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Abstract

The low energy dynamics of quantum field theories can be characterized by several interesting
non-perturbative phenomena. Among these, in this thesis we study infra-red dualities and
global symmetry enhancements in three and four dimensions. We focus on supersymmetric
theories, for which various exact computational tools are at our disposal. Of particular
relevance is supersymmetric localization, which allows us to compute partition functions on
various compact manifolds. These turn out to be invariant under the renormalization group
flow and are thus powerful to probe dualities and symmetry enhancements. Moreover, one
can also effectively study flows across dimensions through these supersymmetric partition
functions. Equipped with these tools, in this thesis we investigate different perspectives on the
program of finding and organizing dualities and symmetry enhancements in 3d and 4d. The
approaches that we will employ combine several different concepts that appear in the study of
supersymmetric theories. This first one is that we can flow across dimensions via spacetime
compactifications. In this way we can find new dualities and symmetry enhancements, by
either dimensionally reducing to lower dimensions or uplifting to higher dimensions some that
are already known. Another possibility is to compactify a higher dimensional theory, like a
6d theory on a Riemann surface so to get a 4d theory, and use this geometric construction to
predict and systematize dualities and symmetry enhancements. The last important ingredient
that will play a role in our analysis consists of correspondences, in particular gauge/CFT
correspondences relating partition functions of certein supersymmetric theories to correlation
functions of some CFTs. These kind of correspondences can also be exploited to find new
results on the gauge theory side from known results on the CFT side. In this thesis we discuss
various examples of applications of these ideas. We first present a relation between 3d N = 2
dualities and identities for 2d CFT free field correlators, and we explain how this can be used
to uplift known results about 2d free fields to new aspects of 3d theories. The second topic
is the compactification of a particular 6d N = (1, 0) SCFT, known as the rank-N E-string
theory, on Riemann surfaces with fluxes so to get 4d N = 1 theories. This construction
allows us to predict dualities and symmetry enhancements from known properties of the 6d

SCFT and geometric considerations. Finally, we discuss a new type of duality for 4d N = 1
theories that represents a higher dimensional ancestor of the well-known 3d mirror symmetry.
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Chapter 1

Introduction

One of the most astonishing achievements of theoretical physics of the twentieth century is
Quantum Field Theory (QFT). It provides the best framework available at the moment for
describing several physical systems, ranging from high-energy physics where the Standard
Model of particles have obtained an incredible number of experimental validations, to
Condensed Matter models for phase transitions. Even String Theory, which is the most
famous and studied candidate for a quantum theory of gravity, is written in the QFT language.
Despite of its many successes, QFT is still far from being fully understood and several issues
have to be solved in order to unleash its full power.

Some of these problems are related to the practical difficulty of performing computations
in a QFT. Even if we are able to define a QFT that suitably describes a given physical system,
we are often far from being able of actually computing quantities that we can compare with
experiments. Indeed, when the theory is weakly coupled we can safely apply perturbative
methods to perform computations, but when we are in a strongly coupled regime these
are not reliable anymore. This is often the case when we go to low energies following the
Renormalization Group (RG) flow, since many QFTs, typically in dimension lower than four,
become strongly interacting in the infra-red (IR).

Several interesting phenomena can characterize a QFT when we follow its RG flow to
low energies. Among these, the ones that we will study in this thesis are IR dualities and
symmetry enhancements. We talk about IR duality when we have two different theories in
the ultra-violet (UV), which flow to the same conformal field theory (CFT) fixed point at
long distances. Dualities can also be regarded as a tool to extract information on a QFT,
since a quantity that is difficult to compute on one side of the duality may be more easily
accessible on the other. One can also have a more general situation in which the two theories
flow to different CFTs, but these are connected by an exactly marginal deformation, that is a
deformation by an operator whose scaling dimension is equal to the spacetime dimension d.
The space of exactly marginal deformations is called conformal manifold and the statement
is that the two theories flow to distinct CFTs living at different points of the same conformal
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manifold. In this thesis we will mostly consider cases in which the theories do flow to the
same fixed point at low energies. The most famous example is the Seiberg duality [1], which
applies to supersymmetric quantum field theories (SQFT). More precisely, we have that 4d

N = 1 SQCD with SU(Nc) gauge group and Nf fundamental flavors Qi and Q̃j is dual
to the SU(Nf − Nc) gauge theory with Nf flavors qi and q̃i, N2

f gauge singlets M i
j and

superpotential W = M i
j q̃jqi. In this example the two theories always flow to the same

superconformal field theory (SCFT). Only for Nf = 2Nc we have a non-trivial conformal
manifold1, but the two gauge theories still flow to the same point of it at low energies.

Symmetry enhancements, instead, occur when the manifest UV symmetry of a theory gets
enlarged to a bigger group as we flow to the IR, which contains the UV symmetry group as a
subgroup. This phenomenon may involve not only the global symmetry of a theory but also
supersymmetry, namely a non-supersymmetric theory may become supersymmetric in the IR
or a supersymmetric theory may acquire new supercharges as we follow the RG flow. In this
thesis we will be concerned only with enhancements of global symmetries. This phenomenon
is often entangled with the one of duality, in the sense that the presence of one may hint
toward the existence of the other. For example, it might be that in a duality the manifest
global symmetry is larger in one frame compared to the other. In such a situation, the frame
with less symmetry must enjoy a symmetry enhancement so that the two theories have the
same global symmetry in the IR. Consider for example again the 4d N = 1 SQCD with gauge
group SU(2) and Nf ≥ 4 fundamental flavors. Each flavor consists of a pair of chiral and
anti-chiral in complex conjugate representations under the gauge group. One would say that
the manifest global symmetry is SU(Nf )× SU(Nf ), where each factor rotates independently
chirals and anti-chirals respectively. Nevertheless, for SU(2) the fundamental representation
is pseudoreal, so chirals and anti-chirals are indistinguishible and they combine to form the
fundamental representation of the larger SU(2Nf ) symmetry. If we consider the Seiberg dual
theory, this is SU(Nf − 2) with Nf flavors, the singlets and the superpotential. Here for
Nf > 4 the gauge group is complex so the manifest global symmetry is SU(Nf )× SU(Nf ),
while for Nf = 4 it is SU(2) but the superpotential involving the singlets still preserves only
SU(Nf )× SU(Nf ). The duality then implies that on this frame the global symmetry must
get enhanced at long distances from SU(Nf )× SU(Nf ) to SU(2Nf )2.

As we have said, these interesting phenomena occur following the RG flow where the
theory typically becomes strongly coupled and is in general not even Lagrangian. This is
the reason why one of the greatest challenges in QFT is to develop tools to perform exact,

1The conformal manifold is generically spanned by suitable combinations of the components of the tensor
obtained from the square of the meson matrix QiQ̃j that are invariant under the complexified global symmetry
group [2]. In some particular cases there are additional marginal operators. For Nc = 2 one should also
consider the tensors constructed from the square of the baryon and from the baryon times the meson, while
for Nc = 4 the baryon is itself marginal.

2For Nf = 3 the dual is a Wess–Zumino (WZ) model which is free, so the full IR global symmetry is even
larger.
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non-perturbative computations. Over the years several routes have been followed to reach
this goal. Among the most successful approaches we have for example lattice computations,
conformal bootstrap, correspondences, localization techniques, and so on. Many of these rely
on the presence of extra symmetries in the theory, such as conformal and supersymmetry.
Symmetries tightly constrain the system and in some cases they even allow us to completely
solve part of it. In order to make progress it is thus useful to assume that the theory possesses
some of these symmetries, and in particular in this thesis we will mostly work with 3d and
4d theories with four supercharges.

One should also keep in mind that each of these methods has its pros and cons, to
the extent that they should be really considered as complementary. Consider for example
localization (see [3] for a review and references therein). This is a technique used to compute
partition functions and other protected observables of QFTs with enough supersymmetry
defined on certain compact manifolds. It is extremely powerful, since it allows us to compute
such quantities exactly, including all possible non-perturbative corrections. Moreover, several
of these partition functions turn out to be independent of the gauge coupling and are thus
invariant along the RG flow. This means that we can compute them in the UV where we
usually have a nice Lagrangian description of our theory, and the result must be the same
as for the theory to which we flow in the IR. Hence, they represent an incredibly powerful
tool to probe the low energy behaviour of SQFTs and to study dualities and symmetry
enhancements that they may enjoy, which is the reason why we will use them a lot in this
thesis. Nevertheless, localization has a limitation: it can only be applied to Lagrangian
theories. The severity of this limitation can be understood from the fact that by now we
know plenty of examples of non-Lagrangian theories, one of the first ones being the Argyres–
Douglas theory of [4]. In such cases one has to rely on some other methods, like the conformal
bootstrap which instead takes as an input only the symmetries of the system and doesn’t
require an explicit Lagrangian description. Nevertheless, also the conformal boostrap has
its limitations, such as being applicable only to conformal theories. In this sense each of
the available non-perturbative methods is equally important and has to be considered as
complementary to the others. Moreover, despite of this limitation of localization, one should
be careful on whether a theory is truly non-Lagrangian or not. In some cases, one can find a
Lagrangian description that flows to the non-Lagrangian theory in the IR by admitting that it
possesses less supersymmetry, which should then get enhanced, or the non-Lagrangian theory
may possess a Lagrangian description upon compactification to lower dimensions. This will
often be the case in this thesis, which is why we will be able to make such an intensive use of
localization.

Having understood the non-perturbative methods at our disposal, another important task
in QFT is to find an organizing principle underlying the many examples of dualities and
symmetry enhancements that have been collected over the years and that keep showing up.
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In this thesis we will discuss different perspectives on this problem, which combine many
different concepts in supersymmetric gauge theories that we are now going to review.

The first important idea is that we can flow across dimensions via spacetime compact-
ifications. This can be in particular applied to the concept of duality. Suppose that we
start from a known duality in d dimensions, compactify both of the dual theories on a
(d− d′)-dimensional manifold and flow to energies much smaller than the compactification
scale. In this way we obtain two theories in d′ dimensions and we can ask ourselves if they
are still dual or not. There are several subtleties that one has to take into account when
studying the dimensional reduction of a duality and in general it may just happen that the
two lower dimensional theories are not dual. This is due to the fact that two different limits
are involved in the dimensional reduction and issues of order of limits are typically involved.
The first limit consists of flowing to low energies while keeping the compactification radius r

fixed. Here is where the duality holds and we expect the two d-dimensional theories to flow
to the same fixed point. The second limit is the strict dimensional reduction limit r → 0
while keeping the energy scale fixed. Taking the two limits in this order would give us the
lower dimensional version of the fixed point theory of the original d-dimensional dual theories.
If we instead take the limit r → 0 first, we obtain two lower dimensional theories that we can
conjecture being two different UV descriptions of the aforementioned d′-dimensional fixed
point theory. Thus, we understand that this conjecture is true and that the duality survives
the dimensional reduction only if the two limits commute, but this is not always true.

This problem has so far been understood at a different level depending on the set-up
considered. Restricting ourselves to supersymmetric theories in 4d, 3d and 2d, some important
dimensional reductions of dualities that have been studied in the literature are from 4d N = 1
to 3d N = 2 in [5, 6], from 3d N = 2 to 2d N = (2, 2) in [7, 8] and from 4d N = 1
to 2d N = (0, 2) in [9]. In order to exemplify the possible issues that can arise in the
compactification of dualities let us consider the 4d N = 1 to 3d N = 2 reduction, which will
play a relevant role in this thesis. Here one of the main problems is that four-dimensional
theories typically possess anomalous U(1) axial symmetries, which are not anomalous in three
dimensions since there are no anomalies for continuous symmetries in 3d. This additional
symmetry typically spoils the duality in 3d, which instead holds only assuming that the
symmetry is broken. It turns out that what is breaking the axial symmetry in 3d is a
monopole superpotential that is dynamically generated in the compactification. In other
words, the role of the anomaly in 4d is played by the monopole superpotential in 3d. Such a
monopole superpotential can then be removed by integrating out flavors with suitable real
mass deformations.

In some cases, when enough insight is gained about the dimensional reduction limit, one
can even push this idea further and try to reverse the logic. Namely, we can start from
a duality in lower dimensions and use it to guess a still unknown parent duality in higher
dimensions. This represents an orthogonal, bottom-up approach to the one of the dimensional
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reduction, to which we will refer with the word uplift. We stress that this should not be
intended as an attempt of reversing the RG flow, but just as a hint for the existence of the
higher dimensional duality, which should then be carefully tested.

The dimensional reduction of dualities is not the only example of flow across dimensions
that exists. Another important line of reasearch of the last decade has been the construction of
four-dimensional theories by compactification of six-dimensional SCFTs on Riemann surfaces.
The first step in this direction was made by Gaiotto in [10], who constrcuted a large set of
4d N = 2 SCFTs that are now known as class S theories from the compactification of 6d

N = (2, 0) SCFTs on Riemann surfaces. One of the great advantages of this procedure is
that we can recover many instaces of S-duality and also predict infinitely many new ones
from geometric considerations only. Specifically, distinct 4d theories that correspond to
different pants decompositions of the same Riemann surface turn out to be S-dual, and the
deformation of the surface that is needed to go from one to the other is interpreted in field
theory as moving in the parameter space that connects the two theories. This strategy has
been later generalized to a less supersymmetric set-up, in which 6d N = (1, 0) SCFTs are
compactified to 4d N = 1 theories. In this case we have an even richer structure, since 6d

N = (1, 0) SCFTs may possess a global symmetry for which we can turn on fluxes through
the surface. This can be exploited to predict non-trivial symmetry enhancements, since the
symmetry that the 4d theory is expected to have should be the subgroup of the 6d symmetry
that is preserved by the flux, but this might not be fully manifest in 4d and in such a case it
should get enhanced in the IR.

There is one last important ingredient at our disposal that we can use to enrich our
analysis of dualities and symmetry enhancements. This consists of the so-called gauge/CFT
correspondences, which relate certain observables such as partition functions in supersymmetric
gauge theories to completely different quantities in CFTs, like correlation functions of primary
operators. What distinguishes correspondences from dualities is that the two theories are
in general intrinsically different, for example because they live in different dimensions, and
completely different observables are related between the two sides. The most famous example
of a gauge/CFT correspondence is the AGT correspondence [11] which, among other things,
relates the S4 partition functions of 4d N = 2 theories to correlation functions in 2d CFTs,
like Liouville or Toda theories. The construction of [10] plays an important role also here,
since the 4d theories involved in the AGT correspondence belong to the set of the class S
theories and the correspondence can be understood in terms of their geometric construction.
What is important for us is that gauge/CFT correspondences can be exploited to obtain new
results on the gauge theory side from known results on the CFT side. For example, dualities
in gauge theory are usually translated into non-trivial identities for CFT correlators.

In this thesis we will make use of all of these ideas to find new dualities and symmetry
enhancements in 4d N = 1 and 3d N = 2 theories. Let us now briefly summarize the contents
of the thesis. In Chapter 2 we will discuss a connection between 3d N = 2 supersymmetric
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gauge theories and correlation functions of 2d CFTs in the free field realization. This is an
example of combination of two of the concepts that we have described, namely dimensional
reductions and correspondences. Indeed, the precise statement is that if we consider the
S2 × S1 partition function of certain three-dimensional theories with four supercharges and
their limit when the radius of the S1 is sent to zero, the result looks like not only the S2

partition functions of some 2d N = (2, 2) gauge theories, but it can also be recast in the form
of complex integrals appearing in the context of 2d free field correlators. Combining this
observation with the concept of duality in 3d we obtain an even richer web of connections.
Specifically, we find a relation betwen 3d N = 2 dualities and integral identities for 2d free
field correlators. We will first establish this connection by considering the 2d limit of a known
3d duality and show that the result coincides with a very well-known formula for the 3-point
function of Liouville theory. Building on various examples we will be able to fully understand
the dictionary of this kind of correspondence. We will then use the obtained knowledge to
try to reverse the logic of this limit and uplift some results that are known in the literature
on 2d CFT free fields to new dualities and symmetry enhancements in three-dimensions. A
central role will be played by a 3d N = 2 quiver gauge theory that we name M [SU(N)].
This theory turns out to flow, after a suitable deformation, to the more known T [SU(N)]
theory of Gaiotto–Witten [12], and we will see that some of the properties of M [SU(N)] that
we will understand from the 2d free fields perspective reduce to similar known properties of
T [SU(N)].

In Chapter 3 we will study the compactification of a specific 6d N = (1, 0) SCFT on
Riemann surfaces to 4d. The six-dimensional theory that we will consider is the rank-
N E-string theory and the surfaces on which we will focus will be tubes, tori, caps and
spheres. We will also have non-trivial fluxes for the E8 × SU(2)L global symmetry of the 6d

theory through the surfaces. This will allow us to construct four-dimensional models that
enjoy interesting dualities and symmetry enhancements, which we will analyze in details.
Interestingly, the results of this chapter partially connect with those of Chapter 2. Namely, we
will see that the fundamental building block of our constructions will be the theory obtained
from compactification on a tube and that this will involve a 4d N = 1 quiver gauge theory
that we name E[USp(2N)], which after dimensional reduction and suitable deformations
reduces to the aforementioned M [SU(N)] theory. Moreover, E[USp(2N)] enjoys the very
same set of properties that also M [SU(N)] and T [SU(N)] possess, so we can talk about a
4d dimensional uplift of these.

Among the interesting properties that T [SU(N)] enjoys there is mirror symmetry [13].
This is a well-known type of IR duality that is peculiar of three dimensions. One of the
features that we will find for E[USp(2N)] is precisely a four-dimensional avatar of 3d mirror
symmetry for T [SU(N)]. Building on this observation and on the fact that many examples
of mirror symmetry in 3d are known, in Chapter 4 we will introduce a new class of 4d N = 1
quiver gauge theories that are related in pairs by this new type of mirror duality in 4d.
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N−1…
Q(1 , 2) Q(N−1, N )

Φ
(1)

Φ
(N−1)

Φ
(2)

~Q(1, 2) ~Q(N−1 , N)

1 2

Figure 1.1: Quiver diagram for T [SU(N)] in N = 2 notation. Round nodes denote gauge
symmetries and square nodes denote global symmetries. Single lines denote chiral fields in
representations of the nodes they are connecting. In particular, lines between adjacent nodes
denote chiral fields in the bifundamental representations of the two nodes symmetries, while
arcs denote chiral fields in the adjoint representation of the corresponding node symmetry.

We will call these theories Eσ
ρ [USp(2N)], since they are the four-dimensional counterparts

of the three-dimensional T σ
ρ [SU(N)] theories. The latter are basically the class of linear

quiver gauge theories with unitary nodes and matter in the fundamental and bifundamental
representation only, which are known to be related in pairs by mirror symmetry. This is yet
another examples of uplift of a lower dimensional result to higher dimensions.

It is clear that the T [SU(N)] theory plays an important role in the topics of all of the
three chapters of this thesis. For this reason, before starting we conclude this introduction
we a brief review of this theory.

The T [SU(N)] theory

Given the central role that it will play in this thesis, we give here a brief review of the
T [SU(N)] theory and those of its properties that will be important for us. The T [SU(N)]
theory admits a Lagrangian description in terms of the quiver in Figure 1.1. The gauge
group of the theory is ∏N−1

i=1 U(i) and each factor is represented by a round node in the
quiver. Such a gauge theory can be engineered with a brane setup in Type IIB consisting of
N D3-branes stretched between N NS5 and N D5-branes, where the net number of 3-branes
ending on each 5-brane is one [14, 12].

The theory has N = 4 supersymmetry, as it can be understood in the brane setup where
the SO(4) ∼= SU(2)H × SU(2)C symmetry that rotates the four directions that are not filled
by any brane can be interpreted as the R-symmetry. Nevertheless, for later convenience
we will use N = 2 notation, where each gauge node carries a vector multiplet and a chiral
multiplet Φ(i) in the adjoint representation of the corresponding gauge symmetry which
together form an N = 4 vector multiplet. The matter content of the theory consists also of
bifundamental chiral fields Q

(i,i+1)
ab and Q̃

(i,i+1)
ãb̃

represented in the quiver by lines connecting
adjacent nodes, which come from N = 4 hypermultiplets3. For i = N − 1 these are actually
fundamental fields of the U(N − 1) gauge node and they transform under an SU(N)X global

3In our conventions, the bifundamentals Q
(i,i+1)
ab transform in the representation i ⊗ i + 1 of U(i) × U(i + 1)

and the bifundamental Q̃
(i,i+1)
ab transform in the representation i ⊗ i + 1.
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symmetry, which is represented in Figure 1.1 by a square node. In N = 2 notation the
superpotential of the theory is

WT [SU(N)] =
N−1∑
i=1

Tri

[
Φ(i)

(
Tri+1 Q(i,i+1) − Tri−1 Q(i−1,i)

)]
, (1.1)

where we defined the matrix of bifundamentals Q(i,i+1) = Q
(i,i+1)
ab Q̃

(i,i+1)
ãb̃

connecting the U(i)
to the U(i+1) gauge node. On the first node Q(0,1) = 0. The traces Tri are taken in the adjoint
of the i-th gauge node, except for i = N which corresponds to the trace TrX over the global
symmetry SU(N)X . The manifest global symmetry of T [SU(N)] is SU(N)X × U(1)N−1.
The U(1) factors corresponding to the topological symmetry of each gauge node are actually
enhanced to the second SU(N)Y symmetry in the IR4. For each Cartan in the two SU(N)
global symmetries we can turn on real masses. The most suitable parametrization of these
masses consists of turning on 2N parameters Xi and Yi with i = 1, · · · , N subjected to the
tracelessness conditions ∑N

i=1 Xi = ∑N
i=1 Yi = 0.

When we use the N = 2 formalism, the N = 4 R-symmetry is decomposed as follows.
We first consider the Cartans U(1)H ⊂ SU(2)H and U(1)c ⊂ SU(2)C . We then consider
their diagonal and off-diagonal combinations, U(1)R0 = U(1)H + U(1)C and U(1)mA =
U(1)C − U(1)H . The first one corresponds to the N = 2 R-symmetry, while the second
one manifests itself as a flavor symmetry in the N = 2 theory that we will refer to as axial
symmetry. Turning on a real mass for the axial symmetry explicitly breaks supersymmetry
from N = 4 to N = 2∗ [15]. From the N = 2 perspective, U(1)R0 should be considered
as a trial R-symmetry, which can mix with other abelian symmetries in the IR. Since the
topological symmetry is non-abelian, U(1)R0 will only mix with U(1)mA . Denoting with r

the mixing coefficient and with qA the charge under U(1)mA , we have that the most general
R-charge is

R = R0 + qA r . (1.2)

Our choice for the parametrization of U(1)mA and U(1)R is summarized in Table 1.1. The
exact value of r corresponding to the IR superconformal R-symmetry can be fixed by F-
extremization [16]. Nevertheless, since the theory is actually N = 4 we expect no mixing
between U(1)mA and U(1)R0 , namely r = 0. As we did for the non-abelian symmetries,
we can turn on a real mass Re(mA) for the axial symmetry. It is also useful to define the

4Enhancements of the topological symmetry in 3d N = 4 quivers occur every time we have gauge nodes
that are balanced. For unitary groups, a node is balanced when the number of fundamental hypermultiplets
connected to it is twice its rank. In the case of T [SU(N)] this condition is satisfied for every gauge node, so
all the topological symmetries of the quiver get enhanced.



9

SU(N)X SU(N)Y U(1)mA U(1)R

Q(i−1,i) 1 1 1 r

Q̃(i−1,i) 1 1 1 r

Q(N−1,N) N 1 1 r

Q̃(N−1,N) N̄ 1 1 r

Φ(i) 1 1 −2 2− 2r

H N2 − 1 1 2 2r
C 1 N2 − 1 −2 2− 2r

Table 1.1: Charges and representations of the chiral fields and of the chiral ring generators of
T [SU(N)] under the global symmetries. In the table i = 1, · · · , N−1 and Q(0,1) = Q̃(0,1) = 0.

following holomorphic combination:

mA = Re(mA) + i
Q

2 r . (1.3)

Summing up, the complete IR global symmetry of the N = 2∗ version of T [SU(N)] is

SU(N)X × SU(N)Y × U(1)mA . (1.4)

The chiral fields of the theory transform under these symmetries according to Table 1.1.
The generators of the chiral ring are the Higgs branch (HB) and the Coulomb branch (CB)

moment maps H and C. The name "moment map" is due to the fact that these multiplets
contain the conserved currents for the SU(N)X and the SU(N)Y global symmetries that
characterize the HB and the CB respectively, which possess a symplectic structure thanks to
the high amount of supersymmetry. The HB moment map is

H = Q− 1
N

TrX Q (1.5)

with Q the N ×N meson matrix

Qij = TrN−1 Q(N−1,N) . (1.6)

As a consequence of the F-term equations deriving from the superpotential (1.1), the HB
moment map is nilpotent

HN = 0 . (1.7)

This implies that the HB is isomorphic to the nilpotent cone of SU(N)X .
The CB branch moment map is instead generated by Tri Φ(i) and monopole operators with

magnetic flux vectors (m1, . . . mN−1), where mi denotes the unit of flux for the topological
U(1) of the i-th node. In particular monopole operators defined with fluxes of the form
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(0i, (±1)j , 0k), where 0 and 1 are repeated with integer multiplicities i, j, and k such that
i + j + k = N − 1, have the same R-charge of the adjoint chiral fields and the same charge
under U(1)mA . We then collect these N(N −1) monopoles and the traces of the N −1 adjoint
chirals into a single N ×N traceless matrix5. For N = 4 this matrix reads

C ≡



0 M(1,0,0) M(1,1,0) M(1,1,1)

M(-1,0,0) 0 M(0,1,0) M(0,1,1)

M(-1,-1,0) M(0,-1,0) 0 M(0,0,1)

M(-1,-1,-1) M(0,-1,-1) M(0,0,-1) 0


+

3∑
i=1

Tri Φ(i)Di , (1.8)

where Di are traceless diagonal generators of SU(N)Y . The operator C constructed in this
way transforms in the adjoint representation of SU(N)Y and thus corresponds to the moment
map for this enhanced symmetry.

In Table 1.1 we also report the charges and representations under the global symmetries
of the chiral ring generators H and C according to our parametrization of U(1)mA and U(1)R0 .
Notice that these charges are consistent with the operator map dictated by mirror symmetry
which in this case corresponds to a self-duality of the theory, under which the operators of the
HB and the CB are exchanged. This in particular implies that also the matrix C is nilpotent

CN = 0 (1.9)

and the CB is isomorphic to the nilpotent cone of SU(N)Y . The mirror self-duality of
T [SU(N)] can be easily understood at the level of the brane setup, where it corresponds to
the action of the S element of SL(2,Z) which exchanges NS5 and D5-branes.

One of the main tools we will use to study T [SU(N)] as well as other 3d N = 2 theories
is the supersymmetric partition function on S3

b [17, 16, 18, 19] (see Appendix A.3 for our
conventions). For T [SU(N)], this will be a function of the parameters in the Cartan of
the global symmetry group, which we denoted as Xi, Yi and mA. Indeed, the partition
function depends only on the holomorphic combination of the real mass for the U(1)mA

abelian symmetry and the mixing coefficient with the trial R-symmetry U(1)R0 [16]. With

5The fact that we have as many monopole operators with R-charge 1 as it is necessary to form a SU(N)Y

adjoint representation is a consequence of the gauge nodes being balanced.
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T [SU(N)] T [SU(N)]∨

FFT [SU(N)] FFT [SU(N)]∨
Mirror

Mirror

Flip-Flip Flip-Flip

H C H∨ C∨

OH OC OH
∨ OC

∨

Figure 1.2: Duality web of the T [SU(N)] theory. On the horizontal direction we have the
mirror duality, while on the vertical direction we have the flip-flip duality. Operators of the
same color are mapped to each other across the dualities.

these conventions, the partition function of T [SU(N)] can be written recursively as

ZT [SU(N)](X⃗; Y⃗ ; mA) =
∫

dz⃗
(N−1)
N−1 e2πi(YN−1−YN )

∑N−1
a=1 z

(N−1)
a ×

×
N−1∏
a,b=1

sb

(
−i

Q

2 +
(
z(N−1)

a − z
(N−1)
b

)
+ 2mA

)
×

×
N−1∏
a=1

N∏
i=1

sb

(
i
Q

2 ± (z(N−1)
a −Xi)−mA

)
×

× ZT [SU(N−1)]
(
z

(N−1)
1 , · · · , z

(N−1)
N−1 ; Y1, · · · , YN−1; mA

)
,(1.10)

where we defined the measure of integration for the m-th U(n) gauge group on S3
b including

both the contribution of the N = 2 vector multiplet and of the Weyl symmetry factor

dz⃗(m)
n = 1

n!

∏n
i=1 dz

(m)
i∏n

i<j sb

(
iQ

2 ±
(
z

(m)
i − z

(m)
j

)) . (1.11)

In [20] it has been observed that T [SU(N)] possesses several duality frames that can be
summarized in the commutative diagram of Figure 1.2. One frame is the one obtained applying
mirror symmetry, which we denote by T [SU(N)]∨. As we mentioned before, T [SU(N)] is
self-dual under this duality, which acts non-trivially on the chiral ring generators of the theory.
In particular, it exchanges the operators charged under SU(N)X with those charged under
SU(N)Y . If we consider the N = 2∗ deformation of T [SU(N)], mirror symmetry also acts
flipping the sign of the U(1)mA charges as well as the mixing coefficient of the R-symmetry
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with this abelian symmetry r → 1− r. In terms of the mass parameter mA, we have

mA → i
Q

2 −mA . (1.12)

In other words, using Table 1.1 we have the following operator map:

H ↔ C∨

C ↔ H∨ . (1.13)

At the level of the S3
b partition function, mirror symmetry for T [SU(N)] translates into the

following non-trivial integral identity:

ZT [SU(N)](X⃗; Y⃗ ; mA) = ZT [SU(N)]

(
Y⃗ ; X⃗; i

Q

2 −mA

)
= ZT [SU(N)]∨(X⃗; Y⃗ ; mA) .

(1.14)

This identity can be proven using the fact that ZT [SU(N)] is an eigenfunction of the trigono-
metric Ruijsenaars-Schneider model [21].

On top of the mirror dual frame, T [SU(N)] has another interesting dual which was named
flip-flip dual FFT [SU(N)] in [20]. This theory is T [SU(N)] with two extra sets of singlet
fields OH and OC flipping the HB and CB moment maps

WF F T [SU(N)] =WT [SU(N)] + TrX

(
OHHF F

)
+ TrY

(
OC CF F

)
, (1.15)

where HF F and CF F denote the operators in the FFT [SU(N)] frame. Flip-flip duality acts
trivially on the non-abelian global symmetries of T [SU(N)], while it acts on U(1)mA and
U(1)R exactly as mirror symmetry (1.12). The operators are accordingly mapped as

H ↔ OH

C ↔ OC . (1.16)

This duality implies another non-trivial integral identity satisfied by ZT [SU(N)]

ZT [SU(N)](X⃗; Y⃗ ; mA) =
N∏

i,j=1

sb

(
iQ

2 + (Xi −Xj)− 2mA

)
sb

(
iQ

2 + (Yi − Yj)− 2mA

) ZT [SU(N)]

(
X⃗; Y⃗ ; i

Q

2 −mA

)
= ZF F T [SU(N)](X⃗; Y⃗ ; mA) , (1.17)

which can also be proven using the trigonometric Ruijsenaars-Schneider model eigenvalue
equation [20, 22]. As we will discuss more later in this thesis, the flip-flip duality of T [SU(N)]
can be derived by iteratively applying the Aharony duality [23] following a standard procedure.
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By combining mirror symmetry and flip-flip duality we can reach a third duality frame
FFT [SU(N)]∨, which again corresponds to T [SU(N)] with two sets of singlet fields O∨

H and
O∨

C flipping the HB and CB moment maps H∨
F F and C∨

F F

WF F T [SU(N)]∨ =WT [SU(N)] + TrY

(
O∨

HHF F ∨
)

+ TrX

(
O∨

C CF F ∨
)

, (1.18)

but in this case the duality acts exchanging SU(N)X and SU(N)Y , while leaving unchanged
U(1)mA and U(1)R

6. The operator map between the original T [SU(N)] and FFT [SU(N)]∨

is

H ↔ O∨
C

C ↔ O∨
H . (1.19)

6In [20] this kind of duality was called spectral duality.





Chapter 2

3d dualities from 2d free field
correlators

In this chapter we will present a bottom-up approach for finding new dualities for 3d N = 2
theories by exploiting a connection between their S2×S1 partition function and correlators of
2d CFTs in the free field realization. The content of this chapter is taken from [24, 25], where
in the first reference the correspondence between 3d dualities and 2d free field correlators was
established, while in the second reference it was intensively employed to find new 3d N = 2
dualities.

2.1 The general idea

As we discussed in the Introduction, in the recent years there has been a lot of new progress
in the understanding of IR dualities in various dimensions, especially for supersymmetric
theories. This naturally led to the question whether there is a connection between dualities
in different dimensions that would allow us to systematically organize them. In the first part
of this chapter we will be interested in the reduction of dualities for 3d N = 2 theories to
two dimensions.

This issue was first addressed in [7] in order to related 3d mirror symmetry [13] to 2d

mirror symmetry [26] and later studied in more details and generality in [8]1. The set-up
1Many of the subtleties that appear in this type of dimensional reductions is related to problems in 2d IR

dualities when the target space is non-compact. In 2d the ground state can explore the entire moduli space of
the theory because of quantum fluctuations, so that we can’t just focus on a single region of it. Moreover, the
metric on the target space, which is not protected by supersymmetry, is classically marginal in two dimensions.
Consequently, in order to claim for a duality we need a complete knowledge of the target space of the theories
at the quantum level, which is in general extremely difficult to achieve. This issue was analyzed in detail in
the context of 3d dualities reduced to 2d in [8, 27]. This problem doesn’t appear when the theories have a
compact target space or when massive deformations are turned on, since these have the effect of lifting the
vacua of the theory, leaving just discrete isolated vacua. For this reason our discussion will not be affected by
these subtleties related to the non-compactness of the target space, since all the results we will use include
non-vanishing mass deformations.
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considered in this type of dimensional reduction is that of a 3d theory with at least N = 2
supersymmetry compactified on a circle S1 of radius R. This preserves the full amount of
supersymmetry, so we end up with 2d N = (2, 2) theories. We then have to decide how the
parameters of the 3d theory scale with the radius. In 3d we have two types of parameters:
real masses and Fayet–Iliopoulos (FI) parameters. In [8] two types of limits were considered.
The first one is called Higgs limit, since it is characterized by the real masses remaining finite
and the FI parameters going to infinity, implying that the matter fields remain light while
the 3d Coulomb branch is lifted. The result is typically a 2d N = (2, 2) gauge theory which
is usually referred to as gauged linear sigma model (GLSM). The second one is the Coulomb
limit, which is the opposite limit of FI parameters remaining finite and real masses going to
infinity. In this case one usually gets a 2d N = (2, 2) Landau–Ginzburg (LG) model.

We will take a particular point of view on this type of dimensional reduction. The 3d

duality implies an identity for the partitions functions of the dual theories which, if the
theories are defined on a suitable compact space, can be recast in the form of matrix integrals
using localization techniques. Supersymmetric partition functions are indeed a very powerful
tool to study dualities, since they are independent of the gauge coupling and this implies
that they are invariant under RG flow, which makes it possible to compute them using the
UV data and still match them between theories that are dual only in the IR. If we consider,
in particular, the partition function on a space of the form M× S1 with M a compact space
we can then explicitly implement the 2d reduction at the level of the matrix integral of the
partition function by taking the limit in which the ratio between the radius of the S1 and the
scale of the compact manifold M goes to zero.

We will be mainly interested in the partition function on S2 × S1, also known as the
supersymmetric index [28], which was computed using supersymmetric localization in [29, 30].
In Appendix A.2 we give a more detailed review of this partition function, but for the moment
we just start mentioning that the corresponding matrix integral takes the following schematic
form:

ZS2×S1 =
∑
m

∮ rank G∏
j=1

duj

2πi uj
Zint , (2.1)

where we denoted by uj the fugacities parametrizing the maximal torus of the gauge group
whose integration domain is the unit circle in the complex plane and by m the corresponding
GNO magnetic fluxes on S2. The integrand Zint can be uniquely determined from the
Lagrangian description of the theory and receives contribution from the different multiplets
of the theory. Such contributions can be expressed in terms of q-Pochhammer symbols
(a; q)∞ = ∏∞

k=0(1− aqk), which enjoy the two following properties that will be relevant for
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us:

lim
q→1

(qx; q)∞
(qy; q)∞

= Γ(y)
Γ(x)(1− q)y−x

lim
q→1

(zqx; q)∞
(zqy; q)∞

= (1− z)y−x . (2.2)

The first identity is used when considering the Higgs limit, while the second one is used for
the Coulomb limit. Indeed, the Higgs limit typically results in the partition function on
S2 of a GLSM, where the contribution of a 2d chiral is written in terms of ordinary Euler
gamma functions. Instead, the result of the Coulomb limit with some manipulations can
be mapped to the partition function of a Landau-Ginzburg model with logarithmic twisted
superpotential. We then want to consider taking these limits on the two sides of an integral
identity associated with a 3d duality.

There exist two main types of dualities in three dimensions. First, we have dualities that
generally go under the name of mirror symmetry [13], which are in particular characterized
by the fact that the HB of a theory is mapped to the CB of the dual and viceversa (we
will have more to say about these dualities in Chapter 4). Then, we have dualities that are
more reminiscent of Seiberg duality in four dimensions, under which HB and CB are not
swapped. It is clear that if we have a mirror dual pair, if we take the Higgs limit on one
side of the duality we are forced to take the Coulomb limit on the opposite side. This is
how 3d mirror symmetry reduces in 2d to the Hori–Vafa duality [7]. Instead, if we have a
Seiberg-like duality we can either take the Higgs limit on both sides, which yields a similar
Seiberg-like duality between 2d gauge theories, or the Coulomb limit on both sides, which
leads to a duality between LG models.

The key observation of [24] is that the Coulomb limit of the S2 × S1 partition function of
a 3d N = 2 theory can be rewritten in the form of a complex integral that appears in the
context of 2d CFT correlators in the free field realization, also known as Dotsenko–Fateev
(DF) integral. Specifically, by looking at the second limit in (2.2) one can understand that if
the 3d theory is non-chiral, that is for each chiral field in a representation R of the gauge group
there exists another chiral field in the complex conjugate representation R̄, then the Coulomb
limit of the integrand takes a factorized form into a holomorphic and an anti-holomorphic
part. Moreover, calling q = eβ where β is the ratio between the radius of the S1 and the
radius of the S2, then also the integration measure, as we will show, takes the form of that of
a complex integral

∑
m

∮ rank G∏
j=1

duj

2πi uj
−→
β→0

∫
C

rank G∏
j=1

d2zj

πβ|zj |2
. (2.3)
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S2 × S1 partition function Free field correlator
Rank of the gauge group Number of inserted screening operators

Gauge fugacities Insertion points of the screening operators
Vector symmetry fugacities Insertion points of the external operators

Axial and topological symmetry fugacities Momenta of the external operators
Superpotential Constraints on the momenta

Table 2.1: Main entries of the dictionary between S2 × S1 partition functions of 3d N = 2
gauge theories and free field correlators of 2d CFTs. For simplicity we stick to the case in
which the gauge group of the 3d theory has a single unitary factor.

The Coulomb limit of the identity of the S2 × S1 partition functions of a pair of Seiberg dual
theories can then be understood not only as the identity of the partition functions of two
dual LG models, but also as a non-trivial complex integral identity between 2d free field
correlators2. In Table 2.1 we summarize the main entries of the dictionary that we will find
for this correspondence.

From the point of view of a field theorist who is fond of 3d dualities, the interesting part
of this connection is that there exist many results for free field correlators that are known in
the 2d CFT literature and for which a 3d counterpart it not known yet. Indeed, it will be
possible not only to work out the dictionary in Table 2.1, but even to map each factor in
the integrand of the matrix integral of the S2 × S1 partition function to each factor in the
integrand of the complex integral of the free field correlator. This insight allows us to literally
read a 3d N = 2 gauge theory out of a free field integral. Equipped with this knowledge, one
can then try to reverse the logic and uplift some known identities for 2d free field integrals to
genuine (IR, not mass deformed) dualities between 3d gauge theories. This is the bottom-up
point of view that was employed in [24, 25]. It is important to clarify that with the word
"uplift" we don’t refer to some attempt of reversing the RG flow across dimensions, but rather
that we will use the 2d results as a hint to guess a new 3d duality, which should then be
tested with all the standard tools.

In order to establish the correspondence we will start by considering, as a prototypical
example, the duality between the U(N) gauge theory with one adjoint chiral and one flavor
with no superpotential and the WZ model of 3N chirals with a cubic superpotential that was

2We should mention that this connection between S2 × S1 partition functions of 3d N = 2 theories and 2d
free field correlators is not totally unexpected. Indeed, in recent years the connection between 3d N = 2 gauge
theories and free field correlators in Toda CFT has been considered from various perspectives. In particular, in
[31, 32] a dictionary to map 3d quiver theories to q-deformed conformal blocks in the free field realization was
proposed (this map was further explored on various compact spaces in [33] and from a different perspective in
[34]). The limit that we are considering here consists in the q → 1 limit in which we recover the standard
conformal correlators. One difference between our work and theirs is that they relate the partition function
on D2 × S1 to the conformal block, while we relate the partition function on S2 × S1 to the full conformal
correlator. The connection between the two set-ups, which is clear from the CFT perspective, becomes also
clear from the gauge theory perspective thanks to the factorization property of 3d partition functions discussed
in [35, 36]. The other important difference is in the application of this connection to 3d dualities and integral
identities for free field correlators that we are considering.
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first proposed in [37]. We will show that the Coulomb limit of the S2 × S1 partition function
of the gauge theory yields a complex integral that coincides with the free field representation
of the 3-point function of Liouville theory, which was studied in [38]. The Coulomb limit of
the WZ theory will then give us an evaluation formula for such free field integral, which, as
we are going to review, can be related to the famous result of Dorn, Otto, Zamolodchikov
and Zamolodchikov [39, 40] for the 3-point function of Liouville theory known as the DOZZ
formula.

We will then be able to uplift an interesting result of [38] for this 3-point function to
the 3d duality. More precisely, in [38] the aforementioned evaluation formula of the free
field integral was proven by iterating a more fundamental identity for some special complex
integrals. We will show that such fundamental identity can also be obtained from a 3d duality,
which is an analogue of Aharony duality [23] but for theories with monopole superpotentials
that was proposed in [41]. We will then be able to mimic the manipulations of [38] performed
in CFT to the free field integral so to give a derivation of the confining duality for U(N)
with one adjoint and one flavor by iterating some fundamental monopole duality.

There is also another result in CFT that can be uplifted to the 3d duality. Namely, in
order to relate the evaluation formula of the free field integral of [38] to the DOZZ formula,
one needs to perform an analytic continuation in the number of screening charges. As
summarized in Table 2.1, this is related to the rank N of the gauge group. We will show
that such analytic continuation can also be performed at the level of the partition functions
(either on S3 or S2 × S1) of the dual 3d theory. More precisely, the partition function of the
WZ theory can be recast in a form suitable for analytic continuation in N , which can then
be interpreted as the partition function (either on S5 or S4 × S1) of four free hypers in 5d.
This theory of four free hypers is also known as the 5d version of the T2 theory [10, 42]. The
U(N) gauge theory is instead understood as arising when one of the Kähler parameters in
the (p, q)-web of the T2 theory is quantized, in which case the theory undergoes geometric
transition.

After having worked out the dictionary for the relation between 3d dualities and 2d free
field correlators, we will try to invert the direction and uplift some of the results of [38] for
the free field correlators of Liouville theory to new 3d dualities.

We will first introduce a new 3d N = 2 quiver gauge theory called M [SU(N)] theory. The
name is due to the fact that it can be understood as an N = 2 generalization with monopole
superpotential of the famous T [SU(N)] theory [12], to which it flows after a suitable real
mass deformation. The M [SU(N)] theory enjoys many properties that reduce after this
deformation to similar properties that are known for T [SU(N)], such as an enhancement of
the global symmetry and a web of self-dualities under mirror symmetry and flip-flip duality
[20]. This M [SU(N)] theory has a 2d analogue in terms of a complex integral and all of its
properties translate into similar properties for such integral that have been used in [38].
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We will then use M [SU(N)] as a building block to construct more complicated theories
that we will show enjoy some interesting dualities. Such dualities can be guessed by again
uplifting some of the results of [38] for the free field correlators of Liouville theory, but we will
also test them using more standard methods, such as mapping the gauge invariant operators
and matching the supersymmetric partition functions.

2.2 Free field correlators in Liouville theory

In this subsection we briefly summarize some results on Liouville theory and the free field
integral representation of their correlators that we will need later.

Liouville theory is the CFT of a complex scalar field ϕ with Lagrangian density

L = 1
4π

(∂aϕ)2 + µe2bϕ . (2.4)

This theory has a holomorphic stress-energy tensor

T (z) = −(∂zϕ)2 + Q∂2
z ϕ , (2.5)

which generates a Virasoro algebra with central charge

cL = 1 + 6Q2, Q = b + b−1 . (2.6)

The basic operators in this theory are

Vα(z, z̄) = e2αϕ . (2.7)

These are Virasoro primaries with conformal dimension ∆L = α(Q − α), where α is a
continuous parameter that we will call "momentum" of the operator. It was shown in [43]
that the correlation function of k of such operators exhibits poles when the momenta satisfy
the screening quantization condition

α ≡ α1 + · · ·+ αk = Q−Nb, N ∈ N , (2.8)

and that its residue at these poles takes the form of a complex integral known as free field or
Dotsenko–Fateev (DF) correlator

res
α=Q−Nb

⟨Vα1(z1)Vα2(z2) · · ·Vαk
(zk)⟩ = (−πµ)N

k∏
i<j

|zi − zj |−4αiαj × (2.9)

×
∫

d2x⃗N

N∏
i<j

|xi − xj |−4b2
N∏

i=1

k∏
j=1
|xi − zj |−4bαk .
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where we defined the integration measure

d2x⃗N = 1
πN N !

N∏
j=1

d2xj , d2xj = dRe(xj) dIm(xj) . (2.10)

The reason for the name "free field correlator" is that, as it was shown in [43], by integrating
over the Liouville zero modes one can re-express the original correlator in terms of the same
correlator in the free theory, but with the insertion of N screening charge operators e2bϕ.

Let us start considering the case of the 3-point function, which gives the structure constant
C(α1, α2, α3). In this case we have

res
α=Q−Nb

C(α1, α2, α3) = (−πµ)N IN (α1, α2, α3) , (2.11)

where IN is the free field integral3

IN (α1, α2, α3) =
∫

d2u⃗N

N∏
a<b

|ua − ub|−4b2
N∏

a=1
|ua|−4bα1 |ua − 1|−4bα2 (2.12)

The integral (2.12) was calculated exactly in [44] and then used to guess the form of the
3-point function via analytic continuation, as we will review. However, a different derivation
of the evaluation formula of (2.12) was provided in [38], which was based on the following
fundamental identity for complex integrals [45]:

∫
d2u⃗Nc

Nc∏
i<j

|ui − uj |2
Nc∏
i=1

Nf∏
a=1
|ui − τa|2pa =

∏Nf

a=1 γ(1 + pa)
γ(1 + Nc +∑

a pa)

Nf∏
a<b

|τa − τb|2(1+pa+pb) ×

×
∫

d2vNf −Nc−1

Nf −Nc−1∏
i<j

|vi − vj |2
Nf −Nc−1∏

i=1

Nf∏
a=1
|vi − τa|−2(1+pa) .

(2.13)

As we will show, this identity can be obtained as the 2d Coulomb limit of the identity
for the S2 × S1 partition functions associated with the duality with one monopole in the
superpotential proposed in [41]. By iterating this basic identity, one can rewrite the original
integral (2.12) in a similar form, but with the dimension of the integral decreased by one
unit, with a shift of the parameters and with a prefactor

IN (α1, α2, α3) = γ(−Nb2)
γ(−b2)

1
γ(2bα1)γ(2bα2)γ(2bα3 + (N − 1)b2) IN−1

(
α1 + b

2 , α2 + b

2 , α3

)
,

(2.14)

3Compared to (2.9) we have set the insertion points of the three operators at z1 = 0, z2 = 1 and z3 = ∞.
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where γ(x) = Γ(x)/Γ(1− x). This recursive relation is extremely powerful, since it can be
used to completely evaluate the integral. Iterating it N times, we indeed obtain

IN (α1, α2, α3) =
N∏

j=1

(
γ(−jb2)
γ(−b2)

)
N−1∏
k=0

1
γ(2bα1 + kb2)γ(2bα2 + kb2)γ(2bα3 + kb2) . (2.15)

This evaluation formula is still not enough. Indeed, we have to remember that what we
are computing is only the residue of the full correlator when the screening condition (2.8) is
satisfied. Hence, we would like to find an expression which depends parametrically on N ,
so that we can analytically continue it to non-integer values lifting the condition (2.8) and
reconstructing the structure constant C(α1, α2, α3) for generic values of the momenta. This
was done by [39, 40] (see also [46])

C(α1, α2, α3) =
[
πµγ(b2)b2−2b2] (Q−α)

b Υ′(0)∏3
j=1 Υ(2αj)

Υ(α−Q)∏3
j=1 Υ(α− 2αj)

. (2.16)

What allowed us to rewrite C(α1, α2, α3) in such a form is the following periodicity property
of the function Υ(x)

Υ(x + b) = γ(bx)b1−2bxΥ(x)
Υ(x + b−1) = γ(b−1x)b2b−1x−1Υ(x) ,

(2.17)

which can be used to trade a product of N γ-function in (2.15) for a ratio of Υ-functions.
Moreover, Υ(x) is the unique function having the correct set of zero points

x =

−mb− nb−1,

Q + mb + nb−1,
m, n = 0, 1, 2, . . . , (2.18)

which means that the analytic continuation (2.16) of (2.15) truly is the full 3-point function.

The next case that will be our interest is the (3 + m)-point correlation function where 3
primary operators are generic while the remaining m are degenerate, namely their momentum
is set to − b

2 . The free field integral associated to this correlator was also studied in [38],
where it was rewritten in a form that is again suitable for analytic continuation in N

⟨V− b
2
(z1) . . . V− b

2
(zm)Vα1(0)Vα2(1)Vα3(∞)⟩ = ΩN

m(α1, α2, α3)
m∏

a=1
|za|2bα1 |za − 1|2bα2×

×
m∏

a<b

|za − zb|−b2
∫

d2x⃗k

m∏
a<b

|xa − xb|−4b2
m∏

a=1
|xa|2A|xa − 1|2BKC

m(x1, .., xm|z1, .., zm) ,

(2.19)
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where

A = b

(
α− 2α1 −Q + k

b

2

)
,

B = b

(
α− 2α2 −Q + k

b

2

)
,

C = b

(
Q + (2− k)b

2 − α

)
. (2.20)

The function KC
m(x1, .., xm|z1, .., zm), which was referred to as kernel function in [38],

also admits a representation in terms of a complex rank k(k − 1)/2 integral. Specifically, it
admits the following recursive definition:

K∆
N (m1, .., mN |t1, .., tN ) = γ(−Nb2)

γ(−b2)N

N∏
a<b

|ma −mb|2+4b2
N∏

a=1
|ma − tN |2∆ ×

×
∫

d2u⃗N−1

N−1∏
i<j

|ui − uj |2K∆+b2

N−1 (u1, .., uN−1|t1, .., tN−1)×

×
N−1∏
i=1
|ui − tN |−2∆+2b2

N∏
a=1
|ui −ma|−2−2b2

.

(2.21)

This function possesses a remarkable symmetry property that is hidden is this integral
definition

K∆
N (m1, .., mN |t1, .., tN ) = K∆

N (t1, .., tN |m1, .., mN ) . (2.22)

In particular, this implies that it is invariant not only under permutations of the parameters
ma, which is a symmetry that is manifest in the definition (2.21), but also of the parameters
ta.

The integral on the r.h.s of eq. (2.19) is suitable for analytic continuation in N , since it
only enters as a parameter in the sum of the momenta α, fixed by the screening condition
(2.8), appearing in A, B, C. The prefactor ΩN

k (α1, α2, α3) instead is the product of 4N − 3k

factors of the function γ(x) = Γ(x)/Γ(1 − x). However , by using again the periodicity
property (2.17) of the Υ-function, we can re-express the contribution of N − k γ-functions in
terms of a single Υ-function moving the dependence on N inside the argument of the Υ, so
that also ΩN

k (α1, α2, α3) depends parametrically on N . This equivalent form of the free field
correlator is then suitable for analytic continuation in N .

This concludes our review of free field correlators in Liouville theory. As we will see, we will
find a 3d N = 2 gauge theory avatar of the main free field integrals we discussed (2.9)-(2.12)-
(2.13)-(2.19)-(2.21) and we will be able to reinterpret the identities (2.13)-(2.15)-(2.19)-(2.22)
that they satisfy as non-trivial dualities for the 3d gauge theories.
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2.3 Free field identities from 3d dualities

In this section we will establish the connection between the S2 × S1 partition function of 3d

N = 2 gauge theories and free field complex integrals. We will take as a prototypical example
the duality between the U(N) gauge theory with one adjoint chiral and one flavor with no
superpotential and the WZ model of 3N chirals with a cubic superpotential discussed in
[37]. We will show how the associated identity of the S2 × S1 partition functions reduces
in the 2d Coulomb limit to the evaluation formula (2.15) of the free field correlator of the
3-point function of Liouville theory. We will then be able to uplift to three dimensions its
derivation by first identifying the necessary identity (2.13) as coming from the 3d duality for
the U(Nc) gauge theory with Nf flavors and one of the fundamental monopoles turned on
in the superpotential discussed in [41]. Finally, we will be able to interpret in gauge theory
the analytic continuation in N (2.16) that we saw from the CFT point of view. This will be
related to the 5d T2 theory.

2.3.1 Confining duality for U(1) with 1 adjoint and 1 flavor and its 2d limit

We start considering the following 3d N = 2 duality [37]:

Theory A: U(N) gauge theory with one adjoint chiral Φ, one fundamental flavor P , P̃ , N

chiral singlets bj and superpotential

W =
N∑

j=1
bj Tr Φj . (2.23)

Theory B: WZ model with 3N chiral fields αj , T ±
j and cubic superpotential

Ŵ =
N∑

i,j,l=1
αiT

+
j T −

N−l+1δi+j+l,2N+1 . (2.24)

This duality can be understood as a non-abelian generalization of the duality between
SQED with one flavor and the XYZ model4 [47]. A key role is played by the b-fields, whose
equations of motion have the effect of setting to zero all the Casimir operators Tr Φj in the
chiral ring. Indeed, such Casimir operators are expected to violate the unitarity bound,
which means that they become a decoupled free sector of the theory in the IR. In [48] it was
shown that the correct way to deal with such operators is to flip them by introducing some
additional gauge singlet chiral fields that couple to them in the superpotential. The b-fields
have the interesting property of vanishing in the chiral ring because of some quantum effects.
One argument for this was used in [49], following [50]. If any of these gauge singlets, say bk,

4For N = 1 Φ is a gauge singlet and the superpotential W = b1Φ implies that both b1 and Φ are massive.
Integrating them out we get a U(1) gauge theory with one chiral of charge +1 and one chiral of charge −1.
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U(1)s U(1)p U(1)ω U(1)R

P 0 1 0 r

P̃ 0 1 0 r
Φ 2 0 0 2(1−R)
bj −2j 0 0 2− 2j(1−R)

M±
Φs −2(N − s− 1) -1 ±1 1− r − 2(N − s− 1)(1−R)

Tr
(
P̃ΦsP

)
2s 2 0 2r + 2s(1−R)

αi 2(i− 1) 2 0 2r + 2(i− 1)(1−R)
T +

j −2(N − j) −1 1 1− r − 2(N − j)(1−R)
T −

N−l+1 −2(N − l) −1 −1 1− r − 2(N − l)(1−R)

Table 2.2: Charges under the global symmetries and R-charges of all the chiral fields and of
the main gauge invariant chiral operators of the dual theories.

acquires a non-vanishing VEV, then a superpotential of the form W = Tr Φk is generated,
but the theory with such a superpotential has no stable supersymmetric vacua because of
the very low number of flavors.

The global symmetry group of Theory A consists of three non-R abelian global symmetries:
two of them are flavor symmetries that rotate independently the adjoint chiral and the
fundamental flavor, while the third one is the topological symmetry

U(1)s × U(1)p × U(1)ω . (2.25)

The labels for each U(1) factor are related to the letter we will use to denote the corresponding
parameters in the supersymmetric partition functions. The two abelian flavor symmetries
can mix with the R-symmetry in the IR [16], so to each of them we also associate a mixing
coefficient. We parametrize the mixing with U(1)s by 1−R and the one with U(1)p by r,
namely

R = R0 + qs(1−R) + qpr , (2.26)

where R is the charge of a chiral field under a generic R-symmetry, R0 is the charge under a
reference R-symmetry compatible with the superpotential and qs, qp are the charges under
U(1)s, U(1)p respectively.

The one in (2.25) is also the global symmetry group of Theory B because of the cubic
superpotential. In Table 2.2 we summarize the charges of all the chiral fields of the two
theories under the global symmetries and we also specify our parametrization of the R-charges
in terms of r and R.

As a first check of the duality, we can map the gauge invariant operators in the chiral
rings of the two theories. This is basically a non-abelian generalization of the map for the
SQED/XYZ duality, where the two monopole operators and the meson of the electric theory
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are mapped into the three gauge singlets of the magnetic theory. In our non-abelian case, we
can dress these fundamental operators with powers of the adjoint chiral Φ [51]. In total, we
get 3N independent operators on the side of Theory A

M±
Φs , Tr

(
P̃ΦsP

)
, s = 0, · · · , N − 1 . (2.27)

Their charges under the global symmetries are listed in Table 2.2. These operators directly
map under the duality into the 3N singlets of the WZ theory

M+
Φs ↔ T +

s+1

M−
Φs ↔ T −

N−s

Tr
(
P̃ΦsP

)
↔ αs+1, s = 0, · · · , N − 1 . (2.28)

Let us now consider the identity of the S2 × S1 partition functions, a.k.a. supersymmetric
index, of the dual theories. These can be refined with fugacities for the global symmetries
(2.25). The supersymmetric index of Theory A then takes the form (see Appendix A.2 for
more details on our conventions for the S2 × S1 partition function)

ITA
=

N∏
j=1

(
s2jx2j(1−R); x2

)
∞(

s−2jx2−2j(1−R); x2)
∞

∑
m⃗∈ZN

∏N
i=1 ωmi

N !

∮ N∏
i=1

dzi

2πi zi
s

−2
∑N

i<j
|mi−mj | ×

× p−
∑N

i=1 |mi|x
2(R−1)

∑N

i<j
|mi−mj |−(r−1)

∑N

i=1 |mi|
N∏

i<j

1−
(

zi

zj

)±1

x|mi−mj |

×
×

N∏
i,j=1

(
zi
zj

s−2x2R+|mi−mj |; x2
)

∞(
zj

zi
s2x2(1−R)+|mi−mj |; x2

)
∞

N∏
i=1

z±1
i p−1x2−r+|mi|

z∓1
i pxr+|mi|

, (2.29)

while the index of Theory B is

ITB
=

N∏
j=1

(
s−2(j−1)p−2x2−2(j−1)(1−R)−2r; x2

)
∞(

s2(j−1)p2x2(j−1)(1−R)+2r; x2)
∞

(
s2(N−j)p ω−1x1+2(N−j)(1−R)+r; x2

)
∞(

s−2(N−j)p−1ω x1−2(N−j)(1−R)−r; x2)
∞
×

×

(
s2(j−1)p ω x1+2(j−1)(1−R)+r; x2

)
∞(

s−2(j−1)p−1ω−1x1−2(j−1)(1−R−r); x2)
∞

. (2.30)

As an additional test of the duality, this identity can be checked perturbatively for low values
of the rank N by expanding both sides in the variable x, see Section 2.3.3 of [24] for more
details.

We would like to show that this identity reduces, in a suitable 2d limit, to the evaluation
formula (2.15) for the free field integral of the 3-point function of Liouville theory. Let us
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start discussing the general strategy for getting a free field integral identity as a limit of an
identity between S2 × S1 partition functions and then apply it explicitly to our duality.

First of all, we use the identity [52]

(−x)
|m|−m

2 ζ− |m|−m
2

(
ζ−1x2+r+|m|; x2

)
∞(

ζ xr+|m|; x2)
∞

=
(
ζ−1x2+r+m; x2)

∞
(ζ xr+m; x2)∞

, (2.31)

to rewrite the index of our theory in a form which does not contain absolute values of the
magnetic fluxes. For example, the contribution to the index of a chiral field (A.33) becomes

Zchi =
∏

ρ∈R

∏
σ∈RG

(
(−z)ρtσxr−1

)− ρ(m)+σ(n)
2

(
z−ρt−σx2−r+ρ(m)+σ(n); x2

)
∞(

zρtσxr+ρ(m)+σ(n); x2)
∞

, (2.32)

where we also turned on magnetic fluxes n for the global symmetry corresponding to the
fugacity t [30]. We then define the complex variables

ui = zix
−mi ūi = z−1

i x−mi . (2.33)

In this way, the sum over the magnetic fluxes and the contour integral over the gauge
fugacities transform into an integral over the entire complex plane. To be precise, with this
change of variables we are interpreting u = eiθ as the phase and r = e− β

2 m as the radius of
the complex coordinate (recall that x2 = e−β , where β is the radius of the S1), with m taking
discrete values. Hence, for finite values of β we are only integrating over a discrete set of
concentric circles, but we will recover the integral over the whole complex plane after taking
the limit β → 0. The new integration measure will be

∑
m∈Z

∮ dz

2πi z
=

∑
r∈e− β

2 Z

∫ 2π

0

dθ

2π
−→
β→0

∫
C

d2u

πβ|u|2
, (2.34)

where z = reiθ and, after the 2d limit, we are using the same conventions of [38], namely
d2z = dx dy with z = x + iy. Intuitively, since the integrand depends on the combination
βm with m ∈ Z, in the limit β → 0 this becomes a continuous variable and the concentric
circles fill the entire complex plane.

To be more precise on this continuum limit of the sum over the magnetic fluxes, we can
think that the limit of the index that we are considering is of the form

I = lim
β→0

∑
m∈Z

f(βm) = lim
β→0

lim
M→∞

+M∑
m=−M

f(βm) . (2.35)
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We can use the Euler–Maclaurin formula to approximate a finite sum with an integral

n∑
j=m

f(j) =
∫ n

m
f(x) dx + f(n) + f(m)

2 + R
(
f (k)

)
, (2.36)

where R is the error that we are doing in the approximation and depends polynomially on
the derivatives of the function f . Since our integrand is actually a function of j = βm, we
have that these corrections are of order O(β) and can thus be neglected in the β → 0 limit.
Hence, we can write

I = lim
β→0

lim
M→∞

(∫ M

−M
f(βx) dx + f(M) + f(−M)

2

)

= lim
β→0

lim
M→∞

(∫ βM

−βM
f(y)dy

β
+ f(M) + f(−M)

2

)

= lim
β→0

∫ ∞

−∞
f(y)dy

β
. (2.37)

This justifies why in the 2d limit we can replace the summation over the magnetic fluxes
with an additional integration. The expression for the integration measure (2.34) is then
obtained from (2.37) upon the change of variable r = e−y/2.

Now that we have two real integrations for each element of the Cartan of the gauge group,
we can re-arrange them into a single complex integral. Indeed, after the change of variables
(2.33) the integrand can be factorized into a holomorphic and an anti-holomorphic part. For
the contribution of a vector multiplet this is immediately done by just using the change of
variables (2.33)

Zvec =
Nc∏
i<j

x−(mi−mj)

1−
(

zi

zj

)±1

xmi−mj

 =

=
Nc∏
i<j

∣∣∣∣∣ui

uj

∣∣∣∣∣
∣∣∣∣1− uj

ui

∣∣∣∣2 =
Nc∏
i=1
|ui|−Nc+1

Nc∏
i<j

|ui − uj |2 (2.38)

For the contribution of a chiral multiplet, instead, this can be achieved with some manipula-
tions done by means of the identity

(−ζ)−m

(
ζ−1x2+m; x2)

∞
(ζ xm; x2)∞

= x−m

(
ζ−1x2−m; x2)

∞
(ζ x−m; x2)∞

, (2.39)

The holomorphic and the anti-holomorphic parts will then combine in the 2d limit so to give
a complex integral.

Finally, the 2d limit we will consider will be obtained by properly scaling the parameters
of the matrix integral of the partition function with the radius β. The scaling that we will
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be interested in is associated with the 2d Coulomb limit studied in [8]. This limit will be
implemented using the following asymptotic properties of the q-Pochhammer symbol:

lim
x→1

(
x2a; x2)

∞
(x2b; x2)∞

= Γ(b)
Γ(a)(1− x2)b−a ,

lim
x→1

(
zx2a; x2)

∞
(zx2b; x2)∞

= (1− z)b−a . (2.40)

We will now apply this strategy to the identity between the indices (2.29) and (2.30)
associated with our 3d duality. First of all, we notice that in both of the expressions for
the indices we can reabsorb the dependence on the mixing coefficients with the R-symmetry
inside the fugacities s and p by rescaling

s→ s xR−1, p→ p x−r . (2.41)

Moreover, it is convenient to consider the version of the indices where we remove the absolute
values by means of (2.31). After these manipulations, the indices of the dual theories become

ITA
=

N∏
j=1

(
s−2x2; x2)

∞
(s2; x2)∞

(
s2j ; x2)

∞
(s−2jx2; x2)∞

∑
m⃗∈ZN

∏N
a=1 ωma

N !

∮ N∏
a=1

dza

2πiza
×

×
N∏

a<b

(
s

x

)2(ma−mb)
(

1−
(

za

zb

)±1
xma−mb

) (( za
zb

)∓1
s−2x2−(ma−mb); x2

)
∞((

za
zb

)±1
s2x−(ma−mb); x2

)
∞

×

×
N∏

a=1

(
p

x

)ma
(
z∓1

a p−1x2−ma ; x2)
∞(

z±1
a p x−ma ; x2

)
∞

ITB
=

N∏
j=1

(
s−2(j−1)p−2x2; x2

)
∞(

s2(j−1)p2; x2)
∞

(
s2(N−j)p ω−1x; x2

)
∞(

s−2(N−j)p−1ω x; x2)
∞

(
s2(j−1)p ω x; x2

)
∞(

s−2(j−1)p−1ω−1x; x2)
∞

,

(2.42)

where we already used (2.39) to manipulate the contributions of the chiral fields.

At this point, we have to decide how the parameters of the theory scale with the radius β

of the S1 as it goes to zero. In this choice is encoded the physics of the 2d limit [8]. One
possibility is the so-called Higgs limit, in which we rescale both the vector masses and the
axial masses with the radius, while we don’t rescale the FI parameters. In this way, all the
matter fields remain light and the Higgs branch is preserved, while the Coulomb branch is
lifted. Moreover, we also need to rescale the integration variables, which means that we are
looking at the theory close to the origin of the moduli space. This limit yields an integral
identity corresponding to a (massive) duality between 2d GLSM’s.
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Instead, we are interested in the opposite limit, that is called Coulomb limit. In this limit
the axial masses and the FI parameter remain small, while the vector masses become very
large. In the specific case of the 3d duality we are considering there are no vector masses, so
this limit is simply achieved by rescaling

s = x2ϕ1 , p = x2ϕ2 , ω = x2ϕ3 . (2.43)

We also define

ua = zax−ma ūa = z−1
a x−ma . (2.44)

Taking this into account, we can rewrite the two indices as

ITA
=

N∏
j=1

(
x2(1−2ϕ1); x2

)
∞

(x4ϕ1 ; x2)∞

(
x4jϕ1 ; x2

)
∞(

x2(1−2jϕ1); x2)
∞

1
N !

∫ N∏
a=1

d2ua

πβ
×

×
N∏

a=1
|ua|−2ϕ3−2ϕ2−1

(
uax2−2ϕ2 ; x2

)
∞

(
ūax2−2ϕ2 ; x2

)
∞

(uax2ϕ2 ; x2)∞ (ūax2ϕ2 ; x2)∞
×

×
N∏

a<b

∣∣∣∣ub

ua

∣∣∣∣4ϕ1
∣∣∣∣1− ua

ub

∣∣∣∣2
(

ua
ub

x2−4ϕ1 ; x2
)

∞

(
ūa
ūb

x2−4ϕ1 ; x2
)

∞(
ua
ub

x4ϕ1 ; x2
)

∞

(
ūa
ūb

x4ϕ1 ; x2
)

∞

,

ITB
=

N∏
j=1

(
x2(1−2(j−1)ϕ1−2ϕ2); x2

)
∞(

x4((j−1)ϕ1+ϕ2); x2)
∞

(
x1+4(N−j)ϕ1+2ϕ2−2ϕ3 ; x2

)
∞(

x1−4(N−j)ϕ1−2ϕ2+2ϕ3 ; x2)
∞

(
x1+4(j−1)ϕ1+2ϕ2+2ϕ3 ; x2

)
∞(

x1−4(j−1)ϕ1−2ϕ2−2ϕ3 ; x2)
∞

.

(2.45)

At this point, we can take the 2d limit by sending β → 0 and using the identities (2.40).
Implementing this limit on the side of Theory A, we get

lim
β→0
ITA

=
N∏

j=1
(1− x2)4ϕ1(1−j) γ(2ϕ1)

γ(2jϕ1) ×

× 1
N !

∫ N∏
a=1

d2ua

πβ
|ua|−2ϕ3−2ϕ2−1|1− ua|2(2ϕ2−1)

N∏
a<b

∣∣∣∣ub

ua

∣∣∣∣4ϕ1
∣∣∣∣1− ua

ub

∣∣∣∣8ϕ1

,

(2.46)

Notice that the result seems to be divergent because of the negative powers of β. Actually,
also in the reduction of the index of Theory B we get a similar prefactor, so that considering
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the 2d limit of (2.42) the result is eventually finite

lim
β→0
ITB

=
N∏

j=1
(1− x2)−4(N−j)ϕ1−1γ(2(j − 1)ϕ1 + 2ϕ2)γ

(1
2 − 2(N − j)ϕ1 − ϕ2 + ϕ3

)
×

× γ

(1
2 − 2(j − 1)ϕ1 − ϕ2 − ϕ3

)
. (2.47)

Equating the limit of the two indices and using that 1 − x2 ≈ β for β small, we find that
(2.42) reduces to

∫ N∏
a=1

d2u⃗N |ua|−2ϕ3−2ϕ2−4(N−1)ϕ1−1|1− ua|2(2ϕ2−1)
N∏

a<b

|ua − ub|8ϕ1 =

=
N∏

j=1

γ(2jϕ1)
γ(2ϕ1) γ(2(j − 1)ϕ1 + 2ϕ2)γ

(1
2 − 2(N − j)ϕ1 − ϕ2 + ϕ3

)
×

×γ

(1
2 − 2(j − 1)ϕ1 − ϕ2 − ϕ3

)
. (2.48)

Thus, we precisely recover (2.15), where the parameters are identified as

bα1 = 1
4 + (N − 1)ϕ1 + ϕ2

2 + ϕ3
2

bα2 = 1
2 − ϕ2

bα3 = 1
4 + (N − 1)ϕ1 + ϕ2

2 −
ϕ3
2

b2 = −2ϕ1

, (2.49)

which satisfy the screening condition (2.8)

b(α1 + α2 + α3) = 1− (N − 1)b2 . (2.50)

It is useful to go back to the dictionary we gave in Table 2.1 after having worked out
this example. First of all, we immediately understand that the rank N of the gauge group
determines the dimensionality of the integral and of the summation over magnetic fluxes
of the matrix model for the S2 × S1 partition function and, consequently, of the complex
integral obtained in the 2d Coulomb limit. For this reason, the rank is directly mapped to the
number of insertions of the screening charge operator in the free field correlator. Regarding
the parameters of the matrix integral, the fugacities s and p for the axial symmetries and
ω for the topological symmetry have been mapped in (2.49) to the momenta of the three
primary operators. Finally, in the 3d gauge theory there was no vector symmetry since the
one acting on the fundamental flavor can be reabsorbed in the center of the U(N) gauge
group. This is compatible with the fact that vector masses are mapped to the insertion points
of the operators in the CFT correlator, since for the case at hand of the 3-point function we
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can use conformal invariance to set them to 0, 1 and ∞, so to remove any dependence of the
correlation function on them.

2.3.2 Dualities with monopole superpotentials and their 2d limit

We will now consider another example of a free field integral identity that can be obtained
from the 2d Coulomb limit of a 3d duality. This example will also turn out to be very useful
in the next subsection where we will present a derivation of the confining duality for the
U(N) gauge theory with one adjoint and one flavor, which mimics the evaluation formula
(2.15) for the 3-point function of Liouville theory to which we just saw that the 3d duality
reduces.

The free field integral identity we are interested in appeared in [38]

∫
d2u⃗Nc

Nc∏
i<j

|ui − uj |2
Nc∏
i=1

Nf∏
a=1
|ui − τa|2pa =

Nf∏
a=1

γ(1 + pa)
Nf∏
a<b

|τa − τb|2(1+pa+pb) ×

×
∫

d2v⃗Nf −Nc−2

Nf −Nc−2∏
i<j

|vi − vj |2
Nf −Nc−2∏

i=1

Nf∏
a=1
|vi − τa|−2(1+pa) ,

(2.51)

where the momenta have to satisfy the on-shell condition

Nf∑
a=1

pa = −Nc − 1 . (2.52)

We claim that this identity can be obtained as the 2d Coulomb limit of the 3d duality for
the U(Nc) gauge theory with Nf flavors and both of the fundamental monopoles turned
on in the superpotential proposed in [41]. Notice that the identity (2.51) is more general
than the one (2.13) we used in Section 2.2 to evaluate the free field integral (2.12) of the
3-point function of Liouville theory. The partially specialized identity (2.13) is instead the
2d Coulomb limit of the duality with only one monopole in the superpotential, which can
be obtained from the one with two monopoles via a real mass deformation as it was shown
in [41]. The one-monopole duality also has a further real mass deformation that leads to
the Aharony duality [23], which from the free field point of view corresponds to a further
specialization of (2.13) that is also used in the derivation of (2.15). Because of this, all of
these 3d dualities will play an important role in the derivation of the confining duality for the
U(N) gauge theory with one adjoint and one flavor that we saw in the previous subsection in
the 2d CFT context.

To be more precise, the 3d duality that reduces to (2.51) is the following5 [41]:
5For Nc = N and Nf = 2N + 2 the duality becomes a self-duality. This is related to the fact that in such

a case the theory was identified in [53] to be the theory living on the S-duality domain wall of the 4d N = 2
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Theory 1: U(Nc) with Nf fundamental flavors and superpotential

W = M+ + M− . (2.53)

Theory 2: U(Nf −Nc − 2) with Nf fundamental flavors, N2
f singlets (collected in a matrix

M i
j) and superpotential

Ŵ =
Nf∑

i,j=1
M i

j q̃iq
j + M̂+ + M̂− . (2.54)

The monopole superpotential completely breaks both the axial and the topological
symmetry, so that the global symmetry group of the two theories is SU(Nf ) × SU(Nf ).
It also uniquely fixes the R-charges of the chirals to be Nf −Nc−1

2Nf . The fundamental gauge
invariant operators of Theory 1 are the mesons, which are mapped to the singlets Mij in the
dual, as standard in Seiberg-like dualities.

We are interested in the integral identity between the S2 × S1 partition functions of
the dual theories. In doing this, we turn on fugacities ta for the diagonal combination of
the non-abelian symmetries SU(Nf )× SU(Nf ) and sa for their anti-diagonal combination.
Moreover, we turn on background magnetic fluxes na for the diagonal combination of the
non-abelian symmetries SU(Nf ) × SU(Nf ) [30]. This is needed in order to get in the 2d

limit the identity (2.51) with the insertion points taking value on the entire complex plane
rather than just on the unit circle, since these will be identified with τa = tax−nawhere ta

is the fugacity while na is the flux. From the point of view of the complex integrals, this is
fundamental since in the derivations presented in [38] the identity (2.51) is applied with the
insertion points actually being integration variables. From the 3d gauge theory perspective,
in the derivation we will present in the next subsection the basic dualities are applied inside
a quiver and the diagonal combination of the non-abelian symmetries SU(Nf )× SU(Nf ) is
gauged. To consistently implement the gauging at the level of the supersymmetric index, we
have to consider its refined version with background magnetic fluxes turned on at least for
the global symmetry we want to gauge.

As we did in the previous example, we write the supersymmetric indices in a form in
which there is no explicit dependence on the R-charges of the chirals by performing the shift
of the fugacities

sa → sa x
−

Nf −Nc−1
Nf . (2.55)

SU(N + 1) gauge theory with 2N + 2 flavors (see also [54, 55] for the N = 2 case and [56] for the cases of
multiple domain walls).
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The flavor fugacities then have to satisfy the balancing condition

Nf∏
a=1

ta = 1,

Nf∏
a=1

sa = xNf −Nc−1 . (2.56)

In particular, the second constraint can also be understood as the fact that the monopole
superpotential breaks the axial symmetry.

We also use the identity (2.31) to remove absolute values, exactly as we did in the example
of the previous subsection. The supersymmetric indices of the dual theories then read

IT1 = 1
Nc!

∑
m⃗∈ZNc

∮ Nc∏
i=1

dzi

2πi zi

Nc∏
i<j

x−(mi−mj)

1−
(

zi

zj

)±1

xmi−mj

×
×

Nc∏
i=1

Nf∏
a=1

((−zi)ta)−(mi+na)

(
z∓1

i t∓1
a s−1

a x2±(mi+na); x2
)

∞(
z±1

i t±1
a sax±(mi+na); x2

)
∞

IT2 = 1
(Nf −Nc − 2)!

Nf∏
a,b=1

(
ta

tb
sasbx

−1
)− na−nb

2

(
tb
ta

s−1
a s−1

b x2+(na−nb); x2
)

∞(
ta
tb

sasbxna−nb ; x2
)

∞

×

×
∑

m⃗∈ZNf −Nc−2

∮ Nf −Nc−2∏
i=1

dzi

2πi zi

Nf −Nc−2∏
i<j

x−(mi−mj)

1−
(

zi

zj

)±1

xmi−mj

×
×

Nf −Nc−2∏
i=1

Nf∏
a=1

(
(−zi)t−1

a

)−(mi−na)
(
z∓1

i t±1
a sax1±(mi−na); x2

)
∞(

z±1
i t∓1

a s−1
a x1±(mi−na); x2

)
∞

.

(2.57)

We now want to consider the 2d Coulomb limit of this identity. In this case there is no
topological symmetry, so the limit consists of keeping the axial masses small as the radius
goes to zero, which is achieved in the index by the rescaling

sa = xpa+1 , (2.58)

while the vector masses become large, which is achieved by not rescaling them. Moreover, we
introduce the complex variables

ui = zix
−mi ūi = z−1

i x−mi , τa = tax−na , τ̄a = t−1
a x−na . (2.59)

Notice that after the rescaling (2.58), the balancing condition (2.56) precisely becomes the
on-shell condition (2.52), which suggests that we are on the right track.

The last step before considering the β → 0 limit consists of rewriting the integrand as
the product of a holomorphic and an anti-holomorphic part. This is done using (2.38) for
the contribution of the vector multiplets and manipulating that of the chiral multiplets by
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means of (2.39). By doing so, the two supersymmetric indices can be written in the form

IT1 = 1
Nc!

∫ Nc∏
i=1

d2ui

πβ|ui|2
Nc∏
i=1
|ui|−Nc+1

Nc∏
i<j

|ui − uj |2 ×

×
Nc∏
i=1

Nf∏
a=1
|uiτa|−pa

(
uiτax1−pa ; x2)

∞
(
ūiτ̄ax1−pa ; x2)

∞
(uiτax1+pa ; x2)∞ (ūiτ̄ax1+pa ; x2)∞

IT2 =
Nf∏
a=1

(
x−2pa ; x2)

∞(
x2(1+pa); x2)

∞

Nf∏
a<b

∣∣∣∣ τb

τa

∣∣∣∣1+pa+pb

(
τa
τb

x−pa−pb ; x2
)

∞

(
τ̄a
τ̄b

x−pa−pb ; x2
)

∞(
τa
τb

x2+pa+pb ; x2
)

∞

(
τ̄a
τ̄b

x2+pa+pb ; x2
)

∞

×

× 1
(Nf −Nc − 2)!

∫ Nf −Nc−2∏
i=1

d2ui

πβ|ui|2

Nf −Nc−2∏
i=1

|ui|−Nf +Nc+3
Nf −Nc−2∏

i<j

|ui − uj |2 ×

×
Nf −Nc−2∏

i=1

Nf∏
a=1

∣∣∣∣ui

τa

∣∣∣∣pa+1
(

ui
τa

x2+pa ; x2
)

∞

(
ūi
τ̄a

x2+pa ; x2
)

∞(
ui
τa

x−pa ; x2
)

∞

(
ūi
τ̄a

x−pa ; x2
)

∞

. (2.60)

We can finally take the 2d limit using (2.40). For Theory 1 we have

lim
β→0
IT1 =

∏Nf

a=1 |τa|−Ncpa

βNc

∫
d2u⃗Nc

Nc∏
i=1
|ui|−Nc−1−

∑
a

pa

Nc∏
i<j

|ui − uj |2
Nc∏
i=1

Nf∏
a=1
|1− uiτa|2pa .

(2.61)

Using the on-shell condition (2.52) we can see that the power of |ui| is actually equal to zero.
If we now perform the change of variables ui → u−1

i , we get

lim
β→0
IT1 =

∏Nf

a=1 |τa|−Ncpa

βNc

∫
d2u⃗Nc

Nc∏
i<j

|ui − uj |2
Nc∏
i=1

Nf∏
a=1
|ui − τa|2pa ,

(2.62)

where again we used the constraint (2.52) to remove a factor of |ui|. Instead, for Theory 2
we have

lim
β→0
IT2 = 1

βNf −Nc−2

Nf∏
a=1

(1− x2)1+2paγ(1 + pa)
Nf∏
a<b

∣∣∣∣ τb

τa

∣∣∣∣1+pa+pb
∣∣∣∣1− τb

τa

∣∣∣∣2(1+pa+pb)
×

×
∫

d2u⃗Nf −Nc−2

Nf −Nc−2∏
i<j

|ui − uj |2
Nf −Nc−2∏

i=1

Nf∏
a=1

∣∣∣∣1− ui

τa

∣∣∣∣−2(1+pa)
,

(2.63)
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which can be rewritten as

lim
β→0
IT2 = (1− x2)Nf −2Nc−2

βNf −Nc−2

Nf∏
a=1
|τa|−Ncpa

Nf∏
a=1

γ(1 + pa)
Nf∏
a<b

|τa − τb|2(1+pa+pb) ×

×
∫

d2u⃗Nf −Nc−2

Nf −Nc−2∏
i<j

|ui − uj |2
Nf −Nc−2∏

i=1

Nf∏
a=1
|ui − τa|−2(1+pa) ,

(2.64)

Notice that in both of the expressions for the 2d limit of the two indices we have a divergent
prefactor. Using that for small β we can expand 1− x2 ≈ β, these prefactors precisely cancel
when we equate them. Also the overall power of |τa| matches and we finally recover the
duality between complex free field integrals (2.51).

We are now in position to complete the dictionary of Table 2.1. Specifically, the fugacities
ta for the vector symmetry corresponding to the diagonal combination of SU(Nf )× SU(Nf )
have been mapped in (2.59) to the variables τa in the complex integral (2.51), which appear
in the same way as the insertion points of the operators in the generic free field correlator
(2.9).

2.3.3 Derivation of the confining duality via sequential deconfinement

After having understood the connection between 3d dualities and 2d free field correlators
identities we can try to use it to uplift some known result about 2d CFTs to new results in
3d gauge theories. For example, we saw in Section 2.2 that the evaluation formula (2.15) for
the free field integral representation of the 3-point function of Liouville theory (2.12) can be
proven by iterating the fundamental identity (2.13). From the insight that we gained in the
two previous subsections, we expect this to be uplifted to 3d to a derivation for the confining
duality of U(N) with one adjoint and one flavor by iteration of the more fundamental dualities
with monopole superpotentials of [41] and the Aharony duality [23].

Let us start reviewing such fundamental dualities. The first one is the analogue of the
one we saw in the previous subsection, but this time with only one of the two fundamental
monopoles of U(N) in the superpotential6:

Theory 1: U(Nc) with Nf fundamental flavors and superpotential

W = M− . (2.65)

6This duality was derived in [41] from the two-monopole duality via a real mass deformation
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Theory 2: U(Nf −Nc − 1) with Nf fundamental flavors, N2
f singlets (collected in a matrix

M i
j), an extra singlet S+ and superpotential

Ŵ =
Nf∑

i,j=1
M i

j q̃iq
j + M̂+ + S+M̂− . (2.66)

The global symmetry of the theories is SU(Nf ) × SU(Nf ) × U(1). Compared to the
two-monopole duality we have an additional abelian global symmetry corresponding to the
combination of the axial symmetry and of the topological symmetry that is now preserved
since we have only one of the two fundamental monopoles in the superpotential. This U(1)
can now mix with the R-symmetry in the IR, so in this case the R-charge of the chirals can’t
be fixed with the superpotential alone and F -extremization is needed [16]. The operator map
is the same of the two-monopole duality, with the addition of the monopole M+ which is not
in the superpotential being mapped to the singlet S+.

For simplicity, we are going to present our derivation at the level of the S3
b partition

function [17, 16, 18, 19] (see also Appendix A.3 for our conventions). For this, we will need
the identity of the S3

b partition functions associated to this one-monopole duality, which was
derived in [41]7

ZT1 = 1
Nc!

∫ Nc∏
i=1

dxi eiπ(η−iQ)
∑Nc

i=1 xi

∏Nc
i=1

∏Nf

a=1 sb

(
iQ

2 ± (xi + Ma)− µa

)
∏Nc

i<j sb

(
iQ

2 ± (xj − xi)
) =

= 1
(Nf −Nc − 1)!e

−iπ

(
2
∑Nf

a=1 Maµa+(η−iQ)
∑Nf

a=1 Ma

)
sb

(
i
Q

2 − η

)
×

×
Nf∏

a,b=1
sb

(
i
Q

2 − (µa + µb −Ma + Mb)
)
×

×
∫ Nf −Nc−1∏

i=1
dxi eiπη

∑Nc
i=1 xi

∏Nf −Nc−1
i=1

∏Nf

a=1 sb (±(xi −Ma) + µa)∏Nf −Nc−1
i<j sb

(
iQ

2 ± (xj − xi)
) = ZT2 .

(2.67)

Here Ma are real masses for the diagonal combination of the SU(Nf )× SU(Nf ) symmetries
that rotate the two sets of chirals independently, µa are real masses for the anti-diagonal
combination of SU(Nf )× SU(Nf ) and η is the parameter associated to the diagonal com-

7Since we are going to apply this duality inside a quiver where part of the flavor symmetry is actually
gauged as a U(Nf ) symmetry rather than SU(Nf ), it is important to keep the phases in the prefactor involving
the real masses for the flavor symmetries, which are non-trivial if we don’t imposes the tracelessness condition∑

a
Ma = 0. These factors have been neglected in [41], but they were worked out more in details in [24],

where it was also discussed their effect on monopole operators. Moreover, these phases are related to contact
terms in the two-point functions of the corresponding conserved currents as shown in [57, 58], where it was
also discussed their role in dualities, in particular their importance in order for the matching of partition
functions on S3

b or S2 × S1 to work.
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bination of the axial and of the topological symmetry that is preserved by the monopole
superpotential. These parameters have to satisfy the following balancing condition:

η + 2
Nf∑
a=1

µa = iQ(Nf −Nc) , (2.68)

which is a consequence of the monopole superpotential.
The second fundamental duality we will need is the Aharony duality [23] which, as it

was shown in [41], can be obtained as a further real mass deformation of the one-monopole
duality:

Theory 1: U(Nc) with Nf flavors and superpotential W = 0.

Theory 2: U(Nf −Nc) with Nf flavors, N2
f singlets (collected in a matrix M i

j), two extra
singlets S± and superpotential Ŵ = ∑Nf

i,j=1 M i
j q̃iqj + S−M̂+ + S+M̂−.

The global symmetry of the theories is SU(Nf )× SU(Nf )× U(1)2, where now both the
axial symmetry and the topological symmetry are preserved since we have no monopole
superpotential anymore. Moreover, the operator map now includes also the mapping of the
monopole M− to the singlet S−.

At the level of partition functions, the result of the real mass deformation is

ZT1 = 1
Nc!

∫ Nc∏
i=1

dxi eiπξ
∑Nc

i=1 xi

∏Nc
i=1

∏Nf

a=1 sb

(
iQ

2 ± (xi + Ma)− µa

)
∏Nc

i<j sb

(
iQ

2 ± (xj − xi)
) =

= e−iπξ
∑Nf

a=1 Masb

(
i
Q

2 −
iQ(Nf −Nc + 1)− 2∑Nf

a=1 µa ± ξ

2

)
×

×
Nf∏

a,b=1
sb

(
i
Q

2 − (µa + µb −Ma + Mb)
)
×

× 1
(Nf −Nc)!

∫ Nf −Nc∏
i=1

dxi eiπξ
∑Nc

i=1 xi

∏Nf −Nc

i=1
∏Nf

a=1 sb (±(xi −Ma) + µa)∏Nf −Nc

i<j sb

(
iQ

2 ± (xj − xi)
) = ZT2 ,

(2.69)

where now we have the additional FI parameter ξ for the topological symmetry and there is
no balancing condition anymore.

We will now sketch the general strategy for deriving the confining duality for U(N) with
one adjoint and one flavor we saw in Subsection 2.3.1 using these fundamental dualities and
then apply it explicitly at the level of the S3

b partition functions.
The idea, sketched in Figure 2.1, is to combine the one-monopole and the Aharony duality

to find a dual frame for Theory A with lower rank and some extra singlets:
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N 1

Monopole Duality Aharony Duality
N−1 1

+ 3 singlets

N 1N−1
M−

WZ model with 3N singlets 
n=Niterate N−n 1

+ 3n singlets
N−2 1

+ 6 singlets

N−1 1N−2
M−

Figure 2.1: Diagrammatic representation of the manipulations we perform in the derivation
of the duality.

1) The first step consists in viewing Theory A as the result of the application of the one-
monopole duality to an auxiliary U(N − 1)×U(N) quiver theory. The quiver has a flavor
attached to the U(N) node and N − 1 singlets βk flipping the traces of the (k − 1)-th
powers of the meson constructed with the bifundamental chirals Q, Q̃ connecting the two
gauge nodes

TrN Mk−1 k = 1, · · · , N , (2.70)

where TrN denotes the trace over the U(N) color indices and

M = TrN−1 Q̃Q (2.71)

transforms in the adjoint representation of U(N). In the auxiliary quiver theory there
is also the negative fundamental monopole of the U(N − 1) node turned on in the
superpotential and a BF coupling between the axial symmetry U(1)τ and the gauge
symmetry of the U(N) node8. This BF coupling compensates a similar BF coupling
which is generated when we apply the one-monopole duality to the U(N − 1) node, which
confines since the number of flavors connected to it is N , yielding a U(N) theory with
one flavor. Moreover, the matrix of gauge singlets M appearing in the magnetic dual of
the one-monopole duality reconstructs exactly the adjoint chiral for the U(N) node, while
the singlet S+ is identified with the βN singlet field. So we recovered Theory A.

2) The second step consists in starting from the auxiliary quiver theory and applying the
Aharony duality to the U(N) node, which confines since the number of flavors connected
to it is N . Hence, we obtain a U(N − 1) theory with one flavor. The matrix of gauge
singlets M in the magnetic dual of the Aharony duality then reconstructs the adjoint
chiral for the U(N −1) node, the fundamental flavor and a singlet, while two more singlets
come from S±. Moreover, the Aharony duality produces some contact terms that become

8Because of this BF coupling, the fundamental monopoles at the U(N) node with opposite magnetic charge
have different charge under U(1)τ , which implies that charge conjugation is broken in the auxiliary theory.
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BF couplings for the U(N − 1) node. These BF couplings have the effect of changing the
quantum numbers of the monopole operator, which is removed from the superpotential
(see Sec. 2.3.2 of [24] for more details). So we obtain a dual frame for Theory A which is
actually the same theory but with rank decreased by one unit and three extra singlets.
These three singlets map to the highest dressed monopoles and mesons of the theory with
U(N) gauge group. Indeed, in the U(N −1) frame we can only construct 3(N −1) dressed
monopoles and mesons, which map to the same operators in the original U(N) theory.

We thus see that the sequential application of the one-monopole and the Aharony duality
only decreases the rank of Theory A (besides producing extra singlets). For this reason, we
say that Theory A is stable under the sequential application of these two basic dualities. If
we iterate this procedure N times, we completely confine the original gauge node and end up
with a WZ model with 3N gauge singlets, which is the claimed dual theory.

We can repeat the steps we just described in field theory but at the level of the S3
b

partition functions, thus providing a new analytical proof of the following identity associated
with the confining duality for the U(N) gauge theory with one adjoint and one flavor:

ZTA
=

N∏
j=1

sb

(
−i

Q

2 + 2jτ

)∫
dx⃗N e2πiζ

∑
α

xα

∏N
α,β=1 sb

(
iQ

2 + (xα − xβ)− 2τ
)

∏N
α<β sb

(
iQ

2 ± (xα − xβ)
) ×

×
N∏

α=1
sb

(
i
Q

2 ± xα − µ

)
=

=
N∏

j=1
sb

(
i
Q

2 − 2µ− 2(j − 1)τ
)

sb (−ζ + µ + 2(N − j)τ) sb (ζ + µ + 2(j − 1)τ) = ZTB
,

(2.72)

where the integration measure is now defined including the Weyl symmetry factor of the
gauge group

dx⃗N = 1
N !

N∏
i=1

dxi . (2.73)

In this identity, τ is the real mass associated to the U(1)s symmetry, µ is the real mass
associated to the U(1)p symmetry and ζ is the FI parameter associated to the U(1)ω

topological symmetry. More precisely, τ and µ have been defined as the following holomorphic
combinations of the real masses with the corresponding mixing coefficients with the R-
symmetry [16]:

τ = Re(τ) + i
Q

2 (1−R) , µ = Re(µ) + i
Q

2 r . (2.74)
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We start considering the partition function of Theory A

ZN (τ, ζ, µ) ≡ ZTA
=

N∏
j=1

sb

(
−i

Q

2 + 2jτ

) 1
N !

∫ N∏
α=1

dxα e2πiζ
∑

α
xα ×

×
∏N

α,β=1 sb

(
iQ

2 + (xα − xβ)− 2τ
)

∏N
α<β sb

(
iQ

2 ± (xα − xβ)
) N∏

α=1
sb

(
i
Q

2 ± xα − µ

)
.

(2.75)

The first step of the derivation consists of replacing the contribution of the adjoint chiral
with an auxiliary U(N − 1) integral using (2.67), where we identify Φ with the matrix M . In
this way, we get the partition function of the auxiliary theory

ZN (τ, ζ, µ) =
N−1∏
j=1

sb

(
−i

Q

2 + 2jτ

) 1
(N − 1)!

∫ N−1∏
α′=1

dyα′
e−2πiNτ

∑
α′ yα′∏N−1

α′<β′ sb

(
iQ

2 ± (yα′ − yβ′)
) ×

× 1
N !

∫ N∏
α=1

dxα
e2πi(ζ−(N−1)τ)

∑
α

xα∏N
α<β sb

(
iQ

2 ± (xα − xβ)
) N∏

α=1
sb

(
i
Q

2 ± xα − µ

)
×

×
N−1∏
α′=1

sb

(
i
Q

2 ± (xα + y′
α)− τ

)
.

(2.76)

Notice the shift in the FI parameter of the U(N) node by an amount proportional to the
axial mass τ , which represents the BF coupling between the U(1)τ symmetry and the gauge
symmetry we mentioned above.

Now we can remove the original integral by means of the Aharony duality (2.69), which
in the case Nf = Nc = N becomes an evaluation formula

ZN (τ, ζ, µ) =
N−1∏
j=1

sb

(
−i

Q

2 + 2jτ

)
sb

(
i
Q

2 − 2µ

)
sb (ζ + µ)×

× sb (−ζ + µ + 2(N − 1)τ) 1
(N − 1)!

∫ N−1∏
α=1

dyα e−2πi(ζ+τ)
∑

α
yα ×

×
∏N−1

α,β=1 sb

(
iQ

2 ± (yα − yβ)− 2τ
)

∏N−1
α<β sb

(
iQ

2 ± (yα − yβ)
) N−1∏

α=1
sb

(
i
Q

2 ± yα − µ− τ

)
.

(2.77)

At this point, we notice that we have reconstructed the same structure of the original partition
function (up to the change of variables yi → −yi), but with a lower dimensional integral, a
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shift of the parameters and three singlets:

ZN (τ, ζ, µ) = sb

(
i
Q

2 − 2µ

)
sb (ζ + µ) sb (−ζ + µ + 2(N − 1)τ)ZN−1(τ, ζ + τ, µ + τ) .

(2.78)

We refer to this property of the original partition function saying that it is stabilized with
respect to the two moves we performed.

Notice that when we applied the Aharony duality to arrive at (2.77), the contact term
from (2.69) given by e−2πi(ζ−(N−1)τ)

∑
α

yα becomes a BF coupling for the remaining U(N−1)
node. More precisely, this contains a mixed CS term between the gauge and the topological
symmetry U(1)ω. Thus, we conclude that the topological symmetry U(1)ω is not broken and
hence the monopole can’t be turned on in the superpotential anymore. We also see that ζ

is shifted by τ and we can interpret this as the fact that the monopoles with positive and
negative magnetic charge have different charge under the axial symmetry U(1)s, which means
that at this stage charge conjugation is broken.

Finally we can use the stabilization property to highly simplify our expression by reducing
the dimension of the integral, which from the field theory perspective is the rank of the gauge
group. Indeed, iterating n times the two steps that we performed, we get

ZN (τ, ζ, µ) =
n∏

j=1
sb

(
i
Q

2 − 2µ− 2(j − 1)τ
)

sb (−ζ + µ + 2(N − j)τ)×

× sb (ζ + µ + 2(j − 1)τ)ZN−n(τ, ζ + nτ, µ + nτ) . (2.79)

If we set n = N , we completely confine the original gauge node and obtain the partition
function of the WZ dual theory

ZTA
= ZN (τ, ζ, µ) =

N∏
j=1

sb

(
i
Q

2 − 2µ− 2(j − 1)τ
)
×

×sb (−ζ + µ + 2(N − j)τ) sb (ζ + µ + 2(j − 1)τ) = ZTB
.

(2.80)

This procedure that we uplifted from 2d free field correlators of replacing a rank-2 chiral
field with an auxiliary gauge node by means of a confining duality has become quite common
in gauge theory and goes under the name of deconfinement. This first appeared in the context
of 4d N = 1 theories in [59–61], in 3d N = 2 in [24] for the case of the duality we considered
here and later in [62, 63] for more cases and in 2d N = (0, 2) in [64] for a two-dimensional
relative of the duality we considered here.
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Q2 Q3

Q1 N D 3

Figure 2.2: Schematic representation of the geometric transition from the 5d T2 theory to
the 3d U(N) theory. At the first step we un-resolve the singularity of the quantized P1. At
the second step, we move apart the two sets of intersecting five-branes, between which can
then stretch N D3 branes. On these D3 branes lives the U(N) theory.

2.3.4 Geometric transition and the 5d T2 theory

We can also uplift the analytic continuation that we saw is needed in CFT to recover the
DOZZ formula (2.16) from the evaluation formula (2.15) for the free field integral (2.12) of
the 3-point function of Liouville theory.

At a purely mathematical level, we can take the localized partition function of the WZ
model that is dual to the U(N) gauge theory with one adjoint and one flavor on S3

b or on
S2 × S1 and try to re-express the contribution of the 3d chiral fields in a form which depends
only parametrically on N using the periodicity property of some special function.

For example, if we work on the three-sphere with squashing parameters ω1 = b and
ω2 = b−1, the partition function of the WZ model reads:

ZS3
b

W Z =
N∏

j=1
S2 (Q + 2ijτ) S2 (Q + 2iµ + 2i(j − 1)τ)×

×S2

(
Q

2 + iζ − iµ− 2i(N − j)τ
)

S2

(
Q

2 − iζ − iµ− 2i(j − 1)τ
)

,(2.81)

where sb (x) = S2
(

Q
2 − ix|b, b−1

)
≡ S2

(
Q
2 − ix

)
and to simplify the computation we moved

to this side of the duality the contribution of the b-fields. Using the periodicity property

S3(z + ω3|ω1, ω2, ω3) = S3(z|ω1, ω2, ω3)
S2(z|ω1, ω2) . (2.82)

we can rewrite (2.81) in terms of the triple-sine function with ω1 = b, ω2 = b−1, ω3 = 2iτ as:

ZS3
b

W Z = Res
N∈N

S′
3 (0) S3 (−2iµ + 2iτ) S3

(
Q
2 ± iζ − iµ− 2i(N − 1)τ

)
S3 (−2iNτ) S3 (−2iµ− 2i(N − 1)τ) S3

(
Q
2 ± iζ − iµ + 2iτ

) = Res
N∈N
ZS5

T2 ,

(2.83)



44 3d dualities from 2d free field correlators

where again for brevity we defined a compact version of the triple-sine function S3 (z) ≡
S3
(
z|b, b−1, 2iτ

)
in which the dependence on the (specialized) ω1,2,3 parameters is understood.

The definition of the S2(z) and S3(z) functions as well as some of their properties are collected
in the Appendix A.1.1 (more details can be found in [65]).

Therefore, in (2.83) we succeeded in trading our dependence on the number of fields N in
the 3d WZ model for a parametric dependence on N inside the triple-sine functions, which
is suitable for analytic continuation. But what is the physical interpretation of our result?
The triple-sine function appears in the localized partition function of N = 1 theories on
the five-sphere with squashing parameters ω1, ω2, ω3, [66–68]. We claim that the expression
we found (2.83) is the five-sphere partition function of the 5d version of the T2 theory [10],
with one of its parameters taking a quantized value, as we will shortly explain. We already
noticed that 2iτ is identified with one of the squashing parameter of the five-sphere. The
parameters µ, ζ and 2Nτ correspond instead to the fugacities for the Cartan subalgebra of
the global SU(2)3 ⊂ USp(8) symmetry of the T2 theory. Analytical continuation in N lifts
the quantization condition on the fugacity 2iNτ rendering it a free parameter.

The 5d TN theory can be realized on a (p, q)-web of intersecting five-branes [69], the N -
junction, consisting of N (0, 1)-branes, N (1, 0)-branes and N (1, 1)-branes [42]. Equivalently,
we can geometrically engineer this theory by M-theory compactified on the toric Calabi-Yau
three-fold C3

ZN ×ZN
, whose toric diagram coincides with the (p, q)-web. One can then use the

refined topological vertex to calculate the partition function of the TN theory, see for example
[70]. The toric diagram for the case of T2 is depicted in Figure 2.2. Each of the three internal
lines corresponds to a resolved conifold geometry with Kähler parameter Qi. The partition
function of T2 on the background C2 × S1 can then be computed using the refined vertex
[71] as the topological string partition function associated to the diagram in Figure 2.2. The
details can be found in [72] and [70]:

Ztop[T2] =

(
Q1Q2Q3q1/2t1/2; q, t

)∏3
i=1

(
Qiq

1/2t1/2; q, t
)

(Q1Q2t; q, t) (Q1Q3q; q, t) (Q2Q3t; q, t) . (2.84)

Finally, the five-sphere partition function of the T2 theory can be obtained by gluing the
contribution of three copies of the C2×S1 partition function which we calculate with Ztop[T2]
[67] (see also [73]). Indeed, by using the factorization property of the triple-sine function

S3 (x|ω1, ω2, ω3) = e−i π
3! B33(x)

(
e

2πi
e3

x; q−1, t

)
1

(
e

2πi
e3

x; q−1, t

)
2

(
e

2πi
e3

x; q−1, t

)
3

≡ e−i π
3! B33(x)∣∣∣∣ (e

2πi
e3

x; q−1, t

) ∣∣∣∣3
S

, (2.85)

where q = e−2πi
e1
e3 and t = e2πi

e2
e3 and the parameters ei are chosen in each sector as in Table

2.3, we see that our expression (2.83) contains three copies of (2.84)9:
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Sector e1 e2 e3
1 ω3 ω2 ω1
2 ω1 ω3 ω2
3 ω1 ω2 ω3

Table 2.3: Squashing parameters and equivariant parameters in each sector.

ZS5
T2 ∼

∣∣∣∣Ztop[T2]
∣∣∣∣3

S
. (2.86)

For example, in the first sector we have the following identification of the WZ parameters
with the Kähler parameters:

Q1 = eiπq−1/2e
2π
b

(µ−ζ) Q2 = qN q1/2t−1/2, Q3 = eiπq−1/2e
2π
b

(µ+ζ) (2.87)

and

q = e
4πτ

b , t = e2πib−2
. (2.88)

In particular we observe that the Kähler parameter Q2 is quantized. The quantization
condition of the Kähler parameter Q2 = qN q1/2t−1/2 signals that the theory can undergo
geometric transition, as sketched in Figure 2.2. We shrink the volume of the P1 corresponding
to this leg of the toric diagram returning to the singular conifold point and then we deform
the singularity. In terms of the (p, q)-web, we arrive at a configuration of N D3 branes
stretched between two 1-junctions of five-branes. The theory living on the N D3 branes is
our 3d U(N) theory with one adjoint and one flavor.

In the second sector we find the same map of parameters, but q ↔ t−1 and b ↔ b−1.
Again Q2 is quantized and the theory undergoes geometric transition. Instead, in the third
sector we find:

Q1 = e
iπ
τ

(µ−ζ) Q2 = q1/2t−1/2, Q3 = e
iπ
τ

(µ+ζ) . (2.89)

Hence, the third sector actually gives a trivial contribution

(Q1Q3q; q, t)(Q1q1/2t1/2; q, t)(q; q, t)(Q3q1/2t1/2; q, t)
(Q1q1/2t1/2; q, t)(Q1Q3q; q, t)(Q3q1/2t1/2; q, t)

= (q; q, t) .

So for N ∈ N we have only two sectors surviving which are precisely glued to reconstruct the
S3 partition function which can be interpreted as the codimension-two defect theory inside
S5.

Therefore, we managed to interpret the 3d duality relating the WZ model to the U(N)
theory with one adjoint and one flavor as two descriptions of the same defect theory: as

9We are omitting some classical contributions which are not captured by Ztop.
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the 5d T2 theory with specialized parameters or, after the geometric transition, as the 3d

U(N) theory on the stretched D3 branes10. In particular, the geometric transition is the
counterpart of the analytic continuation in the number of screening charges on the CFT side.
This interpretation was first put forward in [31, 32] in the context of the Gauge-Liouville
triality and here we can see a very neat realization of this idea.

We also notice that the S5 partition function of the T2 theory, after analytic continuation,
can be identified with the 3-point function for the q-deformed Liouville theory with S-pairing
[75]

ZS5
T2 =

∏3
i=1 S3(2αi)

S3(∑3
i=1 αi − (ω1 + ω2 + ω3))∏3

j=1 S3(∑3
i=1 αi − 2αj)

= CS(α1, α2, α3) .

(2.90)

In order to see this, we simply need to manipulate the T2 partition function (2.83) using the
property (A.6) of the triple-sine function and use the following dictionary:


α1 = Q

2 + iµ

α2 = Q
4 + i ζ

2 − iµ
2 − i(N − 1)τ

α3 = Q
4 − i ζ

2 − iµ
2 − i(N − 1)τ .

(2.91)

We can repeat the discussion above by working with the S2 × S1 partition function. In
this case, we can use the periodicity property of the Υβ function (see Appendix A.1.2)

Υβ(x + ϵ1|ϵ1, ϵ2) =
(

1− eβ

1− eβϵ

)1−ϵ−1
2 x

γβϵ2(xϵ−1
2 )Υβ(x|ϵ1, ϵ2) , (2.92)

where

γβ(x) = (1− eβ)1−2x

(
e1−βx; eβ

)
∞

(eβx; eβ)∞
, (2.93)

to re-express the contribution of the 3d chiral fields to the S2× S1 partition function in terms
of 5d hypers on S4 × S1 [76, 77], which can indeed be written using the Υβ function, with β

being the S1 radius. Hence, in this case we regard the S2 × S1 theory as a codimension-two
defect theory inside S4 × S1, with the 3d partition function of the WZ model coinciding with
the residue of the T2 theory on S4 × S1.

The S4 × S1 partition function can in turn be obtained by gluing two copies of Ztop[T2]:

ZS4×S1

T2
∼
∣∣∣∣Ztop[T2]

∣∣∣∣2
id

(2.94)

10A related 5d interpretation of this 3d duality has been proposed in [74].
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as it can be seen from the factorization property of the Υβ function

Υβ(x|ϵ1, ϵ2) = (1− eβ)− 1
ϵ1ϵ2

(
x− ϵ1+ϵ2

2

)2
∣∣∣∣∣∣
∣∣∣∣∣∣
(
e−βx; q, t

)
(√

t
q ; q, t

)
∣∣∣∣∣∣
∣∣∣∣∣∣
2

id

, (2.95)

where the id-norm is defined as

||(z; q, t)||2id ≡ (z; q, t)
(
z−1; q−1, t−1

)
, (2.96)

and

q = e−βϵ1 , t = eβϵ2 . (2.97)

Also in this case working out the dictionary between the WZ parameters and Kähler parame-
ters we discover that Q2 is quantized and correspondingly the theory undergoes geometric
transition.

Finally, with the dictionary (2.91) we can also map ZS4×S1

T2
to the 3-point function for

q-deformed Liouville theory with id-pairing [75, 78]

ZS4×S1

T2
=

Υ′
β(0)∏3

i=1 Υβ(2αi)
Υβ(∑3

i=1 αi − (ϵ1 + ϵ2))∏3
j=1 Υβ(∑3

i=1 αi − 2αj)
= Cid(α1, α2, α3) .

(2.98)

The 3-point function Cid(α1, α2, α3) is the q-deformed version of the DOZZ formula (2.16)
for the 3-point function in Liouville field theory [44, 40], to which it reduces in the limit
β → 0 thanks to the relation

Υβ(x|ϵ1, ϵ2) −→
β→0

Υ(x|ϵ1, ϵ2) . (2.99)

From the field theory point of view, the β → 0 limit corresponds to shrinking the S1 radius,
going from S4 × S1 to S4. This reproduces the familiar AGT map [11] between the partition
function of the T2 theory on S4 and the 3-point function in Liouville field theory.

2.4 Uplifting free field identities to new 3d dualities

In this section we will reverse the logic that we have followed so far and uplift the results
about 2d free field correlators in Liouville theory that we reviewed in Section 2.2 to new
dualities for 3d N = 2 gauge theories. We start introducing the gauge theory avatar of
the kernel function (2.21), which we baptize M [SU(N)], and discuss some of its properties,
such as the uplift of the symmetry property (2.22). We then discuss two dualities involving
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Figure 2.3: Quiver diagram of the M [SU(N)] theory. Round nodes denote gauge symmetries
and square nodes denote global symmetries. For this chapter the convention is that all the
nodes are associated with unitary groups whose ranks are given by the numbers inside of
them. Double-lines connecting two nodes represent pairs of bifundamental chirals in conjugate
representations with respect to the corresponding symmetries. Lines that start and end on
the same node correspond to chirals in the adjoint representation. The crosses of the diagonal
lines represent the singlets βi that flip the corresponding mesons.

theories that are constructed by gauging part of the global symmetry of M [SU(N)]. In
particular, we will se that one of these theories is associated with a generalization of the
confining duality for U(N) with one adjoint and one flavor to a higher number of flavors.

2.4.1 The M [SU(N)] theory

Lagrangian description and symmetry enhancement

The 3d N = 2 gauge theory version of the kernel function (2.21) is a quiver theory that we
call M [SU(N)]11 and which is represented in Figure 2.3. More precisely, the chiral fields of
this theory are:

• V (i), Ṽ (i): fundamental flavors connecting the U(i) gauge node with a U(1) flavor node
vertically;

• D(i), D̃(i): fundamental flavors connecting the U(i) node with a U(1) flavor node diagonally;

• Q(i,i+1), Q̃(i,i+1): bifundamental flavors connecting the i-th node with the (i + 1)-th one12.
For i = N − 1 it connects the last U(N − 1) gauge node with the SU(N) flavor symmetry
on the very right;

11More precisely, what reduces to the kernel function is a variant of the M [SU(N)] theory where we remove
the flipping fields βi and we add a set of singlets OH that flip the meson TrN−1 Q(N−1,N)Q̃(N−1,N) constructed
with the last flavor of the saw.

12In our conventions, Q(i,i+1) transforms in the representation i ⊗ i + 1 of U(i) × U(i + 1), while Q̃(i,i+1)

transforms in i + 1 ⊗ i of U(i + 1) × U(i), so some color indices are understood. For example, for i = 2 we
have Q

(i,i+1)
na and Q̃

(i,i+1)
an , with n = 1, 2 and a = 1, 2, 3.
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• Φ(i): adjoint chirals corresponding to the i-th gauge node;

• βi: gauge singlet chiral fields flipping the mesons D(i)D̃(i) constructed with the i-th diagonal
chirals.

In order to write the superpotential of the theory in a compact form, we introduce the
following notation. From the bifundamentals Q

(i,i+1)
na and Q̃

(i,i+1)
bm we construct a tensor that

represents a chiral field in the representation (i⊗ ī)⊗ (i + 1⊗ i + 1) of U(i)× U(i + 1):

Q(i,i+1)
nmab ≡ Q(i,i+1)

na Q̃
(i,i+1)
bm , n, m = 1, · · · , i, a, b = 1, · · · , i + 1 . (2.100)

Moreover, we denote with Tri the trace over the color indices of the i-th gauge group U(i).
The superpotential of M [SU(N)] contains the standard N = 4 cubic superpotential coupling
bifundamentals and adjoints, a linear monopole superpotential involving the two fundamental
monopoles of each node, a cubic interaction term coupling the fields in the saw to the
bifundamentals and the flips of the diagonal mesons

WM [SU(N)] =Wmono +WT [SU(N)] +Wcub +Wflip . (2.101)

The first term is a linear monopole superpotential containing monopoles with magnetic flux
±1 with respect to only one of the factors in the gauge group13

Wmono = M(1,0,··· ,0) + M(−1,0,··· ,0) + M(0,1,0,··· ,0) +
+ M(0,−1,0,··· ,0) + · · ·M(0,··· ,0,1) + M(0,··· ,0,−1) . (2.102)

The second term is the superpotential of the T [SU(N)] theory (see the Introduction for a
brief review of this theory)14 [12]

WT [SU(N)] =
N−1∑
i=1

Tri

[
Φ(i)

(
Tri+1Q(i,i+1) − Tri−1Q(i−1,i)

)]
, (2.103)

where we define Q(0,1) = 0. The third term is given by

Wcub =
N−1∑
i=1

k∑
j=1

i+1∑
l=1

(
D

(i+1)
l Q̃

(i,i+1)
lj V

(i)
j + Ṽ

(i)
j Q

(i,i+1)
jl D̃(i+1)

a

)
. (2.104)

13Such a monopole superpotential can be understood from the 4d origin of the theory that we will discuss in
Section 3.3. Indeed, the monopole superpotential (2.102) is dynamically generated in the dimensional reduction
and the requirement in 4d that U(1)R is non-anomalous translates in 3d in the constraint on the R-charges
due to the marginality of the monopoles. See [5, 6] for a general discussion of how monopole superpotentials
are dynamically generated when reducing a 4d N = 1 theory to 3d with a circle compactification.

14We recall that the T [SU(N)] theory admits a quiver representation which is very similar to that of
M [SU(N)], but without the fundamental flavors that form the structure of the saw. Moreover, the superpo-
tential consists only of WT [SU(N)].
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U(1)Yi U(1)YN
SU(N)X U(1)mA U(1)∆ U(1)R

Q(i−1,i) 0 0 1 -1 0 1−RA

Q̃(i−1,i) 0 0 1 -1 0 1−RA

Q(N−1,N) 0 0 N̄ -1 0 1−RA

Q̃(N−1,N) 0 0 N -1 0 1−RA

V (i) 1 0 1 i−N + 2 -1 2 + (N − i− 2)(1−RA)−R∆
Ṽ (i) -1 0 1 i−N + 2 -1 2 + (N − i− 2)(1−RA)−R∆

V (N−1) 0 1 1 1 -1 1 + RA −R∆
Ṽ (N−1) 0 -1 1 1 -1 1 + RA −R∆

D(i) -1 0 1 N − i 1 (i−N)(1−RA) + R∆
D̃(i) 1 0 1 N − i 1 (i−N)(1−RA) + R∆
D(N) 0 -1 N 0 1 R∆
D̃(N) 0 1 N̄ 0 1 R∆
Φ(i) 0 0 1 2 0 2RA

βi 0 0 1 −2(N − i) −2 2 + 2(i−N)(RA − 1)− 2R∆

Table 2.4: Representations and charges under the global symmetries of all the chiral fields of
the M [SU(N)] theory. In the table, i runs from 1 to N − 1. By definition, Q(0,1) = Q̃(0,1) = 0
and V (0) = Ṽ (0) = 0.

Finally, the last term involves the singlets βi, which flip the diagonal mesons

Wflip =
N∑

i=1
βiD

(i)D̃(i) . (2.105)

The M [SU(N)] theory shares many properties with the more known T [SU(N)] theory
(we reviewed some of the properties of T [SU(N)] in the Introduction). The first one consist
of the fact that the manifest global symmetry of M [SU(N)]15

SU(N)X ×
∏N

i=1 U(1)Yi

U(1) × U(1)mA × U(1)∆ , (2.106)

gets enhanced in the IR to

SU(N)X × SU(N)Y × U(1)mA × U(1)∆ . (2.107)

This symmetry enhancement is analogous to the enhancement of the topological symmetry
in T [SU(N)]. Our main argument to support this claim is a self-duality which we discuss in
the following subsubsection, that swaps the SU(N)X and the SU(N)Y symmetries. Another
evidence of the symmetry enhancement comes from the fact that the operators in the chiral
ring with the same charges under the other global symmetries, included the R-symmetry,
re-organize into representations of the full SU(N)Y symmetry, as we will show below.

15The overall U(1) by which we quotient can be re-absorbed in the gauge group.
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11 1 1

3 41 2

Figure 2.4: Diagrammatic representation of the operators in the first row of the matrix C.
Arrows of the same color represent chiral fields that we assemble to construct an element of
the matrix. In order to have a gauge invariant operator, we have to consider sequences of
arrows that start and end on a squared node. In this case, this is achieved by starting with
one diagonal flavor, going along the tail with an arbitrary number of bifundamentals and
ending on a vertical flavor.

Hence, at low energies we only have two abelian global symmetries U(1)mA and U(1)∆

that can mix with the R-symmetry. We denote with RA and R∆ respectively the parameters
that quantify this mixing. The R-charges of the fields will then be parametrized by these two
coefficients as follows. We assign R-charge R∆ to the last diagonal flavor D(N), D̃(N) and
1−RA to the last bifundamental Q(N−1,N), Q̃(N−1,N). Because of the superpotential terms
WT [SU(N)] also all the other bifundamentals will have R-charge 1 − RA, while the adjoint
chirals Φ(i) will have R-charge RA. The cubic superpotential Wcub then fixes the R-charge
of the last vertical flavor to be R[V (N), Ṽ (N)] = 2− (1−RA)−R∆ = 1 + RA −R∆. Then,
we have to take into account the monopole superpotential. Requiring that the fundamental
monopole operators of the U(N−1) node are exactly marginal, we find that the next diagonal
flavor must have R-charge R[D(N−1), D̃(N−1)] = −1 + RA + R∆. Following this procedure
along the whole tail, we can fix the R-charges of all the chiral fields in terms of the parameters
RA and R∆ only. In Table 2.4 we summarize the charges of the chiral fields under all the
global symmetries and we specify their R-charges.

The theory possesses several gauge invariant operators that are non-trivial in the chiral
ring and in the following we are going to introduce those that will play an important role
later. First of all, we have the meson constructed with the last flavors of the tail

H = TrN−1 Q(N−1,N)Q̃(N−1,N) , (2.108)

which transforms in the adjoint representation of SU(N)X . By construction, this operator
has charge −2 under U(1)mA , is uncharged under U(1)∆ and has R-charge 2(1−RA) under
the trial R-symmetry U(1)R.
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11 1 1

3 41 2

Figure 2.5: Diagrammatic representation of the operator Π. In this case, gauge invariant
operators are obtained starting with one diagonal flavor, going along the tail with all the
remaining bifundamentals and ending on the bifundamental connected to the last flavor node.

Then, we can construct an operator which transform in the adjoint representation of
SU(N)Y combining the traces of the adjoints at each gauge node on the diagonal and some
mixed mesons on the off-diagonal elements. These mesons are built starting from one of the
diagonal chirals, moving along the tail with the bifundamentals and ending on a vertical
chiral (see Figure 2.4). Explicitly, for N = 3 it takes the form

C =


0 V (1)D(1) V

(2)
i Q̃

(1,2)
i D(1)

D̃(1)Ṽ (1) 0 V
(2)

i D
(2)
i

D̃(1)Q
(1,2)
i Ṽ

(2)
i D̃

(2)
i Ṽ

(2)
i 0

+
2∑

i=1
Tri Φ(i)Di , (2.109)

where Di are traceless diagonal generators of SU(N)X . By construction, this operator has
charge +2 under U(1)mA , is uncharged under U(1)∆ and has R-charge 2RA under the trial
R-symmetry U(1)R.

There are two other gauge invariant mixed mesons that one can construct from the chiral
fields of the theory. In this case, we still start with a diagonal flavor and move along the tail,
but we have to include all the bifundamentals and end with Q(N−1,N) (see Figure 2.5). Such
operators can be collected in two vectors that we denote with Π and Π̃. Explicitly, for N = 3
these operators take the form

Π =


Q̃

(2,3)
i,a Q̃

(1,2)
i D(1)

Q̃
(2,3)
i,a D

(2)
i

D
(3)
a

 , Π̃ =


D̃(1)Q

(1,2)
i Q

(2,3)
i,a

D̃
(2)
i Q

(2,3)
i,a

D̃
(3)
a

 . (2.110)

They are uncharged under the axial symmetry U(1)mA , have charge +1 under the other abelian
symmetry U(1)∆, have R-charge R∆ and transform respectively in the bifundamental (N, N)
and anti-bifundamental (N, N) representation of the flavor symmetries SU(N)X × SU(N)Y .

Finally, we have some gauge invariant operators that are singlets under the non-abelian
global symmetries and are only charged under U(1)mA and U(1)∆. Those that will be
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important for us are the chiral singlets βi and the mesons constructed with the vertical chirals
and dressed with powers of the adjoints. We can collectively denote these operators by

Bij =


βi i = 1, · · · , N, j = 1

Tri−1

[(
Φ(i−1)

)j−2
V (i−1)V (i−1)

]
i = 2, · · · , N, j = 2, · · · , i

.

(2.111)

These operators have charge 2(i + j −N − 1) under U(1)mA , charge −2 under U(1)∆ and
R-charge 2(1 + N − j) + 2(i + j −N − 1)RA − 2R∆ under the trial R-symmetry U(1)R.

The list of the gauge invariant chiral operators with the corresponding charges under the
global symmetries is

SU(N)X SU(N)Y U(1)mA U(1)∆ U(1)R

H N1 − 1 1 -2 0 2(1−RA)
C 1 N1 − 1 2 0 2RA

Π N N̄ 0 1 R∆
Π̃ N̄ N 0 1 R∆

Bij 1 1 2(i + j −N − 1) −2 2(1 + N − j) + 2(i + j −N − 1)RA − 2R∆

Finally, we can write down the partition function of the theory on the squashed three-
sphere S3

b . We turn on real masses in the Cartan of all the factors in the global symmetry
group (2.107), that we denote respectively with Xi, Yi, Re(mA) and Re(∆). The parameters
for the two U(1) symmetries are defined as holomorphic combinations of the corresponding
real masses with the R-symmetry mixing parameters RA and R∆

mA = Re(mA) + i
Q

2 RA, ∆ = Re(∆) + i
Q

2 R∆ , (2.112)

Then, the partition function can be written iteratively as

ZM [U(N)](X⃗; Y⃗ ; ∆; mA) = sb

(
−i

Q

2 + 2∆
)

︸ ︷︷ ︸
βN

N∏
i=1

sb

(
i
Q

2 ± (Xi − YN )−∆
)

︸ ︷︷ ︸
D(N),D̃(N)

×

×
∫ dz⃗N−1∏N−1

a<b sb

(
iQ

2 ± (z(N−1)
a − z

(N−1)
b )

) N−1∏
a,b=1

sb

(
i
Q

2 ± (z(N−1)
a − z

(N−1)
b )− 2mA

)
︸ ︷︷ ︸

Φ(N−1)

×

×
N−1∏
a=1

sb

(
±(z(N−1)

a − YN ) + ∆−mA

)
︸ ︷︷ ︸

V (N−1),Ṽ (N−1)

N∏
i=1

sb

(
±(z(N−1)

a −Xi) + mA

)
︸ ︷︷ ︸

Q(N−1,N),Q̃(N−1,N)

×

×ZM [U(N−1)]

(
z

(N−1)
1 , · · · , z

(N−1)
N−1 ; Y1, · · · , YN−1; ∆ + mA − i

Q

2 ; mA

)
, (2.113)
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where where we recall that the integration measure is defined including the Weyl symmetry
factor of the gauge group

dx⃗k = 1
k!

k∏
i=1

dx
(k)
i . (2.114)

In order to make sense of the recursive definition we also specify

ZM [U(1)](X; Y ; ∆) = sb

(
−i

Q

2 + 2∆
)

sb

(
i
Q

2 ± (X − Y )−∆
)

. (2.115)

The ZM [SU(N)](X⃗; Y⃗ ; ∆; mA) partition function is simply ZM [U(N)](X⃗; Y⃗ ; ∆; mA) with the
tracelessness condition enforced for the fugacities of the SU(N)X and SU(N)Y symmetries

N∑
i=1

Xi =
N∑

i=1
Yi = 1 . (2.116)

Self-dualities

Another similarity between M [SU(N)] ad T [SU(N)] is a web of self-dualities that they both
enjoy. We discussed in details the duality web of T [SU(N)] in the Introduction, while here we
will present the one of M [SU(N)] which is schematically summarized in Figure 2.6. We will
only state the self-dualities and their properties here, without discussing any test (some of
which can be found in [25]). This is because, as we will explain in Section 3.3, the M [SU(N)]
theory can be obtained as a limit of a 4d N = 1 theory that enjoys exactly the same duality
web. Hence, the validity of the dualities that we will discuss in this subsubsection is a direct
consequence of the 4d dualities we will discuss in Section 3.3.

The first self-duality of M [SU(N)] is a mirror-like duality, since it is reminiscent of the
self-duality of T [SU(N)] under mirror symmetry. This is depicted as the top horizontal line
in Figure 2.6, where the dual theory is labelled M [SU(N)]∨. It is a self-duality in the sense
that the theory is dual to itself, but with a non-trivial map of the gauge invariant operators.
Specifically, the duality acts on the global symmetries of M [SU(N)] as follows:

SU(N)X ↔ SU(N)Y , U(1)mA ↔ −U(1)mA . (2.117)

Moreover, it also acts on the R-symmetry by mapping the mixing coefficient RA as follows:

RA ↔ 1−RA . (2.118)
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M [SU(N)] M [SU(N)]∨

FFM [SU(N)] FFM [SU(N)]∨
Mirror

Mirror

Flip-Flip Flip-Flip

H C H∨ C∨

OH OC OH
∨ OC

∨

Figure 2.6: Duality web of the M [SU(N)] theory. On the horizontal direction we have the
mirror-like duality, while on the vertical direction we have the flip-flip duality. Operators of
the same color are mapped to each other across the dualities.

The gauge invariant operators are accordingly mapped as

H ↔ C∨

C ↔ H∨

Π ↔ Π̃∨

Π̃ ↔ Π∨

Bij ↔ B∨
N−j+1,N−i+1 , (2.119)

where the label ∨ denotes the operators in the mirror frame M [SU(N)]∨. As we reviewed in
the Introduction, this action is similar to the action of mirror symmetry on T [SU(N)], which
swaps Higgs and Coulomb branch. Notice that this duality implies that the flavor symmetry∏N−1

i=1 U(1)Yi on the teeth of the saw is enhanced in the IR to the full non-abelian SU(N)Y .
At the level of the S3

b partition function, the duality implies the following non-trivial integral
identity:

ZM [SU(N)](X⃗; Y⃗ ; ∆; mA) = ZM [SU(N)](Y⃗ ; X⃗; ∆; i
Q

2 −mA) = ZM [SU(N)]∨(X⃗; Y⃗ ; ∆; mA) .(2.120)

This identity will derived in Subsection 3.3.3 as a limit of a similar identity for the S3 × S1

partition function of a 4d N = 1 duality that was proven in [79].

The second self-duality of M [SU(N)] is called flip-flip duality, since it is reminiscent
of the flip-flip of T [SU(N)] discussed in [20]. This is depicted as the right vertical line in
Figure 2.6, where the dual theory is labelled FFM [SU(N)]. In this case the theory is dual
to itself up to not only a non-trivial map of the symmetries, but also the addition of some
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gauge singlet chiral fields that flip the operators H and C of M [SU(N)]. Specifically, the
FFM [SU(N)] theory is defined as the M [SU(N)] theory with the addition of two sets of
singlets OH and OC in the adjoint representation of SU(N)X and SU(N)Y respectively, with
superpotential

WF F M [SU(N)] =WM [SU(N)] + TrX

(
OHHF F

)
+ TrY

(
OCCF F

)
, (2.121)

where TrX/Y denote the traces over the SU(N)X/Y flavor indices and HF F , CF F denote the
operators H, C in the flip-flip dual frame. In this case, the non-abelian symmetries are not
swapped under the duality, but the U(1)mA is still inverted as for the mirror duality

SU(N)X ↔ SU(N)X , SU(N)Y ↔ SU(N)Y , U(1)mA ↔ −U(1)mA . (2.122)

The mixing coefficient RA is also inverted

RA ↔ 1−RA . (2.123)

The gauge invariant operators are accordingly mapped as

H ↔ OH

C ↔ OC

Π ↔ ΠF F

Π̃ ↔ Π̃F F

Bij ↔ BF F
N−j+1,N−i+1 , (2.124)

where the label F F denotes the operators in the flip-flip frame FFM [SU(N)]. At the level of
the S3

b partition function, the duality implies the following non-trivial integral identity:

ZM [SU(N)](X⃗; Y⃗ ; ∆; mA) =
N∏

i,j=1

sb

(
iQ

2 ± (Yi − Yj)− 2mA

)
sb

(
iQ

2 ± (Xi −Xj)− 2mA

)ZM [SU(N)](X⃗; Y⃗ ; ∆; i
Q

2 −mA) =

= ZF F M [SU(N)](X⃗; Y⃗ ; ∆; mA) . (2.125)

The flip-flip duality is not a fundamental duality, in the sense that it can be derived by
sequentially applying a more fundamental duality, which is the two-monopole duality we
saw in Subsection 2.3.216. We will discuss a similar derivation of the flip-flip duality for
the 4d N = 1 ancestor of M [SU(N)] by means of the Intriligator–Pouliot duality [81]. The
derivation of flip-flip for M [SU(N)] is completely analogous. This derivation also allows us to

16It is actually possible to show that also mirror symmetry for M [SU(N)] can be derived by iteratively
applying the two-monopole duality, but the derivation is much more involved. See [80] for the derivation in
4d, from which the statement for M [SU(N)] descends.
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derive the equality (2.125) by just iteratively applying the one for the two-monopole duality.
Alternatively, exactly as for the identity of the mirror duality, (2.125) can be obtained as a
limit of a similar identity for the S3 × S1 partition function of the 4d N = 1 duality that was
proven in [79].

Mirror and flip-flip are the two fundamental dualities that constitute the diagram of Figure
2.6. Indeed, the fourth duality frame, labelled by FFM [SU(N)]∨, can just be obtained by
applying mirror first and then flip-flip, or viceversa. The FFM [SU(N)]∨ theory is defined
by the superpotential

WF F M [SU(N)]∨ =WM [SU(N)] + TrX

(
O∨

H HF F ∨
)

+ TrY

(
O∨

C CF F ∨
)

, (2.126)

and the duality relating M [SU(N)] and FFM [SU(N)]∨ acts on the global symmetries by
exchanging SU(N)X and SU(N)Y , while leaving the abelian symmetries unchanged

SU(N)X ↔ SU(N)Y , U(1)mA ↔ U(1)mA . (2.127)

The R-symmetry is left unchanged as well. The gauge invariant operators are accordingly
mapped as

H ↔ O∨
C

C ↔ O∨
H

Π ↔ Π̃F F ∨

Π̃ ↔ ΠF F ∨

Bij ↔ BF F ∨
ij . (2.128)

The equality of the S3
b partition functions associated to this duality

ZM [SU(N)](X⃗; Y⃗ ; ∆; mA) =
N∏

i,j=1

sb

(
iQ

2 ± (Yi − Yj)− 2mA

)
sb

(
iQ

2 ± (Xi −Xj)− 2mA

)ZM [SU(N)](Y⃗ ; X⃗; ∆; mA) =

= ZF F M [SU(N)]∨(X⃗; Y⃗ ; ∆; mA) , (2.129)

can be obtained by just applying sequentially (2.120) and (2.125).

This last duality is the natural 3d N = 2 uplift of the symmetry property of the kernel
function (2.22). More precisely, the duality between M [SU(N)] and FFM [SU(N)] implies
a non-trivial integral identity between their S2 × S1 partition functions which in the 2d

Coulomb limit we discussed in the previous section reduces to (2.22). It would be interesting
to understand the implications in CFT of the mirror and of the flip-flip duality. Indeed, in
[24] only this last duality was discussed and proposed as an uplift of the result for CFT free
fields, while the other dualities of the diagram in Figure 2.6 were discovered only later.
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Real mass deformation to T [SU(N)]

The similarities we have highlighted so far between M [SU(N)] and T [SU(N)] are not an
accident. In this section we show that, by taking a real mass deformation associated to
the U(1)∆ symmetry, the M [SU(N)] theory reduces to the T [SU(N)] theory. When this
deformation is turned on, the chirals D(k), D̃(k) and V (k), Ṽ (k) that form the saw of the
quiver and are charged under U(1)∆ become massive. Integrating out these fields, mixed
CS-like couplings between the gauge symmetry and the ∏N−1

i=1 U(1)Yi symmetry are generated,
so that this is now identified with the restored topological symmetry. This in turns implies
that the monopole operators are no longer turned on in the superpotential and that they are
part of the chiral ring.

All of the properties we have seen for M [SU(N)] then reduce to similar properties for
T [SU(N)], since the real mass deformation doesn’t affect them. For example, the symmetry
enhancement∏N−1

i=1 U(1)Yi → SU(N)Y implies the well-known enhancement of the topological
symmetry of T [SU(N)]. The role of the operator C of M [SU(N)] is replaced by that of the
monopole matrix C of T [SU(N)], which is the moment map for the enhanced topological
symmetry. Notice in particular that at the end of the flow triggered by the real mass
deformation, supersymmetry is enhanced from N = 2 to N = 4. The operators Π, Π̃ are
integrated out, since they are charged under the U(1)∆ symmetry. Finally, the operator H is
replaced by the operator H, which is the moment map for the flavor symmetry of T [SU(N)].
Moreover, taking this limit on each frame of the duality web of M [SU(N)] depicted in Figure
2.6 we precisely recover the duality web of T [SU(N)] depicted in Figure 1.2.

We can also look at the effect of the real mass deformation at the level of the sphere
partition function, where it is implemented by taking the limit ∆→∞. This limit gives:

lim
∆→+∞

ZM [U(N)](X⃗; Y⃗ ; ∆; mA) = CN (∆, mA, Q)e−iπ
∑N

i=1(X2
i +Y 2

i )ZT [U(N)](X⃗; Y⃗ ; mA) ,

(2.130)

where the prefactor

CN (∆, mA, Q) = exp
{

iπ

[ 1
12N

(
−12∆2 − 8m2

A(N − 2)(N − 1) +
(
2N2 + 1

)
Q2+

+4imA(N − 1)((2N − 1)Q + 6i∆) + 12i∆NQ)]} (2.131)
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is independent from the flavor fugacities Xi, Yi and diverges for ∆→∞, while the partition
function of T [U(N)] is defined iteratively as

ZT [U(N)](X⃗; Y⃗ ; mA) = e2πiYN

∑N

i=1 Xi

∫ dz⃗N−1 e2πi(YN−1−YN )
∑N−1

a=1 z
(N−1)
a∏N

a<b sb

(
iQ

2 ± (z(N−1)
a − z

(N−1)
b )

) ×
×

N−1∏
a,b=1

sb

(
i
Q

2 ± (z(N−1)
a − z

(N−1)
b )− 2mA

)N−1∏
a=1

N∏
i=1

sb

(
±(z(N−1)

a −Xi) + mA

)
×

×ZT [U(N−1)](z
(N−1)
1 , · · · , z

(N−1)
N−1 ; Y1, · · · , YN−1 : mA) , (2.132)

with the case N = 1 defined as

ZT [U(1)](X; Y ) = e2πiXY . (2.133)

The proof of (2.130) proceeds by induction. We prove it first for M [U(2)], whose partition
function we recall being

Z2 ≡ ZM [U(2)](X1, X2; Y1, Y2; ∆; mA) =
2∏

i=1
sb

(
i
Q

2 ± (Xi − Y2)−∆
)
×

×
2∏

i=1
sb

(
−i

Q

2 + 2∆ + 2(i− 2)
(

i
Q

2 −mA

))
sb

(
i
Q

2 − 2mA

)
×

×
∫

dz sb (iQ± (z − Y1)−∆−mA) sb (±(z − Y2) + ∆−mA)
2∏

i=1
sb (±(z −Xi) + mA) .

(2.134)

We focus on the limit of the following block of double-sine functions depending on ∆:

B2 =
2∏

i=1
sb

(
−i

Q

2 + 2∆ + 2(i− 2)
(

i
Q

2 −mA

))
sb

(
i
Q

2 ± (Xi − Y2)−∆
)
×

× sb (iQ± (z − Y1)−∆−mA) sb (±(z − Y2) + ∆−mA) . (2.135)

Using the asymptotic behaviour of the double-sine function

lim
x→±∞

sb (x) = e±i π
2 x2

, (2.136)

we find

lim
∆→+∞

B2 = exp
[
iπ

(
Q2

4 − iQmA + 2m2
A + 2∆2+

−
2∑

i=1
(X2

i + Y 2
i ) + 2z(Y1 − Y2) + 2Y2

2∑
i=1

Xi

)]
. (2.137)
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The rest of the partition function is independent from ∆, so we find

lim
∆→+∞

Z2 = C2(mA, ∆)e−iπ
∑2

i=1(X2
i +Y 2

i )e2πiY2
∑2

i=1 Xi ×

×sb

(
i
Q

2 − 2mA

)∫
dz e2πi(Y1−Y2)z

2∏
i=1

sb (±(z −Xi) + mA) =

= C2(mA, ∆)e−iπ
∑2

i=1(X2
i +Y 2

i )ZT [U(2)](X1, X2; Y1, Y2; mA) , (2.138)

where the prefactor C2(mA, ∆) can be read from the first line of (2.137).
Now we consider the recursive definition of the partition function of M [U(N + 1)]

ZN+1 ≡ ZM [U(N+1)](X⃗; Y⃗ ; ∆; mA) = sb

(
−i

Q

2 + 2∆
)N+1∏

i=1
sb

(
i
Q

2 ± (Xi − YN+1)−∆
)

×
∫ dz⃗N∏N

a<b sb

(
iQ

2 ± (za − zb)
) N∏

a,b=1
sb

(
i
Q

2 ± (za − zb)− 2mA

)
×

×
N∏

a=1
sb (±(za − YN+1) + ∆−mA)

N+1∏
i=1

sb (±(za −Xi) + mA)×

×ZM [U(N)](z1, · · · , zN ; Y1, · · · , YN ; ∆ + mA − i
Q

2 ; mA) . (2.139)

Only two pieces of this partition function are affected by the ∆ → ∞ limit. The first one
is the partition function of the M [U(N)] subquiver, whose limit is given by the inductive
hypothesis (2.130). The second one is the block of double-sine functions representing the last
flipping field βN and the last flavors of the saw D(N+1), D̃(N+1) and V (N), Ṽ (N)

BN+1 = sb

(
−i

Q

2 + 2∆
)N+1∏

i=1
sb

(
i
Q

2 ± (Xi − YN+1)−∆
) N∏

a=1
sb (±(za − YN+1) + ∆−mA)

→ exp
[
iπ

(
Nm2

A + 2N + 1
8 Q2 − 2NmA∆ + iNQ∆ + ∆2+

−
N+1∑
i=1

X2
i − Y 2

N+1 + 2YN+1

N+1∑
i=1

Xi − 2YN+1

N∑
a=1

za +
N∑

a=1
z2

a

)]
. (2.140)

Notice that we have a quadratic term in the integration variable, which represents a CS
coupling for the gauge field of the last node of the quiver. This precisely cancels with the
corresponding term in (2.130). Hence, combining (2.130) and (2.140) we get

lim
∆→+∞

ZN+1 = CN+1(∆, mA)e−iπ
∑N+1

i=1 (X2
i +Y 2

i )e2πiYN+1
∑N+1

i=1 Xi

∫
dz⃗N e−2πiYN+1

∑N

a=1 za ×

×
N∏

a=1

N+1∏
i=1

sb (±(za −Xi) + mA)ZT [U(N)](z1, · · · , zN ; Y1, · · · , YN ; mA) =

= CN+1(∆, mA)e−iπ
∑N+1

i=1 (X2
i +Y 2

i )ZT [U(N+1)](X⃗; Y⃗ ; mA) , (2.141)
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Figure 2.7: Quiver diagram of the G[U(N)] theory.

where in the last step we used the recursive definition (2.132) of the T [U(N)] partition
function. This concludes the proof of (2.130) for arbitrary N .

If we take the real mass deformation on the two sides of any of the self-duality identities
(2.120)-(2.125)-(2.129), the divergent prefactor CN (∆, mA) and the background CS terms
e−iπ

∑N

i=1(X2
i +Y 2

i ) cancel out since they are symmetric under both Xi ↔ Yi and mA ↔
iQ

2 −mA, so we obtain similar identities but for the duality web of T [SU(N)]. Notice also
that the U(1) symmetries of the saw of M [SU(N)] reduce to the topological symmetries of
T [SU(N)], so that the symmetry enhancement enjoyed by the latter ones can be understood
as a consequence of that of the former ones.

2.4.2 Recombination duality

The M [SU(N)] and the M [U(N)] theories can be used as building blocks to construct more
complicated models, where one or both of the non-abelian global symmetries are gauged. In
this section and in the following one we discuss some dualities involving such constructions.
The first duality we present, which we call recombination duality, relates roughly speaking a
M [U(N)] with one U(N) symmetry gauged with one flavor to a certain gluing of two smaller
tails M [U(N − k) and M [U(k)], where k = 0, · · · , N . This can be understood as the 3d

uplift of a similar property for the free field integral representation of the kernel function
(2.21) that can be found in eq. (B.3) of [38].

The G[U(N)] theory

For simplicity we give the name G[U(N)] to one of the theories involved in the recombination
duality. This is depicted in Figure 2.7 and it is obtained from M [U(N)] by gauging the last
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flavor node17 and adding one fundamental flavor P , P̃ . The superpotential is

WG[U(N)] =WM [U(N)] =Wmono +WT [U(N)] +Wcub +Wflip . (2.142)

Since the extra flavor doesn’t interact with any other fields, we have an additional U(1)µ

flavor symmetry. Moreover, we have no monopole superpotential associated to the U(N)
node, which means that its topological symmetry U(1)ζ is not broken. Hence, the complete
global symmetry group of G[U(N)] is18

U(N)z × U(1)mA × U(1)∆ × U(1)µ × U(1)ζ , (2.143)

where the U(N)z symmetry is not manifest in the UV, but it is enhanced in the IR from
the U(1) symmetries of the saw. This can be understood from the fact that the chiral ring
generators of G[U(N)] re-organize into representations of U(N)z, as we will show below, but
it will become evident also in Section 2.4.3 where we will discuss a dual frame for G[U(N)]
in which the full U(N)z symmetry is manifest.

Since U(1)mA , U(1)∆ and U(1)µ are abelian symmetries that can mix with the R-symmetry,
the corresponding parameters are actually defined as the holomorphic combinations

mA = Re(mA) + i
Q

2 RA , ∆ = Re(∆) + i
Q

2 R∆ , µ = Re(µ) + i
Q

2 r (2.144)

where RA, R∆, r are the mixing coefficients. In Table 2.5 we summarize the charges under
these symmetries of all the chiral fields of the theory.

Some of the chiral ring generators of G[U(N)] are similar to those of the M [U(N)] theory.
Firstly, we have the operator C in the traceless adjoint representation of the enhanced U(N)z

symmetry, which is constructed exactly as for M [U(N)]. We then have the operators Ω,
Ω̃ which are constructed by attaching the new chiral fields P , P̃ to the Π, Π̃ operators of
M [U(N)] so to have gauge invariant objects. For example, for N = 3 we have

Ω =


PaQ̃

(2,3)
i,a Q̃

(1,2)
i D(1)

PaQ̃
(2,3)
i,a D

(2)
i

PaD
(3)
a

 , Ω̃ =


D̃(1)Q

(1,2)
i Q

(2,3)
i,a P̃a

D̃
(2)
i Q

(2,3)
i,a P̃a

D̃
(3)
a P̃a

 . (2.145)

Then we have the dressed mesons and the dressed monopoles [51]

TrN

(
P̃MsP

)
, M±

Ms , s = 0, · · · , N − 1 , (2.146)

17One can equivalently think of gauging the symmetry that is not manifest in the Lagrangian description of
M [U(N)] by just using its mirror self-duality. This would result in a non-Lagrangian gauging, though, so we
prefer to stick to this definition of the G[U(N)] theory.

18Since we used the freedom due to the gauge symmetry to fix the baryonic symmetry of the flavor P , P̃ ,
the flavor symmetry associated to the saw is now the full U(N)z group.
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U(1)zi U(1)mA U(1)∆ U(1)µ U(1)R

Q(i−1,i) 0 -1 0 0 1−RA

Q̃(i−1,i) 0 -1 0 0 1−RA

P 0 0 0 1 r

P̃ 0 0 0 1 r

V (i−1) 1 a−N + 1 -1 0 2 + (N − a− 1)(1−RA)−R∆
Ṽ (i−1) -1 a−N + 1 -1 0 2 + (N − a− 1)(1−RA)−R∆
D(i) -1 N − a 1 0 (a−N)(1−RA) + R∆
D̃(i) 1 N − a 1 0 (a−N)(1−RA) + R∆
Φ(i) 0 2 0 0 2RA

βi 0 −2(N − i) −2 0 2 + 2(i−N)(RA − 1)− 2R∆

Table 2.5: In the table, i runs from 1 to N . By definition, Q(0,1) = Q̃(0,1) = 0, V (0) = Ṽ (0) = 0
and Φ(N) = 0. We don’t report here the topological symmetry U(1)ζ since the only operators
charged under it come from the non-perturbative monopole sector.

where M± are the fundamental monopoles associated to the U(N) gauge node, which are
not turned on in the superpotential. The dressing is performed with the meson matrix
constructed from the last bifundamental of the M [U(N)] sub-tail

M = TrN−1 Q(N−1,N)Q̃(N−1,N) , (2.147)

which transforms in the adjoint representation of U(N). Finally, remember that in the
definition of M [U(N)] we have N gauge singlets βi that flip the diagonal mesons D̃(i)D(i) for
i = 1, · · · , N . The transformation rules under the enhanced global symmetry of the gauge
invariant chiral operators are

U(N)z U(1)mA U(1)∆ U(1)µ U(1)ζ U(1)R

C N2 − 1 2 0 0 0 2RA

Ω N̄ 0 1 1 0 R∆ + r

Ω̃ N 0 1 1 0 R∆ + r
M±

Ms 1 N − 2s− 1 −1 −1 ±1 2− (N − 2s− 1)(1−RA)−R∆ − r

TrN

(
P̃MsP

)
1 −2s 0 2 0 2s(1−RA) + 2r

βi 1 −2(N − i) −2 0 0 2 + 2(i−N)(RA − 1)− 2R∆

Recombination dual

We propose a recombination property of G[U(N)], which actually provides a set of several
duality frames for the theory. These dual theories are obtained from a G[U(N − k)] and a
G[U(k)] tail, where k ≤ N , glued together with a bifundamental flavor qLR. The fundamental
flavors pL, p̃L and pR, p̃R attached to the ends of the two tails transform under the same
symmetry U(1)µ. Moreover, all the U(1)zN−i+1 nodes, for i = 1, · · · , k, are connected to
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Figure 2.8: Quiver diagram of the recombination dual theory. The blue lines represent gauge
singlets χi χ̃i that transform under the flavor symmetries of the nodes they connect.

the U(1)µ node by some gauge singlets χi, χ̃i
19. The β-fields of the right G[U(k)] tail are

removed, which can be achieved without modifying the definition of the G[U(k)] building
block by adding k additional gauge singlets bi that flip them. The complete structure of the
theory is represented in the quiver of Figure 2.8. Finally, on top of this, we also have 3k

gauge singlets that we denote by S±
i and αi.

The full superpotential of the dual theory is

Wrecomb = WG[U(N−k)] +WG[U(k)] +Wmid +Wflips . (2.148)

The first two terms are the usual superpotential (2.142) for the two tails G[U(N − k)]
and G[U(k)]. The third term contains some cubic and quartic couplings and a monopole
superpotential that relate the tails

Wmid = TrN−k (Trk qLRq̃LR)
(
TrN−k−1 q

(N−k−1,N−k)
R q̃

(N−k−1,N−k)
R

)
+

− Trk (TrN−k qLRq̃LR)
(
Trk−1 q

(k−1,k)
L q̃

(k−1,k)
L

)
+

+ Trk (pR TrN−k (qLRp̃L)) + TrN−k (pL Trk (q̃LRp̃R)) +
+ M(0,··· ,0,1,1,0,··· ,0) + M(0,··· ,0,−1,−1,0,··· ,0) . (2.149)

The last term involves the monopoles with non-vanishing magnetic fluxes corresponding to
the U(N − k) and U(k) gauge nodes only. This has the effect of breaking the two topological
symmetries of these nodes to their anti-diagonal combination, which is mapped to the U(1)ζ

19Notice that the U(1)za symmetries of the G[U(N − k)] tail are ordered in the usual way, that is U(1)z1

corresponds to the leftmost square node of the G[U(N − k)] subquiver of Figure 2.8 and U(1)zN−k to the
rightmost one, while the U(1)zN−i+1 symmetries of the G[U(k)] tail are ordered in the opposite way, that is
U(1)zN corresponds rightmost square node of the G[U(k)] subquiver (which appears reversed in Figure 2.8)
and U(1)zN−k+1 to the leftmost one. Nevertheless, since all of these symmetries are expected to get enhanced
in the IR to U(N)z the ordering is not really important.
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U(1)zi U(1)zN−n+1 U(1)mA U(1)∆ U(1)µ U(1)ζ U(1)R

S±
i 0 0 N − 2i + 1 −1 −1 ±1 2− (N − 2i + 1)(1−RA)−R∆ − r

αi 0 0 −2(i− 1) 0 2 0 2(i− 1)(1−RA) + 2r
χN−i+1 0 1 0 1 1 0 R∆ + r
χ̃N−i+1 0 -1 0 1 1 0 R∆ + r

q
(a−1,a)
L 0 0 −1 0 0 0 1−RA

q̃
(a−1,a)
L 0 0 −1 0 0 0 1−RA

q
(i−1,i)
R 0 0 −1 0 0 0 1−RA

q̃
(i−1,i)
R 0 0 −1 0 0 0 1−RA

qLR 0 0 1 0 0 0 RA

q̃LR 0 0 1 0 0 0 RA

pL 0 0 −k 0 1 0 k(1−RA) + r
p̃L 0 0 −k 0 1 0 k(1−RA) + r
pR 0 0 k − 1 0 −1 0 1− (k − 1)(1−RA)− r
p̃R 0 0 k − 1 0 −1 0 1− (k − 1)(1−RA)− r

v
(a−1)
L 1 0 a−N + 1 −1 0 0 2 + (N − a− 1)(1−RA)−R∆

ṽ
(a−1)
L −1 0 a−N + 1 −1 0 0 2 + (N − a− 1)(1−RA)−R∆

v
(i−1)
R 0 1 i 1 0 0 1− i(1−RA) + R∆

ṽ
(i−1)
R 0 −1 i 1 0 0 1− i(1−RA) + R∆

d
(a)
L −1 0 N − a 1 0 0 (a−N)(1−RA) + R∆

d̃
(a)
L 1 0 N − a 1 0 0 (a−N)(1−RA) + R∆

d
(i)
R 0 −1 1− i −1 0 0 1 + (i− 1)(1−RA)−R∆

d̃
(i)
R 0 1 1− i −1 0 0 1 + (i− 1)(1−RA)−R∆

Φ(b)
L 0 0 2 0 0 0 2RA

Φ(j)
R 0 0 2 0 0 0 2RA

βL,a 0 0 2(N − a) −2 0 0 2 + 2(N − a)(1−RA)− 2R∆

Table 2.6: Transformation rules of the chiral fields of the recombination dual theory under
the global symmetry. In the table, a runs from 1 to N − k, b from 1 to N − k − 1, i from 1
to k and j from 1 to k − 1.

symmetry of the dual G[U(N)] theory. Finally, we have some flip terms

Wflips =
k∑

i=1

(
S±

i M±
(k)Mk−i

R

+ αi Trk

(
p̃RMi−1

R pR

)
+ βR,ibi + χN−i+1ΩR,i + χ̃N−i+1Ω̃R,i

)
,

(2.150)

where M±
(k) denote the fundamental monopoles of the U(k) gauge node, which can be dressed

with the meson matrix

MR = Trk−1 q
(k−1,k)
R q̃

(k−1,k)
R (2.151)

transforming in the adjoint representation of U(k), and ΩR,i denotes the i-th component of
the vector Ω associated to the right G[U(k)] tail. In Table 2.6 we summarize the charges
under the global symmetries of all the chiral fields of the theory.

The chiral ring operators are basically obtained by gluing those of the two G[U(N)] tails.
First, we have an operator that we denote Ĉ which transforms in the adjoint representation of
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11 1 1

2 11

Figure 2.9: Diagrammatic representation of the operator Ĉ in the case N = 3 and k = 1.
Arrows of the same color represent chiral fields that we assemble to construct an element of
the matrix. In order to have a gauge invariant operator, we have to consider sequences of
arrows that start and end on a squared node.

U(N)z. This consists of four blocks. The two on the diagonal are respectively (N−k)×(N−k)
and k × k matrices that correspond to the usual C operators of G[U(N − k)] and G[U(k)].
Recall that these are constructed starting with one of the diagonal flavors, moving along
the tail following the bifundamentals and then ending on one of the vertical flavors. On the
diagonal we still have the traces of the adjoint chirals, but since we have only N − 2 of them
one element has to be

TrMLR = TrN−k Trk qLRq̃LR . (2.152)

The off-diagonal blocks are built in a similar way, but going from one tail to the other using
the bifundamental qLR as a link and ending on one of the diagonal flavors of the opposite tail
rather than a vertical one (see Figure 2.9). For example, for N = 3 and k = 1 this matrix
takes the form

Ĉ =


0 v

(1)
L d

(1)
L d

(1)
R q̃LR,iq̃

(1,2)
i d

(1)
L

d̃
(1)
L ṽ

(1)
L 0 d

(1)
R q̃LR,id

(2)
L,i

d̃
(1)
L q

(1,2)
i qLR,id̃

(1)
R d̃

(2)
L,iqLR,id̃

(1)
R 0

+ Φ(1)D1 + TrMLRD2 ,

(2.153)

Then, we have the operators Ω̂, ˜̂Ω. One may think that they are obtained by simply
juxtaposing the vectors ΩL and ΩR of the two tails, but this is not possible since they have
not the same charges under the global symmetries. Moreover, the operators of the right tail
are set to zero in the chiral ring by the equations of motion of the flipping fields χi. The
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correct operators are then

Ω̂ = Ω̃R ⊕


χN−k+1

...
χN

 ,
˜̂Ω = ΩR ⊕


χ̃N−k+1

...
χN

 . (2.154)

These transform in the fundamental and anti-fundamental representation respectively of the
flavor symmetry U(N)z. Something similar happens for the mesonic operators of the saw.
Namely, the mesons constructed with the diagonal chirals of the right tail are now non-trivial
operators since we removed the flipping fields βR,i and they can be collected with the singlets
βL,a of the left tail. Hence, the complete tower of N generators of this type is

βL,a a = 1, · · · , N − k

d
(i)
R d̃

(i)
R i = 1, · · · , k

. (2.155)

Let’s now consider the monopole operators and their dressings. Only those associated to the
U(N − k) node are non-trivial, since those at the U(k) node are flipped by the singlets S±

i

(recall that the monopoles of the other gauge nodes are turned on in the superpotential and
so they are removed from the chiral ring). Hence, we have the following 2N generators:

M±
Ms

L
s = 0, · · · , N − k − 1

S±
i i = 1, · · · , k

, (2.156)

where M± denotes the fundamental monopoles of the U(N − k) node, which are dressed with
the field

ML = TrN−k−1 q
(N−k−1,N−k)
L q̃

(N−k−1,N−k)
L (2.157)

that transforms in the adjoint representation of U(N − k). Finally, we have the (dressed)
mesons associated to the extra flavors of the two tails pL, p̃L, pR, p̃R, where the dressing is
made using the matrices ML and MR. Again, these operators are flipped in the right tail by
the gauge singlets αi. Thus, the last set of N gauge invariant chiral operators isTrN−k (p̃LMs

LpL) s = 0, · · · , N − k − 1

αi i = 1, · · · , k
, (2.158)

Summing up, the main gauge invariant operators of the recombination dual theory and their
transformation rules under the global symmetries are
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U(N)z U(1)mA U(1)∆ U(1)µ U(1)ζ U(1)R

Ĉ adj 2 0 0 0 2RA

Ω̂ N̄ 0 1 1 0 R∆ + r
˜̂Ω N 0 1 1 0 R∆ + r

βL,a 0 2(N − a) −2 0 0 2 + 2(N − a)(1−RA)− 2R∆

d
(N−i+1)
R d̃

(N−i+1)
R 0 2(N − i) −2 0 0 2 + 2(N − i)(1−RA)− 2R∆

S±
i 0 N − 2i + 1 −1 −1 ±1 2− (N − 2i + 1)(1−RA)−R∆ − r

M±
Ms

L
0 N − 2k − 2s− 1 −1 −1 ±1 2− (N − 2k − 2s− 1)(1−RA)−R∆ − r

αi 0 −2(i− 1) 0 2 0 2(i− 1)(1−RA) + 2r
TrN−k (pLMs

Lp̃L) 0 −2(k + s) 0 2 0 2(k + s− 1)(1−RA) + 2r

As a first check of the duality we can map the gauge invariant chiral operators of the two
theories

C ↔ Ĉ

Ω ↔ Ω̂
Ω̃ ↔ ˆ̃Ω

βi ↔

βL,i i = 1, · · · , N − k

d
(N−i+1)
R d̃

(N−i+1)
R i = N − k + 1, · · · , N

M±
Ms−1 ↔


S±

s s = 1, · · · , k

M±
Ms−k−1

L

s = k + 1, · · · , N

TrN

(
PMs−1P̃

)
↔

αs s = 1, · · · , k

TrN−k

(
pLMs−k−1

L p̃L

)
s = k + 1, · · · , N

(2.159)

At the level of S3
b partition functions, the recombination duality is represented by the

following integral identity:

ZG[U(N)](z⃗; ζ; µ; ∆; mA) =
∫

du⃗N e2πiζ
∑N

i=1 u
(N)
i

∏N
i=1 sb

(
iQ

2 ± u
(N)
i − µ

)
∏N

i<j sb

(
iQ

2 ± (u(N)
i − u

(N)
j )

) ×
×ZM [U(N)]( ⃗u(N); z⃗; ∆; mA) =

= ΛN
k (mA, ∆, ζ, µ)

N∏
i=N−k+1

e2πiζzisb

(
i
Q

2 ± zi − µ−∆
)
×

×
∫

du⃗N−k e2πiζ
∑N−k

a=1 u
(N−k)
a

∏N−k
a=1 sb

(
iQ

2 ± u
(N−k)
a − µ− k(iQ

2 −mA)
)

∏N−k
a<b sb

(
iQ

2 ± (u(N−k)
a − u

(N−k)
b )

) ×

×ZM [U(N−k)]

(
u

(N−k)
1 , · · · , u

(N−k)
N−k ; z1, · · · , zN−k; ∆− k

(
i
Q

2 −mA; mA

))
×
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×
∫

dv⃗k e−2πiζ
∑k

i=1 v
(k)
i

∏k
i=1 sb

(
±v(i) + µ + (k − 1)

(
iQ

2 −mA

))
∏k

i<j sb

(
iQ

2 ± (v(k)
i − v

(k)
j )

) ×

×
k∏

i=1

N−k∏
a=1

sb

(
i
Q

2 ± (v(k)
i − u(N−k)

a )−mA

)
×ZM [U(k)]

(
v

(k)
1 , · · · , v

(k)
k ; zN , · · · , zN−k+1; mA −∆ + k

(
i
Q

2 −mA; mA

))
,

(2.160)

where ΛN
k is the contribution of the 4k flipping singlets S±

i , αi and bi

ΛN
k (mA, ∆, ζ, µ) =

k∏
n=1

sb

(
±ζ + µ + ∆−mA + (N − 2n)

(
i
Q

2 −mA

))
×

× sb

(
i
Q

2 − 2µ− 2(n− 1)
(

i
Q

2 −mA

))
×

× sb

(
−i

Q

2 + 2∆− 2(i− 1)
(

i
Q

2 −mA

))
. (2.161)

Notice in particular that the double-sine functions in the last line, representing the fields
bi, precisely cancel the contribution of the flipping fields βR,i from the right G[U(k)] tail.
The parameters on which the partition function depends are the real masses zi for the flavor
symmetry U(N)z, the axial masses mA, ∆, µ for the axial symmetries U(1)mA×U(1)∆×U(1)µ

and the FI parameter ζ corresponding to the topological symmetry U(1)ζ .

Sketch of the derivation

The recombination duality we just described can be derived by sequentially applying a more
fundamental duality which is the Aharony duality that we saw in Subsection 2.3.3. We are
now going to schematically describe the main steps of this derivation. This can be formalized
in various ways, either at the field theory or at the partition function level. For example,
in Subsection 3.3 of [25] the precise superpotential at each step of the derivation has been
worked out. This task is particularly complicated since it requires the knowledge of the
operator map of monopole operators at each dualization (see [24, 62, 63] for more details on
how to work this out20). A more efficient strategy is to implement this derivation at the level
of some localized partition function, by sequentially applying the corresponding identities for
the Aharony duality. In Appendix B.1 we show this explicitly at the level of the S3

b partition
function for N = 3.

The basic strategy is to apply the Aharony duality locally on a single node of the quiver
at a time. In order for this to be possible, we should have no adjoint matter at that node,

20See also Appendix A of [82] and the Appendix C of [83].
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Figure 2.10: Quiver diagrams of the theories at each step of the derivation of the recombination
duality. We use different colors for each square node so to keep track of the fields charged
under the corresponding global symmetry.

since the Aharony duality contemplates only fundamental matter. In our case, the node of
the G[U(N)] quiver that satisfies such requirement is the last U(N) node:

• At the first step, we apply the Aharony duality to the U(N) node. Since this node
sees N + 1 flavors, its rank is decreased to 1. Taking into account all the singlet fields
that are produced in the dualization, we find exactly the recombination dual theory
for k = 1. Some of these fields are actually charged under the gauge symmetry of the
adjacent nodes now. In particular, some of them give mass to the adjoint chiral of the
adjacent U(N − 1) node, as expected looking at the quiver in Figure 2.8.

• Since we don’t have an adjoint chiral at the U(N − 1) node anymore, we can repeat
this procedure and apply the Aharony duality to it21. Now this node sees N + 1 flavors,
since the rank of the node on its right has been decreased to 1. Hence, when we dualize
it, it becomes a U(2) gauge node. Again we produce various flipping fields, some of
which give mass to the adjoint chiral of the U(N − 2) node on the left, which allows
us to iterate this procedure again. Moreover, we don’t produce any link between the
U(N − 2) node on the left and the U(1) node on the right, since these turn out to be
massive. The result is precisely the recombination dual frame for k = 2.

21One can also check using the results of [24, 62, 63] that, after the dualization of the U(N) gauge node,
the fundamental monopoles of the U(N − 1) node are not turned on in the superpotential anymore.
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Figure 2.11: Schematic representation of the rank stabilization duality for generic N and k.
We don’t represent gauge singlet fields to avoid clutter the drawing, except for the β-fields of
the G[U(k)] theory which flip the diagonal mesons.

• Iterating this procedure k times we get the recombination dual frame for generic k.

In Figure 2.10 we show the structure of the quivers at each step of this derivation for N = 3
and k = 0, 1, 2, 3.

From the derivation we just discussed it becomes clear an interesting property of the
G[U(N)] theory. As we go along the tail applying the Aharony duality, we initially decrease
the rank of the gauge node to which we apply it, until we reach the middle of the tail. From
this point, the rank starts to increase back and when we finally arrive at the end of the tail
we recover the same original G[U(N)] theory, but reversed. Hence, for a particular number k

of iterations of the Aharony duality we reach a configuration in which the dual theory has
minimal rank. For even N this happens exactly at k = N/2, while for odd N we have two
possibilities k = (N ± 1)/2. The rank of the original theory was

rank(TG[U(N)]) =
N∑

i=1
i = N(N + 1)

2 . (2.162)

Instead, when we use the recombination duality to get to the configuration with minimal
rank, we have

rank(Tmin) =


N
2

(
N
2 + 1

)
N even

N−1
2

(
N−1

2 + 1
)

+ N+1
2 N odd

. (2.163)

2.4.3 Rank stabilization duality

The next duality that we consider is a generalization of the confining duality for U(N) with
one adjoint and one fundamental flavor we saw in Subsection 2.3.1 to a higher number of
fundamental flavors. This duality can be understood as the 3d uplift of the integral identity
(2.19) for the free field integral of the (k + 3)-point correlation function of Liouville theory,
where 3 of the primary operators are arbitrary while k are degenerate. The fact that we add k

operators implies that in the 3d gauge theory we have k additional fundamental flavors, while
the fact that they are degenerate implies that the k flavors are involved in some superpotential
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interaction. Indeed, we recall that "degenerate" means that the momenta of the operators
are specified in terms of the coupling constant b of Liouville theory, so that we don’t have
the corresponding additional parameters in the matrix integral of the free field correlator,
and the absence of such parameters in the 3d gauge theory is interpreted as the fact that the
axial symmetries associated to the k flavors are broken by some superpotential interaction.
As expected from the free field identity (2.19), the dual theory contains the M [U(k)] theory
as a building block and it will turn out to be the G[U(k)] theory that we introduced. The
duality is schematically represented in Figure 2.11. We also pointed out in Section 2.2 that
on the l.h.s. of (2.19) the number of screening charges N doesn’t appear anymore as the
dimension of the integral, but only as a parameter. The same will be true for the 3d duality,
namely the rank N of the U(N) gauge group only appears as a parameter on the dual side.
For this reason, we call this rank stabilization duality.

Theory A

The first theory involved in the duality is the U(N) gauge theory with k + 1 fundamental
flavors Qi, Q̃i with i = 1, · · · , k and P , P̃ , plus one adjoint chiral Φ and N − k singlets bj

with superpotential

WA = TrN

(
Φ Trk QQ̃

)
+

N−k∑
j=1

bj TrN Φj =
k∑

i=1

N∑
a,b=1

Qa
i Φb

aQ̃i
b +

N−k∑
j=1

bj TrN Φj , (2.164)

with k < N . Recall that in the case k = 0 all the Casimir operators are flipped by the b-fields
since they are expected to violate the unitarity bound and decouple in the IR [48]. Moreover,
the b-fields can’t acquire a VEV because of quantum effects [49]. As we increase the number
of flavors, the superconformal R-charge of the adjoint chiral Φ is expected to increase and
the highest Casimir operators start to go above the unitarity bound. Hence, for a fixed value
of k we only need to flip the first N − k Casimir operators.

The global symmetry group of the theory is22

U(k)z × U(1)τ × U(1)µ × U(1)ζ . (2.165)

Since U(1)τ and U(1)µ are abelian flavor symmetries that can mix with the R-symmetry, the
corresponding parameters are actually defined as the holomorphic combinations

τ = Re(τ) + i
Q

2 (1−R), µ = Re(µ) + i
Q

2 r , (2.166)

22In our convention, we choose to gauge the baryonic symmetry associated to the flavor P , P̃ that doesn’t
enter in the superpotential. For this reason, the symmetry associated to the flavors Qi, Q̃i is U(k) rather
than SU(k). Moreover, compared to the case k = 0 of Subsection 2.3.1 we are re-labelling the abelian factors
of the global symmetries as U(1)s → U(1)τ , U(1)p → U(1)µ and U(1)ζ → U(1)ω, since we will mostly deal
with the S3

b partition function rather than the S2 × S1 one.



2.4 Uplifting free field identities to new 3d dualities 73

where r and R are the mixing coefficients. Notice that the N = 4 like superpotential for the
flavors Q and Q̃ implies that only the anti-diagonal combination U(k)z of the symmetries
that rotate them independently is preserved, while the diagonal axial symmetry is broken.
This is the manifestation in 3d of the fact that the momenta of the k additional operators in
the correlator of the 2d CFT are fixed. The transformation rules of all the chiral fields of the
theory under the global symmetries and their R-charges are

U(k)z U(1)τ U(1)µ U(1)R

Q k̄ -1 0 R

Q̃ k -1 0 R
P 0 0 1 r

P̃ 0 0 1 r
Φ 0 2 0 2(1−R)
bj 0 −2j 0 2− 2j(1−R)

This theory possesses various types of gauge invariant chiral operators. First of all, we
have the Casimirs of the gauge group built from the adjoint chiral Φ. The first N − k of
these are actually flipped by the b-fields, so that we only have k operators of this kind

TrN Φj , j = N − k + 1, · · · , N . (2.167)

Then, we have the fundamental monopole operators M± which can also be dressed with
Φ in the adjoint representation of the residual gauge group that survives in the monopole
background [51]. In total, we have 2N independent operators of this form, which we denote
by

M±
Φs , s = 0, · · · , N − 1 . (2.168)

The mesonic operators can be of different types, depending on which flavor we use to construct
them. We can have mesons built from the P , P̃ flavor, which can also be dressed with the
adjoint chiral Φ

TrN

(
P̃ΦsP

)
, s = 0, · · · , N − 1 . (2.169)

Another possibility is to combine the flavor P , P̃ with one of the flavors Q, Q̃. In this case,
we can’t have dressed mesons because the F-term equations of Q, Q̃ set them to zero. Hence,
we only have 2k of them

QiP̃ , P Q̃i, i = 1, · · · , k , (2.170)

which can be collected in two vectors transforming in the anti-fundamental and fundamental
representation respectively of U(k)z. Finally, we have the meson obtained combining Q and
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Q̃. Also such a meson can’t be dressed because of the equations of motion of Q, Q̃. Hence,
we have k2 of them

QiQ̃j , i, j = 1, · · · , k , (2.171)

which can be collected into a matrix transforming in the traceless adjoint representation of
U(k)z. The trace part is indeed set to zero by the F-term equation of Φ. The charges of
these operators under the global symmetries are

U(k)z U(1)τ U(1)µ U(1)ζ U(1)R

TrN Φj 0 2j 0 0 2j(1−R)
M±

Φs 0 −2N + k + 2s + 2 -1 ±1 1− r − (2N − k − 2s− 2)(1−R)
TrN

(
P̃ΦsP

)
0 2s 2 0 2r + 2s(1−R)

QP̃ k̄ −1 1 0 r + R

PQ̃ k −1 1 0 r + R

QQ̃ k2 − 1 −2 0 0 2R

Theory B

The dual theory is G[U(k)]23 with 3(N − k) additional gauge singlets αi, T +
j , T −

N−l+1 with
i, j, l = 1, · · · , N − k and superpotential (recall that we are limiting ourselves to the regime
k < N)

WB =WG[U(k)] +Wint , (2.172)

where Wint is a cubic superpotential that encodes interactions between the extra singlets αi,
T +

j , T −
l and the operators of the G[U(k)] tail

Wint =
N−k∑

i,j,l=1
αiT

+
j T −

N−l+1δi+j+l,2N−k+1 +
N−k∑
j,l=1

k−1∑
r=0

Trk (p̃Mrp) T +
j T −

N−l+1δr+j+l,N +

+
N−k∑
i,j=1

k−1∑
s=0

αiM
+
MsT −

N−l+1δi+s+l,N +
N−k∑
i,j=1

k−1∑
t=0

αiT
+
j M−

Mtδi+j+t,N +

+
N−k∑
l=1

k−1∑
r,s=0

Trk (p̃Mrp)M+
MsT −

N−l+1δr+s+l,k−1 +
N−k∑
j=1

k−1∑
r,t=0

Trk (p̃Mrp) T +
j M−

Mtδr+j+t,k−1 +

+
N−k∑
i=1

k−1∑
s,t=0

αiM
+
MsM

−
Mtδi+s+t,k−1 +

k−1∑
r,s,t=0

Trk (p̃Mrp)M+
MsM

−
Mtδr+s+t,2k−N−2 .

(2.173)

23We denote the fields of the G[U(k)] theory with lower case letters, in contrast to the convention we used
in Subsection 2.4.3 to avoid confusion with the fields of Theory A.
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U(1)za U(1)τ U(1)µ U(1)ζ U(1)R

αi 0 2(i− 1) 2 0 2r + 2(i− 1)(1−R)
T +

j 0 −2N + k + 2j −1 1 1− r − (2N − k − 2j)(1−R)
T −

N−l+1 0 −2N + k + 2l −1 −1 1− r − (2N − k − 2l)(1−R)
βa 0 2(N − k + a) 0 0 2(N − k + a)(1−R)

q(a−1,a) 0 1 0 0 1−R

q̃(a−1,a) 0 1 0 0 1−R
p 0 N − k 1 0 r + (N − k)(1−R)
p̃ 0 N − k 1 0 r + (N − k)(1−R)

v(a−1) 1 N − a 0 0 1 + (N − a)(1−R)
ṽ(a−1) −1 N − a 0 0 1 + (N − a)(1−R)
d(a) −1 −N + a− 1 0 0 1− (N − a + 1)(1−R)
d̃(a) 1 −N + a− 1 0 0 1− (N − a + 1)(1−R)
Φ(a) 0 −2 0 0 2R

Table 2.7: Representations and charges under the global symmetries of all the chiral fields
of Theory B. In the table the indices i, j, l run from 1 to N − k, while a from 1 to k. By
convention, q(0,1) = q̃(0,1) = 0, v(0) = ṽ(0) = 0 and Φ(k) = 0.

Both the meson and the monopole operators of G[U(k)] are dressed with the matrix

M = Trk−1 q(k−1,k)q̃(k−1,k) , (2.174)

which transforms in the adjoint representation of the U(k) factor of the gauge group. Notice
that for k = 0 the superpotential reduces to that of the WZ dual we saw in Subsection 2.3.1.

The last term in the superpotential (2.173) involves only the operators of the G[U(k)]
part of the theory and has the effect of breaking one of the U(1) axial symmetries of G[U(k)]
(2.143), so now the global symmetries of Theory A and Theory B match (at least at the level
of the Cartan subalgebra). Indeed, in order for such a term to be uncharged under all the
global symmetries and have R-charge 2, the axial masses of G[U(k)] (2.144) have to satisfy
the constraint

∆ = (N − k + 1)mA − i
Q

2 (N − k) , (2.175)

which can be consistently solved in terms of a single parameter τ

mA = i
Q

2 − τ, ∆ = i
Q

2 − (N − k + 1)τ , (2.176)

Hence, we see that the two axial symmetries are broken to this particular combination

U(1)mA × U(1)∆ → U(1)τ (2.177)
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U(k)z U(1)τ U(1)µ U(1)ζ U(1)R

αi 0 2(i− 1) 2 0 2r + 2(i− 1)(1−R)
T +

j 0 −2N + k + 2j −1 1 1− r − (2N − k − 2j)(1−R)
T −

N−l+1 0 −2N + k + 2l −1 −1 1− r − (2N − k − 2l)(1−R)
βa 0 2(N − k + a) 0 0 2(N − k + a)(1−R)
C k2 − 1 −2 0 0 2R

Ω k̄ −1 1 0 r + R

Ω̃ k −1 1 0 r + R
M±

Ms 0 −k + 2s + 2 −1 ±1 1− r − (k − 2s− 2)(1−R)
Tr (p̃Msp) 0 2(N − k + s) 2 0 2r + 2(N − k + s)(1−R)

Table 2.8: The main gauge invariant operators of Theory B and their transformation rules
under the (enhanced) global symmetry.

Taking this into account the global symmetry group of Theory B is

k∏
a=1

U(1)za × U(1)τ × U(1)µ × U(1)ζ . (2.178)

On this side of the duality, the full flavor symmetry U(k)z is not visible in the UV, but it is
enhanced at low energies, so that the global symmetry group coincides with that of Theory A

U(k)z × U(1)τ × U(1)µ × U(1)ζ . (2.179)

This feature is motivated by the validity of the duality, but also by the fact that the
gauge invariant operators of G[U(k)] re-organize into representations of U(k)z, as showed in
Subsubsection 2.4.2. We list the transformation rules of the chiral fields under the global
symmetries and their R-charges in Table 2.7.

The gauge invariant chiral operators are precisely those of G[U(k)]. We summarize them
in Table 2.8, where we also specify their charges under the global symmetries and their
R-charges. From this, we can find the map between the chiral ring generators of the dual
theories, which provides a first non-trivial test of the duality

TrN ΦN−k+a ↔ βa, a = 1, · · · , k

M+
Φs ↔

T +
s+1 s = 0, · · · , N − k − 1

M+
Mk−N+s s = N − k, · · · , N

M−
Φs ↔

T −
N−s s = 0, · · · , N − k − 1

M−
Mk−N+s s = N − k, · · · , N
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TrN

(
P̃ΦsP

)
↔

αs+1 s = 0, · · · , N − k − 1

Trk

(
p̃Mk−N+sp

)
s = N − k, · · · , N − 1

QP̃ ↔ Ω
PQ̃ ↔ Ω̃
QQ̃ ↔ C . (2.180)

At the level of the three-sphere partition functions the duality is expressed by the identity

ZTA
=

N−k∏
j=1

sb

(
−i

Q

2 + 2jτ

)
︸ ︷︷ ︸

βj

∫
dxN e2πiζ

∑
α

xα

∏N
α,β=1 sb

(
iQ

2 + (xα − xβ)− 2τ
)

∏N
α<β sb

(
iQ

2 ± (xα − xβ)
) ×

×
N∏

α=1
sb

(
i
Q

2 ± xα − µ

) k∏
a=1

sb (±(xα − za) + τ) =
N−k∏
j=1

sb

(
i
Q

2 − 2µ− 2(j − 1)τ
)

︸ ︷︷ ︸
αj

×

× sb (−ζ + µ + (2N − k − 2j)τ)︸ ︷︷ ︸
T +

j

N∏
j=k+1

sb (ζ + µ + (−k + 2j − 2)τ)︸ ︷︷ ︸
T −

j

×

× ZG[U(k)]

(
z⃗; ζ; µ + (N − k)τ ; i

Q

2 − (N − k + 1)τ ; i
Q

2 − τ

)
= ZTB

. (2.181)

In Appendix B.2 we prove this identity for k = 1, 2 and generic N by iteratively applying
the one-monopole and the Aharony duality. The derivation is very similar to the one for the
confining duality that we have in the k = 0 case. The idea is to find a dual frame which
is then stable under a definite sequence of duality moves, in the sense that every time we
apply those moves we go back to the same theory but with a lower rank of the gauge group
and with some additional singlets. Exploiting this stability of the theory, we are able to
find the dual frame of G[U(k)], where now the original rank N only appears as a parameter.
This again justifies the name "rank stabilization" that we give to this duality. The duality
has been also tested for k = 3 and N = 4, 5 by means of a perturbative expansion of the
supersymmetric index in Appendix C.2.3 of [25].

Finally, it is a tedious but straightforward exercise to show that, starting from the
duality identity for the S2 × S1 partition functions and taking the 2d Coulomb limit that we
explained in Section 2.3, we recover the duality identity for the free-field correlator (2.19) of
the (k + 3)-point correlator of Liouville theory that was proven in [38].

Rank analytic continuation

As we have mentioned, the rank stabilization duality relating the U(N) theory with an
adjoint and k + 1 flavors to the G[U(k)] quiver theory can be considered as the 3d uplift of
the duality relation (2.19) for the free field representation with N screening charges of the
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correlator with 3 primaries and k degenerate operators in the Liouville theory. In Section 2.2
we stressed the fact that the identity (2.19) provides a form suitable for analytic continuation
in N which allows us to reconstruct the correlator for generic values of the momenta lifting
the screening condition (2.8).

Similarly to what we saw for k = 0 in Subsection 2.3.4, also the 3d partition function
enjoys a similar property. Indeed the partition function of Theory B in (2.181) consists of
two blocks, the partition function of G[U(k)] and the contribution of the gauge singlets. In
the former N enters as a parameter inside the charges of the various fields, while in the latter
it also counts the number of singlets

ZTB
=

N∏
j=1

S2 (Q + 2ijτ)
N−k∏
j=1

S2 (Q + 2iµ + 2i(j − 1)τ)×

×S2

(
Q

2 + iζ − iµ− i(2N − k − 2j)τ
) N∏

j=k+1
S2

(
Q

2 − iζ − iµ− i(2j − k − 2)τ
)
×

×ZG′[U(k)]

(
z⃗; ζ; µ + (N − k)τ ; i

Q

2 − (N − k + 1)τ ; i
Q

2 − τ

)
, (2.182)

Here we have written explicitly the contribution of the β-fields contained in the G[U(k)]
theory, so by G′[U(k)] we denote the same quiver gauge theory but without those flipping
fields. Moreover, we moved to this side of the duality the contribution of the b-fields
that flipped some of the Casimirs on the USp(2N) gauge theory side and we used that
sb (x) = S2

(
Q
2 − ix|b, b−1

)
≡ S2

(
Q
2 − ix

)
. Now we can use the periodicity property of the

triple-sine function

S3(z + ω3|ω1, ω2, ω3) = S3(z|ω1, ω2, ω3)
S2(z|ω1, ω2) (2.183)

to move the dependence on N inside the argument of the triple-sine function, making it
appear in a form suitable for analytic continuation since the 3d partition function can be
expressed as:

ZTB
= Res

N∈N

{ S′
3(0)S3 (−2iµ + 2iτ) S3

(
Q
2 ± iζ − iµ− i(2N − k − 2)τ

)
S3 (−2iNτ) S3 (−2iµ− 2i(N − k − 1)τ) S3

(
Q
2 ± iζ − iµ− i(k − 2)τ

)}×
×ZG[U(k)]

(
za, ζ, µ + (N − k)τ, i

Q

2 − τ, i
Q

2 − (N − k + 1)τ
)

, (2.184)

where S3(x) ≡ S3(x|b, b−1, 2iτ). Inside the brackets we recognize the five-sphere partition
function of the 5d T2 theory, which can be realized on the toric CY geometry C3/Z2 × Z2

[42], with quantized Kähler parameters. This is the result that we got in the k = 0 case in
Subsection 2.3.4. The analytic continuation in N is then reinterpreted as geometric transition
with the 3d theory appearing as a codimension-two defect theory at the point in the moduli
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space of the 5d T2 theory specialized by the quantized values of the Kähler parameters as
proposed in [31, 32].

The (k + 3)-point correlator corresponds via the AGT map [84, 85] to the T2 theory
(two M5 wrapping the 3-punctured sphere) coupled to k co-dimension-two defects (k M2
branes which are points on the 3-punctured sphere). In our case the 5d theory emerging
after the geometric transition can be realized as the 5d T2 geometry with the insertion of k

toric branes24 and the contribution of the G[U(k)] theory captures how the defects interact
among themselves.

2.5 Outlook

In this chapter we established a connection between a specific observable of 3d N = 2 gauge
theories, namely their partition function on S2 × S1, and complex integrals that correspond
to free field realizations of 2d CFT correlators. We saw that the latter can be obtained from
the former by considering a particular 2d limit where the S1 is shrunk to a point that is
called "Coulomb limit". We determined the precise dictionary of this correspondence and
then exploited it to find new results about the dynamics of 3d N = 2 gauge theories by
starting from known result about 2d free field correlators.

From this point, there are several directions that we may follow. We already mentioned
that 3d dualities can be obtained as circle reductions of 4d dualities [5, 6]. Given the success
that we achieved in trying to reverse the similar limit that relates 3d dualities to 2d dualities,
it is then very tempting to try to understand whether we can further uplift our results in 3d

to new dualities and symmetry enhancements in four dimensions.
In order to understand this, it is again useful to consider a prototypical example in which

the more standard top-down approach is well understood. Remember that our starting
example was the confining duality in 3d relating the U(N) gauge theory with one adjoint and
one fundamental flavor to a WZ model of 3N chirals with a cubic superpotential. It turns
out that this duality has a 4d N = 1 parent which was first proposed in [86]:

Theory A: USp(2N) gauge theory with one antisymmetric chiral A, six fundamental chirals
Qa and N chiral singlets bi with superpotential25

W =
N∑

i=1
bi TrN Ai . (2.186)

24In [72] the contribution of k toric branes in the length-two strip geometry, which is closely related to the
T2 geometry, was shown to reproduce the (k + 3)-point conformal blocks.

25The USp(2N) indices are contracted using the totally antisymmetric tensor

J(N) = IN ⊗ i σ2 . (2.185)
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Theory B: WZ model with 15N chiral singlets µab;i for i = 1, · · · , N , a < b = 1, · · · , 6
interacting with the cubic superpotential

Ŵ =
N∑

i,j,k=1

6∑
a,b,c,d,e,f=1

ϵabcdef µab;iµcd;jµef ;kδi+j+k,2N+1 . (2.187)

Observe how similar this duality is to the 3d one. We can indeed flow from the 4d duality
to the 3d one by first compactifying it on S1 and then considering a deformation that consists
both of a Coulomb branch VEV breaking the gauge group from USp(2N) to U(N) and a
real mass deformation that keeps some of the matter fields massless26. This is actually how
the 3d duality was first derived in [37]. Moreover, also the four-dimensional duality can be
derived with a deconfinement technique similar to the one we presented in Subsection 2.3.3
for the 3d one27. This was first shown in [90] at the level of the S3 × S1 partition function to
prove the associated integral identity that was first conjectured in [91] (see also [92, 93] for a
field theory point of view).

The upshot of this discussion is that the 4d duality seems to be the more fundamental
one, from which we can derive the 3d duality as a limit and the evaluation formula for the
3-point function of Liouville theory as a further limit. This suggests that also the other 3d

dualities that we discussed in this chapter and that were obtained as uplifts of known results
for 2d free field correlators can be further uplifted to 4d. This seems even more plausible if
we believe that all the dualities in low dimensions can be obtained as limits of a restricted
set of dualities in higher dimensions.

In the next chapter we will indeed discuss many results about the dynamics of 4d N = 1
theories, but we will take a completely different perspective which is in a sense orthogonal to
the point of view we adopted so far. We will indeed follow a top-down approach instead of a
bottom-up one, by constructing 4d theories as compactifications of 6d SCFTs on Riemann
surfaces. We will see how the 4d analogue of the M [SU(N)] theory appears naturally in this
framework. We will also recover the confining duality for USp(2N) with one antisymmetric
and six fundamental chirals. We will not be able to find the 4d versions of the recombination
and the rankstabilization duality, which will be discussed in an upcoming paper [92]. It would
be very interesting to obtain them also from the 6d construction we will discuss in the next
chapter.

It is also important to stress the fact that here we just focused on a very specific 2d CFT
as a starting point for obtaining new 3d dualities, namely Liouville theory, but there are
many other results in the CFT literature that we can try to uplift. For example, free field

26In the S1 reduction a monopole superpotential is generated, but this gets lifted after the real mass
deformation.

27It is also known a 2d reduction of this 4d duality. The reduction can be performed on a two-sphere S2 with
a topological twist that preserves half of the supersymmetry [87–89], so to get a duality between N = (0, 2)
theories [9]. This has been discussed in [64], where it has also been derived with a deconfinement technique
similar to the one for the 3d and 4d analogues of the duality.
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correlators for Toda An theory have been studied in [94, 95]. The difference between Toda
and Liouville is that now we don’t have just one scalar field, but a set of n scalar fields.
The free field integrals for correlation functions in Toda theory then contain the insertion of
n distinct sets of screening charge operators, which will have dimensions N1, · · · , Nn. The
corresponding 3d gauge theory will then be a quiver theory with n unitary nodes of ranks
N1, · · · , Nn and the free field integral identities studied in [94, 95] will uplift to dualities for
such quiver gauge theories. In an upcoming paper [92] we will study some of the dualities
that can be obtained in this way, but uplifting them directly to four dimensions.

Finally, we conclude mentioning the fact that it is of course possible to exploit the
correspondence between 3d dualities and 2d free field correlators in the standard top-down
direction. Indeed over the years tons of dualities for 3d N = 2 theories have been discovered
and it would be very interesting to understand if they can lead to new insights into the realm
of 2d CFTs.





Chapter 3

4d compactifications of the 6d

E-string theory

In this chapter we will present an approach for finding new dualities and symmetry en-
hancements in four dimensions that is in a sense orthogonal to the one we used in the first
chapter, since it is intrinsically top-down. We will indeed construct 4d N = 1 theories as
compactifications of 6d N = (1, 0) SCFTs on Riemann surfaces, focusing in particular on
the 6d E-string theory. We will discuss how dualities and symmetry enhancements for the
resulting models can be understood geometrically thanks to this construction. The content
of this chapter is based on [96, 97], where in the first reference the compactification of the
E-string theory on tubes and tori has been discussed, while in the second one cap and sphere
compactifications have been considered.

3.1 The general idea

In recent years there has been a lot of work on trying to construct four-dimensional theories,
especially with supersymmetry, as the compactification of some higher dimensional theories.
One possibility it to start with a 6d SCFT and compactify it on a Riemann surface, so
to get an effective 4d theory at low energies. In the process one can also preserve part
of the supersymmetry of the 6d theory by performing a topological twist, that is turning
on a background gauge field for a subgroup of the six-dimensional R-symmetry in such a
way that it cancels the contribution of the spin connection of the Riemann surface in the
supersymmetry variations of the fermions.

This approach has been pioneered in [10, 98], where 4d N = 2 SCFTs have been
constructed as compactifications of 6d N = (2, 0) SCFTs. One of the key features of this
procedure is that the 4d theory only depends on the topological properties of the 2-surface
Σg,n, namely the genus g and the number of punctures n, while it doesn’t depend on the
metric on it. This allows us to understand dualities between the 4d theories in a geometric
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Figure 3.1: Schematic representation of the different RG flows that we can use to reach the
same 4d SCFT.

way. The idea is to first figure out what are the theories related to the fundamental building
block, which is the sphere with 3 punctures. These theories are usually called trinions and
gluing them together we can construct models associated to arbitrary Riemann surfaces.
Indeed, the process of gluing is understood field theoretically as gauging mutual global
symmetries of the trinion theories. Starting from a Riemann surface, we can consider different
degeneration limits corresponding to different pants decomposition, namely different gluings
of 3-punctured spheres. Since the gluing is different for different pants decompositions, one
would associate to each of them a distinct theory. Nevertheless, the 4d theory is expected to
depend only on the topology of the surface, so all the pants decompositions are equivalent
and this implies a duality between the different looking 4d theories. In some instances one can
also have symmetry enhancements, when the surface is built from trinions that individually
preserve less symmetry than that expected from the full surface.

This strategy has proved to be incredibly successful for the program of the classification of
4d N = 2 SCFTs. The only flaw is that most of the times we are not able to get a Lagrangian
description of the resulting theories from this perspective. In particular, the trinion theories
are typically non-Lagrangian. Nevertheless, it may be possible to find a Lagrangian that is
not conformal in the UV, but that flows to the desired SCFT in the IR, provided that we
relax the assumption on the amount of supersymmetry. Indeed, in the recent years many 4d

N = 1 Lagrangians for N = 2 SCFTs have been found [99–108]1. In other words, we can try
to look for a 4d N = 1 Lagrangian theory that flows in the IR to the same SCFT that is the

1See also [109] for an N = 1 Lagrangian of an N = 3 SCFT.
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result of a compactification of a 6d theory2, as depicted in Figure 3.1. This phenomenon is
sometimes referred to as across dimensional duality. When this occurs, we can predict IR
dualities and symmetry enhancements for such 4d theories using the geometric picture, as
described above.

Given that we are now allowing for lower supersymmetry, we can also start from a 6d

N = (1, 0) SCFT, compactify it on a Riemann surface so to get a 4d N = 1 SCFT and
then try to find a UV Lagrangian that flows to it in the IR. Again this is done performing a
topological twist that involves the Cartan of the 6d SU(2)R R-symmetry, but this time the
6d theory may also possess a global symmetry and we can turn on fluxes for this symmetry
through the Riemann surface, still preserving N = 1 supersymmetry in 4d. This allows us to
get a richer set of examples of symmetry enhancements. Indeed, when we compactify on a
surface without punctures the expected global symmetry will be the one preserved by the
flux, but this symmetry may not be fully manifest in the UV Lagrangian description that
we found. This means that it must get enhanced at low energies. We can also predict IR
dualities using the structure of the fluxes. More precisely, it may happen that different fluxes,
to which we would associate distinct UV Lagrangians in 4d, are related by an element of the
Weyl group of the 6d global symmetry and are thus equivalent. This means that the SCFT to
which the two theories are flowing is the same, which is equivalent to saying that they are IR
dual. This will be particularly useful for us, since we will mostly consider compactifications
on surfaces that don’t have more than one pant decomposition, so it will allow us to get
interesting structures in 4d despite of this.

The realm of 6d N = (1, 0) SCFTs is very wide and the compactification of such theories
to four dimensions has been intensively studied in the recent years (see for example [110–
123, 96, 124–126, 97])3. In this thesis we will focus on the particular case of compactifications
of the rank-N E-string theory [127, 128]. Compactifications of this 6d SCFT have been
considered in [116] for the rank-1 case and then in [96, 97] for higher rank N . Here we will
present the results of the latter two papers.

We will start by reviewing the basic properties of this 6d SCFT and explaining how we
can use them to make predictions about the 4d theories that result from the compactification.
Checking that these expectations are indeed satisfied by our models we will give strong
evidence of our claim that they are UV Larangians for the SCFTs obtained from the
compactification of the E-string theory. In particular, we can use the knowledge of the 8-form
anomaly polynomial of the 6d E-string theory to predict what should be the anomalies of
the four-dimensional theories. Moreover, we can check that our models possess the global

2More generally, it may be that the 4d SCFT theory obtained from the 6d compactification sits on a point
of a non-trivial conformal manifold Mc and that one is able to find a 4d UV Lagrangian that doesn’t flow
exactly to the same SCFT, but to another one which still lives on a different corner of Mc.

3Very recently this strategy has been also extended in [83] to the compactification of 5d N = 1 SCFTs, so
to find 3d N = 2 models enjoying dualities and symmetry enhancements.
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symmetry preserved by the flux by means of the supersymmetric index, also known as the
S3 × S1 partition function.

We will then discuss what will be the fundamental building block of our constructions,
namely the theory obtained by compactification of the E-string theory on a tube, that is a
2-punctured sphere. We will make a very specific choice of flux that will give us a sort of
fundamental tube, from which we can construct more tubes with different choices of flux.
The 4d theory associated to the fundamental tube will involve a quiver gauge theory called
E[USp(2N)], which is a four-dimensional ancestor of the three-dimensional M [SU(N)] theory
we saw in Section 2.4.1. We will discuss many of its properties, including a duality web that
it enjoys and which is very reminiscent of the one of M [SU(N)]. We will then explicitly
show how to flow from E[USp(2N)] to M [SU(N)] at the level of supersymmetric partition
functions, which will allows us to understand the duality web of M [SU(N)] as a limit of that
of E[USp(2N)].

From the tube theory we will then construct tori with various values of the flux and
verify that they pass all the necessary tests. In particular, we will check that they enjoy the
symmetry enhancements that are expected from the six-dimensional construction by means
of the supersymmetric index. We will also find a duality between models corresponding to
fluxes that are equivalent up to an element of the Weyl group of the 6d global symmetry.
This will be explained in terms of a braid duality that the E[USp(2N)] theory enjoys and
which generalizes the confining Seiberg duality for the SU(2) gauge theory with 3 flavors [1].
Hence, our construction will give us a geometric derivation of such duality.

We will then consider E-string compactifications on a cap, that is a sphere with one
puncture. The cap can be obtained from the tube by closing one of the two punctures, which
turns out to be a well-defined operation in field theory. This corresponds indeed to giving
a vacuum expectation value (VEV) to a gauge invariant operator of the tube theory that
completely breaks the global symmetry carried by the puncture. From the cap model we will
then construct models corresponding to spheres. Here an interesting new feature will arise.
Namely, we will see that the SO(3)ISO ∼= SU(2)ISO isometry of the two-sphere will show up
in the 4d theory as a flavor symmetry. The U(1) Cartan of such symmetry can be traced
back to one of the symmetries of the tube model. Such a symmetry is typically anomalous
when we glue tubes to build tori, so that the torus models don’t possess it. Instead, it is
preserved by the VEV that is used to obtain the cap and gets enhanced to SU(2)ISO when
we construct the sphere models. We will check that this symmetry can be correctly identified
with the isometry of the two-sphere by comparing its anomalies with those computed from
the Bott–Cattaneo formula [129] (see also [130] for an application in physics).

Finally, also in the case of the sphere compactifications we will encounter two models
that are associated to fluxes which are equivalent up to an element of the Weyl group of the
6d global symmetry. This again implies an IR duality between the two theories, which will
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turn out to be nothing but the confining duality for USp(2N) with one antisymmetric and 6
fundamental chirals that we mentioned at the end of the previous chapter.

3.2 Properties of the compactification of the E-string theory

The 6d SCFT that we are going to compactify is the rank N E-string theory, and we shall
begin our discussion by listing several properties of this SCFT that will be useful later.
The rank N E-string SCFT can be engineered in string theory as the theory living on N

M5-branes probing an M9-plane. In addition to the 6d superconformal symmetry, it has
an SU(2)L ×E8 global symmetry. In the brane construction the E8 comes from the gauge
symmetry on the M9-plane, while the SU(2)L comes from the SO(4) = SU(2)L × SU(2)R

symmetry acting on the directions of the M9-plane orthogonal to the M5-branes, where the
other SU(2)R is the R-symmetry. The matter spectrum consists of N tensor multiplets.
While it has no known Lagrangian description in 6d, its compactification to lower dimensions
leads to more approachable theories and we shall consider these.

It is known that when compactified on a finite radius circle to 5d with a proper holonomy
inside E8,4 it flows to a 5d gauge theory with a USp(2N) gauge group, an antisymmetric
hypermultiplet and eight fundamental hypermultiplets [132]. We can also consider the
compactification without the holonomy in the zero radius limit, where the theory flows to a
5d SCFT with SU(2)L ×E8 global symmetry, which was originally found in [131]. We can
consider turning the holonomy back on, which is mapped to a mass deformation that causes
the 5d SCFT to flow to a 5d gauge theory with gauge group USp(2N) and matter being
an antisymmetric and seven fundamental hypermultiplets. We note that one can continue
with circle compactification to get other interesting theories with E8 global symmetry in
lower dimensions. For instance the compactification on a torus leads [132] to the rank N

Minahan-Nemeschansky E8 strongly interacting SCFTs [133].
In the following we are going to discuss some properties for the 4d N = 1 theories obtained

from the compactification of the E-string theory on various Riemann surfaces with fluxes that
we can predict from our six-dimensional construction. Verifying that these properties are
enjoyed by the 4d Lagrangian descriptions that we will propose for the compactified theories
will be a very strong check that our conjecture is correct.

3.2.1 Anomalies

One of the tools that we will use consists of anomalies. In this subsection we are going to
review how to compute the anomalies for the 4d theories by knowing those of the original 6d

4That an holonomy is necessary can be seen from the fact that the E8 symmetry is broken in the low-energy
gauge theory. More specifically, to get the low-energy 5d gauge theory the holonomy must be tuned with the
radius, see [131].
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theory. We will then test in the following sections that the anomalies of our models match
with this 6d prediction.

We are interested in the compactification of the E-string SCFTs on Riemann surfaces
with fluxes in their E8 global symmetry5. The majority of the discussion in this section was
already worked out in [116, 96, 97] and we shall merely summarize the main parts here. As
previously mentioned we are interested in compactifications that have a non-trivial flux in
the U(1) subgroups of the E8 global symmetry. To enumerate the fluxes it is convenient to
introduce a flux basis. We will mostly use two bases of fluxes associated to the E8 factor
of the 6d global symmetry. One corresponds to the U(1)8 Cartan of the SU(8) × U(1)c

subgroup of the E8 global symmetry. In this basis the fluxes are parametrized by a vector
(nU(1)c ; n

SU(8)
1 , · · · , n

SU(8)
8 ) with the constraint that ∑8

a=1 n
SU(8)
a = 0. Because of this, we

will sometimes refer to it as the overcomplete basis. Another possible basis, which we will
instead call complete basis, is associated to the SO(2)8 Cartan of the SO(16) ⊂ E8 subgroup.
In this basis the fluxes are parametrized by a vector (nSO(16)

1 , · · · , n
SO(16)
8 ). The change of

basis is given by

nSO(16)
a = nU(1)c + 2nSU(8)

a , a = 1, · · · , 8 . (3.1)

For the SU(2)L part we have only one choice, that is a flux nt for its U(1)t Cartan. We refer
the reader to [116] and to Appendix A of [96] for more details on the fluxes.

As we have said, one of the major things that will concern us will be the determination of
the anomalies of the resulting 4d theories from the anomalies of the original 6d SCFT. The
anomalies generally receive two contributions. One is from the integration of the anomaly
polynomial of the 6d SCFT on the Riemann surface [110], while the other is the contribution
from the degrees of freedom associated with the punctures, if these are present. We shall
begin by discussing the first contribution and then move on to discuss the second one.

Barring the issue of punctures, the anomalies of the resulting 4d theories can be evaluated
by integrating the 8-form anomaly polynomial of the 6d SCFT on the Riemann surface. This
can be done since the anomaly polynomial of the rank N E-string SCFTs is known [135, 136].

We can first consider the case in which the flux is turned on for only one U(1) inside E8.
These will break E8 → U(1)×G, where the U(1) is the part for which we turn on the flux,
which we will denote by z. There are 8 choices for such U(1), each of which corresponds to a
different node of the E8 Dynkin diagram (see Figure 3.2). We introduce the coefficient ξG

parametrizing such choice. Namely, for ξG = 1 the commutant G of the U(1) inside E8 is
E7, for ξG = 2 it is SO(14), for ξG = 3 it is E6 × SU(2), for ξG = 4 it is SU(8), for ξG = 6
it is SU(3) × SO(10), for ξG = 7 it is SU(2) × SU(7), for ξG = 10 it is SU(4) × SU(5),
and for ξG = 15 it is SU(2)× SU(3)× SU(5). The U(1)R symmetry we use descends from
the Cartan of the 6d SU(2)R. Its 6d origin makes it useful to work with for the purpose

5Flux compactifications of 6d SCFTs to four dimensions were first discussed in [134].
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of anomaly calculations, though it is in general not the superconformal R-symmetry. With
these conventions, the anomalies of the 4d theory are [116]

Tr(U(1)3
R) = (g − 1 + s

2)N(4N2 + 6N + 3), Tr(U(1)R) = −(g − 1 + s

2)N(6N + 5),

Tr(U(1)) = −12NzξG, Tr(U(1)3) = −12Nzξ2
G, (3.2)

Tr(U(1)RU(1)2) = −2N(N + 1)(g − 1 + s

2)ξG, Tr(U(1)U(1)2
R) = 2N(N + 1)ξGz

Tr(U(1)RSU(2)2
L) = −

N(N2 − 1)(g − 1 + s
2)

3 , Tr(U(1)SU(2)2
L) = −N(N − 1)

2 ξGz ,

where g denotes the genus of the Riemann surface and s the number of punctures.

We can use the above anomalies to write a trial a function and perform a- maximization
to obtain candidate values for the superconformal a and c anomalies. This always comes
with the caveat of having no accidental abelian symmetries, which is not always satisfied.
Nevertheless, if we have matched the symmetries between 4d and 6d the analogous naive
computation should produce the same result and thus we quote it here. The anomalies are
[116]

a =
√

2ξGQ(3Q + 5) 3
2

16 |z| , c =
√

2ξG(3Q + 5)Q(3Q + 7)
16 |z| . (3.3)

For the cases of tubes and tori compactifications this will be enough for what concerns
the contribution to the anomalies from the bulk of the surface, since we will always deal with
the simpler cases where the flux is only for one U(1) inside E8. When we will close one of
the punctures of the tube to get a cap, instead, we will see that the VEV procedure will
introduce a non-trivial flux for all the Cartans of E8, as well as for SU(2)L. We then need
to compute the 4d anomalies in such a case. This has been done in [97] and we review the
computation in Appendix D. The result expressed in the overcomplete basis is
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(
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(
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with the constraint n8 = −∑7
a=1 na and where we are denoting by U(1)ua the Cartans of

SU(8). The rest of the anomalies that don’t appear in (3.4) vanish.

This will still be not enough for the case of sphere compactifications without punctures.
Indeed, as we mentioned in our general discussion, the sphere has an SU(2)ISO isometry that
will manifest itself as a flavor symmetry in 4d, and we would like to have a prediction for
its anomalies. Again this was done in [97] and we review the computation in Appendix D,
while here we shall only quote the result. For a sphere with no punctures g = s = 0 and the
anomalies for are
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(3.5)

We now move on to discussing the contribution of the punctures to the anomalies, where
we specifically concentrate on the contribution from the degrees of freedom associated with
the punctures rather than the geometric contribution which was previously discussed. The
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calculation of this contribution of the punctures to the anomalies was set up in [116, 118, 120]6

and applied in particular to the case of the rank-N E-string theory in [96]. The basic idea
is to consider the region around a puncture and deform it so as to look like a long thin
tube ending at the puncture. We can then compactify the 6d SCFT on the circle of the
tube and get the reduced 5d theory on an interval ending with the puncture. Particularly,
we shall assume that the necessary holonomy as been turned on around the tube so that
the reduced 5d theory is the IR free USp(2N) gauge theory with an antisymmetric hyper
and eight fundamental hypers that was introduced previously. The puncture can then be
described as a boundary condition of this 5d gauge theory.

This leads us to consider boundary conditions of 5d gauge theories preserving half of
the supersymmetry, that is four supercharges. These can be described as giving Dirichlet
or Neumann boundary conditions to various multiplets on the boundary. Specifically, close
to the boundary the 5d bulk fields approach the 4d boundary and can be decomposed in
terms of 4d N = 1 superfields. The boundary conditions can then be described as assigning
Dirichlet or Neumann boundary conditions to those superfields.

There are in principal many different possible boundary conditions leading to the many
different punctures that exist in these types of construction. Here we shall only consider
one type, which is the one considered in [116] for N = 1 and in [96] for generic N . This
type of puncture can be thought of as a generalization of the so called maximal punctures
of class S theories [10]. The boundary conditions associated with this choice are as follows.
First we decompose the 5d vector multiplet into a 4d N = 1 vector multiplet and an adjoint
chiral on the boundary. We then give Dirichlet boundary conditions to the N = 1 vector and
Neumann boundary conditions to the adjoint chiral. Note that as the vector multiplet is given
Dirichlet boundary conditions, the 5d USp(2N) gauge symmetry becomes non-dynamical at
the boundary. As a result it becomes a global symmetry associated with the puncture.

We can similarly decompose the hypermultiplets into two chiral fields in conjugate
representations and give Dirichlet boundary conditions to one and Neumann boundary
conditions to the other. Here we have a choice for which chiral gets which boundary
conditions and this leads to slightly different punctures. This difference is usually referred to
as the sign of the puncture.

We next want to consider the contribution of the degrees of freedom at the boundary to
the anomalies. This is known to be given by half the 4d anomalies expected from the matter
given Neumann boundary conditions, see [116] for the details. We next evaluate these for the
punctures considered here. First we consider the anomalies involving the U(1)R Cartan of the
SU(2)R symmetry. These only receive contributions from the adjoint chiral as the fermions
in the hypermultiplets are SU(2)R singlets. Specifically the fermion in the adjoint chiral
has charge −1 under U(1)R, is in the adjoint of the USp(2N) symmetry associated with the

6See [137] for the discussion in the case of the 6d (2, 0) SCFT.
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puncture and is a singlet under the other global symmetries. As a result it contributes to the
anomalies as follows:

Tr(U(1)3
R) = −N(2N + 1)

2 , Tr(U(1)R) = −N(2N + 1)
2 , (3.6)

Tr(U(1)RUSp(2N)2) = −N + 1
2 .

Then we consider the anomalies for the SU(2)L global symmetry. These receive contri-
butions only from the antisymmetric hyper, the two chirals in which form a doublet of this
symmetry. As we give different boundary conditions to them, the puncture breaks SU(2)L

to its U(1)t Cartan and the anomalies expected for this symmetry are

Tr(U(1)3
L) = q3 (Q(2Q− 1)− 1)

2 , Tr(U(1)L) = q
(Q(2Q− 1)− 1)

2 , (3.7)

Tr(U(1)LUSp(2Q)2) = q
(Q− 1)

2 .

Here q is the charge under U(1)t which depends on the normalization and the sign. We will
use in what follows a normalization of the charges such that q = −1

2
7.

Finally, the anomalies for Cartans of the E8 global symmetry, for which we are turning
on fluxes, receive contributions only from the octet of the USp(2N) fundamental hypers.
Denoting again with U(1)ua for a = 1, · · · , 8 the Cartans of the SU(8) part of the U(1)c ×
SU(8) ⊂ E8 subgroup, these are given by

Tr(U(1)3
c) = N

8∑
a=1

q3
a, Tr(U(1)c) = N

8∑
a=1

qa, Tr(U(1)cUSp(2Q)2) = 1
4

8∑
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qa

Tr U(1)cU(1)2
ua

= 2Nqa a = 1, · · · , 7, Tr U(1)cU(1)uaU(1)ub
= N qa a ̸= b

Tr U(1)uaU(1)ub
U(1)ud

= N, a ̸= b, d .

(3.8)

Here qa are the charges of each octet hyper under such U(8) subgroup of E8 that is manifest
in the gauge theory description and we shall use a normalization where qa = −1

2 .
All the anomalies that were not mentioned here receive no contribution from the punctures.

3.2.2 Symmetries

Another test that we will perform consists of verifying that our 4d Lagrangians possess
a global symmetry which is at least the one predicted from the compactification. Indeed,
from the 6d perspective we expect that this global symmetry should be the subgroup of the
SU(2)L × E8 global symmetry of the E-string theory that is preserved by the flux. This

7The correct normalization can be fixed by trying to match the anomalies computed from 6d with those
computed from the 4d Lagrangian description that we are going to propose.
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symmetry may not be fully manifest in our 4d Lagrangian. In such cases, it must get enhanced
in the IR.

Enhancements of symmetries can be checked by computing the supersymmetric index of
the theory. This is a quantity that is invariant along the RG flow, so it can be calculated
using the UV Lagrangian description and this would give us the same result as for the IR
SCFT. The global symmetry can be understood from the index because, when computed
as a power series in some of its fugacities denoted by p and q (see Appendix A.4 for more
details), we can see at each order characters of such symmetry. Moreover, if computed with
the superconformal R-charge it coincides with the superconformal index [138–140] and, using
the representation theory of the superconformal algebra, one can show that at order pq it
receives contributions only from marginal operators with positive sign and conserved currents
with negative sign [141]. Hence, if we know the marginal operators of our model we can
deduce what is its true global symmetry and check whether it is larger than the one manifest
in the UV.

It is then crucial to be able to determine what is the global symmetry preserved by the
flux. The fluxes are vectors in the root lattice of E8 and we first need to choose a basis
of Cartan generators to use for it. Here we will consider the complete basis we discussed
before, which is associated with the SO(16) subgroup of E8. Under this subgroup, the adjoint
representation of E8 decomposes as

248E8 → 120SO(16) + 128SO(16) , (3.9)

where the 120SO(16) is the adjoint of SO(16) and the 128SO(16) is one of its chiral spinors.
We choose to represent the non-zero roots of E8 as follows:

(±2,±2, 0, 0, 0, 0, 0, 0) + permutations
(±1,±1,±1,±1,±1,±1,±1,±1) with even number of minus signs , (3.10)

where the first line comes from the adjoint representation of SO(16), while the second line
comes from its spinor representation. This is equivalent to saying that we choose to span the
Cartan of SO(16) in a basis such that the characters of its vector representation is

16SO(16) =
8∑

a=1
x2

a + x−2
a , (3.11)

where ai are the fugacities for the chosen Cartans. With this normalization, the entries of
the flux vector should be integrally quantized because of the Dirac quantization condition.
Fractional fluxes may also be allowed, but they should be compensated by a flux for the
center of the non-abelian symmetry preserved by the flux, with the effect of breaking it to a
subgroup of lower rank (see appendix C of [116] for more details).



94 4d compactifications of the 6d E-string theory

3875 6696000 6899079264 146325270 2450240 30380 248

147250

Figure 3.2: The Dynkin diagram of E8. We also specify which representation is associated to
each node.

After having established our conventions for the fluxes, understanding what is the global
symmetry that a given flux preserves is conceptually very simple. This is the subgroup of E8

defined by the subset of the roots (3.10) that are orthogonal to the flux. This is because Weyl
groups are generated by reflections in the plane orthogonal to the associated root vector, so
the Weyl element associated to a given root will fix the flux vector if and only if the flux
vector is orthogonal to the associated root. Therefore, the roots of the preserved symmetry
are the subset of all E8 roots orthogonal to the flux vector.

Despite the simplicity of the problem, this might be a bit tricky to implement in some
cases. There is also an equivalent criterion which is instead easier to use. Namely, to each
flux vector we can associated a representation of E8 such that the flux corresponds to its
highest weight. Once we determine this representation, we can associate to it some of the
nodes of the E8 Dynkin diagram by just looking at the Dynkin labels of the representation.
The preserved symmetry is then the one whose Dynkin diagram is obtained by chopping
these nodes from the E8 Dynkin diagram, where to each chopped node we associate a U(1)
factor. In Figure 3.2 we represent the Dynkin diagram of E8 specifying which representation
is associated to each node.

Let us consider a simple example to illustrate this. Suppose that the flux vector is

F = (1, 1, 1, 1, 1, 1, 1, 1) . (3.12)

This is one of the roots of E8, in particular it is one of the weights of the spinor representation
128 of SO(16). Hence, the E8 representation associated to it is the adjoint 248. This
representation corresponds to the last node of the E8 Dynkin diagram (see Figure 3.2).
Removing this node we get the Dynkin diagram of E7. The removed node corresponds to
the only U(1) inside E8 for which we are turning on a flux, which in this case is the minimal
flux 1. Hence, the preserved symmetry is U(1)× E7.

The simplest fluxes that we can consider are those whose associated representation
corresponds to a single node in the E8 Dynkin diagram, as we specify in Figure 3.2. These
are the cases which correspond to a flux for a single U(1) inside E8 and the value of the
flux is the minimal one, that is 1. We summarize these cases and the associated preserved
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Flux vector Representation Preserved symmetry ξG

(2, 2, 0, 0, 0, 0, 0, 0) 248 U(1)× E7 1
(1, 1, 1, 1, 1, 1, 1, 1)
(4, 0, 0, 0, 0, 0, 0, 0) 3875 U(1)× SO(14) 2
(2, 2, 2, 2, 0, 0, 0, 0)
(2, 2, 2, 2, 2, 2, 0, 0) 30380 U(1)× SU(2)× E6 3
(3, 3, 1, 1, 1, 1, 1, 1)
(4, 2, 2, 2, 2, 0, 0, 0) 147250 U(1)× SU(8) 4
(5, 1, 1, 1, 1, 1, 1, 1)
(4, 4, 2, 2, 2, 2, 0, 0) 2450240 U(1)× SU(3)× SO(10) 6
(4, 4, 4, 0, 0, 0, 0, 0)
(6, 2, 2, 2, 2, 2, 0, 0) 6696000 U(1)× SU(2)× SU(7) 7
(4, 4, 4, 4, 4, 0, 0, 0) 146325270 U(1)× SU(4)× SU(5) 10
(5, 5, 5, 1, 1, 1, 1, 1)
(9, 3, 3, 3, 3, 1, 1) 6899079264 U(1)× SU(2)× SU(3)× SU(5) 15

Table 3.1: Vectors associated to fluxes for a single U(1) inside E8 with the associated
representation, preserved symmetry and value of ξG. For each line we represent only those
choices of the flux vector that are not related by an element of the Weyl group of E8. These
are also the minimal fluxes allowed and higher fluxes can be obtained from integer multiples
of them.

symmetry in Table 3.1, where we also specify the value of the parameter ξG that we used
to write the anomalies (3.2). These are the main fluxes that we will consider for the torus
compactifications in Section 3.4. Instead for the sphere compactifications of Section 3.5 we
will have to consider more complicated fluxes, so it is useful to keep in mind the strategy we
just explained.

There is also another test that we can perform which is related to symmetries. The
symmetry expected from 6d is usually realized by some operators of the 4d theory whose
presence can be predicted from the higher dimensional construction as well. Specifically,
there are two types of operators in the 6d theory that are known and which reduce to
operators in 4d. These are the stress-energy tensor and the conserved current for the global
symmetry. When we compactify the theory on the Riemann surface, they lead to various
relevant, marginal or irrelevant operators in the 4d theory. We are now going to review
the expectations for how these operators should look like in the lower dimensional theory,
particularly through the supersymmetric index. For a detailed derivation we refer the reader
to [142], while here we shall only quote the result (see also [143] and Appendix E of [116]).

Suppose that we compactify our theory on a Riemann surface of genus g with flux F in a
U(1) subgroup of its global symmetry G8, which we shall denote as U(1)α. Additionally, we
shall assume that there are no punctures on the surface. The presence of the flux breaks G

8For simplicity we assume that there is flux only in one U(1). The generalization to the case of flux in
multiple U(1) groups is straightforward.
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to the subgroup U(1)α × G̃. We can then decompose the character of the adjoint of G as
follows:

χadj(G) =
∑

i

αqiχRi(G̃), (3.13)

where qi is the charge under U(1)α of the representation Ri of G̃ appearing in the decomposi-
tion of the adjoint representation of G. Here we have used α as the fugacity of U(1)α. While
the representations Ri depend on the choice of U(1)α, they always contain the adjoint of G̃

and a singlet corresponding to the adjoint of U(1)α.

The main result of [142] that is important for us is that for a generic Riemann surface
without punctures and flux F the index of the lower dimensional theory has a special form
when written using the U(1)6d

R symmetry that is the Cartan of the SU(2)R symmetry, which
is the R-symmetry of 6d N = (1, 0). This form is

I = 1 +

 ∑
i|qi>0

αqiχRi(G̃)(g − 1 + qiF )

 pq +
(
3g − 3 + (1 + χadj(G̃))(g − 1)

)
pq

+

 ∑
i|qi<0

αqiχRi(G̃)(g − 1 + qiF )

 pq + ... (3.14)

A crucial observation is that the 6d R-symmetry that we are using is not necessarily the
superconformal R-symmetry of the 4d model. In particular, the 4d theory will possess the
abelian symmetry U(1)α that can mix with the R-symmetry in the IR [144]. This mixing
can be implemented in the index by shifting the fugacity α by some power of pq, namely
α→ α(pq)

Rα
2 where Rα is the mixing coefficient between U(1)α and U(1)6d

R . From (3.14) we
then see that the operators coming from the decomposition (3.13) which are charged under
U(1)α, corresponding to the first and last terms, will move in the index to an order which is
higher or lower than pq depending on the relative sign of their charge qi and of the mixing
coefficient Rα, meaning that they are relevant or irrelevant. The operators uncharged under
U(1)α on the other hand, corresponding to the middle terms of (3.14), will stay at order pq,
meaning that they are marginal.

Another comment is about the origin of the various terms in (3.14). The 3g − 3 part of
the middle term comes from the stress-energy tensor. Notice that for a torus this is zero,
while for a sphere it is −3. Hence, for genus zero it doesn’t contribute as a marginal operator,
but rather as a current. We interpret this as the current for the flavor symmetry descending
from the SU(2)ISO of the sphere, which transforms in the adjoint representation 3. All of
the other terms, instead, come from the 6d conserved current. Hence, from the conserved
current we can get relevant, marginal and irrelevant operators depending on the charge under
U(1)α of the states contained in it, which can be understood from the decomposition (3.13).
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Focusing on the states uncharged under U(1)α, which appear in the middle part of (3.14), we
can see that these also disappear for g = 1, similarly to the contribution of the stress-energy
tensor. Nevertheless, we still expect the theory to possess the global symmetry U(1)α× G̃, so
there should be a conserved current for this symmetry that appears at order pq with negative
sign. This means that there has to be a marginal operator in the adjoint of U(1)α × G̃ that
cancels its contribution to the index. In conclusion, we expect the order pq of the index, when
computed with the 6d R-charge, to be zero for all torus compactifications for this reason.
For the case g = 0 of the sphere, instead, we have one copy of these states contributing with
a negative sign, meaning that they play the role of the conserved current of U(1)α × G̃. This
means that there has to be no marginal operator for sphere compactifications, so that the
contribution of the conserved current of U(1)α × G̃ is not canceled.

3.3 The E[USp(2N)] theory

We are now going to present a 4d N = 1 quiver gauge theory that we call E[USp(2N)],
which was first introduced in [96] and also studied in [145, 108, 97]. This theory is one of the
main characters of this thesis for several reasons. From the point of view of this chapter, this
theory is involved in the construction of the models associated to the compactification on a
tube of the rank-N E-string theory, from which we will then derive torus, cap and sphere
compactifications. Moreover, it is the 4d uplift of the three-dimensional M [SU(N)] theory
we presented in Section 2.4.1. We will indeed show that it enjoys some properties that are
very similar to those of M [SU(N)] that we already encountered. This is no an accident, since
we will also be able to explicitly show how to flow from E[USp(2N)] to M [SU(N)]. Finally,
it will also play an important role in the next chapter when we will discuss the 4d uplift of
the 3d mirror symmetry.

3.3.1 Lagrangian description and symmetry enhancement

The 4d N = 1 E[USp(2N)] theory admits a Lagrangian description in terms of the quiver
represented in Figure 3.3. The gauge group is ∏N−1

i=1 USp(2i) and the matter content consists
of the following chiral fields in the singlet, fundamental, bifundamental and antisymmetric
representation:

• a chiral field Q(i,i+1) in the bifundamental representation of USp(2i)×USp(2(i + 1)), with
i = 1, · · · , N − 1;

• two chiral fields D
(i)
α in the fundamental representation of USp(2i), which form a doublet

of the i-th SU(2) flavor symmetry of the saw, with i = 1, · · · , N ;

• two chiral fields V
(i)

α in the fundamental representation of USp(2i), which form a doublet
of the (i + 1)-th SU(2) flavor symmetry of the saw, with i = 1, · · · , N − 1;
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Figure 3.3: Quiver diagram of the E[USp(2N)] theory. Round nodes denote gauge symmetries
and square nodes denote global symmetries. In contrast with the convention for the drawings
of Chapter 2, all the nodes correspond to symplectic groups whose rank is given by the
number inside of them. Single lines denote chiral fields in representations of the nodes
they are connecting. In particular, lines between adjacent nodes denote a chiral field in the
bifundamental representation of the two nodes symmetries, while arcs denote chiral fields in
the antisymmetric representation of the corresponding node symmetry. Crosses represent the
singlets βi that flip the diagonal mesons.

• a chiral field A(i) in the antisymmetric representation of USp(2i), with i = 1, · · · , N − 1;

• a gauge singlet βi that is coupled to the gauge invariant meson built from D(i) through a
superpotential which will be discussed momentarily.

In order to write the superpotential in a compact form, we define

Q(i,i+1)
nmab = Q(i,i+1)

na Q
(i,i+1)
mb (3.15)

The superpotential consists of three main types of interactions: a cubic coupling between the
bifundamentals and the antisymmetrics, another cubic coupling between the chirals in each
triangle of the quiver and finally the flip terms with the singlets βn coupled to the diagonal
mesons

WE[USp(2N)] =
N−1∑
i=1

Tri

[
A(i)

(
Tri+1 Q(i,i+1) − Tri−1 Q(i−1,i)

)]

+
N−1∑
i=1

Tryi+1 Tri Tri+1
(
V (i)Q(i,i+1)D(i+1)

)
+

N−1∑
i=1

βn Tryi Tri

(
D(i)D(i)

)
.

(3.16)

The traces are labelled as follows: Tri denotes the trace over the color indices of the i-th
gauge node, while Tryi denotes the trace over the i-th SU(2) flavor symmetry. Notice that
for i = N we have the trace over the USp(2N)x flavor symmetry, which we will also denote
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Figure 3.4: Trial R-charges and charges under the abelian symmetries. The power of c is the
charge under U(1)c, while the power of t is the charge under U(1)t.

by TrN = Trx. All the traces are defined including the antisymmetric tensor J of USp(2n)

J (n) = In ⊗ i σ2 . (3.17)

For example, given a 2n× 2n matrix A, we define

Tr (A) = J
(n)
ij Aij . (3.18)

In this Lagrangian description the following non-anomalous global symmetry is manifest:

USp(2N)x ×
N∏

n=1
SU(2)yn × U(1)t × U(1)c . (3.19)

This symmetry gets actually enhanced in the IR to

USp(2N)x × USp(2N)y × U(1)t × U(1)c . (3.20)

We would like to stress the similarity between this symmetry enhancement and the one of
M [SU(N)]. We will indeed relate the USp(2N)y symmetry of E[USp(2N)] to the SU(N)Y

symmetry of M [SU(N)] when we will show how to flow from one theory to the other. Using
the observation that we made in Subsection 2.4.1 when relating M [SU(N)] and T [SU(N)],
we can start understanding that the SU(2) symmetries of the saw of E[USp(2N)] should be
considered as a 4d avatar of the U(1) topological symmetries of T [SU(N)] in 3d. In [96] this
enhancement of the global symmetry of E[USp(2N)] was argued studying the gauge invariant
operators, which re-arrange into representations of the enhanced USp(2N)y symmetry, and
using infra-red dualities. Indeed, as we will review shortly, there exists a dual frame of
E[USp(2N)] where USp(2N)y is manifest, while USp(2N)x is enhanced.
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Figure 3.5: SU(2)× SU(2) bifundamental operators contributing to C in the N = 3 case.

We define a trial R-symmetry, which we denote as U(1)R0 , such that the fields Q(i,i+1)

and D(i) have R-charge 0, while the fields βi, A(i) and V (i) have R-charge 2. This is not the
superconformal R-symmetry, but it is anomaly free and consistent with the superpotential
(3.16). Moreover, we define the U(1)c and U(1)t symmetries by assigning charges 0 and 1

2 to
Q(N−1,N) and 1 and 0 to D(N). The charges of all the other chiral fields are then fixed by
the superpotential and by the requirement that U(1)R is not anomalous at each gauge node,
where U(1)R is defined taking into account the possible mixing of the abelian symmetries
with the trial R-symmetry U(1)R0

R = R0 + cqc + tqt , (3.21)

where qc and qt are the charges under the two U(1) symmetries and c and t are the mixing
coefficients. Among this two parameter family of R-charges, we can determine the exact
superconformal one by a-maximization [144]. The charges of all the chiral fields under the
two U(1) symmetries as well as their trial R-charges in our conventions are summarized in
Figure 3.4.

The gauge invariant operators of E[USp(2N)] that will be important for us are of three
main types. First, we have two operators, which we denote by H and C, in the traceless
antisymmetric representation of USp(2N)x and USp(2N)y respectively. The first one is just
the meson matrix

H = TrN−1

[
Q(N−1,N)Q(N−1,N) − 1

N
TrX

(
Q(N−1,N)Q(N−1,N)

)]
. (3.22)

This operator has also U(1)c and U(1)t charge 0 and 1 respectively and trial R-charge 0. The
operator C is instead constructed collecting different gauge invariant operators, N −1 of them
are singlets under the non-abelian global symmetries while the others are in the bifundamental
representations of all the possible pairs of SU(2) manifest symmetries of the saw. These
have indeed the same charges under the abelian symmetries and the same trial R-charge
and together they reconstruct the traceless antisymmetric representation of the enhanced
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Figure 3.6: Operators contributing to Π in the N = 3 case.

USp(2N)y according to the branching rule under the subgroup SU(2)N ⊂ USp(2N)

N(2N− 1)− 1→ (N − 1)× (1, · · · , 1)⊕ [(2, 2, 1, · · · , 1)⊕ (all possible permutations)] .

(3.23)

The N − 1 singlets are the traces of the antisymmetric chirals at each gauge node

Tri A(i), i = 1, · · · , N − 1 , (3.24)

while the bifundamentals are constructed starting from one diagonal flavor, going along the
tail with an arbitrary number of bifundamentals Q(i,i+1) and ending on a vertical chiral, with
all the needed contractions of color indices (see Figure 3.5). All these operators have U(1)c

and U(1)t charge 0 and −1 respectively and trial R-charge 2.

There is also an operator Π in the bifundamental representation of USp(2N)x×USp(2N)y.
This is constructed collecting N operators in the fundamental representation of USp(2N)x and
of each of the SU(2) symmetries according to the branching rule under SU(2)N ⊂ USp(2N)

2N→ (2, 1, · · · , 1)⊕ (1, 2, 1, · · · , 1)⊕ · · · ⊕ (1, · · · , 1, 2) . (3.25)

These N operators are obtained starting with one diagonal flavor and going along the tail with
all the remaining bifundamentals ending on Q(N−1,N) (see Figure 3.6). All these operators
have U(1)c and U(1)t charge 1 and 0 respectively and trial R-charge 0.

Finally, we have some gauge invariant operators that are also singlets under the non-
abelian global symmetries and are only charged under U(1)c and U(1)t. Those that will
be important for us are the chiral singlets βi and the mesons constructed with the vertical
chirals and dressed with powers of the antisymmetrics. We can collectively denote these
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USp(2N)x USp(2N)y U(1)t U(1)c U(1)R0

H N(2N− 1)− 1 1 1 0 0
C 1 N(2N− 1)− 1 −1 0 2
Π N N 0 +1 0

Bij 1 1 N − i− j + 1 −2 2j

Table 3.2: Transformation rules of the main operators of E[USp(2N)].

operators with

Bij =


βi i = 1, · · · , N, j = 1

Tri−1

[(
A(i−1)

)j−2
V (i−1)V (i−1)

]
i = 2, · · · , N, j = 2, · · · , i

. (3.26)

These operators have U(1)c charge −2, U(1)t charge N − i − j + 1 and trial R-charge 2j.
The charges and representations of all these operators under the global symmetry are given
in Table 3.2.

As we already mentioned, we will show later that E[USp(2N)] has a limit to M [SU(N)],
which we know has a further limit to T [SU(N)]. The names H and C for the operators
of E[USp(2N)] is motivated from this perspective by the fact that after these limits they
reduce to the operators H and C of M [SU(N)] and, eventually, to the operators H and C of
T [SU(N)]. Indeed, we can embed U(1)×SU(N) ⊂ USp(2N) and the traceless antisymmetric
of USp(2N) accordingly decomposes as

N(2N− 1)− 1→ (N2 − 1)0 ⊕
(N(N− 1)

2

)2
⊕
(

N(N− 1)
2

)−2

. (3.27)

When flowing from E[USp(2N)] to M [SU(N)] we will consider a Coulomb branch VEV
accompanied by a real mass deformation that makes the fields charged under the U(1) part
massive and leaves only the adjoint of SU(N) components of H and C massless, which we
identify with H and C. The operators Π and Bij of E[USp(2N)] similarly reduce to the
operators Π and Bij of M [SU(N)], which we saw that become massive after the further flow
to T [SU(N)].

One of our main tools for studying E[USp(2N)], its dualities and deformations will be
the supersymmetric index [138–140] (see also [146] for a review and Appendix A.4 for our
conventions). This will depend on fugacities for the USp(2N)x ×USp(2N)y ×U(1)c ×U(1)t

global symmetries that we accordingly denote by xi, yi, c and t. It can be expressed with the
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following recursive definition:

IE[USp(2N)](x⃗; y⃗; c; t) = Γe

(
pq c−2

)
︸ ︷︷ ︸

βN

N∏
i=1

Γe

(
c y±1

N x±1
i

)
︸ ︷︷ ︸

D(N)

×
∮

dw⃗
(N−1)
N−1 Γe

(
pq t−1

)N−1 N−1∏
a<b

Γe

(
pq t−1w(N−1)

a
±1w

(N−1)
b

±1
)

︸ ︷︷ ︸
A(N−1)

×
N−1∏
a=1

Γe

(
pq t−1/2c−1 y±1

N w(N−1)
a

±1
)

︸ ︷︷ ︸
V (N−1)

N∏
i=1

Γe

(
t1/2w(N−1)

a
±1x±1

i

)
︸ ︷︷ ︸

Q(N−1,N)

× IE[USp(2(N−1))]
(
w

(N−1)
1 , · · · , w

(N−1)
N−1 ; y1, · · · , yN−1; t−1/2c; t

)
,

(3.28)

with the base of the iteration defined as

IE[USp(2)](x; y; c) = Γe

(
pq c−2

)
Γe

(
c y±1x±1

)
. (3.29)

We also defined the integration measure of the m-th USp(2n) gauge node as

dw⃗(m)
n = [(p; p)(q; q)]n

2nn!

n∏
i=1

dw
(m)
i

2πi w
(n)
i

1∏n
i<j Γe

(
w

(m)
i

±1w
(m)
j

±1
)∏n

i=1 Γe

(
w

(m)
i

±2
) , (3.30)

which includes the vector multiplet contribution and the Weyl symmetry factor. This index
is defined using the assignment of R-charges as depicted in Figure 3.4. If one wishes to use
another non-anomalous assignment of R-charges then the parameters should be redefined as

c→ c (pq)c/2, t→ t (pq)t/2 , (3.31)

where c and t are the mixing coefficients appearing in (3.21). As pointed out in [96], the
expression (3.28) coincides with the interpolation kernel Kc(x, y) studied in [79], where many
integral identities for this function were proven which support the dualities of E[USp(2N)]
that we are going to present.

3.3.2 Dualities and properties under RG flow

Duality web

E[USp(2N)] enjoys a web of self-dualities that is completely analogous to the one of T [SU(N)]
that we described in the Introduction and the one of M [SU(N)] that we saw in Subsubsection
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E[USp(2N)] E[USp(2N)]∨

FFE[USp(2N)] FFE[USp(2N)]∨
Mirror

Mirror

Flip-Flip Flip-Flip

H C H∨ C∨

OH OC OH
∨ OC

∨

Figure 3.7: Duality web of the E[USp(2N)] theory. On the horizontal direction we have the
mirror-like duality, while on the vertical direction we have the flip-flip duality. Operators of
the same color are mapped to each other across the dualities.

2.4.1. This is schematically sketched in Figure 3.7. First of all, we have a dual frame we
denote by E[USp(2N)]∨ where the USp(2N)x and USp(2N)y symmetries are exchanged and
the U(1)t fugacity is mapped to

t→ pq

t
, (3.32)

which means that all the charges under U(1)t are flipped and that the mixing coefficient is
redefined as t→ 2− t. In other words, E[USp(2N)] is self-dual with a non-trivial map of the
gauge invariant operators

H ↔ C∨

C ↔ H∨

Π ↔ Π∨

Bij ↔ B∨
N−j+1,N−i+1 . (3.33)

We will refer to this duality as a 4d version of mirror symmetry, since it reduces to the
mirror-like self-duality of M [SU(N)], which has a further limit to the self-duality of T [SU(N)]
under mirror symmetry. At the level of the index we have the following identity:

IE[USp(2N)](x⃗; y⃗; c; t) = IE[USp(2N)](y⃗; x⃗; c; pq/t) =
= IE[USp(2N)]∨(x⃗; y⃗; c; t) , (3.34)

which has been proven in Theorem 3.1 of [79] and which reduces to the identity (2.120) for
the mirror self-duality of M [SU(N)] in a suitable limit. This duality strongly supports the
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enhancement to USp(2N)y, since this symmetry is explicitly manifest in the E[USp(2N)]∨

dual frame.
On top of the mirror dual frame we have a second frame we denote by FFE[USp(2N)],

which is defined as E[USp(2N)] plus two sets of singlets OH and OC flipping the two operators
HF F and CF F

WF F E[USp(2N)] =WE[USp(2N)] + Trx

(
OHHF F

)
+ Try

(
OCCF F

)
. (3.35)

In this case the USp(2N)x and USp(2N)y symmetries are left unchanged, while only the
U(1)t fugacity transforms as in (3.32). The operator map is indeed

H ↔ OH

C ↔ OC

Π ↔ ΠF F

Bij ↔ BF
N−j+1,N−i+1 . (3.36)

We will refer to this duality as a 4d version of flip-flip duality, since it reduces to the flip-flip
duality of M [SU(N)] and of T [SU(N)].

We mentioned that in the three-dimensional case, both for M [SU(N)] and for T [SU(N)],
this flip-flip dual frame can be reached by iteratively applying some more fundamental
dualities, which are the two-monopole duality for M [SU(N)] and the Aharony duality for
T [SU(N)]. A similar statement holds for the 4d flip-flip duality of E[USp(2N)]. In this case,
the fundamental duality that we should iterate is the Intriligator–Pouliot duality [81]. This
can be understood as a variant for symplectic gauge groups of the Seiberg duality [1]:

Theory A: USp(2Nc) gauge theory with 2Nf fundamental chirals and no superpotential
W = 0.

Theory B: USp(2Nf − 2Nc − 4) gauge theory with 2Nf fundamental chirals, Nf (2Nf − 1)
singlets (collected in an antisymmetric matrix Mab) and superpotential Ŵ = Mabqaqb.

We will now briefly describe how this derivation works9:

• At the first iteration we start from the USp(2) node, whose antisymmetric chiral is just
a singlet. The Intriligator–Pouliot duality has the effect of making the antisymmetric
chiral field of the adjacent USp(4) node massive, so that we can then apply again the
Intriligator–Pouliot duality on it. We continue applying iteratively the Intriligator–
Pouliot duality until we reach the last USp(2(N − 1)) node. Notice that since every

9The reader can find more details of the derivation of the flip-flip duality of T [SU(N)] in [145] from the
point of view of the S3

b partition function and in [82] from the field theory point of view. The 4d and the 3d
derivations are completely analogous, if not for the fact that in 4d we have no monopole operators which
makes the task of mapping the superpotential of the theory at each step easier.
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USp(2n) node sees 4n + 4 chirals the ranks do not change when we apply the duality.
Moreover, some of the singlet fields expected from the Intriligator–Pouliot duality are
massive (as it can be understood from their charge assignments) and no new links
between gauge nodes are created.

• At the second iteration we start again from the USp(2) node and proceed along the
tail, but this time we stop at the second last node USp(2(N − 2)). This allows us to
restore the antisymmetric at the last USp(2N) node.

• We iterate this procedure for a total of N −1 times, meaning that we apply Intriligator–
Pouliot duality N(N − 1)/2 times.

• The singlet fields appearing in the Intriligator–Pouliot duality reconstruct the singlet
matrices OH and OC.

At the level of the supersymmetric index, the flip-flip duality is encoded in the following
integral identity:

IE[USp(2N)](x⃗; y⃗; c; t) =
N∏

i<j

Γe

(
tx±1

i x±1
j

)
Γe

(
ty±1

i y±1
j

)IE[USp(2N)](x⃗; y⃗; c, pq/t) =

= IF F E[USp(2N)](x⃗; y⃗; c; t) , (3.37)

which is proven in Proposition 3.5 of [79] and can be alternatively derived by applying
iteratively the integral identity (C.1) for Intriligator–Pouliot duality as explained above. We
show this in Appendix C.1 for N = 3.

Finally, we can combine the two previous dualities to find a third dual frame and
complete the duality web of Figure 3.7. We denote this frame by FFE[USp(2N)]∨ and its
superpotential is

WF F E[USp(2N)]∨ =WE[USp(2N)] + Try

(
O∨

HHF F,∨
)

+ Trx

(
O∨

CCF F,∨
)

. (3.38)

Across this duality the USp(2N)x and USp(2N)y symmetries are exchanged, while U(1)t is
left unchanged. Accordingly we have the operator map

H ↔ O∨
C

C ↔ O∨
H

Π ↔ ΠF F,∨

Bij ↔ BF F,∨
ij . (3.39)
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The equality of the S3 × S1 partition functions associated to this duality

IE[USp(2N)](x⃗; y⃗; c; t) =
N∏

i<j

Γe

(
tx±1

i x±1
j

)
Γe

(
ty±1

i y±1
j

)IE[USp(2N)](y⃗; x⃗; c; t) =

= IF F E[USp(2N)]∨(x⃗; y⃗; c; t) , (3.40)

can be obtained by just applying sequentially (3.34) and (3.37).

Some interesting RG flows

In addition to dualities the E[USp(2N)] theory enjoys interesting properties under RG
flows triggered by turning on VEVs for various operators. The first flow we consider makes
the E[USp(2N)] quiver theory reduce to a smaller quiver tail, causing the breaking of the
non-abelian global symmetry USp(2N)x ×USp(2N)y → USp(2(N − 1))x ×USp(2(N − 1))y.
More precisely, the deformation in question corresponds to a minimal VEV for the operator
Π, i.e.⟨Π2N,2N ⟩ ≠ 0. This can be achieved by introducing an additional singlet field that flips
this operator and turning on such singlet linearly in the superpotential. The equation of
motion of the singlet then implies that the operator acquired a non-vanishing VEV. At the
level of the supersymmetric index, this deformation implies the constraint xN = cyN , for
which we have (see Lemma 3.1 of [79])

lim
xN →c yN

IE[USp(2N)](x⃗; y⃗; c; t) Γe
(
c2)

Γe

(
c x±1

N y±1
N

) =

=
N∏

i=1

Γe

(
c yN x±1

i

)
Γe

(
y−1

N y±1
i

)
Γe

(
t c−1y−1

N x±1
i

)
Γe

(
t y−1

N y±1
i

)IE[USp(2(N−1))](x⃗; y⃗; c; t) . (3.41)

Another interesting VEV that we can consider can be implemented by adding a linear
term δW = bN−1 to the superpotential. This induces a VEV for the meson constructed
from the second last diagonal flavor d(N−1) which partially Higgses the last gauge node.
The E[USp(2N)] theory reduces after this deformation to a bifundamental of USp(2N)x ×
USp(2N)y plus an antisymmetric for the USp(2N)y symmetry. It is easy to see how this
works in the N = 2 case, where the index is given by

IE[USp(4)](x1, x2; y1, y2; c; t) =

=
∏2

i=1 Γe

(
c y±1

2 x±1
i

)
Γe (c2) Γe (t−1c2)

∮
dw1

Γe

(
t−1/2c w±1y±1

1

)∏2
i=1 Γe

(
t1/2w±1x±1

i

)
Γe(w±2)Γe(t1/2c w±1y±1

2 )
.

(3.42)
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The condition of b1 entering in the superpotential corresponds to c→
√

t. In this limit the
poles of the integrand at w = t1/2c−1y±

1 and w = t−1/2c y±
1 pinch the integration contour in

two points and we can evaluate the index by taking the residue at these two points as in
[147]. Both poles give the same contribution to the index and we get

lim
c→

√
t
IE[USp(4)](x1, x2; y1, y2; c, t) =

∏2
i,j=1 Γe(

√
tx±

i y±
j )

Γe (t)2 Γ2(ty±
1 y±

2 )
. (3.43)

At higher rank, the condition of bN−1 entering in the superpotential still corresponds to
c→
√

t and the reduction of the index follows by Proposition 3.5 in [79]

lim
c→

√
t
IE[USp(2N)](x⃗; y⃗; c; t) =

∏N
i,j=1 Γe(

√
tx±

i y±
j )

Γe (t)N ∏N
i<j Γe(ty±

i y±
j )

. (3.44)

3.3.3 Flowing to 3d

We highlighted several times the similarities between the 4d E[USp(2N)] theory and the 3d

M [SU(N)] and T [SU(N)] theories. These are not just an accident, since we can obtain the
three-dimensional theories by compactifying E[USp(2N)] on a circle and performing various
real mass deformations. All the properties of M [SU(N)] that we described in Subsection
2.4.1, in particular the enhancement of the symmetry of the saw and the duality web, can be
obtained as a limit of those of E[USp(2N)]. We will now explicitly analyze the flow relating
the two theories using as a tool their supersymmetric partition functions. It is known indeed
that the S3 × S1 and the S3

b partition functions are related by a limit which is interpreted as
sending the relative radius of the S1 and the S3 to zero [148–151, 5, 6]. We will also give a
field theory interpretation of these limits along the way.

Compactification to E[USp(2N)]3d

If we compactify the E[USp(2N)] theory on a circle we obtain a 3d N = 2 quiver theory we
denote as E[USp(2N)]3d which has the same gauge and matter content and superpotential

WE[USp(2N)]3d
=WE[USp(2N)] +Wmon , (3.45)

where Wmon is the contribution of KK monopoles turned on for each gauge node which are
dynamically generated in the reduction as discussed in [5, 6]. This monopole superpotential
ensures that E[USp(2N)]3d and E[USp(2N)] have the same global symmetry

USp(2N)X × USp(2N)Y × U(1)mA × U(1)∆ , (3.46)

since the condition of marginality of the USp(2n) monopoles in 3d is equivalent to the require-
ment that U(1)R is non-anomalous in 4d. The gauge invariant operators of E[USp(2N)]3d can
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be constructed in the same way as those of E[USp(2N)] since the monopole superpotential
also implies that the monopole operators are not in the chiral ring.

We can implement the 3d limit on the S3 × S1 supersymmetric index by rescaling the
global and gauge fugacities with the S1 radius r as

xi → e2πirXi , yi → e2πirYi , c→ e2πir∆, t→ e2πir(iQ−2mA), w(j)
α → e2πirz

(j)
α (3.47)

where i = 1, · · · , N , j = 1, · · · , N − 1 and α = 1, · · · , j and taking the hyperbolic limit of
the elliptic Gamma function

lim
r→0

Γe

(
e2πirx; e−2πrb, e−2πrb−1) = e− iπ

6r (i Q
2 −x)sb

(
i
Q

2 − x

)
, (3.48)

where we recall that Q = b + b−1. By doing so we find

lim
r→0
IE[USp(2N)](x⃗; y⃗; c; t) = C3d

N (∆, Q, r)ZE[USp(2N)]3d
(X⃗; Y⃗ ; ∆; mA) , (3.49)

where

ZE[USp(2N)]3d
(X⃗; Y⃗ ; ∆; mA) = sb

(
−i

Q

2 + 2∆
) N∏

i=1
sb

(
i
Q

2 ± YN ±Xi −∆
)
×

×
∫ ∏N−1

a=1 dz
(N−1)
a

2N−1(N − 1)! sb

(
i
Q

2 − 2mA

)N−1 N−1∏
a<b

sb

(
i
Q

2 ± z(N−1)
a ± z

(N−1)
b − 2mA

)
×

×
∏N−1

a=1 sb

(
±YN ± z

(N−1)
a −mA + ∆

)∏N
i=1 sb

(
±z

(N−1)
a ±Xi + mA

)
∏N−1

a<b sb

(
iQ

2 ± z
(N−1)
i ± z

(N−1)
j

)∏N−1
a=1 sb

(
iQ

2 ± 2z
(N−1)
i

) ×

×ZE[USp(2N)]3d

(
z

(N−1)
1 , · · · , z

(N−1)
N−1 ; Y1, · · · , YQ−1; ∆ + ma − i

Q

2 ; mA

)
,

(3.50)

is the partition function of the E[USp(2N)]3d theory on S3
b and the prefactor is

C3d
N (∆, Q, r) =

[
r(e−2πrb; e−2πrb)∞(e−2πrb−1 ; e−2πrb−1)∞

]N(N−1)
2 e− iπ

6r ( iQ
4 N(5N+1)−2N∆) .

(3.51)

By taking this limit on each side of the integral identities (3.34)-(3.37)-(3.40) encoding
the duality web of E[USp(2N)] we get similar identities but for the 3d theory, meaning that
also E[USp(2N)]3d enjoys the same dualities. Indeed, notice that the prefactor C3d

N (∆, r),
which is divergent as r → 0, is independent of the parameters Xi, Yi and mA, meaning that it
cancels between the two sides of the identities (3.34)-(3.37)-(3.40) when we take the limit10.

10The singlets in (3.37)-(3.40) give a trivial contribution to this divergent prefactor.
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Flow to M [SU(N)]

We can now perform some deformations to flow to other 3d quiver theories. For example
we can proceed as in [41] and a perform a combination of a Coulomb branch VEV and of
a real mass deformation that makes us flow to the M [SU(N)] theory we encountered in
Section 2.4.1. The Coulomb branch VEV has the effect of Higgsing the gauge groups from
USp(2N) to U(n). The real mass deformation is then needed to reach a vacuum where part
of the chirals remain massless. This flow has also the effect of generating non-perturbative
contributions due to the breaking of the gauge groups. These contributions together with the
original KK monopoles combine in a contribution to the superpotential consisting of the sum
of the two fundamental monopole operators of opposite magnetic charge at each gauge node
M+ + M−. The theory that we get is then precisely the M [SU(N)] theory. As we already
mentioned, the operators of E[USp(2N)] reduce to operators of M [SU(N)] that we labelled
with the same letters, but with a different font. In particular, the operators H and C in the
antisymmetric representations of USp(2N)x and USp(2N)y reduce to the operators H and C
in the adjoint representations of SU(N)X and SU(N)Y .

At the level of the sphere partition function this deformation is implemented [151, 5] by
taking

Xi → Xi + s, Yi → Yi + s, s→ +∞ (3.52)

and by shifting all the integration variables

z(i)
α → z(i)

α + s . (3.53)

The shift of the gauge variables corresponds to the Coulomb branch VEV and the shift of
the real masses corresponds to the real mass deformation that we mentioned. Notice that for
each node since the integrands are symmetric we can rewrite the integrals as

∫ +∞

−∞

n∏
i=1

dzi f(zi) = 2n
∫ +∞

0

n∏
i=1

dzi f(zi)→ 2n
∫ +∞

−s

n∏
i=1

dzi f(zi + s) . (3.54)

This has the effect of canceling the 2n factor in the USp(2n) measure.

As we explained when studying the limit from M [SU(N)] to T [SU(N)], the real mass
deformation is implemented using

lim
x→±∞

sb (x) = e±i π
2 x2

, (3.55)
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The result is

lim
s→+∞

ZE[USp(2N)]3d
(X⃗; Y⃗ ; ∆; mA) = CN (X⃗, Y⃗ , mA, ∆, Q, s)ZM [U(N)](X⃗; Y⃗ ; ∆; mA) ,

(3.56)

where we recall that the partition function of M [U(N)] is defined recursively as in (2.113)
and that to get the one of M [SU(N)] we just have to impose the tracelessness conditions∑N

i=1 Xi = ∑N
i=1 Yi = 0. The prefactor is

CN (X⃗, Y⃗ , mA, ∆, Q, s) = exp
{

iπ

[
iQ

(
N(N + 1) +

N∑
i=1

(Xi + NYi)
)

+

− 2∆
(

2Ns +
N∑

i=1
(Xi + Yi)

)
+ 2(N − 1)mA

N∑
i=1

(Xi − Yi)
]}

.

(3.57)

Again, we can take this limit on each side of the duality identities of E[USp(2N)]3d,
which we derived as limits of those (3.34)-(3.37)-(3.40) for E[USp(2N), so to recover the
identities (2.120)-(2.125)-(2.129) for the duality web of M [SU(N)]. One can check that the
divergent prefactor perfectly cancels between the two sides of each of these identities. For
example, the prefactor (3.57) is invariant under the simultaneous exchange of Xi ↔ Yi and
mA ↔ iQ

2 −mA, which implies that the limit of the identity (3.34) is finite and leads to
(2.120)11.

3.3.4 A variant: the FE[USp(2N)] theory

In our study of the compactifications of the rank-N E-string theory we will use a close relative
of E[USp(2N)]. We already met a variant of E[USp(2N)] that we called FFE[USp(2N)],
since it is defined as E[USp(2N)] with the addition of two sets of operators OH and OC

in the antisymmetric representation of USp(2N)x and USp(2N)y, respectively, which flip
the operators H and C. We now define the FE[USp(2N)] theory as the theory obtained by
introducing OH only and not OC

12

WF E[USp(2N)] =WE[USp(2N)] + Trx (OHH) . (3.58)

This theory inherits all the dualities that we saw for E[USp(2N)], since we just have
to add the singlets OH in each duality frame. Nevertheless, its role is different in each
frame, since the operator H is mapped non-trivially under the dualities (see Figure 3.7). For

11For this particular limit it is important to consider the contribution of the singlets in (3.37)-(3.40) to get
the finite result coinciding with (2.125)-(2.129)

12The 3d analogues of F E[USp(2N)] are usually denoted as F M [SU(N)] and F T [SU(N)]. The F T [SU(N)]
theory was first introduced in [20].
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Figure 3.8: Schematic representation of the IR SCFT to which FE[USp(2N)] flows, which
explicitly displays both of its USp(2N) global symmetries.

brevity, we summarize the action of the various dualities by giving the identities for the
supersymmetric indices. For the mirror-like duality we have

IF E[USp(2N)](x⃗; y⃗; c; t) = Γe

(
pq t−1

)2(N−1) N∏
i<j

Γe

(
pq t−1x±1

i x±1
j

)
Γe

(
pq t−1y±1

i y±1
j

)
×

× IF E[USp(2N)](y⃗; x⃗; c; pq/t) . (3.59)

For the flip-flip duality we have

IF E[USp(2N)](x⃗; y⃗; c; t) = Γe

(
pq t−1

)2(N−1) N∏
i<j

Γe

(
pq t−1x±1

i x±1
j

)
Γe

(
pq t−1y±1

i y±1
j

)
×

× IE[USp(2N)](x⃗; y⃗; c, pq/t) . (3.60)

Finally, combining these two dualities we find a third duality which is extremely simple, since
it just exchanges USp(2N)x and USp(2N)y and it doesn’t add any flipping fields13

IF E[USp(2N)](x⃗; y⃗; c; t) = IF E[USp(2N)](y⃗; x⃗; c; t) . (3.61)

This tells us that FE[USp(2N)] is symmetric under the exchange of USp(2N)x and USp(2N)y,
and it can be understood as the 4d uplift of the symmetry property (2.22) for the kernel
function (2.21) that appeared in our study of 2d free field correlators.

In our constructions of E-string compactifications we will use FE[USp(2N)] as a building
block by gauging its two USp(2N) global symmetries. Since one of these two symmetries is
not manifest in the quiver description of the theory, it is useful to introduce the notation
of Figure 3.8 to represent the IR SCFT to which FE[USp(2N)] flows. In this way we can
explicitly depict the gaugings involved in the E-string models, including the non-Lagrangian

13The 3d analogue of this duality for the F T [SU(N)] theory was first proposed in [20] where it was called
spectral duality.
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one. Notice that this depiction of the theory is totally symmetric under the exchange of the
two USp(2N) symmetries, reflecting the last duality we discussed for FE[USp(2N)].

There is a VEV deformation that we haven’t discussed previously for E[USp(2N)] since
it is better understood in terms of FE[USp(2N)]. Indeed, this corresponds to turning on
linearly in the superpotential some of the components of the operator OH as follows:

δW = JN OH , (3.62)

where

JN = iσ2
2 ⊗

(
JN + JT

N

)
(3.63)

and JN is the Jordan matrix of dimension N . This deformation induces a VEV for the
operator H

⟨OH⟩ = JN . (3.64)

This VEV breaks the flavor symmetry USp(2N)x down to SU(2)v. Moreover, it makes the
original FE[USp(2N)] theory flow to a simple WZ model. This can be understood from
Corollary 2.8 of [79]

IF E[USp(2N)](v, t v, · · · , tN−1v; y⃗; c, t) =
N∏

j=2

1
Γe (tj)

N∏
i=1

Γe

(
v c y±1

i

)
Γe

(
v−1c t1−N y±1

i

)
Γe (t1−ic2)

→
N∏

j=2

1
Γe (tj)

N∏
i=1

Γe

(
c t

1−N
2 v±1y±1

i

)
Γe (c2t1−i) , (3.65)

where at the second step we redefined v → t
1−N

2 v to make the residual SU(2)v symmetry
manifest. This VEV will be extremely important for us to construct the cap model starting
from the tube model in Section 3.5. Moreover, in the next chapter we will consider general-
izations of it to block diagonal Jordan matrices, which will lead us to introduce the new class
of Eσ

ρ [USp(2N)] theories.

3.3.5 Braid relation: generalized Seiberg duality

The E[USp(2N)] and the FE[USp(2N)] theories enjoy another interesting property. This
can be equivalently stated using any of the two theories, but for later convenience we prefer
to present it in terms of FE[USp(2N)]. If we glue two FE[USp(2N)] blocks by gauging
a diagonal combination of one of the two USp(2N) symmetries of each tail together with
an extra flavor f in the fundamental representation of this gauge symmetry, we re-obtain
FE[USp(2N)] plus two extra sets of singlets OL and OR, as depicted in Figure 3.9. Notice
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Figure 3.9: Schematic representation of the braid relation.

that for N = 1 the braid relation reduces to Seiberg duality for SU(2) with 3 flavors, which
is dual to a WZ model.

At the level of the index this duality is encoded in the following braid relation given in
Proposition 2.12 of [79]:

∮
dz⃗N Γe (t)N−1

N∏
i<j

Γe

(
t z±1

i z±1
j

) N∏
i=1

Γe

(
u0z±1

i

)
Γe

(
u1z±1

i

)
×

×IF E[USp(2N)](z⃗; x⃗; c; t)IF E[USp(2N)](z⃗; y⃗; d; t) =

=
N∏

i=1
Γe

(
c u0x±1

i

)
Γe

(
c u1x±1

i

)
Γe

(
d u0y±1

i

)
Γe

(
d u1y±1

i

)
IF E[USp(2N)](x⃗; y⃗; cd; t) ,

(3.66)

which holds if the following balancing condition is satisfied:

u0u1 = pq

c2d2 . (3.67)

Let’s discuss in more details the superpotential of the dual theories and their gauge
invariant operators. We first consider the l.h.s. of the duality where we glue two FE[USp(2N)]
blocks. We name the fields as in Figure 3.10.

In this case the superpotential is the one of the two FE[USp(2N)] tails

W = WL
F E[USp(2N)] +WR

F E[USp(2N)] + A
(
OL

H + OR
H

)
. (3.68)

Notice that we also added to the two FE[USp(2N)] a chiral field in the antisymmetric
representation of the USp(2N) gauge node which couples to the operators OH of the two
tails. The superpotential is such that A and one combination of OL

H and OR
H are massive. The

remaining massless combination is denoted as A(N) in Figure 3.10 and couples to Q
(N−1,N)
L

and Q
(N−1,N)
R . Moreover, it has the effect of identifying the U(1)t symmetries of the two

FE[USp(2N)] blocks.
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Figure 3.10: Fields appearing in the l.h.s. of the braid relation. Here we are assuming that
the two FE[USp(2N)] are glued with the Lagrangian gauging of their manifest USp(2N)
symmetries.

The balancing condition here follows by requiring U(1)R to be non-anomalous at the
central USp(2N) node. If we rescale the fugacities for the two chirals f1, f2 as

u0 → u0

√
pq

cd
, u1 → u1

√
pq

cd
(3.69)

we can see that the balancing condition (3.67) becomes the standard tracelessness condition
u0u1 = 1 for the SU(2) symmetry rotating them. Hence, the global symmetry is

USp(2N)x × USp(2N)y × U(1)t × U(1)c × U(1)d × SU(2)u . (3.70)

Observe that the two USp(2N) factors are enhanced at low energies from the SU(2) symme-
tries of the saw if we take the gauging to be the Lagrangian one as in Figure 3.3.5.

The gauge invariant operators are constructed starting from those of the two FE[USp(2N)]
tails:

• operators CL, CR constructed as described in Subsection 3.3.1 using the diagonal, vertical
and bifundamental chirals of the left and right FE[USp(2N)] blocks respectively;

• operator Ξ constructed starting from one of the diagonals of the left FE[USp(2N)]
and terminating on a diagonal of the right FE[USp(2N)] including bifundamentals.

• operators ΩL, ΩR constructed by joining the operators ΠL and ΠR in the bifundamental
representation of USp(2N)x×USp(2N)z and USp(2N)y×USp(2N)z respectively with
the two fundamental chirals fi

ΩL = TrN (ΠLf) , ΩR = TrN (ΠRf) ; (3.71)
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• long mesons constructed with the bifundamentals and the chirals fi

Θi = Tru Tri,L/R

(
f

N−1∏
a=i

q
(a,a+1)
L/R

)2

, (3.72)

where Tru is the trace over the SU(2)u flavor indices, Tri,L/R is the trace over the gauge
indices of the i-th USp(2i) gauge node of the left and right tail respectively, and L/R

means that we can construct two sets of operators of this form with the bifundamentals
of the left or the right tail respectively, but we expect them to actually coincide in pairs
in the chiral ring;

• flipping fields βL
i , βR

i of the diagonal mesons on the left and right FE[USp(2N)] tails.

The transformation rules of these operators under the global symmetries are summarized in
the following table:

USp(2N)x USp(2N)y U(1)t U(1)c U(1)d SU(2)u U(1)R0

CL N(2N− 1)− 1 1 −1 0 0 1 2
CR 1 N(2N− 1)− 1 −1 0 0 1 2
Ξ N N 0 1 1 1 0

ΩL N 1 0 −1 0 2 1
ΩR 1 N 0 0 −1 2 1
βL

i 1 1 N − i −2 0 1 2
βR

i 1 1 N − i 0 −2 1 2
Θi 1 1 N − i −2 −2 1 2

On the r.h.s. we have FE[USp(2N)] with two sets of chiral singlets OL and OR in the
bifundamental representation of the global USp(2N)x × SU(2)u and SU(2)u × USp(2N)y

symmetries respectively, which interact with the FE[USp(2N)] block through the superpo-
tential

Ŵ =WF E[USp(2N)] + Tru Trx Try OLΠOR . (3.73)

Because of this superpotential, the global symmetry of the theory precisely matches with
(3.70).

The gauge invariant operators are the same of FE[USp(2N)] with the addition of the
two sets of singlets OL and OR. Moreover, we can construct some long mesons of the form

ΘR
i = Tru Tri Trx

(
OR

N−1∏
a=i

q(a,a+1)
)2

(3.74)

and similar ones ΘL
i involving OL which have not a simple expression in terms of fundamental

fields since the USp(2N)y symmetry is not manifest in the quiver description, but whose
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existence is guaranteed by the self-duality of the FE[USp(2N)] block under the exchange
USp(2N)x ↔ USp(2N)y. They transform under the global symmetries as follows:

USp(2Q)x USp(2Q)y U(1)t U(1)c U(1)d SU(2)u U(1)R0

OH N(2N− 1)− 1 1 −1 0 0 1 2
C 1 N(2N− 1)− 1 −1 0 0 1 2
Π N N 0 1 1 1 0
βi 1 1 N − i −2 −2 1 2
OL N 1 0 0 −1 2 1
OR 1 N 0 −1 0 2 1
ΘR

i 1 1 N − i −2 0 1 2
ΘL

i 1 1 N − i 0 −2 1 2

The operator map across the duality is then

CL ↔ OH ,

CR ↔ C ,

Ξ ↔ Π ,

ΩL ↔ OL , (3.75)
ΩR ↔ OR ,

Θi ↔ βi ,

βR
i ↔ ΘL

i ,

βL
i ↔ ΘR

i .

3.4 E-string compactifications on tubes and tori

3.4.1 The basic tube model and gluing prescription

Let us start from a geometric definition of the tube model. The tube model we discuss
here is a four-dimensional theory corresponding to the compactification of the 6d E-string
theory on a two punctured sphere with some particular value of flux for the E8 symmetry.
The punctures have one USp(2N) symmetry associated to each of them and they come in
different types. This is due to the fact that the punctures are expected to break the E8

global symmetry to SO(16) and we have some freedom in how the SO(16) is embedded inside
the E8. Specifically, we are free to act with any inner automorphism of E8, which are just
the Weyl transformations, to potentially get different embeddings. Likewise the flux, being
a vector in the root lattice of E8, is also affected by Weyl transformations. Thus, given a
tube we can generate an equivalent tube by acting with an E8 Weyl transformation. Tubes
differing in this way are ultimately the same tube, but the gluing of two tubes is affected
if these differ by a relative Weyl group action. When we glue two punctures together the
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associated flux for the combined tube is the sum with appropriate signs, as we shall see, of
their fluxes.

Now we need to define the tube and gluing at the level of the physical theories. In a tube
theory each puncture comes equipped with an octet of operators Ma with a = 1, · · · , 8 in
the fundamental representation of USp(2N), which we will refer to by an abuse of notation
as moment maps. These moment map operators are charged under the U(1) symmetries
comprising the Cartan generators of the E8. Different types of punctures have moment map
operators charged differently under these symmetries. Again, the difference of the charges
can be associated to an action of the Weyl group of E8. Consider fixing a specific SO(16)
subgroup of E8, as we have done when we chose an SO(16) flux basis. Then for simplicity,
when we glue two punctures together we can first limit ourselves to only gluing punctures
of the same type up to the action of the Weyl group of the chosen SO(16) subgroup of E8

(a more general gluing will be discussed in Section 3.4.3). The Weyl group of SO(16) is
comprised of permutations of eight elements and of flips of any even number of them. In
particular it means that the moment map operators Ma and M ′

a of the two punctures we
are gluing have same charges under the Cartan symmetries of E8 up to permutations of the
indices and flips of signs for even number of components. Let us denote the permutation
by σ and the set of indices with flipped signs by F. The punctures also have operators A

in the antisymmetric traceless representation of USp(2N). We glue punctures by gauging a
diagonal combination of the two USp(2N) symmetries and by introducing a chiral field, Â,
in the traceless antisymmetric representation of USp(2N) and a set of fundamental fields,
Φa for a /∈ F, which couple to the moment map operators through a superpotential

W =
∑
a/∈F

(Ma −M ′
σ(a)) Φa +

∑
a∈F

MaM ′
σ(a) + (A−A′)Â . (3.76)
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The first type of superpotential terms are usually referred to as Φ-gluing and the second ones
as S-gluing. The third term only appears for higher rank E-string as for rank one we do not
have traceless antisymmetric representations. Physically the restriction to only having even
number of flipped charges is related to Witten global anomaly obstruction [152]. We will be
gauging the USp(2N) symmetry and the absence of the Witten anomaly implies that the
number of chiral fields in the fundamental representation here is even. Finally, if the fluxes
of the theories we are gluing are F and F ′, the flux of the combined theory, Fglued, will be
given by

a /∈ F : Fglued
a = Fa + F ′

σ(a) , a ∈ F : Fglued
a = Fa −F ′

σ(a) . (3.77)

Next we need to define at least one tube model from which we can build other tubes and
torus theories. The simplest tube, depicted in Figure 3.11, is constructed by coupling the
FE[USp(2N)] block to two octets M, M ′ with superpotential

W =
8∑

a=1
MaΠM ′

a . (3.78)

In the tube model constructed in such a way, the operators in the antisymmetric represen-
tations of the USp(2N) symmetries of the puncture are OH and C14. This tube model is
associated to a flux breaking E8 → U(1)c×E7 which in the SO(2)8 ⊂ SO(16) complete basis
corresponds to the vector

F =
(1

2 ,
1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2

)
. (3.79)

The basic tube theory has global symmetry USp(2N)×USp(2N)×U(1)t×U(1)c×SU(8)u×
U(1)f . The U(1)t symmetry is hidden inside the block and when we glue tubes into tori it
will enhance to the SU(2)L symmetry of the E-string theory. The U(1)f symmetry, when we
glue tubes into tori, always disappears because of anomalies and superpotential constraints.
For this reason we will omit it from our discussion of torus compactifications setting f = 1,
but it will become crucial in sphere compactifications since it represents the Cartan of the
SU(2)ISO isometry of S2 as we will see in Section 3.5. We use the U(1)c fugacity to define
charges of the moment maps on the right as ηa = c−1/2ua, where ua are SU(8)u fugacities
satisfying ∏8

a=1 ua = 1. On the left the fugacities are η′
a = c−1/2u−1

a . The map between ηa to
η′

a consists of charge conjugation for the SU(8), but without acting on U(1)c. This is not a
Weyl group element of SO(16), which contains charge conjugation for both groups, but not
for each one separately. However, it is an element of the E7 ⊂ E8 Weyl symmetry group.

14We remark again that thanks to the symmetry property of F E[USp(2N)] under the exchange of USp(2N)x

and USp(2N)y it doesn’t matter which puncture we are identifying with the symmetry that is manifest in the
Lagrangian description and which with the one that is enhanced at low energies. The only distinction between
the two punctures, as we explained, relies in the octet fields and their charges under the E8 subgroup.
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Figure 3.12: Gluing two basic tubes together with a trivial element of the Weyl group we
obtain a tube with flux (1, 1, 1, 1, 1, 1, 1, 1).

Let us illustrate how we glue two such tubes together with concrete examples. We can
glue two basic tubes with a trivial identification of the moment maps as depicted in Figure
3.12. If we assign fugacities ηa to moment maps of one glued puncture and ξa to the other
glued puncture, we identify the charges with a trivial action of the SO(16) Weyl symmetry
group as follows:

a = 1 . . . 8 : ηa = ξa . (3.80)

The two basic tubes then are glued with the superpotential

W =
8∑

a=1
(Ma −M ′

σ(a))Φa + (A−A′)Â , (3.81)

where A, A′ are either the operators OH or C of the FE[USp(2N)] associated to the tubes
we are gluing. Integrating out the massive fields, the fields Ma and M ′

σ(a) are identified and
we get the quiver on the right of Figure 3.12. The flux of the combined model is obtained
summing the fluxes F and F ′ of the two glued theories. Since in this case there are no flips
of fugacities the tube model which we obtain has flux

(F1 + F ′
1,F2 + F ′

2,F3 + F ′
3,F4 + F ′

4,F5 + F ′
5,F6 + F ′

6,F7 + F ′
7,F8 + F ′

8) =(3.82)
= (1, 1, 1, 1, 1, 1, 1, 1) ,

which corresponds to a unit of flux z = 1 for the U(1) whose commutant in E8 is E7.
We can also glue two basic tubes with a non-trivial identification of the moment maps.

Denoting again as ηa and ξa the fugacities of the punctures we are gluing, we identify the
charges with the following action of the SO(16) Weyl symmetry group:

a = 1 . . . 4 : ηa = ξa , (3.83)

a = 5 . . . 8 : ηa = 1
ξa

.
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Figure 3.13: Example of gluing two basic tubes together with a non-trivial element of the
Weyl group of SO(16). The resulting tube will have flux (1, 1, 1, 1, 0, 0, 0, 0).

We decompose the SU(8)u × U(1)c fugacities of our basic tube into SU(4)v × SU(4)w ×
U(1)s × U(1)c fugacities taking for the first moment map fugacities ηa = c− 1

2 s− 1
2 va for

a = 1 . . . 4 and ηa = c− 1
2 s

1
2 wa for a = 5 . . . 8, with ∏4

a=1 va = ∏8
a=5 wa = 1. Analogously

for the second moment map we take ξa = c′− 1
2 s′− 1

2 v′
a for a = 1 . . . 4 and ξa = c′− 1

2 s′ 1
2 w′

a for
a = 5 . . . 8. The identification above then sets c = s′, s = c′, va = v′

a, and wa = 1/w′
a. The

gluing of the two tubes is depicted in Figure 3.13. In this case, the two basic tubes are glued
with the superpotential

W =
4∑

a=1
(Ma −M ′

σ(a))Φa +
8∑

a=5
MaM ′

σ(a) + (A−A′)Â . (3.84)

Now half of the fugacities are flipped and consequently the tube model we obtain has flux

(F1 + F ′
1,F2 + F ′

2,F3 + F ′
3,F4 + F ′

4,F5 −F ′
5,F6 −F ′

6,F7 −F ′
7,F8 −F ′

8)
= (1, 1, 1, 1, 0, 0, 0, 0) , (3.85)

which corresponds to half a unit of flux z = 1
2 for the U(1) whose commutant in E8 is SO(14).

We can further glue these tubes. For example, by gluing two (1, 1, 1, 1, 0, 0, 0, 0) tubes
with a trivial action of the SO(16) Weyl symmetry group, adding eight Φa fundamentals, as
shown in Figure 3.14, we obtain a tube with flux (2, 2, 2, 2, 0, 0, 0, 0) which corresponds to a
unit of flux z = 1 for the U(1) whose commutant in E8 is SO(14).

Using these simple definitions we will now construct a large set of models with interesting
properties. Before doing this we will verify that the ’t Hooft anomalies under all the
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Figure 3.14: Gluing two (1, 1, 1, 1, 0, 0, 0, 0) tubes together with a trivial element of the Weyl
group of SO(16) we obtain a tube with flux (2, 2, 2, 2, 0, 0, 0, 0).

symmetries of the conjectured tube theory match the six dimensional predictions (3.2), (3.6),
(3.7), and (3.8).

Let us also note here that the RG flow between FE[USp(2N)] to FE[USp(2(N − 1))]
that we have discussed in section 3.3.2 has a 6d meaning. This flow corresponds to separating
one M5 brane from the rest and flowing to a lower rank E-string theory. Note that such a
flow keeps the six dimensional symmetry E8 × SU(2)L intact. However as the symmetries
corresponding to the punctures in the FE[USp(2N)] and FE[USp(2(N − 1))] theories are
different, the VEV breaks USp(2N) down to USp(2(N − 1)). We also note that the flow to
WZ model discussed in 3.3.2 corresponding to setting c =

√
t was considered in the context

of rank N E-string compactification in Appendix B of [116] and corresponds to some relevant
deformation of the theories obtained in the compactifications.

3.4.2 Anomalies of the basic tube

Let us compute various anomalies of the basic tube theory. We have defined the basic model
using a certain R-symmetry and definition of U(1)c and U(1)t using which the charges of
various fields take the simplest form. Also these are the definitions used by Rains in [79].
However, to compare with the 6d computation we need to perform some slight redefinitions.
In general, as we mentioned before, different choices of R-symmetry are related by admixture
of abelian symmetries

R = R0 + cqc + tqt . (3.86)

Here we will use the six-dimensional R-symmetry, denoted by R̂, which corresponds to taking
c = 0 and t = 1 so R̂ = R0 + qt. Using this R-symmetry we find that the linear anomalies are

Tr U(1)R̂ = −N(1 + 2N) , Tr U(1)t = 1 + N − 2N2 , Tr U(1)c = −14N . (3.87)
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Next consider anomalies with puncture symmetries

Tr U(1)R̂USp(2N)2 = −1 + N

2 , Tr U(1)cUSp(2N)2 = −1 ,

Tr U(1)tUSp(2N)2 = 1−N

2 . (3.88)

Then we have cubic anomalies involving a single symmetry

Tr U(1)3
R̂

= −N(1 + 2N) , Tr U(1)3
t = 1 + N − 2N2 , Tr U(1)3

c = −8N . (3.89)

Finally we have cubic anomalies involving several U(1) symmetries

Tr U(1)R̂U(1)2
t = 0 , Tr U(1)R̂U(1)2

c = 0 , Tr U(1)cU(1)2
t = −N(N − 1) ,

Tr U(1)tU(1)2
c = 0 , Tr U(1)2

R̂
U(1)t = 0 , Tr U(1)2

R̂
U(1)c = N(N + 1) .

(3.90)

To compare with the six-dimensional prediction we have to sum the bulk contribution to
the inflow contribution of the two punctures with z = 1/2, ξG = 1, q = −1/2 and qa = −1/2
for a = 1, · · · 8. For example

Tr U(1)c = −12× (1/2)× 1 N︸ ︷︷ ︸
geometric

+ 2× 8× (−1/2) N︸ ︷︷ ︸
inflow

= −14N

Tr U(1)3
c = −12× (1/2)× 12 N︸ ︷︷ ︸

geometric

+ 2× 8× (−1/2)3 N︸ ︷︷ ︸
inflow

= −8N , (3.91)

and further, taking contributions from the punctures only,

Tr U(1)t = −2N2 −N − 1
2

Tr U(1)3
t = −2N2 −N − 1

8

Tr(U(1)cSU(2)2
L) = −N(N − 1)

4 . (3.92)

In order to match the anomalies (3.92) with the ones computed in 4d we also need to redefine
qt → 1

2qt ≡ qt̂. In this normalization for the U(1)t̂ charges the character of the fundamental
representation of SU(2)L is t̂

1
2 + t̂− 1

2 and thus Tr U(1)SU(2)2
L = Tr U(1)U(1)2

t̂
. In particular,

Tr U(1)t̂ = 1
2 Tr U(1)t = −2N2 −N − 1

2

Tr U(1)3
t̂

= 1
8 Tr U(1)3

t = −2N2 −N − 1
8
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Figure 3.15: Gluing 2n (1
2 , 1

2 , 1
2 , 1

2 , 1
2 , 1

2 , 1
2 , 1

2) tubes we obtain a torus with n units of flux
preserving SU(2)L × E7 × U(1). Here we are representing the model for n = 2.

Tr U(1)cU(1)2
t̂

= Tr(U(1)cSU(2)2
L) = −N(N − 1)

4 . (3.93)

The matching of the anomalies that we just performed is a strong test of our claim that
the model constructed with FE[USp(2N)] and the two octets of chirals is the result of the
compactification of the rank-N E-string theory on a tube with flux (1

2 , 1
2 , 1

2 , 1
2 , 1

2 , 1
2 , 1

2 , 1
2),

which is flux z = 1
2 for the U(1) whose commutant in E8 is E7. Now we will perform additional

tests which consist of using this basic tube to construct torus models with various values of
flux and verifying that they possess the anomalies and the global symmetries expected from
6d.

3.4.3 Torus compactifications

We now use the basic E7 tube to construct models corresponding to torus compactifications
with various values of fluxes by performing gluings with different SO(16) Weyl elements as
we just described.

Tori with F = (n, n, n, n, n, n, n, n)

The simplest torus models we can build are obtained by combining the basic E7 tubes
together with a trivial action of the Weyl group. Taking an even number of such tubes we
do not break any of the symmetries. In particular combining 2n tubes we obtain the torus
compactification of the E-string with n units of flux for the U(1) whose commutant in E8 is
E7 (see Figure 3.15).
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Anomalies:

We compute some of the anomalies of this torus theory. It is convenient to package the
anomalies of abelian symmetries into the trial a and c anomalies. Using the trial R-charge
R0 + tqt + cqc we first calculate the trial a and c anomalies of FE[USp(2N)]

aF E[USp(2N)](c, t) = 3
32N (c(16− 9(N − 1)(t− 2)t)− (2N − 1)t(3(t− 3)t + 8)− 4) +

− 3
32
(
12nc3 + 3(1− t)3 − (1− t)

)
,

cF E[USp(2N)](c, t) = 1
32N (c(44− 27(N − 1)(t− 2)t)− (2N − 1)t(9(t− 3)t + 22)− 8) +

− 1
32
(
36Nc3 + 9(1− t)3 − 5(1− t)

)
. (3.94)

When we glue the tubes to a torus we add an octet of fundamental fields Φa, the antisymmetric
field Â, and gauge the USp(2N) symmetry. The contribution of the gluing to the anomaly is
then,

aglue (8,0)(c, t) = 3
32
(
−6c3N + 8cN − (N(2N − 1)− 1)

(
−3(t− 1)3 + t− 1

)
+

+ 2(2N + 1)N)

cglue (8,0)(c, t) = 1
32
(
2c
(
20− 9c2

)
N +

(
2N2 −N − 1

) (
9t3 − 27t2 + 22t− 4

)
+

+ 4(2N + 1)N) . (3.95)

Here the label (8, 0) denotes the fact that we glue with an octet of Φa as opposed to gluing
with less than 8 fields, as we do when we consider a non-trivial identification with the action
of the Weyl symmetry group. The total anomaly is given by

aE7,2n(c, t) = 2n(aF E[USp(2N)](c, t) + aglue (8,0)(c, t)) ,

aE7,2n(c, t) = 2n(cF E[USp(2N)](c, t) + cglue (8,0)(c, t)) . (3.96)

We can maximize aE7,2n with respect to c and t and obtain

c = 2
√

2
3
√

3N + 5, t = 0 , (3.97)

for which we get

a =
√

2N(3N + 5) 3
2

16 n , c =
√

2(3N + 5)Q(3N + 7)
16 n , (3.98)

which matches the six dimensional prediction (3.3) with z = n and ξG = 1, the value
corresponding to the flux preserving U(1)×E7. Notice that the absence of mixing with U(1)t

is compatible with the fact that this symmetry is enhanced to SU(2)L for which we have no
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flux. We can also match the abelian anomalies. For example from the 4d theory we extract

Tr U(1)c = −12Nn , Tr U(1)3
c = −12Nn (3.99)

which perfectly match the 6d prediction.
Index:
Next we can compute the index of the torus theory and check whether the expected symmetry
makes an appearance. The index for the basic tube theory with flux F =

(
1
2 , 1

2 , 1
2 , 1

2 , 1
2 , 1

2 , 1
2 , 1

2

)
is given by15

I(z= 1
2 )

tube (x⃗; y⃗; c; t; u⃗) =
N∏

i=1

8∏
a=1

Γe

(
(pq)

1
2 c− 1

2 uiax±1
i

)
Γe

(
(pq)

1
2 c− 1

2 u−1
a y±1

i

)
×

× IF E[USp(2N)](x⃗; y⃗; c; t) . (3.100)

We also define the contribution of the gluing as

∆N (z⃗; c; t; u⃗) =
N∏

i=1

8∏
a=1

Γe

(
(qp)

1
2 c

1
2 u−1

a z±1
i

)
∆N (z⃗; t) , (3.101)

where the contribution of the traceless antisymmetric of USp(2N) is

∆N (z⃗; t) = Γe (t)N−1
N∏

i<j

Γe

(
t z±1

i z±1
j

)
. (3.102)

Then the torus model with z = n units of flux has the following index

I(z=n)
N =

∮
dz⃗

(1)
N · · ·

∮
dz⃗

(2n)
N

2n∏
i=1
I(z= 1

2 )
tube (z⃗(i), z⃗(i+1); c; t; u⃗)∆N (z⃗(i+1); u⃗; c; t) . (3.103)

In order to analyze the symmetries of the theory we expand the index using the 6d

R-symmetry R̂. The case of N = 1 was discussed in detail in [116], here we give the result
for N = 2 and generic value of z16. With the 6d R-symmetry R̂ and with t = t̂

1
2 we obtain

for flux z > 1

I(z=n)
N=2 = 1 + c2z + c4z + · · ·+ pq(z56c−1 − z56c + 2zc−2) + (3.104)
+pq(p + q)(z56c−1 + 2zc−2) + (pq)

3
2 (z56c−1 + 2zc−2)(t̂

1
2 + t̂− 1

2 ) + · · · .

We see that the representations of SU(8)u recombine into representations of E7. In
particular, 28 + 28→ 56. The fugacity t̂

1
2 is the Cartan of SU(2)L. We can easily identify

15In the following expressions we turn off the fugacity f .
16For low values of flux there can be additional operators with low charges contributing in low orders of the

expansion of the index.
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some of these operators in the quiver. For example, the operators charged c2z are ∏2n
i=1 Π(i)

where Π(i) is the Π operator for the i-th FE[USp(2N)] block. The operators in the 28 and
28 are built from the octet fields as Tr MaMa. Note that as half of Ma are in the fundamental
and half in the anti-fundamental of SU(8)u we get exactly n copies of 56s.

We will now compare the 4d spectrum that we see from the index with what we expect
from the 6d construction. As we discussed around eq. (3.14) the lowest BPS operators
contributing to the index of the 4d theory come from the 6d conserved currents and the
energy momentum tensor. Since we are considering torus compactifications with flux breaking
E8 → U(1)c × E7 we expect that the contribution to the index of these operators will be in
the representations appearing in the branching rule for the decomposition of the adjoint of
E8 → U(1)c × E7

248→ 1±2 ⊕ 10 ⊕ 1330 ⊕ 56±1 , (3.105)

where the superscripts indicate the U(1)c charges. The multiplicities with which these
operators contribute depend on the charges under the U(1) for which we turn on the flux
and on the flux z. For example, in our normalization17 an operator with charge +1 under
U(1)c will be a fermion and contribute with multiplicity −z to the index, while an operator
charged −2 will be a boson and will contribute with multiplicity +2z to the index. These
operators will appear at order pq in the expansion of the 4d index when the 6d R-charge R̂

is chosen. This is the expected pattern. Indeed we see that in (3.104) at order pq we have
operators in the 56± and 12. However, we are missing the 1−2 operator. It is not clear what
eliminates it from the 4d theory, and it will be interesting to figure this out. One possibility
is that it get canceled against defect operators wrapping the torus.

We then can think of 0 = 10 + 1330 + 30
SU(2)L

− (10 + 1330 + 30
SU(2)L

) as the cancellation
of marginal operators and conserved currents. This is expected for torus compactifications
as we discussed in Subsection 3.2.2. In particular, we would conclude that the conformal
manifold, having dimension 8, is big enough to accommodate the E7 symmetry enhancement.

Another property that we immediately see is that the index is invariant under exchange
of t̂ with t̂−1. This is consistent with the expectation that t̂

1
2 is an SU(2)L fugacity as the

operation of flipping t̂ is the Weyl operation of the SU(2)L. This conforms to our expectations
from 6d since this model has no flux for SU(2)L. This property holds for generic rank N and
flux z thanks to the flip-flip duality of FE[USp(2N)] and in particular (3.37). Note that, as
we always introduce the antisymmetric field Â for each gluing, this will guarantee that the
index is invariant under the Weyl transformation of SU(2)L for tori with any choice of flux.
This is not true for tubes however as the punctures break the SU(2)L symmetry to U(1)t̂.

17Specifically, the U(1) for which we have flux z is identified with −U(1)c.
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Tori with F =
(

k
2 , k

2 , k
2 , k

2 , k
2 , k

2 , k
2 , k

2

)
If we glue an odd number of basic tubes we obtain theories with half-integer fluxes F =(

k
2 , k

2 , k
2 , k

2 , k
2 , k

2 , k
2 , k

2

)
, with k an odd integer. This flux violates the Dirac quantization

condition. Nevertheless, fractional fluxes can in general still be allowed, provided that these
are accompanied by a flux in the center of the non-abelian part of the global symmetry that
is the commutant of the U(1) inside the full 6d global symmetry for which we are turning
on a flux. The effect of this flux for the center group is to further break the non-abelian
global symmetry to some subgroup. Such a flux for the center group can be generated by
turning on two holonomies, one for each cycle of the torus, that are almost commuting, that
is they commute up to an element of the center group18. The symmetry preserved by the
flux corresponds then to the one preserved by the holonomies. For a more in depth analysis
we refer the reader to Appendix C of [116].

For a given group, there may be more than one such choices of holonomies, which preserve
a different subgroup and which can be continuously connected one to the other. The field
theory interpretation of this is that the theories obtained from the compactification will possess
a conformal manifold and their marginal deformations are related to the aforementioned
holonomies. If we are on a point of the conformal manifold where the global symmetry is
the one preserved by one choice of holonomies, we can move on a generic point where the
symmetry is broken to its maximal torus U(1)r, with r the rank of the preserved global
symmetry group, and then to a special point where these U(1) symmetries reassemble into
a different symmetry group associated to a different choice of holonomies. For the case at
hand, the fractional flux will in general break the E7 symmetry to its maximal torus U(1)4,
but we may expect this to further enhance at most to F4 [116].

Tori with half-integer fluxes can be obtained by gluing an odd number of copies of
the basic tube. We focus on the case of a single tube self-glued to give a torus with
F =

(
1
2 , 1

2 , 1
2 , 1

2 , 1
2 , 1

2 , 1
2 , 1

2

)
. Recall that the two punctures of the tube are of types that are

not related by an action of the Weyl group of SO(16). Hence, we can’t perform a gluing
that preserves the SU(8) symmetry, as expected. Instead, we will perform a gauging that
explicitly breaks the SU(8) symmetry to SU(4)×U(1), which actually is enhanced to SO(8)
in the Lagrangian since the gauge group is USp(2N) and the chirals transforming under
SU(4)× U(1) are in the (anti-)fundamental representation of SU(4). We will then discuss
the possibility for this to further get enhanced to F4.

More precisely, we start from the tube theory of Figure 3.11 and we split the octets of
chiral fields in two groups, as depicted on the left of Figure 3.16. This corresponds to the
group decomposition SU(8)u → SU(4)v×SU(4)w×U(1)s. We also rewrite the superpotential

18This is sometimes also refereed to as a non-trivial second Stiefel-Whitney class. See [121] and references
therein, for some discussion of this aimed at physicists.
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Figure 3.16: Self-gluing of the basic tube yields the torus with flux
(

1
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2 , 1
2 , 1

2 , 1
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2

)
.

The shaded nodes indicate the gauging which identifies the USp(2N) symmetries of the basic
tube.

as

W =
4∑

a=1
MaΠM ′

a +
8∑

b=5
M bΠM ′

b . (3.106)

We perform a gauging that breaks the upper SU(4) symmetry by identifying the two
USp(2N) symmetries and adding a pair Φ, Φ′ of bifundamental and anti-bifundamental of
SU(4)× USp(2N) and a USp(2N) traceless antisymmetric Â with superpotential

W =
4∑

a=1
MaΠM ′

a +
8∑

b=5
M bΠM ′

b +
8∑

b=5

(
M bΦb + M ′

bΦ′b
)

+ Â(OH − C) . (3.107)

Integrating out the massive fields we get the quiver on the right of Figure 3.16 with superpo-
tential

W =
4∑

a=1
MaΠM ′

a , (3.108)

where the global symmetry is actually SO(8). This is the theory corresponding to a torus
with flux F =

(
1
2 , 1

2 , 1
2 , 1

2 , 1
2 , 1

2 , 1
2 , 1

2

)
.

In order to discuss the possible enhancement of the SO(8) symmetry to F4, we consider
the supersymmetric index of this theory

I(z= 1
2 )

torus (c; t; u⃗) =
∮

dz⃗N ∆N (z⃗; t)
N∏

i=1

8∏
a=5

Γe

(
(pq)

1
2 c

1
2
(
s−1wa

)±1
z±1

i

)
I(z= 1

2 )
tube (z⃗; z⃗; c; tu⃗) =
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=
∮

dz⃗N ∆N (z⃗; t)
N∏

i=1

4∏
a=1

Γe

(
(pq)

1
2 c− 1

2 (s va)±1 z±1
i

)
IF E[USp(2N)](z⃗; z⃗; c; t) ,

(3.109)

where we decomposed the SU(8)u fugacities into SU(4)v×SU(4)w×U(1)s fugacities according
to

ua = s va, ub+4 = s−1wb (3.110)

with the constraints ∏4
a=1 va = ∏8

b=5 wb = 1. Notice that the index is manifestly SO(8)
invariant in the variables ua = s va. It is also secretly F4 invariant, since according to
Theorem 3.22 of [79] it is invariant under

ua →
ua√

u1u2u3u4
. (3.111)

This implies that if we expand the index in powers of p and q, the characters of SO(8) should
actually re-arrange into characters of F4. Indeed, using the 6d R-charge R̂ and rescaling
t = t̂

1
2 we find that the index of the model for rank N = 2 is

I(z= 1
2 )

torus = 1 + c + 2c2 + · · ·+ qp
(
28 + 1 + c−2 + (28 + 1)c−1 + c

)
+

+pq(p + q)
(
28 + 2 + c−2 + (28 + 1)c−1 + (28 + 2)c

)
+

+(pq)
3
2
(
c−2 + 28c−1 − 28c

)
(t̂

1
2 + t̂− 1

2 ) + · · · , (3.112)

where 28 is the representation of SO(8), which can also be thought of as the representations
26 + 1 + 1 of F4. From this expression we can see that if we compute the index with the
4d superconformal R-charge we get a pq term equal to (28 + 1)pq, which doesn’t contain
a conserved current for F4. If we assume a cancellation of the current due to marginal
operators, we find that the conformal manifold is bigger than the one predicted from 6d.
The expansion of the index then can be re-arranged into characters of F4 and there is no a
priori contradiction with the conformal manifold having a locus on which the symmetry is
enhanced to F4. This is to be contrasted with the N = 1 case where with minimal flux z = 1

2
the conformal manifold did not contain an F4 locus [116].

We can also consider the theory corresponding to higher half-integer flux z > 1
2 (see

Figure 3.17 for the case z = 3
2)

I(z= n
2 )

torus = 1 + c2z + 2c4z + · · ·+ qp
(
2z(28− 1)c2 − 2z(28− 1)c + 2z28c−1 + 2zc−2

)
+

+pq(p + q)
(
2z28c−1 + 2zc−2 − 2z(28− 1)c

)
+

+(pq)
3
2
(
2z28c−1 + 2zc−2 − 2z28c

)
(t̂

1
2 + t̂− 1

2 ) + · · · . (3.113)
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Figure 3.17: Gluing three basic tubes to form a tube with flux
(
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)
.

We notice that in this case there is no pq term corresponding to an operator uncharged under
c. This means that computing the index with the 4d superconformal R-charge the pq term
vanishes. Hence, we find no contradiction with the enhancement to F4 on some point of the
conformal manifold. Moreover, given that the mixing coefficient with U(1)c (3.97) is positive,
computing the index with the 4d superconformal R-charge there will be no contribution from
relevant fermionic operators [141].

Tori with F = (2n, 2n, 2n, 2n, 2n, 2n, 0, 0)

Let us consider gluing two basic tubes with the element of SO(16) Weyl symmetry group
which flips two of its fugacities, that is

a = 1 . . . 6 : ηa = ξa , a = 7, 8 : ηa = 1
ξa

. (3.114)

We split the fugacities into SU(6)u × SU(2)v × U(1)s × U(1)c as,

a = 1 . . . 6 : ηa = s
1
2 c− 1

2 ua , a = 7, 8 : ηa = s− 3
2 c− 1

2 va , (3.115)
a = 1 . . . 6 : ξa = s′ 1

2 c′− 1
2 u′

a , a = 7, 8 : ξa = s′− 3
2 c′− 1

2 v′
a , (3.116)

with ∏6
a=1 ua = ∏6

a=1 u′
a = ∏8

a=7 va = ∏8
a=7 va = 1. Then the map between the charges

(3.114) implies c′ = s− 3
2 c

1
2 , s′ = s− 1

2 c− 1
2 , ua = u′

a and va = 1/v′
a.

Since only two fugacities are flipped the gluing will involve six USp(2N) fundamentals
Φa, a = 1, · · · , 6 as shown in Figure 3.18 and the flux associated to this tube will be(1

2 ,
1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2

)
+
(1

2 ,
1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,−1

2 ,−1
2

)
= (1, 1, 1, 1, 1, 1, 0, 0) , (3.117)
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Figure 3.18: Gluing two basic tubes to form a tube with flux (1, 1, 1, 1, 1, 1, 0, 0). We avoid
drawing arrows for lines connecting USp(2N) nodes to SU(2) nodes.

corresponding to half a unit of flux z = 1
2 for the U(1) whose commutant in E8 is E6×SU(2).

If we now glue 2n such tubes with a trivial element of the SO(16) Weyl group we obtain
the theory corresponding to the compactification on a torus with z = n units of flux in
this U(1) and we expect the symmetry on some locus of the conformal manifold to be
SU(2)L × E6 × SU(2)× U(1). The torus theory is depicted in Figure 3.19. We proceed to
perform some checks of the proposal.
Anomalies:
We first calculate the conformal anomalies for this torus theory and obtain:

a = 1
8

√
3
2nN(3N + 5)3/2 , c = 1

8

√
3
2nN

√
3N + 5(3N + 7) . (3.118)

This matches the six-dimensional prediction (3.3) for SU(2)×E6 preserving n units of flux,
that is with ξG = 3 and z = n.
Index:
We can compute the index. Again we will consider the case with rank N = 2 and arbitrary
flux z = n for simplicity (for the case N = 1 see [116]). Using the six-dimensional R-charge
R̂ and rescaling t = t̂

1
2 we find

I(z=n)
N=2 = 1 + · · ·+ pq

(
3z(2, 1)m−3 + 2z(1, 27)m−2 + z(2, 27)m−1+

−2z(1, 27)m2 − z(2, 27)m
)

+ pq(p + q)(3z(2, 1)m−3 + 2z(1, 27)m−2 +

+z(2, 27)m−1 − z(2, 27)m) + (pq)
3
2 (3z(2, 1)m−3 + 2z(1, 27)m−2 +

+z(2, 27)m−1 − z(2, 27)m)(t̂
1
2 + t̂− 1

2 ) + · · · (3.119)
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Figure 3.19: Gluing 2n (1, 1, 1, 1, 1, 1, 0, 0) tubes we obtain a torus with n units of flux
preserving SU(2)t × E6 × SU(2)× U(1). Here we are depicting the case n = 1.

where we redefined the fugacities for the abelian symmetries with respect to the ones used in
Figure 3.18 according to

c = m
3
2 w−1, s = m− 1

2 w−1 , (3.120)

to isolate U(1)w which is the one enhancing to SU(2). In (3.119) we indicate by (·, ·) the
characters of SU(2) × E6, for example (2, 1) = w2 + w−2. Then the SU(2)v × SU(6)u

fugacities re-organize in the index in terms of characters of E6 according to the branching
rules

(1, 27) = (2, 6)SU(2)v×SU(6)u
⊕ (1, 15)SU(2)v×SU(6)u

. (3.121)

We can also use the index result to compare with the 6d prediction of the spectrum. Since
we are considering torus compactifications with flux breaking E8 → U(1)v × SU(2) × E6

we expect that the contribution to the index corresponding to the 6d conserved currents
and energy momentum tensor will appear in the pq term of the index in the representations
involved in the branching rule

248→ (1, 1)0 ⊕ (3, 1)0 ⊕ (1, 78)0 ⊕ (1, 27)2 ⊕ (1, 27)−2 ⊕ (2, 27)−1 ⊕ (2, 27)1 ⊕ (2, 1)±3 ,

(3.122)
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Figure 3.20: Gluing 2n (1, 1, 1, 1, 0, 0, 0, 0) tubes we obtain a torus with z = n units of flux
preserving SU(2)t × SO(14)× U(1). Here we are depicting the case n = 1.

where the subscripts indicate the U(1)v charges. Indeed we see that in (3.119) at order pq

we have operators in the (1, 27)2, (1, 27)−2, (2, 27)−1, (2, 27)1 and (2, 1)3. In particular,
these appear with a coefficient determined by the value of the flux z = n and their charge
under U(1)v. We again can think of

0 = (1, 1)0 + (3, 1)0 + (1, 78)0 + 30
SU(2)L

−
(
(1, 1)0 + (3, 1)0 + (1, 78)0 + 30

SU(2)L

)
(3.123)

as the cancellation of marginal operators and 4d conserved currents, which is compatible
with the dimension of the conformal manifold predicted from 6d. We are again missing the
(2, 1)−3 operator, and it will be interesting to understand the mechanism causing this.

Tori with F = (2n, 2n, 2n, 2n, 0, 0, 0, 0)

We can glue 2n tubes with (1, 1, 1, 1, 0, 0, 0, 0) fluxes given in Figure 3.13 with a trivial action
of the SO(16) Weyl group to construct tori with z = n units of flux for the U(1) whose
commutant in E8 is SO(14) as shown in Figure 3.20.
Anomalies:
The conformal anomalies are given by:

a = 1
8nN(3N + 5)3/2 , c = 1

8nN
√

3N + 5(3N + 7) . (3.124)
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This matches the six-dimensional prediction (3.3) for SO(14) preserving n units of flux, that
is with ξG = 2 and z = n.
Index:
Again we compute the index in the case of rank N = 2 for simplicity (for the case N = 1 see
[116]) and generic flux. We use the six-dimensional R-charge R̂ and rescale t = t̂

1
2

I(z=n)
N=2 = 1 + · · ·+ pq(2z14m−2 + z64m−1 − z64m) + (3.125)
+pq(p + q)(2z14m−2 + z64m−1) + (pq)

3
2 (2z14m−2 + z64m−1)(t̂

1
2 + t̂− 1

2 ) + · · · .

where we redefined the fugacities for the abelian symmetries with respect to the ones used in
Figure 3.13 according to

c = m w−1, s = m w , (3.126)

which is useful since the U(1)w symmetry is the one contributing to the enhancement to
SO(14) together with the two SU(4) symmetries. Indeed, the corresponding fugacities
re-organize in the index in terms of characters of SO(14) according to the branching rules

14 = (1, 1)±2 ⊕ (6, 1)0 ⊕ (1, 6)0

64 = (4, 4)±1 ⊕ (4, 4)±1 . (3.127)

We can also use the index result to compare with the 6d prediction of the spectrum. Since we
are considering torus compactifications with flux breaking E8 → U(1)v × SO(14) we expect
that the contribution to the index of these operators will be in the representations appearing
in

248→ 10 ⊕ 910 ⊕ 14±2 ⊕ 64− ⊕ 641
, (3.128)

where the subscripts indicate the U(1)v charges. Indeed we see that in (3.126) at order pq

we have operators in the 142, 641 and 64−1. We again can think of

0 = 10 + 910 + 30
SU(2)L

−
(
10 + 910 + 30

SU(2)L

)
(3.129)

as the cancellation of marginal operators and conserved currents.

Tori with F = (2n, 2n, 0, 0, 0, 0, 0, 0) and the braid relation

Let us consider gluing two basic tubes with the element of SO(16) Weyl symmetry group
which flips six of its fugacities, that is

a = 1, 2 : ηa = ξa , a = 3, . . . 8 : ηa = 1
ξa

. (3.130)
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Figure 3.21: Gluing two basic tubes to form a tube with flux (1, 1, 0, 0, 0, 0, 0, 0).

We split the fugacities into SU(2)u × SU(6)v × U(1)s × U(1)c as,

a = 1, 2 : ηa = s− 3
2 c− 1

2 ua , a = 3 . . . 8 : ηa = s
3
2 c− 1

2 va , (3.131)
a = 1, 2 : ξa = s′− 3

2 c′ 1
2 u′

a , a = 3 . . . 8 : ξa = s′ 3
2 c′− 1

2 v′
a , (3.132)

with ∏2
a=1 ua = ∏2

a=1 u′
a = ∏8

a=3 va = ∏8
a=3 va = 1. Then the map between the fugacities ηa

and ξa implies c′ = s
3
2 c− 1

2 , s′ = s
1
2 c

1
2 , ui = u′

i and vi = 1/v′
i. Now six fugacities are flipped

so the gluing will involve only two USp(2N) fundamentals Φa, a = 1, 2, as shown in Figure
3.21.

Note that the flux is(1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2

)
+
(1

2 ,
1
2 ,−1

2 ,−1
2 ,−1

2 ,−1
2 ,−1

2 ,−1
2

)
= (1, 1, 0, 0, 0, 0, 0, 0) .

(3.133)

This is also an E7 flux related to (1
2 , 1

2 , 1
2 , 1

2 , 1
2 , 1

2 , 1
2 , 1

2) by the action of the Weyl symmetry.
Thus in order for the picture to be consistent the torus theories obtained by gluing either type
of tubes have to be equivalent. This is indeed the case due to the braid relation discussed in
Section 3.3.5.

For example, as shown in Figure 3.22, if we glue two (1, 1, 0, 0, 0, 0, 0, 0) tubes and apply
twice the braid relation we obtain the torus with (1, 1, 1, 1, 1, 1, 1, 1) flux, provided that we
redefine the fugacities as

va = ṽas−1/4c1/4 , ua = ũas3/4c−3/4 , (3.134)
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Figure 3.22: On the l.h.s. the torus with flux (2, 2, 0, 0, 0, 0, 0, 0). We apply twice the braid
relation to obtain the quiver in the middle. Finally by redefining the fugacities we obtain the
quiver on the r.h.s. corresponding to flux (1, 1, 1, 1, 1, 1, 1, 1).

which recombine into the SU(8)x fugacities xa = ũa for a = 1, 2 and xa = ṽa for a = 3, · · · 8
satisfying ∏8

a=1 xa = 1 and we define the remaining U(1) fugacity d = s3/2c1/2.
Anomalies:
Gluing 2n tubes together we can easily compute the conformal anomalies and obtain that
they give us

a = 1
8

√
1
2nN(3N + 5)3/2 , c = 1

8

√
1
2nN

√
3N + 5(3N + 7) . (3.135)

This matches the six-dimensional prediction (3.3) for E7 preserving n units of flux, that is
with ξG = 1 and z = n.
Index:
As we have seen the braid relation (3.66) guarantees that the index of this theory is the same
as the one of the E7 torus.

3.5 E-string compactifications on spheres

3.5.1 Derivation of the basic cap model

In this section we are going to construct the theory corresponding to the compactification
of the rank N E-string theory on a one punctured sphere with some value of flux for the
E8 × SU(2)L global symmetry, which we shall call the cap model. This will be, together
with the basic tube theory that we studied in the previous section, one of the fundamental
building blocks using which we will construct theories corresponding to compactifications on
spheres with fluxes.

The key idea to derive the cap model is to start from the theory obtained by compacti-
fication on a tube and completely close one of the two punctures. The way the closure of
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the puncture is implemented in field theory is analogous to what is usually done in class S
theories [10]. In that context, each puncture carries a flavor symmetry and thanks to N = 2
supersymmetry we have moment map operators that contain the conserved currents for such
symmetries. The puncture can then be completely or partially closed by giving a nilpotent
VEV to the moment map operator, which breaks the global symmetry of the puncture to
some subgroup [153, 154]. In our case, since we only have N = 1 supersymmetry we don’t
have true moment map operators for the symmetry of the puncture, but we as we already
discussed we still have some operators that transform non-trivially under this symmetry
and to which we can give a VEV to break it. These operators can be identified with the
5d matter fields assigned Neumann boundary conditions at the puncture in the 5d effective
description of the puncture, see e.g. [116]. We recall that the relevant 5d description of
the rank N E-string is in terms of USp(2N) N = 1 gauge theory with eight fundamental
hypermultiplets as well as a hypermultiplet in traceless antisymmetric representation [132].
This matter content leads to a USp(2N) global symmetry associated to the puncture in 4d

and to an octet of N = 1 chiral operators in the fundamental representation of this symmetry
as well as an N = 1 chiral operator in the traceless antisymmetric representation. With a
little abuse of terminology, we will still refer to these operators as "moment maps".

Our starting point is thus the model obtained from the compactification of the rank N

E-string theory on a tube with fluxes. We analyzed this at length in the previous section,
where we saw that the simplest model is the one corresponding to flux Ftube = (0; 1

2 ; 0, · · · , 0)
in the overcomplete basis, where now we are also specifying in the first entry the flux for the
Cartan of the SU(2)L part of the global symmetry, and that more general tubes associated
to different choices of flux can be derived by various gluings of several copies of this basic
one. Recall that the manifest non-anomalous global symmetry of the tube model is

USp(2N)x × USp(2N)y × U(1)c × U(1)t × U(1)f × SU(8)u , (3.136)

The two USp(2N) symmetries are associated to the two punctures, while the rest, except
for the U(1)f to be discussed momentarily, is the residual 6d symmetry that is preserved
by the compactification. In particular U(1)t ⊂ SU(2)L, while U(1)c × SU(8)u ⊂ E8. In
the next subsection we will see that in the construction of theories corresponding to S2

compactifications the U(1)f symmetry is to be identified, upon properly mixing it with other
U(1) symmetries, with the Cartan of the SU(2)ISO isometry of S2. In particular it is natural
then to think about the U(1)f symmetry of the tube to be associated with its isometry,
namely to be related to the KK symmetry of the compactification of the 6d SCFT on a
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circle19. We also recall here that the supersymmetric index of the tube theory is

Itube(x⃗; y⃗; c; t; f ; u⃗) =
N∏

i=1

8∏
a=1

Γe

(
(pq)

1
2 c− 1

2 f− 1
4 uax±1

i

)
Γe

(
(pq)

1
2 c− 1

2 f
1
4 u−1

a y±1
i

)
×

× IF E[USp(2N)](x⃗; y⃗; c; t) , (3.137)

The tube theory possesses two types of moment map operators that transform under the
symmetries of the punctures:

• The chiral fields contained in the two octets M and M ′, which transform in the
fundamental representation of USp(2N)x and USp(2N)y respectively;

• The operators OH and C of FE[USp(2N)], which transform in the traceless antisym-
metric representation of USp(2N)x and USp(2N)y respectively.

We would like to give VEV or linear superpotential interaction to some of these operators
so to completely break the symmetry of one of the two punctures, say USp(2N)x. We will
do so by first turning on linearly in the superpotential the traceless antisymmetric operator
OH, which induces a VEV for the mesonic operator H. Such a VEV can at most break the
USp(2N)x symmetry down to SU(2)v. Hence, we will then need a VEV for one of the octet
fields to further break SU(2)v.

We first deform the tube model by turning on linearly in the superpotential the operator
OH as follows:

δW = JN OH , (3.138)

where

JN = iσ2
2 ⊗

(
JN + JT

N

)
(3.139)

and JN is the Jordan matrix of dimension N . Recall that the operator OH of FE[USp(2N)]
is actually a matrix of singlets flipping the meson H. Hence, this deformation implies a VEV
for H that can be understood by looking at the equations of motion of OH

20

⟨H⟩ = JN . (3.140)

19Let us also mention again here that the U(1)f symmetry is broken by anomalies/superpotentials when
one constructs theories corresponding to a torus. This breaking leaves behind a discrete group, whose order
depends on the flux. It would be very interesting to understand precisely the relation between U(1)f and the
KK symmetry and the nature of this discrete subgroup. We leave this for future investigations.

20A more general class of VEVs for the antisymmetric operators of F E[USp(2N)] has been studied in [145].
We will study these other VEVs in the next chapter, while we will be only interested here in completely
breaking the puncture symmetry, that is producing no puncture. We thus focus on the VEV preserving the
minimal SU(2)v symmetry which we then completely break with an octet VEV.
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We already mentioned this type of VEV in the FE[USp(2N)] theory in Subsection 3.3.4.
There we saw that the effect of this VEV can be more easily understood at the level of the
supersymmetric index, where it imposes the following constraints on the fugacities:

xi = ti−1v, i = 1, · · · , N . (3.141)

Using the identity (3.65), which was proven in Corollary 2.8 of [79], we find that the
supersymmetric index of the tube theory after such a specification of the fugacities reduces to

Itube(v, t v, · · · , tN−1v; y⃗; c; t; f ; u⃗) =

=
N∏

i=1

8∏
a=1

Γe

(
(pq)

1
2 c− 1

2 ua(ti−1v)±1
)

Γe

(
(pq)

1
2 c− 1

2 u−1
a y±1

i

)

×
N∏

j=2

1
Γe (tj)

N∏
i=1

Γe

(
v c y±1

i

)
Γe

(
v−1c t1−N y±1

i

)
Γe (c2t1−i) . (3.142)

In order to make the residual SU(2)v symmetry manifest we have to perform the redefinition
v → t

1−N
2 v

Itube(t
1−N

2 v, t
3−N

2 v, · · · , t
QN1

2 v; y⃗; c; t; f ; u⃗) =

=
N∏

i=1

8∏
a=1

Γe

(
(pq)

1
2 c− 1

2 t
N−2i+1

2 v±1f− 1
4 ua

)
Γe

(
(pq)

1
2 c− 1

2 f
1
4 u−1

a y±1
i

)
×

×
N∏

j=2
Γe

(
pq t−j

) N∏
i=1

Γe

(
pq c−2ti−1

)
Γe

(
c t

1−N
2 v±1y±1

i

)
. (3.143)

The next step consists of breaking also the SU(2)v symmetry by giving a VEV to one of
the octet fields represented now in the index by ∏N

i=1
∏8

a=1 Γe

(
(pq) 1

2 c− 1
2 t

N−2i+1
2 v±1f− 1

4 ua

)
.

It turns out that the correct choice to reproduce the anomalies of the cap model predicted
from 6d is to give VEV to the field corresponding to i = 1 and any a = 1, · · · , 8. For
definiteness we shall choose a = 8. Then, the VEV implies the following constraint on the
fugacities of the index:

v = (pq)
1
2 c− 1

2 t
N−1

2 f− 1
4 u8 . (3.144)

The index (3.143) after giving such a VEV becomes21

I =
N∏

j=2
Γe

(
t1−j

)
Γe

(
pq t−j

) N∏
i=1

Γe

(
pq c−2ti−1

)
Γe

(
pq c−1tN−if− 1

2 u2
8

)
×

21For future convenience we are not simplifying in these expressions the contributions of some of the massive
fields.
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× Γe
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1
4 u−1

8 y±1
i

)
Γe

(
(pq)
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1
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4 u8y±1
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)
Γe

(
(pq)− 1
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3
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1
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)
×

×
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(
pq c−1tN−if− 1

2 u8ua
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t1−iu−1

8 ua

)
Γe

(
(pq)

1
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1
4 u−1

a y±1
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)
. (3.145)

This is not the index of the cap model that we are looking for yet. Indeed, in general one
may need to introduce additional gauge singlet chiral fields that flip some of the operators
of the theory in order to get the correct model corresponding to the compactification of
the 6d theory. The singlets that need to be added can be worked out by requiring that the
anomalies of the resulting model match those predicted from 6d for a compactification on a
one-punctured sphere with some value of the flux, whose expression we gave in Subsection
3.2.1. This was already noticed in Section 6 of [116] for the rank N = 1 case, where the
symmetry carried by each puncture is just SU(2) so only the octet VEV was needed in order
to close it. It turns out that in the higher rank case some of the operators that we need to
flip are just straightforward generalizations of those worked out for rank 1, while the others
only appear for N > 1 [97]. The complete list of singlets that we have to add is the following
(again encoded in their contributions to the index):

N∏
i=1

7∏
a=1

Γe

(
pq ti−1u8u−1

a

)
N∏

i=1
Γe

(
c ti−N f

1
2 u−2

8

)
N∏

j=2
Γe

(
pq tj−1

)
Γe

(
tj
)

Γe (t)N−1
Q∏

i<j

Γe

(
t y±1

i y±1
j

)
. (3.146)

In addition, we make a shift of fugacity c → cf
1
2 for later convenience. The index of the

resulting cap model is thus

Icap(y⃗; c; t; f ; u⃗; u8) = Γe (t)N−1
N∏

i<j

Γe

(
t y±1

i y±1
j

)
︸ ︷︷ ︸

A

N∏
i=1

Γe

(
pq c−2ti−1f−1

)
︸ ︷︷ ︸

βi

×

×Γe

(
(pq)− 1

2 c
3
2 t1−N fu−1

8 y±1
i

)
︸ ︷︷ ︸

P

Γe

(
(pq)

1
2 c− 1

2 u−1
8 y±1

i

)
︸ ︷︷ ︸

L8

Γe

(
(pq)

1
2 c

1
2 u8y±1

i

)
︸ ︷︷ ︸

K

×

×
7∏

a=1
Γe

(
pq c−1tN−if−1u8ua

)
︸ ︷︷ ︸

R(i)a

Γe

(
(pq)

1
2 c− 1

2 u−1
a y±1

i

)
︸ ︷︷ ︸

La

. (3.147)
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We can check that the model we obtained after the VEVs and the addition of the singlets
indeed corresponds to the compactification of the rank N E-string theory on a sphere with
one puncture for some value of flux by computing its anomalies and comparing with those
that can be predicted from 6d, which we reviewed in Subsection 3.2.1 and derived in Appendix
D. This anomaly matching is a necessary condition for the duality between the 4d model we
propose and the 6d theory compactified on the 2d surface. In addition, we also provide further
evidence in the next subsection that one can construct various 4d models corresponding to
the E-string theory on a sphere with different fluxes by gluing the cap models we propose
here. Those 4d models exhibit the expected (enhanced) symmetries and the spectrums of
operators perfectly consistent with the 6d theory compactified on a sphere with a given flux,
which is strong evidence of our conjecture that the proposed cap model indeed corresponds
to the E-string theory compactified on a one-punctured sphere, or a cap.

Remembering the constraint u8 = ∏7
a=1 u−1

a , we first find the following linear anomalies
for the U(1)’s in the Cartan of the original 6d E8 × SU(2)L symmetry:

Tr U(1)R = 2N(N + 1), Tr U(1)t = (N − 1)(4N + 1),
Tr U(1)c = −13N, Tr U(1)ua = −6N a = 1, · · · , 7 . (3.148)

For the cubic non-mixed anomalies we have

Tr U(1)3
R = −2N(N + 1)2, Tr U(1)3

t = (N − 1)(2N2 + 1),
Tr U(1)3

c = −10N, Tr U(1)3
ua

= −6N . (3.149)

Next, we list all the cubic mixed anomalies for the abelian symmetries

Tr U(1)2
RU(1)t = −2

3N(N2 − 1), Tr U(1)2
RU(1)c = 3

2N(N + 1),

Tr U(1)2
RU(1)ua = N(N + 1), Tr U(1)2

t U(1)R = 2
3N(N2 − 1),

Tr U(1)2
t U(1)c = −3

2N(N − 1), Tr U(1)2
t U(1)ua = −N(N − 1),

Tr U(1)2
cU(1)R = N(N + 1), Tr U(1)2

cU(1)t = N(N − 1),
Tr U(1)2

cU(1)ua = −2N, Tr U(1)2
ua

U(1)R = N(N + 1),
Tr U(1)2

ua
U(1)t = N(N − 1), Tr U(1)2

ua
U(1)c = −4N,

Tr U(1)uaU(1)2
ub

= −3N, Tr U(1)RU(1)uaU(1)ub
= 1

2N(N + 1),

Tr U(1)tU(1)uaU(1)ub
= 1

2N(N − 1), Tr U(1)cU(1)uaU(1)ub
= −2N a ̸= b

Tr U(1)uaU(1)ub
U(1)ud

= −2N, a ̸= b ̸= d ̸= a . (3.150)
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Finally, we have the anomalies between these U(1) symmetries and the USp(2N) symmetry
of the puncture

Tr U(1)RUSp(2N)2 = −N + 1
2 , Tr U(1)tUSp(2N)2 = −N − 1

2 ,

Tr U(1)cUSp(2N)2 = −1, Tr U(1)uaUSp(2N)2 = 0 . (3.151)

All of these anomalies perfectly match those that one can compute from 6d using equations
(3.4)-(3.6)-(3.7)-(3.8) for a sphere with one puncture and flux Fcap =

(
−1

2 ; 3
4 ; 1

8 , · · · , 1
8 ,−7

8

)
.

Comparing with the flux of the original tube model Ftube = (0; 1
2 ; 0, · · · , 0), we notice that the

effect of the VEVs has been to shift the entries of the flux vector. In particular, nc → nc + 1
4 ,

n8 → n8− 7
8 and na → na + 1

8 for a = 1, · · · , 7. This is the same shift for the E8 fluxes found
in [116] for the rank N = 1 case, so we interpret it as the effect of the octet VEV. Moreover,
we also have that the flux for SU(2)L has been shifted by nt → nt − 1

2 , which we instead
interpret as the effect of the antisymmetric VEV.

In order to interpret the model we obtained, it is useful to redefine the fugacities in the
index (3.147) in such a way that they conform to the new manifest global symmetry, which is

USp(2N)× SU(7)u × U(1)x × U(1)c × U(1)t × U(1)f . (3.152)

This is achieved by the shifts

ua=1,...,7 −→ x−1ua ,

u8 −→ x7
(3.153)

with the new ua on the right hand side satisfying ∏7
a=1 ua = 1. The index thus reads

Icap(y⃗; c; t; f ; x−1u1, · · · , x−1u7; x) =
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)
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3
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)
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×
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i

)
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1
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)
︸ ︷︷ ︸

K

×

×
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(
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)
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(
(pq)

1
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2 x u−1
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i
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︸ ︷︷ ︸

La

. (3.154)

Note that the cap model is a simple WZ model. Of course this flows to a collection of
free fields in the IR. However, the various superpotentials of the model are constraining the
global symmetry of the theory. When one glues the cap model to other theories by gauging
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the USp(2N) symmetry these superpotentials become important. The massless fields of the
WZ model can be schematically represented with the following quiver diagram:

2N

7

P

L R(i)

1

A

i=1 , ... , N

Figure 3.23: The cap theory. This is just a WZ model with the superpotentials detailed in
(3.155).

Here as before the simple square box represents the USp(2N) flavor symmetry of the remaining
puncture, while double square boxes represent unitary flavor symmetries out of which we
have to mod out an overall U(1). In particular the square box with the 1 inside represents
the U(1)x flavor symmetry associated to the fugacity x in the index, while the square box
with the 7 inside represents the SU(7)u flavor symmetry associated to the fugacities ua in
the index. On top of the fields represented in the quiver, we also have the singlets under the
non-abelian symmetries βi and the two massive fields L8 and K, which we prefer to keep
and not integrate out in order to write the superpotential in a more pleasant way:

Wcap =
N∑

i=1

7∑
a=1

Try

(
R(i)aAN−iPLa

)
+

N∑
i=1

Try

(
βiA

N−iPK
)

+ KL8 . (3.155)

Integrating L8 and K out we obtain the field content of the previous quiver and the interaction
superpotential between the remaining massless fields. We keep here the massive fields as
using those it will be more convenient to define the procedure of gluing the cap to other
models.

3.5.2 Sphere compactifications

In the previous subsection we have obtained the model corresponding to the one-punctured
sphere and here we will use it to construct several examples of theories which we will associate
to compactifications on S2. In particular we will see how various dualities and emergence of
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symmetry phenomena naturally arise in this construction. Moreover we will directly identify
the U(1)f symmetry with the Cartan generator of the SU(2)ISO geometric symmetry of S222.

SU(8)× U(1)2 and SU(8)× SU(2)× U(1) sphere models

Our first example is the 4d model corresponding to the compactification of the rank N

E-string theory on a sphere with flux in the SU(8)× U(1)c overcomplete basis

F =
(
−1; 3

2; 1
4 ,

1
4 ,

1
4 ,

1
4 ,

1
4 ,

1
4 ,

1
4 ,−7

4

)
. (3.156)

We choose to switch to the complete basis since the gluing rules we consider will be written
in a simpler way than in the overcomplete basis. Using the transformation rule between the
two bases, which we recall are

nSO(16)
a = nU(1) + 2nSU(8)

a , a = 1, . . . , 8 , (3.157)

the flux (3.156) can be written in the SO(16) basis as follows:

F = (−1; 2, 2, 2, 2, 2, 2, 2,−2) . (3.158)

One can easily check that this flux preserves SU(8)× U(1)b × U(1)t ⊂ E8 × SU(2)L.
A sphere with such a flux can be constructed from two basic caps, whose flux we recall is

given by

F (1) = F (2) =
(
−1

2; 3
4; 1

8 ,
1
8 ,

1
8 ,

1
8 ,

1
8 ,

1
8 ,

1
8 ,−7

8

)
(3.159)

in the overcomplete basis or

F (1) = F (2) =
(
−1

2; 1, 1, 1, 1, 1, 1, 1,−1
)

(3.160)

in the complete basis. We remind the reader that the geometric action of gluing has the
following field theoretic interpretation. We take two theories with punctures with symmetry
USp(2N) and associated “moment map” operators Ma and M ′

a respectively. Then for each
component of the moment map we have the choice whether to Φ-glue or S-glue. The former
choice amounts to adding a chiral field Φa in the fundamental representation of USp(2N)

22For simplicity we will only consider gluing pair of cap theories together in various ways without introducing
tube theories. Technically this makes it simpler to perform explicitly various index checks. As the tube
theory has one of the USp(2N) symmetries emergent in the IR, adding it would entail gauging of IR emergent
symmetries: this is not an issue conceptually, but as we refrain from doing so the dualities we will arrive at
are standard dualities between completely Lagrangian theories.



146 4d compactifications of the 6d E-string theory

and turning on the superpotential

∆Wa = Φa · (Ma −M ′
a) . (3.161)

The latter choice amounts only to turning on a superpotential without adding any additional
field

∆Wa = Ma ·M ′
a . (3.162)

Similar operations can be performed for the traceless antisymmetric operators. The fundamen-
tal moment maps are charged under the Cartan of SO(16) while the traceless antisymmetric
moment map is charged under the Cartan of SU(2)L. To obtain the fluxes of the glued theory
we join the fluxes of the two theories depending on the gluing. If a moment map component
is S-glued we subtract the fluxes of the symmetry it is charged under while we add them for
Φ-gluing

n′
a =

 n
(1)
a + n

(2)
a , a ∈ Φ ,

n
(1)
a − n

(2)
a , a ∈ S ,

(3.163)

where Φ and S denotes the Φ-gluing and the S-gluing respectively. The SO(16) basis is thus
more convenient to discuss the gluings. Hence, the two basic caps glued with the Φ-gluing
for all the moment map components simply leads to a sphere with the flux

F = F (1) + F (2) = (−1; 2, 2, 2, 2, 2, 2, 2,−2) , (3.164)

which is exactly (3.158).

The resulting 4d model is thus expected to preserve SU(8)v ×U(1)b×U(1)t, which stems
from E8×SU(2)t in 6d. Moreover, on top of SU(8)v×U(1)b×U(1)t, this theory also exhibits
the SU(2)f symmetry which we will argue comes from the isometry of the two-sphere on
which we compactified the 6d theory. Therefore, the total global symmetry of the model is
given by

SU(8)v × SU(2)f × U(1)b × U(1)t , (3.165)

which we will confirm using the supersymmetric index.

To construct the model corresponding to the flux (3.158), we first recall that the basic
cap is given by the WZ model with the superpotential

Wcap =
N∑

i=1

7∑
a=1

Trz

(
R(i)aAN−iPLa

)
+

N∑
i=1

Trz

(
βiA

N−iPK
)

+ KL8 , (3.166)
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which preserves

USp(2N)× SU(7)u × U(1)x × U(1)c × U(1)t × U(1)f . (3.167)

The index of the basic cap is given by

Icap(y⃗; c; t; f ; u1, . . . , u7; x) =

= Γe (t)N−1
N∏

i<j

Γe
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i y±1
j

)
︸ ︷︷ ︸
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Γe
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)
︸ ︷︷ ︸

βi
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Γe

(
(pq)− 1

2 t1−N c
3
2 fx−7y±1

i

)
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P

×

×
7∏
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N∏
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Γe

(
(pq)

1
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2 xu−1
a y±1

i

)
︸ ︷︷ ︸

La

N∏
i=1

7∏
a=1

Γe

(
pqti−1c−1f−1x6ua

)
︸ ︷︷ ︸

R(i)a

×

×
N∏

i=1
Γe

(
(pq)

1
2 c− 1

2 x−7y±1
i

)
︸ ︷︷ ︸

L8

Q∏
i=1

Γe

(
(pq)

1
2 c

1
2 x7y±1

i

)
︸ ︷︷ ︸

K

, (3.168)

where recall that we have redefined

ua=1,...,7 −→ x−1ua ,

u8 −→ x7 ,
(3.169)

with new ua on the right hand side satisfying ∏7
a=1 ua = 1.

We then glue two caps using the Φ-gluing, namely we introduce Â, Φ1,...,8 and the
superpotential

Wglue = Trz

[
Â · (A− Ã)

]
+

8∑
b=1

Φb
(
Lb − L̃b

)
(3.170)

and gauge the puncture symmetry USp(2N). The entire superpotential of the glued theory
is thus given by

W =Wcap + W̃cap +Wglue =

=
N∑

i=1

7∑
a=1

Trz

(
R(i)aAN−iPLa

)
+

N∑
i=1

Trz

(
βiA

N−iPK
)

+ KL8+

+
N∑

i=1

7∑
a=1

Trz

(
R̃(i)aÃN−iP̃ L̃a

)
+

N∑
i=1

Trz

(
β̃iÃ

N−iP̃ K̃
)

+ K̃L̃8+

+ Trz

[
Â · (A− Ã)

]
+

8∑
b=1

Φb
(
Lb − L̃b

)
, (3.171)
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USp(2N) SU(8)v SU(2)f U(1)b U(1)t U(1)R

S(i) 1 8 2 −3 i− 1 2
Q 2N 8 1 −1 0 1
P 2N 1 2 4 1−N −1
A N(2N− 1)− 1 1 1 0 1 0

Table 3.3: The matter content of the SU(8)× SU(2)× U(1)2 model and the corresponding
transformation rules under the global symmetry.

where Trz is the trace over the gauged puncture symmetry USp(2N). Note that the
superpotential contains some massive fields. Once we integrate them out, the superpotential
becomes

W =
Q∑

n=1

7∑
b=1

Trz

(
R(i)bAN−iPLb

)
+

N∑
i=1

7∑
b=1

Trz

(
R̃(i)bAN−iP̃Lb

)
+

+ 1
3

N∑
i=1

Trz

(
βiA

N−iP (K − K̃ − Φ)
)

+ 1
3

N∑
i=1

Trz

(
β̃iA

N−iP̃ (K̃ −K + Φ)
)

. (3.172)

One can check that the superpotential (3.172) actually preserves

SU(8)v × SU(2)f × U(1)b × U(1)t , (3.173)

which is consistent with the 6d prediction. The symmetry (3.173) can be made manifest by
rewriting the superpotential as follows:

W =
N∑

i=1

8∑
b=1

∑
α=±

Trz

(
S(i)b

αAN−iP αQb

)
, (3.174)

where we have defined

S(i)b
+ =

{
R(i)b , b = 1, . . . , 7 ,

βi , b = 8 ,

S(i)b
− =

{
R̃(i)b , b = 1, . . . , 7 ,

−β̃n , b = 8 ,

Qb =
{

Lb , b = 1, . . . , 7 ,
K−K̃−Φ

3 , b = 8 ,

P + = P ,

P − = P̃ . (3.175)
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The resulting model is the USp(2N) gauge theory with one traceless antisymmetric A, 10
fundamentals (Qb; P ±) and 16N gauge singlets S(i)b

±. The charges of each chiral multiplet
are presented in Table 3.3. As we mentioned, SU(2)f doesn’t come from the symmetry of 6d

E-string but originates from the isometry of the compactifying two-sphere, which we will
show using anomalies shortly.

Now let us evaluate the superconformal index. The index of this model is given by

I(−1;27,−2) =
∮

dzN Γe

(
pqt−1

)N−1 N∏
i<j

Γe

(
pqt−1z±1

i z±1
j

) N∏
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8∏
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Γe

(
(pq)

1
2 c

1
2 uaz±1

i

)
×

× Icap(z⃗; c; t; f ; u1, . . . , u7; x)× Icap(z⃗; c; t; f−1; u1, . . . , u7; x) =

=
N∏

i=1
Γe

(
pqti−1c−2f±1

) N∏
i=1

7∏
a=1

Γe

(
pqti−1c−1f±1x6ua

)
×

×
∮

dzN Γe (t)N−1
N∏

i<j

Γe

(
tz±1

i z±1
j

) N∏
i=1

Γe

(
(pq)− 1

2 t1−N c
3
2 f±1x−7z±1

i

)
×

×
7∏

a=1

Q∏
i=1

Γe

(
(pq)

1
2 c− 1

2 xu−1
a z±1

i

) N∏
i=1

Γe

(
(pq)

1
2 c

1
2 x7z±1

i

)
, (3.176)

where all the massive contributions are canceled out. As we have just observed, while
the basic cap preserves SU(7)u × U(1)x × U(1)c, the sphere model preserves not only
SU(7)u×U(1)x×U(1)c but also SU(8)v ×U(1)b. Therefore, in terms of the SU(8)v ×U(1)b

fugacities which are defined by

va=1,...,7 = c
1
8 x

3
4 ua ,

v8 = c− 7
8 x− 21

4 ,

b = c
3
8 x− 7

4 ,

(3.177)

the index is written as

I(−1;27,−2) =
N∏

i=1

8∏
a=1

Γe

(
pqti−1b−3f±1va

)
︸ ︷︷ ︸

S(i)a
±

∮
dzN Γe (t)N−1

N∏
i<j

Γe

(
tz±1

i z±1
j

)
︸ ︷︷ ︸

A

×

×
N∏

i=1
Γe

(
(pq)− 1

2 t1−N b4f±1z±1
i

)
︸ ︷︷ ︸

P ±

8∏
a=1

N∏
i=1

Γe

(
(pq)

1
2 b−1v−1

a z±1
i

)
︸ ︷︷ ︸

Qa

, (3.178)

which preserves the symmetry

SU(8)v × SU(2)f × U(1)b × U(1)t . (3.179)
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As we already anticipated, we claim that the SU(2)f symmetry descends from the isometry
of the two-sphere on which we compactified the 6d theory, which manifests itself in 4d as a
flavor symmetry. To support this claim, we can compute the anomalies for this symmetry in
our four-dimensional model and check that they match those of the S2 isometry which can
be computed from the 8-form anomaly polynomial of the original 6d theory. The anomalies
for the flavor symmetries in arbitrary even dimensions that come from the isometries of the
compactification manifold can be computed following the strategy of [130]. In Appendix D
we apply it to the compactification of the rank N E-string theory on a two-sphere, so to
find the mixed anomalies between its SU(2)ISO isometry and the U(1) symmetries in the
Cartan of the E8 × SU(2)L global symmetry of the 6d theory. In particular, in equation
(D.20) we give the anomalies in the basis for the U(1) symmetries that correspond to the
Cartan of the subgroup U(1)c × SU(8)u ⊂ E8. Hence, in order to compare (D.20) with
the anomalies of the 4d model we are considering in this section we first need to translate
back the fugacities appearing in the index (3.178) in terms of the original U(1)c × SU(8)u

fugacities using (3.169)-(3.177). By doing so, we find the following anomalies for SU(2)f :

Tr
(
SU(2)2

f U(1)R

)
= N(N + 1), Tr

(
SU(2)2

f U(1)t

)
= N(N − 1),

Tr
(
SU(2)2

f U(1)c

)
= −3N, Tr

(
SU(2)2

f U(1)ua

)
= −2N . (3.180)

These perfectly match the anomalies (D.20) that we can compute from 6d for the value of the
flux (3.164). In addition, one can see that the mixing of the original U(1)f from (3.137) with
U(1)c that we did above (3.147) and that gives the correct anomalies matches the mixing
prediction given in (D.21).

While the model we have considered is obtained from the Φ-gluing for the octet moment
maps as well as the antisymmetric moment maps, one can also consider the S-gluing for the
antisymmetric moment maps23. The corresponding flux is given by

F = (−1/2− (−1/2); 1 + 1, 1 + 1, 1 + 1, 1 + 1, 1 + 1, 1 + 1, 1 + 1,−1 + (−1)) =
= (0; 2, 2, 2, 2, 2, 2, 2,−2) , (3.181)

which now has the vanishing U(1)t flux. As a result, this model is supposed to inherit the full
SU(2)L symmetry of E-string rather than just its U(1)t subgroup. In addition, this model also
has a geometric SU(2)f symmetry coming from the isometry of the two-sphere. However, those
SU(2)L and SU(2)f symmetries are not manifest; only U(1)t ×U(1)f ⊂ SU(2)L × SU(2)f is
visible in the Lagrangian description.

23The S-gluing for the octet moment maps will be considered in the subsequent examples.
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Since we now take the S-gluing for the antisymmetric moment maps, we introduce the
superpotential24

Wglue = Trz

(
A · Ã

)
+

8∑
b=1

Φb
(
Lb − L̃b

)
(3.182)

without the additional chiral superfield Â. The total superpotential is then

W =
N∑

i=1

8∑
b=1

Trz

(
S(i)bAN−iPQb

)
+

N∑
i=1

8∑
b=1

Trz

(
S̃(i)bÃN−iP̃Qb

)
+ Trz

(
A · Ã

)
, (3.183)

where we have defined as before

S(i)b =
{

R(i)b , b = 1, . . . , 7 ,

βi , b = 8 ,

S̃(i)b =
{

R̃(i)b , b = 1, . . . , 7 ,

−β̃i , b = 8 ,

Qb =
{

Lb , b = 1, . . . , 7 ,
K−K̃−Φ

3 , b = 8 .
(3.184)

Note that we don’t integrate out A and Ã for simplicity of the superpotential. Unlike (3.174),
(S(i)b, S̃(i)b) and (P, P̃ ) do not form doublets of any SU(2) because A ̸= Ã. Thus, the manifest
symmetry is only

SU(8)v × U(1)f × U(1)b × U(1)t . (3.185)

Nevertheless, using the supersymmetric index, we find that U(1)f × U(1)t is actually
enhanced to SU(2)f × SU(2)L at low energies. The full global symmetry is thus

SU(8)v × SU(2)f × U(1)b × SU(2)L . (3.186)

The transformation rules of each chiral multiplet under the manifest global symmetry are
presented in Table 3.4.

24Notice that since the antisymmetric chirals are massive in this case, the theory is just USp(2N) with
some fundamental chirals, so the rank N can’t be too large. Specifically, since we have 10 fundamental chirals,
the theory is free for N = 3, as it can be seen from the fact that it’s Intriligator–Pouliot dual [81] is just a
WZ model, and it is SUSY breaking for N > 3 (notice that in this case the dual would have negative rank).
In the following we will study in more details the cases N = 1, 2 by computing their supersymmetric indices.
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USp(2N) SU(8)v U(1)f U(1)b U(1)t U(1)R

S(i) 1 8 2− i −3 i− 1 2
S̃(i) 1 8 i− 2 −3 1− i 2i
Q 2N 8 0 −1 0 1
P 2N 1 Q− 2 4 1−Q −1
P̃ 2N 1 2−Q 4 Q− 1 1− 2Q
A N(2N− 1)− 1 1 −1 0 1 0
Ã N(2N− 1)− 1 1 1 0 −1 2

Table 3.4: The matter content of the SU(8)× SU(2)2 × U(1) model and the corresponding
transformation rules under the global symmetry.

Let us evaluate the index of the model corresponding to the flux (3.181), which is given
by the following matrix integral:

I(0;27,−2) =
∮

dzN

N∏
i=1

8∏
a=1

Γe

(
(pq)

1
2 c

1
2 uaz±1

i

)
×

× Icap(z⃗; c; tf ; f ; u1, . . . , u7; x)× Icap(z⃗; c; pqt−1f−1; f−1; u1, . . . , u7; x) ,

(3.187)

where we have made a shift of fugacity t→ tf . If we use the SU(8)v × U(1)b ⊃ SU(7)u ×
U(1)x × U(1)c fugacities defined in (3.177), the index is written as

I(0;27,−2) =
N∏

i=1

8∏
a=1

Γe

(
pqti−1b−3f2−iva

)
︸ ︷︷ ︸

S(i)a

N∏
i=1

8∏
a=1

Γe

(
pq
(
pqt−1

)i−1
b−3f i−2va

)
︸ ︷︷ ︸

S̃(i)a

×

×
∮

dzN Γe

(
tf−1

)N−1 N∏
i<j

Γe

(
tf−1z±1

i z±1
j

)
︸ ︷︷ ︸

A

×Γe

(
pqt−1f

)N−1 N∏
i<j

Γe

(
pqt−1fz±1

i z±1
j

)
︸ ︷︷ ︸

Ã

×

×
N∏

i=1
Γe

(
(pq)− 1

2 t1−N b4fN−2z±1
i

)
︸ ︷︷ ︸

P

N∏
i=1

Γe

(
(pq)− 1

2
(
pqt−1

)1−N
b4f2−N z±1

i

)
︸ ︷︷ ︸

P̃

×

×
N∏

i=1

8∏
a=1

Γe

(
(pq)

1
2 b−1v−1

a z±1
n

)
︸ ︷︷ ︸

Qa

. (3.188)

The corresponding theory is the USp(2N) gauge theory with 10 fundamental chirals (Qa; P, P̃ ),
two massive traceless antisymmetric chirals (A, Ã), 16N gauge singlets (S(i)a; S̃(i)a) and the
superpotential (3.183).
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As we mentioned before, we will see using the supersymmetric index that U(1)f and U(1)t

are enhanced in the IR to SU(2)f and SU(2)L respectively. Moreover, as in the previous
example, we claim that SU(2)f descends from the isometry of the two-sphere on which
we performed the compactification. This can be checked by computing the anomalies for
U(1)f in 4d and comparing with those predicted from 6d (D.20). From our 4d Lagrangian
description we find

Tr
(
U(1)2

f U(1)R

)
= −4

3N(N + 1)(N − 4), Tr
(
U(1)2

f U(1)t

)
= 0,

Tr
(
U(1)2

f U(1)c

)
= 3N(N − 5), Tr

(
U(1)2

f U(1)ua

)
= 2N(N − 5) , (3.189)

with all the other anomalies non-quadratic in U(1)f being zero, in agreement with the claim
that this symmetry is enhanced to SU(2)f in the IR. Notice that the mixed anomaly with
U(1)t is also zero, again in agreement with it being enhanced to SU(2)L. Remembering that
the anomalies for an SU(2) symmetry are related to those for its U(1) Cartan by

Tr
(
U(1)2U(1)i

)
= 4 Tr

(
SU(2)2U(1)i

)
(3.190)

since 4 is the embedding index of U(1) inside SU(2), we can perfectly match the anomalies
(3.189) computed in 4d with those predicted from 6d (D.20) for the value of the flux (3.181).
In addition, we find that the mixing of the original U(1)f from (3.137) with the other U(1)’s
giving the correct anomalies matches the mixing prediction in (D.21).

We will now compute the index for small values of N to see explicitly the various
enhancements of symmetry.

Rank 1

Now we compute the indices (3.176) and (3.187) for N = 1. Note that there is no distinction
between (3.176) and (3.187) for N = 1 because the traceless antisymmetric representation
of USp(2N) is trivial in this case. Also U(1)t decouples for N = 1 because no fields are
charged under it. The remaining abelian symmetry is U(1)b, whose mixing coefficient with
the R-symmetry can be determined by the a-maximization [144]. In general, once the mixing
coefficients Ra are determined for a set of abelian symmetries ∏a U(1)a, the R-charge we use
for the expansion of the index is given by

R = R0 +
∑

a

RaQa , (3.191)

where Qa is the U(1)a charge and R0 is the trial R-charge we have used to define the index
formula. For example, the index (3.176) is defined with the trial R-charge given in Table 3.3.
Given the U(1)a fugacity ta, the mixing of R-symmetry with U(1)a is realized by a shift of
the fugacity ta → ta(pq)Ra/2.
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In the current example, the mixing coefficient of U(1)b is given by

Rb ≈ 0.4269 . (3.192)

To avoid clutter due to the irrational value of the mixing coefficient, we will use the following
approximate rational value:

Rb = 3
7 (3.193)

to evaluate the index, which shouldn’t affect the contribution of the conserved current we are
interested in because it is in the adjoint representation of the symmetry group and hence
independent of U(1) mixing coefficients. In addition, the exact value of the R-charge can be
easily implemented if necessary by shifting U(1) fugacities as explained above. With this
choice of the mixing coefficient, the index for N = 1 is given by

IN=1
(−1;27,−2) =

= 1 + b−32SU(2)8SU(8)(pq)
5

14 + b−228SU(8)(pq)
4
7 +

+
(
b8 + b−6

(
3SU(2)36SU(8) + 28SU(8)

))
(pq)

5
7 + b−32SU(2)8SU(8)(pq)

5
14 (p + q)+

+ b−52SU(2)216SU(8)(pq)
13
14 +

(
−63SU(8) − 3SU(2) − 1

)
pq + · · · . (3.194)

We highlighted the negative contributions at order pq, which correspond to the conserved
current multiplet [141]. We find that they are in the adjoint representation of

SU(8)v × SU(2)f × U(1)b . (3.195)

We can also check the presence of the operators expected from 6d according to the general
formula (3.14). For the case at hand, we need to consider the branching rule for the adjoint
representation of E8 with respect to its SU(8)× U(1) subgroup:

248→ 10 ⊕ 630 ⊕ 561 ⊕ 56−1 ⊕ 282 ⊕ 28−2 ⊕ 83 ⊕ 8−3 . (3.196)

The 6d R-symmetry assigns R-charge 1 to the octet fields Qa and so it is related to the
R-symmetry we used for computing the index (3.194) by the shift b→ b(pq)− 3

14 . Moreover,
the U(1) inside the 6d global symmetry for which we turned on a unit of flux F = 125 is
related to the U(1)b symmetry of our 4d model. With this dictionary, we can immediately
identify all the states appearing in (3.196) that contribute to the index (3.194) up to the

25We choose to work in a normalization for this U(1) such that the minimal flux is 1. Our model is the
one with the minimal value of flux that preserves SU(8) × U(1), since it was constructed by gluing two caps
together without inserting any tube in the middle, which would have increased the flux.
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order we evaluated it

8−3 → 2b−3χ
SU(8)
8 (pq)

5
14

28−2 → b−2χ
SU(8)
28 (pq)

4
7

10 ⊕ 630 → −(χSU(8)
63 + 1)pq . (3.197)

Notice that the state 56−1 doesn’t contribute with any operator since in this case −1−qF = 0.
Moreover, the state 8−3 contributes with two operators, which are distinguished in our index
(3.232) by the quantum number for the geometric SU(2)f symmetry.

Rank 2

Next let us compute the indices for N = 2. Now the abelian symmetry is U(1)b × U(1)t. We
use the mixing coefficients

Rt ≈ 0.2892 ≈ 2
7 , Rb ≈ 0.4707 ≈ 7

15 , (3.198)

which give rise to the following expansion of the index:

IN=2
(−1;27,−2) = 1 + t2(pq)

2
7 + b−32SU(2)8SU(8)(pq)

3
10 + tb−32SU(2)8SU(8)(pq)

31
70 +

+ b−228SU(8)(pq)
8

15 + t4(pq)
4
7 + t−2b8(pq)

61
105 + t2b−32SU(2)8SU(8)(pq)

41
70 +

+ b−6
(
28SU(8) + 3SU(2)36SU(8)

)
(pq)

3
5 + tb−228SU(8)(pq)

71
105 + t−1b8(pq)

76
105 +

+ t3b−32SU(2)8SU(8)(pq)
51
70 + tb−6

(
1 + 3SU(2)

) (
28SU(8) + 36SU(8)

)
(pq)

26
35 +

+ t2(pq)
2
7 (p + q) + · · ·+

(
−63SU(8) − 3SU(2) − 2

)
pq + · · · . (3.199)

We find that the contribution of the conserved current, which is highlighted in blue, is in the
adjoint representation of

SU(8)v × SU(2)f × U(1)t × U(1)b . (3.200)

This is the same as the manifest symmetry of the Lagrangian description we found. Again,
on top of checking that the global symmetry of the model is the one preserved by the flux,
we can also check the presence of the operators coming from the 6d conserved currents. In
this case we also have operators charged under U(1)t coming from the conserved current for
SU(2)L, according to the branching rule

3SU(2)L
→ 10 ⊕ 1±2 . (3.201)
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The 6d R-symmetry assigns R-charge 1 to the fundamentals Qa and also to the antisymmetric
field A. Hence, it is related to the R-symmetry we used for computing the index (3.199) by
the shifts b→ b(pq)− 7

30 and t→ t(pq) 5
14 . Moreover, the U(1) ⊂ SU(2)L for which we turned

on flux Ft = −1 is related to the U(1)t symmetry of our 4d model, while the U(1) ⊂ E8 for
which we turned flux F = 1 is related to U(1)b. With this dictionary, we can immediately
identify all the states appearing in (3.196) and (3.201) that contribute to the index (3.199)
up to the order we evaluated it:

8(−3,0) → 2b−3χ
SU(8)
8 (pq)

3
10

28(−2,0) → b−228SU(8)(pq)
8

15

1(0,2) → t2(pq)
2
7

2× 1(0,0) ⊕ 63(0,0) → −(63SU(8) + 2)pq , (3.202)

where at the exponent of the states on the left hand side we reported, in order, the charges
under U(1)b and U(1)t. Notice again that the state 8(−3,0) contributes with two operators,
which transform as a doublet under the geometric SU(2)f symmetry.

In fact, one can see that there are operators violating the unitarity bound R = 2
3 , which

corresponds to (pq) 1
3 . For instance, the first nontrivial term in (3.199), which corresponds to

TrA2, is below this bound. Repeating the a-maximization after flipping a unitarity violating
operator whenever it appears, we have found that the decoupled operators are TrA2 and S(1),
which correspond to the first two nontrivial terms of the index (3.199) respectively. We have
also found that the remaining interacting sector still exhibits the same symmetry as (3.200).

On the other hand, the index (3.187) with the S-gluing is evaluated with different mixing
coefficients

Rt = 1 , Rb ≈ 0.6321 , (3.203)

where the latter is approximated by

Rb = 7
13 . (3.204)

The resulting index is

IN=2
(0;27,−2) = 1 + b8(pq)

2
13 + b−32SU(2)8SU(8)(pq)

5
26 + b16(pq)

4
13 + b52SU(2)8SU(8)(pq)

9
26 +

+ b−6
(
28SU(8) + 3SU(2)36SU(8)

)
(pq)

5
13 +

(
b24 + b−228SU(8)

)
(pq)

6
13 +

+ b132SU(2)8SU(8)(pq)
1
2 + b2

(
28SU(8) + 3SU(2)36SU(8)

)
(pq)

7
13 +
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+ b−9
(
2SU(2)168SU(8) + 4SU(2)120SU(8)

)
(pq)

15
26 +

(
b32 + b628SU(8)

)
(pq)

8
13 +

+ b8(pq)
2

13 (p + q) +
(
b212SU(2)8SU(8) + b−52SU(2)

(
8SU(8) + 216SU(8)

))
(pq)

17
26 +

+ · · ·+ 2b132SU(2)8SU(8)(pq)
1
2 (p + q) +

(
−63SU(8) − 3SU(2) − 3SU(2)t

− 1+

+b26
(
28SU(8) + 3SU(2)36SU(8)

)
+ 720SU(8) + 3SU(2)945SU(8)

)
pq + . . . , (3.205)

where one can see that the manifest symmetry SU(8)v × U(1)f × U(1)t × U(1)b is indeed
enhanced to

SU(8)v × SU(2)f × SU(2)t × U(1)b . (3.206)

Again, the operators appearing in the index confirm our expectation from 6d. With respect
to the case of Φ-gluing, the flux preserves the SU(2)L 6d symmetry this time, which is related
to SU(2)t of our 4d model. Moreover, in this case the 6d R-symmetry is related to the one
we used for computing the index (3.205) by the shift b → b(pq)− 7

26 . With this dictionary,
we can immediately identify all the states that are expected from the 6d conserved currents
according to the branching rule (3.196) in the index (3.205) up to the order we evaluated it:

(8, 1)−3 → 2b−38SU(8)(pq)
5

26

(28, 1)−2 → b−228SU(8)(pq)
6

13

(1, 1)0 ⊕ (63, 1)0 ⊕ (1, 3)0 → −
(
63SU(8) + 3SU(2)t

+ 1
)

pq , (3.207)

where in the states on the left hand side we reported, in order, the representations under
SU(8) and SU(2)L. Notice again that the state (8, 1)−3 contributes with two operators,
which transform as a doublet under the geometric SU(2)f symmetry.

We have some operators violating the unitarity bound R ≥ 2
3 :

TrPP̃ , (S(1), S̃(1)) , (3.208)

which correspond to the first two nontrivial terms of the index (3.205). Once those are
flipped, the interacting sector turns out to be independent of SU(2)f and only exhibits

SU(8)× SU(2)t × U(1)b . (3.209)

Note that we still have the non-trivial enhancement from U(1)t to SU(2)t. On the other
hand, the geometric SU(2)f symmetry is realized in the decoupled sector because (S(1), S̃(1))
form a doublet of SU(2)f .
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E6 × SU(2)× U(1)2 sphere model

The next example is the model corresponding to the compactification of the E-string theory
on a sphere with flux

F = (−1; 0, 0, 2, 2, 2, 2, 2,−2) , (3.210)

which preserves E6 × SU(2)v × U(1)b × U(1)t ⊂ E8 × SU(2)L. Such flux can be achieved by
gluing two basic caps, taking the S-gluing for the first two octet moment maps26 and the
Φ-gluing for the other octet moment maps and the antisymmetric moment maps27. As this
model also turns out to have the geometric SU(2)f symmetry, the total global symmetry of
the theory is given by

E6 × SU(2)v × SU(2)f × U(1)b × U(1)t . (3.211)

First recall that the basic cap is given by the WZ model with the superpotential

Wcap =
N∑

i=1

7∑
a=1

Trz

(
R(i)aAN−iPLa

)
+

N∑
i=1

Trz

(
βiA

N−iPK
)

+ KL8 , (3.212)

which preserves

USp(2N)× SU(7)u × U(1)x × U(1)c × U(1)t × U(1)f . (3.213)

As we mentioned, we take the S-gluing for L1,2 and the Φ-gluing for L3,...,8 and A. Namely,
we introduce Â, Φ3,...,8 and the superpotential

Wglue = Trz

[
Â · (A− Ã)

]
+

2∑
a=1

LaL̃a +
8∑

b=3
Φb
(
Lb − L̃b

)
(3.214)

26In this and the next example, we choose an even number of octet moment maps to be S-glued. This is
because if an odd number of octet moment maps are S-glued, the resulting theory has the USp(2N) gauge
group with an odd number of fundamental chirals, which lead to an inconsistency of the theory due to the
Witten anomaly [152]. In general, one has to take the gluing rule in such a way that the resulting theory is a
consistent anomaly-free theory.

27One may wonder about the possibility for N > 1 of performing an S-gluing for the antisymmetric moment
maps, which would give flux nt = 0 that preserves the SU(2)L symmetry. It turns out that the resulting
model doesn’t flow to an SCFT. In order to avoid this problem one should consider a sphere compactification
with higher values of the fluxes nc, na, which can be achieved by connecting the two caps with an even number
of tubes in the middle. The resulting model is too complicated to analyze with the supersymmetric index, so
we will neglect this possibility in what follows.
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and gauge the puncture symmetry USp(2N). The entire superpotential of the glued theory
is given by

W =Wcap + W̃cap +Wglue =

=
N∑

i=1

7∑
a=1

Trz

(
R(i)aAN−iPLa

)
+

N∑
i=1

Trz

(
βiA

N−iPK
)

+ KL8+

+
N∑

i=1

2∑
a=1

Trz

(
R̃(i)

aÃN−iP̃ L̃a
)

+
N∑

i=1

7∑
a=3

Trz

(
R̃(i)aÃN−iP̃ L̃a

)
+

N∑
i=1

Trz

(
β̃iÃ

N−iP̃ K̃
)

+

+ K̃L̃8 + Trz

[
Â · (A− Ã)

]
+

2∑
a=1

LaL̃a +
8∑

b=3
Φb
(
Lb − L̃b

)
, (3.215)

where Trz is the trace over the gauged puncture symmetry USp(2N). After integrating out
the massive fields, we obtain the USp(2N) gauge theory with one traceless antisymmetric A,
8 fundamentals (Qb; P ±), 16N gauge singlets (R(i)a, R̃(i)

a; S(i)b
±) and the superpotential

W =
N∑

i=1

8∑
b=3

∑
α=±

Trz

(
S(i)b

αAN−iP αQb

)
−

N∑
i,j=1

2∑
a=1

Trz

(
A2N−i−jP +P −R(i)aR̃(j)

a

)
,

(3.216)

where we have defined

S(i)b
+ =

{
R(i)b , b = 3, . . . , 7 ,

βi , b = 8 ,

S(nib
− =

{
R̃(i)b , b = 3, . . . , 7 ,

−β̃i , b = 8 ,

Qb =
{

Lb , b = 3, . . . , 7 ,
K−K̃−Φ

3 , b = 8 ,

P + = P ,

P − = P̃ . (3.217)

The superpotential (3.216) preserves

SU(2)v × SU(6)w × SU(2)d × SU(2)f × U(1)b × U(1)t. (3.218)

The transformation rules of each chiral multiplet under the manifest global symmetry are
presented in Table 3.5. In particular, using the supersymmetric index, we will show that
SU(6)w × SU(2)d is enhanced to E6. Thus, the enhanced global symmetry of the theory is
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USp(2N) SU(2)v SU(6)w SU(2)d SU(2)f U(1)b U(1)t U(1)R

S(i) 1 1 6 2 1 −2 i− 1 2
(R(i), R̃(i)) 1 2 1 1 2 −3 i− 1 2

Q 2N 1 6 1 1 −1 0 1
P 2N 1 1 2 1 3 1−N −1
A N(2N− 1)− 1 1 1 1 1 0 1 0

Table 3.5: The matter content of the E6 × SU(2)2 × U(1)2 model and the corresponding
transformation rules under the global symmetry.

given by

E6 × SU(2)v × SU(2)f × U(1)b × U(1)t . (3.219)

To evaluate the index, we first note that the gluing we take breaks SU(7)u×U(1)x of the
basic cap into SU(2)v × SU(5)u ×U(1)y ×U(1)x. Thus, we need to redefine the fugacities as
follows:

u1 −→ x−1y−5v ,

u2 −→ x−1y−5v−1 ,

ub=3,...,7 −→ x−1y2ub ,

u8 −→ x7 ,

(3.220)

where ub on the right hand side satisfies ∏7
b=3 ub = 1. The octet fugacities of the caps are

then given by

ηa =
(
c

1
2 x−1y−5v, c

1
2 x−1y−5v−1; c

1
2 x−1y2ua−2; c

1
2 x7

)
(3.221)

for the left cap and

ξa =
(
c′ 1

2 x′−1y′−5v′, c′ 1
2 x′−1y′−5v′−1; c′ 1

2 x′−1y′2u′
a−2; c′ 1

2 x′7
)

(3.222)

for the right cap. Since we take the S-gluing for the first two components and the Φ-gluing
for the others, we impose the conditions ηa = 1/ξa for a = 1, 2 and ηa = ξa otherwise, which
are solved by

c′ = c
1
2 xy5 ,

x′ = c
1

28 x
13
14 y− 5

14 ,

y′ = c
1
7 x− 2

7 y− 3
7 ,
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v′ = v−1 ,

u′
b = ub . (3.223)

With this identification, we obtain the index of the theory on a sphere with the flux (3.210),
which is given by

I(−1;02,25,−2) =

=
∮

dzN Γe

(
pqt−1

)N−1 N∏
i<j

Γe

(
pqt−1z±1

i z±1
j

) N∏
i=1

8∏
a=3

Γe

(
(pq)

1
2 c

1
2 uaz±1

i

)
×

× Icap(z⃗; c; t; f ; u1, . . . , u7; x)×

×
(
Icap(z⃗; c; t; f−1; u1, . . . , u7; x)

∣∣∣
c→c

1
2 xy5,x→c

1
28 x

13
14 y− 5

14 ,y→c
1
7 x− 2

7 y− 3
7 ,v→v−1

)
, (3.224)

where (3.220) is understood for ua. Furthermore, introducing the following redefinition of
the fugacities:

wa=1,...,5 = c
1
6 xy

1
3 ua+2 ,

w6 = c− 5
6 x−5y− 5

3 ,

b = c
1
3 x−2y

5
3 ,

d = c− 1
2 xy5f−1 ,

(3.225)

one can see that the index has the manifest SU(2)v×SU(6)w×SU(2)d×SU(2)f×U(1)b×U(1)t

symmetry as follows:

I(−1;02,25,−2) =

=
N∏

i=1
Γe

(
pqti−1b−3f±1v±1

)
︸ ︷︷ ︸

(R(i)±,±R̃(i)∓)

N∏
i=1

6∏
a=1

Γe

(
pqti−1b−2d±1wa

)
︸ ︷︷ ︸

S
(i)
±

a

×

×
∮

dzN Γe (t)N−1 ∏
i<j

Γe

(
tz±1

i z±1
j

)
︸ ︷︷ ︸

A

N∏
i=1

6∏
a=1

Γe

(
(pq)

1
2 b−1w−1

a z±1
i

)
︸ ︷︷ ︸

Qa

N∏
i=1

Γe

(
(pq)− 1

2 t1−N b3d±1z±1
i

)
︸ ︷︷ ︸

P ±

.

(3.226)

We comment again that the SU(2)f symmetry descends from the isometry of the S2 on
which we performed the compactification. The anomalies for this symmetry computed using
our 4d Lagrangian description are

Tr
(
SU(2)2

f U(1)R

)
= N(N + 1)

2 , Tr
(
SU(2)2

f U(1)t

)
= N(N − 1)

2 ,
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Tr
(
SU(2)2

f U(1)c

)
= −N, Tr

(
SU(2)2

f U(1)ua

)
= −N

2 a = 1, 2,

Tr
(
SU(2)2

f U(1)ua

)
= −N a = 3, · · · , 7 , (3.227)

where we went back from the U(1)’s used to write the index (3.226) to those parametrizing
the Cartan of U(1)c × SU(8)u ⊂ E8 using (3.220)-(3.225). These anomalies perfectly match
those that we can compute from 6d (D.20) for the value of the flux (3.210). In this case
as well, the mixing of the original U(1)f from (3.137) with the other U(1)’s that gives the
correct anomalies matches the mixing prediction in (D.21).

While the manifest UV symmetry visible in the integral expression is

SU(2)v × SU(6)w × SU(2)d × SU(2)f × U(1)b × U(1)t , (3.228)

the expanded index will show that the global symmetry is enhanced to

E6 × SU(2)v × SU(2)f × U(1)b × U(1)t . (3.229)

Notice also that the SU(2)v and the SU(2)f symmetries only act on the singlets R(i)± and
R̃(i)

±. Removing these fields we get a model with E6 × U(1)b × U(1)t symmetry. This
turns out to be dual under a generalization of the Intriligator–Pouliot duality [81] with
antisymmetric matter to the model which was observed to have E6 enhancement in [155]
for N = 1 and in [156] for arbitrary N up to some extra flips of operators neutral under
SU(2)v×SU(2)f . Indeed, applying the a-maximization, we will see that the flipped operators
will decouple in the IR as their R-charges fall below the unitarity bound. Then the interacting
sector corresponds exactly to the E6 models in [155] and [156].

Let us again analyze the index of low values of N in more details.

Rank 1

We first compute the index (3.226) for N = 1 with the U(1)b mixing coefficient

Rb ≈ 0.5117 , (3.230)

which is approximated by the following rational value:

Rb = 1
2 . (3.231)

The resulting index is

IN=1
(−1;02,25,−2) =

= 1 + b−32SU(2)v
2SU(2)f

(pq)
1
4 +

(
b6 + b−6

(
1 + 3SU(2)v

3SU(2)f

)
+ b−227E6

)
(pq)

1
2 +
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+ b−32SU(2)v
2SU(2)f

(pq)
1
4 (p + q)+

+
(
b−9

(
2SU(2)v

2SU(2)f
+ 4SU(2)v

4SU(2)f

)
+ b−52SU(2)v

2SU(2)f
27E6

)
(pq)

3
4 +

+
(
b6 + b−6

(
1 + 2SU(3)v

) (
1 + 3SU(2)f

)
+ b−227E6

)
(pq)

1
2 (p + q)+

+
(
−78E6 − 3SU(2)v

− 3SU(2)f
− 1 + b12 + b−12

(
1 + 3SU(2)v

3SU(2)f
+ 5SU(2)v

5SU(2)f

)
+b−8

(
1 + 3SU(2)v

3SU(2)f

)
27E6 + b−4351′

E6

)
pq + · · · , (3.232)

where the E6 characters are written in terms of the fugacities wa and d. The negative terms
at order pq highlighted in blue represent the conserved currents for the global symmetry of
the theory. We can see that the IR global symmetry is indeed

E6 × SU(2)v × SU(2)f × U(1)b . (3.233)

Also in this case we can check the presence of gauge invariant operators that descend from the
6d conserved currents. For rank 1 we focus on the branching rule of the adjoint representation
of E8 under the E6 × SU(2)× U(1) subgroup:

248→ (1, 1)0 ⊕ (1, 3)0 ⊕ (78, 1)0 ⊕ (27, 2)1 ⊕ (27, 2)−1 ⊕ (27, 1)2 ⊕ (27, 1)−2 ⊕ (1, 2)±2 .

(3.234)

The 6d R-symmetry is related to the one we used to compute the index (3.232) by the shift
b→ b(pq) 1

4 . Moreover, the U(1) inside E8 for which we turned on a unit of flux is related
to U(1)b. With this dictionary, we can identify the states appearing in (3.234) in the index
(3.232) up to the order we evaluated it:

(1, 2)−3 → 2b−32SU(2)v
(pq)

1
4

(27, 1)−2 → b−227E6(pq)
1
2

(1, 1)0 ⊕ (1, 3)0 ⊕ (78, 1)0 → −
(
78E6 + 3SU(2)v

+ 1
)

pq . (3.235)

Notice again that, similarly to the example of the previous subsection, the state (1, 2)−3

contributes with two operators, which transform as a doublet under the geometric SU(2)f .

The a-maximization tells us that the following operators decouple in the IR:

(R(1)±, R̃(1)±) , (3.236)

which are in the (2, 2) of SU(2)v×SU(2)f . In fact, as we mentioned, the singlets (R(1)±, R̃(1)±)
are the only chiral multiplets charged under SU(2)v×SU(2)f . Thus, the remaining interacting
sector is independent of SU(2)v × SU(2)f . Indeed, the interacting sector is the Intriligator–
Pouliot dual theory [81] of the E6 model in [155], which was observed to have the enhanced
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IR symmetry

E6 × U(1)b . (3.237)

Rank 2

For rank N = 2 we compute the index (3.226) with the following mixing coefficients:

Rt ≈ 0.2221 ≈ 1
4 , Rb ≈ 5539 ≈ 4

7 . (3.238)

The expansion of the index up to order pq is much more complicated than for the rank 1 case.
For simplicity we only show the first few orders and the order pq containing the conserved
currents, but we checked that also the other terms organize into characters of the expected
global symmetry

IN=2
(−1;02,25,−2) =

= 1 + b−32SU(2)v
2SU(2)f

(pq)
1
7 + t2(pq)

1
4 + b−3t2SU(2)v

2SU(2)f
(pq)

15
56 +

+ b−6
(
1 + 3SU(2)v

3SU(2)f

)
(pq)

2
7 + b−3t22SU(2)v

2SU(2)f
(pq)

11
28 +

+ b−6t
(
1 + 3SU(2)v

) (
1 + 3SU(2)f

)
(pq)

23
56 +

+
(
b−9

(
2SU(2)v

2SU(2)f
+ 4SU(2)v

4SU(2)f

)
+ b−227E6

)
(pq)

3
7 + b6t−2(pq)

13
28 + t4(pq)

1
2 +

+ · · ·+ t4(pq)
1
2 (p + q) +

(
−78E6 − 3SU(2)v

− 3SU(2)f
− 2 + 1 + t8 + 3SU(2)v

3SU(2)f
+

+ b−21
(
2SU(2)v

2SU(2)f
+ 4SU(2)v

4SU(2)f
+ 6SU(2)v

6SU(2)f
+ 8SU(2)v

8SU(2)f

)
+

+b−14
(
1 + 3SU(2)v

3SU(2)f
+ 5SU(2)v

5SU(2)f

)
27E6 + b−72SU(2)v

2SU(2)f

(
351′

E6 + 27E6

))
pq+

+ · · · . (3.239)

Again we can see characters for the E6 symmetry that is enhanced from the manifest
SU(6)w × SU(2)d. Moreover, from the negative terms at order pq highlighted in blue we can
see the conserved currents for

E6 × SU(2)v × SU(2)f × U(1)b × U(1)t (3.240)

as expected. Note that there should be at least two U(1) currents because the theory already
exhibits U(1)b and U(1)t. Also in this case we can check the presence of gauge invariant
operators that descend from the 6d conserved currents. On top of those that we found for
rank 1 coming from the E8 conserved currents, we now expect also operators coming from
the SU(2)L conserved currents, according to the branching rule of its adjoint representation
(3.201). This time the 6d R-symmetry is related to the one we used to compute the index
(3.239) by the shifts b → b(pq)− 2

7 and t → t(pq) 3
8 . Moreover, the U(1) inside SU(2)L for
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which we turned on a flux −1 coincides with the U(1)t of our 4d model. With this dictionary,
we can identify the states appearing in (3.234) and (3.201) in the index (3.239) up to the
order we evaluated it:

(1, 2)(−3,0) → 2b−32SU(2)v
(pq)

1
7

(27, 1)−2 → b−227E6(pq)
3
7

(1, 1)(0,2) → t2(pq)
1
4

2× (1, 1)(0,0) ⊕ (1, 3)(0,0) ⊕ (78, 1)(0,0) → −
(
78E6 + 3SU(2)v

+ 2
)

pq ,

(3.241)

where at the exponent of the states on the left hand side we reported, in order, the charges
under U(1)b and U(1)t. Notice again that the state (1, 2)(−3,1) contributes with two operators,
which transform as a doublet under the geometric SU(2)f .

We have found that the decoupled operators for N = 2 are given by

(R(1)±, R̃(1)±) , TrA2 , (R(2)±, R̃(2)±) , (3.242)

which correspond to the first three non-trivial terms of the index (3.239) respectively. Note
that (R(i)±, R̃(i)±) for i = 1, 2 are in the (2, 2) of SU(2)v×SU(2)f . The remaining interacting
sector is dual to the E6 model considered in [156], which was shown to have the enhanced IR
symmetry

E6 × U(1)b × U(1)t . (3.243)

SO(14)× U(1)2 sphere model I

We next consider the model corresponding to the flux

F = (−1; 0, 0, 0, 0, 2, 2, 2,−2) , (3.244)

which preserves SO(14) × U(1)b × U(1)t ⊂ E8 × SU(2)L. This model can be obtained by
gluing two basic caps with the S-gluing for the first four octet moment maps and the Φ-gluing
for the other octet moment maps and the antisymmetric moment maps. From the flux (3.244)
we expect that the theory has the global symmetry

SO(14)× U(1)b × U(1)t . (3.245)
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Again we start from the basic cap, the WZ model with the superpotential

Wcap =
N∑

i=1

7∑
a=1

Trz

(
R(i)aAN−iPLa

)
+

N∑
i=1

Trz

(
βiA

N−iPK
)

+ KL8 , (3.246)

which preserves

USp(2N)× SU(7)u × U(1)x × U(1)c × U(1)t × U(1)f . (3.247)

Since we want to take the S-gluing for L1,...,4 and the Φ-gluing for L5,...,8 and A, we introduce
Â, Φ5,...,8 and the superpotential

Wglue = Trz

[
Â · (A− Ã)

]
+

4∑
a=1

LaL̃a +
8∑

b=5
Φb
(
Lb − L̃b

)
(3.248)

and gauge the puncture symmetry USp(2N). The total superpotential of the glued theory is
given by

W =Wcap + W̃cap +Wglue =

=
N∑

i=1

7∑
a=1

Trz

(
R(i)aAN−iPLa

)
+

N∑
i=1

Trz

(
βiA

N−iPK
)

+ KL8+

+
N∑

i=1

4∑
a=1

Trz

(
R̃(i)

aÃN−iP̃ L̃a
)

+
N∑

i=1

7∑
a=5

Trz

(
R̃(i)aÃN−iP̃ L̃a

)
+

N∑
i=1

Trz

(
β̃iÃ

N−iP̃ K̃
)

+

+ K̃L̃8 + Trz

[
Â · (A− Ã)

]
+

4∑
a=1

LaL̃a +
8∑

b=5
Φb
(
Lb − L̃b

)
, (3.249)

which becomes

W =
N∑

i=1

8∑
b=5

∑
α=±

Trz

(
S(i)b

αAN−iP αQb

)
−

N∑
i,j=1

4∑
a=1

Trz

(
A2N−i−jP +P −R(i)aR̃(j)

a

)
(3.250)

once we integrate out the massive fields. We have defined

S(i)b
+ =

{
R(i)b , b = 5, . . . , 7 ,

βi , b = 8 ,

S(i)b
− =

{
R̃(i)b , b = 5, . . . , 7 ,

−β̃i , b = 8 ,

Qb =
{

Lb , b = 5, . . . , 7 ,
K−K̃−Φ

3 , b = 8 ,
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USp(2N) SU(4)v SU(4)w U(1)d U(1)f U(1)b U(1)t U(1)R

S
(i)
± 1 1 4 ±2 ±1 −1 i− 1 2

R(i) 1 4 1 1 0 −2 i− 1 2
R̃(i) 1 4 1 −1 0 −2 i− 1 2
Q 2N 1 4 0 0 −1 0 1

P ± 2N 1 1 ∓2 ∓1 2 1−Q −1
A N(2N− 1)− 1 1 1 0 0 0 1 0

Table 3.6: The matter content of the SO(14) × U(1)2 model I and the corresponding
transformation rules under the manifest global symmetry.

P + = P ,

P − = P̃ . (3.251)

Note that the superpotential (3.250) preserves28

SU(4)v × SU(4)w × U(1)d × U(1)f × U(1)b × U(1)t (3.253)

and the various chiral multiplets transform under it as in Table 3.6.

Interestingly, although the S(i) and P are charged under U(1)f , we will see that it is not
a faithful symmetry because no gauge invariant operator is charged under this U(1)f . In
addition, we will also see that SU(4)v × SU(4)w × U(1)d is enhanced to SO(14). Thus, the
global symmetry of the theory is given by

SO(14)× U(1)b × U(1)t . (3.254)

We should comment that, as we will see later on, this theory flows to a WZ model according
to the duality of [86] that we already presented in the Outlook 2.5 for the second chapter.
The symmetry (3.254) is the one preserved by the superpotential of the dual WZ model:

W =
∑

k+l+m+n=2N+1

14∑
a=1

A(k)P (l)Q(m)
a Q(n)

a , (3.255)

28While we focus on the global symmetry (3.253) for simplicity, the full symmetry preserved by the
superpotential (3.250) is

SO(8)s × SU(4)w × SU(2)g × U(1)b × U(1)t (3.252)

where SO(8)s × SU(2)g is enhanced from SU(4)v × U(1)d × U(1)f . The fugacity map between the two groups
is given by

sa = dva ,

g = d2f .
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where the dual fields can be identified with the operators of the current model as follows:

A(k) ←→ TrAk ,

P (l) ←→ Tr
[
Al−1P +P −

]
,

Q(m) ←→ R(m), R̃(m), Tr
[
Am−1Q[aQb]

] (3.256)

Since the theory is a WZ model, the superpotential (3.255) is irrelevant and all the fields in
(3.256) become free in the IR. Accordingly, neglecting the superpotential the global symmetry
becomes much larger. We will nevertheless keep the superpotential (3.255) because we want
to focus on the smaller symmetry (3.254) so to show explicitly that our model conforms to
the expectations from 6d. The true larger symmetry is not in contrast with the 6d prediction
and it is accidental from this point of view.

Before evaluating the index, we should note that the gluing breaks SU(7)u×U(1)x of the
basic cap into SU(4)v × SU(3)u ×U(1)y ×U(1)x. Thus, we need to redefine the fugacities as
follows:

ua=1,...,4 −→ x−1y−3va ,

ub=5,...,7 −→ x−1y4ub ,

u8 −→ x7

,

where va and ub on the right hand side satisfy ∏4
a=1 va = 1 and ∏7

b=5 ub = 1 respectively.
The octet fugacities of the caps are then given by

ηa =
(
c

1
2 x−1y−3va; c

1
2 x−1y4ua−4; c

1
2 x7

)
(3.257)

for the left cap and

ξa =
(
c′ 1

2 x′−1y′−3va; c′ 1
2 x′−1y′4u′

a−4; c′ 1
2 x′7

)
(3.258)

for the right cap. Since we take the S-gluing for the first four and the Φ-gluing for the others,
we impose the conditions ηa = 1/ξa for a = 1, . . . , 4 and ηa = ξa otherwise, which are solved
by

c′ = x2y6 ,

x′ = c
1

14 x
6
7 y− 3

7 ,

y′ = c
1
7 x− 2

7 y
1
7 ,

v′
a = v−1

a ,

u′
b = ub .

(3.259)
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With this identification, we obtain the index of the theory with the flux (3.244), which is
given by

I(−1;04,23,−2) =

=
∮

dzN Γe

(
pqt−1

)N−1 N∏
i<j

Γe

(
pqt−1z±1

i z±1
j

) N∏
i=1

8∏
a=5

Γe

(
(pq)

1
2 c

1
2 uaz±1

i

)
×

× Icap(z⃗; c; t; f ; u1, . . . , u7; x)×

×
(
Icap(z⃗; c; t; f−1; u1, . . . , u7; x)

∣∣∣
c→x2y6,x→c

1
14 x

6
7 y− 3

7 ,y→c− 1
7 x

2
7 y− 1

7 ,va→v−1
a

)
, (3.260)

where (3.257) is understood for ua. Furthermore, if we introduce the following redefinition of
the fugacities:

wa=1,2,3 = c
1
4 x

3
2 yua ,

w4 = c− 3
4 x− 9

2 y−3 ,

b = c
1
4 x− 5

2 y3 ,

d = c− 1
2 xy3f−1 ,

(3.261)

the index is written with the manifest SU(4)v × SU(4)w × U(1)d × U(1)f × U(1)b × U(1)t

symmetry as follows:

I(−1;04,23,−2) =
N∏

i=1

4∏
a=1

Γe

(
pqti−1b−2(dva)±1

)
︸ ︷︷ ︸

R(i), R̃(i)

N∏
i=1

4∏
a=1

Γe

(
pqti−1b−1(d2f)±1wa

)
︸ ︷︷ ︸

S
(i)
±

a

×

×
∮

dzN Γe (t)N−1 ∏
i<j

Γe

(
tz±1

i z±1
j

)
︸ ︷︷ ︸

A

N∏
i=1

4∏
a=1

Γe

(
(pq)

1
2 b−1w−1

a z±1
i

)
︸ ︷︷ ︸

Qa

×

×
N∏

i=1
Γe

(
(pq)− 1

2 t1−N b2(d2f)±1z±1
i

)
︸ ︷︷ ︸

P ∓

. (3.262)

Although the integrand depends on f , by explicitly expanding the index, we are able to see
that U(1)f is not a faithful symmetry because the index is independent of f . As we will
check, the faithful symmetry of the theory is thus

SO(14)× U(1)b × U(1)t . (3.263)

The fact that the U(1)f symmetry is not faithful manifests itself also in the vanishing of
all the anomalies involving it. Moreover, we again want to interpret U(1)f as the symmetry
descending from the isometry of the two-sphere. The two statements are indeed compatible,
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since we find that all of the anomalies for this symmetry computed from 6d (D.20) accidentally
vanish for the value of the flux (3.244). As before, the mixing of the original U(1)f from
(3.137) with the other U(1)’s that gives the correct anomalies matches the predicted mixing
given in (D.21).

We now discuss the index for the low values of N in some detail.

Rank 1

To see the enhanced global symmetry, let us expand the the index (3.262) for some low
values of the rank N . Firstly, for N = 1, we take the mixing coefficient of U(1)b with the
R-symmetry as

Rb = 2
3 , (3.264)

which is the value determined by the a-maximization. Note that this is the exact value rather
than the approximate one and that this already suggests that the theory is dual to a IR free
WZ model. With this mixing coefficient, the expansion of the index is given by

IN=1
(−1;04,23,−2) = 1 +

(
b4 + b−214SO(14)

)
(pq)

1
3 +

(
b8 + b−4104SO(14)

)
(pq)

2
3 +

+
(
b4 + b−214SO(14)

)
(pq)

1
3 (p + q)+

+
(
−91SO(14) − 1 + b12 + b−6546SO(14)

)
pq + · · · , (3.265)

where mSO(14) is the m-dimensional character of SO(14) written in terms of va, wa and d.
For example, the 14 of SO(14) is decomposed into

14 −→ (4, 1)1 ⊕ (4, 1)−1 ⊕ (1, 6)0 (3.266)

under SU(4)v × SU(4)w × U(1)d and the character is written accordingly. Furthermore, we
see that the contribution of the current multiplet, which is highlighted in blue, is in the
adjoint representation of

SO(14)× U(1)b (3.267)

as expected.
Also in this case we can check the presence of gauge invariant operators that descend

from the 6d conserved currents. For rank 1 we focus on the branching rule of the adjoint
representation of E8 under the SO(14)× U(1) subgroup

248→ 10 ⊕ 910 ⊕ 641 ⊕ 64−1 ⊕ 14±2 . (3.268)
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The 6d R-symmetry is related to the one we used to compute the index (3.265) by the shift
b→ b(pq)− 1

3 . Moreover, the U(1) inside E8 for which we turned on a unit of flux is related
to U(1)b. With this dictionary, we can identify the states appearing in (3.268) in the index
(3.265) up to the order we evaluated it

14−2 → b−214SO(14)(pq)
1
3

10 ⊕ 910 → −
(
91SO(14) + 1

)
pq . (3.269)

We notice that in this case there is no state contributing with more than one operator and
which can form representations of U(1)f . This is compatible with our finding that U(1)f is
not a symmetry of the IR theory.

Note that in this model the chiral operators given by the first non-trivial term of the
index (3.265) hit the unitarity bound. In fact these operators become free fields in the IR
and are the full content of the theory in the IR, as we remarked below eq. (3.256). This
model flows indeed to a WZ model with the superpotential

WN=1 =
14∑

a=1
P (1)Q(1)

a Q(1)
a , (3.270)

which preserves the symmetry (3.267).

Rank 2

Next we compute the index (3.262) for N = 2, where we take the mixing coefficients as

Rt = 1
7 , Rb = 7

10 , (3.271)

which approximate the irrational values determined by the a-maximization

Rt ≈ 0.1442 , Rb ≈ 0.7045 . (3.272)

With those mixing coefficients, the index is given by

IN=2
(−1;04,23,−2) = 1 + t2(pq)

1
7 + b4t−2(pq)

9
35 + t4(pq)

2
7 + b−214SO(14)(pq)

3
10 + b4t−1(pq)

23
70 +

+ b−2t14SO(14)(pq)
13
35 + b4(pq)

2
5 + t6(pq)

3
7 + b−2t214SO(14)(pq)

31
70 + b4t(pq)

33
70 +

+
(
b8t−4 + b−2t314SO(14)

)
(pq)

18
35 + b4t2(pq)

19
35 + b2t−214SO(14)(pq)

39
70 +

+ t8(pq)
4
7 +

(
b8t−3 + b−2t414SO(14)

)
(pq)

41
70 + b−4(1 + 104SO(14))(pq)

3
5 +

+ b4t3(pq)
43
70 + b2t−114SO(14)(pq)

22
35 + t2(pq)

1
7 (p + q)+

+ · · ·+
(
−91SO(14) − 2 + t14 + 104SO(14)

)
pq + · · · , (3.273)
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where we see the contribution of the conserved current for

SO(14)× U(1)b × U(1)t . (3.274)

Also in this case we can check the presence of gauge invariant operators that descend
from the 6d conserved currents. On top of those that we found for rank 1 coming from
the E8 conserved current, we now expect also operators coming from the SU(2)L conserved
current, according to the branching rule of its adjoint representation (3.201). This time the
6d R-symmetry is related to the one we used to compute the index (3.273) by the shifts
b→ b(pq)− 7

20 and t→ t(pq) 3
7 . Moreover, the U(1) inside SU(2)L for which we turned on a

flux −1 coincides with the U(1)t symmetry of our 4d model. With this dictionary, we can
identify the states appearing in (3.268) and (3.201) in the index (3.273) up to the order we
evaluated it

14(−2,0) → b−214SO(14)(pq)
3

10

1(0,2) → t2(pq)
1
7

2× 1(0,0) ⊕ 91(0,0) → −
(
91SO(14) + 2

)
pq , (3.275)

where at the exponent of the states on the left hand side we reported, in order, the charges
under U(1)b and U(1)t. Again there is no state contributing with more than one operator
and which can form representations of U(1)f . This is compatible with our finding that U(1)f

is not a symmetry of the IR theory.
Also for N = 2 the theory flows to a free theory. One can see that the first non-trivial term

of the index (3.273), which corresponds to TrA2, is below the unitarity bound. Once we flip
this operator, the resulting theory only includes chiral operators hitting the unitarity bound
R = 2

3 . Therefore, this models flows to a free theory in the IR where all the chiral operators
become free fields. The symmetry (3.274) captured by the index should be understood, like
the in N = 1 case, as the symmetry preserved during the flow to the free model.

SO(14)× U(1)2 sphere model II and Csaki–Skiba–Schmaltz duality

Lastly, we analyze an example corresponding to the flux

F = (−1; 1, 1, 1, 1, 1, 1, 3,−1) , (3.276)

which also preserves SO(14)× U(1)b × U(1)t ⊂ E8 × SU(2)L as in the previous case. Most
importantly, the flux (3.276) is equivalent to (3.244) up to Weyl reflections of E8. Therefore,
from the 6d perspective they stem from the same 6d theory compactified on a sphere with
the same flux, which thus leads to a duality between the resulting 4d theories. Indeed, we
will see that the theory with the flux (3.276) is the WZ model dual to the USp(2N) theory in
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the previous example and that the duality is nothing but the confining duality for USp(2N)
with one antisymmetric and six fundamental chirals of [86] that we mentioned in the Outlook
2.5 for the second chapter.

This model can be simply obtained from the cap theory by closing the remaining puncture.
First recall that the index of the cap is given by

Icap(y⃗; c; t; f ; u1, . . . , u7; x) =

= Γe (t)N−1
N∏

i<j

Γe

(
ty±1

i y±1
j

) N∏
i=1

Γe

(
pqti−1c−2f−1

) N∏
i=1

Γe

(
(pq)− 1

2 t1−N c
3
2 fu−1

8 y±1
i

)
×

×
N∏

i=1

7∏
a=1

Γe

(
pqti−1c−1f−1u8ua

) N∏
i=1

7∏
a=1

Γe

(
(pq)

1
2 c− 1

2 u−1
a y±1

i

)
. (3.277)

One can repeat the procedure in Subsection 3.5.1 now specializing yi = wt− N−2i+1
2 and

w = (pq) 1
2 c− 1

2 t
N−1

2 u−1
7 with extra singlets provided to ensure the anomaly matching. The

resulting sphere model has the index

I(−1;16,3,−1) =
N∏

j=2
Γe

(
tj
) N∏

i=1
Γe

(
pqti−1c−2f−1

)
Γe

(
pqti−1y−2

)
Γe

(
(pq)−1t−2N+1+ic2fy2

)
×

×
N∏

i=1

6∏
a=1

Γe

(
pqti−1c−1f−1y−1xua

) N∏
i=1

6∏
a=1

Γe

(
pqti−1c−1y−1x−1u−1

a

)
, (3.278)

where we have made the following redefinition of the fugacities:

ua=1,...,6 −→ x− 1
2 ua ,

u7 −→ x
3
2 y ,

u8 −→ x
3
2 y−1 ,

(3.279)

with new ua on the right hand side satisfying ∏6
a=1 ua = 1. This choice of the fugacities

makes only SU(6)u × U(1)x × U(1)y manifest. However, as we mentioned, the full symmetry
of the theory is supposed to be SO(14) × U(1)b × U(1)t. Indeed, one can introduce the
SO(14)× U(1)b fugacities defined by

va=1,...,6 = xuaf− 1
2 ,

v7 = cy−1f
1
2 ,

b = c
1
2 y

1
2 f

1
4

(3.280)

so that the index is written in the SO(14)× U(1)b × U(1)t symmetric way. The mixing of
U(1)f with the other U(1)’s reflected in (3.280) exactly matches the predicted mixing given
in (D.21). After mixing the dependence of f completely disappears, which is consistent our
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SO(14) U(1)b U(1)t U(1)R

Q(n) 14 −2 n− 1 2
P (n) 1 4 −2Q + 1 + n −2
A(n) 1 0 n 0

Table 3.7: The matter content of the SO(14) × U(1)2 model II and the corresponding
transformation rules under the global symmetry.

claim that this is not a faithful symmetry of the model and with the fact that we expect this
U(1)f to descend from the isometry of the two-sphere, whose anomalies computed from 6d

(D.20) vanish for the value of the flux (3.276). With those fugacities in (3.280), the index is
now written as

I(−1;16,3,−1) =
N∏

j=2
Γe

(
tj
)

︸ ︷︷ ︸
A(j)

N∏
i=1

Γe

(
(pq)−1t−2N+1+ib4

)
︸ ︷︷ ︸

P (i)

N∏
i=1

7∏
a=1

Γe

(
pqti−1b−2v±1

a

)
︸ ︷︷ ︸

Q(i)

. (3.281)

From the index, one can read that the corresponding 4d theory is a WZ model with the
superpotential

W =
∑

k+l+m+n=2N+1

14∑
a=1

A(k)P (l)Q(m)
a Q(n)

a , (3.282)

with k = 2, . . . , N and l, m, n = 1, . . . , N . The superpotential (3.282) preserves

SO(14)v × U(1)b × U(1)t (3.283)

as expected from the 6d perspective. The transformation rules of each chiral multiplet under
this global symmetry are presented in Table 3.7. Note as this is a WZ model it flows to a
collection of free chiral fields with the above symmetry being a subgroup of the symmetry of
the free theory in the IR.

One can also explicitly expand the index (3.281). With the R-symmetry mixing coefficient
of U(1)b

Rb = 2
3 , (3.284)

the index (3.281) for N = 1 reads

IN=1
(−1;16,3,−1) = 1 +

(
b4 + b−214SO(14)

)
(pq)

1
3 +

(
b8 + b−4104SO(14)

)
(pq)

2
3 +

+
(
b4 + b−214SO(14)

)
(pq)

1
3 (p + q)+

+
(
−91SO(14) − 1 + b12 + b−6546SO(14)

)
pq + . . . , (3.285)
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which is exactly the same as the index (3.265) of the SO(14)× U(1)b model I. Indeed, the
two models for general N have been described as dual theories [86], whose index agreement
was also shown in [157]. We presented the statement of this duality in the Outlook 2.5 for
the second chapter, where we already mentioned that we would have given a novel way to
understand this duality from the 6d perspective. We have shown that both theories are
obtained by compactifying the same E-string theory on a sphere with the same flux because
the flux (3.276) is equivalent to (3.244) up to Weyl reflections of the E8 symmetry of the
6d theory. This leads to a duality between the resulting 4d theories, both of which should
exhibit at least the global symmetry SO(14)× U(1)b × U(1)t.

Also in this case, as for the dual model corresponding to the flux (3.244), all of the
anomalies for the U(1)f symmetry trivially vanish because all the chiral multiplets are neutral
under U(1)f . This is again compatible with the interpretation of this U(1)f as the symmetry
descending from the isometry of the two-sphere, since we find that all of the anomalies for
this symmetry computed from 6d (D.20) accidentally vanish also for the value of the flux
(3.276).

3.6 Outlook

In this chapter we have seen a powerful approach to find new symmetry enhancements and
dualities for 4d N = 1 theories, which is based on the compactification of 6d N = (1, 0)
SCFTs on Riemann surfaces with fluxes. In particular, we focused on the compactifications
of the rank-N E-string theory on surfaces that can be built from tubes and caps, that is
tori and spheres, with various values of flux. With this strategy we managed to find several
four-dimensional models enjoying global symmetry enhancements, in some cases even to
exceptional groups, and dualities, such as the braid relation that generalizes the Seiberg
duality and the confining duality for USp(2N) with one antisymmetric and six fundamental
chirals. An important role in the construction of the E-string models was played by the
E[USp(2N)] theory. We have seen that this theory is a 4d avatar of the M [SU(N)] and the
T [SU(N)] theories and we discussed several properties that it enjoys at low energies, most
importantly its symmetry enhancement and its duality web.

There are several directions that one may follow starting from the topic of this chapter.
One of these is to investigate some aspects of the E-string compactifications that are still
not fully understood. For example, we have discussed the basic tube model from which
we constructed more tubes, caps, tori and spheres, but in order to construct the most
general Riemann surface we need another ingredient: the trinion theory associated to the
compactification on a sphere with three punctures. Two trinions for two different choices of
flux have been found for the rank N = 1 E-string theory in [124, 125], but the higher rank
trinion is still unknown.
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Another open problem regarding E-string compactifications is related to punctures.
Here we only discussed maximal punctures, that is punctures that carry a USp(2N) global
symmetry, but one may also consider other types of punctures. From the field theory point of
view we expect that to partially close the punctures, that is to break the symmetry that they
carry to USp(2N)→ ∏

k USp(2nk), we should give a VEV to the antisymmetric operators
of E[USp(2N)]. Such VEVs have been studied in detail [145] and we will encounter them in
the next chapter. What is missing is instead the 6d prediction for such models. Specifically,
it is not clear yet what should be the contribution to the anomalies of such non-maximal
punctures.

Another possible interesting line of research is to try to apply the same strategy but to the
compactification of 5d N = 1 SCFTs on Riemann surfaces with fluxes so to engineer 3d N = 2
theories. This possibility has been recently investigated in [83], where the compactifications
of the 5d rank-1 ENf +1 Seiberg SCFTs [131] on tubes and tori have been studied. We said
that the realm of 6d N = (1, 0) SCFTs is wide, but the one of 5d N = 1 SCFTs is even larger.
Indeed, if we compactify a 6d N = (1, 0) SCFT on a circle we obtain a 5d N = 1 SCFT and
from this we can flow via mass deformations to other 5d theories that are not the dimensional
reduction of any 6d theory. Understanding how these mass deformations are mapped in the
3d N = 2 theories is a first non-trivial task. Moreover, in three dimensions there are new
ingredients that are not present in four dimensions, namely Chern–Simons interactions for
the gauge fields and monopole operators that may be turned on in the superpotential. This
makes the analysis of the compactifications from 5d to 3d more complicated, but also more
interesting. The outcome consists also in this different setup of a series of 3d N = 2 theories
enjoying non-trivial symmetry enhancements and dualities. The latter can in some cases be
explained in terms of known fundamental dualities, such as the Aharony duality.

One may also wonder if one can further relate the findings of this chapter with those of
the previous one. Indeed, we found a 6d origin for some 4d results that can be considered
as an uplift of part of those that we encountered in 3d in Chapter 2. Specifically, we saw
that the E[USp(2N)] theory appearing in the basic E-string tube is the 4d uplift of the
M [SU(N)] theory. Moreover, we gave a 6d origin in terms of sphere compactifications with
fluxes related by an element of the E8 Weyl group of the confining duality for the USp(2N)
gauge theory with one antisymmetric and six fundamental chirals, which can be reduced to
the 3d confining duality for the U(N) gauge theory with one adjoint and one fundamental
chiral that we studied in detail in the previous chapter. It is then natural to ask whether the
other dualities we discussed in Chapter 2 admit a 4d uplift and if this can be equivalently
derived from the compactification of some 6d SCFT. The 4d version of the recombination
and of the rank stabilization duality will be discussed in [92], but it is not clear yet if these
can be understood from a six-dimensional point of view.

Finally, there are various interesting questions concerning the E[USp(2N)] theory. The
first one is if it can be understood as a domain wall interpolating between 5d N = 1 theories.
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It is known that the T [SU(N)] theory is the S-duality domain wall for the 4d N = 4 SU(N)
SYM theory [12] and, since E[USp(2N)] is a 4d ancestor of T [SU(N)], it is natural to expect
that also E[USp(2N)] can be understood as a domain wall. In fact, this interpretation will
be strengthened even more in [158], where it will be shown that E[USp(2N)] enjoys many
properties that are characteristic of the S element of SL(2,Z). We can already give one
example of this: the braid duality we saw in Subsection 3.3.5 admits a 3d limit to the duality
relating the gluing of two T [SU(N)] tails with a CS level −1 to a single T [SU(N)] with some
background CS for its non-abelian global symmetries, which is known to correspond to the
relation (ST )3 = −1 of the SL(2,Z) generators where S is identified with T [SU(N)] and T

with the introduction of a CS level [12, 159]. Moreover, the E-string perspective suggests us
that the basic tube model, that we recall is composed of the E[USp(2N)] plus two octets of
chirals, is a domain wall interpolating between two copies of the 5d USp(2N) gauge theory
with one antisymmetric and eight fundamental hypermultiplets. This is actually how the
tube model was conjectured for the rank N = 1 case in [116].

Finally, we would like to remark that the mirror-like duality of E[USp(2N)] is very
peculiar. Indeed, it represents the first example of a 4d duality that reduces in the 3d limit
to an instance of mirror symmetry, specifically the mirror self-duality of T [SU(N)], while no
other 3d mirror duality had a known 4d origin before. The topic of the next chapter will be
based on this observation and we will find an infinite class of four-dimensional theories that
enjoy similar mirror-like dualities.





Chapter 4

Mirror dualities in 4d

In this chapter we will introduce a class of 4d N = 1 quiver gauge theories that we call
Eσ

ρ [USp(2N)] theories and which are related in pairs by a novel type of IR duality. In order
to derive these, we will go back to a bottom-up approach, which is thus more similar in spirit
to the one of Chapter 2. Indeed, these new four-dimensional dualities are an uplift of the
three-dimensional mirror symmetry [13]. The content of this paper is mostly taken from
[145].

4.1 The general idea

The starting point of this chapter is the observation that the self-duality of the E[USp(2N)]
theory that we defined "mirror-like" in Section 3.3 represents a genuinely new type of IR
duality in four dimensions under several aspects. The name "mirror-like" is due to the fact
that it shares many features with the 3d self-duality of T [SU(N)] under mirror symmetry.
We also saw that one can explicitly derive the 3d duality from the 4d one by considering a
flow across dimensions and suitable mass deformations. The peculiarity of this duality is
that it exchanges the two USp(2N) symmetries of E[USp(2N)], in the same way as mirror
symmetry exchanges the two SU(N) symmetries of T [SU(N)]. Both in the 4d and in the 3d

case, the duality is intertwined with a symmetry enhancement that the theories enjoy: for
E[USp(2N)] one USp(2N) symmetry is enhanced from the SU(2) symmetries of the saw,
while for T [SU(N)] the SU(N) symmetry of the Coulomb branch is enhanced from the U(1)
topological symmetries. For this reason, it is useful to think of the saw of E[USp(2N)] as
implementing a symmetry which is the analogue of the topological symmetry in 3d.

Another crucial observation related to this is that the mirror self-duality of E[USp(2N)]
is the first case of a 4d IR duality that can be reduced to an instance of mirror symmetry
in 3d1. As we mentioned in several occasions, it is possible to reduce a 4d duality to a 3d

duality and this strategy has been intensively used both to connect known 3d dualities to
1A derivation of a 3d mirror duality from 6d has been discussed in [159].
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4d dualities and to discover new ones [5, 6, 160–163, 41, 164, 37, 165, 166]. Nevertheless,
this has been possible only for the so called Seiberg-like dualities in three-dimensions, whose
structure is identical to the four-dimensional Seiberg duality and its variants. In particular,
these dualities don’t exchange Higgs and Coulomb branch, which is instead the distinctive
feature of mirror symmetry. In contrast, no 4d ancestor of a mirror duality was known before
the E[USp(2N)] theory was introduced. This naturally leads us to ask the following question:

Is it possible to uplift all the mirror dualities, or at least those between
Lagrangian theories, to four dimensions?

In this chapter we will try to partially answer this questions by finding the 4d version
of a particular class of mirror dualities in 3d. Specifically, we will consider the set of 3d

N = 4 linear quiver gauge theories with unitary gauge nodes schematically represented in
Figure 4.1. As we did in the Introduction when we reviewed the T [SU(N)] theory, we will
use an N = 2 notation to describe these theories, in which a N = 4 vector multiplet is
described by a N = 2 vector multiplet and an adjoint chiral represented with an arc in
the quiver, while a N = 4 hypermultiplet is decomposed into a pair of chirals in complex
conjugate representation represented by double lines in the quiver. This choice is due to the
fact that, as we already saw for E[USp(2N)], the 4d uplift of these theories will only have
N = 1 supersymmetry. Recall indeed that N = 4 in 3d is recovered only after the real mass
deformation that relates M [SU(N)] and T [SU(N)].

This class of theories is usually denoted by T σ
ρ [SU(N)] [12] since all the data of the theory

can be encoded in two partitions of N that we denote by σ and ρ and which we write as

ρ =
[
N lN , . . . , 1l1

]
, σ =

[
NkN , . . . , 1k1

]
, (4.1)

where some of the ln, km integers can be zero and must satisfy the conditions

N∑
n=1

n× ln =
N∑

m=1
m× km = N ,

L = l1 + · · ·+ lN , K = k1 + · · ·+ kN . (4.2)

Since the theory has N = 4 supersymmetry, all we need to specify the theory are the ranks for
the gauge nodes Ni and for the flavor nodes Mi, which can be extracted from the partitions
according to

ML−i = ki ,

NL−i =
L∑

j=i+1
ρj −

N∑
j=i+1

(j − i)kj . (4.3)
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… N L−1N1 N 2

M L−1M 2M 1

Figure 4.1: The quiver description of the T σ
ρ [SU(N)] theory. The ranks of the gauge and

flavor nodes are determined in terms of the partitions σ and ρ as in eq. (4.3). As usual our
notation is that for the 3d quivers all the nodes correspond to unitary groups, in contrast to
the 4d quivers which have symplectic groups.

The T [SU(N)] theory corresponds to the particular case in which both partitions are trivial
σ = ρ = [1N ].

The T σ
ρ [SU(N)] theories are related in pairs by mirror symmetry which exchanges the

two partitions, namely T σ
ρ [SU(N)] is mirror dual to T ρ

σ [SU(N)]. This comes about with a
necessary enhancement of the topological symmetry that acts on the CB, similarly to what
happens for T [SU(N)]. Indeed, the full global symmetry of T σ

ρ [SU(N)] is

S

(
N∏

i=1
U(ki)

)
× S

(
N∏

i=1
U(li)

)
, (4.4)

where the integers ln, km are the same appearing in the partitions (4.1). The factor
S(∏N

i=1 U(ki)) corresponds to the flavor symmetry acting on the HB and it is manifest
in the Lagrangian description. The factor S(∏N

i=1 U(li)) is instead enhanced from the topo-
logical symmetries. This pattern of symmetry enhancement is compatible with the action of
mirror symmetry which exchanges HB and CB as well as the two partitions.

It is also important to mention that the T σ
ρ [SU(N)] theory can be realized on a brane

set-up [14, 12] with N D3-branes suspended between K D5-branes and L NS5-branes,
where K and L are the lengths of the partitions σ and ρ respectively. The integers σi in
σ = [σ1, · · · , σK ] are the net number of D3-branes ending on the D5-branes going from the
interior to the exterior of the configuration, while the integers ρi in ρ = [ρ1, · · · , ρL] are the
net number of D3-branes ending on the NS5-branes again going from the interior to the
exterior.

Our main goal will be to find a 4d analogue of the T σ
ρ [SU(N)] theories and their associated

mirror dualities. For this purpose, it will turn out to be useful the fact that the T σ
ρ [SU(N)]

theory can be reached from the T [SU(N)] theory by giving nilpotent VEVs to the Higgs and
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the Coulomb branch moment maps H and C labelled by σ and ρ respectively. These VEVs
initiate sequential Higgs mechanisms which are quite intricate to follow2. Indeed one typically
relies on the brane realization of the theory. Here we propose an alternative procedure to
systematically derive T σ

ρ [SU(N)] theories from T [SU(N)] which is based on field theory
methods only. This is going to be crucial for us, since a brane set-up for E[USp(2N)] is
not known at the moment, so we will need to apply the same field theory procedure in 4d

to construct a new family of 4d theories, which we name Eσ
ρ [USp(2N)] theories, enjoying

mirror-like dualities.
Our approach relies on the duality web of T [SU(N)] that we reviewed in the Introduction,

see Figure 1.2. In order to study the nilpotent VEV of T [SU(N)], we first notice that it can
be implemented by adding singlets flipping some components of its moment maps and by
turning them on linearly in the superpotential. The F-term equations of the singlets then fix
the VEV of these components of the moment maps to a non-vanishing value. Remember
also that FFT [SU(N)] is defined as T [SU(N)] with the addition of two matrices of singlets
OH and OC in the adjoint representations of the two SU(N) global symmetries that flip the
moment map operators. Hence, the IR theory obtained turning on a VEV in T [SU(N)] is
equivalently reached by deforming FFT [SU(N)] by a linear superpotential in some of the
components of OH and OC and by removing those that become free after the deformation.
That is, we claim that by deforming FFT [SU(N)] by

δWF F = TrX [(Jσ + Sσ)OH] + TrY [(Jρ + Tρ)OC ] , (4.5)

where Jσ and Jρ are block diagonal Jordan matrices encoding the VEV, while Sσ and Tρ are
matrices of gauge singlets (both of these will be described in more details later), we flow to
T σ

ρ [SU(N)] as shown in the bottom left corner of Figure 4.2.
Instead of following the effects of this deformation, which is in general quite difficult

especially in case of VEVs for the monopole operators, we can use the flip-flip duality, under
which we recall that the moment maps H and C are mapped to the singlets OH and OC as we
saw in (1.16). In this way, the deformation we are considering is turned into a deformation
of T [SU(N)] linear in the entries of the moment maps, that is, in this frame rather than
turning on VEVs, we turn on mass and monopole deformations

δW = TrX [(Jσ + Sσ)H] + TrY [(Jρ + Tρ) C] . (4.6)

This deformation triggers a flow to theory T , in the upper left corner of Figure 4.2, which is
flip-flip dual to T σ

ρ [SU(N)]. We will show that moving along the vertical edge of the web
from T to T σ

ρ [SU(N)] by means of the flip-flip duality is equivalent to iteratively applying a
combination of the Aharony and the one-monopole duality that we saw in Subsection 2.3.3.

2In [167] the VEVs were implemented at the level of the Hilbert series by means of a residue procedure.
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T [SU(N)] T [SU(N)]∨

FFT [SU(N)] FFT [SU(N)]∨

T T ∨

T σ
ρ [SU(N)] T ρ

σ [SU(N)]

δW δW∨

δWFF δW∨
FF

Mirror

Mirror

Flip-Flip Flip-Flip

Figure 4.2: Deformed duality web for T [SU(N)]. In blue we highlighted the path that we
will use to reach the T σ

ρ [SU(N)] theory, while in red we have the one for its mirror dual
T ρ

σ [SU(N)].

This procedure is similar to the derivation of the flip-flip duality of the original T [SU(N)]
theory by iterating the Aharony duality which we already mentioned. Flowing from T [SU(N)]
to T and then moving to the dual T σ

ρ [SU(N)] allows us to bypass the study of the sequential
Higgs mechanism initiated by the VEVs, which, in the case of monopole VEV, is particularly
complicated. This path to reach the T σ

ρ [SU(N)] theory is highlighted in blue in Figure 4.2.

We can then apply the same procedure to the mirror dual frame. The T ρ
σ [SU(N)] theory

can be obtained by deforming FFT [SU(N)]∨ by a linear superpotential

δW∨
F F = TrY

[
(Jρ + Tρ)O∨

H
]

+ TrX

[
(Jσ + Sσ)O∨

C
]

, (4.7)

as shown in the bottom right corner of Figure 4.2, which corresponds, in the flip-flip dual
frame, to a deformation of T [SU(N)]∨ by

δW∨ = TrY

[
(Jρ + Tρ)H∨]+ TrX

[
(Jσ + Sσ) C∨] . (4.8)
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E[USp(2N)] E[USp(2N)]∨

FFE[USp(2N)] FFE[USp(2N)]∨

T T∨

Eσ
ρ [USp(2N)] Eρ

σ[USp(2N)]

δW δW∨

δWFF δW∨
FF

Mirror

Mirror

Flip-Flip Flip-Flip

Figure 4.3: Deformed duality web for E[USp(2N)]. In blue we highlighted the path that we
will use to reach the Eσ

ρ [USp(2N)] theory, while in red we have the one for its mirror dual
Eρ

σ[USp(2N)].

This deformation triggers a flow to the theory T ∨, in the upper right corner of Figure
4.2, which is flip-flip dual to T ρ

σ [SU(N)]. Again, we will go from T ∨ to T ρ
σ [SU(N)] by

iteratively applying the Aharony duality and the one-monopole duality. This path to reach
the T ρ

σ [SU(N)] theory is highlighted in red in Figure 4.2.

In analogy with the 3d case, we would like now to consider deformations of the E[USp(2N)]
theory triggered by VEVs of the operators H and C, since these descend to the moment maps
H and C of T [SU(N)]. This will lead us to a new class of theories that we call Eσ

ρ [USp(2N)]
and that are related in pairs by mirror-like dualities. Studying the Higgsing initiated by
such VEVs is however quite tricky and in the 4d case we don’t have a brane realization for
E[USp(2N)]. Hence, the field theory procedure we just described in 3d will be very useful
for this purpose. This can indeed be exported to 4d since we recall that also E[USp(2N)]
enjoys a duality web which is very similar to the one of T [SU(N)] and which we summarized
in Figure 3.7. The VEVs we are interested in, when mapped in the various duality frames,
lead to the deformed duality web represented in Figure 4.3, which we will use to obtain the
Eσ

ρ [USp(2N)] theories and their mirror dualities.
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…

…

2NL−12N2

2M L−12M2

2 22 2

2N1

2M1

Figure 4.4: The quiver description of the Eσ
ρ [USp(2N)] theory. The drawing is schematic, as

we are note specifying the singlets and the superpotential of the theory. The ranks of the
gauge and flavor nodes are determined in terms of the partitions σ and ρ as in eq. (4.3). As
usual our notation is that for the 3d quivers all the nodes correspond to unitary groups, in
contrast to the 4d quivers which have symplectic groups.

More precisely, we name Eσ
ρ [USp(2N)] the theories obtained turning on VEVs for C and

H labelled by partitions ρ and σ of N . They are the quiver theories with USp(2n) gauge
and flavor nodes depicted in Figure 4.4, where the ranks Ni and Mi are related to the data
of the partitions σ and ρ as in (4.3). There are also additional singlet fields and various
superpotential terms that should be included in the definition of the theory, on which we
will give more details later. Because of the VEV, the two USp(2N) global symmetries of
E[USp(2N)] are broken to subgroups, according to the particular partitions chosen. Moreover,
as a consequence of the duality web we have that Eσ

ρ [USp(2N)] is dual to Eρ
σ[USp(2N)].

This duality is a 4d version of the mirror duality between T σ
ρ [SU(N)] and T ρ

σ [SU(N)]. It
implies that the SU(2) symmetries of the saw of Eσ

ρ [USp(2N)] can be collected into groups
that are enhanced at low energies to ∏N

i=1 USp(2li), so the total full IR global symmetry is

N∏
i=1

USp(2ki)×
N∏

i=1
USp(2li)× U(1)2 , (4.9)



186 Mirror dualities in 4d

where the first non-abelian factor is the manifest flavor symmetry, while the abelian symmetries
are the same U(1)t and U(1)c that we had in E[USp(2N)]. Once again, we stress the similarity
between this enhancement and the enhancement of the topological symmetry in 3d. In fact,
the SU(2) symmetries of the saw in 4d and the topological symmetries in 3d are related to
each other by the flow from Eρ

σ[USp(2N)] to T σ
ρ [SU(N)], which works exactly in the same

way as the flow from E[USp(2N)] to T [SU(N)] that we saw in Subsections 2.4.1 and 3.3.3.

We will start by giving more details on how to recover the T σ
ρ [SU(N)] theories and

their mirror dualities by exploiting the duality web of T [SU(N)]. After having discussed
our strategy, we will explicitly work out some concrete examples, one corresponding to the
partitions σ = [1N ] and ρ = [N − 1, 1] and the other to the partitions σ = [14] and ρ = [2, 12].
Once again we will perform all the necessary manipulations at the level of the S3

b partition
function. The case σ = [1N ] and ρ = [N − 1, 1], in particular, leads to the so-called abelian
mirror symmetry, which relates SQED with N flavors to a linear quiver with N − 1 U(1)
gauge nodes and one extra flavor at each of the two ends. It is known that this duality can
be derived by iterating the fundamental case of N = 1, which says that U(1) with one flavor
is dual to a free hyper, by means of a piecewise procedure that was first discussed in [168].

We will then move to the four-dimensional set-up and apply the same strategy to arrive
at the Eσ

ρ [USp(2N)] theories and their mirror dualities. Again we will discuss the general
strategy and then some explicit case. Specifically, we will consider the cases σ = [1N ] and
ρ = [N ], σ = [1N ] and ρ = [N − 1, 1], σ = [14] and ρ = [22], σ = [14] and ρ = [2, 12] and
finally σ = ρ = [23, 1]. In 4d we will perform all the necessary manipulations at the level
of the S3 × S1 partition function. In particular, the case σ = [1N ] and ρ = [N − 1, 1] will
provide a 4d uplift of the abelian mirror symmetry that we just mentioned. Interestingly, we
are able to derive this duality by iterating piecewise the one for N = 1 also in this 4d set-up,
similarly to what happens in 3d. This derivation is given in Appendix C.3.

4.2 3d mirror symmetry and T σ
ρ [SU(N)] theories using the web

4.2.1 The strategy

T σ
ρ [SU(N)] can be obtained as a deformation of T [SU(N)] corresponding to giving nilpotent

VEVs labelled by partitions σ and ρ of N to the moment maps:

⟨H⟩ = Jσ , ⟨C⟩ = Jρ , (4.10)
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where Jρ and Jσ are N ×N block diagonal matrices with each block being a Jordan matrix
that can be uniquely determined after specifying the partitions σ and ρ

Jρ =
L⊕

i=1
Jρi =


Jρ1 0ρ1×ρ2 · · · 0ρ1×ρL

0ρ2×ρ1 Jρ2 · · · 0ρ2×ρL

. . .
0ρL×ρ1 0ρL×ρ2 · · · JρL

 , Jρi =


0 1 . . . . . . 0
0 0 1 . . . 0
...

...
...

0 0 . . . 0 0


︸ ︷︷ ︸

ρi

.(4.11)

These VEVs trigger a sequential Higgsing. The Higgsing procedure is in general very difficult
to study, in particular when the VEV is for the monopole operators contained in C.

As we explained in the previous section, we will follow an alternative procedure based
on the duality web of T [SU(N)] of Figure 1.2. First of all we observe that the VEV can
be implemented by adding two sets of N2 − 1 flipping fields OH and OC that couple to the
meson and monopole matrices, which is the same as considering FF [TSU(N)], and turning
on linearly in the superpotential some of their entries, depending on the partitions σ and
ρ. Some of the components of OH and OC remain massless and correspond to a decoupled
free sector of the low energy theory. Hence, we remove them by adding some additional
singlets Sσ and Tρ that flip them [153, 154, 49]. In order to do so, Sσ and Tρ have to be
N ×N traceless matrices whose transposes commute with the Jordan matrices Jσ and Jρ

respectively.
For a generic nilpotent VEV, the deformation taking FF [TSU(N)] to T σ

ρ [SU(N)] is

δWF F = TrX [(Jσ + Sσ)OH] + TrY [(Jρ + Tρ)OC ] . (4.12)

Using the operator map (1.16) we can then translate the deformation of FF [TSU(N)] into a
deformation of T [SU(N)] which is linear in some of the components of H and C

δW = TrX [(Jσ + Sσ)H] + TrY [(Jρ + Tρ) C] . (4.13)

This is a mass and linear monopole deformation of T [SU(N)] that leads to an IR theory
that we denoted with T in Figure 4.2. This deformation is easier to study than the VEV of
T [SU(N)], but the price we have to pay is that we end up not directly with T σ

ρ [SU(N)] but
its flip-flip dual T .

We propose that to implement the flip-flip duality moving from T to T σ
ρ [SU(N)] we can

generalize the strategy to move from T [SU(N)] to FFT [SU(N)], where one has to apply
iteratively the Aharony duality3. Here since some of the nodes will have a linear monopole

3We actually saw this derivation for the flip-flip duality of E[USp(2N)] by iteration of the Intriligator–
Pouliot duality in Subsection 3.3.2 and in Appendix C.1, but the derivation in 3d works exactly in the same
way. See [145, 82] for more details.



188 Mirror dualities in 4d

superpotential we will use a combination of the Aharony duality and the one-monopole
duality, depending on whether a monopole is turned on in the superpotential at the node we
are considering.

For simplicity we will now restrict to the case where one of the two partitions is trivial.
We first consider the case where σ = [1N ], which corresponds to turning on a nilpotent VEV
labelled by a partition ρ for the CB moment map C leading to Tρ[SU(N)]. In the flip-flip
dual frame, this deformation corresponds to the following deformation of T [SU(N)]:

δW = TrX

[(
J[1N ] + S[1N ]

)
H
]

+ TrY [(Jρ + Tρ) C] . (4.14)

Here J[1N ] is the null matrix, while S[1N ] and Tρ are matrices of gauge singlets whose
transposes commute with J[1N ] and Jρ respectively, so in particular S[1N ] is an arbitrary
N ×N traceless matrix which is completely flipping the HB moment map H.

This deformation leads to theory T whose global symmetry will be the product of SU(N)X

and of the subgroup of SU(N)Y preserved by the VEV, which can be at most broken to
S(U(1)L) when all the entries ρi of the partition are different. Instead, when some of the
entries coincide the corresponding U(1) factors combine and are enhanced in the infrared4.
More precisely, for a generic partition of the form ρ = [N lN , · · · , 1l1 ] the IR CB global
symmetry will be broken to5

SU(N)Y → S

(
N∏

i=1
U(li)

)
, (4.15)

which is precisely the CB symmetry of Tρ[SU(N)]. Correspondingly at the level of partition
functions we will introduce the following fugacities:

Yi, with i = 1, · · · , N → Y
(1)

i1
, Y

(2)
i2

, · · · with is = 1, · · · , ls (4.16)

and similarly, when also σ is non-trivial, we introduce

Xj , with j = 1, · · · , N → X
(1)
j1

, X
(2)
j2

, · · · with jr = 1, · · · , kr . (4.17)

We can then reach Tρ[SU(N)] implementing the flip-flip duality by applying sequentially the
Aharony and the one-monopole duality. Below we illustrate this procedure in the case of a
next-to-maximal VEV corresponding to the partition ρ = [N − 1, 1] and for the partition
ρ = [2, 12].

4This happens because some nodes are balanced, that is the number of flavors attached to it is twice the
rank of the group.

5Notice that when we write the partition as ρ = [N lN , · · · , 1l1 ], some of the li will in general be zero. The
corresponding factor in the CB global symmetry is just an empty group.
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On the mirror dual side, we will have a nilpotent VEV labelled by a partition ρ for the
HB moment map H∨ leading to T ρ[SU(N)]. In the flip-flip dual frame this VEV corresponds
to the following deformation of T [SU(N)]∨:

δW∨ = TrY

[
(Jρ + Tρ)H∨]+ TrX

[(
J[1N ] + S[1N ]

)
C∨
]

. (4.18)

Since this is a purely massive deformation we can find a Lagrangian description for the theory
T ∨ which we flow to by integrating out the massive fields. Specifically, T ∨ is the same quiver
as T [SU(N)]∨ but with less flavors attached to the last U(N − 1) node. The number of
the remaining massless flavors coincides with the length L of the partition ρ and each of
them interacts with a different power of the adjoint chiral Φ(N−1) of the last gauge node.
Because of this superpotential coupling the HB SU(N)Y global symmetry of T [SU(N)]∨ will
be generically broken down to S(U(1)L), but if some of the ρi are equal we can form blocks of
chirals transforming under a larger symmetry group since they interact with the same power
of Φ(N−1). Hence, for a partition of the form ρ = [N lN , · · · , 1l1 ] the resulting interaction is

TrN−1
[
Φ(N−1)

(
TrY q̃(N−1,N)q(N−1,N)

)]
→

L∑
i=1

TrN−1
[
q̃i

(
Φ(N−1)

)ρi
qi

]

=
N∑

m=1
TrN−1

[(
Φ(N−1)

)m
TrY (m) (q̃mqm)

]
,

(4.19)

where we renamed as qm, q̃m the massless chirals at the U(N−1) gauge node in the fundamental
and anti-fundamental representation of each U(lm) factor, with m = 1, · · · , N . In particular,
for the values of m for which lm = 0 we don’t have any chiral field. We also introduced the
notation TrY (i) for the trace over the i-th factor in this global symmetry group.

The full superpotential will be

WT ∨ = WT [SU(N−1)] − TrN−1
(
Φ(N−1) TrN−2 q̃(N−2,N−1)q(N−2,N−1)

)
+

N∑
m=1

TrN−1
[(

Φ(N−1)
)m

TrY (m) (q̃mqm)
]

+ TrY

(
TρH∨)∣∣

eom + TrX

(
S[1N ] C∨

)
(4.20)

and the flavor symmetry will be

S

(
N∏

i=1
U(li)

)
, (4.21)

The subscript eom refers to the fact that after imposing the F-terms equations only some of
the components of H∨ will survive.
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From T ∨ we can reach T ρ[SU(N)] by implementing the flip-flip duality, which in this case
is equivalent to applying the Aharony duality only since we have no monopole superpotential.
Below we illustrate this procedure for the partitions ρ = [N − 1, 1] and ρ = [2, 12].

4.2.2 Some examples

Example I: ρ = [N − 1, 1] and σ = [1N ]

Flow to T[N−1,1][SU(N)]

We define theory T as the theory obtained from T [SU(N)] via the deformation

δW = TrX

[(
J[1N ] + S[1N ]

)
H
]

+ TrY

[(
J[N−1,1] + T[N−1,1]

)
C
]

. (4.22)

The matrix J[1N ] is simply the null matrix and, consequently, S[1N ] is a generic N × N

traceless matrix. Instead by requiring that the transpose of T[N−1,1] commutes with J[N−1,1]

we find its non-vanishing entries

J[N−1,1] + T[N−1,1] =



T1 1 · · · 0 0

T2 T1 1
...

... . . . . . . 1 0
TN−1 T2 T1 T+

T− 0 · · · 0 −(N − 1)T1


. (4.23)

More explicitly, the superpotential deformation is

δW = TrX

(
S[1N ]H

)
+ TrY

(
T[N−1,1]C

)
+ M(1,0,··· ,0) + M(0,1,0··· ,0) + · · ·+ M(0,··· ,1,0) .

(4.24)

The linear monopole deformation at the first N − 2 nodes breaks the topological and the
axial symmetries to a combination, implying the constraint on the fugacities

Yi − Yi−1 = 2mA for i = 2, · · ·N − 1 , (4.25)

which can be solved by

Yi = Y1 + 2(i− 1)mA, i = 1, · · ·N − 1 . (4.26)

From this we can easily determine the charges of the singlets Ti and T ±. Before imposing
the constraint on the fugacities the charges of the entry (i, j) of the moment map matrix
C under the Cartan ∏N−1

i=1 U(1)Yi ⊂ SU(N)Y and under U(1)mA can be read off from the
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coefficients of Yi and mA in the combination

Yj − Yi − 2mA . (4.27)

Imposing the constraint (4.26) on this combination we can extract the charges under the
residual symmetry SU(N)X × U(1)Y × U(1)mA , where U(1)Y is a combination of U(1)Y1 ,
U(1)YN

and U(1)mA

U(1)Y SU(N)X U(1)mA U(1)R

Ti 0 1 2i 2ri
T− −1 1 N Nr
T+ 1 1 N Nr
S[1N ] 0 N2 − 1 −2 2− 2r

From theory T we want to move along the vertical edge of the web and reach T[N−1,1][SU(N)].
This is achieved by applying iteratively either the Aharony or the one-monopole duality,
depending on whether the node we are considering has a linear monopole superpotential or
not. In this case, we apply N − 2 times the one-monopole duality starting from the first
node until we reach the U(N − 2) node. Since this duality is always applied to a U(n) gauge
node with n + 1 flavors, which corresponds to the case dual to a WZ model, its effect is
to sequentially confine the nodes of the quiver. This phenomenon is known as sequential
confinement [49, 169, 20].

In particular the effect of the linear monopole deformation in (4.24), but without the first
two terms involving the singlets Ti, T± and S[1N ], was analyzed in great detail in [20]. There
it was shown that after confining the first N − 2 nodes one reaches a U(N − 1) theory with
N flavors and superpotential

W = −
N−1∑
k=1

(−1)k

k
γk Tr[Qk] , (4.28)

where the singlets γk flip the traces of powers of the meson matrix Q and have R-charge
R[γk] = 2(1−kr). The chiral ring of this theory in addition to the γk contains the fundamental
U(N − 1) monopoles with R[M±] = 2 − Nr and the traceless meson matrix Q − Tr Q

N of
R-charge 2r.

To complete our flip-flip prescription we need to apply the Aharony duality to the
remaining U(N − 1) node. We arrive at a U(1) theory with N flavors and three sets of
singlets: σ± with R-charge 2 − Nr flipping the fundamental U(1) monopoles, Fij with
R-charge 2r flipping the meson matrix (with trace) and singlets θk with k = 1, · · ·N − 1,
with R-charge 2− 2rk flipping the traces of powers of the matrix Fij .

When we consider the full deformation in (4.24), including singlets Ti, T ± and S[1N ], the
singlets σ±, θk and the traceless part of Fij becomes massive. The trace part of Fij , which
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we call Φ = Tr(F ), instead reconstructs the N = 4 superpotential

WT[N−1,1][SU(N)] = Φ
N∑

i=1
P̃ iPi , (4.29)

so we arrive at theory T[N−1,1][SU(N)] which is N = 4 SQED with N flavors.

Flow to T [N−1,1][SU(N)]

Theory T ∨, the mirror dual of T , is obtained by the following deformation of T [SU(N)]∨:

δW∨ = TrY

[(
J[N−1,1] + T[N−1,1]

)
H∨
]

+ TrX

[(
J[1N ] + S[1N ]

)
C∨
]

. (4.30)

We can integrate out the massive fields to get a quiver theory with increasing ranks of the
gauge groups as in T [SU(N)], but with only two flavors at the end of the tail which interact
differently with the adjoint chiral of the U(N − 1) gauge node, plus some residual flipping
fields originally coming from S[1N ] and T[N−1,1]

WT ∨ = WT [SU(N−1)]∨ − TrN−1
(
Φ(N−1) TrN−2 q̃(N−2,N−1)q(N−2,N−1)

)
+ TrN−1

[
q̃1Φ(N−1)q1 + q̃2

(
Φ(N−1)

)N−1
q2 + T− q̃1q2 + T+q̃2q1+

+
N−1∑
i=1
Ti q̃2

(
Φ(N−1)

)i−1
q2

]
+ TrX

[
S[1N ] CT ∨

]
, (4.31)

where CT ∨ is the CB moment map of theory T ∨, which is constructed as in T [SU(N)].
To reach T [N−1,1][SU(N)] we now have to implement the flip-flip duality which amounts

to applying the Aharony duality sequentially. This derivation is carried out explicitly at the
level of the sphere partition function in the N = 3 case in Appendix B.3, while here we only
discuss its main steps which are sketched in Figure 4.5:

• At the first iteration we start from the U(1) gauge node and proceed applying the
Aharony duality along the tail. Since the first N − 2 nodes are U(n) nodes with 2n

flavors, the gauge group doesn’t change when we apply the duality and because of the
charge assignments no new links between the nodes are created. The last U(N − 1)
node however sees N flavors, so when we apply Aharony duality it becomes a U(1)
gauge node. A new link is created connecting one of the two flavor nodes (the blue one
in the picture) to the second last gauge node.

• At the second iteration we start again from the leftmost U(1) gauge node and go along
the whole tail, but this time we stop at the second last node. Because of the result
of the previous iteration, this is now a U(N − 2) gauge node with N − 1 flavors, so
when we apply Aharony duality it becomes a U(1) node. Now the blue flavor node gets
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Figure 4.5: Quiver representation of the iterative application of the Aharony duality in the
case N = 4. We highlighted in green the gauge node to which we apply the duality at each
step. We only sketch the main steps and neglect gauge singlets; taking into account the S[1N ]
and T[N−1,1] singlets from the beginning, all the remaining ones are only those corresponding
to adjoint chirals for U(1) gauge nodes.

attached to the U(N − 2) gauge node, while the link with the rightmost U(1) gauge
node is removed.

• We iterate this procedure N − 1 times, meaning that we apply the Aharony duality
N(N − 1)/2 times and we arrive to the abelian U(1)N−1 linear quiver with exactly
N = 4 superpotential.

• There are no extra singlets, since they became massive because of S[1N ] and T[N−1,1].

The final results is a linear quiver with N−1 U(1) gauge nodes, connected by bifundamental
flavors p(i−1,i), p̃(i−1,i). The first and last nodes are also connected to fundamental flavors
p(0,1), p̃(0,1) and p(N−1,N), p̃(N−1,N). The superpotential consists of the standard N = 4
interaction with the adjoint chiral fields

WT [N−1,1][SU(N)] =
N−1∑
i=1

Φ(i)
(
p̃(i,i+1)p(i,i+1) + p̃(i−1,i)p(i−1,i)

)
. (4.32)

This theory is indeed dual to the N = 4 SQED with N flavors according to abelian mirror
symmetry and it corresponds to T [N−1,1][SU(N)].
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Example II: ρ = [2, 12] and σ = [14]

Flow to T[2,12][SU(4)]

We start analyzing the VEV for the CB moment map as a monopole deformation in the
flip-flip dual theory plus flipping fields

δW = TrX

[(
J[14] + S[14]

)
H
]

+ TrY

[(
J[2,12] + T[2,12]

)
C
]

. (4.33)

In this case the Jordan matrix encoding the nilpotent deformation is

J[2,12] =


0 1 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 (4.34)

and consequently the matrix of singlets that we need to add is

T[2,12] =


α2 0 0 0
α1 α2 γ̃1 γ̃2

γ1 0 β33 β34

γ2 0 β43 −2α2 − β33

 , (4.35)

while S[14] is an arbitrary 4× 4 traceless matrix. Hence, the deformation δW corresponds
to turning on linearly the positive fundamental monopole of the first U(1) gauge node of
T [SU(4)]

WT =WT [SU(4)] + M(1,0,0) + TrX

(
S[14]H

)
+ TrY

(
T[2,12] C

)
. (4.36)

This monopole deformation breaks the SU(4)Y global symmetry down to U(1)Y (1)×SU(2)Y (2) .

In terms of the real masses Yi, the superpotential term we added implies the constraint

Y2 = Y1 + 2mA . (4.37)

Moreover, it will be useful to also redefine the Y1 real mass by

Y1 → Y1 −mA . (4.38)
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The residual symmetry is then parametrized by

Y (1) = Y1

Y
(2)

1 = Y3 + Y1

Y
(2)

2 = Y4 + Y1 , (4.39)

The charges and representations of the chiral fields of the theory are the same as those of
T [SU(4)] since the deformation only affected the monopole operators. The gauge singlets in
T[2,12] transform under the global symmetries as follows:6

SU(4)X U(1)Y1 SU(2)Y3,Y4 U(1)mA U(1)R0

α1 1 0 1 4 0
α2 1 0 1 2 0
β 1 0 3 2 0

γ, γ̃ 1 ±1 2 3 0
S[14] 15 0 1 −2 2

where U(1)Y1 and SU(2)Y3,Y4 denote the symmetries after imposing the superpotential
constraint (4.37)–(4.38), but before the redefinition (4.39). This will be performed at the
very end of the derivation of the flip-flip dual of theory T , coinciding with T[2,12][SU(4)].

We can study the deformation at the level of the S3
b partition function of the theory

T , which can be obtained imposing (4.37) and (4.38) on ZT [SU(4)] (recall that the partition
function of T [SU(N)] was defined in (1.10))

ZT = B
∫

dz⃗
(3)
3 e2πi(Y3−Y4)

∑3
k=1 z

(3)
k

3∏
k,l=1

sb

(
−i

Q

2 + (z(3)
k − z

(3)
l ) + 2mA

)

×
3∏

k=1

4∏
i=1

sb

(
i
Q

2 ± (z(3)
k −Xi)−mA

)∫
dz⃗

(2)
2 e2πi(Y1−Y3+mA)

∑2
a=1 z

(2)
a

×
2∏

a,b=1
sb

(
−i

Q

2 + (z(2)
a − z

(2)
b ) + 2mA

) 2∏
a=1

3∏
k=1

sb

(
i
Q

2 ± (z(2)
a − z

(3)
k )−mA

)

×
∫

dz
(1)
1 e−4πimAz(1)

sb

(
−i

Q

2 + 2mA

) 2∏
a=1

sb

(
i
Q

2 ± (z(1) − z(2)
a )−mA

)
, (4.40)

6With β we collectively denote the singlets β33, β34, β43 that form a triplet of the SU(2). Similarly γ, γ̃
are made of the singlets γ1, γ2, γ̃1, γ̃2 and transform as two doublets under the SU(2).
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[2 ,12 ][ SU (4)]

Figure 4.6: Quiver representation of the sequential application of the Aharony and the
one-monopole duality that leads to T[2,12][SU(4)] starting from its flip-flip dual T .

where B is the contribution of the singlets

B =
4∏

i,j=1
sb

(
−i

Q

2 + (Xi −Xj) + 2mA

)
sb

(
i
Q

2 − 2mA

)
sb

(
i
Q

2 − 4mA

)

×
4∏

α,β=3
sb

(
i
Q

2 + (Yα − Yβ)− 2mA

) 4∏
α=3

sb

(
i
Q

2 ± (Y1 − Yα)− 3mA

)
. (4.41)

As mentioned in our previous general discussion, from T we can reach the flip-flip dual
theory T[2,12][SU(4)] by sequentially applying the Aharony and the one-monopole duality.
We show this explicitly for this particular case at the level of the sphere partition function in
Appendix B.4, while here we only outline the main steps of the derivation sketched in Figure
4.6.

We begin by applying the one-monopole duality to the U(1) gauge node in (4.40). This
node confines yielding a quiver theory with no monopoles turned on

ZT = B sb

(
−i

Q

2 + 2mA

)
sb

(
−i

Q

2 + 4mA

)∫
dz⃗

(3)
3 e2πi(Y3−Y4)

∑3
k=1 z

(3)
k

×
3∏

k,l=1
sb

(
−i

Q

2 + (z(3)
k − z

(3)
l ) + 2mA

) 3∏
k=1

4∏
i=1

sb

(
i
Q

2 ± (z(3)
k −Xi)−mA

)

×
∫

dz⃗
(2)
2 e2πi(Y1−Y3)

∑2
a=1 z

(2)
a

2∏
a=1

3∏
k=1

sb

(
i
Q

2 ± (z(2)
a − z

(3)
k )−mA

)
. (4.42)
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From this frame we proceed by iteratively applying the Aharony duality until we reach the
flip-flip dual frame7

ZT =
∫

dz⃗
(3)
2 e2πi(2Y (1)−Y

(2)
1 )

∑2
k=1 z

(3)
i

2∏
k,l=1

sb

(
i
Q

2 + (z(3)
k − z

(3)
l )−mA

)

×
2∏

k=1

4∏
i=1

sb

(
±(z(3)

k + Xi) + mA

) ∫
dz

(2)
1 e2πi(Y (2)

1 −Y
(2)

2 )z(2)
sb

(
i
Q

2 − 2mA

)

×
2∏

k=1
sb

(
±(z(2) − z

(3)
k ) + mA

)
= ZT[2,12][SU(4)](X⃗; Y⃗ (2), Y (1); mA) . (4.43)

In this last expression we also introduced the proper U(1)Y (1) × SU(2)Y (2) fugacities defined
in (4.39). This is precisely the partition function of T[2,12][SU(4)].

Flow to T [2,12][SU(4)]

We now move to analyzing the deformation in the mirror dual theory. This corresponds to a
VEV for the HB moment map which we can study as a mass deformation of T [SU(4)]∨ plus
flipping fields

δW∨ = TrY

[(
J[2,12] + T[2,12]

)
H∨
]

+ TrX

[(
J[14] + S[14]

)
C∨
]

, (4.44)

where T[2,12] is the matrix (4.35). The mass deformation breaks the SU(4)Y global symmetry
associated to the HB of T [SU(4)]∨ down to U(1)Y (1) × SU(2)Y (2) . We parametrize these
symmetries with the fugacities Y (1), Y

(2)
α defined as in (4.37)–(4.38)–(4.39). After integrating

out the massive fields, we end up with a quiver similar to T [SU(4)]∨, but with only three
flavors at the end of the tail coupling to different powers of the adjoint chiral field of the last
node and extra flipping fields

WT ∨ = WT [SU(3)] − Tr3
(
Φ(3) Tr2 q̃(2,3)q(2,3)

)
+ Tr3

(
Φ(3)q̃1q1

)
+

+ Tr3

[(
Φ(3)

)2
TrY (2) (q̃2q2)

]
+ TrY

(
T[2,12]H∨

)∣∣∣
eom

+ TrX

(
S[14]C∨

)
. (4.45)

7Note that as a consequence of the sequential application of the Aharony and the one-monopole duality,
the fugacities for the topological symmetries are permuted and appear in the opposite order compared
to the definition of the original T [SU(4)] partition function. For this reason, we call the index (4.43) as
ZT[2,12][SU(4)](X⃗; Y⃗ (2), Y (1); mA) instead of ZT[2,12][SU(4)](X⃗; Y (1), Y⃗ (2); mA). Indeed we can’t use the SU(4)Y

Weyl symmetry to reorder the two sets of fugacities Y (1) and Y (2) since this is not a symmetry of T[2,12][SU(4)].
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where TrY (2) is the trace with respect to the SU(2)Y (2) symmetry which is manifest in this
frame of the web and

TrY

(
T[2,12]H∨

)∣∣∣
eom

= α1 Tr3 (q̃1q1) + α2 Tr3 TrY (2) (q̃2q2)

+ TrY (2)

(
βH(2)

)
+ TrY (2) [γ Tr3 (q̃2q1)] + TrY (2) [γ̃ Tr3 (q̃1q2)] ,

(4.46)

where we defined the SU(2)Y (2) moment map

H(2) = Tr3 (q̃2q2)− 1
2 TrY (2) Tr3 (q̃2q2) . (4.47)

The three-sphere partition function of this theory can be obtained from the one of
T [SU(4)]∨ imposing the constraint on the fugacities (4.37) and (4.38), simplifying the
contribution of the massive fields thanks to the relation sb (x) sb (−x) = 1 and adding the
contribution of the singlets T[2,12] and S[1N ]

ZT ∨ = B
∫

dz⃗
(3)
3 e2πi(X3−X4)

∑3
k=1 z

(3)
k

3∏
k,l=1

sb

(
i
Q

2 + (z(3)
k − z

(3)
l )− 2mA

)

×
3∏

k=1
sb

(
±(z(3)

k − Y1) + 2mA

) 4∏
α=3

sb

(
±(z(3)

k − Yα) + mA

) ∫
dz⃗

(2)
2 e2πi(X2−X3)

∑2
a=1 z

(2)
a

×
2∏

a,b=1
sb

(
i
Q

2 + (z(2)
a − z

(2)
b )− 2mA

) 2∏
a=1

3∏
k=1

sb

(
±(z(2)

a − z
(3)
k ) + mA

)

×
∫

dz
(1)
1 e2πi(X1−X2)z(1)

sb

(
i
Q

2 − 2mA

) 2∏
a=1

sb

(
±(z(1) − z(2)

a ) + mA

)
. (4.48)

where B is the contribution of the singlets defined in (4.41).

Again we want to find the flip-flip dual frame of this theory since we know that it will
coincide with T [2,12][SU(4)] and we claim that it can be obtained by sequentially applying
the Aharony duality only, as in this case there is no monopole superpotential. This derivation
is carried out explicitly for this particular case at the level of the sphere partition function
in Appendix B.4, while here we just report the final result, where we introduced the new
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Figure 4.7: Quiver representation of the sequential application of the Aharony duality that
leads to T [2,12][SU(4)] starting from its flip-flip dual T ∨.

fugacities (4.39)8

ZT ∨ = e4πi(X1+X2)Y (1)
∫

dz⃗
(3)
2 e2πi(X1−X2)

∑2
k=1 z

(3)
k

2∏
k,l=1

sb

(
−i

Q

2 + (z(3)
k − z

(3)
l ) + 2mA

)

×
2∏

k=1

2∏
α=1

sb

(
i
Q

2 ± (z(3)
k + Y (2)

α )−mA

)∫
dz⃗

(2)
2 e2πi(X2−X3)

∑2
a=1 z

(2)
a

×
2∏

a,b=1
sb

(
−i

Q

2 + (z(2)
a − z

(2)
b ) + 2mA

) 2∏
a=1

sb

(
i
Q

2 ± (z(2)
a + Y (1))−mA

)

×
2∏

k=1
sb

(
i
Q

2 ± (z(2)
a − z

(3)
k )−mA

)
sb

(
−i

Q

2 + 2mA

)∫
dz

(1)
1 e2πi(X3−X4)z(1)

×
2∏

a=1
sb

(
i
Q

2 ± (z(1) − z(2)
a )−mA

)
= Z

T [2,12][SU(4)](Y
(1), Y⃗ (2); X⃗; i

Q

2 −mA) . (4.49)

This is precisely the partition function of T [2,12][SU(4)], which is the quiver theory
depicted at the end of Figure 4.7 where all the fields interact with the N = 4 superpotential.
The presence of the contact terms in the prefactor is essential in order for the partition
function of T[2,12][SU(4)] in (4.43) to match with the one of T [2,12][SU(4)] in (4.49). Indeed,
from the equality of the partition functions (1.14) of T [SU(4)] and T [SU(4)]∨ and the results
of the manipulations we just explained it follows the equality of the partition functions

8Again, the labelling of the topological parameters Xi is in the opposite order compared to the original
T [SU(4)]∨ partition function. This time, however, the permutations of Xi belong to the Weyl symmetry of
the SU(4)X global symmetry. Thus, the partition function is invariant under such permutations, so we just
call it Z

T [2,12][SU(4)](Y
(1), Y⃗ (2); X⃗; i Q

2 − mA) without specifying a particular order of Xi.
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associated to the mirror symmetry relating T[2,12][SU(4)] and T [2,12][SU(4)]

ZT[2,12][SU(4)](X⃗; Y⃗ (2), Y (1); mA) = Z
T [2,12][SU(4)](Y

(1), Y⃗ (2); X⃗; i
Q

2 −mA) , (4.50)

where the parameter mA is mapped to iQ
2 −mA across the duality, as required by mirror

symmetry (1.12).

4.3 4d mirror dualities and Eσ
ρ [USp(2N)] theories using the

web

4.3.1 The strategy

Now we would like to apply the same strategy and exploit the duality web of E[USp(2N)] to
find a class of 4d N = 1 theories which we call Eσ

ρ [USp(2N)] enjoying mirror-like dualities.
Before starting, we have to make a comment on conventions. For this chapter, we will
define the E[USp(2N)] theory including the βi singlets only for i = 1, · · · , N − 1, that
is compared to the definition we gave in Section 3.3 we remove the singlet βN that flips
the meson constructed with the last diagonal of the saw. This is just for simplicity, since
it allows us to fit E[USp(2N)] inside the class of the Eσ

ρ [USp(2N)] theories as the case
σ = ρ = [1N ] according to the definition that we will give for them. Notice that the singlet
βN is trivially mapped to itself across all the dualities of the E[USp(2N)] duality web (see
eqs. (3.26)-(3.33)-(3.36)), so removing it doesn’t affect in any way our analysis.

The idea is to turn on VEVs labelled by partitions ρ = [ρ1, . . . , ρN ] =
[
N lN , . . . , 1l1

]
and

σ = [σ1, . . . , σN ] =
[
NkN , . . . , 1k1

]
for the operators C and H. Remember that the operators

H and C reduce in the 3d limit followed by suitable real mass deformations to the 3d moment
maps H and C. It is then easy to guess which 4d deformations of E[USp(2N)] reduce in the
3d limit to the nilpotent deformations depending on the partitions ρ and σ of SU(N) we
turned on for T [SU(N)]. These are the deformations we are looking for and they correspond
to the following VEVs:

⟨H⟩ = Jσ , ⟨C⟩ = Jρ , (4.51)

where Jσ and Jρ are the antisymmetric matrices

Jρ = 1
2
(
Jρ − JT

ρ

)
, (4.52)

where

Jρ = iσ2 ⊗ (Jρ1 ⊕ · · · ⊕ JρL) (4.53)
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and Jρi are the Jordan matrices we defined in (4.11)9. We call Eσ
ρ [USp(2N)] the theories

we reach at the end of the flow triggered by such VEVs, after suitably removing some extra
massless fields, as we will discuss.

Again we can think that the VEVs for H and C are implemented by F-term equations
when we turn on linear deformations in OH and in OC in the flip-flip frame. We can then use
the same strategy described in the 3d case, but this time using the 4d duality web of Figure 3.7
and map these deformations across flip-flip duality, so that they become mass deformations
of E[USp(2N)]. Finally we move back to the flip-flip dual frame, using sequentially the
Intriligator–Pouliot duality to reach Eσ

ρ [USp(2N)].

More precisely we consider the following deformation of E[USp(2N)]:

δW = Trx [(Jσ + Sσ) · H] + Try [(Jρ + Tρ) · C] +
∑

{(i,j)̸=(1,1)|1≤i≤σj , 1≤j≤ρi}
Oij

B Bj,N−i+1 .

(4.54)

We have introduced extra gauge singlet chiral multiplets flipping some operators of the
original E[USp(2N)] theory that would represent a massless free sector of the theory after
the deformation. Note that the role of Sσ and Tρ is the same as that of Sσ and Tρ in 3d,
which flip part of the antisymmetric mesonic operators remaining massless in the presence of
the mass terms, but in 4d they are determined requiring that they are traceless antisymmetric
matrices commuting with the matrices Jσ and Jρ respectively. In addition, there are other
gauge singlet fields Oij

B which flip the operators Bij we defined in (3.26)10.

The superpotential (4.54) triggers a flow to a new theory T. Due to this superpotential
term, the USp(2N)x global symmetry of the original E[USp(2N)] theory is now broken to

USp(2N)x −→
N∏

m=1
USp(2km)x(m) . (4.55)

Likewise, the USp(2N)y global symmetry is also broken to

USp(2N)y −→
N∏

n=1
USp(2ln)y(n) . (4.56)

9Notice that the VEVs we are considering are not labelled by partitions of USp(2N), but by partitions
of the SU(N) part of U(1) × SU(N) ⊂ USp(2N). This choice is due to the fact that we want to mimic the
deformations we perform in 3d and find models that reduce to T σ

ρ [SU(N)].
10These extra Oij

B singlets were absent in the 3d case. Indeed, they are charged under U(1)c, which means
that they are massive and integrated out in the limit leading to T [SU(N)].
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Figure 4.8: The quiver diagram representation of the deformed theory T. We have double lines
in the saw only for the gauge nodes at positions ρ1, ρ1 + ρ2, . . . ,

∑N−1
i=1 ρi. The mirror-like

dual theory, which is denoted by T∨, has the same diagram with ρ and σ exchanged.

This IR symmetry will become manifest in the mirror dual Lagrangian. Correspondingly at
the level of supersymmetric indices we will introduce the following fugacities

xi, with i = 1, · · · , N → x
(1)
i1

, x
(2)
i2

, · · · with im = 1, · · · , km

yi, with i = 1, · · · , N → y
(1)
i1

, y
(2)
i2

, · · · with in = 1, · · · , ln . (4.57)

We denote by Trx(m) and Try(n) respectively the traces over USp(2km)x(m) and USp(2ln)y(n)

indices.

Moreover, the mass terms in (4.54) make some of the chiral multiplets of E[USp(2N)]
massive and being integrated out. First, let us look at the chirals in the saw. Due to the
mass terms, only the followings among the original set of D(i) and V (i) remain massless:

D
(i)
1 , i = ρ1, ρ1 + ρ2, . . . , N ,

D
(i)
2 , i = 1, . . . , N ,

V
(i)

1 , i = 1, . . . , N ,

V
(i)

2 , i = ρ1, ρ1 + ρ2, . . . ,
L−1∑
n=1

ρn .

(4.58)

Second, in E[USp(2N)] there are 2N fundamental chirals Q(N−1,N) attached to the last
gauge node. Again due to the mass terms in (4.54), only 2K of them remain massless. We
rename as Qm, Q̃m the massless chirals at the USp(2(N − 1)) gauge node in the fundamental
representation of each USp(2km) factor, with m = 1, · · · , N . In particular, for the values of
m for which km = 0 we don’t have any chiral field. Their interaction with the antisymmetric



4.3 4d mirror dualities and Eσ
ρ [USp(2N)] theories using the web 203

…

…

2NL−12N2

2M L−12M2

2 22 2

2N1

2M1

A(1) A(2) A(L−1)

Q(1 , 2)

D(1 ) D(2)

V (1 ) V (2 ) V (L−1)

F(1) F(2) F(L−1)

Figure 4.9: The Eσ
ρ [USp(2N)] quiver diagram. To avoid cluttering the drawing the gauge

singlet γnj and π(i,j) are not shown in this diagram.

A(N−1) is

TrN−1
[
A(N−1)H

]
−→

N∑
m=1

TrN−1
[(

A(N−1)
)m

Trx(m) QmQm

]
. (4.59)

The quiver diagram of T is drawn in Figure 4.8.

At this point we can go from T to Eσ
ρ [USp(2N)] by iteratively applying Intriligator–

Pouliot dualities to move to the flip-flip dual frame. The quiver diagram representation of the
Eσ

ρ [USp(2N)] theory is shown in Figure 4.9. There are also two sets of gauge singlets: the
chirals γnj which are also singlets under the non-abelian global symmetries and the chirals
π(i,j) that transform non-trivially under the non-abelian symmetries. To avoid cluttering
Figure 4.9 we did not draw the gauge singlets (but we will do so in the examples we will
present). The flavor nodes in the top line and the gauge nodes in the middle line are USp(2n)
groups with ranks determined by the partitions ρ and σ as for T σ

ρ [SU(N)]

ML−i = ki ,

NL−i =
L∑

j=i+1
ρj −

N∑
j=i+1

(j − i)kj .
(4.60)
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The Eσ
ρ [USp(2N)] superpotential is given by

WEσ
ρ [USp(2N)] =

L−1∑
n=1

Trn

[
A(n)

(
Trn+1 Q(n,n+1) − Trn−1 Q(n−1,n) + Trx(n) F (n)F (n)

)]
+

+
L−2∑
n=1

Trn Trn+1
[
V

(n)
[1 Q(n,n+1)D

(n+1)
2]

]
+

+
L−1∑
n=1

Nn−Nn−1∑
j=1

γnj Trn

[(
A(n)

)j−1
D

(n)
[1 D

(n)
2]

]
+

+
L−1∑
i=1

L∑
j=i+1

j−1∏
k=1

Trk

Trx(i)

F (i)

j−2∏
l=i

Q(l,l+1)

V
(j−1)

[1 π
(i,j)
2]

 ,

(4.61)
where we defined N0 = 0. We also recall that the Trn traces are taken over the n-th gauge
node. Notice the interaction terms for the gauge singlets. In particular, the singlets γnj

couple to the n-th diagonal meson dressed by the (j− 1)-th power of the antisymmetric chiral
A(n), with j = 1, · · · , Nn −Nn−1. This means that the maximum power of the dressing is
given by how much the rank of the n-th gauge group jumps when compared to the (n− 1)-th
one. Moreover, we have singlets π(i,j) connecting the i-th USp(2Mi) flavor node to all the
j-th SU(2) nodes of the saw sitting to its right, that is j = i + 1, · · · , L. The π(i,j) singlets
play a key role in the enhancement of the non-abelian global symmetry since they enter
the superpotential by flipping gauge invariant operators which do not respect the enhanced
symmetry.

The IR non-anomalous global symmetry of Eσ
ρ [USp(2N)] is

N∏
m=1

USp(2km)x(m) ×
N∏

n=1
USp(2ln)y(n) × U(1)c × U(1)t . (4.62)

Indeed, one can verify that the constraints coming from the superpotential (4.61) and from
the requirement that the NSVZ beta-functions vanish at each gauge node fix all the R-charges
of the chiral fields up to two parameters, which correspond to the mixing coefficients c

and t with U(1)c and U(1)t. For what concerns the non-abelian part, the global symmetry
USp(2N)x × USp(2N)y of the original E[USp(2N)] theory is broken to

USp(2N)x × USp(2N)y −→
N∏

m=1
USp(2km)x(m) ×

N∏
n=1

USp(2ln)y(n) , (4.63)

where, like the original E[USp(2N)] theory, only USp(2)ln ⊂ USp(2ln)y(n) is manifest in the
quiver gauge theory description.
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Let’s now consider the mirror dual frame where, because of the operator map (3.33), the
deformation superpotential (4.54) becomes

δW∨ = Trx
[
(Jσ + Sσ) · C∨]+ Try

[
(Jρ + Tρ) · H∨]+

∑
{(i,j) ̸=(1,1)|1≤i≤σj , 1≤j≤ρi}

Oij
B B∨

i,N−j+1 .

(4.64)

This deformation triggers a flow from E[USp(2N)]∨ to T∨ which contains gauge singlets
Sσ, Tρ and OB, which are mapped to the same gauge singlets in T.

Next we take the flip-flip duality on T∨. This leads to the mirror dual of Eσ
ρ [USp(2N)],

denoted by Eρ
σ[USp(2N)]. Indeed, Eσ

ρ [USp(2N)] and Eρ
σ[USp(2N)] have the same global

symmetry as well as the same operator spectrum. In the following we will illustrate this
construction in various examples.

4.3.2 Some examples

Example I: ρ = [N ] and σ = [1N ]

Flow to E[N ][USp(2N)]

In this case, the superpotential deformation triggering the flow to theory T is given by

δW = Trx

[
S[1N ] · H

]
+ Try

[
T[N ] · C

]
+

N−1∑
i=1

Tri

[
D

(i)
1 V

(i)
2

]
+

N∑
j=2

O1j
B βN−j+1 , (4.65)

where S[1N ] is an arbitrary 2N × 2N antisymmetric matrix and T[N ] is determined requiring
that it is traceless antisymmetric and that it commutes with J[N ]

T[N ] =


0 −T(2)T · · · −T(N)T

T(2) 0 · · · −T(N−1)T

... . . . . . . ...
T(N) · · · T(2) 0

 , (4.66)

where each T(i) is a 2× 2 matrix with a single non-zero element

T(i) =
(

0 0
t(i) 0

)
. (4.67)

Note that the flavor indices 1, 2 of D
(i)
1 and V

(i)
2 do not belong to the same SU(2); D

(i)
1 is

charged under the i-th SU(2) in the saw while V
(i)

2 is charged under the (i + 1)-th SU(2).
It turns out that this deformation breaks the USp(2N)y symmetry of the original

E[USp(2N)] to SU(2)y. The deformation also makes D
(i)
1 and V

(i)
2 massive for i = 1, . . . , N−1.



206 Mirror dualities in 4d

We obtain theory T by integrating out those massive fields. In theory T each gauge node
except the last one now has only two fundamental chirals while the last gauge node has
2N + 2 fundamental chirals in addition to the bifundamental and antisymmetric chirals which
remain the same.

Now to reach E[N ][USp(2N)] we need to implement the flip-flip duality by sequentially
applying the Intriligator–Pouliot duality on each gauge node starting from the left. The
first gauge node is USp(2) with a total of 6 fundamental chirals, the antisymmetric is a
gauge singlet so we can apply directly the Intriligator–Pouliot duality. As the USp(2) theory
with 6 chirals is dual to a WZ model with 15 chirals, the leftmost gauge node is confined
once the duality is applied. Some of the 15 chirals make massive the traceless part of the
antisymmetric chiral of the next USp(4) gauge node, while the others partially cancel with
the singlets S[1N ], T[N ] and O1j

B . Now the USp(4) node has 8 chirals and is also confined
when we apply the Intriligator–Pouliot duality. Proceeding to the right we see that the
entire chain of gauge nodes is sequentially confined leaving a set of chirals at the end. So the
E[N ][USp(2N)] theory will be a Wess–Zumino model.

This procedure of applying sequential Intriligator–Pouliot dualities can be realized at
the level of the index. The mass deformation ∑N−1

i=1 Tri

[
D

(i)
1 V

(i)
2

]
in (4.65) imposes the

constraints on the fugacities of the saw

yi+1
yi

= t, i = 1, · · · , N − 1 , (4.68)

which can be solved with

yi = ti−1a, i = 1, · · · , N . (4.69)

For our purpose, it is convenient to use y = at
N−1

2 = yit
N−2i+1

2 , which makes the unbroken
SU(2)y ⊂ USp(2N)y manifest. The extra chirals we introduce give rise to the following index
contributions:

S[1N ] −→ Γe

(
pqt−1

)N−1 N∏
i<j

Γe

(
pqt−1x±1

i x±1
j

)
,

T[N ] −→
N∏

j=2
Γe

(
tj
)

, O1j
B −→ Γe

(
t1−jc2

)
. (4.70)

Hence, the complete index of theory T is given by11

IT(x⃗; y; c; t) = Γe

(
pqt−1

)N−1 N∏
i<j

Γe

(
pqt−1x±1

i x±1
j

) N∏
j=2

Γe

(
tj
)

Γe

(
t1−jc2

)
×

11We recall that now the index of E[USp(2N)] is defined without the contribution of the singlet βN , which
is represented by Γe

(
pqc−2).
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× IE[USp(2N)]
(
x⃗; t

1−N
2 y, t

3−N
2 y, · · · , t

N−1
2 y; c; t

)
. (4.71)

The sequential confinement of the tail then translates in the identity

IE[USp(2N)]
(
x⃗; tN−1u, tN−2u, · · · , u; c; t

)
=

= Γe

(
c2
)

Γe (t)N
N∏

i<j

Γe

(
t x±1

i x±1
j

) N∏
i=1

Γe

(
u c x±1

i

)
Γe

(
c

u tN−1 x±1
i

)
Γe (t1−ic2) Γe (ti) . (4.72)

This is another form of the equality (3.65) that we already encountered and which we recall
was proven by Rains in Corollary 2.8 of [79]. Putting this back into IT with u = t

1−N
2 y12, we

obtain the identity

IT(x⃗; y; c; t) =
N∏

i=1
Γe

(
y±1t− N−1

2 cx±1
i

)
= IE[N ][USp(2N)](x⃗; y; c; t) . (4.73)

As expected, E[N ][USp(2N)] is a WZ model with 2N chirals, which are a bifundamental
of USp(2N)x × SU(2)y. One can see that the new fugacity y makes the SU(2)y symmetry
manifest.

Flow to E[N ][USp(2N)]

Now let us examine this confinement on the mirror side. The superpotential deformation
triggering the flow to theory T∨ is given by

δW∨ = Trx

[
S[1N ] · C∨

]
+ Try

[
T[N ] · H∨

]
+

N−1∑
n=1

TrN−1
[
q

(N−1,N)
2n−1 q

(N−1,N)
2n+2

]
+

+
N∑

j=2
O1j

B TrN−1

[(
A(N−1)

)j−2
v

(N−1)
[1 v

(N−1)
2]

]
, (4.74)

which makes q(N−1,N) massive except q
(N−1,N)
2 and q

(N−1,N)
2N−1 . Integrating out the massive

q(N−1,N), we reach theory T∨, which is mirror-like dual to theory T.
T∨ differs from E[USp(2N)] only by the fact that there are just two chirals attached to

the last gauge node. Now to reach E[N ][USp(2N)] we can implement the flip-flip duality by
sequentially applying the Intriligator–Pouliot duality on each gauge node starting from the
leftmost USp(2) node and proceeding along the tail. Since the first N − 2 nodes are USp(2n)
with 4n + 4 chirals, their rank does not change when we apply the Intriligator–Pouliot duality.
However, when we act one the last gauge node, which is USp(2(N − 1)) with 2n + 2 chirals, it
confines. At the second iteration we start again from the leftmost USp(2) node but when we

12Notice that to apply (4.72) we need to use the USp(2N)y Weyl symmetry of E[USp(2N)] to reorder the
fugacities.
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reach the USp(2(N − 2)) node it confines. In this way the quiver is confined from the right
until we are left with the same gauge singlets as in (4.73), that is we reach the E[N ][USp(2N)]
WZ model. This is the 4d version of a similar confinement of T [SU(N)] when a monopole
superpotential is turned on at each gauge node which was studied in [169].

Example II: ρ = [N − 1, 1] and σ = [1N ]

Flow to E[N−1,1][USp(2N)]

The deformation leading to theory T is given in this case by

δW = Trx

[
S[1N ] · H

]
+ Try

[
T[N−1,1] · C

]
+

N−2∑
i=1

Tri

[
D

(i)
1 V

(i)
2

]
+

N−1∑
j=2

O1j
B βN−j+1 , (4.75)

where S[1N ] is again an arbitrary 2N × 2N skew-symmetric matrix and T[N−1,1] is given by

T[N−1,1] =



T(1)
11 −T(2)

11
T · · · −T(N−1)

11
T

T(2)
11 T(1)

11 · · · −T(N−2)
11

T

... . . . . . . ...
T(N−1)

11 · · · T(2)
11 T(1)

11

−T(1)
N1

T

...
0

T(1)
1N

T(1)
N1 0 · · · −T(1)

1N
T −(N − 1)T(1)

11


, (4.76)

where each T
(n)
ij is a 2× 2 matrix of the form:

T(1)
11 =

 0 −t(1)
11

t(1)
11 0

 ,

T(n)
ij =



(
0 0
t(n)
ii 0

)
, i = j, n ̸= 1 ,

 r(n)
ij 0

s(n)
ij 0

 , i > j, n ̸= 1 ,

(
0 0
u(n)

ij w(n)
ij

)
, i < j, n ̸= 1 .

(4.77)

One can write down the supersymmetric index of the theory T by constraining the
fugacities of the index of E[USp(2N)]. The deformation (4.75) demands the following
conditions on the USp(2N)y fugacities:

yi+1
yi

= t , i = 1, . . . , N − 2 , (4.78)
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which are satisfied by

yi = ti−1a , i = 1, . . . , N − 1 . (4.79)

For later convenience, we introduce the new fugacities

yi = ti− N
2 y(1) , i = 1, . . . , N − 1 ,

yN = y(2) , (4.80)

which will make the unbroken USp(2)y(1) × USp(2)y(2) ⊂ USp(2N)y manifest in the index.
The extra chiral singlets we introduce then give rise to the following index contributions:

S[1N ] −→ Γe

(
pqt−1

)N−1 N∏
i<j

Γe

(
pqt−1x±1

i x±1
j

)
,

T[N−1,1] −→ Γe

(
t

N
2 y(1)±1y(2)±1

)N−1∏
i=1

Γe

(
ti
)

,

O1j
B −→ Γe

(
t1−jc2

)
.

(4.81)

Substituting them into the recursive definition of the index of the E[USp(2N)] theory, we
obtain the index of theory T as follows:

IT
(
x⃗; y(1), y(2); c; t

)
=

= Γe

(
pqt−1

)N−1 N∏
i<j

Γe

(
pqt−1x±1

i x±1
j

)
Γe

(
t

N
2 y(1)±1y(2)±1

)N−1∏
i=1

Γe

(
ti
)

×
N−1∏
j=2

Γe

(
t1−jc2

)
IE[USp(2N)]

(
x⃗; t− N

2 +1y(1), t− N
2 +2y(1), · · · , t

N
2 −1y(1), y(2); c; t

)
=

= Γe

(
pqt−1

)N−1 N∏
i<j

Γe

(
pqt−1x±1

i x±1
j

)
Γe

(
t

N
2 y(1)±1y(2)±1

)N−1∏
i=1

Γe

(
ti
)
×

×
N−1∏
j=2

Γe

(
t1−jc2

) ∏N
i=1 Γe

(
c y(2)±1x±1

i

)
Γe (t−1c2)

∮
dz⃗

(N−1)
N−1 Γe

(
pqt−1

)N−1
×

×
N−1∏
a<b

Γe

(
pqt−1z(N−1)

a
±1z

(N−1)
b

±1
)N−1∏

a=1

∏N
i=1 Γe

(
t1/2z

(N−1)
a

±1x±1
i

)
Γe

(
t1/2c y(2)±1z

(N−1)
a

±1
) ×

× IE[USp(2(N−1))]
(
z

(N−1)
1 , · · · , z

(N−1)
N−1 ; t− N

2 +1y(1), t− N
2 +2y(1), · · · , t

N
2 −1y(1); t−1/2c; t

)
.

(4.82)

At this stage, one can see that there is an SU(2) symmetry for y(2) while it is not clear
whether or not we have an enhanced SU(2) symmetry for y(1).
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To reach E[N−1,1][USp(2N)] we need to implement the flip-flip duality by applying
iteratively the IP duality. We can recycle some of the previous calculations noting that
the last factor of the integrand is the index of E[USp(2N − 2)] with the specialization of
parameters leading to the evaluation formula (4.72) as we discussed in the previous example.
Taking this into account, we obtain

IT = Γe

(
pqt−1

)N−1 N∏
i<j

Γe

(
pqt−1x±1

i x±1
j

)
Γe

(
t

N
2 y(1)±1y(2)±1

)
×

×
∏N

i=1 Γe

(
c y(2)±1x±1

i

)
Γe (t−N+1c2)

∮
dz⃗

(N−1)
N−1

N−1∏
a=1

Γe

(
t− N−1

2 cy(1)±1z(N−1)
a

±1
)

× Γe

(
pqt−1/2c−1y(2)±1z(N−1)

a
±1
) N∏

i=1
Γe

(
t1/2z(N−1)

a
±1x±1

i

)
, (4.83)

where the SU(2) symmetry for y(1) is now manifest.
This is the index of a USp(2(N − 1)) theory with 2N + 4 favors and various flipping fields.

To complete the derivation of the flip-flip duality we need to apply the Intriligator–Pouliot
duality one more time and we obtain

IT =
∏N

i=1 Γe

(
t− N

2 +1cy(1)±1x±1
i

)
Γe (p−1q−1tc2)

∮
dz⃗

(1)
1 Γe (t) Γe

(
p1/2q1/2t

N−1
2 c−1y(1)±1z(1)±1

)
×

× Γe

(
p−1/2q−1/2t1/2cy(2)±1z(1)±1

) N∏
i=1

Γe

(
p1/2q1/2t−1/2x±1

i z(1)±1
)

=

= IE[N−1,1][USp(2N)]
(
x⃗; y(2), y(1); c; t

)
. (4.84)

The E[N−1,1][USp(2N)] theory is a USp(2) theory with 2N + 4 fundamental chirals and
some additional singlets, which are shown in Figure 4.10.13 From the index (4.84), one can read
off the charges of each chiral multiplet and the available superpotential. For example, one can
see that there is a singlet γ11, whose index contribution is Γe

(
p−1q−1tc2)−1, flipping the diago-

nal meson Tr1D
(1)
[1 D

(1)
2] where D(1) contributes to the index by Γe

(
p−1/2q−1/2t1/2cy±1

2 z(1)±1
)
.

The total superpotential of E[N−1,1][USp(2N)] is given by

WE[N−1,1][USp(2N)] = Tr1Trx

[
A(1)F (1)F (1)

]
+ Tr1Trx

[
F (1)V

(1)
[1 π

(1,2)
2]

]
+ γ11Tr2

[
D

(1)
[1 D

(1)
2]

]
.

(4.85)

13Note that, as a consequence of the sequential application of the Intriligator–Pouliot duality, the fugacities
are permuted and the two nodes in the saw are labeled by y(2) and y(1) respectively, from the left, which is
the opposite labelling compared to the definition of the original E[USp(2N)] index. For this reason, we call
the index (4.84) as IE[N−1,1][USp(2N)](x⃗; y(2), y(1); t, c) instead of IE[N−1,1][USp(2N)](x⃗; y(1), y(2); t, c). Indeed
we can’t use the USp(2N) Weyl symmetry to reorder the two set of fugacities y(1) and y(2). This is similar to
what we saw in the 3d case.
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2N

π
(1 ,2 )

F(1)

A(1)

V (1 )

D(1 )

x i

y(2) y(1 )

Figure 4.10: The quiver diagram representation of E[N−1,1][USp(2N)]. We also explicitly
draw all the singlet fields. The crosses as usual denote singlets flipping the corresponding
mesons.

We can work out some interesting gauge invariant operators

Π(1) = π(1,2) ,

Π(2) = Tr1
[
D(1)F (1)

]
,

C(1) = Tr1A(1) ,

C(1,2) = Tr1
[
D(1)V (1)

]
,

H = Tr1
[
F (1)F (1)

]
.

(4.86)

Recall that the global symmetry of E[N−1,1][USp(2N)] includes USp(2N)x × USp(2)y(1) ×
USp(2)y(2) rather than USp(2N)x × USp(4)y unless N = 2. Indeed, we find that the
would-be antisymmetric operator of USp(4)y is decomposed into one singlet operator and one
bifundamental operator between USp(2)y(1)×USp(2)y(2) , which are denoted by C(1) and C(1,2)

respectively. Also each Π(i) is a bifundamental operator between USp(2N)x × USp(2)y(i) .
As expected, C(1) and C(1,2) have different U(1) global charges unless N = 2, and so do Π(1)

and Π(2). Thus, only USp(2)y(1) ×USp(2)y(2) ⊂ USp(4)y is preserved. On the other hand, H
is an antisymmetric operator respecting the entire USp(2N)x symmetry.

This is the 4d version of the result we found in the 3d Example I for the same choice
of partitions. There is a crucial difference between 3d and 4d, though. Indeed, while in 3d

because of the fact that the gauge coupling classically has positive mass dimension all gauge
theories are expected to flow to an interacting SCFT in the IR if the number of flavors is
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sufficiently large, in 4d this depends on the sign of the β-function since the gauge coupling is
classically marginal. In particular, in 4d the one-loop β-function is negative and the theory
is asymptotically free only if the number of flavors is not too large, which is the opposite
of what happens in 3d. For the present case, the 3d theory is interacting if N > 1 and it is
dual to a free hyper if N = 1. Instead in 4d, notice that E[N−1,1][USp(2N)] is asymptotically
free only when N < 4. Among these three cases, N = 1 is the confining case while N = 2
is the self-dual case of Intriligator–Pouliot duality and N = 3 will give us a genuinely new
duality between interacting SCFTs. Let us comment that, even though for some range of the
parameters we will find dualities between IR free theories, these are still of interest. Indeed,
the associated integral identities for the supersymmetric indices that we will find are still
non-trivial. Moreover, upon compactification to 3d they give rise to known mirror dualities
between interacting theories, so they constitute 4d ancestors of them.

In the rest of this section, we will mostly focus on the N = 3 case although the mathe-
matical identities of the supersymmetric indices hold beyond N = 3.

Flow to E[N−1,1][USp(2N)]

Now let us consider the mass deformation in the mirror dual frame. In this dual theory, the
superpotential deformation (4.75) is mapped to

δW∨ = Trx

[
S[1N ] · C∨

]
+ Try

[
T[N−1,1] · H∨

]
+

N−2∑
n=1

TrN−1q
(N−1,N)
2n−1 q

(N−1,N)
2n+2 +

+
N−1∑
j=2

O1j
B TrN−1

[(
A(N−1)

)j−2
v

(N−1)
[1 v

(N−1)
2]

]
, (4.87)

which makes q
(N−1,N)
n massive except n = 2, 2N − 3, 2N − 1, 2N . The extra singlets we

introduce are denoted by the same letters as in the original side.
The supersymmetric index of the theory T∨ can be obtained from that of E[USp(2N)]∨

taking into account the extra singlet contributions (4.81) and by imposing the fugacity
conditions (4.78)-(4.79)

IT∨

(
x⃗; y(1), y(2); c; t

)
=

= Γe

(
pqt−1

)N−1 N∏
i<j

Γe

(
pqt−1x±1

i x±1
j

)
Γe

(
t

N
2 y(1)±1y(2)±1

)N−1∏
i=1

Γe

(
ti
)N−1∏

j=2
Γe

(
t1−jc2

)
×

× IE[USp(2N)]∨
(
x⃗; t− N

2 +1y(1), t− N
2 +2y(1), · · · , t

N
2 −1y(1), y(2); c; t

)
=

= Γe

(
pqt−1

)N−1 N∏
i<j

Γe

(
pqt−1x±1

i x±1
j

)
Γe

(
t

N
2 y(1)±1y(2)±1

)N−1∏
i=1

Γe

(
ti
)N−1∏

j=2
Γe

(
t1−jc2

)
×
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Figure 4.11: The quiver diagram representation of E[2,1][USp(6)]. The fugacity corresponding
to each flavor node is also indicated.

× Γe

(
p2q2t−1c−2

)
Γe

(
c x±1

N y(2)±1
)N−1∏

i=1
Γe

(
c x±1

N

(
ti− N

2 y(1)
)±1

)
×

×
∮

dz⃗
(N−1)
N−1 Γe (t)N−1

N−1∏
a<b

Γe

(
tz(N−1)

a
±1z

(N−1)
b

±1
)
×

×
∏N−1

a=1 Γe

(
p1/2q1/2t−1/2z

(N−1)
a

±1y(2)±1
)

Γe

(
p1/2q1/2t− N−1

2 z
(N−1)
a

±1y(1)±1
)

∏N−1
a=1 Γe

(
p1/2q1/2t−1/2c x±1

N z
(N−1)
a

±1
) ×

× IE[USp(2(N−1))]
(
z

(N−1)
1 , · · · , z

(N−1)
N−1 ; x1, · · · , xN−1; p−1/2q−1/2t1/2c; pq/t

)
. (4.88)

We see that the theory T∨ is basically the same quiver theory as E[USp(2N)]∨ but there are
only 4 fundamental chirals attached to the (N − 1)-th gauge node on top of those of the saw.
Two of these 4 chirals couple to A(N−1), while the other two couple to

(
A(N−1)

)N−1
.

Now we need to implement the flip-flip duality as a chain of sequential Intriligator–Pouliot
dualities. In Appendix C.2 we do this at the level of the supersymmetric index for the N = 3
case obtaining14:

IT∨ = Γe(t−1/2cx±1
1 y(1)±1)Γe(t−1/2cx±1

2 y(1)±1)Γe(cx±1
1 y(2)±1)Γe(pqt2c−2)×

×
∮

dz⃗
(1)
1 dz⃗

(2)
1 Γe

(
pqt−1

)2
Γe(t1/2z(1)±1y(1)±1)×

14Again, the labelling of the saw by the xi fugacities is in the opposite order compared to the origi-
nal E[USp(2N)]∨ index. This time, however, the permutations of xi belong to the Weyl group of the
USp(6)x global symmetry. Thus, the index is invariant under such permutations, so we just call the index
IE[2,1][USp(6)](y

(1), y(2); x⃗; c; pq/t) without specifying a particular order of xi. Notice that this is the same as
what happened in 3d.
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× Γe(pqc−1x±1
2 z(1)±1)Γe(t−1cx±1

3 z(1)±1)Γe(t1/2z(2)±1y(2)±1)×
× Γe(pqt−1/2c−1x±1

1 z(2)±1)Γe(t−1/2cx±1
2 z(2)±1)Γe(t1/2z(1)±1z(2)±1) =

= IE[2,1][USp(6)]

(
y(1), y(2); x⃗; c; pq/t

)
. (4.89)

One can read off the matter content of E[2,1][USp(6)] from the index (4.89), which is shown
in Figure 4.11. In particular, there is a single flipping field γ∨

11, denoted by a cross in Figure
4.11, which flips the diagonal meson Tr1d

(1)
[1 d

(1)
2] . The total superpotential is given by

WE[2,1][USp(6)] =

= Tr1
[
A(1)

(
Tr2 q(1,2)q(1,2) + Try1f (1)f (1)

)]
+ Tr2

[
A(2)

(
Tr1 q(1,2)q(1,2) + Try2f (2)f (2)

)]
+

+ Tr1Tr2
[
v

(1)
[1 q(1,2)d

(2)
2]

]
+ Tr1Try2

[
f (1)v

(1)
[1 π

(1,2)∨
2]

]
+ Tr1Tr2Try2

[
f (1)q(1,2)v

(2)
[1 π

(1,3)∨
2]

]
+

+ Tr2Try2

[
f (2)v

(2)
[1 π

(2,3)∨
2]

]
+ γ∨

11 Tr1
[
d

(1)
[1 d

(1)
2]

]
. (4.90)

Some examples of gauge invariant operators are as follows:

Π(1)∨ =
(
π(1,3)∨, π(1,2)∨, Tr1

[
d(1)f (1)

])
,

Π(2)∨ =
(
π(2,3)∨, Tr2

[
d(2)f (2)

]
, Tr1Tr2

[
d(1)q(1,2)f (2)

])
,

H(1)∨ = Tr1
[
f (1)f (1)

]
= H(2)∨ = Tr2

[
f (2)f (2)

]
,

H(1,2)∨ = Tr1Tr2
[
f (1)q(1,2)f (2)

]
,

C∨ =


iσ2Tr1A(1) Tr1d(1)v(1) Tr1Tr2d(1)q(1,2)v(2)

−Tr1d(1)v(1) iσ2Tr2A(2) Tr2d(2)v(2)

−Tr1Tr2d(1)q(1,2)v(2) −Tr2d(2)v(2) −iσ2Tr1A(1) − iσ2Tr2A(2)

 .

(4.91)

Each Π(i)∨ is a bifundamental operator between USp(6)x × USp(2)y(i) . Note that the super-
potential (4.90) is crucial to realize the non-abelian part of the global symmetry, USp(6)x ×
USp(2)y(1) × USp(2)y(2) , because other bifundamental operators Tr1f (1)v(1), Tr1f (1)q(1,2)v(2)

and Tr2f (2)v(2), which do not respect this symmetry, are flipped by π(1,2)∨, π(1,3)∨ and π(2,3)∨

respectively and thus are trivial in the chiral ring. Each H(i)∨ is an USp(2)y(i) antisymmetric,
i.e. a singlet operator. Note that H(1)∨ and H(2)∨ are identified due to the superpotential,
which implies that

Tr1
[
f

(1)
[1 f

(1)
2]

]
∼
[
Tr1Tr2q(1,2)q(1,2)

]
∼ Tr2

[
f

(2)
[1 f

(2)
2]

]
. (4.92)

Moreover, H(1,2)∨ is a bifundamental operator between USp(2)y(1) ×USp(2)y(2) . Lastly C∨ is
an USp(6)x antisymmetric operator.
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Figure 4.12: Duality between E[N−1,1][USp(2N)] and E[N−1,1][USp(2N)]. Here we are not
drawing the gauge singlets. The number of SU(2) gauge nodes in the theory on the right is
N − 1.

We also find the map of the operators between E[2,1][USp(2N)] and E[2,1][USp(2N)]

Π(1) ←→ Π(1)∨ ,

Π(2) ←→ Π(2)∨ ,

C(1) ←→ H(1)∨ = H(2)∨ ,

C(1,2) ←→ H(1,2)∨ ,

H ←→ C∨ .

(4.93)

This is compatible with E[2,1][USp(2N)] and E[2,1][USp(2N)] having the same low-lying
operator spectrum, which respects the same global symmetry.

Although here we only considered the N = 3 case, we checked that the supersymmetric
index identity holds for higher N as well. The mirror duality between E[N−1,1][USp(2N)] and
E[N−1,1][USp(2N)] for arbitrary N is represented in Figure 4.12 in a simplified version where
we omit gauge singlets. This is the 4d analogue of the 3d abelian mirror duality15. As shown
in [168], the abelian 3d mirror symmetry for SQED with N flavors can be derived from the
basic duality between SQED with one flavor and the XYZ model with a piecewise procedure
(see also [170] for an implementation of this procedure at the level of the three-sphere partition
function and [171] for the N = 2 case). Interestingly, we can do the same in 4d and derive
the duality 4.12 with a similar piecewise procedure, where the role of the basic duality is now
played by the Intriligator–Pouliot duality in the confining case of USp(2) with 6 chirals dual
to a WZ model of 15 chiral fields. We show this at the level of the index in the N = 3 case
in Appendix C.3.

15See [64] for the 2d N = (0, 2) reduction of this 4d N = 1 duality and for an analogue of the piecewise
derivation in that context.
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Example III: ρ = [22] and σ = [14]

Flow to E[22][USp(8)]

Starting from E[USp(8)] we introduce the superpotential (4.54) with ρ = [22] and σ = [14],
which includes the mass terms

δW = · · ·+ Tr1D
(1)
[1 V

(1)
2] + Tr3D

(3)
[1 V

(3)
2] + . . . , (4.94)

which lead to the following constraints on fugacities:

y1 = t− 1
2 y

(1)
1 , y2 = t

1
2 y

(1)
1 , y3 = t− 1

2 y
(1)
2 , y4 = t

1
2 y

(1)
2 . (4.95)

For simplicity, we will omit the superscript (1) of the new variables y
(1)
i , which should not be

confused with the original variables yi. We also introduce a set of extra flipping fields, which
contribute to the index as follows:

S[14] −→ Γe

(
pqt−1

)3 4∏
i<j

Γe

(
pqt−1x±1

i x±1
j

)
,

T[2,2] −→ Γe (t) Γe

(
t2
)2 2∏

i=1
Γe

(
tiy±1

1 y±1
2

)
,

O12
B −→ Γe

(
t−1c2

)
.

(4.96)

After integrating out the massive fields and applying sequentially the Intriligator–Pouliot
duality we obtain that the index of the E[22][USp(8)] theory is as follows:

IT = Γe

(
pqt−1

)2 4∏
i<j

Γe

(
pqt−1x±1

i x±1
j

)
Γe

(
t2
)2 2∏

i=1
Γe

(
tiy±1

1 y±1
2

)
Γe

(
t−1c2

)
×

× IE[USp(8)](x⃗; y⃗; c; t)
∣∣∣
y1→t− 1

2 y1, y2→t
1
2 y1, y3→t− 1

2 y2, y4→t
1
2 y2

=

= Γe

(
p2q2c−2

)
Γe

(
p2q2t−1c−2

) 4∏
i=1

Γe

(
t−1/2cy±1

1 x±1
i

)
×

×
∮

dz⃗
(1)
2 Γe (t)2

2∏
a<b

Γe

(
tz(1)

a
±1z

(1)
b

±1
) 2∏

a=1
Γe

(
p−1/2q−1/2cy±1

2 z(1)
a

±1
)
×

×
2∏

a=1

4∏
i=1

Γe

(
p1/2q1/2t−1/2z(1)

a
±1xi

±1
)

Γe

(
p1/2q1/2tc−1y±1

1 z(1)
a

±1
)

=

= IE[22][USp(8)](x⃗; y⃗; c; t) . (4.97)

From the supersymmetric index (4.97) one can read off the matter content of the E[22][USp(8)]
theory, which we represent using the quiver diagram of Figure 4.13. Furthermore, we can
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Figure 4.13: The quiver diagram representation of E[22][USp(8)]. Two crosses with different
sizes on top of the diagonal line denote the singlets γ11 and γ12, which flip Tr1
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]
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respectively.

also read off the total superpotential of E[22][USp(8)], which is given by

WE[22][USp(8)] = Tr1Trx

[
A(1)F (1)F (1)

]
+ Tr1Trx

[
F (1)v

(1)
[1 π

(1,2)
2]

]
+

+ γ11 Tr1D
(1)
[1 D

(1)
2] + γ12 Tr1

[
A(1)D

(1)
[1 D

(1)
2]

]
. (4.98)

One can see that the superpotential involves a set of gauge singlet operators, which contribute
to the resulting index (4.97) by

π(1,2) −→
4∏

i=1
Γe

(
t−1/2cy±1

1 x±1
i

)
,

γ11 −→ Γe

(
p2q2c−2

)
, γ12 −→ Γe

(
p2q2t−1c−2

)
.

(4.99)

The non-abelian global symmetry of E[22][USp(8)] is USp(8)x×USp(4)y. A few examples
of gauge invariant operators respecting this symmetry are as follows:

Π =
(
π(1,2), Tr1

[
D(1)F (1)

])
, H = Tr1

[
F (1)F (1)

]
,

C =

 iσ2Tr1A(1) Tr1
[
D(1)V (1)

]
−Tr1

[
D(1)V (1)

]
−iσ2Tr1A(1)

 ,
(4.100)

where Π is a bifundamental between USp(8)x × USp(4)y, while H and C are antisymmetrics
of USp(8)x and USp(4)y respectively.
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Flow to E[22][USp(8)]

Let’s now look at the mirror side. The deformation (4.94) is mapped to a deformation of
E[USp(8)]∨ which includes the mass terms

δW = · · ·+ q
(3,4)
1 q

(3,4)
4 + q

(3,4)
5 q

(3,4)
8 + . . . , (4.101)

implying the constraints on fugacities

y1 = t−1/2y
(1)
1 , y2 = t1/2y

(1)
1 , y3 = t−1/2y

(1)
2 , y4 = t1/2y

(1)
2 . (4.102)

As before we will omit the superscript (1) of y
(1)
i . Taking into account the contributions of

the extra flipping fields (4.96) and applying sequentially the Intriligator–Pouliot duality we
obtain the supersymmetric index of E[22][USp(8)]:

I
E[22][USp(8)](y⃗; x⃗; c; pq/t) =

=
2∏

i=1
Γe

(
t−1/2cx±1

1 y±1
i

)
Γe

(
t−1/2cx±1

2 y±1
i

)
Γe

(
pqt3c−2

)
Γe

(
pqt2c−2

)
×

×
∮

dz⃗
(1)
1 dz⃗

(2)
2 dz⃗

(3)
1 Γe

(
pqt−1

)4 2∏
a<b

Γe

(
pqt−1z(2)

a
±1z

(2)
b

±1
)
×

× Γe

(
t−3/2cx±1

4 z(1)±1
) 2∏

a=1
Γe

(
t−1cx±1

3 z(2)
a

±1
)

Γe

(
t−1/2cx±1

2 z(3)±1
)
×

×
2∏

a=1
Γe

(
t1/2z(1)±1z(2)

a
±1
)

Γe

(
t1/2z(2)

a
±1z(3)±1

) 2∏
i=1

Γe

(
t1/2z(2)

a
±1y±1

i

)
×

× Γe

(
pqt1/2c−1x±1

3 z(1)±1
) 2∏

a=1
Γe

(
pqc−1x±1

2 z(2)
a

±1
)

Γe

(
pqt−1/2c−1x±1

1 z(3)±1
)

. (4.103)

Starting from the identity for the mirror-like duality of E[USp(8)] we have derived a new
identity for the duality between E[22][USp(8)] and E[22][USp(8)]:

IE[22][USp(8)](x⃗; y⃗; c; t) = I
E[22][USp(8)](y⃗; x⃗; c; pq/t) . (4.104)

The quiver diagram of E[22][USp(8)] can be read from (4.103) and is represented in Figure
4.14. The superpotential of E[22][USp(8)] is given by

W
E[22][USp(8)] =

= Tr1Tr2
[
A(1)q(1,2)q(1,2)

]
+ Tr2

[
A(2)

(
Tr1 q(1,2)q(1,2) + Tryf (2)f (2) + Tr3q(2,3)q(2,3)

)]
+
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Figure 4.14: The quiver diagram representation of E[22][USp(8)]. Two flipping fields γ∨
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]
and Tr2
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d
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[1 d
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respectively.

+ Tr2Tr3
[
A(3)q(2,3)q(2,3)

]
+ Tr1Tr2

[
v

(1)
[1 q(1,2)d

(2)
2]

]
+ Tr2Tr3

[
v

(2)
[1 q(2,3)d

(3)
2]

]
+

+ Tr2Try

[
f (2)v

(2)
[1 π

(2,3)∨
2]

]
+ Tr2Tr3Try

[
f (2)q(2,3)v

(3)
[1 π

(2,4)∨
2]

]
+

2∑
i=1

γ∨
i1 Tri

[
d

(i)
[1 d

(i)
2]

]
,

(4.105)

which involves the gauge singlet operators whose index contributions are as follows:

π(2,3)∨ −→
2∏

i=1
Γe

(
t−1/2cx±1

2 y±1
i

)
,

π(2,4)∨ −→
2∏

i=1
Γe

(
t−1/2cx±1

1 y±1
i

)
,

γ∨
11 −→ Γe

(
pqt3c−2

)
, γ∨

21 −→ Γe

(
pqt2c−2

)
.

(4.106)

One can also construct gauge invariant operators transforming non-trivially under the
non-abelian global symmetry. For example,

Π∨ =
(
π(2,4)∨, π(2,3)∨, Tr2

[
d(2)f (2)

]
, Tr1Tr2

[
d(1)q(1,2)f (2)

])
, H∨ = Tr2

[
f (2)f (2)

]
,

C∨ =


iσ2Tr1A(1) Tr1d(1)v(1) Tr1Tr2d(1)q(1,2)v(2) Tr1Tr2Tr3d(1)q(1,2)q(2,3)v(3)

−Tr1d(1)v(1) iσ2Tr2A(2) Tr2d(2)v(2) Tr2Tr3d(2)q(2,3)v(3)

−Tr1Tr2d(1)q(1,2)v(2) −Tr2d(2)v(2) iσ2Tr3A(3) Tr3d(3)v(3)

−Tr1Tr2Tr3d(1)q(1,2)q(2,3)v(3) −Tr2Tr3d(2)q(2,3)v(3) −Tr3d(3)v(3) −iσ2
∑3

i=1 TriA
(i)

 ,

(4.107)
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which are mapped to operators of E[22][USp(8)] as follows:

Π ←→ Π∨ ,

H ←→ C∨ ,

C ←→ H∨ .

(4.108)

Note that Π∨ is a bifundamental between USp(8)x ×USp(4)y, while H∨ and C∨ are antisym-
metrics of USp(4)y and USp(8)x respectively.

Example IV: ρ = [2, 12] and σ = [14]

Flow to E[2,12][USp(8)]

We now consider a deformation of E[USp(8)] corresponding to ρ = [2, 12] and σ = [14], which
includes a mass term

δW = · · ·+ Tr1D
(1)
[1 V

(1)
2] + . . . , (4.109)

which relates y1 and y2 as follows:

y1 = t− 1
2 y(1) , y2 = t

1
2 y(1) . (4.110)

For later convenience, we also rename y3 and y4 as

y3 = y
(2)
1 , y4 = y

(2)
2 . (4.111)

The extra flipping fields we introduce in this case are

S[14] −→ Γe

(
pqt−1

)3 4∏
n<m

Γe

(
pqt−1x±1

n x±1
m

)
,

T[2,12] −→ Γe (t)2 Γe

(
t2
) 2∏

i=1
Γe

(
t

3
2 y(1)±1y

(2)
i

±1
)

Γe

(
ty

(2)
1

±1y
(2)
2

±1
)

,

O12
B −→ Γe

(
t−1c2

)
.

(4.112)

After applying sequentially the Intriligator–Pouliot duality, we obtain the supersymmetric
index of E[2,12][USp(8)]:

IE[2,12][USp(8)]
(
x⃗; y⃗(2), y(1); c; t

)
=

= Γe

(
p3q3t−2c−2

)
Γe

(
p2q2t−1c−2

) 4∏
i=1

Γe

(
t−1/2cy(1)±1xi

±1
)
×
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×
∮

dz⃗
(1)
1 dz⃗

(2)
2 Γe (t)3

2∏
a<b

Γe

(
tz(2)

a
±1z

(2)
b

±1
)
×

× Γe

(
p−1q−1tcz(1)±1y

(2)
2

±1
) 2∏

a=1
Γe

(
p−1/2q−1/2t1/2cy

(2)
1

±1z(2)
a

±1
)
×

×
2∏

a=1
Γe

(
p1/2q1/2t−1/2z(1)±1z(2)

a
±1
) 2∏

a=1

4∏
i=1

Γe

(
p1/2q1/2t−1/2z(2)

a
±1xi

±1
)
×

× Γe

(
pqc−1y

(2)
1

±1z(1)±1
) 2∏

a=1
Γe

(
p1/2q1/2tc−1y(1)±1z(2)

a
±1
)

. (4.113)

The quiver diagram of E[2,12][USp(8)] is drawn in Figure 4.15, which can be worked out from
the supersymmetric index (4.113). The total superpotential of E[2,12][USp(8)] is given by

WE[2,12][USp(8)] = Tr1Tr2
[
A(1)Q(1,2)Q(1,2)

]
+ Tr2

[
A(2)

(
Tr1Q(1,2)Q(1,2) + TrxF (2)F (2)

)]
+

+ Tr1Tr2
[
V

(1)
[1 Q(1,2)D

(2)
2]

]
+ Tr2Trx

[
F (2)V

(2)
[1 π

(2,3)
2]

]
+

2∑
i=1

γi1 TriD
(i)
[1 D

(i)
2] .

(4.114)

One can see that the superpotential involves a set of gauge singlet operators, which contribute
to the index (4.97) by

π(2,3) −→
4∏

i=1
Γe

(
t−1/2cy±1

1 x±1
i

)
,

γ11 −→ Γe

(
p3q3t−2c−2

)
, γ21 −→ Γe

(
p2q2t−1c−2

)
.

(4.115)

The non-abelian global symmetry of E[2,12][USp(8)] is USp(8)x×USp(2)y(1)×USp(4)y(2) .
Some interesting examples of gauge invariant operators, which respect this symmetry are

Π(1) = π(2,3) , Π(2) =
(
Tr2

[
D(2)F (2)

]
, Tr1Tr2

[
D(1)Q(1,2)F (2)

])
,

H = Tr2
[
F (2)F (2)

]
, C(1) = A(2) ,

C(2) =
(

iσ2Tr1A(1) Tr1D(1)V (1)

−Tr1D(1)V (1) −iσ2Tr1A(1)

)
,

C(1,2) = Tr1Tr2
[
D(1)Q(1,2)V (2)

]
,

(4.116)

where Π(i) is a bifundamental between USp(8)x × USp(2li)y(i) with l1 = 1 and l2 = 2, H
and C(i) are antisymmetrics of USp(8)x and USp(2li)y(i) respectively, and lastly C(1,2) is a
bifundamental between USp(2)y(1) × USp(4)y(2) .
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Figure 4.15: The quiver diagram representation of E[2,12][USp(8)]. Two flipping fields γ11 and
γ21, denoted by crosses, flip the operators Tr1

[
D

(1)
[1 D

(1)
2]

]
and Tr2

[
D

(2)
[1 D

(2)
2]

]
respectively.

Flow to E[2,12][USp(8)]

On the mirror side we have the deformation superpotential

δW = · · ·+ q
(3,4)
1 q

(3,4)
4 + . . . . (4.117)

This imposes the following constraint on the fugacities appearing in the index ofE[USp(8)]∨:

y1 = t− 1
2 y(1) , y2 = t

1
2 y(1) , y3 = y

(2)
1 , y4 = y

(2)
2 . (4.118)

We also introduce the extra flipping fields given in (4.112). After sequentially applying the
Intriligator–Pouliot duality we obtain the index of the E[2,12][USp(8)] theory

I
E[2,12][USp(8)]

(
y(1), y⃗(2); x⃗; c; pqt−1

)
=

= Γe

(
t−1/2cx±1

1 y(1)±1
) 2∏

i=1
Γe

(
cx±1

1 y
(2)
i

±1
)

Γe

(
t−1/2cx±1

2 y(1)±1
)

Γe

(
pqt3c−2

)
Γe

(
pqt2c−2

)
×

×
∮

dz⃗
(1)
1 dz⃗

(2)
2 dz⃗

(3)
2 Γe

(
pqt−1

)5 2∏
a<b

Γe

(
pqt−1z(2)

a
±1z

(2)
b

±1
) 2∏

α<β

Γe

(
pqt−1z(3)

α
±1z

(3)
β

±1
)
×

× Γe

(
t−3/2cx±1

4 z(1)±1
) 2∏

a=1
Γe

(
t−1cx±1

3 z(2)
a

±1
) 2∏

α=1
Γe

(
t−1/2cx±1

2 z(3)
α

±1
)
×
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Figure 4.16: The quiver diagram representation of E[2,12][USp(8)]. Two flipping fields γ∨
11

and γ∨
21, denoted by crosses, flip the operators Tr1

[
d

(1)
[1 d

(1)
2]

]
and Tr2

[
d

(2)
[1 d

(2)
2]

]
respectively.

×
2∏

a=1
Γe

(
t1/2z(1)±1z(2)

a
±1
) 2∏

a=1

2∏
α=1

Γe

(
t1/2z(2)

a
±1z(3)

α
±1
)
×

×
2∏

a=1
Γe

(
t1/2z(2)

a
±1y(1)±1

) 2∏
α=1

2∏
i=1

Γe

(
t1/2z(3)

α
±1y

(2)
i

±1
)
×

× Γe

(
pqt1/2c−1x±1

3 z(1)±1
) 2∏

a=1
Γe

(
pqc−1x±1

2 z(2)
a

±1
) 2∏

α=1
Γe

(
pqt−1/2c−1x±1

1 z(3)
α

±1
)

,

(4.119)

We then have shown the equality of indices

IE[2,12][USp(8)](x⃗; y⃗(2), y(1); c; t) = I
E[2,12][USp(8)](y

(1), y⃗(2); x⃗; c; pq/t) . (4.120)

The quiver diagram read from the index (4.119) is shown in Figure 4.16. The superpotential
of E[2,12][USp(8)] is

W
E[2,12][USp(8)] =

Tr1Tr2
[
A(1)q(1,2)q(1,2)

]
+ Tr2

[
A(2)

(
Tr1 q(1,2)q(1,2) + Try(1)f (2)f (2) + Tr3q(2,3)q(2,3)

)]
+

+ Tr3
[
A(3)

(
Tr2 q(2,3)q(2,3) + Try(2)f (3)f (3)

)]
+ Tr1Tr2

[
v

(1)
[1 q(1,2)d

(2)
2]

]
+ Tr2Tr3

[
v

(2)
[1 q(2,3)d

(3)
2]

]
+

+ Tr2Try(1)

[
f (2)v

(2)
[1 π

(2,3)∨
2]

]
+ Tr2Tr3Try(1)

[
f (2)q(2,3)v

(3)
[1 π

(2,4)∨
2]

]
+ Tr3Try(2)

[
f (3)v

(3)
[1 π

(3,4)∨
2]

]
+

2∑
i=1

γ∨
i1 Tri

[
d

(i)
[1 d

(i)
2]

]
, (4.121)
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which involves a set of gauge singlet operators, which contribute to the index (4.119) by

π(2,3)∨ −→ Γe

(
t−1/2cx±1

2 y(1)±1
)

,

π(2,4)∨ −→ Γe

(
t−1/2cx±1

1 y(1)±1
)

,

π(3,4)∨ −→
2∏

i=1
Γe

(
cx±1

1 y
(2)
i

±1
)

,

γ∨
11 −→ Γe

(
pqt3c−2

)
,

γ∨
21 −→ Γe

(
pqt2c−2

)
.

(4.122)

We also exhibit some gauge invariant operators

Π(1)∨ =
(
π(2,4)∨, π(2,3)∨, Tr2

[
d(2)f (2)

]
, Tr1Tr2

[
d(1)q(1,2)f (2)

])
,

Π(2)∨ =
(
π(3,4)∨, Tr3

[
d(3)f (3)

]
, Tr2Tr3

[
d(2)q(2,3)f (3)

]
, Tr1Tr2Tr3

[
d(1)q(1,2)q(2,3)f (3)

])
,

H(1)∨ = Tr2
[
f (2)f (2)

]
,

H(2)∨ = Tr3
[
f (3)f (3)

]
,

H(1,2)∨ = Tr2Tr3
[
f (2)q(2,3)f (3)

]
(4.123)

and

C∨ =


iσ2Tr1A(1) Tr1d(1)v(1) Tr1Tr2d(1)q(1,2)v(2) Tr1Tr2Tr3d(1)q(1,2)q(2,3)v(3)

−Tr1d(1)v(1) iσ2Tr2A(2) Tr2d(2)v(2) Tr2Tr3d(2)q(2,3)v(3)

−Tr1Tr2d(1)q(1,2)v(2) −Tr2d(2)v(2) iσ2Tr3A(3) Tr3d(3)v(3)

−Tr1Tr2Tr3d(1)q(1,2)q(2,3)v(3) −Tr2Tr3d(2)q(2,3)v(3) −Tr3d(3)v(3) −iσ2
∑3

i=1 TriA
(i)

 ,

(4.124)
where Π(i) is a bifundamental between USp(8)x×USp(2li)y(i) with l1 = 1 and l2 = 2, C∨ and
H(i)∨ are antisymmetrics of USp(8)x and USp(2li)y(i) respectively, and lastly H(1,2)∨ is a
bifundamental between USp(2)y(1) × USp(4)y(2) . Note that the non-abelian global symmetry
of E[2,12][USp(8)] is USp(8)x×USp(2)y(1) ×USp(4)y(2) . The operators of E[2,12][USp(8)] are
mapped to those of E[2,12][USp(8)] as follows:

Π(1) ←→ Π(1)∨ ,

Π(2) ←→ Π(2)∨ ,

H ←→ C∨ ,

C(1) ←→ H(1)∨ ,

C(2) ←→ H(2)∨ ,

C(1,2) ←→ H(1,2)∨ .

(4.125)
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Example V: ρ = σ = [23, 1]

So far we focused on cases with only one non-trivial partition, however we checked that
our construction consistently produces mirror pairs of theories also when both ρ and σ are
non-trivial (we checked this for all partitions up to N = 14). Here we exhibit one particular
example with N = 7 and ρ = σ = [23, 1], which corresponds to a self-duality. This example
exhibits diverse increments of the gauge rank along the tail, so one can see how such different
rank increments affect the number of the flipping fields in the resulting Eσ

ρ [SU(N)] theory.

We start with the E[USp(14)] theory and introduce the deformation (4.54) for ρ = σ =
[23, 1]. This deformation enforces the following specialization of fugacities, now both for x⃗

and for y⃗:

x1 = t− 1
2 x

(1)
1 , x2 = t

1
2 x

(1)
1 , x3 = t− 1

2 x
(1)
2 , x4 = t

1
2 x

(1)
2 , x5 = t− 1

2 x
(1)
3 , x6 = t

1
2 x

(1)
3 ,

y1 = t− 1
2 y

(1)
1 , y2 = t

1
2 y

(1)
1 , y3 = t− 1

2 y
(1)
2 , y4 = t

1
2 y

(1)
2 , y5 = t− 1

2 y
(1)
3 , y6 = t

1
2 y

(1)
3 .

(4.126)

We also rename x7 and y7 as follows:

x7 = x
(2)
1 , y7 = y

(2)
1 . (4.127)

Then those new variables will be the fugacities for the enhanced non-abelian global symmetry
in the IR, which is USp(6)x(1) × USp(2)x(2) × USp(6)y(1) × USp(2)y(2) for ρ = σ = [23, 1].

In addition, we introduce the extra singlets, which contribute to the index as follows:

S[23,1] −→ Γe

(
p2q2t−2

)3
Γe

(
pqt−1

)2 3∏
i<j

Γe

(
p2q2t−2x

(1)
i

±1x
(1)
j

±1
)
×

×
3∏

i<j

Γe

(
pqt−1x

(1)
i

±1x
(1)
j

±1
) 3∏

i=1
Γe

(
p3/2q3/2t− 3

2 x
(1)
i

±1x
(2)
1

±1
)

,

T[23,1] −→ Γe

(
t2
)3

Γe (t)2
3∏

i<j

Γe

(
t2y

(1)
i

±1y
(1)
j

±1
)
×

×
3∏

i<j

Γe

(
ty

(1)
i

±1y
(1)
j

±1
) 3∏

i=1
Γe

(
t3/2y

(1)
i

±1y
(2)
1

±1
)

,

O12
B −→ Γe

(
t−1c2

)
,

O21
B −→ Γe

(
p−1q−1tc2

)
,

O22
B −→ Γe

(
p−1q−1c2

)
.

(4.128)
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Figure 4.17: The quiver diagram representation of E
[23,1]
[23,1] [USp(14)]. Three flipping

fields γ11, γ21 and γ22, denoted by crosses with two different sizes, flip the operators
Tr1D

(1)
[1 D

(1)
2] , Tr2D

(2)
[1 D

(2)
2] and Tr2A(2)D

(2)
[1 D

(2)
2] respectively.

Adding the singlets and applying sequentially the Intriligator–Pouliot duality we obtain the
index of the E

[23,1]
[23,1] [USp(14)] theory

IE[23,1][USp(14)]
(
x⃗(1), x(2); y(2), y⃗(1); t; c

)
=

= Γe

(
p4q4t−3c−2

)
Γe

(
p3q3t−2c−2

)
Γe

(
p3q3t−1c−2

)
×

3∏
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(1)
2
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(1)
i

±1
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1
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(1)
i

±1
)

Γe

(
t−1/2cy
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(2)
1

±1
)
×

×
∮
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1 dz⃗

(2)
3 dz⃗
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2 Γe (t)6
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tz(2)
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(2)
1

±1
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(
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(1)
3
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±1
) 2∏
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2

±1z(3)
α

±1
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×

×
3∏
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a
±1
) 3∏

a=1

2∏
α=1

Γe

(
p1/2q1/2t−1/2z(2)

a
±1z(3)

α
±1
)
×

× Γe

(
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(1)
3

±1z(1)±1
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a=1
Γe

(
pqt1/2c−1y

(1)
2
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(1)
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(
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a
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(1)
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) 2∏
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α
±1x

(2)
1

±1
)

,

(4.129)
from which one can read off the matter content and the superpotential. The matter content
is conveniently represented using the quiver diagram, which is drawn in Figure 4.17. In
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particular we find the gauge singlets

π(2,3) −→
3∏

i=1
Γe

(
p−1/2q−1/2cy

(1)
2

±1x
(1)
i

±1
)

,

π(2,4) −→
3∏

i=1
Γe

(
p−1/2q−1/2cy

(1)
1

±1x
(1)
i

±1
)

,

π(3,4) −→ Γe

(
t−1/2cy

(1)
1

±1x
(2)
1

±1
)

,

γ11 −→ Γe

(
p4q4t−3c−2

)
,

γ21 −→ Γe

(
p3q3t−2c−2

)
,

γ22 −→ Γe

(
p3q3t−1c−2

)
,

(4.130)

and the superpotential

WE[23,1][USp(14)] =

Tr1Tr2
[
A(1)Q(1,2)Q(1,2)

]
+ Tr2

[
A(2)

(
Tr1Q(1,2)Q(1,2) + Trx(1)F (2)F (2) + Tr3Q(2,3)Q(2,3)

)]
+

+ Tr3
[
A(3)

(
Tr2Q(2,3)Q(2,3) + Trx(2)F (3)F (3)

)]
+ Tr1Tr2

[
V

(1)
[1 Q(1,2)D

(2)
2]

]
+

+ Tr2Tr3
[
V

(2)
[1 Q(2,3)D

(3)
2]

]
+ Tr2Trx(1)

[
F (2)V

(2)
[1 π

(2,3)
2]

]
+ Tr2Tr3Trx(1)

[
F (2)Q(2,3)V

(3)
[1 π

(2,4)
2]

]
+ Tr3Trx(2)

[
F (3)V

(3)
[1 π

(3,4)
2]

]
+

2∑
i=1

i∑
j=1

γij Tri

[
(A(i))j−1D

(i)
[1 D

(i)
2]

]
. (4.131)

where, as before, the subscripts 1, 2 denote the flavor indices for the corresponding SU(2) in
the saw. This superpotential is perfectly consistent with the general form of the Eσ

ρ [USp(2N)]
theory given by (4.61).

4.4 Outlook

In this chapter we introduced a class of 4d N = 1 theories that we denoted by Eσ
ρ [USp(2N)].

These admit a Lagrangian description in terms of linear quivers with symplectic gauge nodes
and with matter chiral fields in the antisymmetric, bifundamental, fundamental and singlet
representations, as schematically depicted in Figure 4.9. Moreover, we showed that these
theories are related in pairs by a mirror duality which exchanges ρ and σ. The name "mirror"
is due to the fact that it can be understood as a four-dimensional ancestor of mirror symmetry
for the 3d N = 4 T σ

ρ [SU(N)] theories. These are quiver gauge theories with unitary gauge
nodes and matter hypermultiplets in the bifundamental and fundamental representation,
and the Eσ

ρ [USp(2N)] reduce to them upon circle compactification and a suitable Coulomb
branch VEV accompanied by real mass deformations. We derived the mirror dualities, both
in 3d and in 4d, by developing a purely field theoretic strategy based on the duality web of
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E[USp(2N)] and T [SU(N)] and on the fact that certain VEVs of these theories make them
flow to Eσ

ρ [USp(2N)] and T σ
ρ [SU(N)], respectively.

There are several open questions related to the topic of this chapter. Most of them revolve
around the idea of drawing more and more analogies between three and four dimensions.
There are indeed many results that are known for the T σ

ρ [SU(N)] theories and the findings
of this chapter naturally lead us to wonder whether similar results are true also for the
Eσ

ρ [USp(2N)] theories. For example, we mentioned that the T σ
ρ [SU(N)] theories admit an

Hanany–Witten brane set-up, while we have no brane realization of the four-dimensional
Eσ

ρ [USp(2N)] theories. It would thus be very interesting to find one, since it could help us
understand new things about these new 4d theories.

Another possible line of investigation regards the structure of the moduli space of the
Eσ

ρ [USp(2N)] theories. Indeed, the T σ
ρ [SU(N)] moduli space is known to have a neat

description in terms of hyperKähler quotients [172]. It would be interesting to understand if
also the moduli space of Eσ

ρ [USp(2N)] possesses some interesting geometric structure. To
this purpose, one possibility would be to investigate limits of the superconformal index of
Eσ

ρ [USp(2N)] that are analogues of the Higgs and Coulomb limits of the superconformal
index of T σ

ρ [SU(N)] studied in [173]. In addition, the Coulomb limit of the superconformal
index of T σ

ρ [SU(N)] takes the form of Hall–Littlewood polynomials [174], so a possible 4d

version of this limit for the superconformal index of Eσ
ρ [USp(2N)] may lead to an interesting

generalization of these polynomials.
For the T σ

ρ [SU(N)] theories the holographic dual solutions are also known. These were
constructed in [175] building on earlier works in [176, 177] and they were tested by matching
the free energies in [178]. It would be interesting to understand whether also Eσ

ρ [USp(2N)]
admits a holographic dual and, in case of a positive answer, what it is. One can easily check
that the conformal anomalies of E[USp(2N)] are such that a = c at large N , which suggests
that a holographic dual for this theory does exist.

On top of trying to understand whether Eσ
ρ [USp(2N)] possesses some of these properties,

one may also wonder if a 4d uplift of other instances of 3d mirror symmetry exists, such as
the mirror dualities for circular quivers or for linear quivers but with different gauge groups
rather than unitary. One can for example consider the T σ

ρ [G] theories, which admit a quiver
description containing alternating symplectic and orthogonal gauge nodes when G is one of
the classical groups SO(N) or USp(2N). These are still related in pairs by the exchange
of ρ and σ under mirror symmetry. There are two possibilities for the 4d uplifts of these
theories and their mirror dualities. The first one is that in 4d we should consider a new class
of quiver gauge theories. The second one is that their four-dimensional ancestors are still the
Eσ

ρ [USp(2N)] theories, but in order to get the T σ
ρ [G] theories with G different from SU(N)

we may need after the 3d reduction a different combination of Coulomb branch VEV and
real mass deformation that leads to a different pattern of breaking of the symplectic gauge
groups.
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Finally, we are currently working on a new field theoretic derivation of mirror symmetry,
both in 3d and in 4d. More precisely, one can derive a large class of mirror dualities by
locally dualizing the fields in the quiver using some properties of E[USp(2N)] in 4d and
T [SU(N)] in 3d, where the latter can be obtained as a limit of the former. Remember that
the 3d mirror dualities can be understood from the brane set-ups of the theories as the action
of the SL(2,Z) symmetry of Type IIB on the various 5-branes contained in it. The local
dualizations in the quiver mimic these transformations of the branes under SL(2,Z). In this
way, one can derive in field theory the 3d dualities for both linear and circular quivers with
unitary nodes and possibly with Chern–Simons levels16 that descend from SL(2,Z) in Type
IIB, as well as their 4d counterparts. The same strategy can also be used to derive in field
theory the SL(2,Z) dualities of the 3d S-fold SCFTs [179–187] and their 4d uplifts which
haven’t appeared in the literature yet. Let us mention that a similar idea was proposed first
in 3d in [188] for quivers with gauge nodes of the same rank and in [189] for more general
quivers. In those references, some fundamental identities for the matrix integral of the S3

partition function that involved the T [SU(N)] theory were proven, which can be interpreted
as the SL(2,Z) transformations of the various 5-branes, and they were used to derive the
integral identities for the dualities of the quiver gauge theories. In our approach we are able
to give a field theory interpretation of these moves by understanding the identities associated
to the 5-brane transformations as some basic dualities enjoyed by E[USp(2N)], which plays
the role of the S generator of SL(2,Z) in the same way as T [SU(N)] is usually interpreted
as the S operator. By applying locally in the quiver these dualities in a similar way to how
the transformations of the 5-branes are applied to the brane set-up of the 3d theories, one
obtains the aforementioned algorithmic field theory derivation of mirror symmetry. We will
present the properties of E[USp(2N)] that can be understood as the SL(2,Z) operations
in [158]. Then, we will apply them to derive the 3d and 4d mirror dualities in [80]. One
outcome of this analysis that is interesting from a conceptual point of view is that all the
properties of E[USp(2N)] that we will need to obtain the mirror dualities can be derived
by just applying the Intriligator–Pouliot duality, with manipulations that are similar to
those we saw extensively in this chapter, and those of T [SU(N)] can be obtained as a limit
as usual. This implies that mirror symmetry, both in 3d and 4d, can be derived from the
Intriligator–Pouliot duality alone, even if in an intricate way.

16Chern–Simons levels can be induced by introducing (1, k) 5-branes in the brane set-up. These types of
branes are produced when acting with the T k element of SL(2,Z) on an NS5-brane.





Appendix A

Supersymmetric partition functions
conventions

A.1 Special functions

A.1.1 Multiple-sine functions

In order to introduce the multiple-sine function Sr (for more details on these and other
special functions see [65]), we first need to define the multiple-gamma function Γr

Γr(z|ω⃗) = exp
(

∂

∂s
ζr(z, s|ω⃗)|s=0

)
, (A.1)

where ζr is the multiple-zeta function

ζr(z, s|ω⃗) =
∞∑

n1,··· ,nr=0

1
(n1ω1 + · · ·nrωr + z)s

(A.2)

Then, the multiple-sine function is defined as

Sr(z|ω⃗) = Γr(z|ω⃗)−1Γr(|ω⃗| − z|ω⃗)(−1)r
, (A.3)

where |ω⃗| = ω1 + · · ·+ ωr.
The multiple-gamma function has poles at z ∈ Z≤0. This implies that the multiple-sine

function has zeroes at these points. Depending on r being even or odd, the function Sr may
have poles or additional zeroes at z = |ω⃗| − Z≤0.

In Section 2.3.4 we used several useful properties of these special functions. One of them
is the periodicity property

Sr(z + ωj |ω⃗) = Sr(z|ω⃗)
Sr−1(z|ω⃗/ωj) , (A.4)

where ω⃗/ωj = (ω1, · · · , ωj+1, ωj+1, · · · , ωr). Another important property is the reflection
property

Sr(z|ω⃗)Sr(|ω⃗| − z|ω⃗)(−1)r = 1 , (A.5)
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In particular, we needed this in the cases r = 2, 3, since the partition functions on S3 and S5

are written in terms of S2 and S3 functions respectively

S3 (z|ω1, ω2, ω3) = S3 (|ω⃗| − z|ω1, ω2, ω3) , S2 (z) = S2 (|ω⃗| − z|ω1, ω2)−1 . (A.6)

In Section 2.3.3, we actually wrote the partition function on the squashed three-sphere S3
b in

terms of a related function

sb (x) = S2

(
Q

2 − ix|b, b−1
)

(A.7)

For this special function, the reflection property (A.6) reads

sb (x) sb (−x) = 1 , (A.8)

which encodes at the level of partition functions the fact that two chiral fields χ1, χ2 become
massive and are integrated out anytime a superpotential term of the form W = χ1χ2 is
turned on.

The multiple-sine function Sr also possesses an interesting factorization property that the
reader can find for generic r in [65]. For our purposes, we only needed it in the case r = 3,
where it reads

S3 (x|ω1, ω2, ω3) = e−i π
3! B33(x)

(
e

2πi
e3

x; q−1, t

)
1

(
e

2πi
e3

x; q−1, t

)
2

(
e

2πi
e3

x; q−1, t

)
3

≡ e−i π
3! B33(x)∣∣∣∣ (e

2πi
e3

x; q−1, t

) ∣∣∣∣3
S

, (A.9)

where

q = e−2πi
e1
e3 , t = e2πi

e2
e3 (A.10)

and the parameters ei are chosen differently in each of the three sectors according to 2.3. In
the above expression, the double q-Pochhammer symbol is defined as

(x; q, t) =
∞∏

m,n=0
(1− xqmtn) . (A.11)

This possesses the analytic continuation property

(Aqmtn; q, t) = 1
(Aqm−1tn; q−1, t) . (A.12)

A.1.2 Υβ function

The contribution of a 5d N = 1 hypermultiplet to the partition function on S4×S1 is written
in terms of the Υβ, which can be defined as (for more details we refer the reader to [78])

Υβ(x|ϵ1, ϵ2) = (1− eβ)− 1
ϵ1ϵ2

(
x− ϵ1+ϵ2

2

)2 ∞∏
n1,n2=0

(1− eβ(x+n1ϵ1+n2ϵ2))(1− eβ(ϵ1+ϵ2−x+n1ϵ1+n2ϵ2))

(1− eβ
(

ϵ1+ϵ2
2 +n1ϵ1+n2ϵ2

)
)2

.

(A.13)
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This is a q-deformed version of the function Υ in terms of which the three-point function of
Liouville theory (2.16) is written and to which it reduces in the β → 0 limit

Υβ(x|ϵ1, ϵ2) −→
β→0

Υ(x|ϵ1, ϵ2) . (A.14)

From the gauge theory point of view, this limit corresponds to the dimensional reduction
from S4 × S1 to S4.

The Υβ function possesses some interesting periodicity and factorization property that
allow us to analytically continue the partition function of the WZ model on S2 × S1 to the
partition function of T2 on S4 × S1 and to factorize it in two copies of Ztop (2.84). The
periodicity property reads

Υβ(x + ϵ1|ϵ1, ϵ2) =
(

1− eβ

1− eβϵ

)1−ϵ−1
2 x

γβϵ2(xϵ−1
2 )Υβ(x|ϵ1, ϵ2) , (A.15)

where

γβ(x) = (1− eβ)1−2x

(
e1−βx; eβ

)
∞

(eβx; eβ)∞
(A.16)

we recall being the contribution of a chiral field to the partition function of a theory on
S2 × S1. Instead, the factorization property is

Υβ(x|ϵ1, ϵ2) = (1− eβ)− 1
ϵ1ϵ2

(
x− ϵ1+ϵ2

2

)2
∣∣∣∣∣∣
∣∣∣∣∣∣
(
e−βx; q, t

)
(√

t
q ; q, t

)
∣∣∣∣∣∣
∣∣∣∣∣∣
2

id

, (A.17)

where the id-norm is defined as

||(z; q, t)||2id ≡ (z; q, t)
(
z−1; q−1, t−1

)
≡ (z; q, t)

(
z̃; q̃, t̃

)
. (A.18)

and we defined the parameters

q = e−βϵ1 , t = eβϵ2 . (A.19)

A.1.3 Elliptic gamma function

Another important special function which is involved in the integral representation of the
S3 × S1 partition function is the elliptic gamma function

Γe(z) ≡ Γ (z; p, q) = ∏∞
n,m=1

1−pnqmz−1

1−pn+1qm+1z
. (A.20)

One useful property of this function is the following asymptotic behaviour:

lim
r→0

Γe

(
e2πirx; e−2πrb, e−2πrb−1) = e− iπ

6r (i Q
2 −x)sb

(
i
Q

2 − x

)
. (A.21)

In the main text we used this to study the limit from the S3× S1 to the S3
b partition function,

where the parameter r that is sent to zero is interpreted as the radius of the S1. Another
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very useful property is

Γe (x) Γe

(
pq x−1

)
= 1 , (A.22)

which encodes at the level of partition functions the fact that two chiral fields χ1, χ2 become
massive and are integrated out anytime a superpotential term of the form W = χ1χ2 is
turned on.

A.2 S2 × S1 partition function

In this appendix, we briefly review some basic facts about the S2×S1 partition function, which
is also known as the 3d supersymmetric index. When computed with the superconformal
R-symmetry it coincides with the superconformal index [28, 190, 191, 29, 30, 52]. The index
is defined as a trace over states on S2 × R. The standard definition is the following:

I(x, µ⃗) = Tr
[
(−1)2J3x∆+J3

∏
i

µTi
i

]
, (A.23)

where ∆ is the energy in units of the S2 radius (for superconformal field theories, ∆ is related
to the conformal dimension), J3 is the Cartan generator of the Lorentz SO(3) isometry of S2

and Ti are charges under non-R global symmetries. The index only receives contributions
from the states that satisfy

∆−R− J3 = 0 , (A.24)

where R is the R-charge.
The 3d supersymmetric index also admits an integral representation that is obtained by

considering it as the supersymmetric partition function on S2 × S1 and computing it with
localization techniques

I(x; {µ⃗, n⃗}) =
∑
m⃗

1
|Wm⃗|

∮
TrkG

rkG∏
i=1

dz a

2πiza
Zcl Zvec Zmat , (A.25)

where we denoted by z⃗ the fugacities parametrizing the maximal torus of the gauge group
and by m⃗ the corresponding GNO magnetic fluxes on S2. The integration contour is taken
to be the unit circle T for each integration variable and the prefactor |Wm⃗| is the dimension
of the Weyl group of the residual gauge symmetry in the monopole background labelled by
the configuration of magnetic fluxes m⃗. We also use {µ⃗, n⃗} to denote possible fugacities and
fluxes for the background vector multiplets associated with global symmetries, respectively.
The different contributions to the integrand of (A.25) are:

• the contribution from the classical action of CS and BF interactions

Zcl =
rkG∏
i=1

ωmizk mi+n
i , (A.26)

where rkG is the rank of the gauge group G and we denoted with k the CS level and with
ω and n the fugacity and the background flux for the global symmetry;
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• the contribution of the N = 2 vector multiplet

Zvec =
∏
α∈g

x− |α(m⃗)|
2 (1− (−1)α(m⃗)z⃗αx|α(m⃗)|) , (A.27)

where α are roots in the gauge algebra g and we are using the short-hand notations

z⃗α =
rkG∏
i=1

zαi
i , α(m⃗) =

rkG∑
i=1

αimi, |α(m⃗)| =
rkG∑
i=1

αimi ; (A.28)

• the contribution of an N = 2 chiral field transforming in some representation R and RF

of the gauge and the flavour symmetry respectively and with R-charge r

Zmat =
∏

ρ∈R

∏
ρ̃∈RF

(
z⃗ρ µ⃗ρ̃ xr−1

)− |ρ(m⃗)+ρ̃(n⃗)|
2 ×

×((−1)ρ(m⃗)+ρ̃(n⃗) z⃗−ρ µ⃗−ρ̃ x2−r+|ρ(m⃗)+ρ̃(n⃗)|; x2)∞
((−1)ρ(m⃗)+ρ̃(n⃗) z⃗ρ µ⃗ρ̃ xr+|ρ(m⃗)+ρ̃(n⃗)|; x2)∞

, (A.29)

where ρ and ρ̃ are the weights of R and RF respectively.

Even though we didn’t use this in the text, it is useful to apply the index to 3d supercon-
formal field theories. In which case, the index keeps track of the short multiplets of the theory,
up to recombination. It proves useful to compute the index perturbatively by expanding the
integrand in the fugacity x and taking the gauge projection

∮ dz⃗
2πiz⃗ at each order. Turning off

the background fluxes for the global symmetries, we obtain a result which is a power series
in x

I(x, {µ⃗, n⃗ = 0}) =
∞∑

p=0
χp(µ⃗) xp (A.30)

where χp(µ⃗) is the character of some representation of the global symmetry of the theory. As
demonstrated in [192] (see also [193, 141]), one can study the contribution of superconformal
multiplets to each order of x in the power series. Since the classification of the shortening
conditions for 3d superconformal algebras is known [194, 195], it is possible to obtain useful
information about the superconformal theory in question using the power series of the index,
especially its lowest orders. The coefficients of x correspond to the N = 2 relevant operators,
contributing with only a positive sign. The coefficient of x2 receives a contribution from the
N = 2 marginal operators, contributing with a positive sign, and the conserved currents,
contributing with a negative sign. This is similar to what happens for the 4d index, which
instead we intensively used to perform this type of analysis in the main text.

There exists also a slightly different definition of the index in the literature, see for
example [29, 30]. As explained in [52], this differs from the one we just reviewed for the
fact that in the trace definition (A.23) the factor (−1)2J3 is replaced by (−1)F . This is the
definition that we actually used in the main text, especially in Chapter 2 to make contact
with the free field correlators. With this other convention, the various contributions to the
integral representation of the index become:

• the contribution from the classical action of CS and BF interactions

Zcl =
rkG∏
i=1

ωmi(−zi)k mi , (A.31)
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where we turned off the background magnetic flux for the topological symmetry;

• the contribution of the vector multiplet

Zvec =
∏
α∈g

x− |α(m⃗)|
2 (1− z⃗αx|α(m⃗)|) , ; (A.32)

• the contribution of a chiral multiplet

Zmat =
∏

ρ∈R

∏
ρ̃∈RF

(
(−⃗z)ρ µ⃗ρ̃ xr−1

)− |ρ(m⃗)+ρ̃(n⃗)|
2 (z⃗−ρ µ⃗−ρ̃ x2−r+|ρ(m⃗)+ρ̃(n⃗)|; x2)∞

(z⃗ρ µ⃗ρ̃ xr+|ρ(m⃗)+ρ̃(n⃗)|; x2)∞
.

(A.33)

This definition usually differs from the one we saw before by simply a redefinition of the
fugacity ω for the topological symmetry ω → (−1)mω [52]. Indeed, when the index is
computed as a power series in x, one gets different signs for some of the terms appearing in
the expansion, specifically those carrying the fugacity ω, when using this different convention
compared to the previous one. Hence, this alternative index is not suitable for the analysis of
the various superconformal multiplets we mentioned before.

A.3 S3
b partition function

The partition function of a 3d N = 2 theory on the three-sphere was first computed using
localization techniques in [17]. The set-up considered was that of the theory on a round
sphere, namely with trivial squashing parameter b = 1, and with canonical assignment of
R-charges to the chiral fields, namely R-charge 1

2 . This result was later generalized in [16] to
the case of generic R-charges and in [18, 19] to the case of a squashed sphere S3

b , which can
be parametrized as

b2|z1|+
1
b2 |z2| = 1, z1, z2 ∈ C . (A.34)

The result is a matrix integral with the following form:

Z(m⃗, η, k) = 1
|W|

∫ +∞

−∞

rkG∏
a=1

dsa Zcl Zvec Zchir . (A.35)

where |W| is the dimension of the Weyl group associated to the gauge group G. The different
contributions to the integrand of (A.35) are:

• the contribution from the classical action of CS and BF interactions

Zcl = e2πiη
∑rkG

a=1 sae−iπk
∑rkG

a=1 s2
a , (A.36)

where rkG is the rank of the gauge group G and we denoted with k the CS level and with
η the FI parameter;

• the contribution of the N = 2 vector multiplet

Zvec = 1∏
α>0 sb

(
iQ

2 + α(s)
) , (A.37)
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where α are the positive roots of the gauge algebra g and we are using the short-hand
notations

α(s) =
rkG∏
a=1

αasa ; (A.38)

• the contribution of an N = 2 chiral field transforming in some representation R and RF

of the gauge and the flavour symmetry respectively and with R-charge r

Zchir =
∏

ρ∈RG

∏
ρ̃∈RF

sb

(
i
Q

2 − ρ(s)− ρ̃(m)− i
Q

2 r

)
, (A.39)

where ρ and ρ̃ are the weights of R and RF respectively.

As for the index, one can also extract very non-trivial information about the IR SCFT to
which the theory flows from the S3 partition function, that is with no squashing b = 1. Again,
we didn’t use this technology in the main text, but it is useful to keep in mind this possible
application of the sphere partition function. For example, the S3 partition function is very
useful for finding the superconformal R-symmetry of an IR SCFT with a weakly-coupled
UV description, as well as the central charges associated with its global symmetry currents.
These latter quantities appear in the correlation functions of such currents, and serve as
nontrivial CFT data of the theory. We point out that when b = 1 the double-sine function
that appears in the S3

b partition function reduces to the Jafferis function

sb

(
i
Q

2 (1− r)− u

)
= exp [l (1− r + iu)] , (A.40)

which is defined as [16]

l (z) = −z log
(
1− e2πiz

)
+ i

2

[
πz2 + 1

π
Li2

(
e2πiz

)]
− iπ

12 . (A.41)

To be concrete, let us consider the flat space two-point function (at separated points)
of a U(1) global symmetry current Jµ. Conformal invariance then restricts it to take the
following form:

⟨Jµ (x) Jν (0)⟩ = C

16π2

(
δµν∂2 − ∂µ∂ν

) 1
x2 . (A.42)

The number C, which is positive in a unitary theory, is defined as the corresponding central
charge.

To see how we can use the S3 partition function in order to find the IR R-symmetry
and the central charges, let us consider the space of R-symmetries parametrized by the
mixing coefficients with all abelian flavor symmetries U(1)I . That is, we consider the trial
R-symmetry

R (t) = R0 +
∑

I

tIQI , (A.43)

where R0 is some reference R-symmetry and tI and QI are the mixing coefficients and charges
of U(1)I , respectively. The S3 partition function, denoted by Z, is then a function of t when
evaluated with respect to the R-symmetry R(t). As shown in [16, 57], the value of t that
minimizes |Z(t)| is the one corresponding to the R-symmetry which appears in the N = 2
superconformal algebra. As a result, using this Z-minimization principle one is able to find
the IR R-symmetry if the partition function Z(t) is known.
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This principle can also be formulated in terms of the real part of the free energy

Re F (t) = −Re log Z . (A.44)

In this case, the superconformal R-symmetry locally maximizes Re F (t) over the space of
trial R-symmetries R(t). Denoting the corresponding value of t by tSC , we therefore have

∂

∂tI
Re F

∣∣∣∣
t=tSC

= 0 . (A.45)

The second derivative of Re F (t) at tSC also turns out to have an interesting meaning, and
in fact encodes the central charge C defined in (A.42). More explicitly, it is given by [57]
(see also [196]) (

∂

∂tI

)2
Re F

∣∣∣∣∣
t=tSC

= −π2

2 CI , (A.46)

where CI is the central charge of U(1)I . We see that in addition to the superconformal
R-symmetry, the S3 partition function can also be used to compute the global symmetry
central charges of the IR SCFT.

A.4 S3 × S1 partition function
In this appendix we briefly summarize the basic notion of the S3× S1 partition function of an
N = 1 theory, which is also known as the 4d supersymmetric index. This coincides with the
superconformal index [139, 138, 140] when computed with the superconformal R-symmetry;
see also [146] for a more comprehensive review. We follow closely the exposition of the latter
reference.

The index of a 4d N = 1 SCFT is a refined Witten index of the theory quantized on
S3 × R,

I = Tr(−1)F e−βδe−µiMi , δ = 1
2
{
Q,Q†

}
, (A.47)

where Q is one of the Poincaré supercharges, Q† = S is the conjugate conformal supercharge,
Mi are Q-closed conserved charges and µi are their chemical potentials. All the states
contributing to the index with non-vanishing weight have δ = 0; this renders the index
independent of β.

For N = 1 SCFTs, the supercharges are{
Qα, Sα = Q†αQ̃α̇, S̃ α̇ = Q̃†α̇

}
, (A.48)

where α = ± and α̇ = ±̇ are respectively the SU(2)1 and SU(2)2 indices of the isometry
group Spin(4) = SU(2)1 × SU(2)2 of S3. For definiteness, let us choose Q = Q̃−̇. With this
particular choice, it is common to define the index as

I (p, q) = Tr(−1)F pj1+j2+ 1
2 rqj2−j1+ 1

2 r . (A.49)

where p and q are fugacities associated with the supersymmetry preserving squashing of the
S3 [140]. Indeed, even if the dimension of the bosonic part of the 4d N = 1 superconformal
algebra is four, the number of independent fugacities that we can turn on in the index is two
because of the constraints δ = 0 and [Mi,Q] = 0. A possible choice for the combinations of
the bosonic generators that satisfy these requirements is ±j1 + j2 + r

2 , where j1 and j2 are the
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Cartan generators of SU(2)1 and SU(2)2, and r is the generator of the U(1)r R-symmetry.
Another parametrization of the fugacities which is common in the literature is

t = (pq)
1
2 , y =

(
p

q

) 1
2

. (A.50)

This is useful for computing the index perturbatively, namely as a power series in the fugacity
t.

The index counts gauge invariant operators that can be constructed from modes of the
fields. The latter are usually referred to as "letters" in the literature. The single-letter index
for a vector multiplet and a chiral multiplet χ(R) transforming in the R representation of
the gauge×flavour group is

iV (p, q, U) = 2pq − p− q

(1− p)(1− q)χadj (U) ,

iχ(r) (p, q, U, V ) = (pq) 1
2 rχR (U, V )− (pq) 2−r

2 χR̄ (U, V )
(1− p)(1− q) , (A.51)

where χR (U, V ) and χR̄ (U, V ) denote the characters of R and the conjugate representation
R̄, with U and V gauge and flavour group matrices, respectively.

The index can then be obtained by symmetrizing of all of such letters and then projecting
them to gauge singlets by integrating over the Haar measure of the gauge group. This takes
the general form

I (p, q, V ) =
∫

[dU ]
∏
k

PE [ik (p, q, U, V )] , (A.52)

where k labels the different multiplets in the theory, and PE[ik] is the plethystic exponential
of the single-letter index of the k-th multiplet, responsible for generating the symmetrization
of the letters. It is defined by

PE [ik (p, q, U, V )] = exp
[ ∞∑

n=1

1
n

ik (pn, qn, Un, V n)
]

. (A.53)

For definiteness, let us discuss a specific example of the SU(Nc) gauge group. The
contribution of a chiral superfield in the fundamental representation Nc or anti-fundamental
representation N̄c of SU(Nc) with R-charge r can be written in terms of elliptic gamma
functions, as follows:

PE
[
iχ(Nc) (p, q, U)

]
= ∏Nc

i=1 Γe

(
(pq) r

2 zi

)
, PE

[
iχ(N̄c) (t, y, U)

]
= ∏Nc

i=1 Γe

(
(pq) r

2 z−1
i

)
,

(A.54)

where {zi}, with i = 1, ..., Nc and ∏Nc
i=1 zi = 1, are the fugacities parametrizing the Cartan

subalgebra of SU(Nc). We will also use the shorthand notation

Γe
(
uz±n) = Γe (uzn) Γe

(
uz−n) . (A.55)
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On the other hand, the contribution of the vector multiplet in the adjoint representation of
SU(Nc), together with the SU(Nc) Haar measure, is

κNc−1

Nc!

∮
TNc

Nc−1∏
i=1

dz i

2πizi

Nc∏
k ̸=ℓ

1
Γe(zkz−1

ℓ )
· · · , (A.56)

where the dots denote that it will be used in addition to the full matter multiplets transforming
in representations of the gauge group. The integration contour is taken over the maximal
torus of the gauge group and κ is the index of U(1) free vector multiplet defined as

κ = (p; p)∞(q; q)∞ , (A.57)

where we recall the definition of the Q-Pochhammer symbol (a; b) = ∏∞
n=0 (1− abn).

In case of a USp(2Nc) gauge group, instead, the contribution of a chiral multiplet in the
fundamental representation and with R-charge r is

PE
[
iχ(Nc) (p, q, U)

]
= ∏Nc

i=1 Γe

(
(pq) r

2 z±1
i

)
, (A.58)

while the full contribution of the vector multiplet in the adjoint representation together with
the matching Haar measure and the projection to gauge singlets can be written as

κNc

2NcNc!

∮
TNc

Nc∏
i=1

dzi

2πizi

Nc∏
k<ℓ

1
Γe(z±1

k z±1
ℓ )

Nc∏
k=1

1
Γe(z±2

k )
· · · . (A.59)

At the superconformal fixed point, we employ the superconformal symmetry to extract
the information about the states. Although the index counts states up to cancellations due
to recombinations of various short superconformal multiplets to long multiplets, it has been
shown in [141] that at low orders of the expansion in t the index reliably contains information
about certain important operators. In particular, at order t2 = pq, one obtains the difference
between the marginal operators and the conserved currents. We extensively utilize the result
of the computation at this order in the main text.



Appendix B

S3
b partition function computations

B.1 Derivation of the equality (2.160) for the recombination
duality for N = 3

The identity for the partition functions of the recombination duality (2.160) can be proven
by applying iteratively the one for the Aharony duality (2.69) following the procedure we
schematically described in Subsubsection 2.4.2. Here we use that strategy explicitly at the
level of the S3

b partition function. For definiteness we focus on the case N = 3, which is
general enough to understand all the details of the derivation.

We start considering the partition function of the G[U(3)] theory, where for simplicity
we remove the contribution of the singlets βi. Consequently according to the operator map
(2.159), we expect that in the recombination dual frame the singlets βL,a are removed, while
the singlets βR,i are restored. So our starting point is

Z =
∫ du

(3)
1 du

(3)
2 du

(3)
3

3! e2πiζ
∑

a
u

(3)
a

∏3
a=1 sb

(
iQ

2 ± u
(3)
a − µ

)
∏3

a<b sb

(
iQ

2 ± (u(3)
a − u

(3)
b )
) ×

× sb

(
i
Q

2 ± (u(3) − z3)−∆
)∫ du

(2)
1 du

(2)
2

2

∏2
i,j=1 sb

(
iQ

2 + (u(2)
i − u

(2)
j )− 2mA

)
sb

(
iQ

2 ± (u(2)
1 − u

(2)
2 )
) ×

×
2∏

i=1
sb

(
±(u(2)

i − z3) + ∆−mA

)
sb

(
iQ± (u(2)

i − z2)−∆−mA

)
×

×
3∏

a=1
sb

(
±(u(2)

i − u(3)
a ) + mA

)
sb

(
i
Q

2 − 2mA

)∫
du(1) sb

(
−i

Q

2 ± (u(1) − z2) + ∆
)
×

× sb

(3
2 iQ± (u(1) − z1)−∆− 2mA

) 2∏
i=1

sb

(
±(u(1) − u

(2)
i ) + mA

)
. (B.1)
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We first want to apply Aharony duality to the U(3) integral

I3 =
∫ du

(3)
1 du

(3)
2 du

(3)
3

3! e2πiζ
∑

a
u

(3)
a

∏3
a=1 sb

(
iQ

2 ± u
(3)
a − µ

)
∏3

a<b sb

(
iQ

2 ± (u(3)
a − u

(3)
b )
) ×

×sb

(
i
Q

2 ± (u(3) − z3)−∆
) 2∏

i=1
sb

(
±(u(2)

i − u(3)
a ) + mA

)
.

(B.2)

Using (2.69), we can rewrite it as a one-dimensional integral

I3 = e2πiζ(
∑

i
u

(2)
i +z3)sb

(
i
Q

2 ± ζ + µ + ∆− 2mA

)
sb

(
i
Q

2 − 2µ

)
sb

(
i
Q

2 − 2∆
)
×

× sb

(
i
Q

2 ± z3 − µ−∆
) 2∏

i=1
sb

(
±(u(2)

i − z3)−∆ + mA

)
sb

(
±u

(2)
i − µ + mA

)
×

×
2∏

i,j=1
sb

(
−i

Q

2 + (u(2)
i − u

(2)
j ) + 2mA

)∫
dv(1) e−2πiζv(1)

sb

(
±v(1) + µ

)
×

× sb

(
±(v(1) − z3) + ∆

) 2∏
i=1

sb

(
i
Q

2 ± (v(1) − u
(2)
i )−mA

)
. (B.3)

Notice the contact term between the topological fugacity ζ and the real masses u
(2)
i for the

U(2) gauge symmetry. When we plug this back into the partition function (B.2), this has
the effect of introducing an FI contribution in the U(2) integral that was not present before
because of the monopole superpotential term M(0,±1,0) that breaks the topological symmetry
at this node. This means that applying Aharony duality we restored the topological symmetry
of the U(2) node and, since the corresponding monopole operators are charged under this
symmetry, they can’t be in the superpotential anymore. Moreover, the FI parameters of the
du(2) and the dv(1) integral are opposite, which is compatible with a monopole superpotential
term of the form M(0,±1,±1) that breaks the two topological symmetries of the corresponding
gauge nodes to the anti-diagonal combination U(1)ζ . If we also use the property of the
double-sine functions

sb (x) sb (−x) = 1 , (B.4)

which is the analogue from the point of view of partition functions of the fact that some fields
have become massive and are integrated out, we see that plugging (B.2) into (B.1) many of
the contributions cancel and we get

Z = e2πiζz3sb

(
i
Q

2 ± z3 − µ−∆
)

sb

(
i
Q

2 ± ζ + µ + ∆− 2mA

)
sb

(
i
Q

2 − 2µ

)
×

× sb

(
i
Q

2 − 2∆
)∫ du

(2)
1 du

(2)
2

2 e2πiζ
∑

i
u

(2)
i

∏2
i=1 sb

(
±u

(2)
i − µ + mA

)
sb

(
iQ

2 ± (u(2)
1 − u

(2)
2 )
) ×

× sb

(
iQ± (u(2)

i − z2)−∆−mA

)
sb

(
i
Q

2 − 2mA

)
×
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×
∫

du(1) sb

(
−i

Q

2 ± (u(1) − z2) + ∆
)

sb

(3
2 iQ± (u(1) − z1)−∆− 2mA

)
×

×
2∏

i=1
sb

(
±(u(1) − u

(2)
i ) + mA

) ∫
dv(1) e−2πiζv(1)

2∏
i=1

sb

(
i
Q

2 ± (v(1) − u
(2)
i )
)
×

× sb

(
±v(1) + µ

)
sb

(
±(v(1) − z3) + ∆

)
. (B.5)

If we reintroduce the contribution of the flipping fields βi

βi →
3∏

i=1
sb

(
−i

Q

2 + 2∆− 2(i− 3)
(

i
Q

2 −mA

))
(B.6)

on both sides of the identity we found, we recover (2.160) in the case N = 3 and k = 1.
Indeed, we can reconstruct the prefactor Λ3

1 as well as the partition functions of the G[U(2)]
and G[U(1)] glued together.

Since the contribution of the adjoint chiral canceled and since we have restored the FI
contribution, we are allowed to apply (2.69) on the U(2) integral

I2 =
∫ du

(2)
1 du

(2)
2

2 e2πiζ
∑

i
u

(2)
i

∏2
i=1 sb

(
±u

(2)
i − µ + mA

)
sb

(
iQ

2 ± (u(2)
1 − u

(2)
2 )
) ×

× sb

(
iQ± (u(2)

i − z2)−∆−mA

)
sb

(
±(u(1) − u

(2)
i ) + mA

)
sb

(
i
Q

2 ± (v(1) − u
(2)
i )
)

.

(B.7)

Doing so, we don’t replace it with a lower dimensional one as in the previous iteration,
but with another two-dimensional integral. This is due to the fact that we reached the
configuration with minimal rank and that N is odd in this case

I2 = e2πiζ(z2+u(1)+v(1))sb

(
−i

Q

2 ± ζ + µ + ∆
)

sb

(
−i

Q

2 − 2µ + 2mA

)
×

× sb

(3
2 iQ− 2∆− 2mA

)
sb

(
i
Q

2 ± z2 − µ−∆
)

sb

(
−i

Q

2 ± u(1) − µ + 2mA

)
×

× sb

(
i
Q

2 ± (u(1) − z2)−∆
)

sb

(
±v(1) − µ

)
sb

(
iQ± (v(1) − z2)−∆− 2mA

)
×

×
∫ dv

(2)
1 dv

(2)
2

2 e−2πiζ
∑

i
v

(2)
i

∏2
i=1 sb

(
iQ

2 ± v(2) + µ−mA

)
sb

(
iQ

2 ± (v(2)
i − u(1))−mA

)
sb

(
iQ

2 ± (v(2)
1 − v

(2)
2 )

) ×

× sb

(
−i

Q

2 ± (v(2)
i − z2) + ∆ + mA

)
sb

(
±(v(2)

i − v(1) + mA)
)

. (B.8)

The contact term has the effect of removing the FI contribution from the v(1) integral and
of producing one in the u(1) integral. This means that we broke the topological symmetry
on the right U(1) node and turned on a monopole superpotential for it, while we did the
opposite on the left U(1) node. Moreover, the FI parameters of the U(2) node and of the left
U(1) node are opposite, meaning that a monopole superpotential of the form M(±1,±1,0) is
turned on. Plugging (B.8) into (B.5) and simplifying the contributions of the massive fields,
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we get

Z3 = Λ3
2(mA, ∆, ζ, µ)e2πiζ(z2+z3)

3∏
n=2

sb

(
i
Q

2 ± zn − µ−∆
)
×

×
∫

du(1) e2πiζu(1)
sb

(
−i

Q

2 ± u(1) − µ + 2mA

)
sb

(3
2 iQ± (u(1) − z1)−∆− 2mA

)
×

×
∫ dv

(2)
1 dv

(2)
2

2 e−2πiζ
∑

i
v

(2)
i

∏2
i=1 sb

(
iQ

2 ± v(2) + µ−mA

)
sb

(
iQ

2 ± (v(2)
1 − v

(2)
2 )

) ×

× sb

(
i
Q

2 ± (v(2)
i − u(1))−mA

)
sb

(
−i

Q

2 ± (v(2)
i − z2) + ∆ + mA

)
×

× sb

(
i
Q

2 − 2mA

)∫
dv(1) sb

(
iQ± (v(1) − z2)−∆− 2mA

)
×

× sb

(
±(v(1) − z3) + ∆

) 2∏
i=1

sb

(
±(v(2)

i − v(1) + mA)
)

, (B.9)

where

Λ3
2(mA, ∆, ζ, µ) = sb

(
i
Q

2 ± ζ + µ + ∆− 2mA

)
sb

(
−i

Q

2 ± ζ + µ + ∆
)
×

× sb

(
i
Q

2 − 2µ

)
sb

(
−i

Q

2 − 2µ + 2mA

)
×

× sb

(
i
Q

2 − 2∆
)

sb

(3
2 iQ− 2∆− 2mA

)
. (B.10)

If we reintroduce the contribution of the flipping fields βi on both sides, we recover (2.160)
in the case N = 3 and k = 2.

Finally, we can apply (2.69) on the u(1) integral

I1 =
∫

du(1) e2πiζu(1)
sb

(
−i

Q

2 ± u(1) − µ + 2mA

)
×

× sb

(3
2 iQ± (u(1) − z1)−∆− 2mA

) 2∏
i=1

sb

(
i
Q

2 ± (v(2)
i − u(1))−mA

)
. (B.11)

Since we passed the configuration of minimal rank, we get a three-dimensional integral

I1 = e2πiζ(z3+
∑

i
v

(2)
i )sb

(
−3

2 iQ± ζ + µ + ∆ + 2mA

)
sb

(
−3

2 iQ− 2µ + 4mA

)
×

× sb

(5
2 iQ− 2∆− 4mA

)
sb

(
i
Q

2 ± z1 − µ−∆
) 2∏

i,j=1
sb

(
i
Q

2 + (v(2)
i − v

(2)
j )− 2mA

)
×

×
2∏

i=1
sb

(
−i

Q

2 ± v
(2)
i − µ + mA

)
sb

(3
2 iQ± (v(2)

i − z1)−∆− 3mA

)
×
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×
∫ dv

(3)
1 dv

(3)
2 dv

(3)
3

3! e−2πiζ
∑

a
v

(3)
a

∏3
a=1 sb

(
iQ± v

(3)
a + µ− 2mA

)
∏3

a<b sb

(
iQ

2 ± (v(3)
a − v

(3)
b )

) ×

×
2∏

i=1
sb

(
±(v(3)

a − v
(2)
i ) + mA

)
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(
−iQ± (v(3)

a − z1) + ∆ + 2mA

)
. (B.12)

If we substitute this into (B.9), we finally arrive at

Z3 = Λ3
3(mA, ∆, ζ, µ)

3∏
n=1

e2πiζznsb
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×
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(3)
3

3! e−2πiζ
∑

a
v

(3)
a

∏3
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)
×

×
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(
±(v(3)

a − v
(2)
i ) + mA

)
×
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(
i
Q
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)∫
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(
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(
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(2)
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)
, (B.13)

where

Λ3
3(mA, ∆, ζ, µ) =

3∏
n=1

sb

(
±ζ + µ + ∆−mA + (3− 2n)

(
i
Q

2 −mA

))
×

× sb

(
i
Q

2 − 2µ− 2(n− 1)
(

i
Q

2 −mA

))
×

× sb

(
i
Q

2 − 2∆ + 2(n− 1)
(

i
Q

2 −mA

))
. (B.14)

If we reintroduce the contribution of the flipping fields βi on both sides, we recover (2.160)
in the case N = 3 and k = 3.

B.2 Derivation of the equality (2.181) for the rank stabiliza-
tion duality for k = 1, 2

In this section we prove analytically the equality of the partition functions (2.181) for the
rank stabilization duality for low number of flavors, namely k = 1, 2. This can be done
through iterative applications of some basic dualities, which are the one-monopole duality
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and the Aharony duality we presented in Subsection 2.3.3. The derivation highly relies on a
stabilization property of the theory, which holds for k < N . We say that the theory is stable
if, after applying to it some of the fundamental dualities, we recover the same theory but
with the rank decreased by one unit and possibly some modification in the parameters of the
theory, such as the number of gauge singlets. In Subsection 2.3.3, we showed that the U(N)
theory with one adjoint and one fundamental flavor, which corresponds to the case k = 0, is
stable and this allowed us to reduce it to a WZ model. We will see that for a higher number
of flavors Theory A is not itself stable, but with some initial manipulations we can find a
dual frame which actually is. From this point, one can significantly simplify the integrals
using the stabilization property and get the partition function of the claimed dual.

Before starting, we quote here the identity for theS3
b partition functions associated to the

two-monopole duality we saw in Subsection 2.3.2, since we are going to need it in a couple of
occasions:

ZT1 = 1
Nc!

∫ Nc∏
i=1

dxi

∏Nc
i=1

∏Nf

a=1 sb

(
iQ

2 ± (xi + Ma)− µa

)
∏Nc

i<j sb

(
iQ

2 ± (xi − xj)
) =

= 1
(Nf −Nc − 2)!

Nf∏
a,b=1

sb

(
i
Q

2 − (µa + µb −Ma + Mb)
)
×

×
∫ Nf −Nc−2∏

i=1
dxi

∏Nf −Nc−2
i=1

∏Nf

a=1 sb (±(xi −Ma) + µa)∏Nf −Nc−2
i<j sb

(
iQ

2 ± (xi − xj)
) = ZT2 , (B.15)

where Ma, µa are real masses corresponding to the Cartan subalgebra of the diagonal and the
anti-diagonal combinations of the two SU(Nf ) flavor symmetries. Hence, the vector masses
sum to zero ∑Ma = 0, while the axial masses have to satisfy the constraint

2
Nf∑
a=1

µa = iQ(Nf −Nc − 1) . (B.16)

This balancing conditions is a consequence of the monopole superpotential, which is responsible
for breaking the U(1) axial symmetry and the topological symmetry.

Two flavors

We start considering the partition function of the k = 1 case without the contribution of the
b-fields, which we will add at the end for simplicity

Z1
N (z, τ, ζ, µ) ≡ 1

N !

∫ N∏
α=1

duα e2πiζ
∑

α
uα

∏N
α,β=1 sb

(
iQ

2 + (uα − uβ)− 2τ
)

∏N
α<β sb

(
iQ

2 ± (uα − uβ)
) ×

×
N∏

α=1
sb

(
i
Q

2 ± uα − µ

)
sb (±(uα − z) + τ) . (B.17)

We use the same deconfinement technique we used in Subsection 2.3.3 for the case k = 0,
that is we start by replacing the contribution of the adjoint chiral with an auxiliary U(N − 1)
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integral using the one-monopole duality (2.67)

Z1
N (z, τ, ζ, µ) = sb

(
i
Q

2 − 2Nτ

) 1
(N − 1)!

∫ N−1∏
α′=1

dwα′
e−2πiNτ

∑
α′ wα′∏N−1

α′<β′ sb

(
iQ

2 ± (wα′ − wβ′)
) ×

× 1
N !

∫ N∏
α=1

duα e2πi(ζ−(N−1)τ)
∑

α
uα

∏N
α=1 sb

(
iQ

2 ± uα − µ
)

sb (±(uα − z) + τ)∏N
α<β sb

(
iQ

2 ± (uα − uβ)
) ×

×
N∏

α=1

N−1∏
α′=1

sb

(
i
Q

2 ± (uα + w′
α)− τ

)
. (B.18)

This corresponds to the partition function of an auxiliary U(N − 1)× U(N) quiver gauge
theory with a single fundamental monopole turned on at the U(N) node. Then, we apply the
Aharony duality on the original integral. In contrast to the k = 0 case, because of the extra
flavor, the identity (2.69) is not an evaluation formula, but it actually yields a U(1) integral

Z1
N (z, τ, ζ, µ) = e2πi(ζ−(N−1)τ)zsb (±z − µ + τ) sb

(
i
Q

2 − 2Nτ

)
×

×sb

(
i
Q

2 − 2µ

)
sb (−ζ + µ + (2N − 3)τ) sb (ζ + µ− τ)×

×sb

(
−i

Q

2 + 2τ

)∫
du e2πi(ζ−(N−1)τ)usb (±u + µ) sb

(
i
Q

2 ± (u + z)− τ

)
×

× 1
(N − 1)!

∫ N−1∏
α=1

dwα e−2πi(ζ+τ)
∑

α
wα

∏N−1
α,β=1 sb

(
iQ

2 + (wα − wβ)− 2τ
)

∏N−1
α<β sb

(
iQ

2 ± (wα − wβ)
) ×

×
N−1∏
α=1

sb

(
i
Q

2 ± wα − µ− τ

)
sb (±(wα − u) + τ) . (B.19)

Notice that the contact terms predicted by Aharony duality had the effect of restoring the
topological symmetry at the U(N−1) node and thus of removing the monopole superpotential
(see [24] for a more exhaustive discussion of this phenomenon).

From (B.19) we can also see that the original integral was not in a stabilized form since its
structure has changed after the application of these two fundamental dualities. Nevertheless,
after performing the change of variables wi ↔ −wi, we see that in (B.19) the last integral
has the form of the original integral, but with shifted parameters, so we can still write an
iterative relation:

Z1
N (z, τ, ζ, µ) = e2πi(ζ−(N−1)τ)zsb (±z − µ + τ) sb

(
i
Q

2 − 2Nτ

)
×

×sb

(
i
Q

2 − 2µ

)
sb (−ζ + µ + (2N − 3)τ) sb (ζ + µ− τ) sb

(
−i

Q

2 + 2τ

)
×

×
∫

du e2πi(ζ−(N−1)τ)usb (±u + µ) sb

(
i
Q

2 ± (u + z)− τ

)
Z1

N−1(u, τ, ζ + τ, µ + τ) .

(B.20)

With this identity, we can show that the integral that is stabilized is actually (B.19). Indeed,
if we repeat the two previous steps, that is we iterate (B.20), we produce a second U(1)
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integral

Z1
N (z, τ, ζ, µ) = e2πi(ζ−(N−1)τ)zsb (±z − µ + τ)

2∏
j=1

sb

(
i
Q

2 − 2(N − j + 1)τ
)
×

×sb

(
i
Q

2 − 2µ− 2(j − 1)τ
)

sb (−ζ + µ + (2N − 2j − 1)τ) sb (ζ + µ + (2j − 3)τ)×

×sb

(
−i

Q

2 + 2τ

)∫
dw e2πi(ζ−(N−3)τ)wsb (±w + µ + τ)Z1

N−2(w, τ, ζ + 2τ, µ + 2τ)×

×sb

(
−i

Q

2 + 2τ

)∫
du e−4πiτusb

(
i
Q

2 ± (u− w)− τ

)
sb

(
i
Q

2 ± (u + z)− τ

)
,

(B.21)

but the u-integral can now be evaluated applying the one-monopole duality (2.67) in the
confining case:

Z1
N (z, τ, ζ, µ) = e2πi(ζ−(N−2)τ)zsb (±z − µ + τ)

2∏
j=1

sb

(
i
Q

2 − 2(N − j + 1)τ
)
×

×sb

(
i
Q

2 − 2µ− 2(j − 1)τ
)

sb (−ζ + µ + (2N − 2j − 1)τ) sb (ζ + µ + (2j − 3)τ)×

×sb

(
−i

Q

2 + 4τ

)∫
dw e2πi(ζ−(N−2)τ)wsb (±w + µ + τ) sb

(
i
Q

2 ± (w + z)− 2τ

)
×

×Z1
N−2(w, τ, ζ + 2τ, µ + 2τ) . (B.22)

Hence, we recover precisely the same structure of (B.19), but with a lower rank, some extra
gauge singlets and a shift of the parameters. In particular, the shift of the FI parameter
indicates that the oppositely charged fundamental monopoles have different topological charge
and that charge conjugation is broken in this frame. This explicitly shows that (B.19) was
indeed stable under the sequential application of one-monopole and Aharony dualities.

We can use this stabilization property to significantly simplify the integral. If we iterate
(B.20) and (2.67) n times, we get indeed

Z1
N (z, τ, ζ, µ) = e2πi(ζ−(N−n)τ)zsb (±z − µ + τ)

n∏
j=1

sb

(
i
Q

2 − 2(N − j + 1)τ
)
×

×sb (−ζ + µ + (2N − 2j − 1)τ) sb (ζ + µ + (2j − 3)τ) sb

(
i
Q

2 − 2µ− 2(j − 1)τ
)
×

×sb

(
−i

Q

2 + 2nτ

)∫
du e2πi(ζ−(N−n)τ)usb (±u + µ + (n− 1)τ) sb

(
i
Q

2 ± (u + z)− nτ

)
×

×Z1
N−n(u, τ, ζ + nτ, µ + nτ) . (B.23)
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In particular, if we set n = N in the above expression, the original gauge node is completely
confined

Z1
N (z, τ, ζ, µ) = e2πiζzsb (±z − µ + τ)

N∏
j=1

sb

(
i
Q

2 − 2jτ

)
×

×sb (−ζ + µ + (2N − 2j − 1)τ) sb (ζ + µ + (2j − 3)τ) sb

(
i
Q

2 − 2µ− 2(j − 1)τ
)
×

×sb

(
−i

Q

2 + 2Nτ

)∫
du e2πiζusb (±u + µ + (N − 1)τ) sb

(
i
Q

2 ± (u + z)−Nτ

)
.

(B.24)

Notice that the FI parameter of the remaining U(1) node is no longer shifted. This means
that the oppositely charged monopole operators have the same quantum numbers under all
the global symmetries and that charge conjugation, which was broken in all the previous
auxiliary dual frames, has been restored.

The partition function that we obtained is that of G[U(1)] with some extra gauge singlets.
In order to write the result in the desired form, we apply the Aharony duality to the U(1)
integral. This gives back another U(1) integral, but with different parameters and some
of the extra gauge singlets flipped away. Essentially, what we are doing is applying the
recombination duality we discussed in Subsection 2.4.2 in the particular case N = 1 and
k = 1. This operation might seem trivial in this case, but it occurs also for the cases of higher
number of flavors k as we will see later for k = 2. If we also add back the contribution of the
N − 1 b-fields, the final result coincides with (2.181) for k = 1

ZTA
=

N−1∏
j=1

sb

(
−i

Q

2 + 2jτ

)
Z1

N (z, τ, ζ, µ) =

= sb

(
i
Q

2 − 2Nτ

)N−1∏
j=1

sb

(
i
Q

2 − 2µ− 2(j − 1)τ
)
×

× sb (−ζ + µ + (2N − 2j − 1)τ)
N∏

j=2
sb (ζ + µ + (2j − 3)τ)×

×
∫

du e2πiζusb

(
i
Q

2 ± u− µ− (N − 1)τ
)

sb (±(u− z) + Nτ) =

=
N−1∏
j=1

sb

(
i
Q

2 − 2µ− 2(j − 1)τ
)
×

× sb (−ζ + µ + (2N − 2j − 1)τ)
N∏

j=2
sb (ζ + µ + (2j − 3)τ)×

× ZG[U(1)](z; ζ; µ + (N − 1)τ ; i
Q

2 −Nτ ; i
Q

2 − τ) = ZTB
.

(B.25)
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A useful integral identity

In order to write the matrix integral for the k = 2 case in a stable form, we will make use of
the following integral identity1:

Z =
∫ du1 du2

2 e−4πiτ(u1+u2)
∏2

α,β=1 sb

(
−iQ

2 + (uα − uβ) + 2τ
)

sb

(
iQ

2 ± (u1 − u2)
) ×

×
2∏

α,β=1
sb

(
i
Q

2 ± (uα − wβ)− τ

)
sb

(
i
Q

2 ± (uα − zβ)− τ

)
=

= e−2πiτ(z1+z2+w1+w2)sb

(
−i

Q

2 + 4τ

)
sb

(
−3

2 iQ + 6τ

)
sb

(
i
Q

2 − 2τ

)
×

×
2∏

α,β=1
sb

(
i
Q

2 ± (wα − wβ)− 2τ

) 2∏
α=1

sb

(
i
Q

2 ± (wα − z1)− 2τ

)
×

×
∫

du sb (±(u + z1) + τ) sb (iQ± (u + z2)− 3τ)
2∏

α=1
sb (±(u + wα) + τ) .

(B.26)

This identity can be proven as follows. We first apply the identity (B.15) of the S3
b partition

functions for the two-monopole duality we saw in Subsection 2.3.2 in the particular confining
case Nc = 1 and Nf = 3. This identity can also be written in the form of a star-triangle
relation also known as ultimate penthagon identity [171, 197]∫

ds Dp1(s− z1)Dp2(s− z2)Dp3(s− z3) =

=
3∏

i=1
sb(pi − p′

i) Dp′
3
(z1 − z2)Dp′

2
(z1 − z3)Dp′

1
(z2 − z3) , (B.27)

where we defined

Dα(x) = sb

(
i
Q

2 + α + x

)
sb

(
i
Q

2 + α− x

)
(B.28)

and the parameters on the two sides of the identity are related by

p′
i = −i

Q

2 − pi . (B.29)

Moreover, the identity (B.27) holds provided that the following condition should be satisfied2∑
i

pi = −iQ/2 ⇔
∑

i

p′
i = −iQ . (B.30)

1It would be interesting to interpret this identity as well as similar ones, whose 2d versions appear in the
CFT literature, as dualities for theories with monopole superpotential and both adjoint and fundamental
matter. We leave this for future investigations.

2This is the analogue of the balancing condition (2.56) due to the two-monopole superpotential, but at the
level of the S3

b partition function.
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The idea is to use it to rewrite the following combination of double-sine functions

B = sb

(
−i

Q

2 ± (u1 − u2) + 2τ

)
sb

(
i
Q

2 ± (u1 − z2)− τ

)
sb

(
i
Q

2 ± (u2 − z2)− τ

)
.

(B.31)

One can indeed verify that the constraint (B.30) is satisfied for this choice. In this way, the
contribution of the adjoint chiral Φ disappears, but at the price of introducing an additional
U(1) integral

Z = sb

(
−3

2 iQ + 4τ

)∫
ds sb (iQ± (s− z2)− 2τ)

∫ du1 du2
2 e−4πiτ(u1+u2) ×

×
∏2

α=1 sb

(
iQ

2 ± (uα − z1)− τ
)

sb (±(uα − s) + τ)∏2
β=1 sb

(
iQ

2 ± (uα − wβ)− τ
)

sb

(
iQ

2 ± (u1 − u2)
) .

(B.32)

Now we can replace the original integral with a lower dimensional one applying the one-
monopole duality (2.67). This gives

Z = e−2πiτ(z1+w1+w2)sb

(
−3

2 iQ + 4τ

)
sb

(
−i

Q

2 + 4τ

)
×

×
2∏

α,β=1
sb

(
i
Q

2 + (wα − wβ)− 2τ

) 2∏
α=1

sb

(
i
Q

2 ± (wα − z1)− 2τ

)
×

×
∫

du eiπ(iQ−4τ)usb (±(u + z1) + τ)
2∏

α=1
sb (±(u + wα) + τ)×

×
∫

ds eiπ(iQ−6τ)ssb (iQ± (s− z2)− 2τ) sb

(
i
Q

2 ± (u + s)− τ

)
. (B.33)

Finally, we can use again the one-monopole duality (2.67) to get rid of the auxiliary ds
integral since in this case it becomes an evaluation formula and obtain the desired result.

Three flavors

Again, we start considering the partition function of Theory A in the k = 2 case without the
contribution of the b-fields

Z2
N (za, τ, ζ, µ) ≡ 1

N !

∫ N∏
α=1

duα e2πiζ
∑

α
uα

∏N
α,β=1 sb

(
iQ

2 + (uα − uβ)− 2τ
)

∏N
α<β sb

(
iQ

2 ± (uα − uβ)
) ×

×
N∏

α=1
sb

(
i
Q

2 ± uα − µ

) 2∏
a=1

sb (±(uα − za) + τ) . (B.34)
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The first manipulations are still the same, that is we use the one-monopole duality (2.67) to
deconfine the adjoint chiral and replace its contribution with an auxiliary U(N − 1) integral

Z2
N (za, τ, ζ, µ) = sb

(
i
Q

2 − 2Nτ

) 1
(N − 1)!

∫ N−1∏
α′=1

dwα′
e−2πiNτ

∑
α′ wα′∏N−1

α′<β′ sb

(
iQ

2 ± (wα′ − wβ′)
) ×

× 1
N !

∫ N∏
α=1

duα e2πi(ζ−(N−1)τ)
∑

α
uα

∏N
α=1 sb

(
iQ

2 ± uα − µ
)

∏N
α<β sb

(
iQ

2 ± (uα − uβ)
) ×

×
2∏

a=1
sb (±(uα − za) + τ)

N−1∏
α′=1

sb

(
i
Q

2 ± (uα + wα′)− τ

)
(B.35)

Then, we reduce again the rank of the original integral using Aharony duality (2.69)

Z2
N (za, τ, ζ, µ) = e2πi(ζ−(N−1)τ)

∑
a

za

2∏
a,b=1

sb

(
−i

Q

2 + (za − zb) + 2τ

)
×

×
2∏

a=1
sb (±za − µ + τ) sb

(
i
Q

2 − 2Nτ

)
sb

(
i
Q

2 − 2µ

)
×

×sb (−ζ + µ + 2(N − 2)τ) sb (ζ + µ− 2τ)
∫ du1 du2

2 e2πi(ζ−(N−1)τ)
∑

a
ua ×

×
∏2

a=1 sb (±ua + µ)∏2
b=1 sb

(
iQ

2 ± (ua + zb)− τ
)

sb

(
iQ

2 ± (u1 − u2)
) ×

× 1
(N − 1)!

∫ N−1∏
α=1

dwα e−2πi(ζ+τ)
∑

α
wα

∏N−1
α,β=1 sb

(
iQ

2 ± (wα − wβ)− 2τ
)

∏N−1
α<β sb

(
iQ

2 ± (wα − wβ)
) ×

×
N−1∏
α=1

sb

(
i
Q

2 ± wα − µ− τ

) 2∏
a=1

sb (±(wα − ua) + τ) . (B.36)

In the case k = 1 that we considered in the previous section, it was at this point that we
reached the stable form of the integral. This is not true anymore and we actually need some
extra work to get the stable integral. Indeed, we can still recognize in the last integral of
(B.36) the same original structure and this allows us to write the iterative relation

Z2
N (za, τ, ζ, µ) = e2πi(ζ−(N−1)τ)

∑
a

za

2∏
a,b=1

sb

(
−i

Q

2 + (za − zb) + 2τ

)
×

×
2∏

a=1
sb (±za − µ + τ) sb

(
i
Q

2 − 2Nτ

)
sb

(
i
Q

2 − 2µ

)
×

×sb (−ζ + µ + 2(N − 2)τ) sb (ζ + µ− 2τ)
∫ du1 du2

2 e2πi(ζ−(N−1)τ)
∑

a
ua ×

×
∏2

a=1 sb (±ua + µ)∏2
b=1 sb

(
iQ

2 ± (ua + zb)− τ
)

sb

(
iQ

2 ± (u1 − u2)
) Z2

N−1(ua, τ, ζ + τ, µ + τ) ,

(B.37)
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but if we iterate this identity once we get

Z2
N (za, τ, ζ, µ) = e2πi(ζ−(N−1)τ)

∑
a

za

2∏
a,b=1

sb

(
−i

Q

2 + (za − zb) + 2τ

)
×

×
2∏

a=1
sb (±za − µ + τ)

2∏
j=1

sb

(
i
Q

2 − 2(N − j + 1)τ
)
×

×sb

(
i
Q

2 − 2µ− 2(j − 1)τ
)

sb (−ζ + µ + 2(N − j − 1)τ) sb (ζ + µ + 2(j − 2)τ)×

×
∫ dw1 dw2

2 e2πi(ζ−(N−3)τ)
∑

a
wa

∏2
a=1 sb (±wa + µ + τ)

sb

(
iQ

2 ± (w1 − w2)
) Z2

N−2(wa, τ, ζ + 2τ, µ + 2µ)×

×
∫ du1 du2

2 e−4πiτ
∑

a
ua

∏2
a,b=1 sb

(
−iQ

2 ± (ua − ub) + 2τ
)

sb

(
iQ

2 ± (u1 − u2)
) ×

×
2∏

a,b=1
sb

(
i
Q

2 ± (ua − wb)− τ

)
sb

(
i
Q

2 ± (ua + zb)− τ

)
, (B.38)

and now there is no evaluation formula for any of the two U(2) integrals which allows us to
get back to an integral of the form of (B.37). This shows that the integral is not stable yet.
Instead, we can at this point apply the basic identity we proved in the previous subsection
(B.26)

Z2
N (za, τ, ζ, µ) = e2πi(ζ−(N−2)τ)

∑
a

za

2∏
a,b=1

sb

(
−i

Q

2 + (za − zb) + 2τ

)
×

×
2∏

a=1
sb (±za − µ + τ)

2∏
j=1

sb

(
i
Q

2 − 2(N − j + 1)τ
)
×

×sb

(
i
Q

2 − 2µ− 2(j − 1)τ
)

sb (−ζ + µ + 2(N − j − 1)τ) sb (ζ + µ + 2(j − 2)τ)×

×sb

(
−i

Q

2 + 4τ

)
sb

(
−3

2 iQ + 6τ

)
sb

(
i
Q

2 − 2τ

)
×

×
∫ dw1 dw2

2 e2πi(ζ−(N−2)τ)
∑

a
wa

∏2
a,b=1 sb

(
iQ

2 + (wa − wb)− 2τ
)

sb

(
iQ

2 ± (w1 − w2)
) ×

×
2∏

a=1
sb (±wa + µ + τ) sb

(
i
Q

2 ± (wa − z1)− 2τ

)
Z2

N−2(wa, τ, ζ + 2τ, µ + 2τ)×

×
∫

du sb (±(u + z1) + τ) sb (iQ± (u + z2)− 3τ)
2∏

a=1
sb (±(u + wa) + τ) .

(B.39)
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This is the integral that is actually stable. To see this, we apply again (B.37)

Z2
N (za, τ, ζ, µ) = e2πi(ζ−(N−2)τ)

∑
a

za

2∏
a,b=1

sb

(
−i

Q

2 + (za − zb) + 2τ

) 2∏
a=1

sb (±za − µ + τ)×

×
3∏

j=1
sb

(
i
Q

2 − 2(N − j + 1)τ
)

sb

(
i
Q

2 − 2µ− 2(j − 1)τ
)

sb (−ζ + µ + 2(N − j − 1)τ)×

×sb (ζ + µ + 2(j − 2)τ) sb

(
−i

Q

2 + 4τ

)
sb

(
−3

2 iQ + 6τ

)
sb

(
i
Q

2 − 2τ

)
×

×
∫ du1 du2

2 e2πi(ζ−(N−5)τ)
∑

a
ua

∏2
a=1 sb (±ua + µ + 2τ)
sb

(
iQ

2 ± (u1 − u2)
) Z2

N−3(ua, τ, ζ + 3τ, µ + 3τ)×

×
∫

du sb (±(u− z1) + τ) sb (iQ± (u− z2)− 3τ)×

×
∫ dw1 dw2

2 e−6πiτ
∑

a
wa

∏2
a=1 sb

(
iQ

2 ± (wa + z1)− 2τ
)

sb (±(wa + u) + τ)

sb

(
iQ

2 ± (w1 − w2)
) ×

×
2∏

b=1
sb

(
i
Q

2 ± (wa − ub)− τ

)
. (B.40)

Then, we use the one-monopole duality (2.67) to replace the last integral with a U(1) one

Z2
N (za, τ, ζ, µ) = e2πi(ζ−(N−3)τ)z1e2πi(ζ−(N−2)τ)z2

2∏
a,b=1

sb

(
−i

Q

2 + (za − zb) + 2τ

)
×

×
2∏

a=1
sb (±za − µ + τ)

3∏
j=1

sb

(
i
Q

2 − 2(N − j + 1)τ
)
×

×sb

(
i
Q

2 − 2µ− 2(j − 1)τ
)

sb (−ζ + µ + 2(N − j − 1)τ) sb (ζ + µ + 2(j − 2)τ)×

×sb

(
−i

Q

2 + 6τ

)
sb

(
−3

2 iQ + 6τ

)
sb

(
i
Q

2 − 2τ

)
×

×
∫ du1 du2

2 e2πi(ζ−(N−3)τ)
∑

a
ua

∏2
a,b=1 sb

(
iQ

2 + (ua − ub)− 2τ
)

sb

(
iQ

2 ± (u1 − u2)
) ×

×
2∏

a=1
sb (±ua + µ + 2τ) sb

(
i
Q

2 ± (ua + z1)− 3τ

)
Z2

N−3(ua, τ, ζ + 3τ, µ + 3τ)×

×
∫

dw eiπ(iQ−6τ)wsb (±(w − z1) + 2τ)
2∏

a=1
sb (±(w + ua) + τ)×

×
∫

du eiπ(iQ−8τ)usb (iQ± (u + z2)− 3τ) sb

(
i
Q

2 ± (u + w)− τ

)
(B.41)
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and finally we can evaluate the last U(1) integral using again the one-monopole duality (2.67)

Z2
N (za, τ, ζ, µ) = e2πi(ζ−(N−3)τ)

∑
a

za

2∏
a,b=1

sb

(
−i

Q

2 + (za − zb) + 2τ

) 2∏
a=1

sb (±za − µ + τ)×

×
3∏

j=1
sb

(
i
Q

2 − 2(N − j + 1)τ
)

sb

(
i
Q

2 − 2µ− 2(j − 1)τ
)

sb (−ζ + µ + 2(N − j − 1)τ)×

×sb (ζ + µ + 2(j − 2)τ) sb

(
−i

Q

2 + 6τ

)
sb

(
−3

2 iQ + 8τ

)
sb

(
i
Q

2 − 2τ

)
×

×
∫ du1 du2

e
2πi(ζ−(N−3)τ)

∑
a

ua
∏2

a,b=1 sb

(
iQ

2 + (ua − ub)− 2τ
)

sb

(
iQ

2 ± (u1 − u2)
) ×

×
2∏

a=1
sb (±ua + µ + 2τ) sb

(
i
Q

2 ± (ua + z1)− 3τ

)
Z2

N−3(ua, τ, ζ + 3τ, µ + 3τ)×

×
∫

dw sb (±(w − z1) + 2τ) sb (iQ± (w − z2)− 4τ)
2∏

a=1
sb (±(w + ua) + τ) .

(B.42)

The result has exactly the same structure of (B.39), which means that the integral is now
stable. Hence, we can iterate the last three steps n times to get

Z2
N (za, τ, ζ, µ) = e2πi(ζ−(N−n)τ)

∑
a

za

2∏
a,b=1

sb

(
−i

Q

2 + (za − zb) + 2τ

)
×

×
2∏

a=1
sb (±za − µ + τ)

n∏
j=1

sb

(
i
Q

2 − 2(N − j + 1)τ
)
×

×sb

(
i
Q

2 − 2µ− 2(j − 1)τ
)

sb (−ζ + µ + 2(N − j − 1)τ) sb (ζ + µ + 2(j − 2)τ)×

×sb

(
−i

Q

2 + 2nτ

)
sb

(
−3

2 iQ + 2(n + 1)τ
)

sb

(
i
Q

2 − 2τ

)
×

×
∫ du1 du2

e
2πi(ζ−(N−n)τ)

∑
a

ua
∏2

a,b=1 sb

(
iQ

2 + (ua − ub)− 2τ
)

sb

(
iQ

2 ± (u1 − u2)
) ×

×
2∏

a=1
sb (±ua + µ + (n− 1)τ) sb

(
i
Q

2 ± (ua + z1)− nτ

)
Z2

N−n(ua, τ, ζ + nτ, µ + nτ)×

×
∫

dw sb (±(w − z1) + (n− 1)τ) sb (iQ± (w − z2)− (n + 1)τ)
2∏

a=1
sb (±(w + ua) + τ) .

(B.43)

As in the previous cases, we can use the stabilization property of the integral to significantly
simplify the result. Indeed, if we set n = N , the original U(N) gauge node is completely
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confined

Z2
N (za, τ, ζ, µ) = e2πiζ

∑
a

za

2∏
a,b=1

sb

(
−i

Q

2 + (za − zb) + 2τ

) 2∏
a=1

sb (±za − µ + τ)×

×
N∏

j=1
sb

(
i
Q

2 − 2jτ

)
sb

(
i
Q

2 − 2µ− 2(j − 1)τ
)

sb (−ζ + µ + 2(N − j − 1)τ)×

×sb (ζ + µ + 2(j − 2)τ) sb

(
−i

Q

2 + 2Nτ

)
sb

(
−3

2 iQ + 2(N + 1)τ
)

sb

(
i
Q

2 − 2τ

)
×

×
∫ du1 du2

e
2πiζ

∑
a

ua
∏2

a,b=1 sb

(
iQ

2 + (ua − ub)− 2τ
)

sb

(
iQ

2 ± (u1 − u2)
) 2∏

a=1
sb (±ua + µ + (N − 1)τ)×

×sb

(
i
Q

2 ± (ua + z1)−Nτ

)∫
dw sb (±(w − z1) + (N − 1)τ)×

×sb (iQ± (w − z2)− (N + 1)τ)
2∏

a=1
sb (±(w + ua) + τ) . (B.44)

This integral is not the partition function of G[U(2)] yet because of the contribution of the
adjoint chiral corresponding to the U(2) node. This problem can be solved by simply applying
the two-monopole duality (B.15) to the U(1) integral

Z2
N (za, τ, ζ, µ) = e2πiζ

∑
a

za

2∏
a=1

sb (±za − µ + τ)
N∏

j=1
sb

(
i
Q

2 − 2(N − j + 1)τ
)
×

×sb

(
i
Q

2 − 2µ− 2(j − 1)τ
)

sb (−ζ + µ + 2(N − j − 1)τ) sb (ζ + µ + 2(j − 2)τ)×

×sb

(
−i

Q

2 + 2Nτ

)
sb

(
−i

Q

2 + 2(N − 1)τ
)

sb

(
i
Q

2 − 2τ

)
×

×
∫ du1 du2

2
e2πiζ

∑
a

ua

sb

(
iQ

2 ± (u1 − u2)
) 2∏

a=1
sb (±ua + µ + (N − 1)τ)×

×sb

(
i
Q

2 ± (ua + z2)−Nτ

)∫
du sb

(
i
Q

2 ± (u + z1)− (N − 1)τ
)
×

×sb

(
−i

Q

2 ± (u + z2) + (N + 1)τ
) 2∏

a=1
sb

(
i
Q

2 ± (w + ua)− τ

)
.

(B.45)

Now we can apply the recombination duality (2.160) in the case N = k = 2 to flip away
some of the gauge singlets and obtain the desired form of the G[U(2)]. If we also restore the
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contribution of the N − 2 b-fields, we get indeed

ZTA
=

N−2∏
j=1

sb

(
−i

Q

2 + 2jτ

)
Z2

N (za, τ, ζ, µ) =

=
2∏

a=1
sb

(
i
Q

2 − 2(N + a− 2)τ
)N−2∏

j=1
sb

(
i
Q

2 − 2µ− 2(j − 1)τ
)
×

× sb (−ζ + µ + 2(N − j − 1)τ)
N∏

j=3
sb (ζ + µ + 2(2j − 2)τ)×

×
∫ du1 du2

2 e2πiζ
∑

a
ua

∏2
a=1 sb

(
iQ

2 ± ua − µ− (N − 2)τ
)

sb

(
iQ

2 ± (u1 − u2)
) ×

× sb (±(ua − z1) + (N − 1)τ)
∫

du sb (±(u− z1)− (N − 2)τ)×

× sb (±(u− z2) + Nτ)
2∏

a=1
sb

(
i
Q

2 ± (u− ua)− τ

)
=

=
N−2∏
j=1

sb

(
i
Q

2 − 2µ− 2(j − 1)τ
)

sb (−ζ + µ + 2(N − j − 1)τ)×

×
N∏

j=3
sb (ζ + µ + 2(2j − 2)τ)ZG[U(2)](z⃗; ζ; µ + (N − 2)τ ; i

Q

2 − (N − 1)τ ; i
Q

2 − τ) = ZTB
,

(B.46)

which precisely corresponds to (2.181) in the case k = 2.

B.3 Derivation of the flip-flip duality T ∨ ↔ T [N−1,1][SU(N)] for
N = 3

The starting point of the computation is the partition function of T [SU(3)], to which we have
to impose the constraint on the real masses (4.26) due to the superpotential deformation
(4.22)

Y2 = Y1 + 2mA . (B.47)

We know that the effect of the massive deformation (4.22) is of making some of the flavors
at the end of the tail of T [SU(3)]∨ massive. This is realized at the level of the partition
function using the identity sb (x) sb (−x) = 1. Denoting with z

(2)
a the integration variables of

the U(2) gauge node, we have (recall the partition function of T [SU(N)] (1.10))

3∏
i=1

sb

(
±(z(2)

a − Yi) + mA

)
= sb

(
z(2)

a − Y1 + mA

)
sb

(
−z(2)

a + Y1 + 3mA

)
sb

(
±(z(2)

a − Y3) + mA

)
→ sb

(
±(z(2)

a − Y1) + 2mA

)
sb

(
±(z(2)

a − Y3) + mA

)
,

(B.48)



258 S3
b partition function computations

where at the last step we redefined

Y1 → Y1 −mA . (B.49)

Hence, the partition function of the theory T ∨ is

ZT ∨ = B
∫

dz⃗
(2)
2 e2πi(X2−X3)

∑2
a=1 z

(2)
a

2∏
a,b=1

sb

(
i
Q

2 + (z(2)
a − z

(2)
b )− 2mA

) 2∏
a=1

sb

(
±(z(2)

a − Y1) + 2mA

)

× sb

(
±(z(2)

a − Y3) + mA

) ∫
dz

(1)
1 e2πi(X1−X2)z(1)

sb

(
i
Q

2 − 2mA

) 2∏
a=1

sb

(
±(z(1) − z(2)

a ) + mA

)
,

(B.50)
where B denotes the contribution of the flipping fields S[13] and Ti, T , T̃ contained in T[2,1]

B = sb

(
i
Q

2 − 2mA

)2
sb

(
i
Q

2 − 4mA

)
sb

(
i
Q

2 ± (Y1 − Y3)− 3mA

)
×

3∏
i,j=1

sb

(
−i

Q

2 + (Xi −Xj) + 2mA

)
. (B.51)

Since the adjoint chiral field at the U(1) node is just a singlet, we can apply the Aharony
duality at this node. Using (2.69) we find

ZT ∨ = Bsb

(
i
Q

2 − 2mA

)
sb

(
i
Q

2 ± (X1 −X2)− 2mA

)∫
dz⃗

(2)
2 e2πi(X1−X3)

∑2
a=1 z

(2)
a

×
2∏

a=1
sb

(
±(z(2)

a − Y1) + 2mA

)
sb

(
±(z(2)

a − Y3) + mA

) ∫
dz

(1)
1 e2πi(X1−X2)z(1)

×
2∏

a=1
sb

(
i
Q

2 ± (z(1) + z(2)
a )−mA

)
. (B.52)

This had the effect of removing the adjoint chiral of the adjacent U(2) gauge node, so now
we can apply the Aharony duality to it. In this case the rank of the group gets lowered by
one unit

ZT ∨ = B e2πi(X1−X3)(Y1+Y3)sb

(
i
Q

2 − 2mA

)
sb

(
−i

Q

2 + 4mA

)
sb

(
i
Q

2 ± (X1 −X2)− 2mA

)
× sb

(
i
Q

2 ± (X1 −X3)− 2mA

)
sb

(
−i

Q

2 ± (Y1 − Y3) + 3mA

)∫
dz

(2)
1 e2πi(X1−X3)z(2)

× sb

(
i
Q

2 ± (z(2) + Y1)− 2mA

)
sb

(
i
Q

2 ± (z(2) + Y3)−mA

)∫
dz

(1)
1 e2πi(X3−X2)z(1)

× sb

(
±(z(1) + Y1) + mA

)
sb

(
±(z(1) − z(2)) + mA

)
.

(B.53)

The last step of the computation consists of applying the Aharony duality on the first U(1)
node once again. The various flipping fields produced in the derivation perfectly cancel with
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those contained in the prefactor B and we get

ZT ∨ = e2πi(X1+X2−2X3)Y1e2πi(X1−X3)Y3

∫
dz

(2)
1 e2πi(X2−X1)z(2)

sb

(
−i

Q

2 + 2mA

)
× sb

(
i
Q

2 ± (z(2) − Y3)−mA

)∫
dz

(1)
1 e2πi(X3−X2)z(1)

sb

(
−i

Q

2 + 2mA

)
× sb

(
i
Q

2 ± (z(1) − Y1)−mA

)
sb

(
i
Q

2 ± (z(1) − z
(2)
i )−mA

)
. (B.54)

At this point we recall that Y1 and Y3 are not independent variables because of the original
tracelessness condition ∑3

i=1 Yi = 0, which after the constraint (4.26) and the shift (4.38)
becomes

2Y1 + Y3 = 0 . (B.55)

We parametrize the residual U(1)Y (1) symmetry with

Y (1) = Y1 − Y3 (B.56)

and we also perform the change of variables z(i) → z(i) + Y (1)/3, so that

ZT ∨ = e2πi(−2X1+X2+X3) Y (1)
3

∫
dz

(2)
1 e2πi(X2−X1)z(2)

sb

(
−i

Q

2 + 2mA

)
× sb

(
i
Q

2 ±
(
z(2) + Y (1)

)
−mA

)∫
dz

(1)
1 e2πi(X3−X2)z(1)

sb

(
−i

Q

2 + 2mA

)
× sb

(
i
Q

2 ± z(1) −mA

)
sb

(
i
Q

2 ± (z(1) − z
(2)
i )−mA

)
= ZT [2,1][SU(3)] . (B.57)

This coincides with the partition function of T [2,1][SU(3)] which, from the deformation of
the duality web of T [SU(N)], we expect to be flip-flip dual to theory T . The real masses
Xn correspond to the SU(3)X global symmetry of T [2,1][SU(3)] that enhances from the
U(1)2 topological symmetry that is manifest in the UV. Instead, the flavor symmetry of
T [2,1][SU(3)] is U(1)Y (1) . Hence, we showed that flip-flip duality is equivalent to sequentially
applying the Aharony duality.

B.4 Derivation of the partition functions of T[2,12][SU(4)] and
its mirror dual

Flow to T[2,12][SU(N)]

As discussed in Subsection 4.2.1, the VEV for the CB moment map of T [SU(4)] can be
studied as a linear superpotential in FFT [SU(4)] or, using flip-flip duality, as a monopole
deformation of T [SU(4)] with the addition of extra singlet fields flipping the components of
the HB and CB moment maps that remain free after the VEV. Hence, in our computation we
start from the partition function (1.10) of T [SU(4)], impose the constraint on the fugacities

Y2 = Y1 + 2mA (B.58)

due to the monopole deformation (4.33), as well as the redefinition

Y1 → Y1 −mA (B.59)
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and add the contribution of the flipping fields

ZT = B
∫

dz⃗
(3)
3 e2πi(Y3−Y4)

∑3
k=1 z

(3)
k

3∏
k,l=1

sb

(
−i

Q

2 + (z(3)
k − z

(3)
l ) + 2mA

)

×
3∏

k=1

4∏
i=1

sb

(
i
Q

2 ± (z(3)
k −Xi)−mA

)∫
dz⃗

(2)
2 e2πi(Y1−Y3+mA)

∑2
a=1 z

(2)
a

×
2∏

a,b=1
sb

(
−i

Q

2 + (z(2)
a − z

(2)
b ) + 2mA

) 2∏
a=1

3∏
k=1

sb

(
i
Q

2 ± (z(2)
a − z

(3)
k )−mA

)

×
∫

dz
(1)
1 e−4πimAz(1)

sb

(
−i

Q

2 + 2mA

) 2∏
a=1

sb

(
i
Q

2 ± (z(1) − z(2)
a )−mA

)
,(B.60)

where B is the contribution of the singlets

B =
4∏

i,j=1
sb

(
−i

Q

2 + (Xi −Xj) + 2mA

)
sb

(
i
Q

2 − 2mA

)
sb

(
i
Q

2 − 4mA

)

×
4∏

α,β=3
sb

(
i
Q

2 + (Yα − Yβ)− 2mA

) 4∏
α=3

sb

(
i
Q

2 ± (Y1 − Yα)− 3mA

)
. (B.61)

As we explained in the main text, we first apply the integral identity for the one-monopole
duality (2.67) to the U(1) gauge node where the monopole superpotential is turned on. In
this way, this node confines and we get the partition function of a dual frame of theory T
where we have no monopole superpotential

ZT = B sb

(
−i

Q

2 + 2mA

)
sb

(
−i

Q

2 + 4mA

)∫
dz⃗

(3)
3 e2πi(Y3−Y4)

∑3
k=1 z

(3)
k

×
3∏

k,l=1
sb

(
−i

Q

2 + (z(3)
k − z

(3)
l ) + 2mA

) 3∏
k=1

4∏
i=1

sb

(
i
Q

2 ± (z(3)
k −Xi)−mA

)

×
∫

dz⃗
(2)
2 e2πi(Y1−Y3)

∑2
a=1 z

(2)
a

2∏
a=1

3∏
k=1

sb

(
i
Q

2 ± (z(2)
a − z

(3)
k )−mA

)
. (B.62)

In order to find the flip-flip dual of T , we now have to sequentially apply the integral identity
for the Aharony duality (2.69). First we apply the duality to the U(2) gauge node, whose
rank decreases by one since we confined the previous node

ZT = B sb

(
−i

Q

2 + 2mA

)
sb

(
−i

Q

2 + 4mA

)
sb

(
−i

Q

2 ± (Y1 − Y3) + 3mA

)
×
∫

dz⃗
(3)
3 e2πi(Y1−Y4)

∑3
k=1 z

(3)
k

3∏
k=1

4∏
i=1

sb

(
i
Q

2 ± (z(3)
k −Xi)−mA

)

×
∫

dz
(2)
1 e2πi(Y1−Y3)z(2)

3∏
k=1

sb

(
±(z(2) + z

(3)
k ) + mA

)
. (B.63)
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Now we can apply the Aharony duality on the U(3) gauge node since its adjoint chiral became
massive and was integrated out. The rank of the node decreases to two and we get

ZT = B e2πi(Y1−Y4)
∑

i=1 Xisb

(
−i

Q

2 + 2mA

)2
sb

(
−i

Q

2 + 4mA

)
sb

(
−i

Q

2 ± (Y1 − Y3) + 3mA

)
× sb

(
−i

Q

2 ± (Y1 − Y4) + 3mA

) 4∏
i,j=1

sb

(
i
Q

2 + (Xi −Xj)− 2mA

)∫
dz⃗

(3)
2 e2πi(Y1−Y4)

∑2
k=1 z

(3)
k

×
2∏

k=1

4∏
i=1

sb

(
±(z(3)

k + Xi) + mA

) ∫
dz

(2)
1 e2πi(Y4−Y3)z(2)

2∏
k=1

sb

(
i
Q

2 ± (z(2) − z
(3)
k )−mA

)
.

(B.64)
Finally, we apply Aharony duality to the U(1) gauge node. Simplifying the contributions of
the singlets we produced in the derivation of the flip-flip dual with those contained in the
prefactor B and performing the change of variable z(2) → −z(2) we get

ZT = e2πi(Y1−Y4)
∑4

i=1 Xi

∫
dz⃗

(3)
2 e2πi(Y1−Y3)

∑2
k=1 z

(3)
k

2∏
k,l=1

sb

(
i
Q

2 + (z(3)
k − z

(3)
l )−mA

)

×
2∏

k=1

4∏
i=1

sb

(
±(z(3)

k + Xi) + mA

) ∫
dz

(2)
1 e2πi(Y3−Y4)z(2)

sb

(
i
Q

2 − 2mA

) 2∏
k=1

sb

(
±(z(2) − z

(3)
k ) + mA

)
.

(B.65)
Notice that the contact term is actually trivial, since the Xi parameters still parametrize the
Cartan of the SU(4)X HB global symmetry. Moreover, we should recall that the original Yi

real masses were parametrizing the SU(4)Y CB global symmetry of T [SU(4)], meaning that∑4
i=1 Yi = 0. After imposing the condition Y2 = Y1 + 2mA and redefining Y1 → Y1 −mA,

this translates into a condition for the real masses Y1, Yα of the remaining U(1)× SU(2) CB
global symmetry

2Y1 +
4∑

α=3
Yα = 0 . (B.66)

This means that the proper U(1)Y (1) × SU(2)Y (2) fugacities are

Y (1) = Y1

Y
(2)

1 = Y3 + Y1

Y
(2)

2 = Y4 + Y1 , (B.67)

so that ∑2
α=1 Y

(2)
α = 0. After this shift, we get

ZT =
∫

dz⃗
(3)
2 e2πi(2Y (1)−Y

(2)
1 )

∑2
k=1 z

(3)
k

2∏
k,l=1

sb

(
i
Q

2 + (z(3)
k − z

(3)
l )−mA

)

×
2∏

k=1

4∏
i=1

sb

(
±(z(3)

k + Xi) + mA

) ∫
dz

(2)
1 e2πi(Y (2)

1 −Y
(2)

2 )z(2)
sb

(
i
Q

2 − 2mA

)

×
2∏

k=1
sb

(
±(z(2) − z

(3)
k ) + mA

)
= ZT[2,12][SU(4)](X⃗; Y⃗ (2), Y (1); mA) , (B.68)
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where the contact term disappeared because of the tracelessness condition ∑4
i=1 Xi = 0.

This is precisely the partition function of T[2,12][SU(4)], whose global symmetry is indeed
SU(4)X × U(1)Y (1) × SU(2)Y (2) with the CB factor U(1)Y (1) × SU(2)Y (2) being enhanced at
low energies.

Flow to T [2,12][SU(4)]

As discussed in Subsection 4.2.1, on the mirror dual side we should consider the VEV
for the HB moment map of T [SU(4)]∨, which can be studied as a linear superpotential
in FFT [SU(4)]∨ or, using flip-flip duality, as a mass deformation of T [SU(4)]∨ with the
addition of extra singlet fields flipping the components of the HB and CB moment maps that
remain free after the vev. Hence, in our computation we start from the partition function
of T [SU(4)]∨ and impose the constraint on the fugacities Y2 = Y1 + 2mA due to the mass
deformation. Using the relation sb (x) sb (−x) = 1, we have that the contribution of some of
the chiral fields attached to the last U(3) gauge node cancel each other, meaning that they
have become massive fields. Denoting with z

(3)
k the integration variables of the U(3) gauge

node, we have
4∏

i=1
sb

(
±(z(3)

k − Yi) + mA

)
=

4∏
α=3

sb

(
±(z(3)

k − Yα) + mA

)
sb

(
z

(3)
k − Y1 + mA

)
× sb

(
−z

(3)
k + Y1 + 3mA

)
→

4∏
α=3

sb

(
±(z(3)

k − Yα) + mA

)
sb

(
±(z(3)

k − Y1) + 2mA

)
,

(B.69)

where at the last step we redefined

Y1 → Y1 −mA . (B.70)

Thus, the starting point of our computation is the partition function of the theory T ∨

ZT ∨ = B
∫

dz⃗
(3)
3 e2πi(X3−X4)

∑3
k=1 z

(3)
k

3∏
k,l=1

sb

(
i
Q

2 + (z(3)
k − z

(3)
l )− 2mA

)

×
3∏

k=1
sb

(
±(z(3)

k − Y1) + 2mA

) 4∏
α=3

sb

(
±(z(3)

k − Yα) + mA

) ∫
dz⃗

(2)
2 e2πi(X2−X3)

∑2
a=1 z

(2)
a

×
2∏

a,b=1
sb

(
i
Q

2 + (z(2)
a − z

(2)
b )− 2mA

) 2∏
a=1

3∏
k=1

sb

(
±(z(2)

a − z
(3)
k ) + mA

) ∫
dz

(1)
1 e2πi(X1−X2)z(1)

× sb

(
i
Q

2 − 2mA

) 2∏
a=1

sb

(
±(z(1) − z(2)

a ) + mA

)
.

(B.71)
Again we claim that in order to reach the flip-flip dual frame which corresponds to T [2,12][SU(4)],
we can iteratively apply the integral identity for the Aharony duality (2.69). We start from
the U(1) gauge node since its adjoint chiral field is just a singlet. This node has two flavors
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attached to it, so it remains a U(1) node and we get

ZT ∨ = B sb

(
i
Q

2 − 2mA

)
sb

(
i
Q

2 ± (X1 −X2)− 2mA

)∫
dz⃗

(3)
3 e2πi(X3−X4)

∑3
k=1 z

(3)
k

×
3∏

k,l=1
sb

(
i
Q

2 + (z(3)
k − z

(3)
l )− 2mA

) 3∏
k=1

sb

(
±(z(3)

k − Y1) + 2mA

) 4∏
α=3

sb

(
±(z(3)

k − Yα) + mA

)

×
∫

dz⃗
(2)
2 e2πi(X1−X3)

∑2
a=1 z

(2)
a

2∏
a=1

3∏
k=1

sb

(
±(z(2)

a − z
(3)
k ) + mA

) ∫
dz

(1)
1 e2πi(X1−X2)z(1)

×
2∏

a=1
sb

(
i
Q

2 ± (z(1) + z(2)
a )−mA

)
.

(B.72)
Notice that this application of the Aharony duality had the effect of removing the adjoint
chiral field for the next U(2) gauge node, which allows us to apply the duality again on this
second node. This is a U(2) gauge node with four flavors, so its rank doesn’t change

ZT ∨ = B sb

(
i
Q

2 − 2mA

)2
sb

(
i
Q

2 ± (X1 −X2)− 2mA

)
sb

(
i
Q

2 ± (X1 −X3)− 2mA

)
×
∫

dz⃗
(3)
3 e2πi(X1−X4)

∑3
k=1 z

(3)
k

3∏
k=1

sb

(
±(z(3)

k − Y1) + 2mA

) 4∏
α=3

sb

(
±(z(3)

k − Yα) + mA

)

×
∫

dz⃗
(2)
2 e2πi(X1−X3)

∑2
a=1 z

(2)
a

2∏
a=1

3∏
k=1
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(
i
Q

2 ± (z(3)
a + z

(3)
k )−mA

)∫
dz

(1)
1 e2πi(X3−X2)z(1)

×
2∏

a=1
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(
±(z(1) − z(2)

a ) + mA

)
.

(B.73)
Again, since we removed the adjoint chiral field from the U(3) node we can apply the Aharony
duality to it. In this case the rank of the group decreases, since some of the flavors that used
to be attached to it became massive, so this node is not balanced anymore. Hence, we get

ZT ∨ = B e2πi(X1−X4)(Y1+
∑2

α=1 Yα)sb

(
i
Q

2 − 2mA

)2
sb

(
−i

Q

2 + 4mA

)
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(
i
Q

2 ± (X1 −X2)− 2mA

)
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(
i
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2 ± (X1 −X3)− 2mA

)
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(
i
Q

2 ± (X1 −X4)− 2mA
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α,β=3
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(
−i

Q

2 + (Yα − Yβ) + 2mA

)

×
4∏

α=3
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−i

Q

2 ± (Y1 − Yα) + 3mA

)∫
dz⃗
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k

2∏
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(
i
Q

2 ± (z(3)
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)

×
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(
i
Q

2 ± (z(3)
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)∫
dz⃗

(2)
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a
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i
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(3)
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2∏
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(
±(z(1) − z(2)

a ) + mA

)
.

(B.74)
This concludes the first iteration of the sequential application of the Aharony duality along
the whole tail. In the second iteration, we again sequentially apply the duality starting from
the left U(1) gauge node, but stopping at the second last node in order to restore the adjoint
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chiral at the U(2) gauge node labelled by z⃗(3). From the first application of the Aharony
duality we get

ZT ∨ = B e2πi(X1−X4)(Y1+
∑2

α=1 Yα)sb

(
i
Q

2 − 2mA

)2
sb

(
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Q

2 + 4mA

)
sb

(
i
Q

2 ± (X1 −X2)− 2mA
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i
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×
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(B.75)
Now we apply the Aharony duality to the U(2) gauge node labelled by z⃗(2)

ZT ∨ = B e2πi(X1+X2−2X4)Y1e2πi(X1−X4)
∑2

α=1 Yαsb
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(B.76)
This concludes also the second iteration. The last iteration only consists of applying the
Aharony duality on the original U(1) node, so to restore the adjoint chiral also at the U(2)
node labelled by z⃗(2). Simplifying the contributions of the many singlets we produced by the
sequential application of the Aharony duality with those contained in the prefactor B and
performing the change of variables z

(2)
a → −z

(2)
a we get

ZT ∨ = e2πi(X1+X2−2X4)Y1e2πi(X1−X4)
∑4

α=3 Yα

∫
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(
i
Q

2 ± (z(3)
k + Yα)−mA

)
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×
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(B.77)

At this point we implement the redefinition of the fugacities (B.67) and we also perform the
change of variables z(i) → z(i) + Y (1). By taking into account the tracelessness conditions∑4

i=1 Xi = ∑2
α=1 Y

(2)
α = 0, we get

ZT ∨ = e4πi(X1+X2)Y (1)
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T [2,12][SU(4)](Y
(1), Y⃗ (2); X⃗; i

Q

2 −mA) .(B.78)

This is precisely the partition function of T [2,12][SU(4)], whose global symmetry is indeed
U(1)Y (1) × SU(2)Y (2) × SU(4)X with the CB factor SU(4)X being enhanced at low energies.

Combining the results (B.68) and (B.78) with the integral identity for the mirror self-
duality of T [SU(4)] (1.14) we get that the partition function of T[2,12][SU(4)] coincides with
that of T [2,12][SU(4)] provided that mA ↔ iQ

2 −mA as expected from mirror symmetry (1.12)

ZT[2,12][SU(4)](X⃗; Y⃗ (2), Y (1); mA) = Z
T [2,12][SU(4)](Y

(1), Y⃗ (2); X⃗; i
Q

2 −mA) . (B.79)





Appendix C

S3 × S1 partition function
computations

The computations we perform in 4d at the level of the S3 × S1 partition function make
intensive use of the integral identity associated with the Intriligator–Pouliot duality [81].
This identity can be written as follows:

∮
dw⃗Nc

Nc∏
i=1

2Nf∏
a=1

Γe

(
xaw±1

i

)
=

2Nf∏
a<b

Γe (xaxb)
∮

dw⃗Nf −Nc−2

Nf −Nc−2∏
i=1

2Nf∏
a=1

Γe

(
(pq)1/2x−1

a w±1
i

)
,

(C.1)

which holds provided that

2Nf∏
a=1

xa = (pq)Nf −Nc−1 (C.2)

and where we recall that the integration measure is defined as

dw⃗N = [(p; p)(q; q)]N

2N N !

N∏
i=1

dwi

2πi wi

1∏N
n=1 Γe

(
w±2

n

)∏N
n<m Γe

(
w±1

n w±1
m

) . (C.3)

This identity was proven in Theorem 3.1 of [90]. Notice that for Nc = N and Nf = N + 2 the
dual theory is a WZ model of (N + 2)(2N + 3) chiral fields and the identity (C.1) reduces to

∮
dw⃗N

N∏
i=1

2N+4∏
a=1

Γe

(
xaw±1

i

)
=

2N+4∏
a<b

Γe (xaxb) ,

(C.4)

with the condition
2N+4∏
a=1

xa = pq , (C.5)

which was first conjectured in [198]. The two conditions (C.2) and (C.5) are a consequence
of of the cancellations of the NSVZ β-function, or equivalently of the mixed U(1)R-gauge
anomaly, when the theory is a gauge theory and of the superpotential when it is a WZ.
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C.1 Derivation of the flip-flip duality of E[USp(2N)]

In Subsection 3.3.2 we briefly described how to derive the flip-flip duality of E[USp(2N)]
by using the Intriligator–Pouliot duality only. In this appendix, we use the supersymmetric
index to show how to obtain FFE[USp(2N)], the flip-flip dual of E[USp(2N)], by sequential
Intriligator–Pouliot dualities. As an explicit example, we take N = 3, which requires the
Intriligator–Pouliot duality three times in total to obtain the flip-flip dual.

The superconformal index of E[USp(6)] is given by

IE[USp(6)](x⃗; y⃗; t, c) =

=
∏3

n=1 Γe
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∮
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. (C.6)

As a first step, we apply the Intriligator–Pouliot duality on the leftmost node, which corre-
sponds to the following identity:∮

dw⃗
(1)
1 Γe(t−1cy±1
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(C.7)

Next we apply the Intriligator–Pouliot duality on the middle gauge node. We thus collect
the z(2)-dependent factors and apply the following identity:∮

dw⃗
(2)
2

2∏
i=1

3∏
n=1

Γe(t1/2w
(2)
i

±1x±1
n ) =

×
2∏

j=1
Γe(pqt−1/2c−1y±1

3 w
(2)
j

±1)
2∏

j=1
Γe(t−1/2cy±1

1 w
(2)
j

±1)
2∏

j=1
Γe(p1/2q1/2t−1/2w(1)±1w

(2)
j

±1) =

= Γe (t)2
3∏

m<n

Γe

(
tx±1

m x±1
n

) 3∏
n=1

Γe(pqc−1x±1
n y±1

3 )
3∏

n=1
Γe(cx±1

n y±1
1 )×

× Γe(p2q2t−1c−2)Γe(pqt−1y±1
3 y±1

1 )Γe(p3/2q3/2t−1c−1y±1
3 w(1)±1)×



C.2 Derivation of the index (4.89) of E[2,1][USp(2N)] 269
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(C.8)

Lastly, we collect the z(1)-dependent factors resulting from the previous two applications of
the Intriligator–Pouliot duality, which become∮
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Γe(p3/2q3/2t−1/2c−1y±1

3 w
′(2)
i

±1)Γe(t)2
2∏

i<j

Γe(tw′(2)
i

±1w
′(2)
j

±1)
∮

dw⃗
′(1)
1 ×

× Γe(pqc−1y±1
2 w′(1)±1)Γe(p−1q−1tcy±1

3 w′(1)±1)
2∏

i=1
Γe(p1/2q1/2t−1/2w′(1)±1w

′(2)
i

±1) .

(C.9)

Combining all the remaining factors, we obtain the following expression for the entire
supersymmetric index:

IE[USp(6)](x⃗; y⃗; t, c) =

=
3∏

m<n

Γe
(
tx±

mx±
n

) 3∏
m<n

Γe

(
pqt−1y±

my±
n

)
×

×
∏3

n=1 Γe(cy±1
1 x±1

n )
Γe(p−2q−2t2c2)Γe(p−1q−1tc2)Γe (c2)

∮
dw⃗

′(1)
1 dw⃗

′(2)
2 Γe (t)3

2∏
i<j

Γe

(
tw

′(2)
i

±1w
′(2)
j

±1
)
×

×
∏2

i=1 Γe(p1/2q1/2t−1/2w′(1)±1w
′(2)
i

±1)
Γe(c2y±1

2 w′(1)±1)

∏2
i=1

∏3
n=1 Γe(p1/2q1/2t−1/2w

′(2)
i

±1x±1
n )∏2

i=1 Γe(p1/2q1/2t−1/2cy±1
1 w

′(2)
i

±1)
×

× Γe(p−1q−1tcy±1
3 w′(1)±1)

2∏
i=1

Γe(p−1/2q−1/2t1/2cy±1
2 w

′(2)
i

±1) =

= IE[USp(6)](x⃗; y⃗; pq/t, c) . (C.10)

This proves the index equality of the flip-flip duality of E[USp(6)] and the sequential
applications of the Intriligator–Pouliot duality. Note that while the variables yn appear in
the opposite way compared to the original definition, the index is invariant under such a
shuffling of variables because it is a Weyl symmetry of the USp(6)y global symmetry.

C.2 Derivation of the index (4.89) of E [2,1][USp(2N)]

In this appendix we show how to obtain E[2,1][USp(6)] from its flip-flip dual T∨ by sequential
applications of the Intriligator–Pouliot duality. We start with the index of the theory T∨,
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which is given by (4.88). For N = 3, it is written as follows:

IT∨

(
x⃗; y(1), y(2); c; t

)
= Γe

(
pqt−1

)2 3∏
i<j

Γe

(
pqt−1x±1

i x±1
j

)
Γe

(
t

3
2 y(1)±1y(2)±1

) 2∏
i=1

Γe

(
ti
)

Γe

(
t−1c2

)
×

×
Γe

(
c x±1

3 y(2)±1
)∏2

i=1 Γe

(
c x±1

3

(
ti− 3

2 y(1)
)±1

)
Γe (p−2q−2t2c2) Γe (p−1q−1tc2)

∮
dz⃗

(1)
1 dz⃗

(2)
2 Γe (t)3

2∏
a<b

Γe(tz(2)
a

±1z
(2)
b

±1)×

×
∏2

a=1 Γe

(
p1/2q1/2t−1/2z(1)±1z

(2)
a

±1
)

Γe

(
p1/2q1/2t−1z

(2)
a

±1y(1)±1
)

Γe

(
p1/2q1/2t−1/2z

(2)
a

±1y(1)±1
)

Γe

(
cx±1

2 z(1)±1
)∏2

a=1 Γe

(
p1/2q1/2t−1/2c x±1

3 z
(2)
a

±1
) ×

× Γe

(
p−1q−1tcx±1

1 z(1)±1
) 2∏

a=1
Γe

(
p−1/2q−1/2t1/2cx±1

2 z(2)
a

±1
)

.

(C.11)
We first apply the Intriligator–Pouliot duality on the leftmost node, which corresponds to
the following identity:∮

dz⃗
(1)
1 Γe(p−1q−1tcx±1

1 z(1)±1)Γe(pqc−1x±1
2 z(1)±1)

2∏
a=1

Γe(p1/2q1/2t−1/2z(1)±1z(2)
a

±1) =

= Γe(p−2q−2t2c2)Γe(tx±1
1 x±1

2 )
2∏

a=1
Γe(p−1/2q−1/2t1/2cx±1

1 z(2)
a

±1)×

× Γe(p2q2c−2)
2∏

a=1
Γe(p3/2q3/2t−1/2c−1x±1

2 z(2)
a

±1)Γe(pqt−1)2
2∏

a<b

Γe(pqt−1z(2)
a

±1z
(2)
b

±1)×

×
∮

dz⃗
(1)
1 Γe(p3/2q3/2t−1c−1x±1

1 z(1)±1)Γe(p−1/2q−1/2cx±1
2 z(1)±1)

2∏
a=1

Γe(t1/2z(1)±1z(2)
a

±1) .

(C.12)

Next, we collect the z(2) dependent factors and apply the Intriligator–Pouliot duality again:
∮

dz⃗
(2)
2

2∏
a=1

Γe(p1/2q1/2t−1z(2)
a

±1y(1)±1)Γe(p1/2q1/2t−1/2z(2)
a

±1y(2)±1)×

×
2∏

a=1
Γe(p1/2q1/2t1/2c−1x±1

3 z(2)
a

±1)Γe(p−1/2q−1/2t1/2cx±1
1 z(2)

a
±1)Γe(t1/2z(1)±1z(2)

a
±1) =

= Γe(pqt−2)Γe(pqt−3/2y(1)±1y(2)±1)Γe(pqt−1/2c−1y(1)±1x±1
3 )Γe(t−1/2cy(1)±1x±1

1 )×
× Γe(p1/2q1/2t−1/2y(1)±1z(1)±1)Γe(pqc−1y(2)±1x±1

3 )Γe(cy(2)±1x±1
1 )×

× Γe(pqtc−2)Γe(tx±1
3 x±1

1 )Γe(p1/2q1/2tc−1x±1
3 z(1)±1)×

× Γe(p−1q−1tc2)Γe(p−1/2q−1/2tcx±1
1 z(1)±1)

∮
dz⃗

′(2)
1 Γe(tz′(2)±1y(1)±1)Γe(t1/2z′(2)±1y(2)±1)×

× Γe(t−1/2cx±1
3 z′(2)±1)Γe(pqt−1/2c−1x±1

1 z′(2)±1)Γe(p1/2q1/2t−1/2z(1)±1z′(2)±1) .
(C.13)
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Lastly, we collect the z(1) dependent factors, which become∮
dz⃗

(1)
1 Γe(p−1/2q−1/2cx±1

2 z(1)±1)Γe(p1/2q1/2tc−1x±1
3 z(1)±1)×

× Γe(p1/2q1/2t−1/2z(1)±1y(1)±1)Γe(p1/2q1/2t−1/2z(1)±1z′(2)±1) =
= Γe(p−1q−1c2)Γe(tx±1

2 x±1
3 )Γe(t−1/2cx±1

2 y(1)±1)Γe(t−1/2cx±1
2 z′(2)±1)Γe(pqt2c−2)×

× Γe(pqt1/2c−1x±1
3 y(1)±1)Γe(pqt1/2c−1x±1

3 z′(2)±1)Γe(pqt−1)2Γe(pqt−1y(1)±1z′(2)±1)×

×
∮

dz⃗
′(1)
1 Γe(pqc−1x±1

2 z′(1)±1)Γe(t−1cx±1
3 z′(1)±1)Γe(t1/2z′(1)±1y(1)±1)Γe(t1/2z′(1)±1z′(2)±1) .

(C.14)

Combining all the remaining factors, we obtain the following expression for the entire
supersymmetric index:

IT∨

(
x⃗; y(1), y(2); c; t

)
= Γe(t−1/2cx±1

1 y(1)±1)Γe(t−1/2cx±1
2 y(1)±1)Γe(cx±1

1 y(2)±1)Γe(pqt2c−2)×

×
∮

dz⃗
′(1)
1 dz⃗

′(2)
1 Γe

(
pqt−1

)2
Γe(t1/2z′(1)±1y(1)±1)×

× Γe(pqc−1x±1
2 z′(1)±1)Γe(t−1cx±1

3 z′(1)±1)Γe(t1/2z′(2)±1y(2)±1)
× Γe(pqt−1/2c−1x±1

1 z′(2)±1)Γe(t−1/2cx±1
2 z′(2)±1)Γe(t1/2z′(1)±1z′(2)±1) =

= IE[USp(6)][2,1]

(
x⃗; y(1), y(2); c; pq/t

)
, (C.15)

which completes the derivation.

C.3 Alternative piecewise derivation of E[N−1,1][USp(2N)] ↔
E [N−1,1][USp(2N)]

In section 4.3.2, we derived the mirror-like duality between E[N−1,1][USp(2N)] and E[N−1,1][USp(2N)]
using the E[USp(2N)] duality web. In this appendix we provide an alternative derivation of
this duality.

First we note that the 3d counterpart of this duality is the abelian mirror symmetry
which maps the 3d SQED with N flavors to an abelian quiver of N − 1 gauge nodes with
one flavor attached to each end of the quiver. This abelian mirror can be obtained by
sequential applications of the Aharony duality between the SQED with one flavor and the
XYZ WZ model [168]. Accordingly one can expect that the 4d mirror-like duality between
E[N−1,1][USp(2N)] and E[N−1,1][USp(2N)] is also obtained by sequential applications of the
Intriligator–Pouliot duality in the confining case, which indeed turns out to be true. For
example, this procedure for N = 3 is shown in Figure C.1. In this appendix, we also exhibit
the derivation of the duality in terms of the 4d superconformal index.

Let us start with E[2,1][USp(6)], whose supersymmetric index is given by

IE[2,1][USp(6)]

(
y(1), y(2); x⃗; c; pq/t

)
=

= Γe(t−1/2cx±1
1 y(1)±1)Γe(t−1/2cx±1

2 y(1)±1)Γe(cx±1
1 y(2)±1)Γe(pqt2c−2)×

×
∮

dz⃗
(1)
1 dz⃗

(2)
1 Γe

(
pqt−1

)2
Γe(t1/2z(1)±1y(1)±1)×
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Figure C.1: A direct derivation of the 4d mirror-like duality between E[N−1,1][USp(2N)] and
E[N−1,1][USp(2N)] using the Intriligator–Pouliot duality.

× Γe(pqc−1x±1
2 z(1)±1)Γe(t−1cx±1

3 z(1)±1)Γe(t1/2z(2)±1y(2)±1)×
× Γe(pqt−1/2c−1x±1

1 z(2)±1)Γe(t−1/2cx±1
2 z(2)±1)Γe(t1/2z(1)±1z(2)±1) . (C.16)

We can apply the Intriligator–Pouliot duality relating a WZ model with 15 chirals to the
USp(2) theory with six chirals to trade some of the chirals in (C.16) for a new USp(2) gauge
node:

Γe(cx±1
1 y(2)±1)Γe(pqt−1/2c−1x±1

1 z(2)±1)Γe(t1/2z(2)±1y(2)±1) =

= Γe(p2q2t−1c−2)Γe(t)Γe(c2)
∮

dz⃗
′(1)
1 Γe(p−1/2q−1/2t1/2cz′(1)±1y(2)±1)×

× Γe(p1/2q1/2t−1/2z′(1)±1x±1
1 )Γe(p1/2q1/2c−1z′(1)±1z(2)±1) , (C.17)

in this way we obtain the second quiver in Figure C.1.

We then observe that collecting the factors depending on z(2), we can apply the Intriligator–
Pouliot duality to confine the second node in the second quiver in Figure C.1∮

dz⃗
(2)
1 Γe(t1/2z(1)±1z(2)±1)Γe(t−1/2cx±1

2 z(2)±1)Γe(p1/2q1/2c−1z′(1)±1z(2)±1) =

= Γe(cz(1)±1x±1
2 )Γe(p1/2q1/2t−1/2x±1

2 z′(1)±1)Γe(p1/2q1/2t1/2c−1z(1)±1z′(1)±1)×
× Γe(t)Γe(t−1c2)Γe(pqc−2) , (C.18)

we then arrive at the third quiver in Figure C.1.
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After this, we collect the factors depending on z(1) and apply again the Intriligator–Pouliot
duality to confine this node∮

dz⃗
(1)
1 Γe(t1/2z(1)±1y(1)±1)Γe(t−1cz(1)±1x±1

3 )Γe(p1/2q1/2t1/2c−1z(1)±1z′(1)±1) =

= Γe(t−1/2cx±1
3 y(1)±1)Γe(p1/2q1/2t−1/2x±1

3 z′(1)±1)Γe(p1/2q1/2tc−1y(1)±1z′(1)±1)×
× Γe(t)Γe(t−2c2)Γe(pqtc−2) . (C.19)

Collecting the remaining factors, we obtain the partition function of the last quiver in Figure
C.1

IE[2,1][USp(6)]

(
y(1), y(2); x⃗; c; pq/t

)
=

=
∏3

i=1 Γe

(
t−1/2cy(1)±1x±1

i

)
Γe (p−1q−1tc2)

∮
dz⃗

′(1)
1 Γe (t) Γe

(
p1/2q1/2tc−1y(1)±1z′(1)±1

)
×

× Γe

(
p−1/2q−1/2t1/2cy(2)±1z′(1)±1

) 3∏
i=1

Γe

(
p1/2q1/2t−1/2x±1

i z′(1)±1
)

=

= IE[2,1][USp(6)]
(
x⃗; y(2), y(1); c; t

)
, (C.20)

which coincides with the supersymmetric index of E[2,1][USp(6)] given in (4.84). Applying
this procedure for generic N we can prove the identity between the indices of IE[N−1,1][USp(2N)]
and IE[N−1,1][USp(2N)].





Appendix D

Anomalies from the 6d E-string
theory

In this appendix we derive the predicted anomalies from 6d for the 4d models obtained
compactifying the E-string theory on a generic Riemann surface of genus g with s punctures
and a general flux for the 6d global symmetry. We also compute the anomalies for the flavor
symmetry that descend from the SU(2)ISO isometry in the case in which the Riemann surface
is S2.

We start by writing the 6d anomaly polynomial eight-form for the rank N E-string theory
as given in [116]

IE−string
8 = N

(
4N2 + 6N + 3

)
24 C2

2 (R)2 + (N − 1)
(
4N2 − 2N + 1

)
24 C2

2 (L)2

−N
(
N2 − 1

)
3 C2 (R)2 C2 (L)2 + (N − 1) (6N + 1)

48 C2 (L)2 p1 (T )

−N (6N + 5)
48 C2 (R)2 p1 (T ) + N (N − 1)

120 C2 (L)2 C2 (E8)248

−N (N + 1)
120 C2 (R)2 C2 (E8)248 + N

240p1 (T ) C2 (E8)248

+ N

7200C2 (E8)2
248 + (30N − 1) 7p1 (T )− 4p2 (T )

5760 , (D.1)

where Cn(G)R is the n-th Chern class of the group G in the representation R. In particular,
C2(R)2 and C2(L)2 stand for the second Chern class of SU(2)R and SU(2)L, respectively, in
the doublet representation. Moreover, p1(T ) and p2(T ) denote the first and second Pontryagin
classes of the tangent bundle T .

We wish to write the anomalies under the decomposition

E8 → E7 × U(1)c → SU(8)u × U(1)c →
8∏

a=1
U(1)ua × U(1)c , (D.2)

with the constraint that U(1)u8 = −∑7
a=1 U(1)ua . Thus, we first want to decompose the E8

Chern classes to the Chern classes of E7 and U(1)c. Using the decomposition

248→ (133)⊕ (56)
(
c + c−1

)
⊕
(
c2 + 1 + c−2

)
, (D.3)
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We can substitute the following Chern classes:

C2 (E8)248 = −60 C2
1 (c) + C2 (E7)133 + 2 C2 (E7)56 . (D.4)

Next, we further break E7 → SU(8)u using the branching rules

56 → (28)⊕
(
28
)

,

133 → (63)⊕ (70) . (D.5)

Translating to the Chern classes substitutions

C2 (E7)56 = C2 (SU (8))28 + C2 (SU (8))28 = 12 C2 (SU (8))8 ,

C2 (E7)133 = C2 (SU (8))63 + C2 (SU (8))70 = 36 C2 (SU (8))8 , (D.6)

where in the second equalities we used the fact that C2 (G)R1
/TG (R1) = C2 (G)R2

/TG (R2),
with TG (R) standing for the Dynkin index of the representation R of the group G (a.k.a. quadratic
Casimir).

The final step in the decomposition is the one taking SU(8)u → U(1)7 with the well
known branching rule

8→
8∑

i=1
ua , (D.7)

with the constraint u8 = ∏7
i=1 u−1

i . In terms of Chern classes it translates into

C2 (SU (8))8 = −1
2

8∑
a=1

C2
1 (U(1)ua) . (D.8)

Gathering all the decompositions together, we find that we simply need to substitute

C2 (E8)248 = −60 C2
1 (c)− 30

8∑
a=1

C2
1 (U(1)ua) (D.9)

in the above anomaly polynomial.

In the main text we also consider models with flux in the Cartan of SU(2)L global
symmetry. In this case we should break SU(2)L → U(1)t by setting the Chern classes as
follows:

C2 (L)2 = −C2
1 (t) . (D.10)

After the above substitutions, we obtain the 6d 8-form anomaly polynomial written in
terms of Chern classes for the U(1) symmetries in the Cartan of the 6d global symmetry,
including the R-symmetry. The next step consists of compactifying the theory on a Riemann
surface Cg of genus g. At the level of the Pontryagin classes this means

p1(T6d) = p1(T4d) + e2, p2(T6d) = p2(T4d) + p1(T4d)e2 , (D.11)
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where e is the Euler class of the Riemann surface. We also want to turn on fluxes nt for
U(1)t, nc for U(1)c and na for U(1)ua through the Riemann surface, meaning

C6d
1 (t) = C4d

1 (t)− nt
e

2(1− g)
C6d

1 (c) = C4d
1 (c)− nc

e

2(1− g)
C6d

1 (ua) = C4d
1 (ua)− na

e

2(1− g) , (D.12)

where the Chern classes for the SU(8) Cartan satisfy C4d
1 (u8) = −∑7

a=1 C4d
1 (ua). For the

R-symmetry we turn on a very specific flux which is the one needed to perform the topological
twist that preserves half of the supercharges in the compactification. This amounts to

C6d
2 (R)2 = −C6d

1 (R)2, C6d
1 (R) = C4d

1 (R)− e

2 . (D.13)

When we compactify our theory on a generic Riemann surface, only the terms linear in e out
of the full 8-form anomaly polynomial contribute and their contribution can be computed
using the Gauss–Bonnet theorem ∫

Cg

e = 2(1− g) . (D.14)

In this way we get the 6-form anomaly polynomial I6 of the 4d theory, out of which we can
read all the anomalies for the 4d global symmetries that descend from 6d

Tr U(1)i = −24I6
∣∣
C4d

1 (U(1)i)p1(T4d),

Tr U(1)iU(1)jU(1)k = dijkI6
∣∣
C4d

1 (U(1)i)C4d
1 (U(1)j)C4d

1 (U(1)k) , (D.15)

where dijk = m! with m the number of equal indices between i, j and k. Eventually we find
the following 4d anomalies:

Tr
(
U(1)3

R

)
=
(

g + s

2 − 1
)

N
(
4N2 + 6N + 3

)
,

Tr (U(1)R) = −
(

g + s

2 − 1
)

N (6N + 5) ,

Tr
(
U(1)3

c

)
= −12Nnc, Tr (U(1)c) = −12Nnc ,

Tr
(
U(1)3

ua

)
= −6N (na − n8) , Tr (U(1)ua) = −6N (na − n8) ,

Tr
(
U(1)RU(1)2

c

)
= −2

(
g + s

2 − 1
)

N (N + 1) , Tr
(
U(1)2

RU(1)c

)
= 2N (N + 1) nc ,

Tr
(
U(1)RU(1)2

ua

)
= −2

(
g + s

2 − 1
)

N (N + 1) ,

Tr
(
U(1)2

RU(1)ua

)
= N (N + 1) (na − n8) ,

Tr (U(1)RU(1)uaU(1)ub
) = −

(
g + s

2 − 1
)

N (N + 1) ,

Tr
(
U(1)cU(1)2

ua

)
= −4Nnc, Tr

(
U(1)2

cU(1)ua

)
= −2N (na − n8) ,
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Tr
(
U(1)uaU(1)2

ub

)
= −2N (na + nb − 2n8) , Tr (U(1)cU(1)uaU(1)ub

) = −2Nnc ,

Tr (U(1)uaU(1)ub
U(1)ud

) = −N (na + nb + nd − 3n8) ,

Tr
(
U(1)3

t

)
= − (N − 1)

(
4N2 − 2N + 1

)
nt, Tr (U(1)t) = − (N − 1) (6N + 1) nt ,

Tr
(
U(1)RU(1)2

t

)
= −4

3

(
g + s

2 − 1
)

N
(
N2 − 1

)
,

Tr
(
U(1)2

RU(1)t

)
= 4

3N
(
N2 − 1

)
nt ,

Tr
(
U(1)tU(1)2

c/ua

)
= −2N (N − 1) nt, Tr

(
U(1)2

t U(1)c

)
= −2N (N − 1) nc ,

Tr
(
U(1)2

t U(1)ua

)
= −N (N − 1) (na − n8) ,

Tr (U(1)tU(1)uaU(1)ub
) = −N (N − 1) nt , (D.16)

with the constraint n8 = −∑7
a=1 na and where we also shifted g → g + s

2 to include the
contribution of possible s punctures that the Riemann surface may possess. The rest of the
anomalies that don’t appear vanish. Moreover, the 6d R-symmetry used to computed the
anomalies and the 4d R-symmetry used in the main text are related by R6d = R4d + qt, where
qt denotes the charge under U(1)t.

When the Riemann surface possesses some isometry, this manifests itself as a flavor
symmetry from the point of view of the 4d theory. We can then compute the anomalies for
such a symmetry starting from the 8-form anomaly polynomial of the 6d theory [199] and for
this we will follow the discussion of [130] (See [200–202] for earlier application in physics.). In
the main text we are also interested in the case in which the surface is a two-sphere, whose
isometry group is SO(3)ISO ∼= SU(2)ISO. The anomalies for this symmetry can be computed
following the same procedure that led us to (3.4) by just taking into account that, from the
8-form anomaly polynomial, we now receive contributions also from terms which are cubic in
the Euler class e. This follows from the fact that now e fibers the surface in a non-trivial way
over the 4d space. Their contribution can be computed using the Bott–Cattaneo formula
[129], which in general states that∫

S2
e2s+1 = 2p1(SO(3)ISO)s,

∫
S2

e2s = 0 , (D.17)

where p1(SO(3)ISO) is the first Pontryagin class of the real vector bundle for the SO(3)ISO
isometry of S2. In particular, for s = 0 we recover the usual Gauss–Bonnet theorem (D.14)
for the two-sphere, while for s = 1 we get the formula that we need for evaluating the integral
of e3 ∫

S2
e3 = −2C2(SU(2)ISO)3 , (D.18)

where we used that p1(SO(3)ISO) = −C2(SU(2)ISO)3 when we think of SO(3)ISO ∼= SU(2)ISO.
In this way we get additional terms in the 6-form anomaly polynomial of the 4d theory that
are proportional to C2(SU(2)ISO)3, from which we can read off the anomalies for the 4d
flavor symmetry SU(2)ISO. Using the fact that

Tr
(
G2 U(1)

)
= −TG(R)I6

∣∣
C2(G)RC1(U(1)) , (D.19)
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and that the Dynkin index of the adjoint representation of SU(2)ISO is 2, we find

Tr
(
SU(2)2

ISOU(1)R

)
= N(N + 1)

12

(
−8 + 6n2

c + 4(N − 1)n2
t − 4N + 3

8∑
a=1

n2
a

)

Tr
(
SU(2)2

ISOU(1)t

)
= −N − 1

12 nt

(
−1 + 2N(3n2

c − 5) + (4N2 − 2N + 1)n2
t +

+N(−4N + 3
8∑

a=1
n2

a)
)

Tr
(
SU(2)2

ISOU(1)c

)
= −N

2 nc

(
−3 + 2n2

c + (N − 1)n2
t −N +

8∑
a=1

n2
a

)

Tr
(
SU(2)2

ISOU(1)ua

)
= −N

4 (na − n8)
(
−3 + 2n2

c + (N − 1)n2
t −N +

8∑
a=1

n2
a

)
.

(D.20)

Note that the anomalies of SU(2)ISO depend on fluxes qualitatively in a different way than
the ones for other symmetries. Namely these are non-linear in the fluxes. In particular this
implies that the correct relation of the U(1)f symmetry to the Cartan of SU(2)ISO depends
on the fluxes.

We would like to give a prediction for the mixing of the U(1)f symmetry appearing in
(3.137) with fugacity f and other U(1) symmetries. Such mixing is required when generating
a flux sphere in order to get an enhancement of symmetry to the isometry symmetry of a
sphere given by SU(2)ISO. Finding the mixing can be done in an algorithmic fashion by
comparing the anomalies involving a generally mixed U(1)f with the ones predicted from 6d
given in (D.20). Building a sphere involves generally two caps and a series of tubes in glued
in between them. We will fix the initial isometry U(1)f symmetry on one of the caps to be
the one naturally derived from the tube in (3.137) and set the rest of the U(1)f symmetries
of the tubes and the other cap to mix with the other U(1)’s such that all the mixed gauge
anomalies vanish. In this construction the mixing is given by

qmixed
f = qf + (nt + 1)qt + (nc − 1)qc +

7∑
i=1

(
nai −

1
4

)
qai , (D.21)

where qm denotes the charge of a chiral multiplet under U(1)m, and nm denote the flux of
the sphere under U(1)m. One can see that all the expected examples in Subsection 3.5 obey
this mixing prescription.
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