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6 Abstract

7 Radon is a noble gas that occurs in nature as a decay product of uranium. Radon is the principal contributor to natural

8 background radiation and is considered to be one of the major leading causes of lung cancer. The main concern revolves

9 around indoor environments where radon accumulates and reaches high concentrations. In this paper, a semiparametric

10 random-effect M-quantile model is introduced to model radon concentration inside a building, and a way to estimate the

11 model within the framework of robust maximum likelihood is presented. Using data collected in a monitoring survey

12 carried out in the Lombardy Region (Italy) in 2003–2004, we investigate the impact of a number of factors, such as

13 geological typologies of the soil and building characteristics, on indoor concentration. The proposed methodology permits

14 the identification of building typologies prone to a high concentration of the pollutant. It is shown how these effects are

15 largely not constant across the entire distribution of indoor radon concentration, making the suggested approach preferable

16 to ordinary regression techniques since high concentrations are usually of concern. Furthermore, we demonstrate how our

17 model provides a natural way of identifying those areas more prone to high concentration, displaying them by thematic

18 maps. Understanding how buildings’ characteristics affect indoor concentration is fundamental both for preventing the gas

19 from accumulating in new buildings and for mitigating those situations where the amount of radon detected inside a

20 building is too high and has to be reduced.

21

22 Keywords Environmental radioactivity � Building factors � Radon-prone areas � Hierarchical mixed models �

23 Penalised splines � Lombardy region

24

25 1 Introduction

26 Radon (the 222Rn isotope) is a noble, radioactive gas nat-

27 urally occurring as a decay product of uranium. It is a gas

28 without colour or smell that is detectable only by spe-

29 cialised measurement devices and represents the main

30 contributor to natural background radiation. The becquerel

31 (Bq) is the standard international unit for radon activity i.e.

32 the amounts of radioactive material, and radon activity

33 concentration is measured in Bq/m3.

34Evidence since the sixteenth century suggests that

35exposure to elevated concentrations of radon and radon

36progeny is a potential cause of the high prevalence of lung

37cancer mortality among miners (Jacobi 1993). However, it

38is only since the 1970s that human exposure to radon

39became of general concern. Radon is present both indoors

40and outdoors. While outdoors, its concentration in the air is

41diluted to a low level and therefore does not pose any

42significant health problems. Indoor concentrations are far

43higher simply because the gas enters into a smaller space

44and accumulates there. Hence, this paper focusses on

45indoor radon concentration (IRC), since it is in the indoor

46environment that radon becomes a serious health concern.

47Extensive epidemiological studies (Lubin and Boice

481997; Kreienbrock et al. 2001; Darby et al. 2005; Krewski

49et al. 2005; Tiefelsdorf 2007) point out that long-term

50radon exposure in homes determines a remarkable increase

51in the risk of lung cancer. Nowadays, the International
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52 Agency for Research on Cancer (IARC) and the US

53 Environmental Protection Agency (EPA) have categorised

54 radon as a Group 1 and Group A human carcinogen,

55 respectively. Other papers have investigated the impact of

56 radon on the increase in the risk of other cancer typologies

57 (Smith et al. 2007).

58 To estimate the exposure of people to radon and to

59 identify building typologies and geographical areas more

60 prone to high IRC, monitoring surveys have been imple-

61 mented in many countries such as in the UK (Green et al.

62 2002) USA (USEPA 1992) (Smith and Field 2007), Canada

63 (Shi et al. 2006), and Belgium (Cinelli et al. 2011), to

64 mention but a few. These surveys provide geocoded data

65 that are often fundamental for planning remediation

66 activities. Collecting information at several locations, data

67 coming from these monitoring campaigns allow us to

68 account for the multifactorial dependencies of IRC through

69 statistical models that combine a number of explanatory

70 variables. Raised IRC levels can often be traced back to the

71 radon content in the underlying rocks and soils and are

72 detected in dwellings close to the ground. Hence, the

73 geological and lithologic nature of the soil as well as other

74 soil characteristics, such as porosity and permeability, can

75 influence indoor accumulation. Radon exhalation from

76 building materials is another relevant source of radon since

77 many building materials, such as concrete containing alum

78 shale or volcanic tuffs and pozzolana, may have high

79 radium content. The relationship between IRC and geo-

80 logical indicators of high radon potential as well as other

81 structural building factors and materials has long been

82 documented: see Gunby et al. (1993), Gates and Gundersen

83 (1992), Price et al. (1996), Apte et al. (1999), Levesque

84 et al. (1997), Sundal et al. (2004), Shi et al. (2006), Smith

85 and Field (2007), Hunter et al. (2009), Cinelli et al. (2011)

86 amongst others. All these types of effects will be consid-

87 ered further in the paper.

88 All the papers mentioned so far aimed to assess the

89 influence of various characteristics of buildings on the

90 average IRC. However, modelling a central tendency

91 measure of the conditional distribution, typically the mean,

92 may provide a rather incomplete or even inappropriate

93 picture if the actual interest is in the tail of the distribution

94 as is the case in the presence of outliers, asymmetry or

95 reference concentration values endorsed by law or inter-

96 national recommendations. The conventional regression

97 approach, modelling the conditional expectation of IRC,

98 does not permit this kind of analysis. Instead, this can be

99 obtained using quantile regression, i.e. by fitting a family

100 of robust regression models, each summarising the beha-

101 viour at different levels of the IRC conditional distribution.

102 Quantile regression was introduced in the econometrics

103 literature by Koenker and Bassett (1978) and has been

104 extended towards many directions. For instance, Chaudhuri

105(1991) proposed locally polynomial quantile regression

106whereas Koenker et al. (1994) and Bosch et al. (1995)

107discussed penalty methods for smoothing quantile regres-

108sion. Geraci and Bottai (2014) investigated linear quantile

109regression models for clustered/hierarchical data. Since

110quantile regression enables us to fully describe the condi-

111tional distribution, the method has been used in many

112applications in recent decades. We refer to Yu et al. (2003)

113and Koenker (2005) for some examples. However, quantile

114regression has seldom been applied in the context of radon

115mapping. Exceptions are represented by Borgoni (2011)

116who adopted a spatial semiparametric model to define a

117conditional quantile regression model. Furthermore, Fon-

118tanella et al. (2015) and Sarra et al. (2016) proposed a

119spatial quantile hierarchical Bayesian model in this

120context.

121An alternative to quantile regression is the M-quantile

122regression introduced by Breckling and Chambers (1988)

123to integrate expectile (Newey and Powell 1987) and

124quantile regression within a unique paradigm based on a

125‘quantile-like’ generalisation of regression defined via

126influence functions (M-regression). Tzavidis et al. (2016)

127extended the M-quantile regression by including random

128effects in order to consider the hierarchical structure in the

129data, whereas Alfó et al. (2017) proposed a finite mixture

130of M-quantile regressions with discrete random coeffi-

131cients; the discrete distribution of the latter can be inter-

132preted as a nonparametric estimate of an unspecific

133continuous distribution. Although M-quantile and quantile

134regressions cannot be directly compared as they target

135different location parameters, both approaches try to model

136location parameters that are related to the same part of the

137conditional distribution (Jones 1994). Why should the

138potential data analyst consider M-quantile regression when

139the main advantage of quantile regression is the more

140intuitive interpretation? M-quantile regression models are

141more flexible, in particular they allow for robustness in

142exchange for efficiency in inference by tuning a suit-

143able constant of the influence function (see Sect. 3). The

144option to select different continuous influence functions in

145an M-quantile regression—in contrast to the absolute value

146function in a quantile regression—can offer additional

147computational stability.

148As far as the statistical methodology is concerned, this

149paper extends the work by Tzavidis et al. (2016) to a

150random effect semiparametric M-quantile model which is

151able to account both for the characteristics of the soil and

152for the material and architectural structure of a building. It

153is well known, however, that radon dynamics are spatially

154structured due to a number of causes that may affect IRC

155on a local and on a large-scale over and above the available

156secondary information obtained via administered surveys

157or measurement campaigns. For this reason, we extend the
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158 model to include a flexible component that is able to grasp

159 this spatial effect. In particular, the proposed M-quantile

160 model incorporates the spatial information (locations) of

161 the data through a spline component in the linear predictor

162 of the model, and therefore does not rely on any structural

163 assumptions in the error terms. This is particularly relevant

164 when, as in the case study presented later in the paper,

165 geographically referenced measures have to be spatialised

166 to produce maps.

167 The paper is structured as follows. Section 2 presents the

168 data and the model we propose in Sect. 3. Section 4 shows

169 the results obtained applying the suggested random effect

170 semiparametric M-quantile model to indoor radon data. In

171 particular, we explain how the suggested model permits us

172 to map the phenomenon of interest across space and

173 identify those areas more prone to high concentration and

174 to estimate the impact of potential determinants on the

175 pollutant concentrations. Concluding remarks are presented

176 in Sect. 5.

177 2 Data description

178 The data used in the present paper come from an indoor

179 radon gas monitoring survey implemented by the Agency

180 for Environmental Protection (ARPA) from 2003 to 2005

181 in the Lombardy Region (northern Italy). With a surface

182 area of 23,800 km2 Lombardy is the fourth largest and

183 most populated region in Italy, with about 10,000,000

184 inhabitants according to the last census in 2011, which

185 corresponds to about 20% of the entire Italian population.

186 A national survey conducted by the National Health Ser-

187 vice from 1989 to 1994 already indicated that Lombardy is

188 exposed to high values of IRC. This survey pointed out that

189 the IRC in Lombardy was 116 Bq/m3 on average, and is

190 therefore higher than the national average of 70 Bq/m3.

191 Assessing the spatial variability of IRC and the population

192 exposure to this gas is a prominent environmental and

193 health-related issue in this part of the country.

194 In this paper, the problem of high IRC in dwellings is

195 investigated by considering a sample of 900 measures of

196 IRC collected throughout the regional territory for which a

197 complete record of all relevant building characteristics

198 were available. Figure 1 shows the locations of the mea-

199 surement points (indicated by crosses) and the study region

200 expressed in UTM projection.

201 Long-term measurements was obtained using CR-39

202 trace detectors that were positioned in dwellings for

203 12 months. The dosimeters were changed after approxi-

204 mately 6 months and the year-long average of the two

205 semester values is considered in this paper, weighting the

206 two one-semester measurements by the actual time of

207 exposure of each detector. The average concentration is

208around 118 Bq/m3 (sd 136 Bq/m3) ranging from a mini-

209mum of 12.5 Bq/m3 to a maximum 1762.5 Bq/m3. As

210shown in Fig. 2, the IRC distribution is strongly asym-

211metric with a number of potential outliers, in line with

212other studies (Nero et al. 1986, amongst others).

213A questionnaire were also administered to dwellers of

214each sampled unit to collect other information about the

215building and the rooms in addition to the IRC. IRC mea-

216surements and building information were then combined in

217a single dataset. In the following, we focussed on factors

218that are expected to affect IRC, such as the wall material

219(stone versus other materials such as lateritious and hollow

220brick), the presence of an air conditioning system, the type

221of connection with the soil (i.e. whether the building is in

222direct contact with the ground or a basement/crawlspace is

223present), the type of building (detached vs. non-detached),

224the year of construction or last renovation (before or after

2251990) and the floor material (marble or granite versus other

226materials). In Table 1 some summary statistics of IRC

227conditioned to these building factors are shown. We

228observe that different house characteristics impact differ-

229ently on the IRC level. For instance, the differences

230between the 20th percentiles and 80th percentiles of IRC

231measured in dwellings with a marble-granite floor and in

232dwellings with an other-material floor are 4.9 Bq/m3 (20th

233percentile) and 14.2 Bq/m3 (80th percentile), respectively.

234When comparing the 20th percentiles and 80th percentiles

235of IRC measured in dwellings with stone walls versus other

236material walls, the differences are 11.1 Bq/m3 and

23762.1 Bq/m3, respectively, with a much more pronounced

238spread between higher quantiles. Estimating the quantiles

239of the IRC conditional distribution, given the covariates, is

240worth pursuing.

241The composition of the soil on which a building is

242located is another important feature that can affect the IRC,

243since the concentration of uranium and radium varies

244depending on the rock lithology. Hence, it is expected that

245higher concentration levels tend to occur in particular

246geological areas. The geological composition of Lombardy

247varies extremely with regards to the lithological and soil

248typologies. In order to derive this information the data were

249linked to a geo-lithologic map on a scale of 1:250,000

250(Borgoni et al. 2011) that partitions the territory of the

251Lombardy into 11 geological classes (see Fig. 3). Since the

252measurement points were geo-referenced, it was possible to

253assign one of the 11 types to each of them.

254Figure 4 shows the boxplot of IRC for each geological

255class. The dashed lines in the figure connect the 20th and

25680th quantiles of IRC conditioned to different geo-litho-

257logic classes. We observe that the quantiles change con-

258siderably between the geo-lithologic classes.

259Finally, high IRC can also be found in areas with low

260radium levels, especially when fractured rocks or intensive
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261 tectonic frameworks are present. This may be due to the

262 presence of faults, which may foster the gas to seep up

263 from deeper origins and enter into homes. To assess the

264 effect of being in the proximity of a fault, we calculated the

265 distance of each sampling point x to a tectonic fragment

266 A. Tectonic fragment cartography was available from a

267 shape file where each fault is geocoded in a vector format

268through a set of nodes. Hence, the distance has been cal-

269culated as

dðx;AÞ ¼ min
s2A

x� sk k ð1Þ

271271as suggested by Foxall and Baddeley (2002).

2723 A random effect semiparametric
273M-quantile model for IRC

274The M-quantile of order q, MQyðqjX;wÞ, for the condi-

275tional density of an outcome variable y given auxiliary

276variables X, f ðyjXÞ, is defined by Breckling and Chambers

277(1988) as the solution of the integral equation

278

R
wqfy�MQyðqjX;wÞgf ðyjXÞdy ¼ 0. Here, wq is the

279derivative of an asymmetric loss function qq, called the

280(asymmetric) influence function. In particular, ðxTi ; yiÞ,

281i ¼ 1; . . .; n, denotes n observations of a random sample, yi

282is the outcome variable and xTi are the p-vectors of the

283covariates X. A linear M-quantile regression model of yi
284given the auxiliary variables xi is given by

MQyiðqjxi;wÞ ¼ xTi bq;

286286and bq can be estimated minimising

E
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S

Fig. 1 Sampling locations and

the study area
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Fig. 2 Sampling distribution of IRC
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Xn

i¼1

qqfriqg; ð2Þ

288288 Here, riq ¼ ðyi � xTi bqÞ=r, r is a scale parameter, the

289 asymmetric loss function is qqfriqg ¼ 2qfriqg

290 ½qIðriq[ 0Þ þ ð1� qÞIðriq � 0Þ and Ið�Þ is the indicator

291 function. The regression parameters could differ for dif-

292 ferent values of q. M-quantile, quantile and expectile

293 regression models can be obtained as special cases by using

294 different specifications for the asymmetric loss function q.

295See details in Bianchi et al. (2018). Throughout the paper

296the Huber loss function (Huber 1981) is used to define the

297linear M-quantile regression model:

qqfriqg ¼ 2
ðcjriqj � c2=2Þjq� Iðriq � 0Þj jriqj[ c

ðr2iq=2Þjq� Iðriq � 0Þj jriqj � c;

�

ð3Þ

299299where c is a tuning constant. Conventionally, in an M-re-

300gression, the data analyst tunes this constant to provide a

301trade-off between robustness and efficiency. Huber (1981)

Table 1 IRC summary statistics

by dwelling characteristics
N Mean SD Min Q20 Median Q80 Max

Wall material

Other 788 110.4 114.3 12.5 40.3 73.2 150.7 1003.9

Stone 112 171.1 233.3 16.0 51.2 98.7 212.8 1762.5

Conditioning system

No 840 120.2 138.8 12.5 41.9 76.7 164.7 1762.5

Yes 60 85.4 84.5 19.9 40.6 65.7 95.7 555.2

Connection with the ground

In contact 352 135.9 143.0 13.8 45.0 84.6 195.3 1003.9

Basement 348 106.4 130.5 12.5 39.1 70.9 145.5 1762.5

Type of building

Single 323 95.4 130.3 13.8 35.4 64.7 130.0 1762.5

Not single 577 130.5 137.9 12.5 46.0 84.2 187.8 1336.2

Year construction/last renovation

Before 1990 525 117.0 134.6 12.5 41.0 74.4 161.4 1336.2

After 1990 375 119.2 138.6 16.0 42.6 79.0 160.9 1762.5

Floor material

Other material 853 118.9 137.3 12.5 41.9 76.5 161.2 1762.5

Marble-granite 47 100.8 100.8 19.9 37.0 63.6 147.0 742.9

Fig. 3 Geo-lithological

classification of the regional

territory
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302 proposes a value between 1 and 2. In particular, the author

303 suggests 1.5. In the rlm function of the package MASS in R

304 the default value for the tuning constant is 1.345. It cor-

305 responds to 95% of the efficiency of the estimates under

306 normality. It means that when the errors follow the normal

307 distribution, setting c equal to a large value, say 100, is the

308 most appropriate choice. In this case if a smaller value, say

309 1.345, is used it will reduce the efficiency of the estimates

310 because the tuning constant will offer unnecessary

311 robustness. The tuning constant c = 1.345 is used

312 throughout the paper. To overcome this ad hoc approach to

313 selecting the tuning constant, Bianchi et al. (2018) exten-

314 ded the data-driven method by Wang et al. (2007) to an

315 M-quantile regression to estimate c via likelihood equa-

316 tions. This approach could also be applied for the semi-

317 parametric M-quantile models we propose in this paper, but

318 this is beyond the scope of this work, however, and is left

319 for future research.

320 Recently, M-quantile regression models that consider

321 the two-level hierarchical structure in the data by including

322 random effects were proposed by Tzavidis et al. (2016).

323 The maximum likelihood method has been used by the

324 authors for the estimation of model parameters.

325The model suggested in this paper also includes a ran-

326dom intercept term to account for the clustering of data

327sharing the same geological substratum. However, as

328mentioned above, radon dynamics shows regularities when

329monitored in space both on the local or on the large-scale

330that are typically far from being linear. Hence, to adjust for

331these potential non-linear effects in the regression, we also

332add a flexible component to the linear predictor of the

333mixed effect M-quantile model. In particular, we use

334penalised splines. Penalised splines are effective tools for a

335number of reasons. Firstly, they are reasonably simple to

336implement, being a relatively straightforward extension of

337a linear M-quantile regression. Secondly, their flexibility

338enables the inclusion in a wide range of modelling features.

339More specifically, penalised splines account for spatial

340dependencies in the IRC data in the semiparametric

341M-quantile regression model adopted in the case study

342presented below. This component is expected to grasp not

343only large-scale dependencies of the radon data but also

344spatial local effects on the concentration field. Splines rely

345on a set of basis functions to handle non-linear structures in

346the data. In this paper, we assume that the spatial pattern of

347the variable of interest can be explained as a function of the

348location of a point that is represented by its cartographic

349coordinates. Thus, a bivariate smoothing spline is included

350in the additive specification of the model and is specified in

351terms of a set of bivariate basis functions. Following

352Ruppert et al. (2003), Pratesi et al. (2009) suggested the

353use of radial basis functions to derive low-rank thin plate

354splines.

355The model we propose for a specified M-quantile q is:

MQyðqjX;Z;Zsp;wÞ ¼ Xbq þ Zuq þ Zspcq; ð4Þ

357357where X is a matrix of dimension n� p of auxiliary vari-

358ables, bq is the p� 1 vector of M-quantile regression

359coefficients; uq is a G� 1 vector of geological categories

360and cq is a K � 1 vector of random effects associated with

361the spline matrix; Z is an incidence n� G matrix coding

362the point-geological class hierarchy; Zsp is a n� K spline

363matrix and K is the number of spline knots. More specifi-

364cally (Opsomer et al. 2008),

Zsp ¼ Cðwi � kjÞ
� �1� i� n

1� j�K
Cðkj � kkÞ
� ��1=2

1� j;k�K
ð5Þ

366366kj and ki, j ¼ 1; . . .;K, i ¼ 1; . . .;K, being two-dimen-

367sional vectors representing the cartographic coordinates of

368knots j and k. wi is a two-dimensional vector representing

369the cartographic coordinates of the sampling location i and

370CðsÞ ¼ sk k22log sk k2 where s 2 R2 and sk k2 is the Eucli-

371dean norm of s in R2.

372Differently from the model suggested by Pratesi et al.

373(2009), we assume that the coefficients of the spline matrix

374in the linear predictor are random coefficients. A practical

0
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1 8 11 2 9 3 7 10 4 6 5

geo−lithologic categories

IR
C

:
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q
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3

Fig. 4 Geo-lithological classification of the regional territory. Class

labels: 1 Alluvial plain, 2 Foothill deposit, 3 Limestone, 4 Alluvial

fan, 5 Debris, 6 Dolomite rocks, 7 Acid rocks, 8 Basic rocks, 9

Metamorphic rocks, 10 Alluvial plain, and 11 mountain valley.

Dashed lines connect the 20th and 80th IRC quantiles of each geo-

lithological category. Larger boxes indicate a large sample size in the

corresponding geo-lithological class
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375 advantage of the mixed model representation of the spline

376 lies in fitting the model. The usual penalised spline-fitting

377 criterion requires estimating a penalising or smoothing

378 parameter prior to model estimation. Cross-validation is

379 usually suggested as an appropriate way to tackle the

380 problem. The mixed model representation avoids this step

381 since the model can be estimated directly using routines

382 that are appropriate for linear mixed models. Furthermore,

383 including random coefficients for the spline basis compo-

384 nents permits us to account for the bias due to omitted

385 variables or unmeasured confounders. In addition, as

386 advocated by Ruppert et al. (2003), treating the coefficients

387 of the knots as random leads to a smoother representation

388 of the estimated effect, compared to using fixed effects

389 specification, and avoids data overfitting. As mentioned

390 above, the spline component of the model is expected to

391 catch the spatial regularity of IRC data and is used to

392 visualise the results by smoothed maps. Hence, the random

393 effect specification of the spline seems to be more appro-

394 priate for this end. We define the following modified

395 estimating equations, extending the idea of asymmetric

396 weighting of the residuals to estimate the regression coef-

397 ficients and the variance components (Tzavidis et al. 2016;

398 Borgoni et al. 2018):

XTV�1
q U1=2

q wqfrqg ¼ 0 ð6Þ

400400 1

2
wqfrqg

T
U1=2

q V�1
q ZZTV�1

q U1=2
q wqfrqg

�
K2q

2
tr V�1

q ZZT
h i

¼ 0

1

2
wqfrqg

T
U1=2

q V�1
q ZspZ

T
spV

�1
q U1=2

q wqfrqg

�
K2q

2
tr V�1

q ZspZ
T
sp

h i
¼ 0

1

2
wqfrqg

T
U1=2

q V�1
q V�1

q U1=2
q wqfrqg �

K2q

2
tr V�1

q

h i
¼ 0:

ð7Þ

402402 Let rq ¼ U�1=2
q ðy� XbqÞ denote the vector of scaled

403 residuals with components rijq, Uq the diagonal matrix with

404 diagonal elements uijq equal to the diagonal elements of the

405 covariance matrix Vq and wqðrÞ the derivative of a loss

406 function qq. The covariance matrix Vq is defined by

407 Vq ¼ R�q þ ZRuqZ
T þ ZspRcqZ

T
sp, with Ruq ¼ r2uqIG,

408 Rcq ¼ r2cqIK , and R�q ¼ r2�qIn, where r
2
uq
, r2cq and r2eq are the

409 quantile-specific variance components. In is an identity

410 matrix of size n and K2q ¼ E½wqðeÞwqðeÞ
T � with

411 e�Nð0; InÞ. To obtain estimators of bq, r2uq , r2cq , r2eq ,

412 Eqs. (6) and (7) are solved iteratively. For Eq. (6) a

413 Newton–Raphson algorithm is used and for (7) the fixed-

414 point iterative method is implemented to get the estimates.

415 The algorithm is implemented by the authors in a function

416in the R software (R Core Team 2017). A sandwich esti-

417mator is adopted to make inference on the model param-

418eters. Details of the estimation algorithm and the variance

419estimators are reported in Tzavidis et al. (2016).

4204 M-quantile modelling of geocoded radon
421data

422In this section, the model discussed in Sect. 3 is applied to

423the IRC data presented in Sect. 2. The set of covariates

424introduced in Table 1 that may potentially have an effect

425on IRC are those included in the M-quantile models con-

426sidered hereafter.

427As mentioned in the introduction of this paper, IRC

428tends to vary across space showing regular possibly non-

429linear patterns of values due to a number of environmental,

430geological and anthropic factors. Geographical coordinates

431of the measurement locations can be considered as a sur-

432rogate variable of all these factors that may happen to be

433unmeasured or even unmeasurable. In this paper, we pro-

434pose including this component in three ways. Firstly, the

435IRC of the study region tends to be quite different for the

436south compared to the north (Borgoni et al. 2011), hence, a

437trend surface model (Cade et al. 2005; Koenker and Mizera

4382004) is specified semiparametrically by a bivariate thin

439plate spline transformation of the cartographic coordinates,

440as discussed in Sect. 3. Secondly, IRC values detected in

441buildings that are built on the same type of soil can be

442expected to be more similar than those detected in different

443geo-lithological areas. As the data show a hierarchical

444structure, we explicitly consider this aspect in the model

445specification, including a random effect to capture the

446variability within geological areas, ending up in the semi-

447parametric M-quantile random effect model presented in

448Sect. 3. Thirdly, since, as mentioned above, high IRC can

449also be found in areas where faults are present, the distance

450to the nearest tectonic fragment is also included in the

451model.

452In this section, we investigate two different issues

453related to IRC modelling: (1) the identification of radon-

454prone areas, and (2) the identification of those character-

455istics that make a building more exposed to high IRC. The

456latter analysis also allows for an identification of those

457building profiles that are more exposed to higher concen-

458tration and for which it can be appropriate to plan reme-

459diation actions or actions that are able to prevent gas

460accumulation.

461Some preliminary analyses reported in Appendix 1 of

462this paper clearly show that the data may contain outliers

463that prevent the Gaussian assumptions from being met,

464leading to biased and inefficient estimates of the model

465parameters. Several papers (see Huggins 1993; Huggins
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466 and Loesch 1998) suggested the robust estimation of mixed

467 models to protect against departures from normality. This

468 can be obtained using a loss function in the log-likelihood

469 that increases with the regression residuals at a slower rate

470 than the squared loss function. As described in the previous

471 sections, resorting to the M-quantile approach permits us to

472 robustly estimate the relationship between IRC and a set of

473 covariates in a natural manner.

474 4.1 Radon-prone areas: identification
475 and mapping

476 Health radon-related concerns have generated a growing

477 interest in identifying those regions of the territory where

478 high IRC are expected, the so-called ‘radon-prone areas’

479 (RPA). A number of different approaches have been sug-

480 gested for this, mostly based on various cluster detection

481 methods adopted to either delineate spatial clusters or

482 improve the understanding of the spatial dynamic of radon

483 using an automatic detection of those regions of space that

484 are ‘anomalous’, ‘unexpected’ or otherwise ‘interesting’

485 (Sarra et al. 2016).

486 According to the World Health Organization (2009),

487 various definitions of radon-prone areas exist. Typically,

488 countries define RPA as regions where the estimated per-

489 centage of homes, whose radon concentrations exceed a

490 reference value s, oversteps a threshold q. The Italian

491 legislation is compliant to the WHO suggestion to define

492 RPA as regions where ‘there is a high probability of finding

493 high (indoor) radon concentrations’ (art. 10-ter,comma 2,

494 D.L.vo 241/00). The above-mentioned definitions suggest

495 that an RPA is a region where PðIRC[ sÞ is high: high

496 meaning PðIRC[ sÞ[ q and with q denoting a fixed

497 threshold, although different reference levels are suggested

498 by different local authorities. Below, we exemplify the

499 procedure using q = 0.15. Indicating by n1�q the (1 - q)-

500 quantile of IRC, this also means that n1�q[ s. Hence, one

501 can equivalently define an RPA as a region where a suf-

502 ficiently high-order quantile of IRC is above the reference

503 level s.

504 Moving from this definition, RPA identification based

505 on conditional quantiles of the radon distribution sounds

506 more appropriate than basing it on cluster algorithms.

507 Borgoni et al. (2010) also suggested a quantile-based

508 approach adopting conventional kriging procedures cou-

509 pled with Monte Carlo sequential (Gaussian) simulations to

510 approximate the conditional distribution of radon at each

511 point in space. Directly modelling the tail of the distribu-

512 tion using an M-quantile or a quantile approach (Fontanella

513 et al. 2015), seems, however, a more direct and natural way

514 to operate.

515For the rest of this section we considered the 85th

516M-quantile as the reference level to identify RPA. In order

517to estimate such an M-quantile at different locations in

518space, the following semiparametric M-quantile random

519effect regression model is employed:

MQyið0:85jdij; x1ij; x2ij; zi; zspi;wÞ
¼ aþ dijdþ x1ijb1 þ x2ijb2 þ ziuþ zspic; ð8Þ

521521where

522• d is the fault distance;

523• x1 and x2 are the coordinates (respectively, longitude

524and latitude) of the measurement points in UTM

525projection;

526• zi is a vector of geo-lithologic class indicators, i.e 0–1

527variables;

528• zspi is the row of the Zsp matrix defined in Eq. 5

529pertinent to sampling dwelling i located in geo-litho-

530logic class j.

531We use 50 knots for the spline, obtained by applying the

532partitioning clustering algorithm CLARA (Kaufman and

533Rousseeuw 1990) to the sampling locations. The estimated

534parameters are reported in Table 2. The linear effect of the

535cartographic coordinates has been found to be not signifi-

536cant. However, the estimate of the variance of c is about

537three times its estimated standard error pointing out a

538strong effect of the random component of the spline. This

539demonstrates that the spatial variability due to location is

540definitely relevant in the IRC dynamic. We notice that the

541two linear terms are retained in the model in the following

542analysis to correctly specify the spline component.

543Since the aim of this analysis is to classify the areas of

544the region according to their proneness to radon without

545considering any particular building typology, the structural

546and architectonic characteristics of the building are not

547included in the model. The issue of assessing the impact of

548building factors will be addressed in the following section.

549The estimates of the 85th M-quantile are depicted in

550Fig. 5 where the surface has been discretised via a grid of

Table 2 Estimates of the RPA model

Estimate Std. error p value

Intercept ðaÞ 178.75 275.62 0.52

Fault distance ðdÞ - 76.14 44.01 0.08

Longitude ðb1Þ 237.45 385.68 0.54

Latitude ðb2Þ - 154.31 387.98 0.69

r2� (individual) 7758.4 220.07

r2u (geo-lithology) 302.4 402.06

r2c (spline) 75250.2 28397.95
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551 4651 points internal to the administrative boundary of the

552 study region. For each point of the grid, the geo-lithologic

553 class has been retrieved by overlaying the point on the map

554 in Fig. 3 and the distance to its nearest tectonic lineament

555 has been calculated by applying Eq. (1). Analogously, the

556 spline base zsp has been calculated for each location of the

557 grid by applying Eq. (5). As far as the fixed effects are

558 concerned, the value of the covariates are multiplied by the

559 estimated coefficients shown in Table 2, whereas the ran-

560 dom-effects vector u and c in Eq. (8) have been predicted

561 using a modified Fellner equation (Fellner 1986) as pro-

562 posed by Borgoni et al. (2018) for the three-level

563 M-quantile random effect models. The issue of predicting

564 random effects is also discussed by Geraci and Bottai

565 (2014) and Tzavidis et al. (2016). The estimated M-quan-

566 tiles are calculated by summing the different components

567 according to Eq. (8) and a raster of 4,651 pixels are

568 eventually obtained and are displayed in Fig. 5.

569 In order to identify radon-prone areas, Fig. 5 has been

570 transformed into a binary map by colouring those pixels in

571 red, where the estimated M-quantile is above the reference

572 level. Figure 6a, b show the results using a reference level

573 s corresponding to 200 Bq/m3 and 300 Bq/m3, respec-

574 tively. The latter reference level has been suggested by the

575 recent 2013/59/EURATOM European recommendation as

576 a suitable reference value for the annual average indoor

577concentration of radon, whereas the former was suggested

578by the 90/143/Euratom recommendation and it was widely

579used in the past.

5804.2 Assessing the role of influential factors
581on IRC

582As noticed in Sect. 2 there are a number of factors in

583addition to space and geological dimensions that can

584potentially affect the concentration of radon in an indoor

585environment, such as building-specific characteristics. The

586exploratory analysis also suggests that the impact of a

587given characteristic can be different at different concen-

588tration levels. Hereafter, the conditional distribution of IRC

589is modelled using the approach introduced in Sect. 3 as a

590function of these building factors in order to quantify their

591potential effects and how they differ at different levels of

592IRC. Hence, the model in Eq. 8 is expanded to include

593these covariates as fixed effects. The baseline house is

594located in a building in direct contact with the ground,

595equipped with an air conditioning system and constructed

596or refurbished in 1990 or before with walls made by

597materials other than stone and floors made by materials

598other then marble or granite.

599Table 3 shows the estimated parameters for three dif-

600ferent M-quantiles, 0.25, 0.5 and 0.75. As in the section

0

127
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206

260

577

rivers and lakes

glaciers

E

N

W

S

Fig. 5 Fitted surface of the 85th

M-quantile. The values in the

legend represent the minimum,

the maximum and five

equispaced percentiles of the

85th M-quantiles estimated by

the model in Eq. (8) at the grid

points
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Fig. 6 Radon-prone areas (RPA) according to a reference value of a 200 Bq/m3 and b 300 Bq/m3

Table 3 Results—Semiparametric M-quantile random effect model: point estimates with standard errors in parentheses

q = 0.25 q = 0.50 q = 0.75

Estimate p value Estimate p value Estimate p value

Intercept 27.24 0.044 45.59 0.069 84.93 0.256

(13.53) (25.12) (74.86)

Distance to nearest fault - 3.21 0.697 - 10.25 0.446 - 35.19 0.21

(8.27) (13.47) (28.08)

Floor: marble or granite - 5.41 0.328 - 8.88 0.316 - 22.43 0.195

(5.54) (8.87) (17.32)

Wall: stone 3.77 0.338 6.53 0.301 16.86 0.173

(3.94) (6.31) (12.38)

Years of construction/last renovation: after 1990 single buildings 7.99 0.001 11.25 0.005 14.11 0.077

(2.55) (4.09) (8.003)

6.35 0.018 10.36 0.016 24.98 0.003

(2.69) (4.32) (8.49)

Not in contact with the ground no air conditioning - 5.73 0.032 - 9.74 0.022 - 18.24 0.029

(2.67) (4.28) (8.35)

1.09 0.832 - 1.48 0.858 - 7.59 0.64

(5.16) (8.29) (16.24)

Longitude 33.4 0.03 42.43 0.16 87.73 0.369

(15.44) (30.23) (97.85)

Latitude 36.62 0.05 48.81 0.165 38.58 0.716

(18.77) (35.19) (106.14)

r2� (individual) 819.88 3172.99 6283.1

(48.91) (241.93) (421.41)

r2u (geo-lithology) 42.21 149.7 220.13

(26.41) (85.48) (92.08)

r2c (spline) 75.96 491.78 3140.52
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601 above, 50 knots have been used for the radial spline,

602 obtained by applying the CLARA algorithm to the sam-

603 pling locations. Appendix 2 provides a short sensitivity

604 analysis where the estimated parameters of quantile and

605 M-quantile regression models are compared. Although the

606 two approaches cannot be directly compared, as these

607 models target different location parameters, the results

608 show that the coefficients of the M-quantile regression

609 model are in the same direction as the ones based on

610 quantile regressions.

611 Figure 7 shows the estimated effect by M-quantile of

612 each covariate that we have included in the model. Con-

613 fidence bands across the M-quantiles are also reported in

614 the graphs to display the sampling variation. For each

615 considered M-quantile, the band is obtained by calculating

616 the point-wise 95% confidence interval of the regression

617 coefficients and it is displayed in the graph by a grey-

618 shaded area around the line. It can be seen that the variation

619 between M-quantiles is diverse, sometimes even exten-

620 sively so, and it tends to increase at the edges of the

621 M-quantile order, where such an increase can be quite

622 large. This is quite typical for quantile modelling, since

623 estimates too far from the centre of the distribution usually

624 cannot be determined with high precision. This problem

625 can possibly be exacerbated by the hierarchical structure of

626 the data. The clustering of the measurement points (about

627 900 in all) in 11 classes implies that the tail of the distri-

628 butions cannot be well frequented by the data, as is also

629 shown by the conditional boxplot in Fig. 4, contributing to

630 reducing the information.

631 Concerning the random components of the model at the

632 lower quantile, a large part of the variation is due to

633 individual variability whereas both the variability due to

634 geo-lithology and space are definitely minor, as one could

635 expect. Moving towards higher quantiles, the spatial

636 component tends to become more and more relevant.

637 Figure 8 shows the estimated spline effects at the three

638 considered M-quantiles. The estimated effects are obvi-

639 ously larger at higher quantile orders. The maps also show

640 that a substantial homogeneity in space exists at the lower

641 quartile (Fig. 8a) apart from some picks in the mountains in

642 the far north and south-east of the region. At high orders,

643 the spatial dynamics tend to vary more due to the large-

644 scale tendency over the investigated region and due to local

645 effects caught by the semiparametric component of the

646 model.

647 We finally observe that an important part of spatial

648 prediction refers to the measurement of uncertainty. The

649 predicted spline effects at M-quantiles have an uncertainty

650 that could be estimated following Ruppert et al. (2003) and

651 Opsomer et al. (2008). As Ruppert et al. (2003) noticed,

652 the mixed model formulation of penalised splines is a

653 convenient artefact for estimating the smoothing

654parameters while the ML or REML variance component

655estimation provides estimates of the smoothing parameter

656that generally behaves quite well. The standard errors

657derived according to the approach suggested by these

658authors are expected to account for both the error compo-

659nents (variance and squared bias) and can be somewhat

660wider than those obtained without using a mixed model

661representation. A similar approach can also be adopted to

662calculate the standard error for the predicted bivariate

663spline effects at M-quantiles. However, this is beyond the

664scope of this work and it is left for further research.

665Quite surprisingly, the geo-lithological component

666remains negligible even at the highest quantile. This can be

667due to the spatial resolution of the geological and litho-

668logical information. The maps available for this analysis

669are scaled 1:250,000, hence, different geological structures

670can be mixed up in different classes because of a low

671resolution inducing the inhomogeneity of the geological

672units, and the geo-lithological effect can be watered down.

6735 Discussion and conclusions

674In this paper, a semiparametric random-effect M-quantile

675model is introduced in order to investigate radon concen-

676tration within buildings. It has been shown how the model

677can be estimated within the framework of robust maximum

678likelihood by using a numerical optimisation method based

679on the Newton-Raphson and fixed-point algorithms that

680apply the data of an indoor radon gas monitoring survey

681carried out by the Agency of Environmental Protection of

682Lombardy (Italy) in 2003.

683The proposed model allows for an investigation of how

684a set of covariates acts at different levels (M-quantiles) of

685the IRC distribution while accounting for the hierarchical

686nature of the data. In particular, a set of building charac-

687teristics are included in the model as well as information

688concerning the geological structure of the soil.

689One of the building characteristics that was found to be

690statistically significant at M-quantiles was whether the

691building is in direct contact with the ground and the

692building type. Buildings in contact with the ground and

693detached buildings are found to have a higher indoor

694concentration than other buildings and the impact of those

695variables becomes larger as the M-quantile order increases

696(i.e. for those situations more seriously affected by large

697concentrations). This is not an unexpected result. Unlike

698many other indoor air pollutants that are correlated to

699outdoor air pollution, radon gas concentrations in homes

700are related primarily to the ingression of radon from ground

701sources. Hence, being in contact with the ground fosters

702gas accumulation. Condominiums are often constructed out

703of concrete. The radium content of the concrete is typically
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Fig. 7 Estimated coefficients of

M-quantile regressions:

a intercept, b fault distance,

c floor material, d wall material,

e year from construction/last

renovation, f single building,

g not in contact with the ground,

h air conditioning system.

Shaded areas represent the 95%

confidence intervals
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704 not high and this may explain why high-density housing is

705 characterised by lower radon concentration. The statistical

706 significance of the regression coefficient associated with

707 whether the building was built or refurbished after 1990 is

708 mild and not completely clear at all M-quantile orders.

709 There is widespread belief that increased weatherproofing

710 and the energy efficiency of homes significantly contribute

711 to the increase in residential radon concentrations.

712 Nonetheless, uncertainty remains about their actual impact,

713 in particular, whether energy efficiency guidelines include

714 the consideration of air exchange rates and ventilation.

715 Finally, although not all the variables considered in the

716 model have been found to be statistically significant, it can

717be observed that the estimates tend to be larger in modulus

718moving towards higher M-quantiles, suggesting that

719building characteristics can be expected to be effective

720potential levers for moderating critical situations.

721Our findings provide useful indications in this direction,

722helping to identify those factors that mainly foster high

723concentration levels of the pollutant on a large and inho-

724mogeneous territory with several different house typolo-

725gies. Using the estimated regression coefficients, it is

726possible to classify the different typologies of buildings

727based on a selected M-quantile of the IRC distribution and

728to provide a ranking of the dwellings according to their

729proneness to IRC. To this end, we considered the

7
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Fig. 8 Spline effects at the three considered M-quantiles: a 25th, b median, and c 75th
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730 M-quantile regression of order q = 0.75 that models how

731 dwelling characteristics impact at a high level of the pol-

732 lutant distribution. More specifically, fixating the spatial

733 location of a building to a prefixed value, we combined the

734 variables found to be statistically significant at the

735 M-quantile q = 0.75 (p values smaller than 0.05), namely

736 whether the building is in contact with the ground and

737 whether it is a single building, with the geo-lithological

738 classes obtaining a set of 2� 2� 11 ¼ 44 different

739 building profiles for which the considered M-quantile has

740 been estimated. For instance, for a single building that is

741 not in contact with the ground located in a debris class,

742 replacing the unknown parameters in Eq. (4) with their

743 estimates (see Table 3) and ignoring the spatial component

744 of the model, gives:

dMQyð0:75Þ ¼ 84:93þ 24:98� Iðsingle building ¼ 1Þþ

ð�18:24Þ � Iðnot in contact with the ground ¼ 1Þþ

20:89� Iðgeo� lithological class ¼ debbrisÞ ¼ 112:55

746746 where 20.89 is the estimated residual for the debris class.

747 These profiles are ranked according to their estimated value

748 of the 0.75 M-quantile from the highest to the lowest,

749 obtaining a measure of the building’s proneness to a high

750 IRC level. The top-five building profiles most prone to IRC

751 are listed in Table 4.

752 Selecting an arbitrary location to provide the different

753 scenarios can be done without loss of generality. Although

754 the actual location does affect the estimated IRC

755 M-quantile, the ranking of profiles provided by the

756 M-quantile model based on the building characteristics

757 does not change, considering other locations in space given

758 the additive nature of the model. Looking at the five pro-

759 files most prone to high IRC listed in Table 4 we found that

760 all of them are single buildings and four out of five are in

761 contact with the ground and located on porous soils or soils

762 characterised by weathered carbonate rocks (such as debris

763 and dolomite) where radon emanation is known to be high

764 despite the low concentrations of uranium. Hence, our

765 results can help local authorities involved in environmental

766 protection both to identify some guidelines for new

767 buildings and to identify those dwelling typologies already

768 present in the territory that should be monitored in order to

769 mitigate concentration levels.

770Given the serious health-related problems induced by

771the exposure of humans to radon gas, the usage of moni-

772toring surveys for the identification of areas more prone to

773high IRC, named radon-prone areas above, has been pro-

774moted in many countries worldwide. We demonstrated

775how the semiparametric M-quantile model proposed in this

776paper provides a natural way to identify such areas flexibly

777and effectively, taking into account (1) the spatial dynamic

778of IRC via flexible bivariate spline transformations, and (2)

779information related to the geological and geophysical

780information included in fixed and random components of

781the model. It is worth noticing that the information con-

782cerning the geology of the soil is conveyed via digital maps

783that can be linked to the dataset by GIS operations. Hence,

784the spatial resolution of this information may have an

785impact on the precision of the estimates, and having high-

786resolution maps for those dimensions may sensibly

787improve the outcome of the analysis.

788We also show how the outcome of the model can be

789visualised by using thematic maps. Such maps inform

790people and local authorities of where higher concentrations

791can be expected. Local authorities can use the maps to

792differentiate construction requirements according to dif-

793ferent locations.

794Finally, we recognise that when considering a complex

795phenomenon such as radon gas accumulation, the set of

796relevant factors may be larger than the one considered in

797the present paper, and adding these further control vari-

798ables might lead to improved results. In particular, as has

799been demonstrated, for instance by Kemski et al. (2009),

800soil radon measurements are often considered to be a

801potential predictor of indoor concentration since soil gas

802containing radon leaks into houses through cracks or holes

803in the foundations because of the lower air pressure

804observed indoors compared to outside. Radiometric data

805has sometimes also been used to account for the radioac-

806tivity of the soil.

807Numerous weather-related factors influence the ingress

808of radon into buildings, including wind, barometric pres-

809sure, rainfall, and indoor and outdoor difference of tem-

810perature variations (Rowe et al. 2002). Increased wind can

811exert small pressure differences between the lower levels

812of a dwelling and the outdoors and an increased precipi-

813tation can act to impede radon emanation. Climate

Table 4 The top-five building

profiles most prone to IRC
Ranking Contact with the ground Building type Geo-lithological class

1 In contact Single Debris

2 In contact Single Dolomite rocks

3 In contact Single Alluvial fan

4 Not in contact Single Debris

5 In contact Single Limestone
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814 parameters affect the ventilation of indoor environment as

815 well, in turn influencing the indoor concentration of the

816 pollutant. Unfortunately, we did not have this information

817 at hand for this study, and hence their effect has not been

818 investigated, although it can easily be added to the model

819 proposed in this paper, if available.
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825 Appendix A: Preliminary data analysis

826 Hereafter some preliminary data analyses is reported that

827 motivates the need for a robust approach when modelling

828 IRC data. To this aim an ordinary random effect model for

829 the mean IRC that reflects the hierarchical structure of the

830 data with buildings nested in the geological classes has

831 been fitted using the function lmer of the R package

832 lme4. Figure 9a shows the normal qq-plot of the indi-

833 vidual residuals (i.e. residuals pertinent to the building

834 level) whereas Fig. 9b displays the normal qq-plot of the

835 residuals estimated from the model at the geological class

836 level. These plots show that the normality assumptions of

837 the ordinary mixed model are violated, which is also

838 confirmed by the Shapiro-Wilk test (p values=0.0000078

839 for the geological class residuals and p value= 2.2e-16 for

840 the building residuals). Figure 10a shows the histogram of

841 the standardised building residuals obtained by the random

842 effect regression model, whereas Fig. 10b displays the

843 distribution of the standardised residuals by geological

844classes. The histogram appears very skewed and some

845classes have many large positive residuals (larger than 2).

846Thus, influential observations seem to be present in the

847data. This is also confirmed by Fig. 11 that displays the

848Cook’s Distance for the two sets of residuals.

849It is clear that the data may contain outliers and influ-

850ential points that invalidate the Gaussian assumptions. In

851these circumstances, estimates of the model parameters are

852biased and inefficient and the robust approach suggested in

853this paper sounds more appropriate.

854Appendix B: Additional results for modelling
855geocoded radon data

856Appendix 1 provides a short comparison of the estimated

857parameters obtained from quantile and M-quantile regres-

858sion models. The two approaches cannot be directly com-

859pared since they target different location parameters.

860However, both approaches try to model location parame-

861ters that are related to the same part of the conditional

862distribution of IRC. Table 5 reports the estimated regres-

863sion coefficients for q = 0.5 for two approaches: (1) the

864proposed semiparametric M-quantile random effect

865regression model (semiMQRE), and (2) a semiparametric

866quantile regression model (semiQR). semiQR is based on

867an additive quantile regression model (Koenker et al. 1994)

868where the spatial structure is captured by bivariate splines

869but without accounting for the hierarchical structure in the

870data by a random component. The results indicate that the

871coefficients based on M-quantile regression models are in

872the same direction as the ones based on quantile regression.

873However, with quantile regression convergence problems

−3 −2 −1 0 1 2 3

0
5

0
0

1
0

0
0

Theoretical Quantiles

S
a

m
p

le
 Q

u
a

n
ti
le

s

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5

−
2

0
0

2
0

4
0

6
0

Theoretical Quantiles

S
a

m
p

le
 Q

u
a

n
ti
le

s

(a) (b)

Fig. 9 QQ-plot of building residuals (a) and of geological class residuals (b) estimated by the two-level random effect regression model for the

mean IRC
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Table 5 Results—Semiparametric M-quantile and quantile regression models for q = 0.5: Point estimates with standard errors in parentheses

semiMQRE semiQR

Estimate p value Estimate p value

Intercept 45.59 0.069 44.56 0.000

(25.12) (11.02)

Distance to nearest fault - 10.25 0.446 - 8.14 0.553

(13.47) (13.71)

Floor: marble or granite - 8.88 0.316 - 7.41 0.406

(8.87) (8.90)
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874 of the algorithm sometimes occurred. On the other hand,

875 estimation with the M-quantile approach was smoother but

876 the interpretation of the estimated parameters is more

877 difficult.

878 Finally, Fig. 12 presents the estimated effects obtained

879 from M-quantile and quantile-mixed regression models by

880 quantile for each explanatory variable that is considered in

881 the model. In particular, the solid line represents the pro-

882 posed semiparametric M-quantile random effect regression

883 model and the dashed line stands for an additive quantile

884regression model (Geraci 2018) which includes a bivariate

885spline to capture the spatial structure as well as random

886effects to account for the hierarchy of the data (fitted by the

887R package aqmm). Note that we only plot the point esti-

888mates (without the point-wise 95% confidence intervals) in

889order to avoid an overload of Fig. 12. The results confirm

890that the results based on both models are in the same

891direction.

892

Table 5 (continued)

semiMQRE semiQR

Estimate p value Estimate p value

Wall: stone 6.53 0.301 - 1.98 0.827

(6.31) (9.07)

Years of construction/last renovation: after 1990 single buildings 11.25 0.005 7.61 0.112

(4.09) (4.78)

10.36 0.016 9.62 0.043

(4.32) (4.74)

Not in contact with the ground no air conditioning - 9.74 0.022 - 9.63 0.048

(4.28) (4.87)

- 1.48 0.858 - 1.10 0.883

(8.29) (7.48)

Longitude 42.43 0.16 – –

(30.23) –

Latitude 48.81 0.165 – –

(35.19) –

r2� (individual) 3172.99 –

(241.93) –

r2u (geo-lithology) 149.7 –

(85.48) –

r2c (spline) 491.78 –
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Fig. 12 Estimated coefficients

of quantile regressions (dashed

line) and M-quantile regressions

(solid line): a intercept, b fault

distance, c floor material, d wall

material, e year from

construction/last renovation,

f single building, g not in

contact with the ground, h air

conditioning system
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