the SIFINT is strongly correlated to the metrics evaluated in the
far-red at seasonal scale, it also contains the visible red information, especially in the crop
initial growing stages.

Finally, the reflectance indices were compared to the SIF metrics. Figure 2.7 collects
the qualitatively comparison carried out. In agreement with Badgley et al., (2017), the
NIRv is strongly correlated to the fluorescence emitted at 760 nm. A similar relation was
observed considering the SIFINT because its value is dominated by the far-red emission,
especially in dense canopy. Unlike the NDVIred−edge and the CIred−edge, the NIRv does
not show a dependence to the crop considered. In most of the comparison investigated,
the values estimated on corn are lower respect to the forage and alfalfa. This inter-crop
variability, probably linked to the canopy geometry, is not observed in the SIF687 case. A
prevalent saturated trend is clear when SIF687 is compared to the reflectance indices. The
continuous increase in the fAPAR (represented by the NDVIred−edge), canopy chlorophyll
content (CIred−edge) and signal attributable to the vegetation (NIRv) is mutual with the
SIF687 when sparse vegetation is considered. Then the fluorescence in the red is attenuated
by reabsorption and an asymptotic growth is observed. Furthermore, the NDVIred−edge
is linearly correlated to the SIFINT , while the CIred−edge to the SIF760. The relations
previously highlighted are supported by the PCA outcomes (Figure 2.8). Focusing on
the loadings plot (Figure 2.8), all the variables selected are positively correlated on the
PC1, even though the PAR and SIF687 are outliers with respect to the cluster formed by
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the NDVIred−edge, CIred−edge and SIF metrics. The points corresponding to the NIRv
and SIF760 are very close to each other. Therefore, they have a similar seasonal behaviour
and are positively related, in agreement with the corresponding scatterplot in Figure 2.7
(linear correlation). Similarly, the spectral indices-SIF metrics couples characterized by
linear correlation show similar PC1 and PC2 values. In particular, NDVIred−edge-SIFINT
has PC1 and PC2 greater than 0, while CIred−edge-SIF760 shows positive PC1 and negative
PC2 values. SIF687 and SIF760 are negatively correlated to the second principal component,
while the SIFINT lie between the two and is closer to the second one. Therefore, it is more
correlated to the emission in the far-red, especially when reabsorption occurs.

2.4.2 Diurnal analysis

The diurnal analyses were carried out comparing days in which the three crops were
characterized by similar illumination conditions and canopy chlorophyll content. The
diurnal trends obtained for the reflectance indices and SIF metrics are summarized in
Figure 2.9 and Figure 2.10, respectively.

For all the cases analysed, an inter-crop variability was observed. While forage and
alfalfa show similar values, the corn is characterized by greater values when the reflectance
indices are considered, lower in the SIF metrics linked to the fluorescence magnitude
(Figure 2.10B-F). This outcome is probably ascribable to differences in the canopy structure
and row plantation of corn, because the PAR is the same for all the three crops (see Figure
2.10A).

The canopy architecture plays a key role in the reflectance indices diurnal trend. It
is clear when the CIred−edge is considered (Figure 2.9). As expected, forage and alfalfa
values are constant during the day, while the corn shows a depression around midday.
The reflectance indices spectral bands, are generally combined in order to minimize the
effects linked to the acquisition geometry and canopy structure (case NDVIred−edge and
CIred−edge). However, when crops characterized by a predominant development in the
vertical direction are considered, a dependence on the leaf architecture is still evident.

Concerning the PRI, it was investigated because able to capture changes in the plant
photosynthetic activities and related to the NPQ at diurnal scale. NPQ processes are con-
trolled photoprotective mechanisms which; once activated; strongly control the dynamics of
photochemical efficiency (Alonso et al., 2017). With illumination conditions increasing and
decreasing during a diurnal cycle; photoprotection mechanisms need to change accordingly
(Alonso et al., 2017). The PRI evaluated for the three crops is shown in Figure 2.9. A
decrease in the values around the solar noon was observed for all the crops, even though it
is more evident in the corn. Concerning the corn, the trend observed corresponds with
that found in Campbell et al., (2019). As reported in Xu et al., (2018), TOC PRI is sensitive
to the canopy structure, but differences in the values could be also linked to the different
vegetation types considered (C3 forage and alfalfa, C4 corn). According to Ehleringer et
al., (2002), C3 and C4 plants responds differently to changes in environmental conditions,
such as temperature. Regardless of the PRI absolute values, all the crops show a minimum
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around the solar noon. Similar behaviours have been observed in Campbell et al., (2019),
Chang et al., (2021)and Alonso et al., (2017). In all these cases, the PRI pattern of midday
depression could be explained as an actuation of photoprotective mechanisms to prevent
damage to the photosynthetic apparatus (Gamon and Bond, 2013).

Focusing on the SIF metrics linked to the fluorescence magnitude (Figure 2.10B-F), their
temporal evolution follows the trend observed for the PAR (Figure 2.10A) (Campbell et
al., 2019; Yang et al., 2020; Alonso et al., 2017; Yang et al., 2015). At diurnal scale, the SIF
is mainly driven by the amount of light reaching the target in which greater values are
observed around the solar noon (Chang et al., 2021). Similarly to the reflectance indices
cases, an inter-crop variability is clear. Although corn is characterized by greater CIred−edge
values, the corresponding SIF metrics always lie below the ones evaluated for forage and
alfalfa. It is clearer when SIF760, SIFfar−red and SIFINT are considered, in which forage
and alfalfa values completely overlap. SIF of corn is also lower because of row structure
and the fact that more soil is measured in contrast to forage and alfalfa. Furthermore, this
outcome is also attributable to the different canopy geometries characterizing the three
crops: planophile for forage and alfalfa, erectophile for the corn. Furthermore, forage and
alfalfa show slightly different values in the region around the solar noon when the SIF687
and SIFred are considered (Figure 2.10D and Figure 2.10F). A similar pattern was observed
in the PRI and it could be linked to the NPQ. Under clear sky conditions, the solar noon
is characterized by the maximum value of the PAR. In this framework, the plant could
undergo stress due to the strong illumination, activating photoprotective mechanisms other
than the SIF emission (i.e. NPQ). The corn outlier values respect to the other two crops
could be due to the different crop response under stress situations that depend on the
vegetation types (i.e. C3 or C4). Nevertheless, also between crops of the same type (i.e.
forage and alfalfa), faint differences are observed (Figure 2.10D and Figure 2.10F). It must
be remembered that the fluorescence evaluated in the visible red is mainly attributable to
the PSII emission. As reported in Maxwell et al., (2000), PSII is accepted to be the most
vulnerable part of the photosynthetic apparatus to light-induced damage and therefore
it could be exploited to detect the first manifestation of stress in leaf. The differences
between the forage and alfalfa values are also observed in the SIFINT diurnal trend (Figure
2.10B). On the SIF metrics, a clear midday depression, as the PRI case, was not highlighted.
However, focusing on the corn, the SIF760, SIFfar−red and SIFINT diurnal trend is more
flat in the time interval around the solar noon.

For the first time, also the SIF metrics linked to the maximum emission were investigated
at diurnal scale. In both the cases analysed, λfar−red and λred positions are almost constant
during the day. These outcomes are expected because the two metrics are more linked
to changes in the SIF spectral shape due to the reabsorption (clearer at larger timescale).
Conversely, at diurnal scale and for a single crop, the canopy chlorophyll content and
geometry do not vary and the fluctuations observed in Figure 2.10G-H are more linked to
the illumination geometry. Furthermore, the peak positions show an inter-crop variability.
The canopy architecture mainly affects the λred values, while the different crops considered
the λfar−red.
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The mutual relations between reflectance indices and SIF metrics were investigated by
means of a statistical analysis (PCA) (Figure 2.11). Concerning the scores plot (Figure 2.11A),
all the variables referred to the forage and alfalfa show the same diurnal profile, with data
that almost overlaps in all the measurements considered. However, faint differences, in
terms of absolute values, are observed for PC1 and PC2 lower than 0. In this case, it is
possible to discern between the forage and alfalfa. Referring to the diurnal trends reported
in Figure 2.9 and Figure 2.10, these two crops differ only in the interval around the solar
noon and then under a stress situation due to the strong illumination. The conclusions
reached analysing separately the reflectance indices and SIF metrics diurnal trends are
immediately clear from the PCA outcome. The corn values show the same qualitative
profile as the other two crops, with data decreasing for greater PC1 value. Although the
PC2 values are similar, the corn is characterized by only negative PC1. For this reason,
the first principal component probably accounts for the differences in terms of canopy
structure, chlorophyll content but also physiological response to changes in the illumination
occurring at diurnal scale. While score plot summarizes the overall temporal crops crops
behaviours, the loadings highlight the relations between the variables considered in the
PCA (Figure 2.11B). SIF metrics and PAR are characterized by positive values on the first
principal component and negative on the second, therefore they are strongly correlated to
each other. This result is expected because the SIF is mainly driven by the light reaching
the target (Chang et al., 2021). Assuming the PRI as a proxy for the Non-Photochemical
Quenching, NPQ and SIF compete for the same energy usage: PRI and SIF metrics are
negative correlated on the second principal components. Points referred to CIred−edge
and NDVIred−edge lying close in the loadings plot. Since they are mainly driven by crop
biophysical parameters (such as the fluorescence), CIred−edge, NDVIred−edge and SIF
metrics show similar negative PC2 values. On the other hand, the SIF also depends on the
PAR and the crop physiological status, therefore opposite PC1 values are observed. Finally,
the PRI is completely uncorrelated to the other two reflectance indices (opposite PC1 and
PC2).

2.5 Conclusions

For the first time, the SIF full spectrum metrics were analysed at seasonal and diurnal
scale, also in comparison to reflectance indices that are assumed as proxies of the canopy
biophysical variables.

From a qualitative point of view, reflectance and SIF metrics show comparable seasonal
patterns. In particular, the PAR and chlorophyll content increase during the crop growth
determines an increase in both reflectance-based indices and SIF metrics during the growing
phase, while a saturated trend is reached when the crop enters into the mature stage. As
expected, the biophysical and illumination changes are the main drivers for the reflectance
and fluorescence values at seasonal scale. Nevertheless, when the spectral indices and the
SIF metric are compared to each other, interesting relations are observed. In particular,
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the SIF metric evaluated at 687 nm shows an initial linear growth then followed by a
saturation trend. This pattern was observed for all the reflectance indices considered and it
is attributable to the reabsorption affecting the SIF signal in the visible red. At seasonal
scale, the NDVIred−edge is linearly correlated to the SIFINT , while the CIred−edge to the
SIF760. In these cases, an inter-crop variability was observed. Specifically, corn is always
characterized by lower values compared to the forage and alfalfa. The novel NIRv index
was investigated at seasonal scale. As expected, it is linearly correlated to both the SIF760
and the SIFINT . Furthermore, it is not affected by crop type. All the relations between
reflectance indices and SIF metrics are supported by the results obtained applying the PCA
on the seasonal time series.

The fluorescence metrics defined on the full spectrum were investigated. Regardless of
the timescale considered, the SIF evaluated at peak emissions are strongly correlated to the
values estimated in the O2 bands. Therefore, no clear additional information is obtained by
the use of the SIFfar−red and SIFred. On the other hand, the SIFINT gives more complete
information respect to the fluorescence evaluated at a selected wavelength. By definition,
the SIF is estimated over the spectral interval in which the fluorescence occurs, therefore
the wavelength dependence is removed. It represents the amount of energy radiatively
dissipated by the crop and then it is influenced by the variations in the SIF efficiency respect
to the other light usage processes (NPQ and PQ). Therefore, it could better correlate to the
GPP compared to the SIF evaluated at single wavelength. It must be pointed out that, at
seasonal scale, the NIRv is linked to the Gross Primary Production, and SIFINT and NIRv
are linearly correlated. Furthermore, the SIFINT could be used together with the aPAR, to
evaluated the SIFyield.

At diurnal scale, all the SIF metrics show the same evolution in time, but differences in
terms of discrete values are observed between crops. In the far-red the variability is mainly
linked to the canopy geometry, with forage and alfalfa values that overlap and the corn
lying below. In the visible red, an additional shift between the forage and alfalfa is observed
in the temporal interval around the solar noon. The SIFINT shows both these behaviours,
therefore it simultaneously accounts for the different behaviours observed separately in
the red and far-red. All the SIF metrics are correlated to the PRI and highlighted peculiar
trends around the solar noon, probably ascribable to photoprotection mechanisms actuated
under strong illumination conditions. Since the SIF is linked to the energy dissipation by
radiative pathways, while the PRI to the NQP, their combined analysis allows to better
describe plants response under stress situations.

Finally, for the first time, the SIF emission peaks positions were investigated at seasonal
and diurnal scales. In the first case, a shift toward longer wavelengths is observed for the
λfar−red. This trend is due to the reabsorption that affects both the SIF magnitude and
spectral shape. Conversely, at diurnal scale, the λred and λfar−red are almost constant, but
an inter-crop variability is clear.





Chapter 3

Correcting SIF for canopy
reabsorption for quantum yield
estimations

3.1 Theoretical background

Spectral measurements acquired in field are influenced by the light changes that natu-
rally occurs daily and seasonally (Romero et al., 2020). These variations affect photosynthe-
sis that is a process actively regulated by various mechanisms aimed to protect the plant
from potential damage (Romero et al., 2020). Instantaneous fluctuations in photosynthesis
efficiency can be inferred by means of the chlorophyll-emitted SIF, as discussed in Chapter
2. SIF contains information about plant physiology. However, the fluorescence signal
measured at Top-Of-Canopy scale is significantly influenced by the reabsorption affecting
both the SIF magnitude and its spectral shape. Hence, an uncertainty in the relationship
between fluorescence and plant physiological state is introduced. SIF reabsorption occurs
both within the leaf (Agati et al., 1993; Gitelson et al., 1998; Ramos and Lagorio, 2004;
Cordón and Lagorio, 2006) and the canopy (Porcar-Castell et al., 2014; Liu et al., 2019;
Romero et al., 2018), causing an enormous alteration in the spectral distribution of the
fluorescence measured above the canopy itself (Romero et al., 2020). Reabsorption mainly
affects the visible red spectral region connected to the PSII emission. PSII represents the
part of the photosynthetic apparatus most vulnerable to light-induced damage, therefore
its emission is often used to early highlight the stress in leaf (Maxwell and Johnson, 2000).
Conversely, the SIF signal emitted in the far-red is scattered multiple times within the
canopy leaves (Yang et al., 2020). The parameter SIF yield accounts for the amount of
the solar light absorbed (aPAR) actually dissipated as fluorescence. It can be calculated
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dividing the SIF, at a specific wavelength (i.e. oxygen absorption bands as reported in
Campbell et al., 2019) or the SIF spectrally integrated between 650-800 nm, by the aPAR.
However, due to the reabsorption and the scattering processes previously mentioned, the
SIF yield evaluated at canopy level might be very different from the one estimated at the
photosystems scale. The potential differences due to the scales considered might lead to an
inaccurate physiological interpretation. Being able to correct the TOC SIF for reabsorption
is pivotal to infer reliable physiological information.

In this Chapter, the impact of reabsorption on the SIF spectrum was qualititively investi-
gated exploiting a synthetic dataset generated coupling MODTRAN (MODerate resolution
atmospheric TRANsmission) and SCOPE (Soil-Canopy Observation of Photosynthesis and
Energy) radiative transfer models. TOC and at-the-photosystems level SIF spectra were
simulated for different illumination geometries (i.e. SZA), canopy chlorophyll content
(obtained multiplying the Cab by the Leaf Area Index, LAI) and fluorescence emission
efficiencies (namely Fqe when it is given as input in SCOPE or SIFyield when the SIF
spectrally integrated is divided by the aPAR). These parameters represent only a subset of
the whole key variables that drive the SIF emission, as highlighted in the global sensitivity
analysis described in Verrelst et al., (2015). They were selected because the canopy biophys-
ical parameters such as, Cab and LAI, determine the amount of incident light absorbed
by the canopy (aPAR) and then the amount of energy that can be potentially dissipated
as fluorescence. They are connected to the reabsorption, because in denser canopies the
probability of the SIF signal to be absorbed and scattered is greater compared to sparse
vegetation. Furthermore, the aPAR is influenced by the sun-target position (SZA). Finally,
the amount of light dissipated as fluorescence depends on the efficiency of this process
(Fqe) that is intrinsically linked to the physiological state of the plant. In this framework, a
specific attention was paid to the SIF emitted in the visible red spectral region because it
is strongly affected by reabsorption and to the SIF yield evaluated at both TOC (SIFTOC)
and photosystems scales. Specifically, one of the aims of the work proposed is to assess
whether the SIFyield evaluated using the TOC fluorescence (i.e. SIFTOC) approximates
the SIF yield estimated exploiting the SIF corrected for the reabsorption and then the full
spectrum emitted at the photosystems level.

Two methods aimed to retrieve the SIF spectra corrected for the reabsorption (SIFRC)
are here proposed. The first approach consists in a parametric method implemented on
a subset of synthetic TOC hyperspectral measurements. In this case, the SIFRC spectral
shape was modeled as a sum of two Gaussian. The coefficients used to parametrize this
mathematical function were obtained exploiting relations between the simulated spectra
and variables potentially measurable in field, such as the SZA and the SIF at 760 nm.
Similarly, a strategy to evaluate the aPAR was developed in which the coefficients used
are linked to the SZA and the NIRv. The aPAR represents a fundamental parameter in
the SIF yield estimation. On the other hand, the second approach couples the Fourier
based method with a supervised machine learning (ML) algorithm. Unlike the parametric
method, the Fourier-ML algorithm retrieves the SIF at both canopy and photosystem levels,
simultaneously with other biophysical variables, namely Cab, LAI, aPAR and Fqe (equal
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to the SIFyield evaluated at the photosystems level). In this case, the simulated apparent
reflectance (Rapp) was used to train and test the algorithm. The above-mentioned approach
was developed in collaboration with the Laboratory of Advanced Bio-spectroscopy (Physics
Department “G. Occhialini”) of the University of Milano-Bicocca. The Fourier-ML method
development and description are topic of a paper and another PhD thesis currently not
published. Therefore, I report here only a few of the meaningful results obtained and a
brief description of the method.

The accuracy of these two methods were investigated on the synthetic dataset, then they
were separately applied on the field hyperspectral measurements described in Chapter 2.
Concerning the results obtained on the experimental dataset, only a qualitative comparison
was possible between the parametric and the Fourier-ML approaches. Although the
collaboration carried out, the numerical outcomes of the Fourier-ML method will be
provided and available for further analysis only after the corresponding paper submission.

3.2 Material and Methods

3.2.1 Radiative Transfer simulations

The synthetic dataset was generated coupling the MODTRAN and SCOPE radiative
transfer models (RT). MODTRAN5, developed by Berk et al., (2006), models the solar light
propagation within the atmosphere. The surface-atmosphere coupling is based on the
four-stream radiative transfer theory with the addition of the fluorescence flux (Cogliati et
al., 2019; Verhoef et al., 2018; Verhoef and Bach, 2012; Verhoef and Bach, 2007). Conversely,
the interaction occurring between the solar light and the photosystems complex, along
with the leaf-canopy interactions, were simulated by SCOPE (v.1.73) (Van der Tol et al.,
2014; Van der Tol et al., 2009). SCOPE consists of several RT equations, originally based on
the SAIL scheme (Scattering by Arbitrary Inclined Leaves), in which the target surface is
assumed to be homogeneous, infinitely extended and then processed with a 1-D turbid
medium model. The SCOPE RT model simulates the fluorescence and reflectance spectra,
the TOC radiance with a number of canopy biophysical, photosynthesis and energy balance
parameters (Cogliati et al., 2019). In the recent versions released, the leaf RT are calculated
with Fluspect (Vilfan et al., 2016) that provides not only the TOC SIF, but also the signal
emitted at the photosystems level and then corrected for the reabsorption. In this work the
SCOPE version 1.73 has been coupled to MODTRAN5.

Although SCOPE already considers the vegetation-atmosphere scheme, the atmospheric
transfer functions (tn) were first simulated with MODTRAN5 and then provided as input
in SCOPE. Disentangling the atmosphere module from the vegetation one (i.e. SCOPE) is
advantageous because determines a decrease in the overall computational time. In this
way, MODTRAN5 runs only at the beginning of the routine, generating immediately all
the tn functions needed and not for each scenario simulated with SCOPE. The SZA is a
fundamental variable in the tn evaluation and represents the only parameter made to vary
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in MODTRAN5. Therefore, only a single type of atmosphere was simulated. Although it
represents an approximation that does not reflect the actual experimental conditions, this
option was chosen because the aim of the work proposed is more oriented to evaluating
the impact of the sun-target-geometry and the canopy biophysical parameters on the SIF
signal, rather than the atmosphere composition variability. All the possible vegetation
cases are simulated with SCOPE, combining the selected Cab, LAI and Fqe values for a
fixed SZA. The correct tn given as input in SCOPE are opportunely selected by means of
the SZA value. This codes architecture also allows to exploit the hyperspectral resolution,
typical of the tn spectral functions obtained from MODTRAN5 (0.1 cm−1), to evaluate the
radiances and the SIF spectra. The MODTRAN5-SCOPE coupling rationale implemented is
similar to the one described in Cogliati et al., (2019). In particular, the simulated Ld and Lu
have been obtained combining the MODTRAN5’s tn with the fluorescence and reflectance
contributions generated by SCOPE as follow:

Ld = t1 ∗
(
t4 +

t5 + t12 ∗ rsd
1− t3 ∗ rdd

)
(3.2.1)

Lu = t1 ∗
(
t4 ∗ rso + rdo ∗

t5 + t12 ∗ rsd
1− t3 ∗ rdd

)
+ SIFso (3.2.2)

where the Ld and Lu are evaluated at TOC level. t1 is the extraterrestrial solar radiance
normalized by cosΘ, where Θ corresponds to the local Solar Zenit Angle (SZA). t3 is the
spherical albedo. t4 and t5 are the downward direct and diffuse transmittance, while t12 is
the product of the downward direct transmittance and the spherical albedo. Concerning
the canopy reflectance, rso and rdo correspond to the direct and diffuse contributions in
the viewing direction, while rsd and rdd account the direct and diffuse hemispherical
terms, due to the surrounding. These terms are generated by SCOPE modeling the
canopy reflectance by a four Bidirectional Reflectance Distribution Function (BRDF). SIFso,
also generated by SCOPE, corresponds to the directional TOC SIF. The Rapp (apparent
reflectance) has been obtained by the ratio between Lu and Ld, while R (reflectance) as the
difference between Rapp and the SIFso normalized by the Ld:

Rapp =
Lu

Ld
(3.2.3)

R = Rapp −
SIFso

Ld
(3.2.4)

Summarizing, for each variables’ combination (Cab, LAI, Fqe, SZA), the Ld, Lu, SIF TOC
(SIFTOC), SIF at the photosystems (SIFRC), Rapp and R spectra were simulated. Furthermore,
also the aPAR represents one of the code’s outcomes and was saved in the output storage.
Finally, to match the experimental hyperspectral measurements, the simulated spectra were
convoluted with the FLoX (QEPro) spectral resolution. The code architecture is shown in
Figure 3.1.
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Figure 3.1: MODTRAN5-SCOPE code. Step 1: generation of the tn. Step 2: tn given as input in
SCOPE, that run for a selected SZA, LAI, Cab, Fqe combination. This module gives as output the
TOC reflectance components and SIF (SIFTOC), the SIF at the photosystems level (SIFRC) and the
aPAR. Step 3: TOC reflectance components, the SIF are coupled to the tn obtaining Ld, Lu, Rapp and
R. Step 4: SIFTOC, SIFRC, Ld, Lu, Rapp, R are convolute with the FLoX spectral resolution. Step2-4
are iterated for all the SZA, LAI, Cab, Fqe combinations identified.
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To generate a simulated dataset as general as possible, different illumination conditions,
canopy growing stages and plants’ physiological status were considered. Concerning
the sun-target geometry, the SZA was made to vary between 20°-60° with a step of 2°.
Concerning the vegetation, SCOPE allows to simulate a wide range of plant, characterized
by different physiology, growing stages and canopy geometries. The LAI and Cab vary
between 1-8 m2m−2 and 1-80 µgcm−2 respectively and they were coupled obtaining
10000 possible combinations according to De Grave et al., (2020). The LAI-Cab can be
qualitatively grouped in four categories: bare soil (S0), sparse (V1), medium (V2) and dense
(V3) vegetation. In Figure 3.2 they have been differentiated by color code.

Figure 3.2: The 10000 Cab (in µgcm−2) and LAI (m2m−2) couples simulated. LAI-Cab values can be
qualitatively grouped in four categories: bare soil (S0) in brown, sparse (V1) in orange, medium (V2)
in light green and dense (V3) in dark green vegetation.

According to Porcar-Castell et al., (2014), the SIF quantum yield in-vivo is usually
lower than the 10%, with typical values lying between 0.05% and 3% under steady-
state illumination and unpaired electron transport (Mohammed et al., 2019). Therefore,
the SCOPE’s Fqe has made it vary between 1% and 2.4%, with a step of 0.1%. The
canopy geometry and the vegetation type also influence the SIF emitted and they can be
opportunely selected in SCOPE. However, due to the high number of cases simulated (more
than 2900000), these two variables have been kept fixed. The vegetation type selected was
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C3, while the canopy geometry was assumed being spherical, setting the parameters linked
to the leaf’s inclinations LIDFa and LIDFb equal to -0.35 and -0.15, respectively. These
variables have been chosen to match two of the experimental crops investigated, namely
forage and alfalfa. As previously observed, forage and alfalfa show similar characteristics
and their measurements compose most of the experimental dataset described in Chapter 2.
Therefore, the parametric and the Fourier-ML methods were applied only on the forage
and alfalfa spectral measurements.

3.2.2 Estimation of quantum yield

The differences between the fluorescence at TOC and at the photosystems level were
investigated exploiting the metrics described in Chapter 2 (see Table 2.2). In addition, also
the SIF yields were considered. In order to adequately characterize the SIF TOC and RC
behaviours it is recommended to consider all the parameters affecting the fluorescence
emission, namely illumination conditions (i.e. SZA), canopy biophysical parameters (e.g.,
Cab, LAI, aPAR) and plant physiological status (linked to the SIF efficiency). Furthermore,
to achieve as global an understanding as possible, these parameters need to vary in wide
(and reasonable) intervals. This analysis is not feasible on experimental measurements,
because many of the variables previously described are not currently available (such as
the fluorescence yields or the SIF spectra at the photosystems level). Therefore, the only
possible strategy consists in exploiting theoretical models (i.e., RT simulations), assuming
that they accurately simulate the plant behaviour and features occurring under natural
experimental conditions. In this framework, the synthetic dataset described in Section 3.2.1
were used. In particular, the SIFRC simulated with SCOPE, corresponds to fluorescence
evaluated at the photosystems level and then not affected by the reabsorption. The Fqe
(namely the Fluorescence quantum efficiency) coincides with the true SIF yield evaluated on
the spectrum corrected for the leaf-canopy reabsorption (SIFRC). Although they represent
the same parameter, with Fqe I identify the SCOPE input variable, while with SIFyield the
efficiency evaluated exploiting the MODTRAN5-SCOPE outputs (i.e. SIFRC and aPAR).
The SIFTOCyield and SIFyield have been evaluated as follow:

SIFyield =

∫780
670

SIFRC(λ)dλ

aPAR
(3.2.5)

SIFTOCyield =

∫780
670

SIFTOC(λ)dλ

aPAR
(3.2.6)

All the fluorescence metrics were investigated for increasing LAIxCab values to mimic
the crop/canopy growth in time. For this reason, the plant changes occurring during the
senescence phase were not considered. The product between LAI and Cab represents the
canopy chlorophyll content. The metrics analyses were carried out over a subset of SZA
and Fqe values. In particular, the SZA was made it vary between 20°and 48°, while the Fqe
in the interval 0.013-0.018. For each case, all the Cab and LAI couples were analysed but
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neglecting the values linked to bare soil, identified with S0 in Figure 3.2. The comparison
between SIFTOCyield and SIFyield was carried out in order to verify whether the TOC yield
approximates the true fluorescence efficiency.

3.2.3 Estimation of the amount of light absorbed by the canopy (aPAR)

The aPAR is fundamental to evaluate the fluorescence yield. For this reason, a pre-
liminary analysis of this parameter was carried out. The aPAR was studied for various
LAIxCab (Figure 3.3A), SZA (Figure 3.3B) and Fqe (Figure 3.3C).

In general, the aPAR shows a saturated trend for increasing canopy chlorophyll content
(LAIxCab) values, regardless of the SZA and Fqe considered. Focusing on Figure 3.3A, as
expected, the amount of light absorbed by the chlorophyll pigments is null when evaluated
over bare soil surfaces (brown dots). The aPAR increases linearly in sparse vegetation
(orange dots) and starts saturating when medium vegetation is considered (light green
dots). In this case, the coupling between LAI and Cab plays a key role in the aPAR value.
Different combinations of these two parameters (i.e. different leaves shapes) affect the
amount of light absorbed. Conversely, when the vegetation is dense and uniform (dark
green dots), the above-mentioned variability is attenuated and the aPAR is almost constant
regardless of the LAI-Cab couple considered. Globally, the relationship between the
canopy chlorophyll content and light absorbed is non-linear because the increment in light
absorption per unit of chlorophyll decreases at high chlorophyll contents (Porcar-Castell et
al., 2014; Gitelson et al., 1998; Adams et al., 1990).

Figure 3.3: Absorbed Photosynthetically Active Radiation (aPAR). Panel A shows the aPAR evaluated
for increasing LAIxCab values (SZA=20° and Fqe = 0.013). The color code allows to discern between
bare soil (brown), sparse (orange), medium (light green) and dense (dark green) vegetation. Panel
B collects the aPAR plotted for all the SZA simulated (Fqe = 0.013). Panel C display the aPAR for
variable Fqe (SZA = 20°).
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The aPAR absolute values are also influenced by the SZA (Figure 3.3B). Greater values
occur for lower SZA (in blue), therefore when the sun is almost perpendicular to the target.
Conversely, lower aPAR are observed for higher SZA (in red). This behaviour is mainly
driven by the path that the solar light follows in the atmosphere. The lower the path, the
fewer the interactions with the atmosphere components, the less the energy dissipated
and the greater the light reaching the Earth surface. Summarizing the aPAR is inversely
correlated to the SZA. Finally, the amount of energy absorbed by the vegetation does
not depend on the Fqe (Figure 3.3C): all the values simulated overlap, regardless of the
fluorescence emission considered.

Since the simulated aPAR is mainly driven by biophysical parameters, such as LAIxCab
and SZA (linked to the PAR), it was compared to the reflectance-based indices investigated
in Chapter 2. Specifically, the NDVIred−edge, CIred−edge and NIRv. The PRI was not
selected because linked to the plant photosynthetic activity. Furthermore, the spectra
investigated were simulated only in the spectral range in which the SIF emission occurs
to save computational time. Since the PRI is evaluated combining the reflectance at 531
nm and 570 nm, it was not possible to calculate this index. This analysis was carried out
in order to investigate whether the NDVIred−edge, CIred−edge, NIRv could be used to
estimate the amount of light absorbed by the canopy. The comparisons between the aPAR
and reflectance indices were carried out for all the SZA and LAIxCab simulated. Figure 3.4
collects the trends obtained for a SZA equal to 20°.

Figure 3.4: Comparison between the aPAR and the reflectance-based indices, namely Panel A:
NDVIred−edge, Panel B: CIred−edge and Panel C: NIRv. Data displayed corresponds to the values
obtained evaluating the spectral indices on the simulated reflectance in agreement with the equations
collected in Table 2.1. Each point plotted corresponds to a LAIxCab couple. SZA= 20°.
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The NDVIred−edge and CIred−edge show a strong variability with the LAIxCab values
(Figure 3.4A and Figure 3.4B). Furthermore, a clear vertical asymptote is observed for
aPAR greater than 400 Wm−2 in both the cases investigated. Conversely, an interesting
relationship appeared between the aPAR and the NIRv (Figure 3.4C). The NIRv index
smooths the variability linked to the vegetation considered and it is clearly less influenced
by the LAI-Cab combination. As reported in Badgley et al., (2017), the NIRv is able to isolate
the vegetation contribute in the reflectance, eliminating the source of error linked to the soil.
Furthermore, it shows a growth almost linear with the aPAR. All these characteristics make
the NIRv a promising proxy for the aPAR. However, this peculiar relationship is probability
related to the approximation used in the synthetic datased creation. In particular, the
canopy is assumed to be spherical. It is plausible that the almost linear trend between
aPAR and NIRv will be modified when a more complex canopy structure is considered
(e.g. erectophile). In that case, a different aPAR-NIRv parametrization might be necessary.
Bearing in mind this potential limit, a method to calculate the aPAR has been developed. In
general, evaluating the amount of light absorbed by the canopy from field measurements
is not trivial. This parameter can be, for example, estimated comparing the incoming,
upwelling and transmitted-through-the-canopy radiances (e.g. Goward and Huemmerich,
1992). An alternative approach consists in estimating the aPAR by inversion, as described
in Celesti et al., (2018). In this framework, I decided to exploit the relation between the
aPAR and the NIRv to implement a novel retrieval parametric method. The trend observed
in Figure 3.4C was fitted with the following equation:

aPAR = k1sin(k2NIRv) (3.2.7)

This fitting equation was selected because it gives the best statistics (R2= 0.996 - 0.999;
RMSE = 3.4 - 4.4) and the lower margins of errors on the two coefficients k1 and k2. All
these results are summarized in Figure 3.5.
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Figure 3.5: Results of the fit performed over the aPAR-NIRv comparison displayed for increasing
SZA values. Panel A: R2, Panel B: RMSE, Panel C: k1 and corresponding margin of error, Panel D: k2
and corresponding margin of error.

Since under clear sky conditions, the PAR is proportional to the cosine of the local
SZA, k1 and k2 were separately compared to the cos(SZA). k1 shows a linear relation
with cos(SZA). The fit performed (not shown) gives a slope of 584, intercept of -88, R2 =
1 and RMSE = 2.27. Therefore, knowing the SZA value (in radiant) and the regression
coefficients, it is possible to estimate k1. Conversely, for the cos(SZA)-k2 comparison, all the
fitting equations investigated give high margins of error on the coefficients and not good
statistics. For these reasons, the k2 and SZA values have been saved in a table. Unknown
and intermediate k2 and SZA can be obtained by means of linear interception between the
two closest points simulated. The aPAR is then obtained combining the NIRv, the cos(SZA),
k1 from the linear regression coefficient and k2 from the table created.
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3.2.4 Method to correct the SIF spectrum: parametric method

The rationale exploited to parametrize the aPAR-NIRv relation was implemented to
obtain the SIF spectrum corrected for the reabsorption. Several fitting equations were
tested to model the simulated photosystems SIF spectral shape. However, the sum of two
Gaussian (eq. 3.2.8) gave the best statistic and the lower margin of errors on the fitting
parameters defined.

SIF = a1e
−
(

wvl−b1
c1

)2

+ a2e
−
(

wvl−b2
c2

)2

(3.2.8)

in which wvl corresponds to the wavelengths lying in the spectral range considered (i.e.
670-780 nm), a1 and a2 are linked to the Gaussian amplitude, b1 and b2 represent the two
peaks positions observed in the SIF spectrum in the red and far-red respectively, while c1
and c2 the corresponding FWHM. All the simulated SIF spectra lying in the subset chosen
(i.e. SZA=20°-48° and Fqe= 0.013-0.018) have been fitted with the equation 3.2.8. The six
coefficients obtained by the fit (namely a1, a2, b1, b2, c1, c2) were plotted for increasing
LAIxCab values and studied respect to the SZA and Fqe. In all the cases investigated, b1,
b2, c1 and c2 resulted constant, regardless of the variables combination considered. In
particular, b1 is equal to 682 nm, b2 to 706.5 nm, whereas c1 and c2 are equal to 11.5 nm
and 54.5 nm, respectively. I want to point out that the two Gaussian used do not represent
the photosystems (PSI and PSII) SIF emissions, but they fit only the overall SIF spectral
shape. For this reason, b2 and c2 do not correspond to the usual PSI features described in
literature (e.g. Maxwell and Johnson, 2000).

Conversely, a1 and a2 vary with LAIxCab, SZA and Fqe. Their behaviours with
respect to the canopy chlorophyll content and Fqe are displayed in Figure 3.6A and Figure
3.6B. The trends obtained are similar to those observed for the aPAR in Figure 3.3. It is
expected because a1 and a2 are linked to the SIF magnitude that intrinsically depend on
the amount of light absorbed by the canopy. Nevertheless, the aPAR does not depend on
the Fqe (Figure 3.3C), while a1 and a2 rightly show a variability respect to the fluorescence
emission efficiency (Figure 3.6A and Figure 3.6B). As expected, their values increase with
the Fqe. Focusing on the coefficient discrete values, the values referred to the visible red
emission (i.e. a1) are greater compared to the ones linked to the far-red (i.e. a2).
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Figure 3.6: Panel A: a1 and Panel B: a2 behaviours for increasing LAIxCab values and different
simulated Fqe. Panel C: ratio between a2 and a1. Dashed black line corresponds to the constant values
of 0.2546. This ratio is independent the LAIxCab and Fqe values considered. Panel D: comparison
between TOC SIF evaluated at 760 nm and a1. All the values displayed were simulated considering a
SZA equal to 20°. Color code allows to discern between the different Fqe values.

This outcome is reasonable because a1 and a2 are evaluated on the SIF spectra corrected
for the reabsorption. Furthermore, an interesting relation links a1 to a2. In particular, the
ratio a2/a1 is constant respect to LAIxCab, SZA, Fqe and it is equal to 0.2546 (Figure 3.6C).
This result is probably a consequence of the SCOPE fluorescence parametrization and does
not potentially reflect the real field situation. Nevertheless, since the RT models represent
the only option to carry out this analysis, I considered valid the relationship between a1
and a2. This approximation is convenient because knowing one of them it is possible to
estimate the other. Summarizing, b1, b2, c1, c2 are constant and their values are obtained
by the fits performed. Conversely, a2 and a1 vary with both biophysical and physiological
parameters, but their ratio is constant.

Similarly to the aPAR case, the parametric method rationale consists in linking a1 (or
a2) to quantities measurable in field (TOC level) in order to retrieve the SIF spectral shape
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corrected for the reabsorption. A preliminary analysis carried out plotting separately the
a1 coefficients and the SIF metrics for increasing LAIxCab values highlighted how the a1’s
trends are qualitatively similar to those observed for the TOC SIF760 (see Figure 3.3A and
Figure 3.11 as reference). This observation is supported by the comparison between these
two variables in Figure 3.6D and Figure 3.7. The variability linked to the LAIxCab values
is attenuated and a1 almost linearly increases with SIFTOC760 . A faint dependence on the Fqe
is observed. The SIFTOC760 -a1 relationship was fitted using the following equation:

a1 = a ∗ (SIFTOC760 )b (3.2.9)

The equation used has been chosen because it gives the better statistics (R2 around
0.998 ±0.001; RMSE = 1.6 ±0.4) and the lower margins of error on the coefficients obtained,
namely a and b (see Figure 3.7).

Figure 3.7: Results of the fitting performed on the SIFTOC760 and a1 comparison for SZA= 20°. Each
point (black dot) corresponds to a specific LAIxCab values. In red is represented the fit carried out.
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This analysis was iterated for all the LAIxCab, SZA and Fqe values composing the
simulated subset. All the coefficients a and b values and the corresponding errors obtained
by the fit are collected in Figure 3.8. As expected they both depend on the SZA. The
coefficient a shows an unclear variability with the SZA and increases with respect to the
Fqe (Figure 3.8A). Conversely, the coefficient b decreases for greater SZA (Figure 3.8B)
regardless of the fluorescence emission efficiency.

Figure 3.8: Panel A: coefficients a obtained from the fit using equation 3.2.9 displayed respect to the
Fqe. Panel B: coefficients b obtained from the fit using equation 3.2.9 displayed with respect to the
Fqe. Each point corresponds to the values obtained from the fit, while the error bar to the correspond
margin of error (see Figure 3.7 as reference). The color code indicates the different SZA considered.

Since b depends only on the SZA, it was compared to the cos(SZA) used as proxy for
the incoming radiance reaching the target (PAR). The trend obtained was fitted with a
second-degree function (R2 = 0.99; RMSE = 0.0005). The regression coefficients evaluated
are p1 = -0.23 ± 0.99, p2 = 0.58 ± 0.14 and p3 = 0.43 ± 0.06 (sorted by decreasing degree).
Conversely, the coefficient a case is more complicated to address because it shows a not
insignificant link with the SZA and intrinsically depends on the Fqe. It must be noted that
Fqe corresponds to the SIFyield that is the unknown parameter that I want to evaluate
correcting the fluorescence spectrum for the reabsorption. Here a strong approximation
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was introduced: for each SZA, the a(Fqe) coefficient was replaced by the corresponding
mean value (aavg) obtained averaging all over the Fqe. In this way, I am assuming that
the a1 variability linked to the Fqe (see equation 3.2.9) is only contained in the SIFTOC760

term. Similarly to the coefficient b case, the aavg values were then compared with the
cos(SZA). The trend obtained is shown in Figure 3.9. It was fitted with different functions,
but as happened for the k2 term in the aPAR, the statistics obtained were not good and the
variability on the regression coefficients too wide. Therefore, also in this case, the aavg and
cos(SZA) values were collected in a table and the intermediate measures obtained by linear
interpolation.

Figure 3.9: Trend between the aavg values and the cos(SZA). For a fixed angle (i.e. SZA, the aavg
were obtained averaging over all the Fqe considered. Therefore, the data displayed (white dots)
corresponds to mean value estimated, while the error bar to the standard deviations.

Summarizing the SIF spectral shape corrected for the reabsorption is obtained combining
the wavelengths with the b1, b2, c1, c2 constant values, the a2 estimated multiplying a1
by 0.2546 and a1 evaluated by means of the SIFTOC760 , cos(SZA) and regression coefficient
values, namely b and aavg.

The method accuracy has been quantitatively assessed on the synthetic dataset evaluat-
ing the RMSE and RRMSE% as follows:
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RMSE =

√∑n
i=1 (valretr − valtrue)

2

n
(3.2.10)

RRMSE% =

√√√√∑n
i=1

(
valretr−valtrue

valtrue

)2
n

∗ 100 (3.2.11)

where n is the number of points on which the comparison has been carried out. When they
are evaluated on the spectrum, n corresponds to the wavelengths used. Conversely, when
the analysis is carried out on the single variables (i.e. SIF metrics, aPAR or SIF yield), n is
the number of LAIxCab simulated. With the label "true" I refer to the simulations outcomes,
whereas "retr" are the results obtained applying the parametric approaches proposed.

To evaluate the error introduced by the approximation on the coefficient a, both the SIF
spectra (and metrics) obtained with a(Fqe) and aavg were compared to the corresponding
true values (simulation outcomes).

3.2.5 Fourier-ML algorithm

In this section I have briefly described the Fourier-ML method used to retrieve both the
SIF at TOC and photosystems scales, along with many relevant biophysical parameters,
namely the Cab, LAI, aPAR and Fqe. A Fourier transform is applied on the apparent
reflectance (Rapp), generating a discrete point in the 2D complex (or phasor) plane. Since
the Rapp spectral shape is influenced by the canopy structure and biophysical parameters,
each point lying in the phasor plot contains information about the signal spectral properties.
Spectra characterized by similar parameters lie closely within the 2D complex space. The
algorithm proposed is trained on the points obtained performing the Fourier transform on
the simulated spectra described in Section 3.2.1. In this framework, the above-mentioned
biophysical parameters, along with the SIF spectra are known. Therefore, each point is
uniquely associated to this information. The discrete Fourier transform is then applied on
the experimental Rapp in which all the biophysical parameters and SIF spectra need to be
estimated. The simulated points used as reference are compared to the experimental ones.
As previously assessed, points characterized by similar parameters lie close in the phasor
plane. Therefore, exploiting both a supervised machine learning approach, coupled with a
statistical analysis, the SIF spectrum at TOC, the SIF spectrum corrected for reabsorption,
the SIF quantum efficiency (Fqe) and biophysical parameters are retrieved starting from
the Rapp spectra.
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3.3 Results

3.3.1 Characterizing the reabsorption effect

The comparison between the SIF TOC and SIF corrected for reabsorption was prelimi-
narily carried qualitatively on the MODTRAN5-SCOPE simulated spectra. A few examples
are displayed in Figure 3.10.

Figure 3.10: Comparison between SIF spectra simulated at TOC scale (orange) and corrected for
the reabsorption (SIFRC in blue). They are both measured in mWm−2nm−1sr−1. Each column
corresponds to a different LAI (in m2m−2) and Cab (in µgcm−2) couple, increasing from left to right.
Each row corresponds to different SZA and Fqe values.
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In terms of discrete values, the fluorescence emitted at the photosystems level (orange
spectra) is always greater compared to the one evaluated at top-of-canopy scale (blue
spectra). This result is expected because part of the SIF emitted is re absorbed by the
leaf-canopy system. When re absorbed, the energy could be used again for PQ, NPQ or
SIF. Therefore, only a fraction of the SIF absorbed is re emitted radiatively. Furthermore,
in the path within the canopy, the fluorescence could be scattered outside the sensor field
of view. The reabsorption also has a strong influence on the SIF spectral shape. All the
spectra simulated at the photosystems level are characterized by a clear peak in the visible
red and a broad shoulder in the far-red. Conversely, at TOC scale, the SIF peaks are more
or less evident depending on the LAI and Cab considered. For very low LAI and Cab
(e.g. the first column in Figure 3.10), red and far-red emissions are comparable. Increasing
the canopy chlorophyll content (Figure 3.10 from left to right), the fluorescence signal
is dominated by the far-red, even though at the photosystems the SIF is emitted mainly
in visible red. In terms of spectral shape, the LAI and Cab values influence only the
SIFRC magnitude, leaving unchanged the position of the peaks. Conversely, at TOC the
λfar−red shifts toward longer wavelength is here observed, as discussed in Chapter 2 on
the experimental measurements.

This shift is again linked to reabsorption. Comparing column 2 and 4 in Figure 3.10,
a peculiar trend is observed in the region between the two peaks when the SIFTOC are
considered. In particular, the local minimum identified becomes deeper for greater LAI-Cab
values. This trend could be explained analysing simultaneously the SIFRC and SIFTOC

behaviors. The emission at the photosystems level in the red increase with the LAI-Cab
and it is not completely re absorbed. Therefore, at TOC scale, a residual contribution in
the red is not re absorbed. If the red and far-red both increase and the far-red peak shifts
toward longer wavelengths, the gap between the two emission peaks becomes clearer (at
TOC). The SIF changes were also evaluated for different SZA and Fqe values. In Figure
3.10 are shown only the spectra simulated with SZA equal to 20° and 48° and Fqe equal to
0.013 and 0.018, respectively. For a fixed SZA, the increasing Fqe values determine and
overall increase of the SIF magnitude, but the spectral shape seems unaffected, regardless
of the scale considered (e.g. Figure 3.10A and Figure 3.10C). The same trend was observed
for fixed Fqe and variable SZA (e.g. Figure 3.10A and Figure 3.10B). Summarizing, the SIF
magnitude depends on the LAIxCab, SZA and Fqe values regardless of the scale considered.
Furthermore, the SIF spectral shape is strongly affected by the LAIxCab when the signal is
upscaled from the photosystems level to Top-Of-Canopy scale. This trend is attributable to
reabsorption.

A similar analysis was carried out by means of the SIF metrics evaluated on the full
spectrum. Figure 3.11 collects the results obtained, in which the first row considers the
SIFTOC metrics, while the second row the ones estimated on the corrected spectra (SIFRC).
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Figure 3.11: (top): Fluorescence metrics evaluated on the TOC SIF spectra. (bottom): Fluorescence
metrics evaluated on the SIF corrected for the re-absorption (i.e. at the photosystems level). The trends
showed are evaluated on the synthetic dataset. Each point corresponds to a single LAIxCab value.
Measurements referred to the bare soil were not considered. Color code (white rather than grey)
allows to discern between the metrics evaluated in the same spectral region. Except for the SIFINT
cases, grey dots correspond to the SIF estimated in the O2 bands, white dots to the fluorescence at
the peaks. Specifically, SZA= 20°. Fqe = 0.013.

This qualitative comparison clearly highlights the strong effect that the reabsorption
has on the SIFTOC in the red spectral region. While all the SIFRC metrics show a saturated
trend for increasing LAIxCab, the SIFTOC is characterized by different behaviors depending
on the spectral region considered. In particular, the fluorescence metrics defined in the
far-red and the spectrally integrated SIF saturate with respect the LAIxCab. Globally,
SIFTOC760 , SIFTOCfar−red, SIFTOCINT show the same behaviour because when reabsorption occurs,
the far-red contribution in the SIF spectrum is predominant. This theoretical result cor-
responds with the observations obtained on the experimental measurements (Chapter 2,
Figure 2.4A-B and Figure 2.5 first row). On the other hand, the TOC fluorescence in the
visible red is characterized by an initial variability (values referred to sparse vegetation),
then followed by a decrease when a denser canopy is considered. This trend is attributable
to the reabsorption that quenches the fluorescence signal in the red and prevails for greater
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canopy chlorophyll content. In this case, SIFTOC687 and SIFTOCred are characterized by the same
values, in in accordance with what was observed experimentally in Chapter 2 (Figure 2.4C
and Figure 2.5D).
At TOC scale, the LAIxCab coupling plays a key role in the metrics values. In case of
medium vegetation (LAIxCab between 50 and 200), SIFTOCfar−red and SIFTOCINT show a clear
variability. This behaviour is less evident at the photosystems level.
In general, all the metrics values (expect SIFTOCred and SIFTOC687 ) saturate moving from sparse
to dense vegetation. The same trend was also observed for the aPAR (Figure 3.3A). This
result is expected because, the amount of energy dissipated as fluorescence strongly de-
pends on the amount of light absorbed by the plant. Therefore, one of the SIF drivers is the
aPAR. The SIF metrics were also investigated with respect to the SZA and Fqe (not shown).
Both these parameters mainly affect the metrics magnitude. Concerning the SZA, greater
values are obtained for lower angles, similarly to the aPAR case (Figure 3.3B). Since the Fqe
determines the efficiency of the fluorescence process, the SIF values increase mutually with
the Fqe.

The changes in terms of SIF spectral shape, qualitatively highlighted in Figure 3.10, were
investigated by means of the SIF metrics linked to the maximum emission wavelengths.
At the photosystems level the peak position in the red and far-red are always constant,
regardless of the LAIxCab, SZA and Fqe considered (not shown). Specifically, λRCred lies
around 682 nm, while λRCfar−red around 740 nm. Conversely, at TOC scale, the pattern
observed on the field measurements is found also on the synthetic dataset (see Figure 2.6
and Figure 3.12). Figure 3.12 collects the metrics values evaluated at TOC scale. In general,
λred lies around 685 nm and slightly decreases with increasing LAIxCab. Conversely, the
far-red peak (i.e. λfar−red) undergoes to a clearer shift toward longer wavelengths. As
expected, the peak positions do not depend on the SZA and Fqe values.
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Figure 3.12: (top): peaks positions in the far-red (left) and visible red (right) evaluated on the TOC
SIF for different SZA (Fqe = 0.013). (bottom): peak positions in the far-red (left) and visible red (right)
evaluated on the TOC SIF for different Fqe (SZA= 20°). Each point corresponds to a specific LAIxCab
value. The color code helps to discern between the whole SZA and Fqe considered.

The last two metrics investigated are the SIF yields evaluated at TOC scale and at
photosystems level (see equations 3.2.6 and 3.2.5). The fluorescence yield represents a
pivotal parameter in the vegetation monitoring because strictly linked to the efficiency
of the photosynthetic process. In this framework, I want to investigate whether the
SIFTOCyield approximates the true value obtained from the spectrum corrected for reabsorp-
tion (SIFyield). The SIFTOCyield and SIFyield trends were analysed for different SZA and Fqe.
From a qualitative point of view, a clear difference appears between the yield evaluated at
TOC scale and on the RC spectrum (Figure 3.13; case Fqe = 0.013). The first one shows a
strong dependence on the LAIxCab values (Figure 3.13A). The decreasing trend observed
is probably attributable to the reabsorption effect. Conversely, at the photosystems level the
SIFyield is constant regardless of the LAIxCab and SZA values. The SIF yields evaluated
for a fixed fluorescence efficiency were averaged over all the LAIxCab and SZA simulated
and compared to corresponding Fqe (Figure 3.13B and D). In general, a linear relation
was observed in both the cases investigated. At TOC, the average values show an evident
margin of errors linked to the strong variability of the measurements observed in Figure
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3.13B. The liner regression performed gives p1 = 0.131, p2 = 8.7e−8, R2= 1 and RMSE=
4e−10. Conversely, at the photosystems level (Figure 3.13D), all the average SIFyield lie
on the 1:1 (p1 = 0.995, p2 = 7e−11, R2= 1 and RMSE= 3e−11). As expected, the SIFyield
evaluated on the fluorescence spectrum corrected for the reabsorption match with the
theoretical quantum efficiency settled in SCOPE.

Figure 3.13: Panel A: SIFTOCyield for different SZA values. Fqe = 0.013. Panel B: Comparison between
the Fqe (SCOPE input) and the SIFTOCyield evaluated according to eq. 3.2.6. Panel C: SIFyield for
different SZA values. Fqe = 0.013. Panel D: Comparison between the Fqe (SCOPE input) and the
SIFyield evaluated according to eq. 3.2.5. Color code in Panel A and C corresponds to the several
SZA considered. Data displayed in Panel B and D correspond to the average performed over all the
LAIxCab and SZA values for a fixed Fqe. The error bars are the standard deviations. In red the linear
regression performed. The dashed line is the 1:1.



64 Correcting SIF for canopy reabsorption for quantum yield estimations

CASE ID Parameters Parameters values Interval of confidence
p1 0.131 (0.131 ; 0.131)

TOC p2 8.7e−8 (8.3e−8 ; 9.0e−8)
R2 1 -

RMSE 4e−10 -
p1 0.995 (0.995 ; 0.995)

RC p2 7e−11 (-3e−10 ; 4e−10)
R2 1 -

RMSE 3e−11 -

Table 3.1: Coefficients and statistics obtained from the liner regression shown in Figure 3.13B (Case
ID TOC) and Figure 3.13D (Case ID RC). p1 corresponds to the linear regression slope, while p2 to
the intercept.

3.3.2 aPAR parametric method accuracy (RT simulations)

The performances linked to the aPAR retrieval algorithm by means of the NIRv re-
flectance index were investigated. The accuracy of the method proposed was assessed
on the synthetic dataset. A comparison between the "true" aPAR (SCOPE outcomes) and
the corresponding values obtained with the method described in Section 3.2.3 was carried
out. The accuracy was verified from the results of the linear regression performed on the
scatterplots displayed in Figure 3.14.

In all the cases investigated, the values estimated lie on the 1:1 (dashed grey line) and
show R2 equal to 1. Moreover, the RMSEs evaluated are always lower than 4.5 (see Figure
3.14 for the regression results and statistics).
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3.3.3 SIFRC retrieval accuracy (RT simulations)

3.3.3.1 Parametric method

The accuracy of the parametric method was first evaluated on the simulated mea-
surements. The test was carried out on the same subset used in Section 3.3.1, namely
SZA=20°-48° and Fqe= 0.013-0-018. Furthermore, the values corresponding to bare soil
were not considered.

The SIF simulated at the photosystems level by SCOPE was compared to the spectra ob-
tained by the parametric method (with and without the approximation on the a coefficient),
with the same input variables (i.e. SZA, LAI, Cab and Fqe). The accuracy was quantitatively
estimated evaluating the RMSE and RRMSE% in agreement with eq. 3.2.10 and eq. 3.2.11,
respectively. This comparison allows to quantify how much the retrieved spectral shapes
differ from the simulated one. Figure 3.15 reports few examples of the spectra obtained
using aavg (Figure 3.15A) and a(Fqe) (Figure 3.15A), respectively. The spectra simulated
with SCOPE are shown in blue, in red the ones estimated with the parametric method.
In all the six LAI and Cab cases shown, the approach proposed seems to model correctly
the theoretical SIFRC spectral shape, regardless of the approximation on the coefficient a.
As expected, better performances are obtained using a(Fqe), as highlighted by the RMSE
shown in Figure 3.15B. The only exception is observed for low LAI and Cab values (see
case LAI=2 and Cab=10).
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Figure 3.15: Comparison between SIFRC spectra simulated with SCOPE (in blue) and using the
parametric method (in red). Case A: spectra evaluated with approximation on the coefficient a (aavg).
Case B: spectra evaluated without approximation on the coefficient a (a(Fqe)). SZA= 20°. Fqe= 0.013.

This analysis was carried out for all the LAI, Cab, SZA and Fqe values composing the
subset. Figure 3.16 summarize the results obtained in terms of RRMSE% for all the cases
investigated with and without the approximation on the a coefficient. The method always
retrieves the SIFRC spectra with an RRMSE% lower than the 40% (Case aavg) and 35%
(Case a(Fqe)). A strong dependence to the LAIxCab value is clear. Greater RRMSE% are
observed for sparse vegetation (LAIxCab lower than 20). In this case the low chlorophyll
concentration, along with the background contributions, negatively influence the SIFRC

retrieval. Conversely, the RRMSE% are less variable for the other vegetation simulated
(i.e. medium and dense). When a(Fqe) is considered, the RRMSE% are independent of
the Fqe and are less affected by the SZA. On the other hand, when the aavg is used, a
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dependence on both the SZA and Fqe is clear. In particular, aavg better approximates the
SIFRC simulated with higher Fqe. Not considering the outcomes associated to the sparse
vegetation, the parametric method models the SIFRC spectral shape with an RRMSE%
always lower than the 25% in case of a(Fqe) and 27% for aavg.

Figure 3.16: RRMSE% obtained comparing SIF simulated with SCOPE and SIF spectra corrected for
reabsorption with the parametric method.
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From an experimental point of view, the variables of interest are the SIFRC evaluated at
the peaks, because linked to the photosystems emission, and the integral of SIFRC for the
fluorescence yield evaluation. The corresponding metrics were evaluated on the spectrum
corrected for reabsorption and compared to the values estimated on the SCOPE simulations.
Similarly to the previous analysis, the SIF spectra were corrected with and without the
approximation on the coefficient a. The three metrics investigated are SIFRC687, SIFRC760 and
SIFRCINT . A linear regression was performed on the scatterplot between true and retrieved
metrics for all the LAIxCab couples, but fixed SZA and Fqe values (Figure 3.17). First row
of Figure 3.17 shown the above-mentioned scatterplots for SZA= 20° and Fqe= 0.013. On
the x the true SIF metrics estimated on the SCOPE spectra are reported, while on the y the
corresponding values obtained with the parametric method. Each point corresponds to a
single LAIxCab value, the linear regression performed is shown in red. The dashed line
represents the 1:1. These comparisons were carried out for all the SZA and Fqe composing
the subset. The regression outcomes are summarized in Figure 3.17 (rows from 2 up to
5) and shown for increasing SZA. The color code (the same used in Figure 3.12) allows
to discern between the several Fqe considered. Lower Fqe values are in blue, medium in
green, higher in orange.

It is clear that the method accuracy increases when only selected metrics are consid-
ered instead of the whole spectra. Using the first row of Figure 3.17 as reference, all the
metrics investigated lie on the 1:1 (dashed grey line) regardless the LAIxCab considered
and the approximation applied. All the slopes of the regression line are collected in Figure
3.17B. As expected, a variability with the SZA and Fqe is observed when aavg is used
(column 1-3). Nevertheless, the slopes lie between 0.9 and 1.1 for all the cases considered.
Conversely, when the SIF spectrum is corrected with the coefficient a(Fqe), the slopes are
constant and equal to 1, except for the SIFRC687 case characterized by value lower than 1.

The RMSE depends on the Fqe values, regardless of the approximation applied on the
coefficient a (Figure 3.17C). In particular, it increases with the fluorescence efficiency. Con-
versely, the RRMSE% evaluated with a(Fqe) are constant with the SZA and always lie below
5% for all the metrics considered (Figure 3.17D). Slightly greater values are observed for
the metric evaluated at 687 nm. Conversely, when the aavg case is considered, there is
more variability in the results obtained. A strong dependence to the SZA and the Fqe is
clear, but in general the RRMSE% evaluated always lies below 10%. Finally, the R2 always
lies between 0.994 and 1 (Figure 3.17E). Decreasing values are obtained for greater SZA,
regardless of the Fqe and the coefficient approximation used.
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The last parameter studied is the SIF yield. The reliability of the SIFyield evaluated
using the aPAR and SIFRC from the corresponding parametric methods is investigated.
The SIFyield (at the photosystems level) was evaluated following different approaches. Six
cases were highlighted and compared, namely:

• Case 0: it represents the reference because the SIFyield is evaluated using the aPAR
and SIFRCINT originated with SCOPE;

• Case 1: the SIFyield is evaluated using the aPAR generated by SCOPE and the SIFRCINT
obtained using the coefficient aavg;

• Case 2: the SIFyield is estimated using the aPAR simulated by SCOPE and the SIFRCINT
obtained using the a(Fqe) values;

• Case 3: the SIFyield is evaluated using the aPAR retrieved by means of the NIRv
index and the SCOPE SIFRCINT ;

• Case 4: the SIFyield is obtained using the aPAR retrieved by means of the NIRv index
and the the spectrally integrated SIFRC retrieved using the approximation aavg;

• Case 5: the SIFyield is evaluated using the aPAR retrieved by means of the NIRv
index, combined with the spectrally integrated SIFRC obtained using the a(Fqe)
values.

The cases summarized in Table 3.2 were compared to the Fqe values settled as input in
SCOPE. The comparison was carried out for all the LAIxCab and SZA composing the
dataset.

CASE ID Outcome aPAR SIFRCINT
0 SIFyield SCOPE SCOPE
1 SIFyield SCOPE param. method with aavg
2 SIFyield SCOPE param. method with a(Fqe)
3 SIFyield param. method SCOPE
4 SIFyield param. method param. method with aavg
5 SIFyield param. method method with a(Fqe)

Table 3.2: SIFyield evaluated on the synthetic dataset exploiting six different strategies.
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Figure 3.18: SIFyield evaluated on the synthetic dataset. Each row corresponds to a case described
in Table 3.2. White dots correspond to the several LAIxCab values. The red line is the Fqe given as
input in SCOPE. SZA = 20°.

A representative example of the analyses carried out is reported in Figure 3.18 for a
SZA of 20° and Fqe equal to 0.013, 0.015 and 0.017. The red line represents the Fqe imposed
as input is SCOPE, while the points to each SIFyield evaluated in the six summarized in
Table 3.2 for all the LAI-Cab composing the subset.
Except for Case 0, that represents the reference, in all the cases investigated a strong
dependence on the LAI and Cab values is clear. In particular, a great variability is observed
when sparse vegetation is considered (LAIxCab< 20).
Case 1 and Case 2 (true aPAR and SIFRC parametrized) allow to highlight the impact of the
approximation of the a coefficient on the SIFyield discrete values. When aavg is considered
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(Case 1), the outcomes shift respect to the reference (red line). Specifically, the SIFyield is
overestimated for low Fqe, almost correctly estimated for medium Fqe and underestimated
for greater Fqe. This trend is attributable to the average performed on the a coefficient
because in Case 2 all the values obtained lie around the reference, regardless of the Fqe
considered.
Case 3 allows evaluation of the impact of the aPAR parametrization on the SIFyield value.
There is a clear variability linked to the LAIxCab, specifically when sparse vegetation is
considered. Nevertheless, the SIFyield computed always lies around the true Fqe value.
Case 4 mimics a potential experimental situation, in which the Fqe is unknown and then the
aavg is used to correct the SIF spectra for reabsorption. The aPAR is evaluated exploiting
the NIRv reflectance index. Similarly to Case 1, the SIFyield moves around the reference
accordingly to the Fqe considered.
Conversely, Case 5 exploits the a(Fqe) values and the SIFyield is more stable with respect
to the reference.

The qualitative comparison previously described, was iterated over all the SZA and Fqe
composing the subset. The RMSE and RRMSE% obtained were collected in Figure 3.19.
As expected, lower RMSE and RRMSE% are computed for Case 0, which corresponds to
the reference. The aavg approximation clearly introduces a variability linked to both the
SZA and Fqe, regardless of the aPAR used to evaluate the SIFyield (Case 1 and Case 4).
The RMSE and RRMSE% are lower than 0.0011 and 8%, respectively. Conversely, when the
true SIFRC or the a(Fqe) are used, the dependence on the Fqe disappears (see the RRMSE%
trend). In these cases, the RMSE and RRMSE% always lie below 0.0006 and 4% (Case
2, Case 3 and Case 4). Case 4 shows a faint dependence on the SZA, with values that
mutually increase with the SZA.
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Figure 3.19: RMSE and RRMSE% evaluate on the comparison between Fqe and the SIFyield for the
six cases summarized in Table 3.2. The values are displayed for increasing SZA. Color code allows to
discern between the several Fqe investigated.

3.3.3.2 Fourier-ML algorithm

The Fourier-ML algorithm accuracy was investigated dividing the whole synthetic
dataset described in Section 3.2.1 in 80% training and 20% test set, with a 5-fold cross-
validation. The retrieving accuracy was evaluated on both the biophysical parameters and
the selected SIF metrics estimated on the full spectra (TOC and at the photosystems level).
In particular, the fluorescence was estimated in the two oxygen absorption bands at 760
nm (O2-A) and 687 (O2-B) nm. The true values were compared with the corresponding
one estimated with the Fourier-ML algorithm and a linear least square fit was performed.
The results obtained are summarized in Figure 3.20.

All the parameters investigated show an almost perfect linear trend and the values lie
on the 1:1, as demonstrated by the slopes of the linear regression performed (between 0.986
and 1) and the intercepts close to zero. Furthermore, the R2 are always greater than 0.99. A
peculiar trend is observed for the LAI, in which a spread of the points around the reference
is clear for values between 6-8. Conversely, the less continuous pattern characterizing the
Fqe is due to the low variability of this parameters with respect to the other variables (i.e.
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23 cases for the Fqe vs 10000 for the LAI and Cab). The RRMSE% estimated are collected
in Table 3.3. As expected, the LAI is characterized by the higher error. Nevertheless, the
RRMSE% is always lower than the 2%.

Figure 3.20: Comparisons between estimated and simulated values. The first row collects the
biophysical parameters, while the second row the SIF metrics. The dashed grey line represents the
1:1. In white is displayed the linear fit. SZA = 40°.
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Parameter RRMSE% Parameter RRMSE%
Cab 1.0 ± 0.7 SIFTOC687 0.7 ± 0.7
LAI 2.0 ± 0.7 SIFTOC760 1.0 ± 0.8

aPAR 0.7 ± 1.0 SIFRC687 0.9 ± 0.8
Fqe 0.8 ± 0.5 SIFRC760 0.9 ± 0.8

Table 3.3: RRMSE% evaluated on the comparison between the variables (biophysical parameters
and SIF metrics) simulated and the values estimated with the Fourier-ML algorithm. The RRMSE%
corresponds to the average value over all the SZA in the dataset, while the margin of errors to the
standard deviations.

3.3.4 Qualitative comparison of the methods on field measurements

The two methods developed to correct the SIF for reabsorption were applied on the
hyperspectral measurements acquired in field (experimental dataset described in Section
2.2.1). Concerning the parametric method, the local SZA, the NIRv and the SIFTOC760

were combined with the constant values and the regression coefficients highlighted in
Section 3.2.4 to estimate the SIFRC and the aPAR. In particular, the SIFRC was evaluated
using the aavg approximation. SIFRC and aPAR were then combined to estimate the
SIFyield. On the other hand, the experimental Rapp represents the only input in the
Fourier-ML algorithm. Its values were compared to the synthetic dataset to compute the
crop biophysical parameters (Cab, LAI, Fqe, aPAR) and the SIF spectra (TOC and RC).
Both these approaches were applied only on the spectral measurement acquired in a ± 15
minutes interval around the solar noon. The outcomes were displayed in time to evaluate
the parameters and SIF metrics behaviours at seasonal scale. Since the parametric method
does not retrieve correctly the SIFRC spectra for sparse vegetation, only measurements
acquired on medium-dense canopies were used (DOY greater than 100). Conversely, the
Fourier-ML algorithm were applied on the whole time series, opportunely expanded
with additional days characterized by clear sky conditions around the solar noon. Here I
would reiterate that the corn crop was not considered, as per what is displayed in Section
3.2.1. The seasonal trends obtained are displayed in Figure 3.21, in which the common
metrics were compared, namely SIFRC760, SIFRC687, aPAR and SIFyield. Figure 3.21A shows the
parametric method results, while Figure 3.21B the Fourier-ML algorithm ones.
From a qualitative point of view, the outcomes obtained separately with the two approaches
lie in the same numerical intervals. However, a more quantitative comparison was not
possible. In the common days available, the trends referred to the SIF metrics evaluated
on the RC full spectrum correspond to each other. In particular, the forage time series is
characterized by an initial increase of the SIF values, followed by a saturation. As observed
in Chapter 2, the alfalfa shown a minimum around DOY 160. The aPAR seasonal trends
are completely comparable. As observed in the preliminary analysis carried out on the
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synthetic dataset, the aPAR saturates when denser canopies are considered. This behaviour
is clear in the last days of the forage time series and for all the alfalfa days. Here I will
point out that in these temporal intervals, both these crops were in mature stage and were
characterized by a well-developed canopy. Finally, the two SIFyield were compared. In this
case, the outcomes obtained with the parametric method differ from the SIFyield computed
with the Fourier-ML algorithm. The shift between the two is clear when DOY close to 100
are considered. The parametric method anomalous results are probably attributable to the
strong variability affecting the SIFyield for low LAIxCab values, as observed in Figure 3.18
(Case 4).

Figure 3.21: Panel A: seasonal trends obtained with the parametric method. Panel B: seasonal trends
obtained with the Fourier-ML algorithm using two different approaches (considering the O2 spectral
bands, in red and excluding the O2 spectral bands in blue). Points displayed correspond to the
average value on the time interval investigated (± 15 minutes around the solar noon). The error bars
are the standard deviations. Dashed line separates the two crops investigated.

3.4 Discussion

3.4.1 Reabsorption effect on the Top-Of-Canopy SIF

Results shown in Section 3.3.1 had widely demonstrated how reabsorption process
affects both the SIFTOC magnitude and spectral shape. Concerning the magnitude, the
fluorescence at the photosystems level is always greater compared to emission estimated at
Top-Of-Canopy scale. The reabsorption and the leaf-canopy scattering determine a decrease
on the SIF signal of about 10 times. Using Figure 3.10 as reference, SIFRC always lies
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between 0 and 80 mWm−2nm−1sr−1, while SIFTOC between 0 and 8 mWm−2nm−1sr−1.
The SIF reabsorbed in the visible red is not completely re emitted following a radiative
pathway, determining a first decrease on the fluorescence signal. Furthermore, the SIF
emission always occurs at longer wavelengths with respect to the absorbed ones. Therefore,
the fluorescence reabsorbed in the visible red is emitted in the far-red. These wavelengths
are strongly scattered by the leaf-canopy systems; therefore, a portion of the SIF signal
is probably scattered outside the sensor FOV or backscattered. In terms of SIF spectral
shape, the SIFRC is always characterized by a predominant maximum emission in the red
and a broad shoulder in the far-red, regardless of the LAI, Cab, SZA, Fqe considered (see
Figure 3.10 in orange). The SIFRC spectral shape corresponds to the description reported
in Maxwell and Johnson, 2000. Conversely, the SIFTOC strongly depends on the LAI- Cab
values that determine a different proportion between the emission in the red and far-red
(see Figure 3.10 in blue). In terms of discrete values, the emissions in the red and far-red
are comparable for very low LAI-Cab (e.g. first column in Figure 3.10). On the other hand,
the peak magnitude mutually increases with the LAI-Cab, even though this behaviour is
clearer when the SIF in the far-red is considered. This trend is attributable the reabsorption,
because for fixed LAI-Cab the SIFTOC spectral shape is unaltered, regardless of the SZA
and Fqe values.

A similar qualitative analysis was carried out comparing the SIF metrics defined on the
full spectra simulated at TOC and photosystems level (Figure 3.11). Regardless of the scale
considered, all the metrics follow a trend similar to the one observed for the aPAR. A first
almost linear increase in the SIF magnitude is observed for the values referred to sparse
vegetation, then followed by saturation for medium and dense canopies. The only exception
is represented by the SIF metrics defined in the visible red and at 687 nm at TOC scale
(i.e. SIFTOCred and SIFTOC687 ). In this case, the fluorescence decreases for greater LAIxCab. The
trend observed is attributable to the reabsorption that reduces the fluorescence emission in
the visible red. In particular, the differences in terms of discrete values between SIFTOCred

and SIFTOC687 are attenuated, as previously highlighted on the experimental case reported
in Chapter 2 (see Figure 2.4C). Similarly, the theoretical behaviour observed for the SIF
estimated in the far-red (i.e. SIF760 and SIFfar−red) corresponds to the field outcomes
(Figure 3.11 and Figure 2.4B). In particular, the differences in magnitude between SIF760
and SIFfar−red become clearer when the vegetation changes from sparse to dense.

At the photosystems level, the peak positions in the red and far-red are unaltered
regardless of the LAI, Cab, SZA and Fqe. Conversely, at TOC scale peculiar behaviours are
observed (Figure 3.12). As expected, the reabsorption also influences the TOC SIF spectral
shape. In general, the λfar−red is characterized by a clear shift toward longer wavelengths.
On the other hand, the λred initially increases when sparse vegetation is considered and
then decreases toward constant value around 685 nm for higher LAIxCab. These trends
estimated on the synthetic dataset correspond to the results obtained on the experimental
measurements (Chapter 2, Figure 2.6). When reabsorption is less probable (low LAI and
Cab), λfar−red and λred increase mutually. Conversely, the probability that the SIF emitted
in the red to be re absorbed increases in denser canopy. Therefore, the emission in the
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far-red prevails and the λfar−red shifts toward longer wavelengths. On the other hand,
the portion of the spectrum emitted in the visible red is attenuated and an opposite trend
is observed. In particular, λred moves toward lower wavelengths. Constant values are
reached in well developed canopies because the aPAR also saturates. In this framework,
the amount of light absorbed and then dissipated radiatively is almost the same regardless
of the LAIxCab considered. However, faint differences in the spectral shape are observed
in the visible red, for different SZA (Figure 3.12 top right). Conversely, the Fqe affect only
the SIF magnitude, but not the peak position (Figure 3.12, second row).

Finally, the SIF yields evaluated on the TOC and at the photosystems level were
investigated (Figure 3.13). They show a different behaviour with increasing LAIxCab and
fixed SZA and Fqe. In particular, SIFTOCyield decreases from sparse to denser canopies. This
trend is again attributable to reabsorption because at the photosystems level the SIFyield is
constant (Figure 3.13A and C). The SIFTOCyield decreases because when reabsorption occurs a
portion of the SIF is dissipated non radiatively or the signal emitted is scattered outside
the sensor FOV. Averaging the SIF yields over all the LAIxCab and SZA values, a linear
trend with the theoretical Fqe is observed regardless of the scale considered (Figure 3.13B
and D). Despite the similar behaviour, at TOC scale the SIFTOCyield values lie far from the 1:1
(not shown). In particular, the slope of the linear regression performed is 0.131. Conversely,
the SIFyield perfectly corresponds to the theoretical Fqe and all the values lie on the 1:1.
In this case, the linear regression shows a slope equal to 0.995, R2= 1 and RMSE= 3e−11.
Summarizing, the SIFTOCyield does not approximate sufficiently the SIF yield true values.
Therefore, correcting the fluorescence spectrum for reabsorption is mandatory to improve
the understanding of the relationship between SIF and plant physiological status.

3.4.2 Parametric method

A novel method to correct the TOC SIF spectrum for the reabsorption was developed and
tested. This approach was implemented starting from the SIF simulated at the photosystems
level obtained by means of the coupled RT models MODTRAN5-SCOPE. A preliminary
analysis highlighted how a two Gaussian function adequately approximates the SIFRC

spectral shape. The parametric method proposed links the eq. 3.2.8 unknown parameters
(a1, a2, b1, b2, c1, c2) to constant values, regression coefficients and TOC experimental
quantities (i.e. SZA ans SIFTOC760 ). In this framework, two cases were investigated in which i)
the a1 dependence to the Fqe is completely contained in the SIFTOC760 term (i.e. case aavg
corresponding to the actual experimental situation); ii) the a1 dependence to the Fqe is
contained in both SIFTOC760 and the coefficient a (i.e. case a(Fqe) used as reference). The
SIFRC spectra estimated with these two approaches were compared to the simulated values
computed with SCOPE.

A first qualitative analysis was carried out comparing the SIF spectral shapes (Figure
3.15). In general, a good correspondence between the simulated and estimated spectra
were observed, regardless the LAI-Cab considered, for fixed Fqe and SZA values. From
a quantitative point of view, the RRMSE% was evaluated between the true and retrieved
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cases for all the Fqe, SZA, LAI and Cab composing the subset investigated. The results
are summarized in Figure 3.16. Regardless of the approximation used on the coefficient
a, greater RRMSE% are observed for LAIxCab values typical of sparse vegetation. In
particular, the RRMSE% is up to the 40% in the aavg case, 35% with the a(Fqe). Therefore,
the parametric method is unable to model correctly the SIFRC spectral shape when the
canopies considered are not already well developed. This represents a limit of the approach
proposed because unreliable outcomes are obtained under specific conditions, affecting the
method application on analysis at seasonal scale. Furthermore, the RRMSE% values in the
aavg case clearly vary with the Fqe. These results are expected because the a coefficient
shows a strong dependence on the fluorescence efficiency, with values lying between 65 and
73, as reported in Figure 3.8A. Therefore, the aavg value is not completely representative of
the coefficient variability with the Fqe. Nevertheless, the RRMSE% decreases with the Fqe
(Figure 3.16). This trend is attributable to the aavg use because in the a(Fqe) case the values
obtained are always the same, regardless of the Fqe considered. Globally, not considering
the sparse vegetation outcomes, the SIFRC spectral shape is approximated with a relative
mean square error lower than the 27% (with aavg) and 25% (with a(Fqe)). Obtaining a
SIFRC spectrum as accurate as possible is recommended, but it is not mandatory. From an
experimental point of view, it is more important that the SIF at the photosystems level is
accurate around the maximum, specifically in the visible red because linked to the PSII.
Here I will point out that the PSII emission is affected by the potential photodamages
occurring in strong illumination conditions. On the other hand, the spectrally integrated
SIF (SIFRCINT ) is fundamental because used to evaluate the SIFyield. Since SIFRCINT is obtained
integrating over the fluorescence emission spectral interval, the discrete value estimated
is more important than the SIF spectral shape. Bearing in mind these considerations, the
parametric method accuracy was also investigated by means of three SIF metrics, namely
SIFRC760, SIFRC687 and SIFRCINT . The comparisons between the true values (simulated with
SCOPE) and the estimated ones are displayed in Figure 3.17A. On the scatterplots, a linear
regression was performed. The fitting results and statistics are collected in Figure 3.17B-E.
Again, both the aavg and a(Fqe) cases were investigated. When only the SIF metrics
were considered, the values always fall on the 1:1 (dashed grey line). For all the cases
investigated, the regression line is characterized by slopes between 0.9 and 1.1, RRMSE%
between 0% and 10%, R2 between 0.994 and 1. As expected, in case aavg a dependence
on the Fqe is observed, highlighted by the color code used in the aforementioned Figure.
However, these outcomes are referred to all the LAIxCab values. Therefore, the weak
performance of the method previously observed on the full spectrum for low LAI and
Cab could be potentially hidden by the average trend of the metrics. This observation is
supported by the outcomes obtained on the SIFyield. The SIF yield at the photosystems
level was evaluated following six different approaches, as shown in Table 3.2, and they
were compared to the true value, namely Fqe (see Figure 3.18). Except for Case 0, which
represents our reference, in all the other cases considered a dependence on the LAIxCab
is clear. In particular, a strong variability around the true value is observed when sparse
vegetation is considered. This trend is obtained when at least one of the parametric methods
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proposed (i.e. for the aPAR and SIFRC) is used. On the other hand, the SIFyield evaluated
on medium-dense vegetation show less variability in terms of discrete values. Furthermore,
a peculiar trend is observed when a(Fqe) and aavg are considered. In particular, when the
SIFRC generated with SCOPE or the SIFRC estimated with a(Fqe) are used, the SIFyield
always lie around the red line used as reference, regardless of the Fqe considered (Case
2,3,5 in Figure 3.18). Conversely, with aavg the yield values are overestimated, accurately
estimated and underestimated for increasing Fqe. It is expected because, by definition,
aavg better approximates medium Fqe (in this case Fqe= 0.015). The differences between
Fqe and these six SIF yields were quantified evaluating the RMSE and RRMSE%. Figure
3.19 summarize all the results obtained displayed for increasing SZA and Fqe (color code).
Focusing on the RRMSE%, as previously assessed, Case 2, 3 and 5 do not depend on the
Fqe. Conversely, when aavg is used, not insignificant behaviours with the Fqe and SZA
are observed (Case 1 and 4). I will point out that Case 4 corresponds to the potential
experimental situation in which both SIRRC and aPAR are unknown. In general, averaging
over all the LAI and Cab the SIF yields are estimated with RMSE and RRMSE% values
lower than 0.0011 and 8%, respectively.
In general, the parametric method works quite well on the synthetic dataset, even though
there is a clear dependence on the LAIxCab and Fqe values. It must be pointed out that
the canopy architecture simulated is the default one (spherical) and the soil contribution
is very low even for medium vegetation. Conversely, for more complex canopies (i.e.
erectophile like corn) the soil contribution in the signal acquired and the leaf inclination
will play a key role in the relations described in the parametric method. It is plausible that
the coefficients obtained in this framework will be different because, as already observed
in Chapter 2, the corn SIF values are always lower compared to forage and alfalfa cases
(see Figure 2.7 and Figure 2.10 as reference). Furthermore, it is possible that the relations
between aPAR-NIRv and a1-SIFTOC760 will be modified. I would have expected less linear
trends and more scattered values, specifically for lower LAIxCab. Conversely, I think that
trees characterized by well developed canopy (e.g. Oaks) would show patterns similar to
those observed in the spherical case. Although I would expect comparable behaviours, the
coefficient values will be probably different. Referring to Yang et al., 2015, the TOC SIF
values to deciduous forest are generally lower compared to those of crops.

Finally, the parametric approaches were applied to the spectral measurements described
in Chapter 2. Due to the low performances obtained on the synthetic dataset for sparse
vegetation, only acquisitions performed after DOY 100 were considered. The values
estimated lie in the same intervals obtained with the Fourier-ML method. However, a more
quantitative comparison was not possible. In general, SIFRC760 and SIFRC687 follow the same
seasonal trends observed at TOC scale. The aPAR evolution in time is reasonable because
lower values are estimated for low PAR and underdeveloped crops (beginning of the forage
time series). Conversely, the SIFyield shows anomalous behaviour specifically around DOY
100. Since both aPAR and SIFRC are affected by higher errors for low LAI and Cab, the
yield obtained by their combination is not reliable.
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3.4.3 Fourier-ML algorithm

The Fourier-ML algorithm allows to retrieve both biophysical parameters of interest
along with the SIF spectrum at TOC and corrected for the reabsorption. The method
accuracy was quantified on the synthetic dataset. Each parameter estimated is retrieved
with an average RRMSE% lower than the 2% (see Table 3.3). The linear correlation found
corresponds to the outcomes reported in Liu et al., (2019) in which the SCOPE simulations
were used to train a random forest to predict SIF at photosystem, leaf and canopy level.
Focusing on the photosystem scale only, the Fourier-ML algorithm shows best performances
compared to Liu et al., (2019). Regardless of the wavelength considered (far-red or red),
Fourier-ML outcomes always lie in the 1:1 (slope around 1, intercept close to 0 and R2 equal
to 0.9998). Conversely, with the random forest model, in the far-red the scatterplot between
the reference and the retrieved SIF is characterized by a slope equal to 0.96, intercept 0f 0.561
and R2=0.95. In the visible red, the slope is equal to 0.983, the intercept to 1.237 and the
R2=0.861. Concerning the Fourier-ML algorithm application on the experimental spectral
measurements, the seasonal trends obtained are reasonable (Figure 3.21). As previously
observed with the parametric method, lower aPAR values are observed in the first days of
the forage time series, then it saturates to a constant value. This trend corresponds to the
aPAR theoretically evolution highlighted on the synthetic dataset. In particular, it increases
mutually with the canopy chlorophyll content and then saturates when denser canopies
are considered. As demonstrated in Chapter 2, forage after DOY 112 and the alfalfa were
characterized by a well developed canopy. Concerning the SIFRC metrics, they both follow
the aPAR seasonal trend, as already highlighted in Figure 3.11. Furthermore, since they
are evaluated on the SIF spectrum at the photosystems level, they are not affected by
reabsorption. Therefore they share the same seasonal evolution, regardless of the spectral
interval considered. Concerning the SIFyield, its qualitative trends corresponds to the
SIFRC ones. Lower Fqe are observed in correspondence to lower SIFRC values and vice
versa. This behaviour is reasonable because, by definition, the SIFyield represents the
efficiency of the fluorescence process. Moreover, while in the parametric method these
two variables (i.e. SIFRC and SIFyield) are obtained one from the other, in the Fourier-ML
algorithm they are estimated simultaneously and separately. For this reason, the qualitative
agreement between their seasonal trend (second row in Figure 3.21) supports the robustness
of the Fourier-ML algorithm.

3.5 Conclusions

The analysis carried out on the synthetic dataset was highlighted how the reabsorption
process strongly affects the TOC SIF magnitude and spectral shape. As expected the main
differences between the fluorescence signal at the photosystems level and Top-Of-Canopy
scale are clearer in the visible red spectral region. As a consequence, the physiological
information linked to the PSII inferred at TOC scale is dramatically influenced by the
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reabsorption effect. Furthermore, the SIFTOCyield does not approximate adequately the true
yield evaluated at the photosystems. For all these reasons, correcting the SIF spectrum
for the reabsorption is pivotal in order to exploit the fluorescence emission as a reliable
physiological proxy. In this regard, two different approaches were developed and tested.
The parametric method performances depend on the canopy development stage. In
particular, for low LAI and Cab, corresponding to sparse vegetation, the SIFRC obtained
is not reliable. This behaviour limits the method application for seasonal scale analysis,
as demonstrated in the experimental case investigated. Therefore, the method needs
to be further implemented in order to minimize the error associated to the LAIxCab
variability. Conversely, the Fourier-ML algorithm represents a valid approach to retrieve
both biophysical parameters and the SIF spectra (TOC and RC) with a good accuracy.
However, its performances strongly depend on the dataset used to train the algorithm. In
the case shown here, the canopy geometry, crop type and atmosphere composition were
kept fixed. Future studies could be devoted investigating whether these three parameters
influence the method accuracy.





Chapter 4

Advancing SIF retrieval in clear
lake waters and development of
primary production models

4.1 Theoretical Background

Chl-a, contained in many phytoplankton taxa, represents a valid proxy to evaluate
the trophic status of water bodies and to detect potentially harmful blooms (Ruddick
et al., 2019). As commonly known, Chl-a is also a photosynthetic pigment. During the
photosynthesis, the solar light absorbed by the Chl-a, is converted in chemical energy (light
reaction process). This energy is then used in the carbon assimilation reaction, in which
the atmospheric carbon dioxide (CO2) is used to produce sugar (Porcar-Castell et al., 2014).
This process is known as primary production (PP). Chl-a concentration ([Chl-a]) is therefore
correlated to the phytoplankton biomass and it can be used for primary production (PP)
estimations (Falkowski and Kiefer, 1985). Appraisals of the phytoplankton PP are pivotal
because this parameter is generally associated to the ecosystems food webs and the global
carbon cycle (Lakshmi et al., 2014).

For over four decades, the [Chl-a] has been estimated from remote sensing measure-
ments (Smith et al., 1989) exploiting Ocean Color (OC) algorithms. Water bodies are
dynamic ecosystems therefore, the signal arising from its surface depends on the water
itself and its compounds inherent optical properties (Lakshmi et al., 2014; Bukata et al.,
2018; Gitelson et al., 2009). OC algorithm predicts the near-surface [Chl-a] combining
empirical coefficients with the remote sensing Reflectance (Rrs), the latter one evaluated
in specific spectral intervals. Wavebands positions are selected considering the spectral
features of the acquired signal. Specifically, for OC algorithm, the Rrs is evaluated in the
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blue range, where Chl-a pigments efficiently absorb the solar light, and in the green range,
because less influenced by the Chl-a contributions. Although [Chl-a], obtained from OC
algorithm, is fundamental to monitor the water body’s quality, it must be remembered that
it is calculated from the Rrs that does not carry information about the photosynthesis and
it is less linked to the phytoplankton biomass. In this regard, an alternative approach is
represented by the use of phytoplankton SIF emission. SIF is a side product of the photo-
synthesis. It is closely interrelated to the [Chl-a] because the emitted signal is proportional
to the pigments that actually absorb the solar light. Moreover, it arises from the core of the
photosynthetic machinery, then it is more linked to the phytoplankton biomass and primary
production. SIF is an optical signal, so it can be potentially detected by sensors mounted
on different platforms (Mohammed et al., 2019). As highlighted in Chapter 1, in aquatic
ecosystem the SIF retrieval strongly depends on the investigated water body, along with
the sensor used characteristics (e.g. spectral resolution, signal-to-noise ratio etc.). Focusing
on Case-2 waters, lakes are typically characterized by a high degree of spatio-temporal
variability of the inherent optical properties and related compounds (Cesana et al., 2021).
At hourly and daily scales, the acquired signal is mainly determined by the phytoplankton
dynamics, whose trend depends on light and nutrients availability and variations in the
suspended matter concentrations, linked to the wind-induced re-suspension of sediments,
that is typical of shallow lake (Cesana et al., 2021). To discern between abiotic and biotic
contributions, hyperspectral and high frequency measurements are fundamental. From one
side, hyperspectral resolution potentially improves the SIF retrieval in optically complex
waters, to the other, high frequency measurements better follow the spatio-temporal dy-
namism, typical of inland waters. Obtaining a reliable SIF proxy in Case-2 waters is pivotal
in terms of phytoplankton primary production (PP) estimations. In literature, there are
examples of PP estimations carried out in lakes and exploiting remote sensed quantities.
For instance, Deng et al., (2017), applied the Vertical Generalized Productivity Model
(VGPM) on MODIS data to investigate the long-term variations in PP in Lake Taihu (China)
(Cesana et al., 2021). Although the good results achieved, the method described does not
include the SIF in its formulation.

To better understand the potentiality of the SIF use in the inland water characterization
a one-week experiment was conceived in the Lake Maggiore (Italy) in July 2019. Hyper-
spectral measurements were automatically collected during the day by an optical sensor
mounted on a buoy left far enough from the lake shore (around 50 meters). The obtained
time series were then exploited to implement the FLH algorithm for inland waters appli-
cations. Furthermore, indices and metrics evaluated on the hyperspectral measurements
were combined with the values obtained from water samples analysis in order to define
potential phytoplankton PP models. The models reliability was preliminary assessed by
comparison with the biovolume.
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4.2 Material and Methods

4.2.1 Measurements description

Measurements and water samples analysed hereinafter were collected in Ghiffa (VB), a
site located on the Lake Maggiore western shore. The field campaign was carried out in
July 2019. Hyperspectral and high frequency measurements were collected from the 02nd

up to the 07th of July. Furthermore, water samples were collected in-situ the 02nd and 03rd

of July. A detailed description of the investigated water body, the sampling performed and
the acquired hyperspectral measurements are reported in Section 4.2.1.1, Section 4.2.1.2
and Section 4.2.1.3, respectively.

4.2.1.1 Study Area

Lake Maggiore is a large oligo-mesotrophic lake situated between Italy (ca. 80%) and
Switzerland (ca 20%). Placed at the south of the Alps, its maximum depth reaches the
370 meters. The lake has 33 tributaries and only one emissary, the River Ticino (Cesana et
al., 2021). Formed by glacial erosion in a pre-existing fluvial valley, it is considered holo-
oligomictic and rarely undergoes to a complete mixing (Barbanti and Ambrosetti, 1989).
Like most lakes in Italy and Central Europe, Lake Maggiore underwent to anthropogenic
eutrophication during the second half of the 20th century (Salmaso and Mosello, 2010)
with peak of phosphorus (P) loads at mid-seventies (Ruggiu et al., 1998). In the following
decades, sewage treatment plants were improved and total phosphorus in detergents were
reduced, until values close to pre-industrial concentrations were reached (Marchetto et al.,
2004).
Lake Maggiore can be considered a clear waters lake. It has been monitored since 1970s
and a comprehensive long-term dataset of the phytoplankton records and environmental
variables is currently available (Morabito et al., 2018). As reported in Morabito et al., (2018),
the phytoplankton response to weather conditions depends on the groups considered.
Concerning Cyanobacteria, rainfall positively affects growth, while higher wind speed has
a negative impact on their development. Diatoms reach a maximum growth in spring,
when the wind influences the mixed regime and the nutrient replenishment. Finally, also
water temperature and light intensity are pivotal parameters influencing the Mougeotia sp.
(Chlorophytes) and Cyanobacteria growth.

4.2.1.2 Water samples collection

The water sampling was carried out with the purpose of characterize the water body
bio-optical properties and to apprise the phytoplankton composition. In order to evaluate
the phytoplankton response to different illumination conditions and its behavior within the
water column, several samples were collected in different depths and moments of the day.
The sampling was repeated in correspondence of the solar noon and close to the sunset.
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For each sampling performed, water samples were collected just below the surface z0
(0.2-0.5 m) and at the Secchi Disk depth zSD (around 5.5-6 m). The following nomenclature
was used to discern between the different samples collected: S1 and S2 correspond to
sampling on 02nd of July, while S3 and S4 on 03rd of July. Odd numbers refer to the
measurements undertaken close to the solar noon, even numbers refer to the sunset ones.
The additional labels, z0 and zSD (i.e. S1z0 and S1zSD), indicate the depths at which
the samples were collected. The nomenclature is also summarized in Table 4.1. All the
samples were filtered in-situ with a GF/F glass fiber filters and subsequently analyzed in
laboratory. Moreover, to improve the matching with the hyperspectral measurements, wa-
ter samples were collected close enough to the buoy on which the sensors were mounted on.

Sample ID Sampling day Sampling time Sampling depth
S1z0 02/07/2019 ~11:44 below the surface

S1zSD 02/07/2019 ~11:44 Secchi Disk depth
S2z0 02/07/2019 ~16:25 below the surface

S2zSD 02/07/2019 ~16:25 Secchi Disk depth
S3z0 03/07/2019 ~11:20 below the surface

S3zSD 03/07/2019 ~11:20 Secchi Disk depth
Sz0 03/07/2019 ~15:10 below the surface

SzSD 03/07/2019 ~15:10 Secchi Disk depth

Table 4.1: Nomenclature used in Chapter 4 to discern between the different water sample collected.
The temporal information is reported in local time (UTC+1).

4.2.1.3 Hyperspectral measurements acquisition

Hyperspectral measurements were collected by a ROX spectrometer manufactured by
the JB Hyperspectral Devices (Germany). This system is equipped with sensors specifically
designed for hyperspectral and continuous measurements in the VIS-NIR. The ROX
employs an Ocean Optics spectroradiometer collecting the incoming and the upwelling
irradiance/radiance almost simultaneously in the wavelength interval between 400-950
nm, with a spectral resolution of 1.5 nm and acquisition time of about 1 minute. The
ROX system consists in two separated probes. The first one pointed upward to collect
the downwelling irradiance (Ed) reaching the target. The Ed optic was mounted on a
goniometer to keep the probe as perpendicular as possible to the water surface regardless of
the buoy oscillations. The second sensor was pointed downward to measure the upwelling
radiance (Lu) rising from the water body. To avoid the solar glint, the sensor was placed
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below the water surface (ca. 15 cm) and pointed toward the lake bottom. The instrument
was mounted on a flouting buoy left far enough from the coastal zone (around 50 meters)
to avoid the bottom contribution in the spectral signal acquired.
The experiment location and the experimental set-up is shown in Figure 4.1.

Figure 4.1: Lake Maggiore and experimental location. (top right) Buoy on which ROX has been
mounted on. It was left around 50 meters far from the lake shore to avoid the bottom contribution in
the spectra collected. (bottom right) Experimental set-up.

To optically characterize the water column, a vertical profile of the downwelling irradi-
ance and upwelling radiances was acquired by means of the Satlantic radiometer. Satlantic
is equipped with radiometers that collect the Ed and Lu between 350.5-796.5 nm (137
channels, 3.3 nm) at several depths with an acquisition step of 0.1 m. In the upcast mode,
used in this work, the sensor starts collecting the incoming irradiance from the surface up
to greater depths. The vertical profile acquisition was carried out in conjunction with the
water samples collection, therefore the 02nd and 03rd of July.
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4.2.2 Measurements analysis

4.2.2.1 Water samples laboratory analysis

As described in Bresciani et al., (2016), the photosynthetic pigments for high-performance
liquid chromatography (HPLC) analysis were extracted in 90% acetone, overnight in the
dark, under nitrogen. The obtained extract wasn used to quantify the Chlorophyll-a
concentration ([Chl-a]HPLC, in µg/L), its derivatives and the total carotenoids by spec-
trophotometry (Lorenzen, 1967). Individual carotenoids were detected by revers-phase
HPLC with an Ultimate 3000 (Thermo Scientific). Specific pigments were identified by
ion pairing, reverse-phase HPLC described in (Guilizzoni et al., 2011). Total Suspended
Matter (TSM) was obtained gravimetrically (Strömbeck and Pierson, 2001). Backscattering
was measured using a Hobi Labs Hydroscat-6. The spectral absorption coefficients of
phytoplankton (aphy) and non-algal particles (aNAP) (Kishino et al., 1985) were obtained
spectrophotometrically using the filter pad technique (Trüper and Yentsch, 1967). CDOM
was measured spectrophotometrically immediately after filtration through Whatman Nu-
cleopore membrane filters (diameter 47 mm, pore size 0.2 µm). The CDOM absorption
coefficient at 440 nm (aCDOM(440)) was derived according to Kirk (2011).

Phytoplankton samples were collected and analyzed for the purposes of species iden-
tification and cell count under an inverted microscope (400x magnification; Utermöhl
1958).

The Chl-a SIF emission quantum yields (ΦSIF) were estimated by means of an analysis
of the excited state decay relaxation, employing a laboratory-assembled time-correlated
single photon counting apparatus, as described in Remelli and Santabarbara (2018). In
brief, excitation is provided by a pulsed laser diode (PicoQuant 800B), centred at 632
nm, at a repletion rate of 20 MHz, and an intensity of 1 pJ/pulse. Emitted photons
are collected with right-angle geometry, through a monochromator (Jasco JT-10) and
multichannel-plate photomultiplier (Hamamatsu, R5916U-51). Acquisition electronic,
consisting in Time-to-Amplitude Converter (TAC), Constant-Fraction timing Discriminator
(CFD) and multichannel timing analyser (MCA) are embedded and controlled by PC-
mounted acquisition board (Becker & Hinkl, SPC-330). Samples were resuspended from
the sampling-filters, in Bold’s basal growth media, and diluted to an OD equivalent to
0.05 cm−1 at 680 nm, before the measurements, placed in 3 mm path-length cuvette. To
attain the ΦSIF, 10 µM of the inhibitor DCMU (3-(3,4-dichlorophenyl)-1,1-dimethylurea)
was added to the samples. The measuring conditions avoid artefacts due to reabsorption
of emitted photons. Therefore, the values obtained correspond to the real fluorescence
yield/efficiency. All decay traces were collected at 682 nm (FWHM 3 nm) to obtain at
least 2X104 counts at the peak channel. Signal are fitted with an iteration-reconvolution
routine, accounting for the instrument response function (120 ps), which is measured
using a scattering solution (Ludox), and using a linear combination of exponential decay
as the model kinetic function by means of a laboratory written software, as described in
Santabarbara et. al., (2017). The SIF yield is retrieved from the estimation of the mean
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Sample [Chl-a]HPLC biovolume ΦSIF
ID [µg/L] [mm3m−3] [-]

S1z0 1.68±0.55 1740 0.062±0.003
S1zSD 1.15±0.42 2137 0.065±0.002
S2z0 1.92±0.28 659 0.068±0.003

S2zSD 2.56±1.00 2266 0.077±0.004
S3z0 1.60±0.69 1020 0.068±0.002

S3zSD 2.07±0.77 1158 0.060±0.004
S4z0 1.74±0.76 526 0.060±0.003

S4zSD 2.46±0.59 968 0.081±0.004

Table 4.2: Values obtained from the laboratory analysis. The [Chl-a]HPLC values shown in the table
have been evaluated averaging the two replica available. The errors associated correspond to the
standard deviation.

decay lifetime starting from the fit parameter (τm =
∑
i=1Aiτ

2
i/

∑
i=1Aiτi, where τi and

Ai are the lifetimes and associated amplitude, respectively) and using the decay of pure
Chl-a dissolved in dry methanol as a reference (monoexponential τ = 4.1 ± 0.2 ns).

The laboratory values used in this chapter are summarized in Table 4.2.

4.2.2.2 Hyperspectral measurements analysis

As described in Section 4.2.1.3, Lu was acquired below the water surface in order to
avoid the solar glint contribution in the acquired spectra measurements. In view of future
RS applications, in which the signal is collected above the water surface, Lu was corrected
to obtain the water leaving radiance (Lw). Lu measured by the ROX, was multiplied by the
constant factor of 0.543 (Zibordi et al., 2012) to consider the water-air interface. According
to Austin (1974), this coefficient is assumed be wavelength independent. The Lw obtained
with this procedure was used hereinafter. The Rrs was evaluated dividing the Ed by Lw.
Since Lw is measured in Wm−2nm−1sr−1 and Ed in Wm−2nm−1, the Rrs is reported in
sr−1.

A quality criterion was used to remove from the Ed, Lw and RRs times series the
measurements collected under not stable illumination. Similarly to the FLoX, the ROX
automatically evaluates the differences between two consecutive Ld acquisition lying in the
same collection cycle. As previously described in Section 2.2.1, measurements characterized
by differences greater than the 1% were deleted from the time series. The filtered time
series obtained was then averaged over a temporal interval of 10 minutes. The errors
associated to the single averaged value corresponds to standard deviations.
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4.2.2.3 Novel FLH parametrization exploiting hyperspectral measurements

The FLH method developed by Gower (1980), is still frequently used today (Gupana et
al., 2021) as a valid approach to evaluate a proxy for the fluorescence emission in aquatic
ecosystems. A virtual baseline is obtained connecting two wavebands selected in the
spectral regions not influenced by the SIF (Letelier and Abbott, 1996; Xing et al., 2007).
In particular, they are respectively placed on the left and on the right of the central band
linked to the SIF emission. The virtual linear baseline obtained corrects the SIF for the
scattering contribution (Gower et al., 2004). The SIF proxy is then evaluated at a selected
wavelength, subtracting the above-mentioned baseline from the central band linked to the
SIF. The central band position and width need to be chosen carefully in order to exclude the
absorption feature linked to the atmospheric oxygen band at 687 nm (O2-B) (Letelier and
Abbott, 1996; Xing et al., 2007). The SIF proxy obtained with the FLH algorithm (SIFFLH) is
usually evaluated on the Lw spectrum and can be summarized in two leading equations:

SIFFLH = LwC − Lwbaseline (4.2.1)

Lwbaseline = LwL − (LwR − LwL)
λC − λR
λL − λR

(4.2.2)

where λC corresponds to the SIF central waveband, while λL and λR are the left and right
ones. LwC, LwL, LwR are the corresponding water leaving radiance.

As highlighted in Chapter 1, the water body’s composition heavily influences the SIF
retrieval, specifically in optically complex waters. In trophic lakes, the scattering produced
by high Chl-a and TSM concentrations dominates the signal acquired in the visible red,
hiding the SIF contribution at 685 nm (Gilerson et al., 2007). Conversely, as occurs in Lake
Maggiore, under more oligotrophic conditions (i.e., [Chl-a] lower than 3-5 mgm−3 ), the
Chl-a SIF signal in the red-NIR is less affected by CDOM and NAP (Non Algal Particles)
residual absorption (Dall’Olmo et al., 2003; Gilerson et al., 2010). In this case, the FLH
assumption of a straight baseline is valid (Gower et al., 2004). For this reason, the FLH
algorithm was selected for this case of study.

When applied on RS measurements, the FLH accuracy is strongly influenced by the
considered water-body (i.e. Case-1 rather than Case-2 waters), the wavebands positions
(fixed and linked to sensors characteristics, e.g., MODIS, MERIS, OLCI), the spectral
(usually medium) and spatial (pixel size ~km) resolutions. Since the performed analysis
were carried out on proximal sensed measurements and on a single water body, only the
wavebands’ position limit was investigated. Hyperspectral sensors provide hundreds of
spectral bands (Gupana et al., 2021). Thus, the wavebands in eq.4.2.2 can be dynamically
chosen in agreement with the changes observed on the experimental spectra at diurnal scale
(see Figure 4.2A). Spectral changes can be due to different illumination conditions occurring
during the day but also to variations in the water body composition (e.g. phytoplankton
migration within the water column).

The novel FLH parametrization here proposed, evaluates a SIF proxy selecting dynami-
cally the wavebands’ positions. Spectral changes are clearer in the Rrs spectrum than in
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Figure 4.2: (A): Rrs spectra times series. (B): λC, λL, λR positions in the Rrs spectrum (red points). The
two arrows highlight the artefacts due to O2 absorption bands. (C): the grey area shows the spectral
range in which the λL was searched for. The red line represents the second-degree polynomial used
as fit function. (D): the grey area shows the spectral range in which the λC was searched for. The red
line corresponds to the Gaussian used as fit function.

the Lw. Focusing on the Rrs spectra (shown in Figure 4.2A), it is clear that the Rrs changes
during the day. Thus, the wavebands’ positions were preliminary selected on the Rrs.
λC and λL, used in eq. 4.2.2, are obtained following a two steps procedure. At first,

the corresponding "wide" wavebands were opportunely identified on the Rrs spectrum
(grey regions in Figure 4.2C and 4.2D). λC should be as close as possible to λL, to remove
the interference due to the CDOM and NAP but, at the same time, should be in a spectral
region minimally affected by the Chl-a absorption. The interval between 655-675 nm was
selected for λL, while the interval from 663-750 nm for λC. Then, λC and λL positions were
retrieved fitting the Rrs spectrum in the previously identified intervals, with appropriate
functions. λL corresponds to the minimum due to the Chl-a absorption and it was obtained
fitting the Rrs spectrum with a second-degree polynomial. Conversely, λC is related to the
SIF maximum emission. Its position was obtained fitting the spectrum with a Gaussian
function. The wide spectral interval used in this framework allows the Gaussian to fit also
the Rrs far-red tail and then overlook the artefact around 687 nm liked to O2-B band.
This procedure was iterated on each experimental spectrum acquired, but only the outcomes
showing a R2s greater than 0.70 were considered reliable. The remaining values, and
corresponding spectra, were deleted from the time series. λR was kept fix to 730 nm.
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According to Kritten et al., (2020) at this wavelength both the CDOM absorption and the
NAP scattering are almost negligible.
SIFFLH was obtained replacing the λC, λL, λR values in eq. 4.2.2. The corresponding Lws
values were obtained averaging the radiance on the wavebands centered in λC, λL, λR,
respectively. The bands’ widths were calculated as the standard deviation of all theλL and
λC evaluated, while for the λR, a nominal band width of 4 nm was chosen. The method
implemented is schematically presented in Figure 4.2.

4.2.2.4 Spectral indices evaluated on hyperspectral measurements

To characterize the phytoplankton diurnal dynamics, ancillary indices were evaluated
on the hyperspectral measurements.

To account the amount of light reaching the target, the incoming irradiance (Ed) was
spectrally integrated over the PAR (i.e. 400-700 nm). The obtained values are indicated as
EPAR.

The apparent reflectance evaluated at 550 nm (Rapp550 ) was used to approximate the
amount of light reflected by the target. Rapp was obtained as the ratio between the
incoming (Ld) and the water leaving radiance (Lw).

To predict the near-surface [Chl-a], an Ocean Color (OC) algorithm was used. Conven-
tionally, the OC algorithm consists in a fourth-order polynomial relationship between a
ratio of Rrs and [Chl-a] (Cesana et al., 2021). Specifically, the ratios of the Rrs, evaluated
in opportunely selected spectral regions, are combined with four empirical regression
coefficients. According to the number of bands used, the OC can be called OC2, OC3
and OC4, respectively. Even though OC approach was originally formulated for mainly
Case-1 applications, it has been used on the hyperspectral measurements acquired. This
approximation is valid because Lake Maggiore is considered as a clear water lake. Lab-
oratory analysis highlighted [Chl-a] and TSM concentrations less then 3 µgL−1 and 1.50
mgL−1 respectively and a CDOM value of 0.04 m−1. To better resolve the phytoplankton
temporal variability, the OC4 was used. The selected bands are 443 nm, 490 nm, 510 nm
and 555 nm. According to O’Reilly et al., (2000) procedure, the maximum band ratio
(MBR) was determined as the greater of the Rrs(443)/Rrs(555), Rrs(490)/Rrs(555) and
Rrs(510)/Rrs(555) (see eq. 4.2.4). Empirical coefficients (a0-a4) used in eq. 4.2.3 are 0.1731,
-3.9630, -0.5620, 4.5008, -3.0020. In agreement with the nomenclature described in O’Reilly
et al., (2000), the following equations were used to evaluate the [Chl-a]:

[Chl− a]OC4 = 10
a0+a1R4+a2R

2
4+a3R

3
4+a4R

4
4 (4.2.3)

where:

R4 = log10[max(Rrs
443
555, Rrs

490
555, Rrs

510
555)] (4.2.4)
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4.2.3 Phytoplankton primary production (PP) in inland waters

Phytoplankton are the primary producers that serve as the base of the aquatic food
web (Li et al., 2021). Through the biochemical process of photosynthesis, they contribute
roughly half of the primary production (PP) on Earth (Buitenhuis et al., 2013; Field et al.,
1998). Phytoplankton photosynthesis in inland lakes has nontrivial feedback effects on
the global carbon cycle via regulation of regional carbon exchanges, which are profoundly
impacted by anthropogenic factors (Li et al., 2021). Gross primary production (GPP) is
defined as the total amount of carbon fixed during the photosynthetic process. However,
the proposed analysis was carried out at local scale. All the quantities evaluated in this
Chapter are referred to the investigated water volume. They are indicated with the letter F,
in agreement with the nomenclature proposed by Kiefer et al. (1989) and Morrison (2003).

4.2.3.1 PP definition exploiting in-situ quantities

According to Kiefer et al. (1989) and Morrison (2003), the SIF emitted (FSIF) and the
carbon assimilated (FC) by the phytoplankton contained in a unit of water volume can be
evaluated as follows:

FSIF = ΦSIF ∗ FA (4.2.5)

FC = ΦC ∗ FA (4.2.6)

where (ΦSIF) is the quantum yield of fluorescence, FA is the light absorbed by the phy-
toplankton and ΦC is the yield of carbon fixation. The FC calculated with eq. 4.2.6 is
in molcm−3s−1 and can be considered as a proxy of the water body PP. Similarly to the
terrestrial vegetation, the Chl-a contained in the phytoplankton absorbs the solar light in
the PAR. This information can be used to rewrite the FA term. Specifically, the amount of
light absorbed by the water body in the PAR can be approximated as the product between
the phytoplankton spectral absorption coefficient aphy and the irradiance reaching the
target (Ed). Both of them depend on the wavelength and the depth. Therefore, for a generic
depth z:

FA(z) =

∫700
400

aphy(λ, z)E0(λ, 0
−)e−k(λ)zdλ (4.2.7)

where aphy is measured in m−1, E0(λ, 0−) represents the irradiance evaluated just below the
water surface (in Wm−2nm−1), while k is the coefficient accounting the light attenuation
with the depth (in m−1). Replacing eq. 4.2.7 in eq. 4.2.5, an alternative expression for FSIF
is obtained:

FSIF(z) = ΦF(z)

∫700
400

aphy(λ, z)E0(λ, 0
−)e−k(λ)zdλ (4.2.8)
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The right side of eq. 4.2.8 can be evaluated exploiting the measurements acquired in-situ.
Specifically, ΦSIF and aphy were obtained from the laboratory analysis described in Section
4.2.2.1. Conversely, E0 and k can be retrieved by the irradiance vertical profile carried out
with the Satlantic radiometer. The experimental k was obtained following the protocol
described by Mishra et al., (2005). Briefly, assuming the illumination on the water body
stable during each Satlantic acquisition (lasting in less than 10 minutes) and k independent
with the depth, then Ed decrease at a specific wavelength within a general water column
can be written as follows:

Ed(λ) =

∫zm
z0

E0(λ, z)e
−k(λ)zdz (4.2.9)

where z0 represents the depth (in meters) closest to the surface (but below the water-air
interface) while zm is chosen deeper than z0. Resolving the integral respect to z:

− k(λ)(zm − z0) = ln

(
Ed(λ, zm)

Ed(λ, z0)

)
(4.2.10)

Ed(z0) and Ed(zm) correspond to the downwelling irradiances acquired by the Satlantic
at z0 and zm, respectively at a specific wavelength. k is obtained as the slope of the
linear regression performed on the comparison between (zm – z0) and the logarithm of
the irradiance ratio showed on the right side of eq. 4.2.10. The k spectrum over the PAR
was obtained experimentally iterating the procedure for the different wavelengths in the
spectral interval from 400 to 700 nm. The FSIF at z0 and zSD was obtained replacing the
corresponding ΦSIF, aphy, Ed in eq.4.2.8 and integrating the result over the PAR. Since ΦF
is unitless, aphy is expressed in m−1 and Ed is an irradiance in Wm−2nm−1, it turns out
the FSIF is measured in Wm−3.

The same rationale was applied on FC obtaining:

FC(z) = ΦC(z)

∫700
400

aphy(λ, z)E0(λ, 0
−)e−k(λ)zdλ (4.2.11)

Unlike the FSIF case, in eq. 4.2.11 two parameters are unknown, namely FC and ΦC. Nev-
ertheless, FC was replaced by the phytoplankton biovolume (in mm3m−3), assuming that
they are positively correlated to each other. This approximation is supported by studies (e.g.
Deng et al., 2017; Bergamino et al., 2010) demonstrating that the phytoplankton biomass
(and then the biovolume) is the most important factor affecting the temporal variations of
phytoplankton primary production (Cesana et al., 2021). At last, an experimental proxy for
the carbon fixation (Φ

′

C) was evaluated from eq. 4.2.11:

Φ ′C(z) =
biovolume(z)∫700

400
aphy(λ, z)E0(λ, 0−)e−k(λ)zdλ

(4.2.12)

where, again, the two depths considered are z0 and zSD. Due to the approximation
previously introduced, Φ

′

C is measured in mm3W−1.
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4.2.3.2 PP models exploiting hyperspectral measurements

Eq. 4.2.6 exploited to evaluate the carbon assimilation in the water body is similar to
the one used to calculated the GPP in the terrestrial vegetation (e.g. Porcar-Castell et al.,
2014; Rossini et al., 2010) according to the LUE (Light Use Efficiency) model:

GPP = LUE ∗ aPAR (4.2.13)

where aPAR is the absorbed light in the Photosynthetically Active Radiation spectral region.
In this model, GPP is proportional to the amount of light absorbed by the Chl-a pigments
actually used to drive photosynthesis. In Rossini et al., (2010), several Light Use Efficiency
schemes have been tested replacing the LUE and aPAR terms with spectral indices and SIF
metrics. The same approach was here re-proposed and adapted for aquatic applications.
Different models were defined incorporating water spectral indices and fluorescence metric,
as proxies for the carbon fixation efficiency (ΦC) and the absorbed light (FA) in eq. 4.2.6. I
decided to name the novel FC formulation by means of RS quantities FC−RS. All the cases
investigated and tested in this work are summarized in Table 4.3.

Case ID ΦC FA
1 constant [Chl-a]OC4
2 constant EPAR
3 constant SIFFLH
4 constant [Chl-a]OC4*EPAR
5 constant [Chl-a]OC4*SIFFLH
6 SIFFLH/FA [Chl-a]OC4
7 SIFFLH/FA EPAR
8 SIFFLH/FA SIFFLH
9 SIFFLH/FA [Chl-a]OC4*EPAR

10 SIFFLH/FA [Chl-a]OC4*SIFFLH

Table 4.3: Phytoplankton primary production models.

In the first 5 cases (1-5), (ΦC) is kept constant. ΦC was not experimentally measured,
therefore it was replaced by the corresponding proxy (Φ ′C), evaluated according to eq.
4.2.12. Specifically, the used constant value corresponds to the average of all the Φ ′C
estimated from the water samples analysis (Φ ′C = 331.69 mm3W−1).
Conversely, in cases from 6 to 10, ΦC was evaluated as the ratio between SIFFLH and FA.
This formulation contains the ΦC dependence to the light availability and the phytoplank-
ton status. The light availability affects the amount of light absorbed by the phytoplankton,
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while the phytoplankton status is accounted by the SIF proxy evaluated with the novel
FLH parametrization.
FA, is obtained by the product between the amount of light reaching the target (EPAR) and
the phytoplankton absorption spectra aphy, according with eq. 4.2.7. EPAR is routinely
measured or retrieved in the remote sensing framework, while aphy is usually estimated
by laboratory analysis. Nevertheless, aphy depends on [Chl-a] because it is the prod-
uct between the mean phytoplankton specific absorption coefficient (a∗phy) and [Chl-a].
Furthermore, a linear relationship exist between [Chl-a] and the phytoplankton primary
production, as observed by Deng et al. (2017) in the Lake Taihu. Thus, FA was at first
replaced by [Chl-a], and specifically by the spectral index [Chl-a]OC4. Similarly, FA affects
the SIF emission, so SIFFLH was considered as a proxy for FA.
Finally, combinations of [Chl-a]OC4, EPAR and SIFFLH were investigated. The ten FC−RS

parametrizations were compared to the in-situ phytoplankton biovolume to assess the
models robustness at local scale and for inland waters. Due to the few sample values
available, only a qualitative interpretation of the results was possible.

4.3 Results

4.3.1 Water body phytoplankton characterization

The phytoplankton taxa’s composition in the water column was evaluated by microscope
counting of the samples collected at z0 and zSD respectively. Taxa were identified to species
level and counts converted to biovolume.
For all the samples analysed, a clear dominance of Bacillariophyta (diatoms) was observed
with a percentage above 60% of the total algal biovolume, regardless of the depth considered,
the collection time and the meteorological conditions (Figure 4.3A).

Considering the algal density instead of the biovolume (Figure 4.3B), the diatoms are
still the dominant taxa in all the samples, with the exception of the deep sample collected
on the morning of 02nd July (S1zSD) where the most abundant class was the Cyanobacteria
(Aphanothece minutissima), a group of non-vacuolate, small-celled and colonial with mucilage.
The genera Aphanocapsa/Aphanothece are usually found in large colonies. Their cells are
characterized by very small biovolume, compared with other taxa. This results in a low
biovolume contribution despite relatively high cell concentrations and a different content
of chlorophyll-a. On the 03rd July (S3 and S4), a codominance between Bacillariophyta and
Chrysophyta (Chrysochromulina sp.) was observed.



4.3 Results 99

Figure 4.3: Composition of the phytoplankton major taxa expressed in percentage respect to biovol-
ume (A) and density (B). Each color corresponds to a different sample (see nomenclature in Table
4.1).

4.3.2 Phytoplankton temporal dynamics

The phytoplankton dynamics in different illumination conditions and within the water
column are hereafter presented. The results of the laboratory analysis were compared to
the indices and metrics defined on hyperspectral measurements. All this data refers to the
sampling performed on the 02nd and 03rd of July. Furthermore, also the spectral indices
and metrics temporal evolution during the whole acquisition week were analysed.

4.3.2.1 Comparison between water sampling and hyperspectral quantities

Values obtained from laboratory analysis were combined with the information estimated
on the collected hyperspectral measurements. Specifically, [Chl-a]HPLC and the algal
biovolume (see Table 4.2), were compared to FA and FSIF, evaluated exploiting eq. 4.2.7
and 4.2.8, respectively. The comparison was carried out both on the depth and temporal
domains. The acronym DOY stays for Day Of the Year. Specifically, the 02nd of July
corresponds to DOY 183, while the 03rd of July to DOY 184.

Hyperspectral measurements, collected by the RoX simultaneously with the water
sampling were extrapolated from the whole week-long time series. EPAR and SIFFLH were
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Figure 4.4: Dots represent variables measured close to the surface (z0), while triangles refer to the
sampling performed at the Secchi Disk depth (zSD). Time is shown as Day-Of-the Year (DOY):
183 is the 02.07.2019 while 184 is the 03.07.2019. First line (Panel A left and right) shows the EPAR
(in blue) and SIFFLH (in red) obtained from the ROX hyperspectral measurements. (B) and (D)
are the [Chl-a]HPLC and the biovolume, respectively, evaluated from laboratory analysis. (C) and
(E) corresponding to FA and FSIF have been obtained combining the laboratory outcomes and the
Satlantic measurements. All the quantities displayed, except the biovolume (D), are mean values.
The error bars correspond to the standard deviations.

selected as proxies of the amount of light reaching the target and the SIF emitted by the
layer close to the surface. The trends observed are displayed in Figure 4.4. Two waters
sampling were performed per day: the first around the solar noon, the second at the sunset.

The first line of Figure 4.4 shows the trends of EPAR and SIFFLH. Unlike the other
parameters in Figure 4.4, they are evaluated only at the surface. As expected, EPAR
decreases during the day. The same trend was observed for the SIFFLH.

The surface [Chl-a]HPLC shows opposite diurnal trends in the two days investigated
(Figure 4.4B, blue dots). The 02nd of July (DOY 183) was characterized by clear sky condi-
tions up to the solar noon then clouds appeared, the 03rd of July (DOY 184) was completely
cloudy. Thus, under almost clear sky conditions, the amount of [Chl-a]HPLC at z0 decreases
during the day, following the EPAR and SIFFLH trends. Conversely, in predominant cloudy
sky conditions, the surface [Chl-a]HPLC values are more stable throughout the day. The
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differences between DOY 183 and DOY 184 in the [Chl-a]HPLC trend could be linked to the
anomalous peak of Cyanobacteria (observed in the S1zSD sample) as highlighted in Figure
4.3. Concerning the Secchi Disk depth (Figure 4.4B, red triangles), the [Chl-a]HPLC seems
less affected by the weather variability. In both cases evaluated, there is a common increase
of the [Chl-a]HPLC from the solar noon till the afternoon.

Focusing on the biovolume, the observed trends do not always agree with the ones
highlighted for the [Chl-a]HPLC (Figure 4.4D). This is probably linked to the different
phytoplankton species contained in the samples. Under clear sky conditions (DOY 183),
the biovolume at the Secchi Disk depth was greater than the one at the surface. Conversely,
under cloudy conditions (DOY 184) the biovolume shows almost constant values, regardless
the depth considered.

Figure 4.4C and E show the FA and FSIF trends. According to its parametrization (see
eq. 4.2.7), FA is strictly linked to the irradiance reaching the target. Thus, the FA diurnal
evolution agrees with the one observed for the EPAR, regardless the depth considered.
Differences between surface and depth are restricted only to discrete values; specifically,
FA decreases with the depth. Similarly, FSIF shows the same EPAR, FA and SIFFLH diurnal
trend. In both days investigated, at the surface, FSIF decreases from the solar noon to the
sunset. Conversely, at the zSD (Figure 4.4E, red triangles), FSIF seems less affected by the
illumination conditions. In general, values linked to zSD are characterized by a greater
variability, compared to the surface values, according to the standard deviations evaluated.

Interesting relationships between water samples analysis outcomes and parameters ob-
tained from the hyperspectral measurements, were qualitative observed (Figure 4.4). A
more detailed investigation was carried out comparing EPAR and SIFFLH to at-the-surface
FA and FSIF. The link between these quantities is summarized in Figure 4.5.

Figure 4.5: Values displayed correspond to measurements evaluated at the surface. The colors (grey
scale) help to discern between the several samples considered. All the displayed measurements
correspond to mean values and the error bars show the standard deviations.
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In detail, Figure 4.5A and B show a linear relationship between EPAR, FA and SIFFLH.
Thus, both EPAR and SIFFLH can be considered FA proxies. This last observation supports
many of the assumptions considered in the phytoplankton PP models (Table 4.3, Cases
2,3,6,7).
The SIFFLH, obtained with the novel FLH parametrization, was compared to FSIF (Figure
4.5C). Due to the few points available, it was not possible to quantify the FLH accuracy.
Nevertheless, SIFFLH and FSIF seem correlated one to each other. Therefore, SIFFLH, evalu-
ated from hyperspectral measurements, can be considered a proxy for FSIF.

Eventually, an analysis of the SIF yield (ΦSIF) was performed. Laboratory outcomes
are summarized in Figure 4.6A.

Figure 4.6: (A): ΦSIF values obtained from the laboratory analysis. (B): relative ΦSIF ratio. (C)
comparison between the SIFFLH/FA and ΦSIF. (D) comparison between SIFFLH/FA and Φ ′

C.
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As shown, the maximal values of ΦSIF (i.e. when the Chl-a re-absorption is inhibited)
are almost homogeneous in the different samples collected. To characterize the ΦSIF
behaviour with the depth, a relative ΦSIF ratio was evaluated dividing the zSD values by
the z0 ones. In general, the ratio gives values close to one. Case S3 is an exception because
it is characterized by a decrease of the yield from the surface to the Secchi Disk depth
(Figure 4.6B) and then by a ratio minor than one. Laboratory ΦSIF were also compared
to the equivalents obtained exploiting the hyperspectral measurements (Figure 4.6C). In
details, the experimental SIF yield was evaluated by the ratio between SIFFLH and FA. The
comparison was carried out only between surface values. While data referred to S1, S2
and S4 seems linear correlated, S3 is an outlier. Conversely, a very good correlation was
observed between SIFFLH/FA and Φ ′C (Figure 4.6D). The regression performed shows a R2

equal to 0.98. Again, this last observation agrees with the approximations introduced in
the phytoplankton PP parametrization.

4.3.2.2 Hyperspectral measurements analysis

In order to resolve the phytoplankton dynamics in time, high frequency hyperspectral
measurements analysis were used. The results shown in Figure 4.7 refer to the whole week
acquisition.

To better characterize the several illuminations conditions during the day, the EPAR was
evaluated. This parameter, indeed, account for the amount of light reaching the target. To
evaluate the portion of light reflected by the water body, the Rapp550 index was used. FSIF and
[Chl-a]OC4 are linked to the SIF signal arising from the water body and the phytoplankton
concentration, respectively.

In Figure 4.7A, DOY 185 and DOY 186 are characterized by the typical trend of the clear
sky days, in which the EPAR approximately goes as the cosine of the solar zenith angle.
The small standard deviations evaluated indicate stable illumination conditions during
the time interval. During DOY 184, a larger variability was observed due to the clouds
appeared in the afternoon. DOY 183 and DOY 187 show a mixed sky condition, with a
drastic drop of the light intensity after the solar noon.

Rapp550 is shown in Figure 4.7B. In the two identified clear sky days (DOY 185 and DOY
186), a minimum is reached in correspondence with the EPAR maximum. Conversely, the
Rapp550 diurnal trend is more variable under cloud sky conditions.

The SIFFLH, evaluated choosing dynamically the wavebands positions, represents a
proxy for the SIF emitted by the phytoplankton. As shown in Figure 4.7C, the SIFFLH
is characterized by a peculiar trend in the two clear sky days (DOY 185 and DOY 186),
with a drop around the solar noon. In this moment of the day, the amount of energy
available to be absorbed by the target is greater, as arises from the EPAR diurnal trend.
Thus, strong light conditions seem to affect the SIF emission. From a qualitative point
of view, the SIFFLH temporal evolution is similar to the one observed for the EPAR. The
correlation between the two variables is clear and it was demonstrated in Figure 4.8A. In
this case, a linear relationship between the EPAR and the SIFFLH is highlighted for all the
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days investigated. This pattern was also observed in the terrestrial vegetation, when the
EPAR was compared to the fluorescence evaluated at 760 nm.

The near-surface [Chl-a]OC4 is shown in Figure 4.7D. Almost all the investigated days
are characterized by a diurnal, monotonic, growth of this index. Again, the two clear sky
days show a peculiar trend around the solar noon where a minimum is reached. Focusing
on the [Chl-a]OC4, the algorithm should give as outcome a chlorophyll concentration in
µg/L. These values were compared to those obtained from the water samples analysis
Figure 4.8B. The [Chl-a]OC4 overestimate the in-situ values. This mismatch is probably
attributable to the regression coefficients (a0-a4) used in the eq. 4.2.3 that probably are not
suitable for the investigated water body. Although a strong correlation between [Chl-a]OC4
and [Chl-a]HPLC was not observed, [Chl-a]OC4 was used as a proxy for the water body
[Chl-a].

Figure 4.8: (A): comparison between EPAR and SIFFLH. Each symbol corresponds to a different
acquisition day. Data shown represent the mean values (nmax per interval ~10), averaged on a time
interval of 10 minutes, while the error bars correspond to the standard deviations. (B) comparison
between the [Chl-a]OC4 and [Chl-a]HPLC. Data showed corresponds to [Chl-a]HPLC collected close to
the surface.

4.3.3 Test of phytoplankton primary production models

Several results obtained in Section 4.3.2 support the approximations applied in the
phytoplankton PP models (Table 4.3). Specifically, both EPAR and SIFFLH can be used as
a proxy for the FA terms. Moreover, the ΦC proxy (Φ ′C) is strictly related to the ratio
between SIFFLH and FA. Considering all these outcomes, the phytoplankton PP models
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were tested. Since only four points, corresponding to the surface samples, were available,
the carried out analysis was mainly qualitative. A numerical comparison was not possible
because of the many approximations taken. Specifically: i) the constant used as in-situ
value (Cases 1-5) is a proxy for ΦC; ii) the replacement of the FC parameter in the models
validations with the biovolume and iii) the overestimation of the [Chl-a]OC4 with reference
to the true field values. The results of the comparison between FC−RS and the biovolume
are summarized in Figure 4.9.

Figure 4.9: First row collects the cases in which the ΦC proxy has been kept constant, while the FA
has been replaced by indices and metrics obtained from the hyperspectral measurements. Second
row collects the cases in which also the ΦC has been replaced by a proxy defined from RS quantities.
The red lines correspond to the linear regression performed on the measurements. The scale for
FC−RS have been omitted on purpose. Due to the approximations taken only a qualitative comparison
was possible.

If only the spectral index for [Chl-a]OC4 is used to replace FA, the model fails, regardless
of the ΦC parametrizations (Case 1 and Case 6). Conversely, if FA is replaced by EPAR, the
FC−RS better follows the field biovolume (R2 equal to 0.67 and 0.85 for Case 2 and Case 7,
respectively). The statistics improve when the SIFFLH is used, because this parameter is
strictly linked to the amount of light actually absorbed by the Chl-a pigments. In this case,
R2 greater than 0.80 were observed in Case 3 and 8.
When FA is parametrized with two terms, one linked to [Chl-a] and the other to the
available light, the parametrization of ΦC plays a key role. If ΦC is constant (Case 5), the
FC−RS, obtained multiplying [Chl-a]OC4 and SIFFLH, shows a very good correlation with
the biovolume. The evaluated R2 is equal to 0.95. A further improvement is obtained when
ΦC is replaced by the SIF yield proxy (i.e. SIFFLH/FA). Case 9 parametrization gives the
highest performance with an R2 equal to 0.97.
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4.4 Discussion

4.4.1 Water body phytoplankton characterization

Lake Maggiore phytoplankton composition was characterized by microscopic counting.
Specifically, the biovolume and the density associated to the different taxa was summarized
in Figure 4.3.
In all the analysed samples, it is clear a dominance of the Bacillariophyta (diatoms). This
result agrees with the observations previously reported in Morabito et al., (2007). That
is important because diatoms are responsible for 20% to 25% of global carbon fixation
(Smetacek 1999) and serve as the basis for pelagic food webs (Znachor et al., 2012). Diatom
cells, indeed, are narrower and contain more chlorophyll compared to the other taxa.
The Bacillariophyta’s growth (in particular of the Fragilaria) is constrained by the light
availability (Znachor and Nedoma, 2008). In the water samples collected around the solar
noon, namely S1 and S3, was observed a decreasing trend of the Bacillariophyta biovolume
and density from surface (z0) to depth (zSD) (Figure 4.3). Conversely, an opposite trend
was observed in samples collected in the afternoon (S2 and S4) with greater values at zSD.
These results support the strong link between the Bacillariophyta stratification in the water
column driven by the light availability.
Finally, a peak of Cyanobacteria was observed at zSD the 02nd of July, in the sample
collected close to the solar noon (S1zSD). This anomalous value could be linked to the
copious rainfalls registered on the 1st of July in the afternoon, that could affect the
Cyanobacteria growth.

4.4.2 Phytoplankton temporal dynamics

The phytoplankton dynamics during the day and at different depths were investigated.
The values obtained from the water samples analysis and from hyperspectral measurements
were compared in Figure 4.4.
The [Chl-a]HPLC depends on the weather variability. In the two studied days, characterized
by different sky conditions, the [Chl-a]HPLC shows opposite trends from the solar noon
to the sunset. Conversely, the biovolume is less affected by the illumination changes. In
general, the [Chl-a]HPLC and the biovolume values evaluated at the Secchi Disk depth are
greater compared to the surface’s ones. The only exception is represented by the first point
that corresponds to the sample S1. In this case, the [Chl-a]HPLC at the surface is greater
compared to the values obtained at the Secchi Disk depth. This anomalous outcome can be
explained to the peak of Cyanobacteria observed in the sample S1zSD (Figure 4.3B). These
taxa are characterized by high density and low chlorophyll content. Concerning FA and
FSIF, their trends agree with the ones observed for EPAR and SIFFLH, regardless of the
depth considered.

A more detailed analysis about the links between EPAR, SIFFLH, FA and FSIF was carried
out on the surface’s values. The comparisons are summarized in Figure 4.5. FA seems to be
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positively related to both EPAR and SIFFLH. The linear correlation between FA and SIFFLH
observed in Figure 4.4 is supported by the ΦSIF values obtained in the laboratory analysis.
Largely invariant values of ΦSIF were observed in the water samples analysed (Figure
4.6A). Strong variations in theΦSIF, due to quenching process of non-photochemical nature,
are expected to lead a breakdown in the linear correlation between FA and SIF. Because of
the relatively small differences in terms of ΦSIF in all the samples analyzed, it is possible to
assess that in the investigated days (DOY 183 and DOY 184) the photochemical quenching
was almost negligible.
A comparison between SIFFLH and FSIF was investigated. The few available points available
did not allow us to evaluate quantitatively the novel FLH algorithm accuracy. However, a
linear trend between SIFFLH and FSIF was observed.

The phytoplankton behaviour was also analysed from a physiological point of view,
exploiting the ΦSIF parameter. Values referred to the Secchi Disk depth were divided
by the surface ΦSIF (Figure 4.6B). In all the cases, except for the S3 case, the evaluated
ratios always show values equal or greater than 1, therefore, the surface values are weakly
attenuated in comparison to the depth ones. This trend is probably due to the amount of
light reaching the water body that decreases with the depth. ΦSIF was also compared to an
experimental SIF yield obtained from the ratio between SIFFLH and FA (Figure 4.6C). While
points referred to the samples S1, S2 and S4 seem linear correlated, S3 is an outlier. I remind
that S3 is the case in which the surface ΦSIF was not quenched. Finally, Φ ′C and SIFFLH/FA
are linearly correlated for all the samples investigated, therefore, in first approximation, the
SIF yield can be used as a proxy for the the light use efficiency parameter (Figure 4.6D).

Hyperspectral and high frequency measurements were analysed to understand the
phytoplankton temporal dynamics. In Figure 4.2A are shown the Rrs spectra acquired
during the day. The overall spectrum magnitude is greater in the morning and evening,
while the minimum values are reached around the solar noon. At diurnal scale, the Rrs
spectra (and then the Lw) are strongly influenced by sun-target position. Furthermore,
a peculiar trend appears in the spectra close to the sunset. In the region where the SIF
emission occurs, the Rrs magnitude anomaly increases. The observed behaviour could be
linked to changes in the SIF yield. With reference to Table 4.2, indeed, greater ΦSIF values
are observed in the afternoon.

A more detailed analysis was carried out by means of indices and metrics defined
on the hyperspectral measurements, specifically EPAR, Rapp550 , SIFFLH and [Chl-a]OC4 (see
Figure 4.7). A peculiar trend was observed around the solar noon in the two clear sky
days (DOY 185 and DOY 186). When EPAR reaches the maximum, both the SIFFLH and
the [Chl-a]OC4 drop. The most likely explanation of the SIFFLH’s decrease around the
solar noon is the occurrence of non-photochemical quenching of the fluorescence under
very bright natural light. On the other hand, according to Reynolds et al., (2006), the
phytoplankton act strategies to escape the harmful photoinhibition caused by excessive
insolation near the surface. In order to avoid damages caused by oxidative stress, the
phytoplankton migrates at higher depths. This last hypothesis correspond to the diurnal
[Chl-a]OC4 trend characterized by lower values around the solar noon. This index is
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evaluated at wavelengths not influenced by the SIF emission, therefore the [Chl-a]OC4
trend can be ascribable to a shift of the phytoplankton organisms deeper in the water
column. Nevertheless, a weak surface quenching was previously highlighted. It is hence
likely that both movement of the phytoplankton through the water column and changes in
ΦSIF explain the experimental trends. The high frequency spectral measurements were
also exploited to evaluate the link between the amount of light reaching the target (EPAR)
and the SIFFLH metric (Figure 4.8A). The linear relation observed for the whole time series
supports again the hypothesis of an almost invariant ΦSIF. Furthermore, the SIFFLH could
be used as a proxy for the incoming irradiance (Ed).

4.4.3 Test of phytoplankton primary production models

Results from Section 4.3.2 clearly demonstrate the strong link between in-situ and
hyperspectral-based quantities and how the hyperspectral resolution is suitable to better
follow phytoplankton’s temporal dynamics. Briefly, EPAR and SIFFLH can be used as
proxies for the FA. ΦC proxy (Φ ′C) is strictly related to the ratio between SIFFLH and
FA. EPAR and SIFFLH are linearly correlated. [Chl-a]OC4 can be used as a proxy for the
phytoplankton Chl-a concentration in the water body. Therefore, hyperspectral indices and
metrics can be potentially used to predict the phytoplankton PP in inland waters.
The models summarized in Table 4.3 were investigated comparing FC−RS to the biovolume.
Since only few field measurements were available for the test, the preliminary analysis
carried out was mainly qualitative and restricted to local scale. The highlighted correlations
have no statistical meaning, but they were used only to asses which FC−RS formulation
better follows the biovolume’s evolution in time (Cesana et al., 2021).

When FA is replaced by [Chl-a]OC4, the obtained FC−RS does not correlate to the
biovolume, regardless of the adopted ΦC parametrization (Case 1 and Case 6). In first
approximation, this outcome seems to be in contrast with the study carried out by Deng
et al., (2017). However, it must be remembered that in Deng et al., (2017) the biomass has
been compared to the [Chl-a], while in Lake Maggiore I analysed the biovolume and the
chlorophyll concentration related spectral index. Nevertheless, the model’s failure in Cases
1 and 6 could mean that the [Chl-a]OC4 alone is not enough to describe the FA term and
then the biovolume diurnal evolution. The [Chl-a], obtained with the OC4 algorithm, is
evaluated on the reflectance’s spectral region not interested by the SIF. So, it is possible
to infer that the [Chl-a] does not contain any the physiological information linked to the
photosynthesis.
Conversely, promising results were reached when the FA was replaced by the EPAR, (Case
2 and 7) with R2 of 0.67 and 0.85, respectively. Statistics further improve the SIFFLH is
considered, as in Case 3 and 8, where R2 is greater than 0.80. This is probably consistent
with an intrinsically dependence of the SIFFLH to the phytoplankton concentration. So
it is possible to state that the SIFFLH is strictly linked to the biovolume and then more
interconnected to the photosynthesis. Consequently, fluorescence’s proxy could be exploited
to obtain a reliable phytoplankton productivity model. These outcomes agree with the
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study by Barnes et al., (2014), in which it is stated that the rate of phytoplankton primary
production is primarily a function of the incident irradiance (EPAR), light absorption
efficiency (linked to SIFFLH) and the quantum efficiency of carbon fixation (Φ ′C from field
values or the spectral proxy SIFFLH/FA).
Finally, a brief consideration about the chlorophyll-a parameter. [Chl-a] is the main
driver of variability in primary production in the global ocean and thus simple empirical
relationships, that directly relate [Chl-a] to primary production, were used in marine
sciences. However, the existing models, developed for ocean waters, are not suitable
for lakes (Cesana et al., 2021). Indeed, the parametrizations used in Cases 1 and 6 fail
when only the [Chl-a]OC4 is considered. Conversely, when the [Chl-a]OC4 is coupled
with the EPAR and SIFFLH, respectively, the statistics improve. In this context, the FC−RS

parametrization with the best result is the one developed for Case 9 (R2 = 0.97) where
the ΦC was chosen to be non-constant in order to account the dependence to the light
availability and the phytoplankton status. ΦC was replaced by the ratio between SIFFLH
and FA. Finally, FA was obtained by the product between EPAR and [Chl-a]OC4 (used as
proxy for aphy), consistently with the FA definition showed in eq. 4.2.7.

4.5 Conclusions

This study demonstrates how hyperspectral resolution and high frequency temporal
measurements are suitable to follow the phytoplankton dynamics, particularly in clear
sky days. The calculated spectral indices are strictly linked to the lake water’s charac-
teristics inferred by laboratory analysis. Furthermore, several phytoplankton primary
production models, driven from remotely sensed data, were tested on Lake Maggiore.
The preliminary outcomes demonstrate that, at local scale, hyperspectral-based quantities
represent a sensitive tool for monitoring temporal variations in phytoplankton PP. In this
work, I originally introduced the fluorescence yield as a proxy of the light use efficiency
parameter. The few points used to test the ten PP parametrizations do not allow us to
assess which phytoplankton production model is suitable for Lake Maggiore. Nevertheless,
this preliminary analysis highlighted how the statistics improve when the SIFFLH replaces
the FA term. In summary, it seems that Case 5 and Case 9 are the best models for inferring
productivity in our study area, particularly when fluorescence yield is used as a proxy of
carbon fixation efficiency. This cannot be probably extended to other lakes and further
investigations and validations are needed. Even though this represents only a preliminary
study carried out at local scale, the future goal is to exploit RS fluorescence to retrieve the
phytoplankton PP in order to overcome the limits related to the sparse measurements of
typical in-situ sampling and to improve the inland waters spatio-temporal monitoring and
understanding.



Chapter 5

Conclusions

The PhD research aims to implement novel strategies able to retrieve and interpret
the sun-induced fluorescence signal emitted by terrestrial vegetation and inland waters
in order to advance the understanding of these environments. The approaches developed
were investigated and tested on experimental hyperspectral measurements and Radiative
Transfer simulations. All the analysis presented were carried out considering the mea-
surements at ground level. Two main ecosystems were investigated: agricultural crops
(forage, alfalfa, corn) and clear lake waters. For each study case, different objectives were
highlighted, addressed in the corresponding Chapter (i.e. Chapter 2, 3 and 4). The main
results achieved are summarized below, along with the concluding remarks and the future
research perspectives.

5.1 Main Results

Characterizing the SIF full spectrum at Seasonal/Diurnal scales for agricultural
crops

Reflectance-based indices have been historically employed to monitor the terrestrial
vegetation because able to describe more than 95% of the vegetation variability of biophys-
ical parameters occurring during the entire crop-growing season (Gitelson et al., 2003a;
Gitelson et al., 2003b; Jiang et al., 2006). Nevertheless, the SIF signal has emerged as a more
exhaustive parameter in the vegetation monitoring inasmuch it is emitted by the vegetation
only and strongly linked to the photosynthesis. Therefore, it is more related to the plant
physiology compared to the reflectance indices. In Chapter 2, novel SIF metrics defined
on the full spectrum were compared to the fluorescence evaluated in the O2-A and O2-B
bands, and reflectance-based indices used as proxies for several biophysical parameters.
This study was carried out at seasonal/diurnal scales on experimental hyperspectral mea-
surements acquired over three different crops, namely forage, alfalfa and corn. The SIF
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at the maximum emission in the red and far-red, the corresponding peak positions and
the spectrally integrated SIF were investigated. On the other hand, the reflectance-based
indices selected are the NDVIred−edge, CIred−edge, NIRv and PRI because linked to the
fraction of light absorbed between 400-700 nm (fAPAR), chlorophyll content (Cab and LAI),
SIF far-red and photosynthetic activity (NPQ proxy).

At first, the novel and conventional fluorescence metrics were compared. Regardless of
the temporal scale considered, the SIF evaluated at the peaks is strongly correlated with
the corresponding O2 bands values. A quantitative analysis was carried out at seasonal
scale. The linear regression between SIF760 and SIFfar−red gives slope= 1.31, intercept=
0.23, R2= 0.98 and RMSE= 0.29. Similarly, SIF687 and SIFred lie closer to the 1:1 with slope=
0.95, intercept= 1.03, R2= 0.95, RMSE= 0.08. Therefore, clear improvements in the use
of the SIF at the peaks than the canonical metrics were not observed. The SIF evaluated
at a selected wavelength was compared to the fluorescence emitted between 670-780 nm.
SIFINT is strongly correlated to SIF760 (R2= 0.92) and SIFfar−red (R2= 0.99). This result is
expected because for well-developed crops, the emission in the visible red is re absorbed by
the canopy-leaf system and re emitted in the far-red spectral region. The SIF687 and SIFred
increase linearly with the SIFINT , with R2 equal to 0.81 and 0.83, respectively. The lower
statistics compared to the far-red cases are attributable to a different slope between the
SIFINT and SIFred (or SIF687), when sparse and medium-dense canopies are considered.
The initial increase is linear, then the reabsorption occurs and the SIFred is diminished
while the SIFINT continues to grow. Although the SIFINT seasonal trend mainly agree with
the fluorescence in the far-red (SIFfar−red and SIF760), it contains also information about
the visible red spectral region. Therefore, it represents a more complete parameter respect
to the fluorescence evaluated at a single wavelength.

The reabsorption effect on the TOC SIF spectrum is clear when the peak positions are
investigated at seasonal scale. In particular, the λfar−red undergoes to a shift toward longer
wavelengths, while λred, after an initial growth, decreases to a constant value.

In general, the reflectance-based indices (NDVIred−edge, CIred−edge, NIRv) and the SIF
metrics show similar seasonal evolutions. This result is expected because they are both
driven by the same biophysical parameters, such as LAI, Cab and fAPAR. All the relations
qualitatively highlighted were supported by the PCA outcomes. Focusing on the loadings
plot, all the variables considered lie close to each other (except for the PAR and SIF687) and
are positively correlated on the first principal component.

Conversely, at diurnal scale reflectance indices and SIF metrics show different patterns.
NDVIred−edge and CIred−edge are almost constant during the day (except the CIred−edge
evaluated for the corn) because they are defined in order to minimized the variability linked
to the sun-target-sensor geometry and background sources of errors. On the other hand,
the PRI shows a minimum around the solar noon. This behavior is probably ascribable
to the mechanisms activated in order to protect the plant photosystems from potential
photodamages. At diurnal scale, indeed, the PRI well correlates with the NPQ. Concerning
the fluorescence, all the metrics linked to the SIF magnitude follow the PAR diurnal trend.
However, around the solar noon, the signal is flatter compared to the PAR probably because
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in this temporal interval, the SIF is in competition with the NPQ. Finally, an inter-crop
variability is observed, specifically between corn and forage-alfalfa. All these qualitative
observations are supported by the PCA outcomes (scores and loadings plots).

In general, at diurnal scale the combined use of SIF metrics and PRI allows to gain a
more completed description of the vegetation behavior.

Correcting SIF for canopy reabsorption for of quantum yield estimations
The analysis carried out on the experimental TOC SIF at seasonal scale in Chapter 2

highlighted how the red spectral region is affected by the reabsorption occurring within
the canopy-leaf system. To better characterize the SIF changes in terms of magnitude
and spectral shape, the at the photosystems level (corrected for the reabsorption, RC)
and TOC fluorescence were compared. In particular, different illumination conditions
(SZA), canopy chlorophyll content (Cab and LAI) and plants physiological conditions
(Fqe) were considered. The analyses described are currently feasible only exploiting
synthetic measurement. In this framework, the dataset used was generated coupling
the MODTRAN5-SCOPE radiative transfer models and changing the aforementioned
parameters (i.e. SZA, LAI, Cab, Fqe). The comparisons between RC and TOC spectra were
carried out by means of metrics defined on the full spectrum (the same used in Chapter 2).
In addition, also the SIF yields were evaluated and investigated. The trends were analyzed
for increasing LAIxCab values in order to mimic the canopy/crop growth.

In general, all the metrics evaluated at the photosystems level show a pattern similar
to the one observed for the aPAR. Conversely, at TOC scale, differences were observed
between the far-red and red spectral regions. While SIFTOC760 , SIFTOCfar−red, SIFTOCINT globally
corresponds to the aPAR and the photosystems level cases, the fluorescence emission in
the visible red is re absorbed for increasing LAIxCab (i.e. SIFTOCred and SIFTOC687 ). Since the
only parameters made it vary is the canopy chlorophyll content (Fqe and SZA constant),
the trend observed is only attributable to reabsorption. This process affects both the
TOC SIF magnitude and spectral shape. In particular, the metrics linked to the peak
positions show clear trends with the LAIxCab, a small variability with the SZA and
no evident changes with the Fqe. Summarizing, the TOC SIF in the red undergoes to
dramatically variations due to the reabsorption, preventing a correct interpretation of the
SIF from a physiological point of view (e.g. link to the PSII emission). Another pivotal
parameter for the vegetation monitoring is the SIF yield (or fluorescence efficiency). PQ,
NPQ and SIF processes are interconnected to each other, therefore knowing the SIF yield
and inferring NPQ from the PRI, allows to gain information about the photosynthesis
and then the plant physiological status. However, the SIF yield estimated on the TOC
spectrum is strongly affected by the reabsorption. From the comparison between the TOC
and RC simulated spectra emerged that the SIFTOCyield is unable to approximate correctly
the true fluorescence efficiency. Although SIFTOCyield increases linearly with the Fqe, the
values computed lie far from the 1:1 (slope= 1.3, intercept= 8.7e−8, R2= 1, RMSE= 4e−10).
Conversely, the SIF yield evaluated on the SIF corrected for the reabsorption perfectly
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match with the theoretical values (slopes= 0.995, intercept= 7−11, R2= 1, RMSE=3e−11).
Therefore, developing approaches able to correct the TOC SIF spectrum for reabsorption is
fundamental to infer correctly the SIF behavior during the canopy/crop growing season
and to obtain SIFyield values as accurate as possible.

In this regard, two methods to correct the SIF for reabsorption were developed and test.
The first approach was implemented modeling the simulated SIFRC spectral shape and
magnitude as sum of two Gaussian. The six coefficients used to parametrize the SIFRC

are linked to constants, regression values and quantity measurable experimentally. The
method’s accuracy carried out on the synthetic dataset shows a strong dependence to the
LAI-Cab parameters. In particular, the comparison between the spectrum simulated with
SCOPE (used as reference) and the one estimated with the parametric method proposed
gives RRMSE% up to 40% when sparse vegetation are considered. The RRMSE% decreases
for LAIxCab values corresponding to medium and dense canopies (RRMSE% < 27%).
Furthermore, due to the approximation introduced on one of the coefficients used to
parametrize SIFRC, the RRMSE% depend on the Fqe values. The variability linked to the
LAIxCab is observed also when the SIFyield is evaluated using the aPAR and SIFRC esti-
mated with the methods proposed. Averaging over all the LAI and Cab, the SIFRC differs
from the true value up to 6%. Nevertheless, the strong dependence to the canopy chloro-
phyll content represents a strong limit of this approach because preclude its applications at
seasonal scale (i.e. over underdevelopment crops). It is clear when the method is applied
on experimental measurements. While the SIF metrics and aPAR trend (where estimated)
globally show reasonable trends and values, the seasonal SIFyield behavior is anomalous.
A more sophisticated approach was then implemented. The Fourier-ML algorithm was
developed in collaborations with the Laboratory of Advanced Bio-spectroscopy (Physics
Department “G. Occhialini”) of the University of Milano-Bicocca. This method allows to
retrieve independently and simultaneously biophysical (Cab, LAI, aPAR) and physiological
(SIF TOC and RC, Fqe or SIFyield) parameters from the top of canopy apparent reflectance
spectra. Its accuracy was first quantified on the synthetic dataset. When compared to the
reference values, all the variables and SIF metrics lie on the 1:1. In particular, the linear
regressions performed always show slopes between 0.986 and 1, intercepts close to zero
and R2 greater than 0.99. Moreover, all the outcomes are characterized by RRMSE% lower
than 2%. Finally, the trends obtained at seasonal scale are reasonable and in agreement
with the behavior expected from the synthetic dataset characterization.

Advancing SIF retrieval in clear lake waters and development of primary production
models

The phytoplankton SIF emission is closely interrelated to the chlorophyll-a concentration
[Chl-a] and it is linked to the phytoplankton biomass and primary production. These links
are generally valid in oceanic waters. Conversely, in inland waters (e.g. lakes) the SIF
retrieval and interpretation is complicated by the presence in the water body of optically
active constituents, other than the phytoplankton. Hyperspectral measurements could
potentially allow to disentangle the abiotic and biotic contributions in the optical signal



5.1 Main Results 115

acquired. On the other hand, inland waters are very dynamics environments, characterized
by a high spatio-temporal variability. Therefore, high frequency measurements could help
to better resolve the changes that naturally occur in these water bodies. In Chapter 4, the
hyperspectral and high frequency measurements acquired on a clear lake water (i.e. Lake
Maggiore) were exploited to optimize the FLH method for inland waters applications.
The results obtained were investigated along with other spectral indices to characterize
the water body dynamics in the temporal domain. Furthermore, several phytoplankton
PP models were defined and tested combining spectral indices with the novel SIF proxy
proposed.

Concerning the first point, the FLH wavebands used to estimate the SIF proxy were
selected automatically exploiting the variation in the Rrs profile occurring at diurnal scale.
These changes are mainly depending on the light reaching the water surface. However,
an anomalous increase of the Rrs magnitude in the region in which SIF emission occurs
was observed in spectra acquired close to the sunset. Therefore, also a dependence to
the water body phytoplankton composition (within the water column) and/or changes
in the SIF efficiency emission affect the Rrs. Once selected dynamically the wavebands
positions, the SIFFLH is evaluated on the water leaving radiance. The SIFFLH reliability was
qualitative verified comparing its temporal trend with other spectral quantities, such as
the EPAR, Rapp550 and [Chl-a]OC4. A peculiar trend was observed in clear sky days, in which
a drop on the fluorescence is observed around the solar noon. Similarly to the terrestrial
vegetation case, the SIF emission in the red could be attenuated by mechanisms activated
to protect the photosystems from photodamages under strong illumination conditions.
However, in aquatic environments, the phytoplankton could also drop to greater depth
at which the solar light is attenuated by the water column. Combining the information
inferred by the spectral quantities investigated and the SIF efficiency values estimated in
laboratory, it is plausible that both these mechanisms are actuated around the solar noon.
Spectral measurements were also compared to values inferred form the water samples
laboratory analysis. These analyses highlighted that the EPAR, SIFFLH, FSIF and FA are
linearly correlated to each other. Moreover, a proxy for the photosynthesis efficiency
obtained by means of the SIFFLH (i.e. SIFFLH/FA) was here defined for the first time. All
these relations were exploited to develop and test several phytoplankton PP models. In
particular, the LUE (Light Use Efficiency) model, defined for the terrestrial vegetation,
was implemented for inland waters applications. The models outcomes were compared
to the in-situ biovolume in order to qualitatively assess their reliability. When only the
[Chl-a]OC4 is used as FA approximation, the model fails. Conversely, the matching with
the biovolume improves when the EPAR, SIFFLH and the photosynthesis efficiency proxy
are used (R2 greater than 0.95). The analysis carried out is mainly explorative because
only four measurements were available. Nevertheless, the preliminary outcomes obtained
highlighted how the use of the fluorescence improves the phytoplankton PP estimations.
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5.2 Concluding remarks and future perspectives

This PhD research widely demonstrated how the SIF signal can be efficiently exploited
to monitor and characterize the terrestrial vegetation and inland waters temporal dynamics.
The combined use of reflectance-based indices and TOC SIF metrics allows to gain a
better knowledge of the terrestrial vegetation dynamics, specifically at diurnal scale (SIF vs
PRI). Furthermore, the SIFINT account for both the red and far-red behaviors therefore it
represents a more complete metric respect to the SIF evaluated at a selected wavelength.
In this framework, a future work could be devoted to perform a similar analysis but in
induced stressed conditions (e.g. water or illumination stress).

At TOC scale, the link between SIF and photosynthesis is strongly affected by reabsorp-
tion of the fluorescence signal occurring within the canopy-leaf system. The reabsorption
occurring in the visible red spectral region also prevents an accurate evaluation of the
SIFyield. Correcting the TOC SIF spectrum for reabsorption is pivotal in order to improve
the use of the fluorescence as a valid proxy for the photosynthesis. In this regard, two
strategies were developed and investigated. The parametric method shows a strong de-
pendence to the LAI and Cab, therefore it needs to be improved to minimize the error
evaluated on sparse vegetation. On the other hand, the Fourier-ML algorithm gives more
accurate outcomes. Furthermore, it retrieves not only the SIFRC, but also other biophys-
ical parameters of interested fundamental in the vegetation monitoring. However, the
Fourier-ML accuracy and reliability depends on the synthetic dataset used to train the
algorithm. In this work, the atmosphere composition, along with the canopy geometry and
crop type were kept fixed. Future studies could be devoted to investigate whether and
how much these parameters influence the retrieval performances. Furthermore, pivotal
could be implementation of the retrieval algorithm for application at airplane and satellite
acquired measurements.

Concerning future experimental applications, the SIF TOC and RC metrics, together
with the Fqe and aPAR estimated with the Fourier-ML algorithm could be compared to the
GPP in order to investigate which of these parameters is the most efficient proxy for the
Gross Primary Production.

In the inland waters, the study carried out highlighted how the novel SIFFLH evaluated
for hyperspectral and high frequency measurements is able to follow the water body
dynamics at diurnal scale in clear lake waters. Since inland waters are, by definition, highly
variable environments, the SIFFLH reliability should be investigated also in other water
bodies characterized by different bio-optical properties and constituents. Furthermore, the
use of parameters linked to the SIF represents a promising approach for monitoring the
phytoplankton primary production in lakes. In this framework, only four points were used
to evaluated the models accuracy. To quantitatively investigate the models performances, a
greater and more variable dataset is needed.
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