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Preface

This thesis is the result of my research during the three years of my
doctoral studies. It is a work that represents the attempt and effort to grow
up not only as a student, but also as a researcher in mathematics. During
the days of intense scientific meditations and in the sleepless nights spent on
writing, it may have seemed that everything in a PhD is reduced to that.
Nevertheless, I think that a thesis can not reflect the full experience of my
PhD. This is not only because a PhD program consists of many different
activities, which force PhD students to put their heads out of their specific
research problem and broaden their mathematical horizons. But also because
the doctorate is a synthesis of the thesis (and what the thesis itself represents)
with an antithetical side, which has particularly had a great relevance in my
case. Therefore, I want to spend a few words here below on my antithesis,
since it will, of course, have to remain hidden later.

During my research activity, there were moments when a break from
the concentration on mathematical problems was necessary. Those moments
occurred in the working time and at the working place, but they were in
contrast with the work itself. For this reason I call them “the antithesis” of
my PhD thesis, since in those moments the thesis surely made no progress.
It is funny to say, but in my case these frequent interruptions marked the
natural rhythm of my hours at university. Sometimes it was just to take
a look out of the window, but on many other occasions the antithesis was
represented by some colleagues who needed a break and wanted to share
this need with me in some office, or in a sunny courtyard, or simply in front
of a coffee machine. Examples of small rituals that made the atmosphere
familiar and relaxing. Probably, the existence of such nice people at the
working place is not obvious, but I was very lucky and because of them I
never felt like a lonely researcher in an empty space, during all my PhD.
Moreover, not only did I meet a lot of good colleagues, but in many cases
they turned out to be some of the loveliest people I have ever known. Men-
tioning singularly everyone here and listing each moment spent together is
a stylistic exercise that I prefer to avoid. But I want to make it clear that
for me it was difficult to imagine that I would have met so many fantastic
people whom I am very happy to call my friends. And such a spirit of friend-
ship is something that now I immediately associate with mathematics. I do
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not know whether it corresponds only to my personal experience, but it is
always important to remember this feeling and to hope that it will never be
lost. I look forward to finding a confirmation in the prefaces to future theses.
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Chapter 1

Introduction

In the theory of partially ordered sets, the Möbius function of a locally
finite poset is a generalization of the number-theoretic Möbius function. In
the twentieth century, the study of its properties became an active research
area in combinatorics (for instance, see [16] and [36]). Now, the Möbius
function is indeed a classical tool in enumerative combinatorics, with several
applications also in group theory, from the Euler characteristic of subgroup
complexes to algebraic aspects of cellular automata.

For a locally finite poset (P,≤), the Möbius function is the map

µP : P × P → Z

satisfying µP (a, b) = 0 unless a ≤ b , and defined recursively for a ≤ b by

µP (a, a) = 1 and
∑

a≤c≤b

µP (a, c) = 0 if a < b.

If we have a finite lattice (L,≤) with minimum 0̂ and maximum 1̂, then
µL(0̂, 1̂) coincides with the reduced Euler characteristic of the simplicial
complex K induced by L. In particular, µL(0̂, 1̂) = 0 if the complex K
is contractible. Other characterizations of µL(0̂, 1̂) can be provided, for ex-
ample by using the Lefschetz character ΛL,G for the action of a group G on
the lattice L (see [40] for an overview).

In this thesis, we look at the Möbius function as an interface of com-
binatorial questions between the theory of finite classical groups and the
theory of lattices and posets that are somehow connected to these groups.
Some emphasis is on the linear group GL(n, q), its subgroups, and relative
quotients, such as the finite almost-simple groups PGL(n, q) and PSL(n, q).

An intriguing motivation for the study of the Möbius function of subgroup
lattices can be found in the context of finitely generated profinite groups.
If G is a finitely generated profinite group, there is a connection between
the probabilistic zeta function of G and the corresponding Möbius function
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Introduction

µ : L(G)o × L(G)o → Z defined on the lattice L(G)o of the open subgroups
of G. More precisely, we can use µ to express as

P (G, k) =
∑

H≤o G

µ(H,G)

|G : H|k

the probability that k random elements of G generate the whole group.
For s ∈ C, we obtain the following Dirichlet series

PG(s) =
∑

H≤o G

µ(H,G)

|G : H|s
,

that interpolates P (G, k) in the positive integers. The convergence of PG(s)
in some right half-plane of the complex plane has been studied for profinite
groups that are positively finitely generated (PFG), i.e. profinite groups G
such that P (G, k) > 0 for some k. If G is PFG, some questions arise about
the growth of |µ(H,G)| and the growth of the number of subgroups H ≤o G
with µ(H,G) 6= 0.

Let bn(G) be the number of open subgroups H ≤o G such that the index
|G : H| = n and µ(H,G) 6= 0. It was conjectured by Mann (see [28]) that
bn(G) grows polynomially with respect to n and that |µ(H,G)| ≤ |G : H|c

for some constant c independent of H ≤o G. If this conjecture is true, then
we get the absolute convergence of the series PG(s).

In [26], Lucchini proved that Mann’s conjecture is true if we are able
to solve the following similar problem concerning only finite almost-simple
groups.

Conjecture. There exist two absolute constants c1 , c2 such that for each
finite almost-simple group G we have

(i) |µ(K,G)| ≤ |G : K|c1 for all K ≤ G;

(ii) bn(G) ≤ nc2 for all n ∈ N .

In [10], Colombo and Lucchini proved that the alternating and symmet-
ric groups (Alt(n), Sym(n), for n ≥ 5) satisfy this conjecture, so that they
obtained a proof of Mann’s conjecture for finitely generated profinite groups
with the property that all the non-abelian composition factors of every finite
epimorphic image are permutation groups of alternating type.

We begin to concentrate our attention on finite classical groups, par-
ticularly on general linear groups, following some methods that Shareshian
studied in [38] to compute the Möbius number µ(1, G) for some classical
group G. Aschbacher’s classification of their maximal subgroups is impor-
tant to connect the structure of the subgroup lattice of G to order structures
induced by the geometry of vector spaces on which the group G acts.
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Introduction

Main results of the thesis

In this thesis, we study the Möbius function µ(H,G) of a finite classical
group G with respect to subgroups H ≤ G, starting from the methods that
Shareshian used for µ(1, G) in his thesis ([38]). Our results usually refer to
the finite general linear group GL(n, q). Since the action of the group G on
the subspace lattice of Fn

q plays the fundamental role in the proofs of theo-
rems, the choice of G = GL(n, q) can be replaced with G = PGL(n, q), if we
want to relate the same results to the Möbius function of finite almost-simple
groups.

We briefly observe that Chapter 2 and Chapter 3 are devoted to state
preliminary notions and facts that are used throughout the thesis. In Chap-
ter 2, in particular, we introduce the fundamental properties of posets and
lattices, with emphasis on some subspace lattices induced by elements of
GL(n, q). We see that for many linear transformations such lattices have the
precise structure of a product of chains. Chapter 3 is a detailed introduction
to the Möbius function, with some questions and remarks to motivate its
study on the subgroup lattice of a group.

The first notable new results are contained in Chapter 4. The main idea
is to approximate µ(H,G) through a good function f(H,G), depending on
some Aschbacher classes, so that

µ(H,G) = f(H,G) +
∑

K∈A

µ(H,K)

where A denotes the union of the other classes, which might be more difficult
to deal with.

In particular, if I1(G,H) denotes the order ideal generated by the max-
imal subgroups in the first Aschbacher class, that is the ordered set of all
reducible subgroups of G containing H, we can use the Möbius function of

Î1(G,H) = I1(G,H) ∪ {H,G} (1.1)

(i.e., where the minimum H and the maximum G are adjoined, if necessary)
as the function f above. We obtain that

µ(H,G) = µÎ1(G,H)
(H,G)−

∑

K/∈I1(G,H)
H<K<G

µ(H,K) .

So, first of all, we concentrate on the term

µÎ1(G,H)
(H,G)

and we compute it in the following way.
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Theorem (4.2.4).

− µÎ1(G,H)
(H,G) =

∑

E∈Ψ′(G,H)

(−1)|E| . (1.2)

where the set

Ψ′(G,H) = {E ⊆ S(V,H) \ {0, V } |
⋂

W∈E

stabG(W ) 6= H}

depends on the lattice S(V,H) of H-invariant subspaces of V , and on the
action of G on the subspace lattice of V .

The exact value of (1.2) can be found under special conditions for the
lattice S(V,H). In particular, also by using original arguments, we study
some examples and the case in which S(V,H) is a distributive lattice (under
some conditions).

Similarly to I1(G,H), for each irreducible subgroup K ≤ G we can
consider the order ideal I1(K,H) given by all reducible subgroups of K
containing H. We present it in Chapter 5 and, as in (1.1), we have an
extension Î1(K,H), so that we can similarly compute its Möbius number

−µÎ1(K,H)
(H,K) =

∑

E∈Ψ′(K,H)

(−1)|E| .

Such a number appears in the following expression of the Möbius function
of the group G.

Theorem (5.2.1).

µ(H,G) =
∑

K∈IrrG(H)

µ(K,G) · µÎ1(K,H)
(H,K) (1.3)

where
IrrG(H) = {K ≤ G | H ≤ K, K is irreducible on V }.

According to the ideas of Colombo and Lucchini in [10], we can define a
closure operator (see Definition 3.1.8)

¯: L(K)→ L(K)

on the subgroup lattice L(K) of each irreducible subgroup K of G. A sub-
group H is said to be closed in K if H = H. Then

Proposition (5.2.3). Let H ≤ G and K ∈ IrrG(H). If H is not closed in
K, then

µÎ1(K,H)
(H,K) = 0 .
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This is interesting because we find a connection between the idea of
Shareshian in [38] and the argument of Colombo and Lucchini in [10] for
the alternating and symmetric groups on a finite set. We study (1.3) to get
partial results in an attempt to prove Mann’s conjecture reduced to the finite
almost-simple groups PGL(n, q) and PSL(n, q). In this direction, we obtain
the following result.

Theorem (5.3.3). Let V ≃ Fn
q and G = GL(n, q). Let

cprodm (G) := |Fprod
m (G)|

where Fprod
m (G) is the set of closed subgroups H in G such that |G : H| = m

and the lattice S(V,H) is isomorphic to a product of chains.
Then there exists an absolute constant α, independent of n and q, such that

cprodm (G) ≤ mα ∀m ∈ N .

The subgroups generated by cyclic matrices (and their closures) are ex-
amples of subgroups H such that S(V,H) is isomorphic to a product of
chains. In Chapter 2, we recall that most of the matrices in GL(n, q) are
cyclic.
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Chapter 2

Preliminaries about posets

In this chapter we shall state some definitions and facts about partially
ordered sets that will be used throughout this thesis. We begin by briefly
recalling some general information about posets and by fixing the notation.
Although most of the basic notions are well-known, we think that it is impor-
tant to be careful and to avoid confusion for those ambiguous terms which
are sometimes used with different meanings by different authors.

Afterwards, we focus on lattices, which constitute a special class of posets,
and we consider some of their abstract properties. Moreover, concrete ex-
amples are presented, especially for the subspace lattice SV of a vector space
V . These examples are also useful to introduce the section about invariant
subspace lattices induced by subgroups of GL(V ).

Main references are [41] for §2.1, [4] for §2.2, and [18] for §2.3.

2.1 Basic notions

A partially ordered set, or just simply called a poset, is a pair (P,≤),
where P is a set and ≤ is a partial order relation on P . It means that P
is endowed with a binary relation ≤ that is reflexive, anti-symmetric, and
transitive.

Notation. We often refer to the poset (P,≤) only by indicating the set P . If
x, y ∈ P are two elements of the poset, we use the obvious notation x ≤ y
to mean that x is related to y, and the expression y ≥ x is equivalent to
x ≤ y. Moreover, we can write x < y to mean that x ≤ y and x 6= y. The
expression y > x is equivalent to x < y.

Two elements x, y in a poset P are comparable if x ≤ y or y ≤ x
holds. Otherwise, if neither x ≤ y nor y ≤ x holds, they are said to be
incomparable. If x and y are comparable for all x, y ∈ P , then P is a
chain, or equivalently a totally (or linearly) ordered set.

Definition 2.1.1. An induced subposet (Q,≤Q) of a poset (P,≤P ) is a
subset Q ⊆ P together with a partial order relation ≤Q such that for all
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Chapter 2, § 2.1

x, y ∈ Q
x ≤Q y in Q ⇔ x ≤P y in P.

We then say that the subset Q has the ordering induced from P .

Notation. Whenever we refer to subposets, we mean induced subposets.
Thus, if P is a poset and Q is a subposet of P , we use the same notation ≤
for both of the order relations on P and Q.

Let (P,≤) be a poset. Let C ⊆ P be a subset such that the induced
subposet (C,≤) is a chain. Then we say that C is a chain in P . The chain
C is called maximal in P if it is not contained in a larger chain of P , i.e.
if there exists no other chain C ′ in P such that C ⊆ C ′. In general, if C is
a finite chain, we can define the length of C as

ℓ(C) = |C| − 1 .

The length of the poset P , denoted by ℓ(P ), is

ℓ(P ) = max{ℓ(C) | C is a chain in P}.

If there exists an infinite chain C in P , then ℓ(C) = ℓ(P ) =∞.
We say that a subset A ⊆ P , regarded as a subposet, is an antichain

if for every pair of distinct elements x, y ∈ A we have that x and y are
incomparable. If A 6= ∅ is an antichain in the poset P , we can consider the
set

P≤A = {s ∈ P | s ≤ a for some a ∈ A} ⊆ P.

P≤A is a subposet of P and it is an order ideal of P , in the following sense.

Definition 2.1.2. Let (P,≤) be a poset. An order ideal of P (in the sense
of Stanley [41]) is a subset I ⊆ P such that

∀x ∈ I, t ∈ P t ≤ x⇒ t ∈ I . (2.1)

Clearly, I can be regarded as an induced subposet of P . We include the
empty subset ∅ ⊆ P as an order ideal of P .

Notation. Some authors refer to subsets of P satisfying (2.1) as down-sets
(see for instance [4]). For us, an order ideal is always in the sense of Stanley.

So, if A 6= ∅ is an antichain in the poset P , we say that P≤A is the order

ideal of P generated by A. In particular, if A = {x}, for some x ∈ P ,
then

P≤x := P≤A = {s ∈ P | s ≤ x} ⊆ P (2.2)

is called the principal order ideal of P generated by x. In this case, we
also have the subposet P<x = P≤x \ {x}.

Obviously, the antichains in P are in one-to-one correspondence with the
order ideals of P generated by antichains (we consider ∅ ⊆ P as the ideal

7



Chapter 2, § 2.1

generated by the empty antichain). If P is finite, then it is also easy to see
that the map A 7→ P≤A from the set of antichains to the set of all order
ideals of P is surjective, and hence invertible.

Proposition 2.1.3. Let P be a finite poset. Then there is a bijection be-
tween antichains and order ideals of P , given by the map A 7→ P≤A for all
antichains A in P .

Let (P,≤) be a poset. We recall that the dual poset of P is defined as
the poset (P ♯,≤♯), where the set P ♯ coincides with the set P , but the partial
order relation ≤♯ on P ♯ satisfies the following condition:

∀x, y ∈ P x ≤♯ y in P ♯ ⇔ y ≤ x in P.

Since we have that x ≤♯ y is equivalent to writing y ≥ x in P , we can also
denote the dual poset P ♯ by (P,≥).

Remark. Let x ∈ P and, similarly as in (2.2), set

P≥x = {s ∈ P | s ≥ x} ⊆ P.

Then P≥x is a subposet of P and, according to [41], P≥x is called a dual

order ideal (or up-set) of P , which generally means an instance of a subset
D ⊆ P such that if x ∈ D and P ∋ t ≥ x, then t ∈ D . Equivalently, P≥x

can be regarded as a principal order ideal of the dual poset P ♯. Again, we
also have a subposet P>x = P≥x \ {x}.

Let (P,≤P ) and (Q,≤Q) be two posets. They are said to be isomorphic

if there exists an order-preserving bijection ϕ : P → Q whose inverse is order-
preserving, i.e.

x ≤P y ⇔ ϕ(x) ≤Q ϕ(y).

If a poset P and its dual P ♯ are isomorphic, then P is called self-dual.
If we have two or more posets, then there are also various operations

that can be performed on them to get a new poset (see [41]). One of these
operations is the direct product of posets, as defined below.

Definition 2.1.4. Let (P,≤P ) and (Q,≤Q) be two posets. The direct

product of P and Q is the poset (P × Q,≤) which consists of the set
P × Q = {(x, y) | x ∈ P, y ∈ Q} together with the partial order relation ≤
so that

(x, y) ≤ (x′, y′) in P ×Q ⇔ x ≤P x′ and y ≤Q y′ .

Remark. Clearly, the map (x, y) 7→ (y, x), for all x ∈ P and y ∈ Q, is an
order-preserving bijection between the posets P×Q and Q×P . Thus, P×Q
and Q× P are isomorphic.

8



Chapter 2, § 2.2

A poset P has a minimum 0̂ if there exists an element 0̂ ∈ P such
that 0̂ ≤ t for all t ∈ P . Similarly, P has a maximum 1̂ if there exists an
element 1̂ ∈ P such that t ≤ 1̂ for all t ∈ P . Both minimum and maximum
are unique, if they exist.

Example 2.1.5.

(a) Assume that P is a poset with minimum 0̂P and Q is a poset with
minimum 0̂Q. Then P ×Q has a minimum, i.e. (0̂P , 0̂Q). Similarly for
the maximum, if P and Q have one.

(b) Let P be a poset with minimum 0̂. Then P = P≥0̂. Moreover, if I is a

non-empty order ideal of P , then 0̂ ∈ I.

(c) Let x ∈ P and consider P≤x and P≥x as subposets of (P,≤). Then x is
the maximum of P≤x and x in the minimum of P≥x .

Let x, y ∈ P be two elements such that x ≤ y. A closed interval (or
segment) in P is the subset of all elements between x and y, ordered by ≤.
Namely

[x, y] = {z ∈ P | x ≤ z ≤ y} = P≥x ∩ P≤y .

P is called locally finite if every interval in P is finite.
If s, t ∈ P , then we say that s is covered by t if s < t and [s, t] = {s, t}.

So, we observe that a locally finite poset P is completely determined by its
cover relations. The Hasse diagram of a finite poset P is the graph whose
vertices are the elements of P , and whose edges are determined by the cover
relations.

2.2 Lattices

Let (P,≤) be a poset and let S be a subset of P . We recall that l ∈ P
is a lower bound of S in P if l ≤ s for all s ∈ S. Let W ⊆ P be the
induced subposet whose elements are the lower bounds of S in P . If W has
a maximum 1̂W , then 1̂W is usually called the greatest lower bound of S in
P . Similarly, we have that u ∈ P is an upper bound of S in P if s ≤ u for all
s ∈ S, and the least upper bound of S in P is the minimum (when it exists)
of the induced subposet U = {u ∈ P | u is an upper bound of S} ⊆ P .

Notation. Let x, y ∈ P . If S = {x, y} and there exists the greatest lower
bound l of S, then we denote l by x∧ y and we say that l is the meet of x
and y in P . Similarly, if there exists the least upper bound u of S, then we
denote u by x ∨ y and we say that u is the join of x and y in P .

A lattice is a poset (L,≤) such that for every pair of elements x, y ∈ L
there exist the meet x∧y and the join x∨y in L. So, if L is a lattice, we can
regard ∧ and ∨ as two binary operations L×L→ L. We observe that both

9



Chapter 2, § 2.2

∧ and ∨ are associative, commutative and idempotent (i.e., t∧ t = t = t∨ t).
Let Q ⊆ L be a subset such that Q is closed under these operations, i.e., if
x, y ∈ Q then x ∧ y ∈ Q and x ∨ y ∈ Q. Such a subset Q, endowed with the
partial order relation ≤ induced by L, is a special case of a subposet of L
which is called a sublattice of L.

Example 2.2.1.

(a) Every chain (C,≤) is a lattice. Indeed, x and y are comparable for
every pair of elements x, y ∈ C. If x ≤ y, then x ∧ y = x and x ∨ y = y.
Obviously, every chain of a lattice L is a sublattice of L.

(b) If V is a vector space, let SV denote the subspace lattice of V , i.e. the
lattice whose elements are all the subspaces of V , ordered by inclusion.
If T, U ≤ V , then the meet of T and U in SV is the intersection T ∩ U ,
and their join is the sum T + U = {t+ u | t ∈ T, u ∈ U}.

(c) If G is a group, let L(G) denote the subgroup lattice of G, i.e. the
lattice whose elements are all the subgroups of G, ordered by inclusion.
If H,K ≤ G, then the meet of H and K in L(G) is the intersection
H ∩K, and their join is the subgroup generated by H and K in G.

(d) The dual L∗ of a lattice L is a lattice. If L1 and L2 are two lattices,
then so is L1 × L2 .

(e) Let L be a lattice. Then, every closed interval [x, y] ⊆ L is a sublattice.

For a lattice, the definition of an order ideal is exactly the same as the
one given for a poset in Definition 2.1.2. So, for us, an order ideal of a lattice
L is not necessarily a sublattice of L, since it might not be close under the
operation of join ∨ (unlike what is required in [4]).

If (L,≤) is a finite lattice, such that L = {x1 , . . . , xn}, then clearly L has
a maximum 1̂ = x1 ∨ · · · ∨ xn and a minimum 0̂ = x1 ∧ · · · ∧ xn . Moreover,
we introduce the following notion for finite lattices.

Definition 2.2.2. Let L be a finite lattice with minimum 0̂ and maximum
1̂. We say that L is graded if every maximal chain in L has the same length.
In this case, we can recursively define a unique rank function rkL : L→ N
such that

{
rkL(0̂) = 0 ;
rkL(y) = rkL(x) + 1 if x is covered by y.

Let C be a maximal chain of L, so that ℓ(C) = ℓ(L) = n ∈ N. Then we have
that rkL(1̂) = n, and we say that the rank of L (i.e., its length) is n.

Remark. Finite graded posets are in fact defined in [41], and their definition
can be extended to certain infinite posets. But we prefer to consider only
finite lattices. Moreover, in the context of graded lattices, it is common to
find the term dimension instead of rank, for instance in [4].

10
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Example 2.2.3. Let SV be the subspace lattice of a vector space V of
dimension n over a finite field K. Clearly, each maximal chain of subspaces
of V has length n, and therefore we have that SV is graded of rank n. In
particular, for each subspace T ≤ V the dimension dimK(T ) coincides with
the value rkSV

(T ) given by the rank function.

Let L be a finite lattice with minimum 0̂. An atom of L is an element
a ∈ L such that 0̂ is covered by a. The lattice L is said to be atomistic if
every element of L is a join of atoms (we regard 0̂ as the join of the empty
set of atoms). Dually, if L has a maximum 1̂, a coatom of L is an element
which is covered by 1̂, and L is coatomistic if every element is a meet of
coatoms. If L is finite and graded of rank n, then clearly rkL(a) = 1 for
every atom of L, and rkL(c) = n− 1 for every coatom.

If x, y are elements of L such that x∧ y = 0̂ and x∨ y = 1̂ , then we say
that x is a complement of y in L. A lattice L with minimum and maximum
is complemented if every element of L has a complement.

Example 2.2.4. The subspace lattice SV of a vector space V ≃ Kn is both
atomistic (and coatomistic) and complemented. On the contrary, if C is a
finite chain of length n ≥ 2, then C is neither atomistic nor complemented.

Now we recall a special type of elements which are particularly important
for finite lattices, as we shall see.

Definition 2.2.5. Let L be a lattice. Let x ∈ L, so that x 6= 0̂ if L has a
minimum 0̂. Then x is said to be join-irreducible if

x = y ∨ z ⇒ either x = y or x = z .

The subset of join-irreducible elements in L is denoted by JI(L)

Dually, we can define the set MI(L) of meet-irreducible elements.

Remark. Let L be a finite lattice. Then we regard 0̂ as the join of the empty
set of join-irreducible elements. Then every element of L can be written as
the join of some join-irreducible elements in L (and, dually, also as the meet
of some meet-irreducible elements of L). In particular, the atoms of L are
join-irreducible (and the coatoms are meet-irreducible).

Example 2.2.6.

(a) Let SV be the subspace lattice of a vector space V ≃ Kn. Since SV is
atomistic and the atoms of SV are the 1-dimensional subspaces of V , we
have that

JI(SV ) = {T ≤ V | dimK(T ) = 1}.

Dually, MI(SV ) = {T ≤ V | dimK(T ) = n− 1} is the set of coatoms.

11
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(b) Let C be a chain with minimum 0̂C . Then every element x ∈ C, with
x 6= 0̂C , is join-irreducible in C.

(c) Let C1 and C2 be two chains, such that C1 has minimum 0̂1 and C2

has minimum 0̂2. Let L = C1 × C2 be their direct product. Then every
element (x1, x2) ∈ L is the join of (x1, 0̂2) and (0̂1, x2) in L. Thus,

JI(L) = {(x1, 0̂2), (0̂1, x2) | 0̂1 6= x1 ∈ C1, 0̂2 6= x2 ∈ C2} .

Now we focus on two special classes of lattices, which are particularly
relevant from the combinatorial point of view. We shall connect them with
the above notions and examples, with emphasis on finite lattices.

2.2.1 Modular and distributive lattices

Let (L,≤,∧,∨) be a lattice. By using the definitions of ∧ and ∨, it is
almost immediate to see that the following inequality

u ∨ (x ∧ y) ≤ (u ∨ x) ∧ (u ∨ y) (2.3)

holds for all u, x, y,∈ L.
Now we fix x, y ∈ L, and consequently also the ordered pair (x, y) ∈ L×L.

We say that (x, y) is a modular pair if

∀ u ≤ y u ∨ (x ∧ y) = (u ∨ x) ∧ y . (2.4)

Definition 2.2.7. Let L be a lattice. Then L is modular if (x, y) is a
modular pair for every x, y ∈ L.

Remark. Let L be a modular lattice. By inequality (2.3), to establish
modularity of a pair (x, y) in L, it suffices to show that for all u ∈ L we have

u ≤ y ⇒ u ∨ (x ∧ y) ≥ (u ∨ x) ∧ y . (2.5)

We also observe that every sublattice of L is modular, since clearly modu-
larity of the sublattice is induced by modularity of L.

Example 2.2.8.

(a) If x and y are comparable in L (i.e., x ≤ y or y ≤ x), then it is easy to
verify that the pair (x, y) is modular. Thus, every chain is a modular
lattice.

(b) Let G be a group. LetN (G) = {N ≤ G | N E G} be the set of all normal
subgroups of G. Then N (G) is a sublattice of the subgroup lattice L(G),
where the join of two subgroups H,K ∈ N (G) is the subgroup HK. If
N E G such that N ≤ K, then it is not difficult to prove that

NH ∩K ≤ (H ∩K)N .

Therefore, N (G) is modular.

12
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(c) Let SV be the subspace lattice of a vector space V . Then SV is modular.

There are various ways to characterize modular lattices. An example is
the so-called Dedekind’s modularity criterion, which states that a lattice L
is modular if and only if

∀ u, x, y ∈ L x ≤ y, u ∧ x = u ∧ y, u ∨ x = u ∨ y ⇒ x = y.

For finite lattices, the following characterization is of particular interest
and involves graded lattices.

Theorem 2.2.9. Let L be a finite lattice. Then the three following conditions
are equivalent.

(i) L is modular.

(ii) For all x, y ∈ L , we have that

x ∧ y is covered by x ⇔ y is covered by x ∨ y .

(iii) L is graded, and its rank function rkL satisfies

rkL(x) + rkL(y) = rkL(x ∧ y) + rkL(x ∨ y) ∀ x, y ∈ L .

The identity in (iii) corresponds to the well-known Grassmann Theo-
rem for vector spaces, where the rank function on the subspace lattice SV
coincides with the dimension of subspaces.

Another important property of a finite modular lattice L concerns the
different representations of an element in L as a join of some join-irreducible
elements. Let

∨m
i=1 xi be the join of elements x1, . . . , xm ∈ L. We recall that

the join
∨m

i=1 xi is said to be irredundant if for every k ∈ {1, . . . ,m}

m∨

i=1

xi > x1 ∨ · · · ∨ xk−1 ∨ xk+1 ∨ · · · ∨ xm =
∨

j 6=k

xj .

Theorem 2.2.10 (Kurosh-Ore). Let L be a finite modular lattice, and let
x ∈ L, x 6= 0̂.

(i) If x has two representations x =
∨m

i=1 yi and x =
∨n

j=1 zj as joins
of join-irreducible elements y1, . . . , ym, z1, . . . , zn in L, then for every
i ∈ {1, . . . ,m} there exists j ∈ {1, . . . , n} such that

x = y1 ∨ · · · ∨ yi−1 ∨ zj ∨ yi+1 ∨ · · · ∨ ym .

(ii) If x has two representations x =
∨m

i=1 yi and x =
∨n

j=1 zj as irredun-
dant joins of elements y1, . . . , ym, z1, . . . , zn ∈ JI(L), then m = n.

13
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As a natural continuation of the Kurosh-Ore Theorem, we have Theorem
2.2.14 below. But we need firstly to recall the following important class of
lattices.

Definition 2.2.11. A lattice L is distributive if

∀u, x, y ∈ L u ∨ (x ∧ y) = (u ∨ x) ∧ (u ∨ y) . (2.6)

It is evident that distributivity condition (2.6) is a strengthening of mod-
ularity condition (2.4). By definition, in a distributive lattice L, every pair
(x, y) of elements x, y ∈ L is modular. So, if L is a distributive lattice, then
L is modular.

Remark. Clearly, every sublattice of a distributive lattice is distributive.

We also observe that a lattice L is distributive if and only if

∀u, x, y ∈ L u ∧ (x ∨ y) = (u ∧ x) ∨ (u ∧ y) . (2.7)

Conditions (2.6) and (2.7) are the usual distributivity laws.

Example 2.2.12.

(a) Let X be a finite set, |X| = n. Then we denote by Bn the set of all
subsets of X (so, Bn = 2X), ordered by inclusion. With the operations of
intersection ∩ and union ∪, the poset Bn is clearly a distributive lattice.

(b) Every chain is a distributive lattice. Moreover, if C1 and C2 are two
chains, then C1×C2 is distributive too. The lattice Bn in (a) is isomor-
phic to the direct product of n chains of length 1.

(c) Let V be a vector space over a field K, such that dimK(V ) ≥ 2. We take
two elements e1, e2 of the canonical basis of V . Let SV be the subspace
lattice of V . Let T1 = 〈e1〉, T2 = 〈e2〉, T3 = 〈e1 + e2〉 be elements of SV .
Then it is immediate to see that

T3 ∩ (T1 + T2) 6= (T3 ∩ T1) + (T3 ∩ T2).

Thus, SV is not distributive.

If L is a distributive lattice, the set (and subposet) JI(L) of join-irreducible
elements in L has some nice features. Especially for finite distributive lat-
tices, JI(L) reflects the structure of L. Here below, a property that we will
use in section 4.4.

Proposition 2.2.13. Let L be a distributive lattice and let p ∈ JI(L) be a
join-irreducible element of L. If p ≤ x1 ∨ · · · ∨ xn for some x1, . . . , xn ∈ L ,
then p ≤ xi for some i ∈ {1, . . . , n}.

14
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Proof. By distributivity, we have

p = p ∧ (x1 ∨ · · · ∨ xn) = (p ∧ x1) ∨ · · · ∨ (p ∧ xn) .

Since p ∈ JI(L), then p must be equal to p∧xi for some i, whence p ≤ xi .

If L is a finite distributive lattice and x ∈ L, we know that two different
representations of x as a join of some join-irreducible elements have the same
number of components, by Theorem 2.2.10. In fact, we have more: for a finite
distributive lattice L, the representation of x ∈ L as an irredundant join of
some join-irreducible elements is unique, in the following sense.

Theorem 2.2.14. Let L be a finite distributive lattice, and let x ∈ L,
x 6= 0̂. If x has two representations x =

∨m
i=1 yi and x =

∨n
j=1 zj as

irredundant joins of elements y1, . . . , ym, z1, . . . , zn ∈ JI(L), then m = n
and {y1, . . . , ym} = {z1, . . . , zm}.

Corollary 2.2.15. The rank of a finite distributive lattice is |JI(L)| .

Finally, there is a remarkable result that connects the structure of a
finite distributive lattice L with the set of join irreducible elements in L. In
particular, a role is played by the lattice of order ideals in the poset JI(L).
But we need some notation.

Let P be a finite poset, so that |P | = n. Then we set

O(P ) = {I ⊆ P | I is an order ideal of P}

the set of order ideals of P . Let I1 and I2 be two order ideals of P . Then
both I1 ∩ I2 and I1 ∪ I2 are order ideals of P . So, we observe that O(P ),
ordered by inclusion, is isomorphic to a sublattice of Bn (as described in
Example 2.2.12, (a)). In particular, O(P ) is a distributive lattice.

Remark. An order ideal of P is a join-irreducible element in O(P ) if and
only if it is a principal ideal of P . Thus, since P is finite, we have that
I ∈ JI(O(P )) if and only if I = P≤x for some x ∈ P . Hence, there is a
one-to-one correspondence between JI(O(P )) and P . Moreover, notice that
P≤x ⊆ P≤y if and only if x ≤ y in P . Hence,

JI(O(P )) ≃ P.

Since O(P ) is a finite distributive lattice, we obtain that the rank of O(P )
is |P |. By Theorem 2.2.14, for another poset Q, we have that O(P ) ≃ O(Q)
if and only if P ≃ Q.

This information can be exploited to prove the following Fundamental
Theorem of Finite Distributive Lattices (FTFDL).

15
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Theorem 2.2.16 (FTFDL). Let L be a finite distributive lattice. Then there
is an isomorphism

L ≃ O(JI(L)) .

Moreover, if P is a poset such that L ≃ O(P ), then P ≃ JI(L).

The isomorphism between L and O(JI(L)) is given by f : L→ O(JI(L)) ,
so that

f(x) := {a ∈ JI(L) | a ≤ x} .

In the sense of Theorem 2.2.16, the structure of a finite distributive lattice
is completely determined by its set of join-irreducible elements.

We recall that a lattice is said to be boolean if it is a complemented
distributive lattice. The lattice Bn of Example 2.2.12 is a finite boolean
lattice. By Theorem 2.2.16, every finite distributive lattice is isomorphic to
a sublattice of a boolean lattice. We also observe that |JI(Bn)| = n and
JI(Bn) is an antichain. As a consequence of Theorem 2.2.16, we have the
following.

Corollary 2.2.17. Let L be a finite distributive lattice. Then

L is boolean ⇔ JI(L) is an antichain;

⇔ every x ∈ JI(L) is an atom of L;

⇔ 1̂ is a join of atoms of L;

⇔ L is atomistic.

2.3 Subspace lattices induced by linear groups

In this section we consider in detail the subspace lattice SV and some
special sublattices S(V,H) ⊆ SV arising from the natural action of a group
H ≤ GL(V ) on SV , induced by right matrix-vector multiplication. Although
some general definitions can be given for any vector space V over a field K,
we shall specify V ≃ Fn

q for some n ∈ N and q a prime power, if it is our
interest that S(V,H) is finite.

Definition 2.3.1. Let V be a vector space over a field K. Let h ∈ EndK(V )
be a K-linear endomorphism h : V → V . We say that a subspace W ≤ V is
h-invariant if Wh ⊆W .

Notation. We denote by S(V, h) the set of all h-invariant subspaces of V :

S(V, h) = {W ≤ V |W is h-invariant}.

We are mainly interested in the invertible endomorphisms h : V → V ,
that is, the elements h ∈ GL(V ), where V ≃ Kn is a vector space of finite
dimension over K. So, in this case, a subspace W of V is h-invariant if and
only if Wh = W .
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Remark. Let h ∈ GL(V ) and let A = 〈h〉 be the subgroup of GL(V )
generated by h. It is immediate to see that if W ≤ V is h-invariant, then W
is hk-invariant for all hk ∈ A. Similarly, let h1, . . . , hr ∈ GL(V ) and consider
the subgroup B = 〈h1, . . . , hr〉 ≤ GL(V ). Let W ≤ V be hi -invariant for all
i = 1, . . . , r. Then W is b-invariant for all b ∈ B.

Definition 2.3.2. Let V be a vector space of finite dimension over K, and
let H ≤ GL(V ). We say that a subspace W ≤ V is H-invariant if W is
h-invariant for all h ∈ H.

Notation. We denote by S(V,H) the set of all H-invariant subspaces of V :

S(V,H) =
⋂

h∈H

S(V, h).

In particular, if A = 〈h〉 for some h ∈ GL(V ), then S(V,A) = S(V, h).
And similarly, if B = 〈h1, . . . , hr〉 ≤ GL(V ), then S(V,B) =

⋂r
i=1 S(V, hi).

Remark. Let SV be the set of all subspaces of V , and let G = GL(V).
There is an obvious action of G on SV given by

SV ×G ∋ (W, g) 7→W g := Wg ∈ SV . (2.8)

With respect to this action, we denote by stabG(W ) the set of all g ∈ G such
that Wg = W , i.e.

stabG(W ) = {g ∈ G | W is g-invariant }.

If H is a subgroup of G = GL(V ), we have that

S(V,H) = {W ≤ V | H ⊆ stabG(W )}.

A subspace W of V is said to be non-trivial if W 6= 0 and W 6= V .
Clearly, trivial subspaces 0 and V are element of S(V,H) for all H ≤ GL(V ).

Definition 2.3.3. Let H be a subgroup of GL(V ). If there exists a non-
trivial subgroup W ≤ V such that W is H-invariant, then H is called re-

ducible. Otherwise, we say that H is irreducible.

In other terms, H is irreducible if and only if S(V,H) = {0, V }.

Example 2.3.4.

(a) Let H be the trivial subgroup 1 ≤ GL(V ). Then S(V, 1) is the set of
all subspaces of V , i.e. S(V, 1) = SV . Similarly, S(V,Z) = SV , where
Z ≤ GL(V ) is the centre of GL(V ).

17
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(b) Let V =
⊕r

i=1Wi. We consider the subgroup H ≤ GL(V ) such that

H =
r⋂

i=1

stabGL(V )Wi ,

where each stabilizer is defined with respect to the action of GL(V ) on
SV as given in (2.8). Then, clearly, each Wi ∈ S(V,H). It is not difficult
to see that a subspace U ∈ S(V,H) if and only if U =

⊕
j∈J Wj for

some J ⊆ {1, . . . , r}.

Indeed, for every H ≤ GL(V ), if W1,W2 ∈ S(V,H), then we have also
W1+W2 ∈ S(V,H) and W1∩W2 ∈ S(V,H). It means that S(V,H) is closed
under intersections and linear sums of subspaces, which are, respectively, the
meet and join operations for the subspace lattice SV ordered by inclusion.
Thus, (S(V,H),⊆,∩,+) is a modular lattice.

Proposition 2.3.5. Let V be a vector space of finite dimension over K.
Then S(V,H) is a sublattice of SV for every subgroup H ≤ GL(V ). Hence
S(V,H) is modular.

As already observed above, 0 and V are elements in S(V,H) for every
subgroup H ≤ GL(V ). Moreover, they are respectively the minimum and
the maximum of S(V,H).

Remark. Let H and K be two subgroups of GL(V ) such that H ≤ K.
Then S(V,K) is a sublattice of S(V,H).

Let K = Fq be the finite field with q elements. Then, for every sub-
group H ≤ GL(V ) we have that S(V,H) is a finite lattice. Since S(V,H)
is modular, by Theorem 2.2.9 it is also graded. Nevertheless, in this case
the rank function defined on S(V,H) does not necessarily coincide with the
dimension of subspaces.

Example 2.3.6. Let K = Fq and V ≃ Kn such that V =
⊕r

i=1Wi. Let
H be as in (c) of Example 2.3.4. We have observed that there is a one-to-
one correspondence between subspaces in S(V,H) and subsets of {1, . . . , r}.
Let U1 =

⊕
j∈J1

Wj and U2 =
⊕

j∈J2
Wj , with J1, J2 ⊆ {1, . . . , r}. Then

U1 ≤ U2 if and only if J1 ⊆ J2. Therefore S(V,H) is isomorphic to the
boolean lattice Br with r atoms. If there exists i ∈ {1, . . . , r} such that
dimK(Wi) ≥ 2, then it is clear that there are subspaces U ∈ S(V,H) such
that rkS(V,H)(U) 6= dimK(U).

Let T ∈ S(V,H) be an H-invariant subspace of V . The principal order
ideal of S(V,H) generated by T is

S(V,H)≤T = {W ∈ S(V,H) |W ≤ T}.

We immediately notice that S(V,H)≤T is also a sublattice of S(V,H). Then,
0 and T are respectively the minimum and maximum of S(V,H)≤T , and
S(V,H)≤T is modular.

18



Chapter 2, § 2.3.1

Notation. We can also denote the ideal S(V,H)≤T by S(T,H), if the context
allows it, i.e., if the vector space V is fixed and it is clear that H is a subgroup
of GL(V ).

Remark. Let V ≃ Fn
q and H ≤ GL(V ). Let T ∈ S(V,H). Then both

S(V,H) and S(T,H) are graded lattices. We denote by rkV and rkT the rank
functions defined on S(V,H) and S(T,H) respectively. Let W ∈ S(T,H).
It is immediate to see that

rkV (W ) = rkT (W ).

So we can just write rk(W ) to denote the rank of W in both of these lattices.

We know that every sublattice of a modular lattice is modular, and that
every sublattice of a distributive lattice is distributive. But it is false, in gen-
eral, that a sublattice of a boolean lattice is boolean. It is true, anyway, if we
assume that S(V,H) is boolean and we consider the sublattice S(V,H)≤T .
Indeed, by Theorem 2.2.14 and Corollary 2.2.17, all the join-irreducible ele-
ments of S(V,H)≤T are the atoms of S(V,H) which are contained in T .

Proposition 2.3.7. Let V be a vector space of finite dimension over Fq. If
S(V,H) is boolean, then S(V,H)≤T is boolean for every T ∈ S(V,H).

Last thing we want to point out about H-invariant subspace lattice con-
cerns quotient vector spaces. Let V be a vector space and H ≤ GL(V ).
Let W ∈ S(V,H). Since W is H-invariant, there is a natural action of H
on the quotient space V/W and its subspace lattice SV/W , such that for all
(W +X)/W ∈ SV/W and h ∈ H we have

(
W +X

W
,h

)
7→

(
W +X

W

)h

:=
W +Xh

W
=

W +Xh

W
∈ SV/W . (2.9)

For every subspace X ≤ V , let X = (W + X)/W . The set of H-invariant
subspaces of V/W is therefore

S(V/W,H) := {X ≤ V/W | X
h
= X ∀h ∈ H}.

In an obvious way, we can endow S(V/W,H) with the structure of a modular
lattice.

2.3.1 Cyclic matrices

The structure of the H-invariant subspace lattice S(V,H) will play a sig-
nificant role in issues addressed in the following chapters, where applications
will concentrate on finite classical groups. In particular, Corollary 2.3.13
and Proposition 2.3.14 determine the structure of S(V,H) when H contains
a cyclic matrix, by showing that in this case S(V,H) is a distributive lattice.
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In §4.4 and §5.3 we will see in detail how this condition can be exploited for
questions concerning the Möbius function of groups.

We remind our assumption that V ≃ Fn
q is a vector space of finite dimen-

sion over Fq , and we identify GL(V ) with the matrix group GL(n, q). Then
we look for a “large” class of subgroups H ≤ GL(V ) so that S(V,H) has the
nice property of being a finite distributive lattice.

For the sake of completeness, we could also recall here some elementary
but useful notions of linear algebra. A general reference for this part is [18].

Let ξ ∈ GL(n, q).

• The characteristic polynomial of ξ is the polynomial cξ(t) ∈ Fq[t]
such that cξ(t) = det(tIn − ξ).

• The minimal polynomial of ξ is the unique monic polynomial of least
degree mξ(t) ∈ Fq[t] such that mξ(ξ) = 0. It is the monic generator of

Iξ = {f(t) ∈ Fq[t] | f(ξ) = 0} E Fq[t] .

By Cayley-Hamilton Theorem, we know that cξ(t) ∈ Iξ.

Definition 2.3.8. An element ξ ∈ GL(n, q) is said to be a cyclic matrix

if its characteristic polynomial cξ(t) equals its minimal polynomial mξ(t).

Let A ∈ GL(V ) and w ∈ V . The A-module generated by w is the span
of w,wA,wA2, . . . in V and it is denoted by 〈w〉A . We have the following
characterization for cyclic matrices, which explains their name.

Proposition 2.3.9. Let V ≃ Fn
q and ξ ∈ GL(n, q). Then, ξ is a cyclic

matrix if and only if there exists a vector v ∈ V such that

〈v〉ξ = 〈v, vξ, . . . , vξ
n−1〉 = V .

In this case, we refer to v as a cyclic vector for ξ on V , and we call
(v, ξ) a cyclic pair for V .

Remark. Similarly, if a subspace W ≤ V is a ξ-module generated by a vector
w, we call (w, ξ) a cyclic pair for W . We notice that W = 〈w〉ξ ∈ S(V, ξ)
and it is the smallest ξ-invariant subspace containing w.

Is it possible to determine a cyclic pair (w, ξ) for every W ∈ S(V, ξ)?
What information can we deduce about the structure of S(V, ξ)? The fol-
lowing results provide a good answer to these questions for cyclic matrices.

Lemma 2.3.10. Let ξ ∈ GL(n, q) be a cyclic matrix with minimal polyno-
mial mξ(t). Let v be a cyclic vector for ξ on V ≃ Fn

q , such that V = 〈v〉ξ. We
assume that mξ(t) = f1(t)f2(t) for some monic polynomials f1, f2 ∈ Fq[t].
So, let W = 〈vf1(ξ)〉ξ ≤ V be the ξ-module generated by vf1(ξ), and denote
by ξ|W the restriction of ξ to W . Then
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(i) f2(t) is the minimal polynomial of ξ|W ;

(ii) dim(W ) = deg(f2) = n− deg(f1);

(iii) W = ker(f2(ξ)).

As a consequence, we obtain that every W ∈ S(V, ξ) admits cyclic pair
(w, ξ), for some w ∈ V , such that 〈w〉ξ = W .

Proposition 2.3.11. Let ξ ∈ GL(n, q) be a cyclic matrix with cyclic vector
v ∈ V ≃ Fn

q , such that V = 〈v〉ξ. If W ∈ S(V, ξ), then

(i) W + v is a cyclic vector for ξ on V/W .

Let c̄(t) ∈ Fq[t] be the characteristic polynomial of ξ on V/W . Then

(ii) W = 〈vc̄(ξ)〉ξ .

Remark. In particular, we observe that if ξ ∈ GL(n, q) is a cyclic matrix
and W ≤ V is an eigenspace of ξ, then dim(W ) = 1.

Now we put together the above information to describe S(V, ξ).

Theorem 2.3.12. Let ξ ∈ GL(n, q) be a cyclic matrix with minimal poly-
nomial mξ(t), and denote by D(mξ) the set of all monic divisors of mξ(t) in
Fq[t]. Let v be a cyclic vector for ξ on V ≃ Fn

q , such that V = 〈v〉ξ. Then

S(V, ξ) = {〈vf(ξ)〉ξ ≤ V | f(t) ∈ D(mξ)}.

In particular, if mξ(t) = f(t)g(t), then 〈vf(ξ)〉ξ = ker(g(ξ)) by (iii) of
Lemma 2.3.10. So, we also have that

S(V, ξ) = { ker(g(ξ)) ≤ V | g(t) ∈ D(mξ)}.

The set D(mξ), ordered by divisibility (i.e., g1(t) ≤ g2(t) if and only if
g1(t) | g2(t)), turns out to be a lattice, where g1(t)∧ g2(t) = gcd(g1(t), g2(t))
is their monic greatest common divisor and g1(t) ∨ g2(t) = lcm(g1(t), g2(t))
is their monic lowest common multiple.

Corollary 2.3.13. Let V ≃ Fn
q . Let ξ ∈ GL(n, q) be a cyclic matrix with

minimal polynomial mξ(t), and denote by D(mξ) the lattice of all monic
divisors of mξ(t) in Fq[t]. Then there is an isomorphism

D(mξ) ≃ S(V, ξ)

given by the map D(mξ) ∋ g(t) 7→ ker(g(ξ)) ≤ V .

Proof. The map g(t) 7→ ker(g(ξ)) is surjective by Theorem 2.3.12. Let
g1(t), g2(t) ∈ Fq[t] be two monic divisors of mξ(t). It is immediate to see
that if g1(t) divides g2(t), then ker(g1(ξ)) ⊆ ker(g2(ξ)). And if g1(t) 6= g2(t),
then ker g1(η) 6= ker g2(η) .

21



Chapter 2, § 2.3.1

The structure of the lattice D(mξ) is well-known and depends on the
prime factorization of mξ(t) in Fq[t]. Let

mξ(t) = f1(t)
α1 · . . . · fr(t)

αr

where f1(t), . . . , fr(t) ∈ Fq[t] are monic and irreducible. Then

D(mξ) ≃
r∏

i=1

C(αi) = C(α1)× · · · × C(αr)

where
∏r

i=1C(αi) denotes the direct product of r chains C(α1), . . . , C(αr)
of length, respectively, α1, . . . , αr. So, we have the following.

Proposition 2.3.14. Let V ≃ Fn
q and let ξ ∈ GL(n, q) be a cyclic matrix.

Then the lattice S(V, ξ) of ξ-invariant subspaces of V is isomorphic to a
product of chains.

Remark. In Example 2.2.12, we have seen that the direct product of chains
is a distributive lattice. Therefore, if ξ is cyclic, S(V, ξ) is distributive.
Moreover, for every subgroup H ≤ GL(V ) such that ξ ∈ H, we have that
the lattice of H-invariant subspaces S(V,H) is distributive too, since every
sublattice of a distributive lattice is distributive. From the point of view of
abstract finite distributive lattices, a study on products of chains and the
structure of their sublattices can be found in [39].

Since we are dealing with vector spaces, we can equivalently state Propo-
sition 2.3.14 with the language of linear algebra, as Brickman and Fillmore
do in [7].

Definition 2.3.15. Let V be a vector space and let L be a sublattice of the
subspace lattice SV . Let L1 and L2 be two sublattices of L. Then L is the
direct sum of L1 and L2 if W1 ∩W2 = 0 for all W1 ∈ L1 , W2 ∈ L2 , and

L = {W1 ⊕W2 | W1 ∈ L1, W2 ∈ L2}.

The lattice operations can be performed coordinate-wise and clearly, in this
case, L ≃ L1 × L2.

A lattice of subspaces of V that cannot be written as a non-trivial direct
sum is called ⊕-irreducible.

By Corollary 2.3.13, we have that Proposition 2.3.14 is equivalent to
saying that the lattice S(V, ξ) is a direct sum of sublattices L1, . . . ,Lr so that
every Li is a chain of ξ-invariant subspaces with minimum 0 and maximum
Vi . Then every W ∈ S(V, ξ) is uniquely representable in the form W =
W1 ⊕ · · · ⊕Wr , where each Wi ∈ Li . In particular, 0 = 0 ⊕ · · · ⊕ 0 and
V = V1 ⊕ · · · ⊕ Vr . We also notice that every chain Li is ⊕-irreducible.
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Remark. It is interesting to note that, even if ξ is not a cyclic matrix,
S(V, ξ) has the structure of a direct sum of ⊕-irreducible sublattices. In this
case, nevertheless, there exists i ∈ {1, . . . , r} such that Li is not a chain, and
S(V, ξ) is not distributive (see [7, Theorem 2] for details).

At this point, can we say something about the number of subgroups H ≤
GL(n, q) with the property that S(V,H) is a distributive lattice? Maybe we
do not have a precise answer, but we can think that from a cyclic matrix
ξ ∈ GL(n, q) we can move to the subgroup 〈ξ〉 generated by ξ, and, more
generally, to all subgroups H ≤ GL(n, q) containing ξ. For such subgroups,
we even know that S(V,H) is a sublattice of a product of chains. So, first
of all, we are interested in estimates on the number of cyclic matrices in
GL(n, q).

Remark. All conjugates of a matrix ξ ∈ GL(n, q) have the same charac-
teristic polynomial and the same minimal polynomial. So, if ξ is a cyclic
matrix, then all conjugates of ξ in GL(n, q) are cyclic matrices.

Conversely, are two cyclic matrices similar, if they have the same minimal
polynomial?

Example 2.3.16. Let ξ ∈ GL(n, q) be an irreducible matrix, which means
that S(V, ξ) = {0, V }. Let v ∈ V , v 6= 0. Then we have that 〈v〉ξ = V and,
by Proposition 2.3.9, the matrix ξ is cyclic. Since the vectors v, vξ, . . . , vξn−1

form a basis of V , the matrix ξ is similar to

Ξmξ
=




0 1 0 · · · 0

0 0 1 · · ·
...

...
...

...
. . . 0

0 0 0 · · · 1
−c0 −c1 −c2 · · · −cn−1




(2.10)

such that vξn = −c0v − c1vξ − . . .− cn−1vξ
n−1. Then

mξ(t) = tn + cn−1t
n−1 + . . .+ c1t+ c0

is the minimal polynomial of ξ in Fq[t]. It follows that every irreducible
matrix in GL(n, q) with minimal polynomial mξ(t) is similar to Ξmξ

. Hence
all irreducible matrices with the same characteristic polynomial are similar.

This can be generalized for all cyclic matrices in GL(n, q).

Proposition 2.3.17. Let ξ ∈ GL(n, q) be a cyclic matrix with minimal
polynomial mξ(t). Then ξ is similar to a matrix Ξmξ

as in (2.10), such that
mξ(t) = tn+ cn−1t

n−1+ . . .+ c1t+ c0. Moreover, ξ is conjugate to any other
cyclic matrix in GL(n, q) with the same minimal polynomial.
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Now, let f(t) ∈ Fq[t] be a monic polynomial

f(t) = tn + an−1t
n−1 + . . .+ a1t+ a0

such that f(0) = a0 6= 0. Then, we have the companion matrix of f(t) in
GL(n, q), that is

Ξf =




0 1 0 · · · 0

0 0 1 · · ·
...

...
...

...
. . . 0

0 0 0 · · · 1
−a0 −a1 −a2 · · · −an−1




.

Clearly, Ξf is a cyclic matrix with minimal polynomial f(t).
Thanks to estimates on the number of monic irreducible polynomials of

degree r over Fq, and by using the correspondence between minimal poly-
nomials and companion matrices, Praeger and Neumann make precise the
assertion that almost all matrices in GL(n, q) are cyclic, in the following
sense (see [30] and [31]).

Theorem 2.3.18. Let Cyc(n, q) be the set of all cyclic matrices in GL(n, q).
Let

P (Cyc(n, q)) =
|Cyc(n, q)|

|GL(n, q)|

be the probability that a matrix in GL(n, q) is cyclic. Then, for all n ≥ 1
and prime powers q

1− P (Cyc(n, q)) ≤
1

q(q2 − 1)
.

In particular, if n = 1, then Cyc(1, q) = GL(1, q) and P (Cyc(1, q)) = 1.
If n = 2, then a matrix ξ ∈ GL(2, q) is non-cyclic if and only if ξ is scalar,
i.e. ξ is in the centre of GL(n, q). Since |GL(2, q)| = q(q2 − 1)(q − 1) and
|Z(GL(2, q))| = q − 1, we have that

1− P (Cyc(2, q)) = 1/q(q2 − 1).

If n ≥ 3, then Praeger and Neumann show that

1− P (Cyc(n, q)) < 1/q(q2 − 1) .

In fact, in [30], they achieve upper and lower bounds for P (Cyc(n, q)), which
are enough to establish that P (Cyc(n, q)) = 1− q−3+O(q−4). Actually, the
proportion of cyclic matrices in any group containing SL(n, q) is not much
different from this, and in [31] they obtain similar estimations for other
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irreducible finite classical groups. Moreover, if we fix q and look at the limit,
as n→∞, of the probability that an element of GL(n, q) is cyclic, we obtain

P (Cyc(n, q))→
1− q−5

1− q−3

(see [43, Equation 6.24]). Finally, in his PhD thesis [8], Brown extends such
results to maximal reducible subgroups of GL(n, q).

Since most of the elements in GL(n, q) are cyclic matrices, it seems rea-
sonable to choose and study S(V,H) when the subgroup H ≤ GL(n, q)
contains a cyclic matrix, in the sense that such subgroups constitute a re-
markably large class of subgroups of GL(n, q). This motivates the choice of
focussing on distributive lattices S(V,H) in Chapter 4 and Chapter 5, where
we will deal with problems concerning the subgroup lattice of GL(n, q).

Remark. Instead of the probability of finding a cyclic matrix in GL(n, q),
it may also be interesting to study the following question.

Question. What is the proportion of subgroups which contain some cyclic
matrix among all subgroups of GL(n, q)?
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Chapter 3

The Möbius function

The Möbius function of locally finite partially ordered sets is a classical
tool in enumerative combinatorics, and it generalizes the number-theoretic
Möbius function µ : N→ Z defined, for any positive integer n, as

µ(n) =





1 if n = 1
(−1)r if n = p1 · . . . · pr , with prime factors pi 6= pj ∀i 6= j
0 if n is divisible by p2 , for some p prime.

We want to introduce such a generalization and state the related key
results that will be used in the following chapters, where we will develop
some methods in order to compute the Möbius function for finite classical
groups. This chapter is therefore divided into two main sections. In §3.1 we
collect some facts concerning the Möbius function of abstract locally finite
posets ([41] is the main reference for this part). In section §3.2, we try to
motivate our interest in connections between the Möbius function and the
theory of groups through stimulating open questions. Some basic knowledge
is assumed both for finite and profinite groups. We refer to [35] and [44] for
the necessary general background.

3.1 The Möbius function of locally finite posets

Let (P,≤) be a poset. We assume that every interval

[x, y] = {t ∈ P | x ≤ t ≤ y}

in P is finite, so that P is locally finite.

Definition 3.1.1. The Möbius function associated with a locally finite
poset P is a map µP : P × P → Z satisfying

µP (x, y) = 0 unless x ≤ y ,
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and defined recursively for x ≤ y by

µP (x, x) = 1 and
∑

x≤t≤y

µP (x, t) = 0 if x < y . (3.1)

Notation. Let S be an interval [x, y] of P . It is clear, by definition, that the
Möbius function µS of S equals the restriction of µP to S. So, we can simply
use µ to denote both µP and its restriction µS , if the context allows it.

Example 3.1.2.

(a) Let C be a finite chain and x, y ∈ C. Then

µ(x, y) =





1 if x = y ;

−1 if x is covered by y ;

0 otherwise.

(b) Let P and Q be two locally finite posets, and let P ×Q be their direct
product. If (x1, y1) ≤ (x2, y2) in P×Q, then the interval [(x1, y1), (x2, y2)]
is finite and

µP×Q((x1, y1), (x2, y2)) = µP (x1, x2) · µQ(y1, y2) .

Indeed, if (x1, y1) = (x2, y2), then µP (x1, x2)·µQ(y1, y2) = 1. Otherwise,
if (x1, y1) < (x2, y2), then it is immediate to see that

∑

(x1,y1)≤(t,u)≤(x2,y2)

µP (x1, t) · µQ(y1, u) = 0 .

Hence (3.1) is satisfied and it determines µP×Q((x1, y1), (x2, y2)) uniquely.

(c) Let r ∈ N. By combining (a) and (b) above, we can determine the
Möbius function of a direct product P of r locally finite chains. W.l.o.g.,
we can assume that each chain has finite length ≥ 1 and we can com-
pute µP (0̂, 1̂), where 0̂ and 1̂ are the minimum and maximum of P ,
respectively. If all chains have length 1, then P is isomorphic to the
boolean lattice Br and µP (0̂, 1̂) = (−1)r . Otherwise, if there exists a
chain of length ≥ 2, then µP (0̂, 1̂) = 0. We will extend this example
with Theorem 3.1.14 in §3.1.1.

(d) By applying (c), it is immediate now to represent the number-theoretic
Möbius function µ : N → {0,±1} through the Möbius function of a
locally finite poset. Let P = (N,�), so that m � n ⇔ m|n. P is a
locally finite poset and the interval [1, n] in P is isomorphic to a direct
product of chains. Thus,

µP (1, n) = µ (n) ∀ n ∈ N .
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(e) Let V ≃ Fn
q and let SV be the subspace lattice of V . If U ≤ W in

SV , then the interval [U,W ] is isomorphic to the subspace lattice of
W/U ≃ Fm

q for some m ≤ n. Therefore, µ(U,W ) in SV depends only on
the dimension of the quotient space W/U . We will show how to easily
compute µ(0, V ), by using Theorem 3.1.10.

Let x and y be two elements of the poset P , such that x ≤ y. Let C ⊆ P
be a chain such that its minimum is x and its maximum is y. Then, we say
that C is a chain from x to y. In a finite interval [x, y], the chains from x
to y determine the Möbius function of the interval, as follows.

Theorem 3.1.3 (P. Hall). Let (P,≤) be a locally finite poset, and let x, y ∈ P
such that x ≤ y. Then

µ(x, y) =
∑

C∈Kx,y

(−1)ℓ(C)

where Kx,y = {C ⊆ P | C is a chain from x to y}.

Hall’s Theorem can be easily proven by induction on the length of [x, y]
and it provides a tool which is useful to characterize and estimate the Möbius
function on several occasions.

Example 3.1.4. Let P be a locally finite poset and P ♯ its dual. If [x, y] is
an interval in P , then

[y, x] = {t ∈ P ♯ | y ≥ t ≥ x} ⊆ P ♯

is a finite interval in P ♯, and it is essentially the dual of [x, y]. Let Kx,y be

the set of all chains from x to y in P , and let K♯
y,x be the set of all chains

from y to x in P ♯. Clearly, there is a one-to-one correspondence from Kx,y

to K♯
y,x, such that every chain of length r in Kx,y corresponds to a chain of

length r in K♯
y,x . Therefore, by Proposition 3.1.3 we have that

µ(x, y) = µ♯(y, x) , (3.2)

where µ is the Möbius function of P and µ♯ is the Möbius function of P ♯.

Remark. If we apply the recursive formula of Definition 3.1.1 to the Möbius
function µ♯ of the dual poset P ♯, for y > x in P ♯ we have that (3.1) turns
into ∑

y≥t≥x

µ♯(y, t) = 0 ,

which can be equivalently written as

∑

x≤t≤y

µ(t, y) = 0 .
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by (3.2) of Example 3.1.4. So, for x ≤ y in P , the Möbius function of P can
be defined also by

µ(y, y) = 1 and
∑

x≤t≤y

µ(t, y) = 0 if x < y . (3.3)

Depending on the specific circumstances, sometimes (3.3) is more convenient
than considering (3.1).

If L is a locally finite lattice, then each interval [x, y] in L is a finite
lattice. So, we may assume that L is a finite lattice with minimum 0̂ and
maximum 1̂. We are interested in µL(0̂, x) and µL(x, 1̂) for x ∈ L. The
following result is often helpful, because it allows us to ignore all elements
which are not meets of coatoms or, dually, which are not joins of atoms.

Proposition 3.1.5. Let L be a finite lattice. Let M be the set of coatoms
in L, and N be the set of atoms in L.

(i) Let M∧ = {x1 ∧ · · · ∧ xr ∈ L | x1, . . . , xr ∈M, r ≥ 1} ∪ {1̂}. Then

{
µL(x, 1̂) = µM∧(x, 1̂) if x ∈M∧

µL(x, 1̂) = 0 otherwise.

(ii) Let N∨ = {y1 ∨ · · · ∨ yr ∈ L | y1, . . . , yr ∈ N, r ≥ 1} ∪ {0̂}. Then

{
µL(0̂, y) = µN∨(0̂, y) if x ∈ N∨

µL(0̂, y) = 0 otherwise.

Both (i) and (ii) in Proposition 3.1.5 can be easily proven by induction
on the length of [x, 1̂] and [0̂, y], respectively. We want to observe that this
kind of proof needs Definition 3.1.1 for (ii) and the equivalent definition as in
(3.3) above for (i). Proposition 3.1.5 can also be considered as a corollary of
the next more general result, which is referred to as the Crosscut Theorem.

Theorem 3.1.6 (Crosscut Theorem). Let L be a finite lattice with min-
imum 0̂ and maximum 1̂, so that 0̂ 6= 1̂. Let M be the set of all coatoms in
L . Let X ⊆ L be a subset such that M ⊆ X and 1̂ /∈ X. Then

µL(0̂, 1̂) =
∑

Y ∈Y

(−1)|Y |

where
Y = {Y ⊆ X | Y 6= ∅ and

∧

y∈Y

y = 0̂ } .
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Consequently, assuming X = M , we can say that µL(0̂, 1̂) is the difference
between the number of ways to express 0̂ as a meet of evenly many coatoms
in L and the number of ways to express it as a meet of oddly many coatoms.
In particular, if 0̂ is not a meet of coatoms in L, then µL(0̂, 1̂) = 0.

Remark. In the dual version of the Crosscut Theorem, N is the set of all
atoms and it takes the place of M above. Then we assume that X ⊆ L is a
subset so that N ⊆ X and 0̂ /∈ X. The conclusion is essentially the same,
but we have to use the joins of elements in X that are equal to 1̂.

Among other applications, Theorem 3.1.3 and Theorem 3.1.6 establish an
interesting connection between combinatorics and algebraic topology. The
bridge between these two areas is an interpretation of the Möbius function as
a reduced Euler characteristic of a special simplicial complex (for elementary
definitions, see for instance [29]). We mention the main result, giving a brief
description, but we refer to [41] for all details.

Let P be a finite poset and let P̂ denote {0̂} ∪ P ∪ {1̂}, i.e. P with an
extra minimum 0̂ and an extra maximum 1̂ adjoined. Then, by Theorem
3.1.3, we have that

µ
P̂
(0̂, 1̂) = −γ1 + γ2 − γ3 + . . . (3.4)

where each γi is the number of chains of length i from 0̂ to 1̂ in P̂ . Clearly,
if we consider a chain 0̂ = x0 < x1 < · · · < xi−1 < xi = 1̂ of length i in P̂ ,
then x1 < · · · < xi−1 is a chain of length i− 2 in P . We observe that γ1 = 1.

Now, for the same finite poset P , we define the simplicial complex σ(P )
as follows. The vertices of σ(P ) are the elements of P , and the faces of
σ(P ) are the chains of P . This is the reason why σ(P ) is called the order

complex of P . We remind that the Euler characteristic of σ(P ) is

χ(σ(P )) =
∑

i

(−1)iFi = F0 − F1 + F2 − F3 + . . . (3.5)

where each Fi is the number of i-faces of σ(P ). Topologically, a 0-face is a
single point (i.e., a chain of length 0 in P ), a 1-face is a segment (i.e., a chain
of length 1 in P ), etc., so that we have that Fi = γi+2 for all i ≥ 0.

Proposition 3.1.7. Let P be a finite poset. Then

µ
P̂
(0̂, 1̂) = χ̃(σ(P )) (3.6)

where χ̃(σ(P )) = χ(σ(P ))− 1.

χ̃(σ(P )) is the so-called reduced Euler characteristic of σ(P ), which
also counts −F−1 = −1 in (3.5), where F−1 is the number of −1-faces of
σ(P ). There exists a unique −1-face, that is the empty face ∅ of σ(P ).
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Remark. If L is a finite lattice, there exist a minimum 0̂ and a maximum 1̂
in L (and we may always assume 0̂ 6= 1̂). Let L∗ = L\{0̂, 1̂} be the subposet
of L given by L without minimum and maximum. Then (3.6) turns into

µL(0̂, 1̂) = χ̃(σ(L∗)). (3.7)

Moreover, let X and Y be the same set as in Theorem 3.1.6, so that

µL(0̂, 1̂) =
∑

Y ∈Y

(−1)|Y | ,

and define Y∁ := {Y ⊆ X |
∧

y∈Y y 6= 0̂ } ∪ {∅}. Thus, we have that

µL(0̂, 1̂) = −
∑

Y ∈Y∁

(−1)|Y | =
∑

Y ∈Y∁

(−1)|Y |−1

and, if we identify Y∁ with a simplicial complex, we obtain

χ̃(σ(L∗)) = µL(0̂, 1̂) = χ̃(Y∁). (3.8)

This proximity of the Möbius function to topological objects can be no-
ticed also in the following theorem, known as Crapo’s Closure Theorem.

Definition 3.1.8. Given a partially ordered set (P ,≤), a closure operator

on P is a function c : P → P satisfying the following three conditions:

• ∀x ∈ P x ≤ c(x) ;

• ∀x, y ∈ P x ≤ y ⇒ c(x) ≤ c(y) ;

• ∀x ∈ P c(c(x)) = c(x) .

Notation. The closure can be denoted by ¯: P → P and x 7→ x̄ .

By analogy to topology, an element x in P is said to be closed with
respect to the closure c if c(x) = x. Then

P = {x ∈ X | c(x) = x}

is the subposet of closed elements in P .
If P is locally finite and c is a closure operator on P , then P is locally

finite. Let µP and µP be the Möbius functions of P and P , respectively.

Theorem 3.1.9 (Crapo’s closure theorem). Let P be a locally finite poset
and let c : P → P be a closure operator on P . Fix x, y ∈ P so that
c(y) = y ∈ P . Then

∑

z∈Y

µP (x, z) =

{
µP (x, y) if x = c(x)

0 otherwise

where Y = {z ∈ P | c(z) = y }.
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A proof can be found in [12]. Moreover, in [11] there is another remark-
able theorem due to Crapo that we want to mention.

Theorem 3.1.10 (Crapo’s complement theorem). Let L be a finite lattice
with minimum 0̂ and maximum 1̂. Let x ∈ L and let x⊥ be the set of
complements to x in L. Then

µ(0̂, 1̂) =
∑

y,z∈x⊥

µ(0̂, y)ζ(y, z)µ(z, 1̂)

where ζ : P × P → Z is defined as

ζ(y, z) =

{
1 if y ≤ z ;

0 otherwise.

In particular, if x⊥ is an antichain, then we have

µ(0̂, 1̂) =
∑

y∈x⊥

µ(0̂, y)µ(y, 1̂) . (3.9)

As an immediate application, we can use (3.9) to compute µ(0, Vn) on
the subspace lattice SVn of a vector space Vn ≃ Fn

q , in the following way. Let
T ∈ SVn be a subspace of V of dimension 1. We notice that a complement
of T in SVn is a subspace W of dimension n − 1 such that T � W . We
observe that such a complement W is a coatom of SVn , hence µ(W,V ) = −1.
Moreover, for each complement W we have that µ(0,W ) = µ(0, Vn−1), where
Vn−1 ≃ Fn−1

q . By (3.9), we obtain that

µ(0, Vn) = −
∑

W∈T⊥

µ(0, Vn−1) = −|T
⊥| · µ(0, Vn−1)

where T⊥ is the set of complements of T . So, we need the number of com-
plements of T . The number of subspaces of Vn dimension n− 1 is

(
n

n− 1

)

q

= qn−1 + qn−2 + · · ·+ 1 ,

and the number of subspaces of dimension n−1 containing T is equal to the
number of subspace of dimension n− 2 in Vn/T ≃ Vn−1, that is

(
n− 1

n− 2

)

q

= qn−2 + qn−3 + · · ·+ 1 .

We conclude that µ(0, Vn) = −q
n−1µ(0, Vn−1). By induction, there follows

that
µ(0, Vn) = (−1)nqn−1qn−2 . . . q = (−1)nq(

n
2) . (3.10)

32



Chapter 3, § 3.1.1

3.1.1 Order ideals and finite distributive lattices

Now we want to highlight some results which directly involve order ide-
als. In the following chapters, it will become clearer why we look at the role
of these structures with special interest. The following is a natural general-
ization of the number-theoretic Möbius inversion formula.

Theorem 3.1.11 (Möbius inversion formula). Let P be poset for which every
principal order ideal is finite. Let K be a field and f : P → K be a function.
For all x ∈ P , let

g(x) =
∑

y≤x

f(y).

Then, for all x ∈ P we have that

f(x) =
∑

y≤x

g(y)µ(y, x)

where µ is the Möbius function of the principal order ideal P≤x.

Example 3.1.12. Theorem 3.1.11, combined with equation (3.10), can be
used to count the number of spanning subsets of a vector space V ≃ Fn

q .
This result can be found in [41] and the same idea can be actually applied
to determine the number of generating sets for a finite group. We will focus
on such a question in §3.2.

Let L be a finite lattice with minimum 0̂ and maximum 1̂, and let I ⊆ L
be an order ideal of L. In the following theorem, we see how we can obtain
information on µL(0̂, 1̂) in terms of I and its Möbius function. Actually,
we will consider Î := I ∪ {1̂}, that is I with the maximum 1̂ adjoined (we
observe that clearly, by definition of an order ideal, 0̂ ∈ I). The outcome is
particularly relevant if we are interested in computational problems related
to the Möbius function of the lattice, because a large ideal I ⊆ L would allow
us to give a more precise estimate of µL(0̂, 1̂). An example of application of
Theorem 3.1.13 will be given in Chapter 5 to express the Möbius function
of finite linear groups in terms of the ideal of reducible subgroups defined in
Chapter 4.

Since it is so relevant, and even if it can be seen as a consequence of [3,
Theorem 5.5], we prefer to provide a direct proof for Theorem 3.1.13 based
on Hall’s Theorem (Theorem 3.1.3).

Theorem 3.1.13. Let L be a finite lattice with minimum 0̂ and maximum
1̂, and let I ⊆ L be an order ideal of L. Let Î = I ∪ {1̂}. Then

µL(0̂, 1̂) = µ
Î
(0̂, 1̂) +

∑

y∈L\Î

µ
Î<y

(0̂, y) · µL(y, 1̂) (3.11)

where Î<y = {x ∈ I | x < y} ∪ {y}.
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Remark. Notice that, if 1̂ /∈ I, then I 6= L and (3.11) can also be written
as

µL(0̂, 1̂) =
∑

y∈L\I

µ
Î<y

(0̂, y) · µL(y, 1̂) (3.12)

since Î<1̂ = Î and µL(1̂, 1̂) = 1.

Proof. Let K be the set of all chains from 0̂ to 1̂ in L, and let

K
Î
= {C ∈ K | C ⊆ Î}

be the subset of K whose elements are the chains C contained in Î. By
Theorem 3.1.3,

µL(0̂, 1̂) =
∑

C∈K

(−1)ℓ(C) =
∑

C∈K
Î

(−1)ℓ(C) +
∑

C∈K\K
Î

(−1)ℓ(C)

= µ
Î
(0̂, 1̂) +

∑

C∈K\K
Î

(−1)ℓ(C) . (3.13)

We focus onto the second term on the right-hand side of (3.13). If C ∈ K\K
Î
,

then C \ I is a chain in L and C \ I has a minimum element y 6= 0̂. For each
y ∈ L \ Î we set

Ky = {C ∈ K \ K
Î
| y is the minimum of C \ I}.

Then we define

Jy = {D ⊆ Î<y | D is a chain from 0̂ to y in Î<y},

Ly = {E ⊆ L≥y | E is a chain from y to 1̂ in L≥y}

and observe that there is a bijection

β : Jy × Ly → Ky , (D,E) 7→ D ∪ E.

between Jy ×Ly and Ky. Clearly the map β is well-defined and, if C ∈ Ky,
then C can be uniquely represented as an union C = D∪E, with D ∈ Jy and
E ∈ Ly. In particular, |C| = |D|+ |E|−1 and therefore ℓ(C) = ℓ(D)+ ℓ(E).
Thus we have

∑

C∈Ky

(−1)ℓ(C) =
∑

(D,E)∈Jy×Ly

(−1)ℓ(D)+ℓ(E) =
∑

D∈Jy

(−1)ℓ(D) ·
∑

E∈Ly

(−1)ℓ(E)

= µ
Î<y

(0̂, y) · µL(y, 1̂)
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where the last equality is given again by Theorem 3.1.3. Since
∑

C∈K\K
Î

(−1)ℓ(C) =
∑

y∈L\Î

∑

C∈Ky

(−1)ℓ(C) ,

we can write (3.13) as

µL(0̂, 1̂) = µ
Î
(0̂, 1̂) +

∑

y∈L\Î

µ
Î<y

(0̂, y) · µL(y, 1̂).

Remark. In Theorem 3.1.13 we assume that L is a finite lattice because we
need the existence of a maximum 1̂ and a minimum 0̂. But actually no other
special property of lattices is required.

Finally, order ideals can be applied to determine the Möbius function of
a finite distributive lattice.

Let L be a finite distributive lattice. Hence, by the fundamental Theorem
2.2.16, we have that L ≃ O(P ) for the subposet P = JI(L) of join-irreducible
elements of L. In particular, the isomorphism between L and O(P ) is given
by f : L→ O(JI(L)) so that

f(x) := {a ∈ JI(L) | a ≤ x} .

By Ix we denote the ideal f(x) ∈ O(P ), for all x ∈ L. So, for example,

I0̂
∼= {a ∈ JI(L) | a ≤ 0̂} = ∅ and I1̂

∼= {a ∈ JI(L) | a ≤ 1̂} = JI(L)

We remind that O(P ) is ordered by inclusion.

Remark. For every interval [I, I ′] of O(P ) we have that

[I, I ′] = O(I ′ \ I)

where I ′ \ I is regarded as an induced subposet of P . We also notice that
every interval [I, I ′] of O(P ) is distributive and I ′ \ I = JI([I, I ′]). Let A be
the set of atoms in the subposet I ′ \ I. Then, the join of all atoms in [I, I ′]
is the order ideal I ∪A. Therefore, I ′ is a join of atoms of [I, I ′] if and only
if the interval [I, I ′] is a boolean lattice.

Let x, y ∈ L so that x ≤ y. Then Ix ⊆ Iy and we apply the above remark,
together with Corollary 2.2.17 and (c) of Example 3.1.2, to say that

µO(E)(Ix, Iy) =





(−1)|Iy\Ix| = (−1)ℓ([Ix,Iy ]) if [Ix, Iy] is boolean;

0 otherwise.

Thanks to the isomorphism f : L → O(JI(L)) sending x to Ix, we can
conclude as follows.
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Theorem 3.1.14. Let L be a finite distributive lattice, and let x ≤ y in L.
Then

µL(x, y) =

{
(−1)ℓ([x,y]) if [x, y] is boolean;

0 otherwise.

In particular,

µL(0̂, 1̂) =

{
(−1)|JI(L)| if L is boolean;

0 otherwise.

3.2 The Möbius function of groups

Let L(G) denote the subgroup lattice of a group G. Let G be a group
such that L(G) is locally finite. The Möbius function of G is the Möbius
function of its subgroup lattice, that is µ : L(G)× L(G)→ Z such that





µ(H,G) = 1 if H = G
∑

H≤K≤G

µ(K,G) = 0 if H 6= G .

Usually the Möbius function of G is also written as a one-variable function

µG : L(G)→ Z

such that 



µG(H) = 1 if H = G
∑

H≤K≤G

µG(K) = 0 if H 6= G .

So, the expression µG(·) will simply substitute µ(·, G) in the classical nota-
tion presented in §3.1. Clearly, all properties that we have shown for abstract
posets and lattices have a group-theoretic counterpart.

Example 3.2.1.

(a) If we consider the classical Möbius function µ : N → {0,±1}, then we
have that

µ(n) = µZ(nZ) = µCn(1)

for each cyclic group Cn of order n ∈ N .

(b) Let G1 and G2 be two finite groups of coprime order. Let H1 ≤ G1 and
H2 ≤ G2. Then

µ(H1 ×H2, G1 ×G2) = µ(H1, G1) · µ(H2, G2).
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The subgroup lattice L(G) has a maximum and its coatoms correspond
to the maximal subgroups of G. So, for L(G), Theorem 3.1.5 can be read as
follows.

Proposition 3.2.2. Let G be a group and let H be a subgroup of G of finite
index. If µG(H) 6= 0 , then either H = G or there exist maximal subgroups
M1, . . . ,Mr of G such that H = M1 ∩ · · · ∩Mr .

Remark. It is not difficult to see that the converse of this fact is false. An
easy counterexample is given by the following solvable group of order 20

G = C4 ⋉ C5 = 〈x, t | t
4 = x5 = 1, xt = x2〉,

whose maximal subgroups are K := 〈t2〉 ⋉ 〈x〉 and Mi := 〈txi〉 for i =
0, . . . , 4. Since Mi ∩Mj = 1 for i 6= j, we have that the trivial subgroup
1 is an intersection of maximal subgroups of G. By definition of µG, we
notice that µG(K) = µG(Mi) = −1 (this is an obvious general property of
maximal subgroups), and µG(K ∩Mi) = 1 for all i = 0, . . . , 4. The only
other subgroup in the lattice L(G) is C5 = 〈x〉, which has index 4 in G and
is contained only in K. Therefore, µG(C5) = 0. An easy calculation shows
that

µG(1) = −
∑

1 6=H≤G

µG(H) = 0.

3.2.1 Some related questions

In [23] and [24], Kratzer and Thévenaz investigate, among others, con-
ditions under which the converse of Proposition 3.2.2 holds for finite solv-
able groups and they can obtain many interesting results characterizing the
Möbius function of such groups.

Example 3.2.3. Let G be a finite nilpotent group and let H be a proper
subgroup of G. Then, µG(H) 6= 0 is equivalent to saying that H is an
intersection of maximal subgroups in G. Indeed, if H is an intersection of
maximal subgroups of a finite nilpotent group G, then H is normal in G and
µ(H,G) = µ(1, G/H). Moreover, G/H is abelian because G′ ≤ Φ(G) ≤ H,
where G′ denotes the commutator of G and Φ(G) the Frattini subgroup.
Hence G/H ≃

∏r
i=1C

di
pi , where each Cdi

pi is isomorphic to Fdi
pi with pi prime.

Therefore

µ(H,G) =

r∏

i=1

(−1)dip
(di2 )
i

by (b) in Example 3.2.1.

By using Crapo’s Complement Theorem (Theorem 3.1.10), Kratzer and
Thévenaz are even able to find a formula for µG(H) in all finite solvable
groups.
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Theorem 3.2.4 ([23], Théoréme 2.6). Let G be a finite solvable group. Let
1 = Gn E Gn−1 E · · · E G1 E G0 = G be a chief series of G, and H ≤ G.
We can consider the series

H = GnH ≤ Gn−1H ≤ · · · ≤ G1H ≤ G0H = G (3.14)

whence we have the following series given by all distinct terms in (3.14):

H = Hr < Hr−1 < · · · < H1 < H0 = G.

Let si be the number of complements of Hi in the interval [Hi+1, G] ⊆ L(G),
for all i = 1, . . . , r − 1. Then

µ(H,G) = (−1)r
r−1∏

i=1

si .

Solvable groups represent an important source of problems related to the
Möbius function. For instance, if G is a finite solvable groups, we can receive
information on µG also from the Möbius function that can be defined on the
poset Γ(G) of conjugacy classes of subgroups in G.

Let G be a finite solvable group. Let H,K ≤ G and let [H] and [K]
denote their conjugacy classes in G. We say that

[H] ≤ [K] in Γ(G) ⇔ H ≤ Kg for some g ∈ G

and we denote by λ(H,G) the value µΓ(G)([H], [K]) given by the Möbius
function µΓ(G) of Γ(G). Let µ be the usual Möbius function on the subgroup
lattice L(G). Then, Pahlings shows in [33] that

µ(H,G) = |NG′(H) : G′ ∩H| · λ(H,G) (3.15)

extending a previous result contained in [19] for the trivial subgroup 1 ≤ G.
It is observed in [33] that Equation (3.15) seems to be true for many non-
solvable groups as well, but not for all of them. Some recent results, together
with examples and counterexamples, are given in [14] by Dalla Volta and
Zini. Moreover, Dalla Volta and Lucchini in [13] have recently generalized
the Möbius function λ, by considering the Möbius function defined on the
poset of the A-conjugacy classes of subgroups of G, where A is a subgroup
of Aut(G). In this work, there are also some generalizations of Hall’s results
in [16], that we will now introduce as a further motivation.

Hall’s interest in the Möbius function of finite simple groups is motivated
by questions concerning the probability of generating groups. As in [16], let
G be a finite group and let

φk(G) := #{(g1, . . . , gk) ∈ Gk | 〈g1, . . . , gk〉 = G}
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be the number of ordered k-tuples of elements in G which generate the group,
so that we define

P (G, k) =
φk(G)

|G|k
(3.16)

as the probability that k elements (independently chosen) generate G. Sim-
ilarly, for all subgroups H ≤ G, we set

φk(H) = #{(g1, . . . , gk) ∈ Gk | 〈g1, . . . , gk〉 = H} .

Then ∑

H≤G

φk(H) = |G|k

and by applying the Möbius inversion formula (Theorem 3.1.11) on the sub-
group lattice L(G), we immediately obtain

φk(G) =
∑

H≤G

|H|kµ(H,G) .

Thus, (3.16) can be written as

P (G, k) =
∑

H≤G

µG(H)

|G : H|k
.

In [27], Mann proves that a similar result holds for all finitely generated
profinite groups, as we explain in the following paragraph.

We recall that a profinite group is a compact, Hausdorff, and totally
disconnected topological group (see [44] for more details about this defini-
tion). If G is a profinite group, then a subgroup of G is said to be open if
it is also an open subset with respect to the topology of G. We denote by
H ≤o G an open subgroup of G and we observe that the index of H in G is
finite, since G is a compact topological group.

Let G be a profinite group and let X be a subset of G. We say that
X (topologically) generates G if the subgroup 〈X〉 ≤ G generated by X
is dense in G. If there exists a finite subset X that generates G, then G is
called finitely generated. We have the following interesting property for
finitely generated profinite groups (see Proposition 2.5.1 in [34]).

Proposition 3.2.5. Let G be a finitely generated profinite group. Then, for
each n ∈ N , the number of open subgroups of G of index n is finite.

Remark. Moreover, it is worth recalling that an important theorem of
Nikolov and Segal (Theorem 1.1 in [32]) states that in a finitely generated
profinite group, every subgroup of finite index is open. It implies that the
topology of a finitely generated profinite group is completely determined by
its underlying abstract group structure.
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Hence, if L(G)o denotes the lattice of open subgroups of a finitely gen-
erated profinite group G, by Proposition 3.2.5 we have that L(G)o is locally
finite. Therefore, we can define recursively the Möbius function associated
with the lattice Lo(G) of the open subgroups in G as

µG : Lo(G)→ Z

such that 



µG(H) = 1 if H = G
∑

H≤oK≤oG

µG(K) = 0 if H <o G . (3.17)

Remark. Obviously, (3.17) generalizes the definition given for finite groups.
A finite group G is endowed with the discrete topology, hence every subgroup
of G is an open subgroup. Also in this case, µG(·) has the same meaning as
µ(·, G).

If G is a finitely generated profinite group, then the direct product Gk

admits a normalized Haar measure ν.

Notation. By 〈g1, . . . , gk〉 = G we mean that the elements g1, . . . , gk topo-
logically generate G.

The set
{(g1, . . . , gk) ∈ Gk | 〈g1, . . . , gk〉 = G} ⊂ Gk

is a closed subset of Gk, hence it is measurable with respect to ν. We
can define the probability P (G, k) that k random ordered elements (chosen
independently and with possible repetition in G) generate the whole group
as

P (G, k) = ν
(
{(g1, . . . , gk) ∈ Gk | 〈g1, . . . , gk〉 = G}

)
.

A profinite group G is said to be positively finitely generated (PFG)
if P (G, k) > 0 for some choice of k ∈ N .

Mann shows that for all k ∈ N we have

P (G, k) =
∑

H≤oG

µG(H)

|G : H|k
.

Moreover, he conjectures that if G is a PFG profinite group, then P (G, k)
can be interpolated in a natural way by an analytic function defined for all
s in some complex right half-plane, and that this function can be expressed
as

PG(s) =
∑

H≤oG

µG(H)

|G : H|s
.

Since only subgroups with non-zero Möbius coefficient for G occur in the
sum, the growth of their number could provide useful information for the
convergence of the series PG(s). In particular, we need some specific notions
of growth, as follows.
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Notation. Let bn(G) denote the number of open subgroups H of index n in
G satisfying µG(H) 6= 0.

We say that bn(G) grows polynomially if bn(G) ≤ nt for some t indepen-
dent of n . Similarly, µG(H) grows polynomially (in terms of the index) if
|µG(H)| is bounded above by a polynomial function in the index of H in G,
i.e. if |µG(H)| ≤ |G : H|u for some u independent of H ≤o G.

Theorem 3.2.6. Let G be a PFG group. The series P (G, s) is absolutely
convergent in some complex half-plane if and only if both µG(H) and bn(G)
grow polynomially.

Proof. Obviously if P (G, s) converges absolutely, then |µG(H)|must be poly-
nomially bounded by |G : H|. Since µG(H) is an integer, the subgroups of
index n contribute at least bn(G)/ns to the series of absolute values, so bn(G)
also grows polynomially. Conversely, if |µG(H)| and bn(G) are polynomially
bounded in terms of |G : H| and n respectively, then there exists a large
enough constant C > 0 such that for all s, with ℜ(s) ≥ C, the series is
absolutely convergent.

Conjecture 3.2.7 (Mann, [28]). Let G be a PFG group. Then |µG(H)| is
bounded by a polynomial function in the index |G : H| and bn(G) grows at
most polynomially in n.

We recall that a group is monolithic if it contains a unique minimal
normal subgroup.

Let G be a finitely generated profinite group.

Notation. We denote by Λ(G) the set of finite monolithic groups L such that
soc(L) is non-abelian and L is an epimorphic image of G .

If L ∈ Λ(G), then let b∗n(L) be the number of subgroups K ≤ L such
that |L : K| = n, Ksoc(L) = L and µL(K) 6= 0 .

Theorem 3.2.8 (Lucchini, [25]). Let G be a PFG group. Then the following
are equivalent.

(i) There exist two constants γ1 , γ2 such that

bn(G) ≤ nγ1 and |µG(H)| ≤ |G : H|γ2

∀ n ∈ N and for each open subgroup H of G .

(ii) There exist two constants c1 , c2 such that

b∗n(L) ≤ nc1 and |µL(X)| ≤ |L : X|c2

∀ L ∈ Λ(G), ∀ n ∈ N and for each X ≤ L with L = X socL .

Thanks to Theorem 3.2.8, Mann’s conjecture can be stated just in terms
of finite monolithic groups with non-abelian socle.
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Conjecture 3.2.9 (Lucchini, [25]). For any positive integer d ∈ N there
exists a constant cd such that the following holds: if L is a d-generated finite
monolithic group and socL is non-abelian, then

b∗n(L) ≤ ncd and |µL(X)| ≤ |L : X|cd

for each n ∈ N and each X ≤ L with L = X socL .

Actually, Conjecture 3.2.9 can be reduced to finite almost-simple groups.
A finite group G is called almost-simple if there exists a non-abelian simple
group S such that S ≤ G ≤ Aut(S).

Conjecture 3.2.10. There exist two absolute constants γ1 , γ2 such that for
each finite almost-simple group G we have

(i) |µ(K,G)| ≤ |G : K|γ1 for all K ≤ G;

(ii) bn(G) ≤ nγ2 for all n ∈ N .

It means that if Conjecture 3.2.10 is true, then also Conjecture 3.2.9 is
true. By Theorem 3.2.8, Mann’s conjecture would be proven for all PFG
profinite groups.

Now, the idea is to use the classification of finite simple groups to study
Conjecture 3.2.10 for different classes of finite almost-simple groups.

In [10], Colombo and Lucchini proved that the alternating and symmetric
groups (Alt(n), Sym(n), for n ≥ 5) satisfy Conjecture 3.2.10, so that they
obtained a proof of Mann’s conjecture for finitely generated profinite groups
with the property that all the non-abelian composition factors of every finite
epimorphic image are permutation groups of alternating type. The argu-
ment in their proof is based on an application of Crapo’s Closure Theorem
(Theorem 3.1.9), as we will see at the beginning of Chapter 5.
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The reducible subgroup ideal

In this chapter we start to investigate properties of the Möbius function
of finite classical groups, with emphasis on the linear case of GL(n, q). Most
of the presented results are an original revision of some ideas and methods
used by Shareshian in [38] to determine the number µG(1) for this kind of
groups. We want to generalize Shareshian’s outcome to any subgroup H in
the subgroup lattice of G, with the purpose of finding estimations which can
be helpful to study the conjectures of §3.2.

A central role is played by the reducible subgroup ideal, which is defined
in §4.1 for a given subgroup H ≤ G and denoted by I1(G,H). In §4.2 we see
that it is possible to give an expression of its Möbius function by using only
subsets of the lattice of H-invariant subspaces. This is interesting because
it allows to exploit the computations that are presented in §4.3. In §4.4,
attention is drawn to distributive lattices.

4.1 Definition of the ideal I1(G,H) and notation

By a finite classical group we mean one of the linear, unitary, orthogonal
or symplectic groups on finite vector spaces. General references for defini-
tions of such groups are, for instance, [2], [6] and [42]. Our main results
do not depend on the classical form defined on the vector space V , and if
necessary, we focus on linear subgroups of GL(V ). For this reason, we are
not interested in recalling here all the properties related to classical forms on
V . Nevertheless, it is important to remember that Kleidman and Liebeck in
[21] give a very detailed description of finite classical groups and their sub-
group structures, which are analysed starting from the fundamental results
of Aschbacher in [1].

Let G be a finite classical group: Aschbacher establishes the existence of
nine classes of maximal subgroups of G, denoted by Ci(G) for i = 1, . . . , 9,
such that each H ≤ G is contained in a subgroup M ∈ Ci(G), for some
i = 1, . . . , 9. The precise description of Aschbacher’s classes for every finite
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classical group G is not easy and would be beyond the scope of this thesis,
but a rough description is useful to understand what will follow.

So, if G is a finite classical group defined for a vector space V ≃ Fn
q , we

have 8 classes of geometric maximal subgroups of G:

• C1(G): maximal reducible subgroups of G (stabilizers of subspaces);

• C2(G): stabilizers of decompositions V =
⊕t

j=1 Vj , such that the di-
mension of all Vj is the same (dim(Vj) = a for all j. Hence, n = at);

• C3(G): stabilizers of prime degree extension fields of Fq;

• C4(G): stabilizers of tensor decompositions V = V1 ⊗ V2;

• C5(G): stabilizers of prime index subfields of Fq;

• C6(G): normalisers of symplectic-type r-groups with gcd(r, q) = 1;

• C7(G): stabilizers of decompositions V =
⊗t

j=1 Vj , such that the di-

mension of all Vj is the same (dim(Vj) = a for all j. Hence, n = at);

• C8(G): classical subgroups.

The ninth class C9(G) is the class of almost simple groups which do not lie in
any of the other eight classes. Using the notation of [21], this class is usually
referred to as the class S.

In his doctoral thesis [38], Shareshian tries to figure out how he can
compute µ(1, G) for several finite classical groups. His idea is to approximate
µ(1, G) through a good function fG,n,p(u, 1) , which allows to obtain a formula
of the following type:

µ(1, G(n, pu)) = fG,n,p(u, 1) +
∑

K∈C9

µ(1,K) . (4.1)

Here G = G(n, pu) denotes a family of finite classical groups with the same
defining classical form, which act in a natural way on the vector V of finite
dimension n over the finite field of order q = pu . If C1, . . . , C8, C9 are the
above described classes for the subgroups of G, then the function fG,n,p(u, 1)
provides an estimate of µ(1, G) with respect to the contributions given by
the subgroups of G which belong to the classes Ci , for i ∈ {1, . . . , 8}.

Actually, Shareshian’s approach focuses on the first class C1(G), that is
the class of reducible subgroups of G. He studies in detail this class, and
then tries to consider groups for which most of the other classes are empty.

In particular, the reducible subgroups of G contribute to fG,n,p(u, 1)
through the computation of the Möbius function of

Î1(G) = {K ≤ G | K ≤M for some M ∈ C1(G)} ∪ {G} ,
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which is obtained by adjoining the maximum G to the order ideal

I1(G) = {K ≤ G | K ≤M for some M ∈ C1(G)}.

We observe that I1(G) = L(G)≤C1(G) is the order ideal in L(G) generated
by C1(G), and its definition is independent of the classical form on V . We
have that

µ(1, G) = µÎ1(G)
(1, G)−

∑

K<G
K/∈I1(G)

µ(1,K) (4.2)

where

µÎ1(G)
(1, G) = −

∑

K∈I1(G)

µI1(G)(1,K) = −
∑

K∈I1(G)

µ(1,K)

by the general definition of an order ideal and by construction of µI1(G).
Shareshian is indeed able to obtain explicitly fG,n,p(u, 1) when many of

the classes Ci(G) are empty, for i ≥ 2. Therefore, he considers orthogonal
groups in odd characteristic and prime dimension, assuming some special
condition on n. He also obtains some results when G is a linear group in
odd characteristic and dimension 2. For some groups he even finds the exact
value of µ(1, G).

Shareshian only considers the case of the trivial subgroup H = {1},
but his methods seem to suggest a general strategy for the computation
of µ(H,G), for any non-trivial reducible subgroup H ≤ G. Since we are
interested in all values of the Möbius function of G, and not only in µ(1, G),
now we proceed from the following question to generalize the argument of
Shareshian for all subgroups H of a finite classical group.

Question. Can (4.1) and (4.2) be generalized to any subgroup H 6= {1}?

The positive answer is immediate, as we can see with the following Defi-
nition 4.1.1 and Equation (4.3).

Let H ≤ G and consider the lattice

L(G)≥H = {K ≤ G | H ≤ K}

of subgroups containing H so that the intersection C1(G) ∩ L(G)≥H is the
set

C1(G,H) = { stabG(W ) | 0 < W < V , H ⊆ stabG(W ) }

of maximal reducible subgroups of G containing H. So, we can define an
analogue of Î1(G) as follows.
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Definition 4.1.1. The reducible subgroup ideal in L(G)≥H is the order
ideal generated by C1(G,H) . Namely,

I1(G,H) = {K ≤ G | H ≤ K ≤M for some M ∈ C1(G,H)}

Remark. If H is reducible, then H ∈ I1(G,H). Otherwise, if H is irre-
ducible, clearly we have that H /∈ I1(G,H) and I1(G,H) = ∅ is the empty
ideal.

Notation. If H is reducible, we set

Î1(G,H) = I1(G,H) ∪ {G} .

by adjoining the maximum G to I1(G,H), which has minimum H. Other-
wise, if H is irreducible, we set Î1(G,H) = {H,G} by adjoining the minimum
H and the maximum G to the empty poset ∅.

Then, similarly to (4.2), we have

µ(H,G) = µÎ1(G,H)
(H,G)−

∑

K/∈I1(G,H)
H≤K<G

µ(H,K) (4.3)

where µÎ1(G,H)
is the Möbius function on Î1(G,H). So, if we are able to

compute
µÎ1(G,H)

(H,G),

then we could try to study the sum over the other non-empty Aschbacher
classes as suggested by Shareshian in his thesis.

In Chapter 4.5, we will see an example in this direction. Under some
particular conditions, we will compute the value µ(H,G) for some particular
subgroup H of G. A different use of the Möbius function of Î1(G,H) will
be explained in Chapter 5 to study µ(H,G).

Definition 4.1.2. Let G be a finite classical group and let H be a subgroup
of G. Let I1(G,H) be the reducible subgroup ideal of L(G). We say that

µÎ1(G,H)
(H,G)

is the Möbius number of I1(G,H) , where Î1(G,H) is defined as above.

In particular, if H is irreducible, then Î1(G,H) = {H,G} and

µÎ1(G,H)
(H,G) = −1.

Therefore, the definition of the Möbius number of I1(G,H) is interesting
especially when H is a reducible subgroup of G.

Remark. It will be interesting to observe that our argument in §4.2 is again
independent of the classical form on the vector space V . We will only fix a
subgroup of GL(V ) and then develop a purely combinatorial idea using the
lattice S(V,H) of H-invariant subspaces of V .
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4.2 The Möbius number of the ideal

We begin with fixing some more notation that will be used in this sec-
tion. In particular, they allow us to prove Theorem 4.2.4, giving a “first
approximation” of µ(H,G).

Notation. Remind that S(V,H) is the lattice of H-invariant subspaces of V .
We define

S(V,H)∗ = S(V,H) \ {0, V } .

Moreover, throughout the next sections, we will consider the following three
sets:

(a) Ψ(G,H) = {X ⊆ C1(G,H) |
⋂

M∈X M 6= H } ;

(b) Ψ(G,H)∁ = {Y ⊆ C1(G,H) |
⋂

M∈Y M = H } ;

(c) Ψ′(G,H) = {E ⊆ S(V,H)∗ |
⋂

W∈E stabG(W ) 6= H} .

for H ≤ G ≤ GL(V ).

We also remark that ∅ ∈ Ψ(G,H) and ∅ ∈ Ψ′(G,H), but ∅ /∈ Ψ(G,H)∁ .

The aim is to express the Möbius number of the ideal I1(G,H) by using
only the set Ψ′(G,H), which is a set of H-invariant subspaces. This is useful
because we would only use properties of S(V,H) to characterize the Möbius
function of L(G)≥H . We focus on some subgroup H, such that the lattice
S(V,H) is well-known. In particular, we will consider more deeply the case
when S(V,H) is distributive (see §4.4) or some particular case in Chapter
4.5.

We need a combinatorial lemma, that will be immediately applied to the
above defined sets.

Lemma 4.2.1. Let G be a finite group and H a subgroup of G. Let G act
on a finite set X, so that for all x ∈ X

Gx = {g ∈ G | xg = x}

is the stabilizer of x in G. Let X ′ ⊆ X be a subset such that H ≤ Gx for all
x ∈ X ′. Set

• G = {Gx | x ∈ X ′} ;

• R = {E ⊆ G |
⋂

K∈E K 6= H} ;

• S = {Q ⊆ X ′ |
⋂

x∈QGx 6= H} .

Then ∑

E∈R

(−1)|E| =
∑

Q∈S

(−1)|Q| .
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Proof. If Q is a subset of X ′, then let GQ = {Gx | x ∈ Q}. For every E ∈ R,
we define

SE = {Q ∈ S | E = GQ}.

Then
S =

⊔

E∈R

SE

is the disjoint union of all the SE , and it suffices to show that for each E ∈ R
we have

(−1)|E| =
∑

Q∈SE

(−1)|Q| .

Fix E ∈ R and observe that

Q ∈ SE ⇔ Q =
⊔

K∈E

QK ,

where QK = {x ∈ Q | Gx = K}. Then define, for each K ∈ E,

X ′
K = {x ∈ X ′ | Gx = K} ⊆ X ′ ,

and notice that QK ⊆ X ′
K . So, by using the principle of inclusion-exclusion

and the fact that the QK are non-empty and can be chosen independently,
we get

∑

Q∈SE

(−1)|Q| =
∏

K∈E


 ∑

∅6=QK⊆X′

K

(−1)|QK |




︸ ︷︷ ︸
=−1

=
∏

K∈E

(−1) = (−1)|E| .

As an immediate consequence, we find out a link between Ψ(G,H) ad
Ψ′(G,H).

Proposition 4.2.2. Let V be a vector space of finite dimension over Fq .
Let H ≤ G ≤ GL(V ). Then we have that

∑

E∈Ψ′(G,H)

(−1)|E| =
∑

X∈Ψ(G,H)

(−1)|X | . (4.4)

Proof. We consider the natural action of G on V . Then, by lemma 4.2.1,
the equality is an immediate consequence of the definitions of S(V,H)∗,
C1(G,H), Ψ(G,H) and Ψ′(G,H) .

On the other hand, if we try to compute
∑

Y ∈Ψ(G,H)∁

(−1)|Y | ,

we realize that, by Crosscut Theorem (Theorem 3.1.6), this sum is the link
to the Möbius number of I1(G,H).
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Proposition 4.2.3. Let V be a vector space of finite dimension over Fq .
Let H ≤ G ≤ GL(V ). Then we have that

µÎ1(G,H)
(H,G) =

∑

Y ∈Ψ(G,H)∁

(−1)|Y | . (4.5)

Proof. In order to use Theorem 3.1.6, we need a finite lattice L and the set
of all coatoms in L. We observe that Î1(G,H) is a sublattice of L(G)≥H ,
because the subgroup generated by two subgroups K1,K2 ∈ I1(G,H) is
either in I1(G,H) or equal to G. Hence, Î1(G,H) is a finite lattice, whose
coatoms are the subgroups in C1(G,H). Since

Ψ(G,H)∁ = {Y ⊆ C1(G,H) | Y 6= ∅ and
⋂

M∈Y

M = H } ,

by Theorem 3.1.6 we immediately obtain (4.5).

Remark. We observe that Ψ(G,H) ∪ Ψ(G,H)∁ is the power set of C1(G).
Since for every finite set A of cardinality n > 0 we have

∑

S⊆A

(−1)|S| =
n∑

k=0

(
n

k

)
(−1)k = (1− 1)n = 0 ,

then clearly ∑

X∈Ψ(G,H)

(−1)|X| +
∑

Y ∈Ψ(G,H)∁

(−1)|Y | = 0. (4.6)

If we put together equations (4.4), (4.5), and (4.6), we obtain an expres-
sion of the Möbius number of I1(G,H) by subsets of S(V,H).

Theorem 4.2.4. Let V be a vector space of finite dimension over Fq . Let
H ≤ G ≤ GL(V ). Then

− µÎ1(G,H)
(H,G) =

∑

E∈Ψ′(G,H)

(−1)|E| . (4.7)

Proof. By (4.6), we have
∑

X∈Ψ(G,H)

(−1)|X | = −
∑

Y∈Ψ(G,H)∁

(−1)|Y| .

Then, by Lemma 4.2.2 and Lemma 4.2.3,
∑

E∈Ψ′(G,H)

(−1)|E| =
∑

X∈Ψ(G,H)

(−1)|X | = −
∑

Y∈Ψ(G,H)∁

(−1)|Y|

= −µÎ1(G,H)
(H,G) .
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The sum ∑

E∈Ψ′(G,H)

(−1)|E|

coming from (4.6) can be exploited to estimate the Möbius function of G.
In the following section we shall develop methods to obtain information for
µ(H,G), at least for some specific subgroup H ≤ G such that the lattice
S(V,H) is known.

4.3 Some relevant sets of H-invariant subspaces

According to what we have mentioned in the last part of §4.2, we want
to introduce some special subsets of H-invariant subspaces.

First, we recall that by Theorem 4.2.4 we have

− µÎ1(G,H)
(H,G) =

∑

E∈Ψ′(G,H)

(−1)|E| (4.8)

where
Ψ′(G,H) = {E ⊆ S(V,H)∗ |

⋂

W∈E

stabG(W ) 6= H} .

In order to simplify the computation in (4.8), we look for some subset
S ⊆ Ψ′(G,H), so that the sum can be split into the following two parts:

∑

E∈Ψ′(G,H)

(−1)|E| =
∑

E∈Ψ′(G,H)∩S

(−1)|E| +
∑

E∈Ψ′(G,H)\S

(−1)|E| .

In §4.3.1 and §4.3.2 of this section, we will introduce the following two
particular kinds of sets of H-invariant subspaces:

• N(V,H): the collection of non-spanning sets in S(V,H);

• D(V,H): the collection of decomposing sets in S(V,H).

Their union will be denoted by

Γ(V,H) = N(V,H) ∪D(V,H) .

In §4.4 we will be interested in some particular case for which it will be useful
to split the sum in (4.8) in the following way:

−µÎ1(G,H)
(H,G) =

∑

E∈Ψ′(G,H)∩Γ(V,H)

(−1)|E| +
∑

E∈Ψ′(G,H)\Γ(V,H)

(−1)|E| .

We will show that, if the lattice S(V,H) is distributive and it has prime
rank, then

∑

E∈Ψ′(G,H)\Γ(V,H)

(−1)|E| = 0. (4.9)
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It may be interesting to observe that, whenever the condition

Γ(V,H) ⊆ Ψ′(G,H) (4.10)

is satisfied, then

−µÎ1(G,H)
(H,G) =

∑

E∈Ψ′(G,H)

(−1)|E| =
∑

E∈Γ(V,H)

(−1)|E| .

In Theorem 4.4.5, we will show that
∑

E∈Γ(V,H)

(−1)|E| = 0

for all subgroups H such that S(V,H) is distributive.

In Chapter 5, moreover, we will identify a class of subgroups such that

µÎ1(G,H)
(H,G) = 0.

4.3.1 Non-spanning sets

We start with non-spanning sets of V . As we are considering, for some
reducible subgroup H ≤ GL(V ), the lattice S(V,H) of H-invariant subspaces
in V , every subspace is H-invariant, unless otherwise stated.

Notation. Let H ≤ GL(V ) and let X ∈ S(V,H) be a H-invariant subspace of
V . Since the context is clear, in the sense that we consider only H-invariant
subspaces, we denote by S(X,H) the principal order ideal S(V,H) generated
by T , instead of writing every time

S(V,H)≤X = {W ∈ S(V,H) |W ≤ X}.

Moreover, we have S(X,H)∗ = S(X,H) \ {0, X}. Clearly, if X = V , the
lattice S(X,H) coincides with S(V,H).

Definition 4.3.1. Let V be a vector space and H ≤ GL(V ). Let X ∈
S(V,H) \ {0}. We say that a set E ⊆ S(X,H) is non-spanning for X if

∑

W∈E

W 6= X .

Notation. The collection of all non-spanning sets for X is denoted by

N(X,H) = {E ⊆ S(X,H)∗ |
∑

W∈E

W 6= X} ,

where we exclude the possibility for subspace in E to be the zero-space
0. We also observe that for us the empty subset ∅ is non-spanning, hence
∅ ∈ N(X,H).
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We see that, by using the Crosscut Theorem (Theorem 3.1.6), it is quite
easy to compute ∑

E∈N(X,H)

(−1)|E| .

Proposition 4.3.2. Let V be a vector space of finite dimension over Fq ,
and let H ≤ GL(V ). Let X ∈ S(V,H) \ {0}. Then

∑

E∈N(X,H)

(−1)|E| = −µS(X,H)(0, X) (4.11)

where µS(X,H) denotes the Möbius function of S(X,H).

Proof. The equality follows immediately from the application of the dual
version of Theorem 3.1.6. We consider the lattice S(X,H), whose atoms
are contained in S(X,H)∗. But 0 /∈ S(X,H)∗, and 0 is the minimum of
S(X,H). Therefore, we have

µS(X,H)(0, X) =
∑

F∈N(X,H)∁

(−1)|F | (4.12)

where N(X,H)∁ = {F ⊆ S(X,H)∗ |
∑

W∈F W = X} is the collection of
spanning sets for X in S(X,H)∗. Consequently,

−µS(X,H)(0, X) =
∑

E∈N(X,H)

(−1)|E| .

In particular, for X = V we have

Corollary 4.3.3. Let V be a vector space of finite dimension over Fq , and
let H ≤ GL(V ). Then

∑

E∈N(V,H)

(−1)|E| = −µS(V,H)(0, V ) ,

Remark. If H = 1, clearly S(V,H) = SV that is the subspace lattice of V .
We have that

∑

E∈N(V,1)

(−1)|E| = −µSV
(0, V ) = (−1)n+1q(

n
2) ,
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4.3.2 Decomposing sets

As regards to D(V,H), we do not have such an immediate way to compute

∑

E∈D(V,H)

(−1)|E|

as in the case of N(V,H). In this section we gather some general information,
that we shall use under additional assumptions in §4.4 or in Chapter 4.5.

Let V be a vector space and H ≤ GL(V ). Let X ∈ S(V,H) \ {0}. A
proper direct decomposition of H-invariant subspaces for X is given by
a subset ∆ ⊆ S(X,H)∗ of proper subspaces of X such that

∑

T∈∆

T = X

and
∀T1, T2 ∈ ∆ T1 ∩ T2 = 0 .

We write
X =

⊕

T∈∆

T .

Remark. Since S(X,H)∗ = S(X,H) \ {0, X}, we observe that |∆| ≥ 2.

We will denote by D(X,H) the collection of all proper direct decompo-
sitions of H-invariant subspaces for X, namely

D(X,H) =

{
∆ ⊆ S(X,H)∗ | X =

⊕

T∈∆

T

}
.

Notation. With some abuse of notation, if ∆ = {S1, . . . , Sr} ∈ D(V,H)
is a finite proper direct decomposition of H-invariant subspaces for X ∈
S(V,H) \ {0}, we could write sometimes

∆ : X =
r⊕

j=1

Sj ∈ D(X,H) .

Observe also, in particular, that we do not care about the order in which we
write the Sj .

We give now the following relevant definition.

Definition 4.3.4. Let V be a vector space and H ≤ GL(V ). Let X ∈
S(V,H)\{0}. A subset E of S(X,H)∗ is said to be a (proper) decomposing

set of H-invariant subspaces for X if it satisfies the two following conditions:

(i)
∑

T∈E T = X;
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(ii) there exists a proper direct decomposition ∆ ∈ D(X,H) such that

∀T ∈ E ∃S ∈ ∆ : T ⊆ S.

The collection of all decomposing sets of H-invariant subspaces for X ∈
S(V,H) \ {0} is denoted by

D(X,H) = {E ⊆ S(X,H)∗ | E is a decomposing set for X} .

Remark. Let E be a decomposing set of H-invariant subspaces for X and
let ∆ ∈ D(X,H) be so that for every T ∈ E there exists S ∈ ∆ with T ⊆ S.
Fix S0 ∈ ∆, and set

F = {W ∈ E | T ⊆ S0}.

Then S0 =
∑

W∈F W .

If V is a vector space of finite dimension over Fq , then for every X ∈
S(V,H) \ {0} the cardinality |D(X,H)| is finite, and we have |E| < ∞ for
every E ∈ D(X,H). In this case, we want to find a different way to express

∑

E∈D(X,H)

(−1)|E| .

First, we can compare two direct decompositions ∆1,∆2 ∈ D(X,H) by
saying that ∆1 is finer than ∆2 if

∀S ∈ ∆1 ∃R ∈ ∆2 such that S ⊆ R.

Lemma 4.3.5. Let V be a vector space of finite dimension over Fq, and let
H ≤ GL(V ). Let X ∈ S(V,H) \ {0}. Let E = {T1, . . . , Tk} ⊆ S(X,H)∗

such that E ∈ D(X,H). Then there exists a unique finest proper direct
decomposition X =

⊕r
j=1 Sj ∈ D(X,H) such that each Ti is contained in

some Sj .

Proof. Let X =
⊕r1

j=1 Sj and X =
⊕r2

l=1 S
′
l be two direct decompositions in

D(V,H) such that each Ti is contained in some Sj and in some S′
l.

Let I = {(j, l) : Sj ∩ S′
l 6= 0} (obviously |I| < ∞ ). Since

∑k
i=1 Ti = V and

each Ti is contained in Sj ∩ S′
l for some (j, l) ∈ I, we have

X =
⊕

(j,l)∈I

Sj ∩ S′
l ∈ D(V,H) .

Since S(X,H) is finite, the result follows immediately.

As a direct consequence of Lemma 4.3.5, we have the following.
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Proposition 4.3.6. Let V be a vector space of finite dimension over Fq,
and let H ≤ GL(V ). Let X ∈ S(V,H) \ {0}. Then there exists a surjective
function

∂X : D(X,H)→ D(X,H)

that maps each E ∈ D(X,H) into the finest proper direct decomposition ∆
such that every T ∈ E is contained in some S ∈ ∆.

Notation. So, using the notation of Preposition 4.3.6, for all E ∈ D(X,H) we
denote by ∂X(E) the finest proper direct decomposition ∆ such that every
T ∈ E is contained in some S ∈ ∆. If the context is clear, we can just write
∂(E). There is an equivalence relation on the set D(X,H) induced by ∂X ,
whose equivalence classes are

D(X,H)∆ = {E ∈ D(X,H) | ∂X(E) = ∆} = ∂−1
X (∆).

for all ∆ ∈ D(V,H). Then

D(X,H) =
⊔

∆∈D(V,H)

D(X,H)∆ .

So we can write

∑

E∈D(X,H)

(−1)|E| =
∑

∆∈D(X,H)


 ∑

E∈D(X,H)∆

(−1)|E|




where ∑

E∈D(X,H)∆

(−1)|E| =
∑

E∈D(X,H)
∂(E)=∆

(−1)|E| .

Proposition 4.3.7. Let V be a vector space of finite dimension over Fq ,
and H ≤ GL(V ). Let X ∈ S(V,H) \ {0}. Let ∆ : X =

⊕r
j=1 Sj be any

proper decomposition of X such that ∆ ∈ D(X,H) . Then

∑

E∈D(X,H)∆

(−1)|E| = (−1)r
r∏

j=1

∑

F∈Γ(Sj ,H)

(−1)|F | (4.13)

where Γ(Sj , H) = N(Sj , H) ∪D(Sj , H).

Proof. Fix E = {T1, . . . , Tk} ∈ D(X,H) with ∂X(E) = ∆ .
For each j ∈ {1, . . . , r} set

Ej = {Ti | Ti ≤ Sj}.

Since E ∈ D(X,H), we have that the subspaces in Ej span Sj . Therefore
Ej /∈ N(Sj , H). Moreover:
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• by definition, if Ej contains some Vi = Sj , then Ej /∈ D(Sj , H);

• if Ej does not contain Sj , then Ej /∈ D(Sj , H) as well, since otherwise
there is a finer proper direct decomposition of X in D(X,H) such that
each Vi is contained in some addend.

So Ej /∈ Γ(Sj , H).
Conversely, if for each j ∈ {1, . . . , r} we choose a collection Fj ⊆ SSj

(H)\{0}
of non-trivial subspaces of Sj fixed by H, such that

Fj /∈ Γ(Sj , H) ,

then F :=
⋃r

j=1 Fj , F ∈ D(X,H) and satisfies ∂X(F ) = ∆. Notice that
the Fj can be chosen independently of each other.
So we have |E| = |E1|+ . . .+ |Er| and

∑

E∈D(X,H)∆

(−1)|E| =
∑

E1⊆SS1
(H)\{0},...,Er⊆SSr (H)\{0}

E1 /∈Γ(S1,H),...,Er /∈Γ(Sr,H)

(−1)|E1|+...+|Er|

=
∑

E1⊆SS1
(H)\{0},...,Er⊆SSr (H)\{0}

E1 /∈Γ(S1,H),...,Er /∈Γ(Sr,H)

(−1)|E1| · . . . · (−1)|Er|

=
r∏

j=1

∑

F⊆SSj
(H)\{0}

F /∈Γ(Sj ,H)

(−1)|F | .

Since SSj
(H) \ {0} is a finite a set,

∑

F⊆SSj
(H)\{0}

F /∈Γ(Sj ,H)

(−1)|F | = −
∑

F∈Γ(Sj ,H)

(−1)|F |

and finally we obtain (4.13).

In particular, for X = V , we have the following.

Corollary 4.3.8. Let ∆ : V =
⊕r

j=1 Sj be any proper decomposition of V
such that ∆ ∈ D(V,H) . Then

∑

E∈D(V,H)∆

(−1)|E| = (−1)r
r∏

j=1

∑

F∈Γ(Sj ,H)

(−1)|F | .

where Γ(Sj , H) = N(Sj , H) ∪D(Sj , H).

Lastly, we want to define here the rank of a direct decomposition, in a
general context. It will be particularly useful in §4.4, where we assume that
the lattice S(V,H) is distributive.
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Definition 4.3.9. Let V be a vector space of finite dimension over Fq . Let
H ≤ G = GL(V ) and let X ∈ S(V,H) \ {0}. Let ∆ ∈ D(X,H) be a proper
direct decomposition of H-invariant subspaces for X. We say that ∆ has
rank k, for k ∈ N, if

k = max { rk(S) | S ∈ ∆}

where rk(S) denotes the rank of each S ∈ ∆ in the modular lattice S(X,H).
We will write rkD(∆) to denote the rank of ∆.

Remark. Observe that for a proper direct decomposition ∆ ∈ D(X,H) we
have rkD(∆) < rk(X), since rk(S) < rk(X) for all S ∈ ∆.

Example 4.3.10. If rkD(∆) = 1 for some ∆ ∈ D(X,H), then X is a direct
sum of subspaces of rank 1 in S(X,H). This means that every T ∈ ∆ is an
atom of S(X,H).

Remark. In general, there could be more than one proper direct decom-
position in D(X,H) of rank 1. As an example, take X = V ≃ Fn

q and
H = 1 ≤ GL(V ). It could also happen that there is no proper direct decom-
position of rank 1. For instance, take X = V and H a maximal parabolic
subgroup (i.e. the stabiliser of a complete flag, that will be also defined in
§5.3.1).

In the situation presented in the following proposition, we have exactly
one proper direct decomposition of rank 1 in D(X,H). It is a direct conse-
quence of Corollary 2.2.17 and it will be used in section §4.4, for the com-
putation of

∑
E∈D(V,H)(−1)

|E| when the lattice S(V,H) is boolean.

Proposition 4.3.11. Let V be a vector space of finite dimension over Fq ,
and let H ≤ GL(V ). Let X ∈ S(V,H) \ {0} and assume that the sublattice
S(X,H) is distributive. If there exists ∆ ∈ D(X,H) with rkD(∆) = 1,
then S(X,H) is boolean and ∆ is the unique proper direct decomposition of
H-invariant subspaces for X of rank 1.

4.3.3 Antichains

Now we concentrate on the term
∑

E∈Ψ′(G,H)\Γ(V,H)

(−1)|E| (4.14)

which is relevant if we are considering −µÎ1(G,H)
(H,G) written as

−µÎ1(G,H)
(H,G) =

∑

E∈Ψ′(G,H)∩Γ(V,H)

(−1)|E| +
∑

E∈Ψ′(G,H)\Γ(V,H)

(−1)|E|

Antichains play an important role. The next results will be useful in §4.4
and in Chapter 4.5.
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Definition 4.3.12. Let V be a vector space over Fq . Let H ≤ G ≤ GL(V ).
Let E ∈ Ψ′(G,H) \ Γ(V,H) . Then

AE = {T ∈ E | T is maximal in E}

is the set of elements of E which are maximal in E with respect to the order
relation induced by S(V,H) .

Proposition 4.3.13. Let V be a vector space over Fq . Let H ≤ G ≤ GL(V ).
Let E ∈ Ψ′(G,H) \ Γ(V,H) . Then AE is an antichain in S(V,H)∗ and
AE ∈ Ψ′(G,H) \ Γ(V,H) .

Proof. By definition, the elements of AE are maximal subspaces in E. Then
T1 is not contained in T2 for any T1, T2 in AE . Since AE ⊆ E , we have that
if g ∈ G stabilizes all elements of E, then g stabilizes all elements of AE . So,
by definition, AE ∈ Ψ′(G,H). Moreover we notice that

{
AE ∈ N(V,H) ⇔ E ∈ N(V,H)
AE ∈ D(V,H) ⇔ E ∈ D(V,H) .

Therefore AE ∈ Γ(V,H) if and only if E ∈ Γ(V,H).

If V is a vector space over Fq and G ≤ GL(V ), we denote by

A = {A ∈ Ψ′(G,H) \ Γ(V,H) | A is antichain in S(V,H)∗}

the set of antichains in S(V,H)∗ which lie in Ψ′(G,H) \ Γ(V,H)

Proposition 4.3.14. Let V be a vector space over Fq . Let H ≤ G ≤ GL(V ).
Then ∑

E∈Ψ′(G,H)\Γ(V,H)

(−1)|E| =
∑

A∈A

∑

AE=A

(−1)|E|

Proof. This is an immediate consequence of the definition of A and follows
from the fact that

E ∈ Ψ′(G,H) \ Γ(V,H)⇔ AE is antichain & AE ∈ Ψ′(G,H) \ Γ(V,H) ,

as showed in proposition 4.3.13.

Thus, by Proposition 4.3.14, the study of the behaviour of sums over an-
tichains in S(V,H) seems interesting to estimate (4.14). Here below, Propo-
sition 4.3.15 and the following corollary state a nice property, that will be
applied to prove Lemma 4.3.17, which is the main result of this focus on
antichains. We are assuming that V , G, H, A are the same as above.
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Proposition 4.3.15. Let A = {X1, . . . , Xk} ∈ A and let
E ∈ Ψ′(G,H) \ Γ(V,H) , so that AE = A .
Assume that there exist i ∈ {1, . . . , k} and J ⊆ {1, . . . , k} such that

0 < X := Xi ∩
∑

j∈J

Xj < Xi .

Then E+ = E∪{X} and E− = E\{X} are in Ψ′(G,H)\Γ(V,H) . Moreover
AE+ = AE− = AE = A .

Proof. X < Xi implies that AE+ = AE− = AE = A . For the same reason,
since E ∈ Ψ′(G,H) \ Γ(V,H) , we have that E+, E− /∈ Γ(V,H). Now
we verify that E− and E+ are in Ψ′(G,H). Clearly E− ∈ Ψ′(G,H) since
E− ⊆ E. As concerns E+ , just notice that, if g ∈ G stabilizes each T ∈ E,
then g stabilizes each Xi ∈ A = AE . So g ∈ stabG(X). Indeed

(Xi ∩
∑

j∈J

Xj)g = Xig ∩
∑

j∈J

Xjg = Xi ∩
∑

j∈J

Xj .

Corollary 4.3.16. Let A = {X1, . . . , Xk} ∈ A. If there exists some i ∈
{1, . . . , k} and J ⊆ {1, . . . , k} such that

0 < X := Xi ∩
∑

j∈J

Xj < Xi ,

then ∑

E∈Ψ′(G,H)\Γ(V,H)
AE=A

(−1)|E| = 0 .

Proof. By proposition 4.3.15, there is a bijection

β : {E | AE = A , E = E+} → {E | AE = A , E = E−}

given by: E 7→ E− . The corollary follows from the remark that exactly one
of E+ , E− is equal to E. Thus

(−1)|E
+| + (−1)|E

−| = 0 .

We give a direct proof of the following lemma for the lattice S(V,H) of
H-invariant subspaces, although a similar result can be generalized to all
finite modular lattices. We remind that, by Proposition 2.2.9, every finite
modular lattice is graded, hence it admits a rank function.
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Lemma 4.3.17. Let V be a vector space of finite dimension over Fq , and
let H ≤ G = GL(V ). Let A = {X1, . . . , Xk} be an antichain in S(V,H)∗

satisfying the following three conditions:

(a)
∑k

i=1Xi = V ;

(b) there do not exist W1,W2 ∈ S(V,H) such that

1) V = W1 ⊕W2 and

2) each Xi is contained in either W1 or W2 ;

(c) ∀ i ∈ {1, . . . , k} and ∀ J ⊆ {1, . . . , k}

Xi ∩
∑

j∈J

Xj ∈ {0, Xi} .

Then all the Xi have the same rank in S(V,H).

Proof. Let r = rk(V ) be the rank of V in S(V,H) and proceed by induction
on r. If r = 1, the claim is trivially true. So, let r > 1 and qi = rk(Xi) < r
in S(V,H). We may assume that k > 1 and q1 ≤ q2 ≤ · · · ≤ qk . We first
show that qk−1 = qk . By conditions (b) and (c), we have that

Xk ≤
k−1∑

i=1

Xi .

By (c) we know that Xk ∩X1 = 0 and there exists some j ∈ {2, . . . , k − 1}
such that

Xk ≤

j∑

i=1

Xi and Xk ∩

j−1∑

i=1

Xi = 0 .

For this j, we have Xj �
∑j−1

i=1 Xi , hence Xj ∩
∑j−1

i=1 Xi = 0 . This implies
that

qk + rk

(
j−1∑

i=1

Xi

)
= rk

(
Xk +

j−1∑

i=1

Xi

)
≤ rk

(
Xk +

j∑

i=1

Xi

)

≤ rk

(
j∑

i=1

Xi

)
= qj + rk

(
j−1∑

i=1

Xi

)
,

and therefore, qk = qj = qk−1 .
Now let V = V/Xk , and let T = (T +Xk)/Xk for each T ∈ S(V,H).

Claim: {Xi }i∈{1,...,k−1} is an antichain in S(V ,H) satisfying conditions

(a), (b), (c) with respect to V .

If it is true, then by inductive hypothesis all the Xi have the same rank in

60



Chapter 4, § 4.3.3

S(V ,H). By (c), rk(Xi) in S(V ,H) is equal to qi = rk(Xi) in S(V,H).

Proof of the claim. We assume that Xi∩Xj 6= 0 for some i, j ∈ {1, . . . , k−1}.
This means that

xi +Xk = xj +Xk

for some xi ∈ Xi and xj ∈ Xj . Thus xi ∈ Xj +Xk and xj ∈ Xi +Xk and
by condition (c) we have Xi ⊆ Xj +Xk and Xj ⊆ Xi +Xk . Thus,

Xi +Xk = Xj +Xk

and Xi = Xj . Therefore {Xi }i∈{1,...,k−1} is an antichain. Clearly this an-

tichain satisfies (a) with respect to V .
Suppose that {Xi }i∈{1,...,k−1} does not satisfy (b) with respect to V . Then

there exist W 1,W 2 ∈∈ S(V ,H) such that V = W 1 ⊕W 2 and each Xi is
contained in either W 1 or W 2 . Let W1,W2 be the respective preimages of
W 1,W 2 in V . We define

I1 = {i ∈ {1, . . . , k−1} | Xi ≤W 1} and I2 = {i ∈ {1, . . . , k−1} | Xi ≤W 2}.

Since the Xi satisfy (a) with respect to V , we notice that

{Xi | i ∈ I1} ∪ {Xk}

is an antichain in S(W1, H) satisfying (a) and (c) with respect to W1 . Sim-
ilarly, {Xi | i ∈ I2} ∪ {Xk} is an antichain in S(W2, H) satisfying (a)
and (c) with respect to W2 . By the definition of W 1,W 2 , we have that
W1 ∩W2 = Xk . If {Xi | i ∈ I1} ∪ {Xk} does not satisfy (b) with respect to
W1 , then there exist Y1, Y2 ∈ S(W1, H) such that W1 = Y1⊕ Y2 and each of
the Xi ⊆W1 is contained in either Y1 or Y2 . We may assume that Xk ⊆ Y1.
But then, V = (W2 + Y1)⊕ Y2 and each of the Xi ∈ A is contained in either
W2+Y1 or Y2 , contradicting the fact that our original antichain satisfies (b)
with respect to V . Therefore {Xi | i ∈ I1}∪{Xk} must also satisfy condition
(b) with respect to W1 and these Xi ⊆W1 have the same rank in S(W1, H)
by inductive hypothesis. A similar argument may be applied to W2 . This
means that qi = qk for all i ∈ {1, . . . , k}.
Finally, we verify (c) on V . Let

Xi ∩
∑

j∈J

Xj 6= 0

for some i ∈ {1, . . . , k − 1} and J ⊆ {1, . . . , k − 1}. Then we must also have

Xi ∩ (Xk +
∑

j∈J

Xj) 6= 0

and, by condition (c) with respect to V , Xi ≤ Xk +
∑

j∈J Xj . Therefore

Xi ⊆
∑

j∈J Xj and {Xi }i∈{1,...,k−1} satisfies (c) with respect to V .
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Lemma 4.3.17, together with Corollary 4.3.16, implies that

∑

E∈Ψ′(G,H)\Γ(V,H)

(−1)|E| = 0

if S(V,H) is a distributive lattice of prime rank. This is the first result in
the following section §4.4. Then, we will try to say something about

∑

E∈Ψ′(G,H)∩Γ(V,H)

(−1)|E| .

4.4 Distributive lattices of H-invariant subspaces

In this section we will always assume that the lattice S(V,H) is dis-
tributive. We recall that such a lattice can be either boolean (e.g., take
H =

⊕r
i=1GL(Wi), with V =

⊕r
i=1Wi) or non-boolean (e.g., take the sta-

biliser of a complete flag in dimension n ≥ 2).

In general, by Proposition 4.2.4, we have that

−µÎ1(G,H)
(H,G) =

∑

E∈Ψ′(G,H)

(−1)|E|

where
Ψ′(G,H) = {E ⊆ S(V,H)∗ |

⋂

W∈E

stabG(W ) 6= H} .

We can split the sum into

∑

E∈Ψ′(G,H)∩Γ(V,H)

(−1)|E| +
∑

E∈Ψ′(G,H)\Γ(V,H)

(−1)|E| . (4.15)

In the following theorem we assume that S(V,H) is a distributive lattice
of prime rank.

Theorem 4.4.1. Let V be a vector space of finite dimension over Fq , and
let H ≤ G ≤ GL(V ). Let S(V,H) be distributive. Let A = {X1, . . . , Xk} be
an antichain in S(V,H)∗ such that A ∈ Ψ′(G,H) \ Γ(V,H). If V has prime
rank in S(V,H), then

∑

E∈Ψ′(G,H)\Γ(V,H)
AE=A

(−1)|E| = 0 .

Proof. Suppose for contradiction that

∑

E∈Ψ′(G,H)\Γ(V,H)
AE=A

(−1)|E| 6= 0 .
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Since A ∈ Ψ′(G,H) \ Γ(V,H), by Corollary 4.3.16 we have that A satisfies
conditions (a), (b), (c) of Lemma 4.3.17. Let J ⊆ {1, . . . , k} be minimal
with respect to the property that

∑
j∈J Xj = V . Then, by condition (c),

V =
⊕

j∈J Xj . Since rk(V ) is prime and all the Xi have the same rank
in S(V,H), we have that rk(Xi) = 1 ∀ i. Then each Xi ∈ A is an atom,
and therefore join-irreducible, in S(V,H). Since S(V,H) is distributive, by
Lemma 2.2.13 we have that if Xi ∈ A then Xi ≤ Xj for some j ∈ J . Then
it is possible to write V = W1 ⊕W2 so that each Xi is contained in either
W1 or W2 . But this contradicts condition (b) of lemma 4.3.17.

Then, the second term in (4.15) vanishes under the same assumptions.

Corollary 4.4.2. Let V be a linear space of finite dimension over Fq , and
let H ≤ G = GL(V ). Let S(V,H) be distributive. If V has prime rank in
S(V,H), then

− µI1(G,H)(H,G) =
∑

E∈Ψ′(G,H)∩Γ(V,H)

(−1)|E| . (4.16)

What can we say about (4.16)?

By using the definition of Ψ′(G,H), that is,

Ψ′(G,H) = {E ⊆ S(V,H)∗ |
⋂

W∈E

stabG(W ) 6= H} , (4.17)

we immediately have the following general proposition (not only for distribu-
tive lattices).

Proposition 4.4.3. Let V be a linear space of finite dimension over Fq ,
and let H ≤ G = GL(V ). If for every E ∈ Γ(V,H) there exists an element
g ∈ G such that

g ∈
⋂

W∈E

stabG(W ) but g /∈ H, (4.18)

then Γ(V,H) ⊆ Ψ′(G,H). In particular,

∑

E∈Ψ′(G,H)∩Γ(V,H)

(−1)|E| =
∑

E∈Γ(V,H)

(−1)|E| . (4.19)

Example 4.4.4. By Proposition 4.5.11 in §4.5, we will see an example in
which the condition (4.18) is satisfied.

So, by Corollary 4.4.2, if S(V,H) is distributive of prime rank, then one
could be interested in computing

∑

E∈Γ(V,H)

(−1)|E| (4.20)
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to obtain µI1(G,H)(H,G), provided that the condition (4.18) in Proposition
4.4.3 holds true.

In §4.4.1 and §4.4.2 we compute (4.20), showing that it is 0 by the fol-
lowing theorem.

Theorem 4.4.5. Let V be a vector space of finite dimension over Fq . Let
H be a reducible subgroup of GL(V ). If the lattice S(V,H) of H-invariant
subspaces is distributive, then

∑

E∈Γ(V,H)

(−1)|E| = 0

Remark. Actually, the same proof shows more generally that, if X ∈
S(V,H) satisfies

• rk(X) ≥ 2 in S(V,H) and the sublattice S(X,H) is distributive,

then ∑

E∈Γ(X,H)

(−1)|E| = 0.

By proposition 4.3.3, we know that

∑

E∈N(V,H)

(−1)|E| = −µS(V,H)(0, V ) .

The proof is divided into two cases.

• §4.4.1: S(V,H) is boolean;

• §4.4.2: S(V,H) is distributive, but non-boolean.

We recall that Γ(V,H) = N(V,H) ⊔D(V,H), hence

∑

E∈Γ(V,H)

(−1)|E| =
∑

E∈N(V,H)

(−1)|E| +
∑

E∈D(V,H)

(−1)|E| . (4.21)

In both cases, we will compute separately the two terms on the right-hand
side of (4.21).

4.4.1 The boolean case

Let S(V,H) be boolean. First of all, by Theorem 4.3.2, independently of
the structure of S(V,H) we have that

∑

E∈N(V,H)

(−1)|E| = −µS(V,H)(0, V ).
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Therefore, by Theorem 3.1.14, we immediately obtain that

∑

E∈N(V,H)

(−1)|E| = (−1)r+1 (4.22)

where r = |JI(S(V,H))| is the number of join-irreducible elements of S(V,H).
We recall that in a boolean lattice every join-irreducible element is an atom.
In particular, S(V,H) is isomorphic to a direct product of r chains of length
1 and V is the direct sum of all atoms of S(V,H).

The proof of Theorem 4.4.5 for a boolean S(V,H) relies in the two fol-
lowing lemmas. Before we state the first lemma, we remark an application
of Proposition 4.3.11.

Remark. If S(V,H) is boolean and JI(S(V,H)) = {P1, . . . , Pr} is the set
of its atoms, then we have a proper direct decomposition of rank 1 given by

∆1 = {P1, . . . , Pr}. (4.23)

By Proposition 4.3.11, we observe that ∆1 = {P1, . . . , Pr} is the unique
proper direct decomposition of rank 1 for S(V,H). This fact is useful in the
proof of Theorem 4.4.5 for the boolean case.

Lemma 4.4.6. Let JI(S(V,H)) = {P1, . . . , Pr} be the set of atoms in
S(V,H). Let ∆1 = ∆1(V,H) ∈ D(V,H) be the unique proper direct de-
composition of rank 1 in D(V,H), so that ∆1 = {P1, . . . , Pr}. Then

∑

E∈D(V,H)
∂(E)=∆1(V,H)

(−1)|E| = (−1)r .

Proof. It is clear that the unique E ∈ D(V,H) such that ∂(E) = ∆1(V,H)
must be

E = {P1, . . . , Pr} .

Therefore, ∑

E∈D(V,H)
∂(E)=∆1(V,H)

(−1)|E| = (−1)r .

Remark. Let JI(S(V,H)) = {P1, . . . , Pr} is the set of atoms in the boolean
lattice S(V,H). Let ∆ be a direct decomposition of V in S(V,H), so that
∆ = {S1, . . . , Sl}. If rkD(∆) = m ≥ 2 (i.e. ∆ 6= ∆1(V,H) of Lemma 4.4.6),
then

∃ i ∈ {1, . . . , l} such that Si = Pj1 + · · ·+ Pjm .
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Lemma 4.4.7. Let JI(S(V,H)) = {P1, . . . , Pr} be the set of atoms in
S(V,H). Let ∆ = {S1, . . . , Sl} ∈ D(V,H) be a proper direct decomposition
such that rkD(∆) ≥ 2. Then

∑

E∈D(V,H)
∂(E)=∆

(−1)|E| = 0 .

Proof. We proceed by induction on the rank of ∆. If rkD(∆) = 2, then there
exists Si of rank 2, namely Si = Pj1 + Pj2 . Let E ∈ D(V,H) such that
∂(E) = ∆. This implies that Si ∈ E , since Pj1 and Pj2 are atoms in direct
sum. Now assume that Pj1 ∈ E. Then we have another E− ∈ D(V,H),
given by E \ Pj1 , such that ∆(E−) = ∆. Notice that

(−1)|E| + (−1)|E
−| = 0 .

And conversely, for each E ∈ D(V,H) such that ∂(E) = ∆ and Pj1 /∈ E, we
have E+ = E ∪ {Pj1}. So, in general, for any ∆ of rank 2, there is a 1-to-1
correspondence between

{
E+ ∈ D(V,H) s.t.

∂(E+) = ∆ and Pj1 ∈ E

}
←→

{
E− ∈ D(V,H) s.t.

∂(E−) = ∆ and Pj1 /∈ E−

}
.

Thus ∑

E∈D(V,H)
∂(E)=∆

(−1)|E| = 0 .

Now let M ∈ N, M > 2, and assume that the result holds for each δ ∈
D(V,H) of rank m , with 2 ≤ m ≤M − 1. We prove that it holds true also
for ∆ of rank M . Let ∆ = {S1, . . . , Sl}. By Corollary 4.3.8, we have that

∑

E∈D(V,H)
∂(E)=∆

(−1)|E| = (−1)l
l∏

j=1

∑

F∈Γ(Sj ,H)

(−1)|F | .

There exists Si of rank M in S(V,H), i.e.

Si = Pj1 + · · ·+ PjM

for some atoms Pj1 , . . . , PjM in S(V,H). By proposition 2.3.7, the sublattice

S(Si, H) = {T ∈ S(V,H) | T ≤ Si}

is boolean. Its atoms are Pj1 , . . . , PjM . Clearly, if we prove that

∑

F∈Γ(Si,H)

(−1)|F | = 0 ,
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we are done. So we write
∑

F∈Γ(Si,H)

(−1)|F | =
∑

F∈N(Si,H)

(−1)|F | +
∑

F∈D(Si,H)

(−1)|F | .

By proposition 4.3.3 and theorem 3.1.14, we have that

∑

F∈N(Si,H)

(−1)|F | = −µS(Si,H)(0, Si) = (−1)M+1 .

Moreover, by the same argument that we have seen for D(V,H), we obtain
that

∑

F∈D(Si,H)

(−1)|F | =
∑

E∈D(Si,H)
∂(E)=∆1(Si,H)

(−1)|E| +
∑

∆∈D(Si,H)
∆ 6=∆1(Si,H)




∑

E∈D(Si,H)
∂(E)=∆

(−1)|E|




= (−1)M +
∑

∆∈D(Si,H)
∆ 6=∆1(Si,H)




∑

E∈D(Si,H)
∂(E)=∆

(−1)|E|


 .

Let δ ∈ D(Si, H). Then the rank of δ is < M . Let PjM+1 , . . . , Pjr be all the
remaining r −M atoms in S(V,H) such that

Si ∩ PjM+1 = · · · = Si ∩ Pjr = 0 .

We define
∆′ = δ ∪ {PjM+1 , . . . , Pjr}

and observe that ∆′ ∈ D(V,H). Moreover, we have that 2 ≤ rkD(∆
′) < M .

Then, by inductive hypothesis

∑

E∈D(V,H)
∂(E)=∆′

(−1)|E| = 0 .

Since PjM+1 , . . . , Pjr are atoms in S(V,H), we have that

∑

E∈D(V,H)
∂(E)=∆′

(−1)|E| =
∑

E∈D(Si,H)
∂(E)=δ

(−1)|E|+r−M = (−1)r−M
∑

E∈D(Si,H)
∂(E)=δ

(−1)|E|.

Thus

0 = (−1)r−M
∑

E∈D(Si,H)
∂(E)=δ

(−1)|E| ⇒ 0 =
∑

E∈D(Si,H)
∂(E)=δ

(−1)|E|
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and finally ∑

F∈Γ(Si,H)

(−1)|F | = (−1)M+1 + (−1)M = 0 .

Lemma 4.4.6 and Lemma 4.4.7 prove the following.

Proposition 4.4.8. Let V be a linear space of finite dimension over Fq ,
and let H ≤ GL(V ). If S(V,H) is boolean, then

∑

E∈D(V,H)

(−1)|E| = (−1)r (4.24)

where r = |JI(S(V,H))| is the number of join-irreducible elements in S(V,H).

Therefore, by putting together (4.22) and (4.24), we have proven Theo-
rem 4.4.5 when S(V,H) is boolean.

4.4.2 The non-boolean case

If S(V,H) is a distributive lattice, but it is not boolean, then

∑

E∈N(V,H)

(−1)|E| = −µS(V,H)(0, V ) = 0 (4.25)

by Theorem 4.3.2 and Theorem 3.1.14.
In this case, in order to prove Theorem 4.4.5 it suffices that

∑

E∈D(V,H)

(−1)|E| = 0 .

As in the boolean case, we first need a lemma.

Lemma 4.4.9. Let V be a vector space of finite dimension over Fq , and
H ≤ GL(V ). Let S(V,H) be a non-boolean distributive lattice.

(i) There exists a subspace W ∈ S(V,H) such that W 6= 0 and W is
covered by a join-irreducible element of S(V,H).

(ii) Let W ∈ S(V,H), W 6= 0, and assume that W is covered by a join-
irreducible element of S(V,H). If E ∈ D(V,H), we define E+ =
E ∪ {W} and E− = E \ {W}. Then E+ and E− are in D(V,H).

Proof.
(i). Since S(V,H) is distributive, but it is not boolean, by Corollary 2.2.17
there exists a join-irreducible element Q in SV (H) that is not an atom, i.e.
Q is join-irreducible and it covers a subspace W ∈ S(V,H), with W 6= 0.
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(ii). Let E = {V1, . . . , Vt} ∈ D(V,H) such that

t∑

k=1

Vk = V =

r⊕

j=1

Sj ,

where {S1, . . . , Sr} ∈ D(V,H) and for each k there exists j such that Vk ⊆
Sj . As above, let Q be a join-irreducible subspace covering W in S(V,H).
So we have

W < Q ≤
u∑

i=1

Vki

with Vk1 , . . . , Vku ∈ E, u ∈ {1, . . . , t}. Notice that E+ and E− are distinct
collections of non-trivial subspaces in S(V,H), since E+ contains W and E−

does not. Moreover, E = E+ or E = E− . First we show that both E+ and
E− generate V . If E = E−, then clearly also E ∪ {W} spans V . On the
other hand, assume that E = E+, so that W = Vs for some s ∈ {1, . . . , t}.
By Lemma 2.2.13, since Q is join-irreducible,

Q ≤
u∑

i=1

Vki ⇒ Q ≤ Vki for some i ∈ {1, . . . , u}.

So we have

W = Vs < Q ≤ Vki ⇒ W = Vs < Vki ⇒
∑

1≤k≤t
k 6=s

Vk = V ,

which means that also E \ {W} generates V . In general, by the previous
argument based on Lemma 2.2.13, we have shown that W < Vk for some k ∈
{1, . . . , t}, with Vk 6= W . Now it is easy to see that the direct decomposition
{S1, . . . , Sr}, which we have defined for E ∈ D(V,H), is suitable for both E+

and E−. Therefore, we conclude that both E+ and E− are in D(V,H).

By applying the above Lemma 4.4.9, we directly obtain the following
proposition. Together with (4.25), it gives Theorem 4.4.5 when S(V,H) is
distributive and non-boolean.

Proposition 4.4.10. Let V be a vector space of finite dimension over Fq ,
and H ≤ GL(V ). Let S(V,H) be a non-boolean distributive lattice. Then

∑

E∈D(V,H)

(−1)|E| = 0 . (4.26)

Proof. Assume that D(V,H) 6= ∅, otherwise there is nothing to show. So,
by (i) of Lemma 4.4.9 we know that there exists a subspace W ∈ S(V,H)
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such that W 6= 0 and W is covered by a join-irreducible element of S(V,H).
Then there is a 1-to-1 correspondence between

{
E+ ∈ D(V,H) s.t. W ∈ E+

}
←→

{
E− ∈ D(V,H) s.t. W /∈ E−

}

given by (ii) of Lemma 4.4.9.
Notice that clearly

(−1)|E
+| + (−1)|E

−| = 0 .

Thus ∑

E∈D(V,H)

(−1)|E| = 0 .

4.5 An example in GL(n, q)

In general, the lattice S(V,H) is not distributive. In this section we
present an example of a family of subgroups H in GL(V ), for V = Fn

q , so
that the structure of the correspondent S(V,H) is not distributive, except
for some special cases that we consider preliminarily. The aim is to show
that the same methods studied in the previous sections of this chapter can
be reworked for different classes of subgroups.

We start with fixing the notation, defining our family of subgroups H ≤
GL(V ), and showing the special cases which could be known by Shareshian’s
results contained in [38] or by what we have previously presented. Then we
will concentrate on the other subgroups of the family and we will see some
general properties related to their reducible subgroup ideal I1(G,H). In
particular, we will obtain again that

∑

E∈Ψ′(G,H)\Γ(V,H)

(−1)|E| = 0

if the rank rk(V ) of V in S(V,H) is prime.

Notation and special cases

Let V ≃ Fn
q be a vector space of finite dimension over Fq . Let r be a

positive integer such that 0 ≤ r ≤ n. If r ≥ 1, for i = 1, . . . , r let mi ∈ N so
that

m1 + · · ·+mr ≤ n.

Then we fix the following basis of V :

E = {w
(1)
1 , . . . , w(1)

m1
, . . . , w

(r)
1 , . . . , w(r)

mr
, v1, . . . , vn−(m1+···+mr)}
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so that

V = 〈w
(1)
1 , . . . , w(1)

m1
〉 ⊕ · · · ⊕ 〈w

(r)
1 , . . . , w(r)

mr
〉 ⊕ 〈v1, . . . , vn−(m1+···+mr)〉 .

So, we have that
V = W1 ⊕ · · · ⊕Wr ⊕W c

where

W1 := 〈w
(1)
1 , . . . , w(1)

m1
〉 ≃ V (m1, q)

...

Wr := 〈w
(r)
1 , . . . , w(r)

mr
≃ V (mr, q)〉

and

W c := 〈v1, . . . , vn−(m1+···+mr)〉 ≃ V (n− (m1 + · · ·+mr), q) .

represents the canonical complement of W1⊕ · · · ⊕Wr in V with respect to
base E . We denote by W the sum

W = W1 ⊕ · · · ⊕Wr

so that V = W ⊕W c.

Let G = GL(V ) ≃ GL(n, q) . Similarly we have GL(Wi) ≃ GL(mi, q).
Moreover we call ZW c the centre of the group GL(W c), that is the subgroup

ZW c = Z(GL(W c)) = {zIW c | z ∈ F∗
q}

consisting of the scalar transformations. We denote ZW c also as Zd, if d is
the dimension of W c.

We consider the following class of subgroups H ≤ G:

H = GL(W1)⊕ · · · ⊕GL(Wr)⊕ ZW c (4.27)

such that

H ≃ GL(m1, q)⊕ · · · ⊕GL(mr, q)⊕ Zn−(m1+···+mr) (4.28)

with 0 ≤ r ≤ n and m1 + · · ·+mr ≤ n.

We observe that we also include the following special cases:

• r = 0 , meaning that H = Zn ;

• m1 + · · ·+mr = n , meaning that H = GL(m1, q)⊕ · · · ⊕GL(mr, q) .
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We see that H is an intersection of maximal subgroups of G = GL(V ),
as follows. We recall that the stabilizers of subspaces in GL(V ) are maximal
subgroups of GL(V ) (this is part of Aschbacher’s classification, but for a
direct proof one can also see [22]). So, for any 0 < U < V the subgroup
stabG(U) is maximal in G. Let

K = GL(W1)⊕ · · · ⊕GL(Wr)⊕GL(W c).

Then
K = stabG(W1) ∩ · · · ∩ stabG(Wr) ∩ stabG(W

c) (4.29)

is an intersection of maximal subgroups of GL(V ). Now, if m1+· · ·+mr = n,
we have that dim(W c) = 0 and consequently H = K. Then, by (4.29), H is
an intersection of maximal subgroups of GL(V ). Otherwise, we know that
W c is not the only complement of W in the subspace lattice of V . Let

W⊥ = {T ≤ V | V = W ⊕ T}

be the set of all complements of W in SV . Then

⋂

T∈W⊥

stabG(T ) = GL(W )⊕ ZW c (4.30)

is an intersection of maximal subgroup of G. Therefore,

H = K ∩
⋂

T∈W⊥

stabG(T ) (4.31)

is an intersection of maximal subgroups of G.

What is S(V,H) for such a subgroup H? We can observe that if r = 0,
i.e. H = Zn, then S(V,H) = S(V,Zn) = SV is the subspace lattice of V . On
the opposite, if W c = 0 and we have that H = GL(W1)⊕ · · · ⊕GL(Wr) for
V =

⊕r
i=1Wi, then the lattice S(V,H) is boolean, since the only H-invariant

subspaces are the sums of the W1, . . . ,Wr. In particular, W1, . . . ,Wr are the
atoms of S(V,H). In general, by elementary linear algebra, we can state the
following proposition that characterizes the H-invariant subspaces.

Proposition 4.5.1. Let V ≃ Fn
q , so that V = W1 ⊕ · · · ⊕Wr ⊕W c . Let

H = GL(W1)⊕ · · · ⊕GL(Wr)⊕ ZW c ≤ GL(V ) .

Then, the H-invariant subspaces of V are of the form:

(a) T ≤W c ;

(b) T +Wi1 + · · ·+Wik , with 1 ≤ i1 < i2 < · · · < ik ≤ r and T ≤W c .
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The following definition is related to Proposition 4.5.1 and it will be used
throughout this chapter.

Definition 4.5.2. Let V ≃ Fn
q , so that V = W1 ⊕ · · · ⊕Wr ⊕W c . Let

H = GL(W1)⊕ · · · ⊕GL(Wr)⊕ ZW c ≤ GL(V ) .

We say that a subspace S ≤ V is mixed if

S =
∑

i∈I

Wi + T

where ∅ 6= I ⊆ {1, . . . , r} and 0 < T ≤W c .

By Proposition 4.5.1, every mixed subspace is H-invariant. Since S(V,H)
is a modular lattice, by Theorem 2.2.9 it is also graded.

Remark. Let rk : S(V,H)→ N denote the rank function of S(V,H), for H
as above. Let W = W1⊕· · ·⊕Wr . Let mi = dim(Wi) and m = m1+· · ·+mr .
In particular we observe that

• rk(Wi) = 1 for all i = 1, . . . , r ;

• rk(W ) = r ;

• rk(W c) = dim(V/W ) = n−m ;

• rk(V ) = n−m+ r .

Special cases

In this section we briefly review some special cases of the example that
we are considering. More precisely, we have the following extreme cases.

(a) r = 0 and H = Zn. This case has been considered by Shareshian in [38].

(b) n−m = dim(W c) = 0 and r ≥ 1 ⇒ H = GL(W1)⊕ · · · ⊕GL(Wr). In
this case, the lattice S(V,H) is boolean. It is isomorphic to the product
of r chains of length 1.
Similarly, if n − m = dim(W c) = 1 and r ≥ 1 we have that H =
GL(W1)⊕ · · ·⊕GL(Wr)⊕ZW c , where ZW c ≃ F∗

q . Also in this case, the
lattice S(V,H) is boolean.

We consider now these cases separately, just to highlight some relevant
facts.
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Shareshian’s results for r = 0

This is the case described by Shareshian to find µ(1,PGL(n, q)). Ac-
tually, he obtains some partial results using the arguments that we have
generalized in Chapter 4. Since

µ(1,PGL(n, q)) = µ(Zn,GL(n, q))

we can consider H = Zn ≤ GL(n, q) = G. Shareshian observes that

Γ(V,H) ⊆ Ψ′(G,H)

and, if the dimension n is prime, then

µÎ1(G,H)
=

∑

E∈Γ(V,H)

(−1)|E| =
|GL(V )|

n(qn − 1)
.

If n is small, we have not only that many of the geometrical classes Ci(G,H),
for i = 1, . . . , 8, are empty, but also that the class C9(G,H) may be known.
Here, as an example, we list some results for PGL(n, q).

Theorem 4.5.3 ([38], Theorem 1.7 and Theorem 1.8).
If p > 3 is prime and if n = 2, then

µ(1,PGL(2, pa)) = ρ(a) · |PSL(2, pa)|

where

ρ(a) =

{
1 if a = 1, p ≡ 3, 5 mod 8 ;

0 otherwise.

If p = 3, then
µ(1,PGL(2, 3a)) = σ(a) · |PSL(2, 3a)|

where

σ(a) =

{
−µ(a) if a is odd;

0 if a is even.

Theorem 4.5.4 ([38], Theorem 1.9). Let V ≃ F3
q , with q = pa for an odd

prime p. If PSL(V ) < PGL(V ), then µ(1,PGL(V )) = 0.

By using the same argument, he similarly obtains also a result for PSL(3, q).

Theorem 4.5.5 ([38], Theorem 1.9). Let p be an odd prime and let a be a
positive integer. Then

µ(1,PSL(3, pa)) =





−6|PSL(3, pa)| if a = 1 and p ≡ 1, 4 mod 15;

−6|PSL(3, pa)| if a = 2 and p ≡ 2, 7, 8, 13 mod 15;

0 otherwise.
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Boolean lattices

Boolean lattice can arise from S(V,H), for some cases in the family of
subgroups H that we are considering.

For instance, if n− (m1+ · · ·+mr) = 0 and r = 1, then H = GL(V ) = G
and S(V,H) = {0, V }. Here we know that, by definition, µ(G,H) =
µ(G,G) = 1.

Now, let n− (m1 + · · ·+mr) = 0 and r ≥ 1. Then

H = GL(W1)⊕ · · · ⊕GL(Wr).

In this case we could be interested in

µÎ1(G,H)
(H,G) = −

∑

E∈Ψ′(G,H)

(−1)|E|.

Even though we know by Theorem 4.4.5 that

∑

E∈Γ(V,H)

(−1)|E| = 0,

we have that in general

∑

E∈Ψ′(G,H)

(−1)|E| 6= 0 .

An example is the following.

Example 4.5.6. Let r = 2. Then S(V,H)∗ = {W1,W2}, and we have that
D(V,H) = {{W1,W2}} is not contained in Ψ′(G,H). On the opposite, here
we have N(V,H) = {∅, {W1}, {W2}} = Ψ′(G,H) and

∑

E∈Ψ′(G,H)

(−1)|E| = −1 .

Remark. We observe that if n− (m1 + · · ·+mr) = 1 and r ≥ 1. Then

H = GL(W1)⊕ · · · ⊕GL(Wr)⊕ ZW c

where ZW c ≃ GL(W c) ≃ F∗
q . So, we can write H as

H = GL(W1)⊕ · · · ⊕GL(Wr)⊕GL(W c)

and the lattice S(V,H) is boolean with r + 1 atoms.

We want to state the following Proposition 4.5.7, because it will be used
in §4.5 as an inductive step in the proof of Proposition 4.5.16.
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Proposition 4.5.7. Let V = W ⊕T be a vector space of finite dimension n
over Fq , so that W = W1⊕ · · ·⊕Wr and dim(T ) = 1. Let H ≤ GL(V ) such
that

H = GL(W1)⊕ · · · ⊕GL(Wr)⊕GL(T ) .

Let
X =

∑

i∈I

Wi + T

be a mixed subspace of V , for some I ⊆ {1, . . . , r}, ∅ 6= I. Then

∑

E∈Γ(X,H)

(−1)|E| = 0 .

Proof. If dim(T ) = 1, there is no non-trivial H-invariant subspace of W c. By
Proposition 2.3.7, the lattice S(X,H) is boolean, since S(V,H) is boolean.
Then, by Proposition 4.4.5,

∑

E∈Γ(X,H)

(−1)|E| = 0 .

Now we can introduce a general method, that is strictly related to Shareshian’s
argument and what we have seen in §4.4. It may be useful if one is interested
in computing

µÎ1(G,H)
(H,G).

The case with r ≥ 1 and n−m ≥ 2

We present now a more general argument that can be used with the
following conditions for n,m, r:

r ≥ 1 and n−m ≥ 2

where m = m1 + · · ·+mr . This assumption will remain valid in all results
presented in this section, unless otherwise stated.

Actually in this case, for the group H that we are considering, we are
able to prove only Theorem 4.5.8 and Corollary 4.5.9, obtaining that

∑

E∈Ψ′(G,H)\Γ(V,H)

(−1)|E| = 0

if rk(V ) in S(V,H) is prime. Unfortunately, we can not use our methods to
compute

µÎ1(G,H)
(H,G)
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because it is impossible to apply the criterion of Proposition 4.4.3, as we will
explain in Example 4.5.10. For this reason, we will define another subgroup

H1 = GL(W1)⊕ · · · ⊕GL(Wr)⊕ IdW c

such that

• S(V,H) = S(V,H1), and

• we can apply to H1 the criterion of Proposition 4.4.3.

For H1, we will prove that

µÎ1(G,H1)
(H1, G) = 0

if the rank of V in S(V,H1) is prime.

Now we prove that
∑

E∈Ψ′(G,H)\Γ(V,H)

(−1)|E| = 0

if rk(V ) in S(V,H) is prime. The proof of this fact is very similar to the
proof that we have seen in Theorem 4.4.1.

Theorem 4.5.8. Let V = W ⊕W c be a vector space of finite dimension n
over Fq , so that W = W1 ⊕ · · · ⊕Wr. Let H ≤ GL(V ) such that

H = GL(W1)⊕ · · · ⊕GL(Wr)⊕ ZW c .

Let A = {X1, . . . , Xk} be an antichain in S(V,H)∗ such that A ∈ Ψ′(G,H)\
Γ(V,H). If the rank of V in S(V,H) is prime, then

∑

E∈Ψ′(G,H)\Γ(V,H)
AE=A

(−1)|E| = 0 .

Proof. Suppose for contradiction that
∑

E∈Ψ′(G,H)\Γ(V,H)
AE=A

(−1)|E| 6= 0 .

By corollary 4.3.16 and since A ∈ Ψ′(G,H)\Γ(V,H), we have that A satisfies
conditions (a), (b), (c) of lemma 4.3.17. Let J ⊆ {1, . . . , k} be minimal with
respect to the property that

∑
j∈J Xj = V . Then, by condition (c), V =⊕

j∈J Xj . Since rk(V ) is prime and all the Xi have the same rank in S(V,H),
we have that rk(Xi) = 1 ∀ i. Then either Xi ∈ {W1, . . . ,Wr} or Xi = T ,
where T is some subspace of W c of dimension 1 in V . So each Xi is contained
either in W or in W c . Then we have contradiction with (b) of lemma 4.3.17.
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As an immediate consequence we obtain the following corollary.

Corollary 4.5.9. Let V = W ⊕W c be a vector space of finite dimension n
over Fq , so that W = W1 ⊕ · · · ⊕Wr. Let H ≤ GL(V ) such that

H = GL(W1)⊕ · · · ⊕GL(Wr)⊕ ZW c .

Let the rank of V be prime in S(V,H). Then
∑

E∈Ψ′(G,H)\Γ(V,H)

(−1)|E| = 0

and
−µI1(G,H)(H,G) =

∑

E∈Ψ′(G,H)∩Γ(V,H)

(−1)|E| .

In the following section, we give a general criterion that can be used to
reduce the calculation of

−µI1(G,H)(H,G) =
∑

E∈Ψ′(G,H)∩Γ(V,H)

(−1)|E|

to the calculation of ∑

E∈Γ(V,H)

(−1)|E|.

Application of the criterion of Proposition 4.4.3

By Corollary 4.5.9, we want to compute

−µI1(G,H)(H,G) =
∑

E∈Ψ′(G,H)∩Γ(V,H)

(−1)|E|

in order to find µI1(G,H)(H,G). The calculation could be easier if we had
Γ(V,H) ⊆ Ψ′(G,H), because in this case we would have that

∑

E∈Ψ′(G,H)∩Γ(V,H)

(−1)|E| =
∑

E∈Γ(V,H)

(−1)|E|

In particular, we recall that

Ψ′(G,H) = {E ⊆ S(V,H)∗ |
⋂

W∈E

stabG(W ) 6= H} .

As we have shown in Proposition 4.4.3, Γ(V,H) ⊆ Ψ′(G,H) if for every
E ∈ N(V,H) ⊔D(V,H) there exists an element g ∈ G such that

g ∈
⋂

W∈E

stabG(W ) but g /∈ H (4.32)

where G = GL(V ) is acting in a natural way on the subspace lattice SV .
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Remark. In [38], the subgroup considered by Shareshian is the centre of
GL(V ), i.e. H = ZV = Z(G), and we have that Γ(V,ZV ) ⊆ Ψ′(G,ZV ).
Indeed, if E ∈ N(V,ZV ) or E ∈ D(V,ZV ), then there exist two subspaces
U,W ≤ V such that V = U ⊕W . So, we can define g ∈ GL(V ) such that
g|U = IU and g|W = −IW . Then, this element g satisfies (4.32), because
g /∈ ZV .

Finding such an element in G for all E ∈ Γ(V,H) is not an easy task at
all. Sometimes it is even impossible, as shown in the following example.

Example 4.5.10. Let V = W1⊕ · · · ⊕Wr ⊕W c and H ≤ GL(V ) such that

H = GL(W1)⊕ · · · ⊕GL(Wr)⊕ ZW c .

Consider the following element E of D(V,H) given by the collection

E = {W1, . . . ,Wr, all subspaces of W c}.

E ∈ D(V,H) since W1⊕· · ·⊕Wr⊕W c is a non-trivial direct decomposition
of V . There follows that

H = GL(W1)⊕ · · · ⊕GL(Wr)⊕ ZW c =
⋂

T∈E

stabG(T ),

hence an element g as in (4.32) does not exist.

So, unfortunately, it is not possible to use this criterion directly with
the subgroup H. Now, we consider a modified version of H given by the
subgroup

H1 = GL(W1)⊕ · · · ⊕GL(Wr)⊕ IdW c ,

such that the criterion can be applied with the following element

g =

[
Im 0
0 −In−m

]
=

[
IdW 0
0 −IdW c

]
∈ G & g /∈ H1

where dim(W ) = m and dim(W c) = n−m.

For H1, we can state the following proposition.

Proposition 4.5.11. Let V = W ⊕W c be a vector space of finite dimension
n over Fq , so that W = W1 ⊕ · · · ⊕Wr. Let G = GL(V ) and H1 ≤ G such
that

H1 = GL(W1)⊕ · · · ⊕GL(Wr)⊕ IdW c .

Then Γ(V,H1) ⊆ Ψ′(G,H1) .
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We decide to investigate the sum
∑

E∈Γ(V,H1)

(−1)|E|

for H1, since by Proposition 4.5.11 and Corollary 4.5.9 we have that

−µÎ1(G,H1)
(H1, G) =

∑

E∈Ψ′(G,H1)

(−1)|E| =
∑

E∈Γ(V,H1)

(−1)|E| .

Indeed, Γ(V,H1) ⊆ Ψ′(G,H1) and
∑

E∈Ψ′(G,H)\Γ(V,H1)

(−1)|E| = 0.

We also notice that S(V,H1) = S(V,H). So, we can write

− µÎ1(G,H1)
(H1, G) =

∑

E∈Γ(V,H)

(−1)|E| . (4.33)

We remark that

∑

E∈Γ(V,H)

(−1)|E| =
∑

E∈N(V,H)

(−1)|E| +
∑

E∈D(V,H)

(−1)|E| (4.34)

and we proceed by computing separately
∑

E∈N(V,H)

(−1)|E| and
∑

E∈D(V,H)

(−1)|E| .

The sum over the non-spanning sets

Notation. As previously noted, S(V,H1) = S(V,H). Then, we also have
that N(V,H) = N(V,H1), D(V,H) = D(V,H1), Γ(V,H) = Γ(V,H1). Since
the following results are related only to the subspace lattice (which is the
same for H and H1), we only use the terms with H to simplify the notation.
All the obtained results can be similarly referred to H1.

Now we compute
∑

E∈N(V,H)

(−1)|E| =
∑

E∈N(V,H1)

(−1)|E| .

By Proposition 4.3.3 we have that
∑

E∈N(V,H)

(−1)|E| = −µS(V,H)(0, V ) .

Remind that V = W⊕W c , where W = W1⊕· · ·⊕Wr, and that we know
the H-invariants subspaces in S(V,H) (Proposition 4.5.1). We use this to
compute µS(V,H)(0, V ). Firstly, we prove a lemma.
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Lemma 4.5.12. Let V = W ⊕W c be a vector space of finite dimension n
over Fq , so that W = W1 ⊕ · · · ⊕Wr. Let H ≤ GL(V ) be such that

H = GL(W1)⊕ · · · ⊕GL(Wr)⊕ ZW c .

Then for any 1 ≤ i1 < i2 < · · · < ik ≤ r and for any T ≤W c , we have

∑

0≤S≤T

µS(V,H)(0, S +Wi1 + · · ·+Wik) = 0 .

In particular

∑

0≤T≤W c

µS(V,H)(0, T +Wi1 + · · ·+Wik) = 0 .

Proof. Let T ≤ W c be any subspace. The proof is by induction on k. Let
k = 1. If we consider T +Wi1 ∈ S(V,H) , with Wi1 ∈ {W1, . . . ,Wr}, then

µS(V,H)(0, T +Wi1) = −
∑

0≤S<T+Wi1

S∈S(V,H)

µS(V,H)(0, S)

= −
∑

0≤S≤T

µS(V,H)(0, S) −
∑

0≤S<T

µS(V,H)(0, S +Wi1)

and ∑

0≤S≤T

µS(V,H)(0, S) = 0

by definition of the Möbius function. This implies that

∑

0≤S≤T

µS(V,H)(0, S +Wi1) = 0

for each T ≤ W c. Assume now that for any 1 ≤ j1 < j2 < · · · < ju ≤ r ,
with u < k, we have

∑

0≤S≤T

µS(V,H)(0, S +Wj1 + · · ·+Wju) = 0 .

Let 1 ≤ i1 < i2 < · · · < ik ≤ r and X := T +Wi1 + · · ·+Wik . Then

µS(V,H)(0, X) = −
∑

0≤S<X

S∈S(V,H)

µS(V,H)(0, S) .

By Proposition 4.5.1 we can classify the subspaces of X in S(V,H) in the
following families

F1 := {Y | Y ≤ T};
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F2 := {Y +Wj1 + · · ·+Wju | Y ≤ T, {j1, . . . , ju} ⊂ {i1, . . . , ik} with u < k};

F3 := {Y +Wi1 + · · ·+Wik | Y < T}.

So

µS(V,H)(0, X) = −
∑

S∈F1

µS(V,H)(0, S)−
∑

S∈F2

µS(V,H)(0, S)−
∑

S∈F3

µS(V,H)(0, S) .

But ∑

S∈F1

µS(V,H)(0, S) =
∑

0≤S≤T

µS(V,H)(0, S) = 0.

Moreover, by inductive hypothesis, also
∑

S∈F2

µS(V,H)(0, S) = 0 .

Finally we obtain

µS(V,H)(0, X) = −
∑

S∈F3

µS(V,H)(0, S) = −
∑

0≤Y <T

µS(V,H)(0, Y+Wi1+· · ·+Wik)

whence ∑

0≤S≤T

µS(V,H)(0, S +Wi1 + · · ·+Wik) = 0 .

Now we can prove the following Proposition 4.5.13 and compute µS(V,H)(0, V ),
in order to get ∑

E∈N(V,H)

(−1)|E| .

Proposition 4.5.13. Let V = W ⊕W c be a vector space of finite dimension
n over Fq , so that W = W1 ⊕ · · · ⊕Wr. Let H ≤ GL(V ) be such that

H = GL(W1)⊕ · · · ⊕GL(Wr)⊕ ZW c .

Let X be a mixed subspace of V ,

X =
∑

i∈I

Wi + T

where ∅ 6= I ⊆ {1, . . . , r} and 0 < T ≤W c . Then
∑

E∈N(X,H)

(−1)|E| = −µS(X,H)(0, X)

= (−1)|I|+1µS(T,H)(0, T )

= (−1)|I|+1(−1)dim(T ) q(
dim(T )

2 ) .
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Proof. By lemma 4.5.12 we have that
∑

0≤S≤T

µS(V,H)(0, S +W ) = 0

for any T ≤W c. Notice that

µS(V,H)(0, V ) = µS(V,H)(0,W
c +W1 + · · ·+Wr).

So, in particular,
∑

0≤T≤W c

µS(V,H)(0, T +W1 + · · ·+Wr) = 0 .

Therefore

µS(V,H)(0, V ) = −
∑

0≤T<W c

µS(V,H)(0, T +W1 + · · ·+Wr) .

Now we observe that

µS(V,H)(0,W1 +W2 + · · ·+Wr) = µS(W,H)(0,W1 +W2 + · · ·+Wr)

and, since the lattice SW (H) is boolean, by theorem 3.1.14

µS(V,H)(0,W1 +W2 + · · ·+Wr) = (−1)r .

Thus we can sum up the above information in the following conditions:
{ ∑

0≤S≤T

µS(V,H)(0, S +W ) = 0 if 0 6= T ≤W c,

µS(V,H)(0,W ) = (−1)r .

Then

µS(V,H)(0, V ) = (−1)rµSWc (0,W
c)

where µSWc is the Möbius function on the lattice of subspaces of W c . By
Proposition 4.3.2 we obtain

µS(V,H)(0, V ) = (−1)r(−1)n−(m1+···+mr) q(
n−(m1+···+mr)

2 ) .

Corollary 4.5.14. Let V = W ⊕W c be a vector space of finite dimension
n over Fq , so that W = W1 ⊕ · · · ⊕Wr. Let H ≤ GL(V ) such that

H = GL(W1)⊕ · · · ⊕GL(Wr)⊕ ZW c .

Let mi be the dimension of each Wi , and let m = m1 + · · ·+mr . Then
∑

E∈N(V,H)

(−1)|E| = −µS(V,H)(0, V )

= (−1)r+1µSWc (0,W
c)

= (−1)r+1(−1)n−(m1+···+mr) q(
n−(m1+···+mr)

2 ) .
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The sum over the decomposing sets and Γ(V,H)

Our final goal is to show that
∑

E∈Γ(V,H)

(−1)|E| = 0 ,

or equivalently that
∑

E∈D(V,H)

(−1)|E| = −
∑

E∈N(V,H)

(−1)|E| .

Let V = W ⊕W c be a vector space of finite dimension n over Fq , so that
W = W1 ⊕ · · · ⊕Wr. Let H ≤ GL(V ) such that

H = GL(W1)⊕ · · · ⊕GL(Wr)⊕ ZW c .

Let X ∈ S(V,H) \ {0}. We define

• D(X,H)0 ⊆ D(X,H) such that

D(X,H)0 = {∆ ∈ D(X,H) | ∃ mixed subspace S ∈ ∆ } .

• D(X,H)∗ = D(X,H) \D(X,H)0 .

Remark. Let X ∈ S(V,H) \ {0}. By Proposition 4.3.6, if E ⊆ S(X,H)∗

is such that E ∈ D(X,H), then there exists a mixed subspace S ∈ E if and
only if ∂(E) ∈ D(X,H)0 .

Also in this case, we prove a preliminary lemma.

Lemma 4.5.15. Let V = W ⊕W c be a vector space of finite dimension n
over Fq , so that W = W1 ⊕ · · · ⊕Wr. Let H ≤ GL(V ) be such that

H = GL(W1)⊕ · · · ⊕GL(Wr)⊕ ZW c .

Let X ∈ S(V,H) \ {0}. Then

∑

∆∈D(X,H)∗




∑

E∈D(X,H)
∂(E)=∆

(−1)|E|


 = −

∑

E∈N(X,H)

(−1)|E| .

Proof. Let E ∈ D(V,H) be such that ∂(E) ∈ D(V,H)∗. This means that no
mixed subspace is contained in ∂(E), and consequently E does not contain
any mixed subspace. We can write

E = F1 ∪ F2, with F1 ∩ F2 = ∅ ,

where F1 is the set of subspaces in E contained in W = W1 ⊕ · · · ⊕Wr ; on
the other hand, F2 is the set of subspaces in E contained in W c
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• F1 = {S ≤W | S ∈ E} ;

• F2 = {S ≤W c | S ∈ E} .

Moreover E falls in one, and only one, of the following three cases:

(a) E \{W} is spanning for V , i.e.
∑

S∈E S = V (and E \{W} ∈ D(V,H)).
It means also that F1 \ {W} is spanning for W .

(b) E \ {W} is non-spanning for V , but E \ {W c} is spanning for V . In
particular it implies that F1 \ {W} is non-spanning for W , so W ∈ F1 ,
but F2 \ {W

c} is spanning for W c.

(c) E\{W} is non-spanning for V and E\{W c} is non-spanning for V . This
necessarily implies that W,W c ∈ E . So both F1 \ {W} is non-spanning
for W and F2 \ {W

c} is non-spanning for W c.

In case (a), both E′
a = E \ {W} and E′′

a = E ∪ {W} are in D(V,H), and
∂(E′

a), ∂(E
′′
a) ∈ D(V,H)∗. Obviously E ∈ {E′

a, E
′′
a}, but most importantly

(−1)|E\{W}| + (−1)|E∪{W}| = 0 .

This implies that the sum over all the addends (−1)|E| , with E as in case
(a), is 0.
In case (b), both E′

b = E \ {W c} and E′′
b = E ∪ {W c} are in D(V,H), and

∂(E′
b), ∂(E

′′
b ) ∈ D(V,H)∗. Again E ∈ {E′

b, E
′′
b }, and we have

(−1)|E\{W c}| + (−1)|E∪{W c}| = 0 .

This implies that the sum over all the addends (−1)|E| , with E as in case
(b), is 0.
So, for the sum

∑

∆∈D(V,H)∗




∑

E∈D(V,H)
∂(E)=∆

(−1)|E|




we can just consider E as in case (c), where we have

E = F1 ∪ F2 = F ′
1 ∪ F ′

2 ∪ {W,W c}

so that F ′
1 = F1 \ {W} , F ′

2 = F2 \ {W
c} , and

F ′
1 ∈ N(W,H) , F ′

2 ∈ N(W c, H) .
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Thus we can compute

∑

∆∈D(V,H)∗




∑

E∈D(V,H)
∂(E)=∆

(−1)|E|


 =

∑

F ′
1∈N(W,H)


 ∑

F ′
2∈N(W c,H)

(−1)|F
′
1|+|F ′

2|+2




=
∑

F ′
1∈N(W,H)

(−1)|F
′
1|


 ∑

F ′
2∈N(W c,H)

(−1)|F
′
2|


 .

By Proposition 4.5.13

∑

∆∈D(V,H)∗




∑

E∈D(V,H)
∂(E)=∆

(−1)|E|


 = −µSWc (H)(0,W

c)
∑

F ′
1∈N(W,H)

(−1)|F
′
1|

= −µSWc (H)(0,W
c) · (−µSW (H)(0,W ) )

= −µSWc (H)(0,W
c) · (−1)r+1

= (−1)r µSWc (H)(0,W
c)

= −
∑

E∈N(V,H)

(−1)|E| .

In particular, for X = V , we have that

∑

∆∈D(V,H)∗




∑

E∈D(V,H)
∂(E)=∆

(−1)|E|


 = −

∑

E∈N(V,H)

(−1)|E| .

We use the previous result to conclude the main result about the sum

∑

E∈Γ(X,H)

(−1)|E| = 0

for our subgroup H.

Theorem 4.5.16. Let V = W ⊕W c be a vector space of finite dimension n
over Fq , so that W = W1 ⊕ · · · ⊕Wr. Let H ≤ GL(V ) be such that

H = GL(W1)⊕ · · · ⊕GL(Wr)⊕ ZW c .
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Let
X =

∑

i∈I

Wi + T

be a mixed subspace of V , for some I ⊆ {1, . . . , r}, ∅ 6= I, and 0 < T ≤W c.
Then

∑

E∈Γ(X,H)

(−1)|E| = 0 . (4.35)

In particular, if X = V , we have that
∑

E∈Γ(V,H)

(−1)|E| = 0 .

Proof. We proceed by induction on the rank of X. Since X is a mixed
subspace in S(V,H), we observe that the minimal case is rk(X) = 2, where
X is necessarily of the form

X = Wi + T

for some i ∈ {1, . . . , r} and T ≤W c such that dim(T ) = 1.
So, if rk(X) = 2 , then (4.35) is true by Proposition 4.5.7.
Now let rk(X) = k > 2 and assume that (4.35) is true for every mixed
subspace Y ∈ S(V,H) such that rk(Y ) < k. We want to prove that

∑

E∈Γ(X,H)

(−1)|E| = 0 .

We have
∑

E∈Γ(X,H)

(−1)|E| =
∑

E∈N(X,H)

(−1)|E| +
∑

E∈D(X,H)

(−1)|E|

=
∑

E∈N(X,H)

(−1)|E| +
∑

∆∈D(X,H)




∑

E∈D(X,H)
∂(E)=∆

(−1)|E|


 .

But by Lemma 4.5.15, we know that

∑

∆∈D(X,H)∗




∑

E∈D(X,H)
∂(E)=∆

(−1)|E|


 = −

∑

E∈N(X,H)

(−1)|E| .

Therefore

∑

E∈Γ(X,H)

(−1)|E| =
∑

∆∈D(X,H)0




∑

E∈D(X,H)
∂(E)=∆

(−1)|E|
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and it suffices to prove that

∑

∆∈D(X,H)0




∑

E∈D(X,H)
∂(E)=∆

(−1)|E|


 = 0.

Let ∆ ∈ D(X,H)0. Then ∆ has rank t < k, i.e.

t = max{rk(S) | S ∈ ∆} < k,

since the rank of X is k and ∆ is a proper decomposition. So, ∆ contains a
mixed subspace S̃ such that rk(S̃) < k. By inductive hypothesis

∑

E∈Γ(S̃,H)

(−1)|E| = 0 .

Then ∑

E∈D(X,H)
∂(E)=∆

(−1)|E| = 0

by Lemma 4.3.7, and therefore we obtain (4.35) for X.

Remark. We have seen that

∑

E∈Γ(V,H)

(−1)|E| =
∑

E∈Γ(V,H1)

(−1)|E| = 0 .

Therefore
µI1(G,H1)(H1, G) = 0 (4.36)

where
H1 = GL(W1)⊕ · · · ⊕GL(Wr)⊕ IdW c .

In Chapter 5, we will define a closure operator on the subgroup lattice of G
and we will obtain again this result as a particular case of the fact that every
non-closed subgroup K in G has µI1(G,K)(K,G) = 0 (see Proposition 5.2.3).
In the situation we have presented above, H1 is non-closed with respect to
such a closure operator. On the contrary,

H = GL(W1)⊕ · · · ⊕GL(Wr)⊕ ZW c

is closed, and H is precisely the closure of H1 in the subgroup lattice L(G).
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Some very particular case

Following the idea suggested by Shareshian in [38], we recall that one
could write µ(H,G) through a function fG,n,p(u,H) so that

µ(H,G(n, pu)) = fG,n,p(u,H) +
∑

K∈C9

µ(H,K) , (4.37)

where fG,n,p(u,H) depends on the classes Ci(G,H), for i = 1, . . . , 8, in As-
chbacher’s classification. We could try to find the contribution given to the
function fG,n,p by these classes, wondering when they are empty, so that
their contribution is equal to 0. Combining this kind of results with our
knowledge of µÎ1(G,H)

(H,G), we could obtain the exact value of µ(H,G).
This is clearly not easy in general.

In a very particular situation, related to the example that we have seen
in this section, we get the following result.

Theorem 4.5.17. Let G = GL(n, q), and let H ≤ G be such that

H = GL(m, q)⊕ In−m .

Let q = p be an odd prime and let the dimension n be prime. If n−m+ 1
is prime, then

fG,n,p(H) = 0

and in particular

µ(H,G) =
∑

K∈C9(G,H) , H⊆K

µK(H) .

Proof. By Theorem 4.5.16 and by using the condition that the rank of V in
S(V,H) is n−m+ 1 and it is prime, we get that

−µÎ1(G,H1)
(H1, G) =

∑

E∈Ψ′(G,H1)

(−1)|E| =
∑

E∈Γ(V,H1)

(−1)|E| = 0.

By [21, Table 3.5.A], we see that H is not contained in any maximal subgroup
of the classes Ci for i = 2, . . . , 8. This is essentially because of the prime
dimension n and the prime order q of the field.

In general, we do not have much information about the ninth class. Just
to give an example, we considered the groups of low dimension studied by
Schröder in his PhD thesis ([37]), and we saw that in dimension n = 13 also
class C9(G,H) is empty for p > 5. In this case, µ(H,G) = 0.
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Reducible subgroups and a

closure operator

In [10] Colombo and Lucchini solve Conjecture 3.2.10 for the family of
all symmetric and alternating groups, i.e. Sym(n) and Alt(n), with n ≥ 5.
One of the key ingredients in their argument is Crapo’s Closure Theorem
(Theorem 3.1.9), that is applied to the lattice of subgroups L(G), for G ∈
{Sym(n),Alt(n)}. In §5.1.1 of this chapter, we briefly remind Colombo-
Lucchini’s argument and then we show how it is possible to define a closure
operator also for the subgroup lattice of a finite irreducible subgroup G of
GL(n, q). In this way, we can express µG(H) as

µG(H) =
∑

K∈IrrG(H)

µ(K,G) · g(H,K)

where IrrG(H) denotes the set of irreducible subgroups of G containing H.
The function g comes from Crapo’s Closure Theorem. In section §5.2, we
revisit this argument by substituting the function g with the Möbius number
of the ideal I1(K,H) for any irreducible subgroup K of G. This is possible
by Theorem 3.1.13 that we have shown in Chapter 3. We prove that

µI1(K,H)(H,K) = g(H,K) = 0

if H is not a closed subgroup in K, similarly to what happens in Colombo-
Lucchini’s argument. Therefore, if µG(H) 6= 0, then there exists at least one
subgroup K ∈ IrrG(H) such that µG(K) 6= 0 and H is closed in K. By using
Proposition 5.3.2, we explain why it may be interesting to count the number
of closed subgroups in G = GL(n, q) in order to estimate the number of
subgroups H ≤ G = GL(n, q) such that µG(H) 6= 0. Our related results are
contained in §5.3, where we assume that H is a subgroup of G = GL(n, q)
such that the lattice S(V,H) is isomorphic to a product of chains.
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5.1 Closure operators on subgroup lattices

In this section we recall the notion of a closure operator, and we see the
example used for the symmetric group by Colombo and Lucchini in [10].
They prove that if G is a finite transitive permutation group, then in order
to bound the number of subgroups H ≤ G with µG(H) 6= 0 and to estimate
|µG(H)| , it suffices to obtain

(I) similar bounds for the particular case when H is transitive;

(II) estimations on the number of subgroups of G that are maximal with
respect to the property of admitting a certain set of orbits.

In case G is an irreducible finite linear group, we can define a similar
closure operator by using the join-irreducible subspaces of S(V,H), for H ≤
G. This definition is given in §5.1.2.

5.1.1 Transitive permutation groups

Let G ≤ Sym(Ω) be a transitive permutation group on a finite set Ω. A
closure operator (in the sense of Definition 3.1.8) considered by Colombo
and Lucchini in [10] is

¯: L(G)→ L(G)

such that for all H ≤ G we have the closure

H := (Sym(Λ1)× · · · × Sym(Λk)) ∩G ,

where {Λ1, . . . ,Λk} is the set of orbits of H with respect to its action on Ω.
Clearly, we have identified H with a subgroup of (Sym(Λ1)×· · ·×Sym(Λk)) ≤
Sym(Ω) .

We say that H is a closed subgroup of G if H = H.

Notation. We have that

L(G) = {H ∈ L(G) | H = H}

is the subposet of closed subgroups in L(G) . Since G is transitive, G ∈ L(G).
Moreover, for any H ∈ L(G) we write

µL(G)
(H,G)

to denote the Möbius function associated with L(G) .

Remark. It is worth noticing that in general L(H) 6= L(G) ∩ L(H) when
H is a transitive permutation subgroup of G on Ω .

Let G ≤ Sym(Ω) be a transitive permutation group on a finite set Ω, and
Let H ≤ G . Then we define:
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• the subset

T (H) = {K ≤ G | H ≤ K and K is transitive on Ω} ⊆ L(G)

of all transitive subgroups of G containing H;

• the function g : L(G)× L(G)→ Z such that

g(H,Y ) =

{
µL(Y )

(H,Y ) if Y ∈ T (H) and H ∈ L(Y )

0 otherwise.

The following proposition allows us to write µG(H), for all H ≤ G, in
terms of µG(K) and g(H,K), where K ranges over all transitive subgroups of
G. Such an expression is useful in [10] to give estimates for Conjecture 3.2.10.
In the proof, there is also an interesting use of Crapo’s Closure Theorem
(Theorem 3.1.9), together with Möbius Inversion Formula (Theorem 3.1.11).

Proposition 5.1.1 ([10], Lemma 1.4). Let G ≤ Sym(Ω) be a transitive
permutation group on a finite set Ω, and let H ≤ G . Then

µG(H) =
∑

K∈T (H)

µG(K) g(H,K) .

In particular,

|µG(H)| ≤
∑

K∈T (H)

|µG(K)| · |g(H,K)| .

Proof. Consider a subgroup X ≤ G such that X ∈ T (H). Then X is
transitive on Ω and obviously X ∈ L(X) . Moreover, Y ∈ T (H) and Y ≤ X
if and only if X is the closure of Y in L(X) . By Crapo’s closure theorem
we obtain

∑

Y ∈T (H) , Y≤X

µY (H) =

{
µL(X)

(H,X) if H ∈ L(X)

0 otherwise

since µY (H) = µL(X)(H,Y ) . Let f : L(G) × L(G) → Z be the function
defined as

f(H,Y ) =

{
µY (H) if Y ∈ T (H)

0 otherwise

and notice that
g(H,X) =

∑

Y ∈T (H) , Y≤X

f(H,Y ) .

Thus, by Möbius inversion formula (Theorem 3.1.11), we have

f(H,X) =
∑

Y ∈T (H) , Y≤X

g(H,Y )µX(Y ) .

In the last expression, set X = G and Y = K to get the result.
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In [10], moreover, an upper-bound is given on the absolute value of the
function g. It is interesting to notice that it is written in terms of the number
of H-orbits of the set Ω, as follows.

Proposition 5.1.2 ([10], Theorem 1.5). Let G be a transitive permutation
group on a set Ω, and let H ≤ G. If K ∈ T (H) and K 6= H, then

|g(H,K)| ≤
(r!)2

2

where r is the number of orbits of H in its natural action on Ω .

By Proposition 5.1.2, an estimation on the number of orbits r in terms
of the index |G : H| is useful if we are looking for a similar estimation on
|µG(H)|. Colombo and Lucchini obtain results in this direction.

Remark. Let H be a subgroup of a transitive group G ≤ Sym(Ω). Let
λ = {Λ1, . . . ,Λk} be the set of the orbits of H with respect to its action on
Ω. Then we have that the closure of H can also be written as

H = stabG(Λ1) ∩ · · · ∩ stabG(Λk) (5.1)

where stabG(Λi) = {g ∈ G | xg ∈ Λi ∀x ∈ Λi}.

This remark suggests a way to define an analogue closure operator on
the subgroup lattice of an irreducible subgroup of GL(V ), for V ≃ Fn

q .

5.1.2 Irreducible linear groups

Remark. Let G be a transitive permutation group on a finite set Ω. If H
is a subgroup of G, then we could define the lattice of H-invariant subsets
of Ω as

B(Ω, H) = {A ⊆ Ω | xh ∈ A ∀x ∈ A, ∀h ∈ H}.

We notice that B(Ω, H) ordered by inclusion is a boolean lattice. Indeed,
if {Λ1, . . . ,Λk} is the set of H-orbits on Ω, then every H-invariant subset
A ∈ B(Ω, H) is an union of orbits. In particular, Λ1, . . . ,Λk are the atoms
of B(Ω, H), and the only join-irreducible elements of this lattice.

Now, let G be an irreducible subgroup of GL(n, q). Let H ≤ G. We
know that the lattice S(V,H) of H-invariant subspaces of V ≃ Fn

q is a finite
modular lattice. Therefore, every subspace W ∈ S(V,H) can be seen as the
join of some join-irreducible elements of S(V,H), i.e.

W = U1 + · · ·+ Uk

for some U1, . . . , Uk ∈ JI(S(V,H)).
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In this sense, join-irreducible elements of S(V,H) play the same role of
orbits in B(Ω, H) above. Therefore, we define a closure operator on L(G),
for G ≤ GL(n, q) as follows. Let G be an irreducible subgroup of G and
H ≤ G. Let

JI(S(V,H)) = {W1, . . . ,Wr}

be the set of join-irreducible subspaces in S(V,H). Then, the closure of H
in G is

H = stabG(W1) ∩ · · · ∩ stabG(Wr). (5.2)

Remark. Since every subspace in S(V,H) can be expressed as the sum of
some join-irreducible subspaces, we have that

g ∈
⋂

W∈JI(S(V,H))

stabG(W ) ⇒ T g = T ∀T ∈ S(V,H). (5.3)

Therefore, we can equivalently define the closure of H in G as

H =
⋂

W∈S(V,H)

stabK(W ) .

We also observe that S(V,H) = S(V,H). Indeed, S(V,H) ⊆ S(V,H) since
H ⊆ H. Conversely, S(V,H) ⊆ S(V,H) by (5.3).

So, we have that the function ¯: L(G)→ L(G) is a closure operator on
the subgroup lattice L(G) , in the sense of Definition 3.1.8. A subgroup H
is said to be closed in G if H = H, and the subposet of closed subgroups in
G is denoted by L(G). Since G is irreducible, we have that

G = stabG(0) ∩ stabG(V ) = G

and clearly G ∈ L(G).

Similarly to the case of permutation groups, we can define

• the subset

IrrG(H) = {K ≤ G | H ≤ K, K is irreducible on V } ⊆ L(G)

of irreducible subgroups of G containing H;

• the function g : L(G)× L(G)→ Z such that

g(H,K) =

{
µL(K)

(H,K) if K ∈ IrrG(H) and H ∈ L(K)

0 otherwise.

Then, for irreducible linear groups Proposition 5.1.1 assumes the follow-
ing form.
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Proposition 5.1.3. Let G ≤ GL(n, q) be an irreducible linear group on a
V ≃ Fn

q , and let H ≤ G . Then

µG(H) =
∑

K∈IrrG(H)

µG(K) g(H,K) .

In the next section, we apply Theorem 3.1.13 to get a similar expression
for µG(H) by using the Möbius number of the reducible subgroup ideal
I1(G,H) instead of the function g. A potential advantage is that we may
be able to compute I1(G,H) by using Theorem 4.2.4.

5.2 Closed subgroups and the reducible subgroup

ideal

Let V ≃ Fn
q , and let G be an irreducible subgroup of GL(V ). We recall

that
C1(G,H) = { stabG(W ) | 0 < W < V , H ⊆ stabG(W ) }

is the first class of Aschbacher restricted to the subgroups containing H. The
ideal generated by C1(G,H) in L(G)≥H is

I1(G,H) = {K ≤ G | H ≤ K ≤M for some M ∈ C1(G,H)}

Moreover we have

Î1(G,H) = I1(G,H) ∪ {H,G}.

In particular, if H is a reducible subgroup of G, then H ∈ I1(G,H) and

Î1(G,H) = I1(G,H) ∪ {G}.

Both I1(G,H) and Î1(G,H) are subposets of L(G).

Now, for any irreducible subgroup K of G, we can similarly define

• C1(K,H) = { stabK(W ) | 0 < W < V , H ⊆ stabK(W ) };

• I1(K,H) = {L ≤ K | H ≤ L ≤M for some M ∈ C1(K,H)};

• Î1(K,H) = I1(K,H) ∪ {H,K}.

Remark. If W is a non-trivial subspace of V , then we have

stabK(W ) ⊆ stabG(W ).

Therefore, if X ∈ I1(K,H), then X ∈ I1(G,H) and

I1(K,H) = {X ∈ I1(G,H) | X < K}. (5.4)
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In Chapter 3, we have proven Theorem 3.1.13, that allows us to express
the Möbius function of a finite lattice L in terms of the Möbius number of an
order ideal I. We need to recall Theorem 3.1.13 for the notation, and then
we apply it to give µG(H) in terms of the reducible subgroup ideal I1(G,H).

Theorem (3.1.13). Let L be a finite lattice with minimum 0̂ and maximum
1̂, and let I ⊆ L be an order ideal of L. Let Î = I ∪ {1̂}. Then

µL(0̂, 1̂) = µ
Î
(0̂, 1̂) +

∑

y∈L\Î

µ
Î<y

(0̂, y) · µL(y, 1̂) (5.5)

where Î<y = {x ∈ I | x < y} ∪ {y}.

In our case, the lattice is L(G)≥H , with minimum H and maximum G.
The ideal is obviously I1(G,H), and we focus on

Î1(G,H)<K

for K ∈ L(G)≥H \ Î1(G,H). But this is equivalent to requiring that K is an
irreducible proper subgroup of G, hence

Î1(G,H)<K = {X ∈ I1(G,H) | X < K} = I1(K,H)

as in (5.4).
Then we have the following.

Theorem 5.2.1. Let G be an irreducible subgroup of GL(n, q). Let H be a
subgroup of G. Then

µ(H,G) = µÎ1(G,H)
(H,G) +

∑

K/∈I1(G,H)
H<K<G

µ(K,G) · µÎ1(K,H)
(H,K) .

Remark. Since µ(G,G) = 1 and G is irreducible, Theorem (5.2.1) is equiv-
alent to saying that

µ(H,G) =
∑

K/∈I1(G,H)

µ(K,G) · µÎ1(K,H)
(H,K) (5.6)

where the term µÎ1(G,H)
(H,G) is equal to

µ(K,G) · µÎ1(K,H)
(H,K)

for K = G.

If we denote by IrrG(H) the set of irreducible subgroups of G that contain
H, then we can finally write (5.6) as

µ(H,G) =
∑

K∈IrrG(H)

µ(K,G) · µÎ1(K,H)
(H,K) . (5.7)
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In Chapter 4, we have computed µÎ1(K,H)
(H,K) and by Theorem 4.2.4

we know that

− µÎ1(K,H)
(H,K) =

∑

E∈Ψ′(K,H)

(−1)|E| (5.8)

where
Ψ′(K,H) = {E ⊆ S(V,H)∗ |

⋂

W∈E

stabK(W ) 6= H}.

We can try to use expression (5.8) of µÎ1(K,H)
(H,K) in order to find

some bound on its absolute value in terms of the number of join-irreducible
elements in S(V,H), as in Proposition 5.1.2 with respect to g(H,K) and the
orbits of H. A first approximation is the following.

Proposition 5.2.2. Let G be an irreducible subgroup of GL(V ), with V ≃
Fn
q . Let H ≤ G. If K ∈ IrrG(H), then

∣∣∣µÎ1(K,H)
(H,K)

∣∣∣ ≤ 22
r

. (5.9)

where r = |JI(S(V,H))| is the number of join-irreducible elements of S(V,H).

Proof. By (5.8), we have that

∣∣∣µÎ1(K,H)
(H,K)

∣∣∣ =

∣∣∣∣∣∣

∑

E∈Ψ′(K,H)

(−1)|E|

∣∣∣∣∣∣
≤ 2|Ψ

′(K,H)| ≤ 2|S(V,H)| .

Since every element of S(V,H) is a join of some join-irreducible elements,
|S(V,H)| ≤ 2r.

Actually, it would be interesting to find some estimates of this value in
terms of the index |G : H|. Maybe a better approximation in terms of the
join-irreducible elements is necessary.

In the following proposition, we have a remarkable property of subgroups
which are not closed in an irreducible subgroup K ≤ GL(n, q).

Proposition 5.2.3. Let H ≤ G and K ∈ IrrG(H). If H is not closed in
K, then

µÎ1(K,H)
(H,K) = 0 .

Proof. Let W1, . . . ,Wr be the join-irreducible elements of S(V,H). Assume
that H is not closed in K. Then

H $
r⋂

i=1

stabK(Wi)
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and we have that

H $
⋂

W∈E

stabK(W ) ∀E ⊆ S(V,H)∗, E 6= ∅ .

Thus, if H is not closed in K, by definition of Ψ′(K,H) we have that

E ⊆ S(V,H)∗ ⇒ E ∈ Ψ′(K,H) .

So, ∑

E∈Ψ′(K,H)

(−1)|E| = 0 .

We will apply this result in §5.3 to prove Proposition 5.3.2.

5.3 The number of closed subgroups

Now we are interested in the number of closed subgroups in GL(n, q). A
motivation can be found in part (ii) of Conjecture 3.2.10, as follows. For
m ∈ N, let bm(G) the number of subgroups of G such that |G : H| = m and
µG(H) 6= 0. We would like to estimate the growth of bm(G) with respect to
m and give a polynomial bound

bm(G) ≤ mα ∀m ∈ N

for all G = GL(n, q), such that the constant α is independent of n and
q. Such a polynomial bound can be applied to Conjecture 3.2.10, if the
considered almost-simple groups are PGL(n, q).

Conjecture 5.3.1. Let G = PGL(n, q). Then there exists an absolute con-
stant α, independent of n and q, such that

bm(G) ≤ mα ∀m ∈ N

where

bm(G) = #{H ≤ G | |G : H| = m and µ(H,G) 6= 0} .

The following proposition is useful because it reduces the problem to
estimating the number of closed subgroups and the number of irreducible
ones.

Remark. We notice that a closure operator can be defined also for the
subgroup lattice of PGL(n, q) in the same way as we defined the one for
GL(n, q). Our results are actually given for GL(n, q), but it is not difficult to
obtain the analogue for the quotient GL(n, q)/Z(GL(n, q)), since the centre
Z(GL(n, q)) is contained in every closed subgroup of GL(n, q).
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Proposition 5.3.2. Let G be an irreducible subgroup of GL(n, q), and let
H ≤ G. If µG(H) 6= 0, then there exist a subgroup K ∈ IrrG(H) and a
closed subgroup C in G such that H = K ∩ C.

Proof. Let H ≤ G such that µG(H) 6= 0. We know that

µG(H) =
∑

K∈IrrG(H)

µ(K,G) · µÎ1(K,H)
(H,K) .

Therefore µG(H) 6= 0 implies that there exists a subgroup K ∈ IrrG(H)
such that

µ(K,G)µÎ1(K,H)
(H,K) 6= 0.

Then we have that µÎ1(K,H)
(H,K) 6= 0. By Proposition 5.2.3, we conclude

that H is closed in K.
If H is closed in K, then there exists a closed subgroup C in G such that
H = K ∩ C. Indeed

H =
⋂

W∈S(V,H)

stabK(W ) = K ∩
⋂

W∈S(V,H)

stabG(W ) .

By Proposition 5.3.2, in order to prove Conjecture 5.3.1 we need that the
two following conditions hold:

• the number

#{K ≤ G | K ∈ IrrG(H), µG(K) 6= 0, |G : K| divides m}

is polynomially bounded by the index m = |G : H| ;

• the number of closed subgroups in G of index dividing m = |G : H| is
polynomially bounded by m.

In view of Conjecture 3.2.10, one could be interested in estimating the
number of closed subgroups in GL(n, q). In §5.3.1, we concentrate on the
number of closed subgroups H in GL(n, q) such that the lattice S(V,H) is
isomorphic to a product of chains. An example for this kind of subgroups is
represented by the closure of the subgroup generated by a cyclic matrix in
GL(n, q).

5.3.1 Closure of subgroups generated by cyclic matrices

In this section, we prove that there is a polynomial bound, with respect
to the index |G : H| = m, on the growth of the number of closed subgroups
H ≤ GL(n, q) such that the lattice S(V,H) is isomorphic to a product of
chains. This is the case, for example, when H is the subgroup generated by
a cyclic matrix in GL(n, q). In particular we have the following theorem.
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Theorem 5.3.3. Let V ≃ Fn
q and G = GL(n, q). Let

cprodm (G) = #{H ≤ G | H = H, S(V,H) is a product of chains, |G : H| = m}.

Then there exists an absolute constant α, independent of n and q, such that

cprodm (G) ≤ mα ∀m ∈ N .

The proof in divided into three parts. At first we consider only closed
subgroups H of G such that the lattice of H-invariant subspaces of V is
boolean. Then we study the same, but for closed subgroups H of G such
that S(V,H) is a flag (i.e. a chain of subspaces) in V . Finally, we can
combine the previous results to prove Theorem 5.3.3.

Notation. We will consider the following three sets:

(a) Fbool
m (G) is the set of closed subgroups H ≤ G such that |G : H| = m

and the lattice S(V,H) is boolean.

(b) Fflag
m (G) is the set of closed subgroups H ≤ G such that |G : H| = m

and the lattice S(V,H) is a flag.

(c) Fprod
m (G) is the set of closed subgroups H ≤ G such that |G : H| = m

and the lattice S(V,H) is isomorphic to a product of chains.

The case of Fbool
m (G)

In this case, the lattice S(V,H) is boolean. In other terms, by Corollary
2.2.17, it is isomorphic to a product of r chains of length 1. We want to
prove Proposition 5.3.4 in order to say that the number of closed subgroups
H in GL(n, q) such that |G : H| = m and S(V,H) boolean is polynomially
bounded by m, independently of n and q. Firstly, we recall some notions
about the q-binomial coefficient.

Remark. We denote by
(
n
x

)
q

the q-analogue of the binomial coefficient
(
n
x

)
.

It means that

(
n

x

)

q

=
[n]q!

[x]q! [n− x]q!
(5.10)

where

[z]q! =
(qz − 1) · . . . · (q − 1)

(q − 1)z
. (5.11)

Both (5.10) and (5.11) descend from the definition of [z]q as

[z]q = 1 + q + q2 + · · ·+ qz−1 =
(qz − 1)

(q − 1)
.
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If V = Fn
q and x is a positive integer ≤ n, it is known that

(
n
x

)
q

represents
the number of subspaces of V of dimension x.

We know, moreover, that |GL(n, q)| = (qn − 1) · . . . · (q − 1) q(
n
2), which

can be also written as

|GL(n, q)| = [n]q!(q − 1)n q(
n
2) (5.12)

by using (5.10).
So, finally, let V ≃ Fn

q and W1,W2 ≤ V such that V = W1 ⊕W2. Let

H = GL(W1)⊕GL(W2).

We use the q-binomial coefficient to express the index of H in G = GL(n, q).
In particular, if x1 = dim(W1) and x2 = dim(W2), we have x2 = n − x1.
Then

|GL(V )|

|GL(W1)| · |GL(W2)|
=

[n]q!(q − 1)n q(
n
2)

[x1]q!(q − 1)x1 q(
x1
2 )[n− x1]q!(q − 1)n−x1 q(

n−x1
2 )

=

(
n

x1

)

q

· q(
n
2)−(

x1
2 )−(

n−x1
2 )

=

(
n

x1

)

q

· qx1(n−x1) . (5.13)

We can use (5.13) to prove the following Proposition 5.3.4. Actually,
its proof is similar to the proof of [10, Lemma 2.3]. This is quite natural,
since the lattice B(Ω, H) considered (implicitly) by Colombo and Lucchini
for permutation groups is boolean, as we have observed at the beginning of
§5.1.2.

Proposition 5.3.4. Let G = GL(n, q) and

cboolm (G) = #Fbool
m (G).

Then there exists an absolute constant α1, independent of n and q, such that

cboolm (G) ≤ mα1 ∀m ∈ N .

Proof. Let V ≃ Fn
q and let H be a closed subgroup of G = GL(V ) such that

H is closed in G. Then

H =

r⋂

i=1

stabG(Wi)
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where JI(S(V,H)) = {W1, . . . ,Wr} is the set of join-irreducible elements in
S(V,H). If S(V,H) is boolean, then W1, . . . ,Wr are the atoms of S(V,H)
and, in particular, V =

⊕r
i=1Wi . Then

H =

r⋂

i=1

stabG(Wi) = GL(W1)⊕ · · · ⊕GL(Wr),

with |H| = |GL(W1)| · . . . · |GL(Wr)|.
Let xi = dimWi for all i = 1, . . . , r and let m = |G : H|. We can inductively
use (5.13) to obtain that

m = |G : H| =
|GL(V )|

|GL(W1)| · . . . · |GL(Wr)|

=

(
n

x1

)

q

·

(
n− x1
x2

)

q

· . . . ·

(
n− x1 − . . .− xr−2

xr−1

)

q

· qǫ

where the exponent

ǫ := ǫ(n, x1, . . . , xr−1) = x1(n− x1) + x2(n− x1 − x2) + . . .+ xr−1xr

depends only on n, x1, . . . , xr−1. Let

v1 =

(
d

x1

)

q

, vi =

(
d− x1 − . . .− xi−1

xi

)

q

for i = 2, . . . , r − 1, vr = qǫ

so that m = v1 · . . . · vr. By [20], the number of such ordered factorizations
of m is at most m2. If we fix the factorization m = v1 · . . . · vr, then for
all i = 1, . . . , r − 1 there are at most two possible values of xi for which we
have vi, and vr is uniquely determined by the previous vi. So, for every fixed
ordered factorization, we have at most 2r−1 possibilities, and 2r−1 ≤ m.
Then there are at most m3 choices of x1, ..., xr giving the same m. Hence
there are at most m3 conjugacy classes of closed subgroups H with index
m such that S(V,H) is boolean. Each of these subgroups has at most m
conjugates, so cboolm (G) ≤ m4.

The case of Fflag
m (G)

Similarly to Proposition 5.3.4, we want to prove that the number of closed
subgroups H in GL(n, q), such that |G : H| = m and S(V,H) is a flag, is
polynomially bounded by m, independently of n and q. Here we follow [45]
for notation and remarks about flags of subspaces.

Let V ≃ Fn
q be a finite vector space of dimension d over Fq . A flag f

on V is a sequence (0,W1, . . . ,Wk, V ) of subspaces of V such that

0 < W1 < · · · < Wk < V.
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Moreover, we say that f = (0,W1, . . . ,Wk, V ) is a flag of type (d1, . . . , dk),
where di := dim(Wi) for all i = 1, . . . , k.

Remark. A flag f on V can be also regarded as a subposet of the subspace
lattice of V . In particular, f is a chain of subspaces from 0 to V , ordered by
inclusion.

If k = n − 1, so that d1 = 1 and di+1 = di + 1 for all i, then the chain
from 0 to V has length n, and the flag is called complete.

Let FlV be the set of all flags on V . The group G = GL(V ) acts on FlV
in the obvious way:

(0,W1, . . . ,Wk, V )g = (0,W g
1 , . . . ,W

g
r , V ) ∀ g ∈ G.

In particular, with some abuse of notation, we have that the stabilizer of a
flag f = (0,W1, . . . ,Wk, V ) is

stabG(f) = {g ∈ G |W g
i = Wi ∀ i = 1, . . . , k} =

k⋂

i=1

stabGWi.

where stabGWi also denotes the stabilizer in G of Wi with respect to the
usual action of G on the subspace lattice of V . So, for us stabG(Wi) is an
equivalent way to write stabG(0,Wi, V ).

The stabilizer in G of a flag on V is also called a parabolic subgroup

of GL(V ). In particular, if the flag is complete we say that it is a maximal

parabolic subgroup. We remind the following fact.

Proposition 5.3.5. A subgroup P ≤ GL(V ) is parabolic if and only if it is
closed in GL(V ) and S(V, P ) is a flag on V .

Proof. On one side, the implication is trivial by definition. On the other side,
the implication is a consequence of Bruhat decomposition (see for instance
[5]).

Let V ≃ Fd
q and let

0 < d1 < · · · < dk < d

be a sequence of positive integers. We set

FlV (d1, . . . , dk) = {f flag on V | f is of type (d1, . . . , dk)}.

We observe that GL(V ) acts transitively on FlV (d1, . . . , dk) and, con-
sequently, the stabilizers of flags in FlV (d1, . . . , dk) are conjugate to each
other.

So, we have the following proposition.
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Proposition 5.3.6. Let G = GL(n, q) and

cflagm (G) = #Fflag
m (G).

Then there exists an absolute constant α2, independent of n and q, such that

cflagm (G) ≤ mα2 ∀m ∈ N .

Remark. By Proposition 5.3.5, cflagm (G) is the number of parabolic sub-
groups of index m in G.

Proof. Let H be a parabolic subgroup of G = GL(V ), V ≃ Fd
q . Then H is

the stabilizer of a flag f :

0 < W1 < · · · < Wk < V,

so that

H = stabG(f) =

r⋂

i=1

stabG(Wi),

where {W1, . . . ,Wk} = JI(S(V,C)) is the set of join-irreducible elements of
S(V,H). Let xi = dimWi for all i = 1, . . . , k and let m = |G : H|. Consider
the set of all flags of type (x1, . . . , xk) on V , denoted by FlV (x1, . . . , xk).
Since the action of G on FlV (x1, . . . , xk) is transitive, we have that

|FlV (x1, . . . , xk)| =
|GL(V )|

|stabG(f)|
.

But we can also compute |FlV (x1, . . . , xk)| as follows:

|FlV (x1, . . . , xk)| = |FlV (xk)| · |FlWk
(x1, . . . , xk−1)|

= |FlV (xk)| · |FlWk
(xk−1)| · . . . · |FlW2(x1)|

=

(
d

xk

)

q

·

(
xk
xk−1

)

q

· . . . ·

(
x2
x1

)

q

.

by using the q-binomial coefficient. Then we have

m = |G : H| = |FlV (x1, . . . , xk)| =

(
d

xk

)

q

·

(
xk
xk−1

)

q

· . . . ·

(
x2
x1

)

q

.

Let

vk =

(
d

xk

)

q

, vi =

(
xi+1

xi

)

q

for i = 1, . . . , k − 1

so that m = vk ·. . .·v1. As in the proof of Proposition 5.3.4, we know that the
number of such ordered factorizations of m is at most m2 by [20]. Moreover,
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if we fix the factorization m = vk ·. . .·v1, for all i = 1, . . . , k there are at most
two possible values of xi for which we have vi, and vk is uniquely determined
by the previous vi. So, for every fixed ordered factorization, we have at
most 2k possibilities, and 2k ≤ m. Then there are at most m3 choices of
x1, ..., xk giving the same m. Hence there are at most m3 conjugacy classes
of closed subgroups H with index m such that S(V,H) is a flag. Each of

these parabolic subgroups has at most m conjugates, so cflagm (G) ≤ m4.

The case of Fprod
m (G)

Here we use together Proposition 5.3.4 and Proposition 5.3.6 in order to
prove Theorem 5.3.3, that we write again here below. The assumption now
is that S(V,H) is a product of chains.

Theorem (5.3.3). Let G = GL(n, q) and

cprodm (G) = #Fprod
m (G).

Then there exists an absolute constant α, independent of n and q, such that

cprodm (G) ≤ mα ∀m ∈ N .

Proof. Let V ≃ Fd
q and let H be a closed subgroup of G = GL(V ). We

assume that S(V,H) is isomorphic to a product of r chains γ1, . . . , γr. For

all i = 1, . . . , r, let W
(i)
ki

be the maximum of γi, so that ki = dim(W
(i)
ki

).

Then, each γi is a flag on W
(i)
ki

of the form:

0 = W
(i)
0 < W

(i)
1 < · · · < W

(i)
ki−1 < W

(i)
ki

and every subspace T ∈ S(V,H) can be identified with a r-tuple of subspaces

(W
(1)
j1

, . . . ,W
(r)
jr

) ∈
∏r

i=1 γi, so that ji ∈ {0, . . . , ki} and

T =
r⊕

i=1

W
(i)
ji

.

In particular,

V =
r⊕

i=1

W
(i)
ki

. (5.14)

The set JI(S(V,H)) of the join-irreducible elements in S(V,H) coincides
with the union of the chains:

JI(S(V,H)) =

r⋃

i=1

γi .
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It means that every join-irreducible element of S(V,H) is one of the W
(i)
j ,

with i ∈ {1, . . . , r} and j ∈ {1, . . . , ki}, and it can be identified with a r-tuple

of the form (0, . . . , 0,W
(i)
j , 0, . . . , 0) ∈

∏r
s=1 γs such that W

(i)
j ∈ γi. Since

H is closed, H is uniquely determined by the join-irreducible elements of
S(V,H) in the following way:

H =
⋂

W∈JI(S(V,H))

stabG(W ) =

r⋂

i=1

ki⋂

j=1

stabG(W
(i)
j ) . (5.15)

Let |G : H| = m. Then, as we have seen in the proof of Proposition
5.3.4, for each divisor m of m we have at most m4 decompositions of V as
in (5.14) such that

m =
|GL(V )|

|
⋂r

i=1 stabG(W
(i)
ki

)|
.

Thus, we have at most m5 such decompositions of V .

Now we fix one of these decompositions: V =
⊕r

i=1W
(i)
ki

. For all i = 1, . . . , r
we can consider the relative chain Ci = γi ∪ {V } given by

0 = W
(i)
0 < W

(i)
1 < · · · < W

(i)
ki−1 < W

(i)
ki

< V

such that
|GL(V )|

|stabG(Ci)|
=

(
n

xki

)

q

·

(
xki
xki−1

)

q

· . . . ·

(
x2
x1

)

q

.

where xj = dim(W
(i)
j ) for each j = 1, . . . , ki. We observe that

(
n

xki

)

q

=
|GL(V )|

|stabG(W
(i)
ki

)|

has been fixed with the decomposition of V , so that we have

yi =
|GL(V )|

|stabG(Ci)|
·
|stabG(W

(i)
ki

)|

|GL(V )|

=
|stabG(W

(i)
ki

)|

|stabG(Ci)|
=

(
xki
xki−1

)

q

· . . . ·

(
x2
x1

)

q

. (5.16)

As in the proof of Proposition 5.3.6, there are at most y4i ways to choose the
chain Ci, for all i = 1, . . . , r.
Now, we observe that

yi =
|stabG(W

(i)
ki

)|

|stabG(Ci)|
=

|GL(W
(i)
ki

)|

|stab
GL(W

(i)
ki

)
(γi)|

(5.17)
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and that

m = |G : H| =
|GL(V )|

|stab
GL(W

(1)
k1

)
(γ1)| · . . . · |stabGL(W

(r)
kr

)
(γr)|

. (5.18)

So, by Equations (5.17) and (5.18), we obtain that

m ≥
|GL(W

(1)
k1

)|

|stab
GL(W

(1)
k1

)
(γ1)|

· . . . ·
|GL(W

(r)
kr

)|

|stab
GL(W

(r)
kr

)
(γr)|

= y1 · . . . · yr ,

hence y41 · . . . · y
4
r ≤ m4 is an upper bound on the number of chains, if we

have fixed y1, . . . , yr. But now we see that y1 · . . . · yr is a factorization of a
divisor d of m. By [20], there are at most d2 such factorizations for all d, so
that we can choose at most m3 factorizations y1 · . . . · yr, after we have fixed

the decomposition of V =
⊕r

i=1W
(i)
ki

.
Finally, we have that

cprodm (G) ≤ m5 ·m4 ·m3 = m12.

Some final comments

Many arguments of this thesis give us only partial results. We list here
some possible hints for future research.

1. By Theorem 5.3.3, we have a polynomial bound in m

zm ≤ mα for all m ∈ N

on the number zm of closed subgroups of index m in GL(n, q) that are the
closure of subgroups generated by cyclic matrices. Indeed, if ξ is a cyclic
matrix of GL(n, q), then S(V,H) is isomorphic to a product of chains if
H = 〈ξ〉. And S(V,H) = S(V,H).

We can also notice that in general the subgroup generated by a cyclic
matrix is not closed in GL(n, q). For instance, let

ξ =




0 1 0
0 0 1
1 0 0




be the companion matrix in GL(3, 5) of the polynomial

t3 − 1 = (t− 1)(1 + t+ t2) ∈ F5[t] .

Then H = 〈ξ〉 has order 3, but

H ≃ GL(1, 5)⊕GL(2, 5).

However, in general, these are not the only closed subgroups of GL(n, q).
The following are worth to be studied.
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• To find a similar estimate on the number of closed subgroups K that
contain some cyclic matrix. In this case, S(V,K) is a sublattice of a
product of chains.

• In view of Proposition 5.3.2, it is also important to obtain informa-
tion about the structure of closed subgroups which do not contain
cyclic matrices and some estimates on their proportion among all
closed subgroups of GL(n, q).

2. In §5.2, we have motivated the relevance of the Möbius number

µÎ1(K,H)
(H,K) (5.19)

of the ideal I1(K,H), for an irreducible subgroup K ≤ G containing H.
Here some comments about it.

• By Proposition 5.2.3, if H is not closed in K, then

µÎ1(K,H)
(H,K) = 0.

If H is closed in G, we have presented in §4.5 some methods to compute
(5.19), or at least estimate it. In general, by Theorem 4.2.4,

µÎ1(K,H)
(H,K) =

∑

E∈Ψ′(K,H)

(−1)|E| . (5.20)

• In Proposition 5.2.2, we have given a possible bound to the absolute
value of (5.20), in terms of the number r of join-irreducible elements
in S(V,H). The number r does not depend on the irreducible sub-
group K.

In general, by Proposition 4.4.3, if for every E ∈ Γ(V,H) there exists an
element x ∈ K such that

x ∈
⋂

W∈E

stabK(W ) but x /∈ H, (5.21)

then Γ(V,H) ⊆ Ψ′(K,H) and

∑

E∈Ψ′(K,H)∩Γ(V,H)

(−1)|E| =
∑

E∈Γ(V,H)

(−1)|E| . (5.22)

By Corollary 4.4.2, if S(V,H) is distributive and has prime rank, then

∑

E∈Ψ′(K,H)

(−1)|E| =
∑

E∈Ψ′(K,H)∩Γ(V,H)

(−1)|E|. (5.23)
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It is interesting to characterize subgroups H ≤ K ≤ G such that S(V,H)
is distributive of prime rank, when there exists an element x ∈ K as
in (5.21). If such an element exists for all E ∈ Γ(V,H), then by Equations
(5.20), (5.22), and (5.23), and by Theorem 4.4.5 we have that

µÎ1(K,H)
(H,K) =

∑

E∈Ψ′(K,H)

(−1)|E| =
∑

E∈Γ(V,H)

(−1)|E|.

3. By using

µG(H) =
∑

K∈IrrG(H)

µG(K) · µÎ1(K,H)
(H,K) , (5.24)

we should investigate how many terms in the sum 5.24 are equal to 0.
This is the case if µÎ1(K,H)

(H,K) = 0 or µG(K) = 0. In order to bound

the absolute value |µG(H)| in terms of the index |G : H|, we also need
estimates on the number of irreducible subgroups in GL(n, q) and on
|µG(K)| for an irreducible subgroup of G.
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