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Preface

This thesis is the result of my research during the three years of my
doctoral studies. It is a work that represents the attempt and effort to grow
up not only as a student, but also as a researcher in mathematics. During
the days of intense scientific meditations and in the sleepless nights spent on
writing, it may have seemed that everything in a PhD is reduced to that.
Nevertheless, I think that a thesis can not reflect the full experience of my
PhD. This is not only because a PhD program consists of many different
activities, which force PhD students to put their heads out of their specific
research problem and broaden their mathematical horizons. But also because
the doctorate is a synthesis of the thesis (and what the thesis itself represents)
with an antithetical side, which has particularly had a great relevance in my
case. Therefore, I want to spend a few words here below on my antithesis,
since it will, of course, have to remain hidden later.

During my research activity, there were moments when a break from
the concentration on mathematical problems was necessary. Those moments
occurred in the working time and at the working place, but they were in
contrast with the work itself. For this reason I call them “the antithesis” of
my PhD thesis, since in those moments the thesis surely made no progress.
It is funny to say, but in my case these frequent interruptions marked the
natural rhythm of my hours at university. Sometimes it was just to take
a look out of the window, but on many other occasions the antithesis was
represented by some colleagues who needed a break and wanted to share
this need with me in some office, or in a sunny courtyard, or simply in front
of a coffee machine. Examples of small rituals that made the atmosphere
familiar and relaxing. Probably, the existence of such nice people at the
working place is not obvious, but I was very lucky and because of them I
never felt like a lonely researcher in an empty space, during all my PhD.
Moreover, not only did I meet a lot of good colleagues, but in many cases
they turned out to be some of the loveliest people I have ever known. Men-
tioning singularly everyone here and listing each moment spent together is
a stylistic exercise that I prefer to avoid. But I want to make it clear that
for me it was difficult to imagine that I would have met so many fantastic
people whom I am very happy to call my friends. And such a spirit of friend-
ship is something that now I immediately associate with mathematics. I do
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not know whether it corresponds only to my personal experience, but it is
always important to remember this feeling and to hope that it will never be
lost. I look forward to finding a confirmation in the prefaces to future theses.

Some acknowledgements for the thesis
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generously accepted to be my supervisor and for her dedication to such a
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was inevitable. The fruitful discussions, her prudence and her constructive
reprimands allowed me to understand my mistakes, not only with regard to
general ideas and special arguments in the proof of mathematical problems,
but also as regards the way mathematics should be explained in a thesis.
Her guidance was something invaluable that I can not forget.
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Chapter 1

Introduction

In the theory of partially ordered sets, the Mobius function of a locally
finite poset is a generalization of the number-theoretic Mobius function. In
the twentieth century, the study of its properties became an active research
area in combinatorics (for instance, see [16| and [36]). Now, the Md&bius
function is indeed a classical tool in enumerative combinatorics, with several
applications also in group theory, from the Euler characteristic of subgroup
complexes to algebraic aspects of cellular automata.

For a locally finite poset (P, <), the Mobius function is the map
pup:PxP—17Z

satisfying up(a,b) = 0 unless a < b, and defined recursively for a < b by

up(a,a) =1 and Z up(a,c) =0if a <.

a<c<b

If we have a finite lattice (L, <) with minimum 0 and maximum 1, then
pr(0,1) coincides with the reduced Euler characteristic of the simplicial
complex K induced by L. In particular, ;LL((), i) = 0 if the complex K
is contractible. Other characterizations of uf, (O, i) can be provided, for ex-
ample by using the Lefschetz character Ay, ¢ for the action of a group G on
the lattice L (see [40] for an overview).

In this thesis, we look at the Mo6bius function as an interface of com-
binatorial questions between the theory of finite classical groups and the
theory of lattices and posets that are somehow connected to these groups.
Some emphasis is on the linear group GL(n, q), its subgroups, and relative
quotients, such as the finite almost-simple groups PGL(n, q) and PSL(n, q).

An intriguing motivation for the study of the Mobius function of subgroup
lattices can be found in the context of finitely generated profinite groups.
If G is a finitely generated profinite group, there is a connection between
the probabilistic zeta function of G and the corresponding Mobius function
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w: L(G)o x L(G)o — Z defined on the lattice L(G), of the open subgroups
of GG. More precisely, we can use i to express as
uH,G)

P(G,k) = B
= |G H|

the probability that k random elements of G generate the whole group.
For s € C, we obtain the following Dirichlet series

uw(H, G
PG(S): ]CSH\B”’
H<,G ’

that interpolates P(G, k) in the positive integers. The convergence of Pg(s)
in some right half-plane of the complex plane has been studied for profinite
groups that are positively finitely generated (PFG), i.e. profinite groups G
such that P(G,k) > 0 for some k. If G is PFG, some questions arise about
the growth of |u(H, G)| and the growth of the number of subgroups H <, G
with u(H,G) # 0.

Let b,,(G) be the number of open subgroups H <, G such that the index
|G : H| = n and pu(H,G) # 0. It was conjectured by Mann (see [28]) that
by (G) grows polynomially with respect to n and that |u(H,G)| < |G : H|®
for some constant ¢ independent of H <, G. If this conjecture is true, then
we get the absolute convergence of the series Pg(s).

In [26], Lucchini proved that Mann’s conjecture is true if we are able
to solve the following similar problem concerning only finite almost-simple
groups.

Conjecture. There exist two absolute constants c1, co such that for each
finite almost-simple group G we have

(1) |W(K,G)| <|G: K| forall K <G
(73) bp(G) <n® for alln € N.

In [10], Colombo and Lucchini proved that the alternating and symmet-
ric groups (Alt(n), Sym(n), for n > 5) satisfy this conjecture, so that they
obtained a proof of Mann’s conjecture for finitely generated profinite groups
with the property that all the non-abelian composition factors of every finite
epimorphic image are permutation groups of alternating type.

We begin to concentrate our attention on finite classical groups, par-
ticularly on general linear groups, following some methods that Shareshian
studied in [38] to compute the Mobius number p(1,G) for some classical
group GG. Aschbacher’s classification of their maximal subgroups is impor-
tant to connect the structure of the subgroup lattice of G to order structures
induced by the geometry of vector spaces on which the group G acts.
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Main results of the thesis

In this thesis, we study the Mébius function p(H,G) of a finite classical
group G with respect to subgroups H < G, starting from the methods that
Shareshian used for p(1,G) in his thesis ([38]). Our results usually refer to
the finite general linear group GL(n,q). Since the action of the group G on
the subspace lattice of Fj plays the fundamental role in the proofs of theo-
rems, the choice of G = GL(n, ¢) can be replaced with G = PGL(n, q), if we
want to relate the same results to the M&bius function of finite almost-simple
groups.

We briefly observe that Chapter 2 and Chapter 3 are devoted to state
preliminary notions and facts that are used throughout the thesis. In Chap-
ter 2, in particular, we introduce the fundamental properties of posets and
lattices, with emphasis on some subspace lattices induced by elements of
GL(n, q). We see that for many linear transformations such lattices have the
precise structure of a product of chains. Chapter 3 is a detailed introduction
to the Mobius function, with some questions and remarks to motivate its
study on the subgroup lattice of a group.

The first notable new results are contained in Chapter 4. The main idea
is to approximate p(H,G) through a good function f(H,G), depending on
some Aschbacher classes, so that

M(HaG> = f(HaG> + Z M(HvK)
KeA

where A denotes the union of the other classes, which might be more difficult
to deal with.

In particular, if Z; (G, H) denotes the order ideal generated by the max-
imal subgroups in the first Aschbacher class, that is the ordered set of all
reducible subgroups of G containing H, we can use the M&bius function of

7.(G,H) =1, (G, H) U {H,G} (1.1)

(i.e., where the minimum H and the maximum G are adjoined, if necessary)
as the function f above. We obtain that

M(HvG):Mfl(G,H)(HaG)_ Z M(H7K)
K¢7,(G,H)
H<K<G

So, first of all, we concentrate on the term

NfI(G7H)(Ha G)

and we compute it in the following way.
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Theorem (4.2.4).

— i oy (- §) = (~1)"7. (1.2)
EcV/(G,H)

where the set

V(G H)={ECS(V,H)\{0,V} | () staba(W) # H}
WeFE

depends on the lattice S(V, H) of H-invariant subspaces of V', and on the
action of G on the subspace lattice of V.

The exact value of (1.2) can be found under special conditions for the
lattice S(V, H). In particular, also by using original arguments, we study
some examples and the case in which S(V, H) is a distributive lattice (under
some conditions).

Similarly to Z;(G, H), for each irreducible subgroup K < G we can
consider the order ideal Z;(K, H) given by all reducible subgroups of K
containing H. We present it in Chapter 5 and, as in (1.1), we have an
extension fl(K , H), so that we can similarly compute its Mébius number

_Nfl(KVH)(HaK) = Z (_1)|E‘
Eev (K, H)

Such a number appears in the following expression of the Mobius function
of the group G.

Theorem (5.2.1).
WHG) = > uK,G)-pz, g (H K) (1.3)
Kelrrg(H)

where
Irrq(H) ={K <G | H<K, K is irreducible on V }.

According to the ideas of Colombo and Lucchini in [10], we can define a
closure operator (see Definition 3.1.8)

~ L(K) — L(K)

on the subgroup lattice £(K) of each irreducible subgroup K of G. A sub-
group H is said to be closed in K if H = H. Then

Proposition (5.2.3). Let H < G and K € Irrq(H). If H is not closed in
K, then

Ufl(KJq)(H’K) =0.
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This is interesting because we find a connection between the idea of
Shareshian in [38] and the argument of Colombo and Lucchini in [10] for
the alternating and symmetric groups on a finite set. We study (1.3) to get
partial results in an attempt to prove Mann’s conjecture reduced to the finite
almost-simple groups PGL(n, ¢) and PSL(n, ¢). In this direction, we obtain
the following result.

Theorem (5.3.3). Let V ~F; and G = GL(n,q). Let
(@) = |FRUG))

where FE°Y(G) is the set of closed subgroups H in G such that |G : H| =m
and the lattice S(V, H) is isomorphic to a product of chains.
Then there exists an absolute constant «, independent of n and q, such that

Ard(G)y <m® VmeN.

The subgroups generated by cyclic matrices (and their closures) are ex-
amples of subgroups H such that S(V, H) is isomorphic to a product of
chains. In Chapter 2, we recall that most of the matrices in GL(n,q) are
cyclic.



Chapter 2

Preliminaries about posets

In this chapter we shall state some definitions and facts about partially
ordered sets that will be used throughout this thesis. We begin by briefly
recalling some general information about posets and by fixing the notation.
Although most of the basic notions are well-known, we think that it is impor-
tant to be careful and to avoid confusion for those ambiguous terms which
are sometimes used with different meanings by different authors.

Afterwards, we focus on lattices, which constitute a special class of posets,
and we consider some of their abstract properties. Moreover, concrete ex-
amples are presented, especially for the subspace lattice Sy of a vector space
V. These examples are also useful to introduce the section about invariant
subspace lattices induced by subgroups of GL(V).

Main references are [41] for §2.1, [4] for §2.2, and [18] for §2.3.

2.1 Basic notions

A partially ordered set, or just simply called a poset, is a pair (P, <),

where P is a set and < is a partial order relation on P. It means that P
is endowed with a binary relation < that is reflexive, anti-symmetric, and
transitive.
Notation. We often refer to the poset (P, <) only by indicating the set P. If
x,y € P are two elements of the poset, we use the obvious notation z < y
to mean that x is related to y, and the expression y > x is equivalent to
x < y. Moreover, we can write z < y to mean that x < y and = # y. The
expression y > x is equivalent to = < y.

Two elements z,y in a poset P are comparable if z < yory < z
holds. Otherwise, if neither x < y nor y < x holds, they are said to be
incomparable. If x and y are comparable for all z,y € P, then P is a
chain, or equivalently a totally (or linearly) ordered set.

Definition 2.1.1. An induced subposet (Q,<q) of a poset (P,<p) is a
subset () C P together with a partial order relation <g such that for all
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z,y€Q
r<gqy inQ & zxz<py inP.

We then say that the subset ) has the ordering induced from P.

Notation. Whenever we refer to subposets, we mean induced subposets.
Thus, if P is a poset and @ is a subposet of P, we use the same notation <
for both of the order relations on P and Q.

Let (P,<) be a poset. Let C' C P be a subset such that the induced
subposet (C, <) is a chain. Then we say that C' is a chain in P. The chain
C is called maximal in P if it is not contained in a larger chain of P, i.e.
if there exists no other chain C’ in P such that C C C’. In general, if C is
a finite chain, we can define the length of C' as

ve)y=1Cc|-1.
The length of the poset P, denoted by ¢(P), is
¢(P) = max{{(C) | C is a chain in P}.

If there exists an infinite chain C in P, then ¢(C) = ¢(P) = oo.

We say that a subset A C P, regarded as a subposet, is an antichain
if for every pair of distinct elements z,y € A we have that x and y are
incomparable. If A # () is an antichain in the poset P, we can consider the
set

Poy={seP|s<aforsomeac A} CP.

P, is a subposet of P and it is an order ideal of P, in the following sense.

Definition 2.1.2. Let (P, <) be a poset. An order ideal of P (in the sense
of Stanley [41]) is a subset I C P such that

Veel teP t<x=tel. (2.1)

Clearly, I can be regarded as an induced subposet of P. We include the
empty subset ) C P as an order ideal of P.

Notation. Some authors refer to subsets of P satisfying (2.1) as down-sets
(see for instance [4]). For us, an order ideal is always in the sense of Stanley.

So, if A # () is an antichain in the poset P, we say that P<4 is the order
ideal of P generated by A. In particular, if A = {z}, for some x € P,
then

Pey:=Pcp={seP|s<z}CP (2.2)

is called the principal order ideal of P generated by x. In this case, we
also have the subposet Py = P<; \ {z}.

Obviously, the antichains in P are in one-to-one correspondence with the
order ideals of P generated by antichains (we consider () C P as the ideal
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generated by the empty antichain). If P is finite, then it is also easy to see
that the map A — P<4 from the set of antichains to the set of all order
ideals of P is surjective, and hence invertible.

Proposition 2.1.3. Let P be a finite poset. Then there is a bijection be-
tween antichains and order ideals of P, given by the map A — P<4 for all
antichains A in P.

Let (P, <) be a poset. We recall that the dual poset of P is defined as
the poset (Pﬁ, Sﬁ), where the set P? coincides with the set P, but the partial
order relation <! on P? satisfies the following condition:

Vr,y€ P xﬁﬁyinPM:)ygxinP.

Since we have that # <! y is equivalent to writing y > z in P, we can also
denote the dual poset P* by (P,>).

Remark. Let € P and, similarly as in (2.2), set
Ps,={seP|s>z} CP.

Then P-, is a subposet of P and, according to [41], P>, is called a dual
order ideal (or up-set) of P, which generally means an instance of a subset
D C P such that if z € D and P >t > x, then t € D. Equivalently, P>,
can be regarded as a principal order ideal of the dual poset P!. Again, we
also have a subposet P~ = P>, \ {z}.

Let (P, <p) and (Q, <g) be two posets. They are said to be isomorphic
if there exists an order-preserving bijection ¢ : P — () whose inverse is order-
preserving, i.e.

r<py < o) <g o).

If a poset P and its dual P? are isomorphic, then P is called self-dual.

If we have two or more posets, then there are also various operations
that can be performed on them to get a new poset (see [41]). One of these
operations is the direct product of posets, as defined below.

Definition 2.1.4. Let (P,<p) and (Q,<g) be two posets. The direct
product of P and @ is the poset (P x @, <) which consists of the set
PxQ={(z,y) | v € P,y € Q} together with the partial order relation <
so that

(r,y) <(@,y)in PxQ & z<pa’ and y<gvy'.

Remark. Clearly, the map (z,y) — (y,x), for all z € P and y € @, is an
order-preserving bijection between the posets P x @ and Q x P. Thus, P x @
and ) X P are isomorphic.
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A poset P has a minimum 0 if there exists an element 0 € P such
that 0 < ¢ for all t € P. Similarly, P has a maximum 1 if there exists an
element 1 € P such that ¢ <1 for all t € P. Both minimum and maximum
are unique, if they exist.

Example 2.1.5.

(a) Assume that P is a poset with minimum Op and Q is a poset with
minimum Og. Then P x @ has a minimum, i.e. (0p,0¢g). Similarly for
the maximum, if P and @Q have one.

(b) Let P be a poset with minimum 0. Then P = P_;. Moreover, if I is a
non-empty order ideal of P, then 0 € I.

(¢) Let = € P and consider P<, and P>, as subposets of (P, <). Then z is
the maximum of P<, and z in the minimum of P>, .

Let x,y € P be two elements such that z < y. A closed interval (or
segment) in P is the subset of all elements between x and y, ordered by <.
Namely

[yl ={z € P |ox<z<yl=PoaNPgy.

P is called locally finite if every interval in P is finite.

If s,t € P, then we say that s is covered by t if s < ¢t and [s,t] = {s,t}.
So, we observe that a locally finite poset P is completely determined by its
cover relations. The Hasse diagram of a finite poset P is the graph whose
vertices are the elements of P, and whose edges are determined by the cover
relations.

2.2 Lattices

Let (P, <) be a poset and let S be a subset of P. We recall that [ € P
is a lower bound of S in Pif [l < sforall s € §S. Let W C P be the
induced subposet whose elements are the lower bounds of S in P. If W has
a maximum 1y, then 1y is usually called the greatest lower bound of S in
P. Similarly, we have that u € P is an upper bound of S'in P if s < u for all
s € S, and the least upper bound of S in P is the minimum (when it exists)
of the induced subposet U = {u € P | u is an upper bound of S} C P.

Notation. Let z,y € P. If S = {z,y} and there exists the greatest lower
bound [ of S, then we denote [ by z A y and we say that [ is the meet of z
and y in P. Similarly, if there exists the least upper bound u of S, then we
denote u by x V y and we say that u is the join of x and y in P.

A lattice is a poset (L, <) such that for every pair of elements z,y € L
there exist the meet x Ay and the join zVy in L. So, if L is a lattice, we can
regard A and V as two binary operations L x L. — L. We observe that both
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A and V are associative, commutative and idempotent (i.e., t At =t =tV ).
Let Q C L be a subset such that @ is closed under these operations, i.e., if
r,y € Qthenx Ay € Q and x Vy € Q. Such a subset ), endowed with the
partial order relation < induced by L, is a special case of a subposet of L
which is called a sublattice of L.

Example 2.2.1.

(a) Every chain (C,<) is a lattice. Indeed, x and y are comparable for
every pair of elements z,y € C. If x <y, then x Ay =2 and x Vy =y.
Obviously, every chain of a lattice L is a sublattice of L.

(b) If V is a vector space, let Sy denote the subspace lattice of V', i.e. the
lattice whose elements are all the subspaces of V', ordered by inclusion.
If T.U <V, then the meet of T and U in Sy is the intersection TN U,
and their join is the sum T'+ U ={t+u |t € T,u € U}.

(¢) If G is a group, let £(G) denote the subgroup lattice of G, i.e. the
lattice whose elements are all the subgroups of G, ordered by inclusion.
If HH K < @G, then the meet of H and K in £(G) is the intersection
H N K, and their join is the subgroup generated by H and K in G.

(d) The dual L* of a lattice L is a lattice. If L; and Lo are two lattices,
then so is Iy X Lo

(e) Let L be a lattice. Then, every closed interval [x,y] C L is a sublattice.

For a lattice, the definition of an order ideal is exactly the same as the
one given for a poset in Definition 2.1.2. So, for us, an order ideal of a lattice
L is not necessarily a sublattice of L, since it might not be close under the
operation of join V (unlike what is required in [4]).

If (L, <) is a finite lattice, such that L = {x1,...,2,}, then clearly L has
a maximum 1 =21V -V z, and a minimum 0 =21 A -+ Az, . Moreover,
we introduce the following notion for finite lattices.

Definition 2.2.2. Let L be a finite lattice with minimum 0 and maximum
1. We say that L is graded if every maximal chain in L has the same length.
In this case, we can recursively define a unique rank function rky : L - N
such that

rkz(0) =0;

tkr(y) =rkp(z) +1 if x is covered by y.
Let C be a maximal chain of L, so that £(C)) = ¢(L) = n € N. Then we have
that rkz (1) = n, and we say that the rank of L (i.e., its length) is n.

Remark. Finite graded posets are in fact defined in [41], and their definition
can be extended to certain infinite posets. But we prefer to consider only
finite lattices. Moreover, in the context of graded lattices, it is common to
find the term dimension instead of rank, for instance in [4].

10
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Example 2.2.3. Let Sy be the subspace lattice of a vector space V of
dimension n over a finite field K. Clearly, each maximal chain of subspaces
of V' has length n, and therefore we have that Sy is graded of rank n. In
particular, for each subspace T' < V the dimension dimg (7") coincides with
the value rkgs, (T') given by the rank function.

Let L be a finite lattice with minimum 0. An atom of L is an element
a € L such that 0 is covered by a. The lattice L is said to be atomistic if
every element of L is a join of atoms (we regard 0 as the join of the empty
set of atoms). Dually, if L has a maximum 1, a coatom of L is an element
which is covered by 1, and L is coatomistic if every element is a meet of
coatoms. If L is finite and graded of rank n, then clearly rkz(a) = 1 for
every atom of L, and rkz(c) = n — 1 for every coatom.

If 2,y are elements of L such that z Ay =0 and zVy =1, then we say
that x is a complement of y in L. A lattice L with minimum and maximum
is complemented if every element of L has a complement.

Example 2.2.4. The subspace lattice Sy of a vector space V ~ K™ is both
atomistic (and coatomistic) and complemented. On the contrary, if C' is a
finite chain of length n > 2, then C is neither atomistic nor complemented.

Now we recall a special type of elements which are particularly important
for finite lattices, as we shall see.

Definition 2.2.5. Let L be a lattice. Let 2 € L, so that = # 0 if L has a
minimum 0. Then z is said to be join-irreducible if

r=yVz = eitherx=y or z==z.
The subset of join-irreducible elements in L is denoted by JI(L)
Dually, we can define the set MI(L) of meet-irreducible elements.

Remark. Let L be a finite lattice. Then we regard 0 as the join of the empty
set of join-irreducible elements. Then every element of L can be written as
the join of some join-irreducible elements in L (and, dually, also as the meet
of some meet-irreducible elements of L). In particular, the atoms of L are
join-irreducible (and the coatoms are meet-irreducible).

Example 2.2.6.

(a) Let Sy be the subspace lattice of a vector space V' ~ K™. Since Sy is
atomistic and the atoms of Sy are the 1-dimensional subspaces of V', we
have that

JI(Sy) ={T <V | dimg(T) = 1}.

Dually, MI(Sy) ={T <V | dimg(T) = n — 1} is the set of coatoms.

11
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(b) Let C be a chain with minimum Oc. Then every element z € C, with
x # 0¢, is join-irreducible in C.

(¢) Let C1 and C3 be two chains, such that C7 has minimum 0; and Oy
has minimum 0y. Let L = C x Cs be their direct product. Then every
element (x1,x2) € L is the join of (x1,02) and (01, 22) in L. Thus,

JI(L) = {($1,02), (01,172) | 01 75 xr1 € Cl, 02 75 o € 02} .

Now we focus on two special classes of lattices, which are particularly
relevant from the combinatorial point of view. We shall connect them with
the above notions and examples, with emphasis on finite lattices.

2.2.1 Modular and distributive lattices

Let (L, <,A,V) be a lattice. By using the definitions of A and V, it is
almost immediate to see that the following inequality

uV(@Ay) <(uVz)A(uVy) (2.3)

holds for all u,z,y, € L.
Now we fix z,y € L, and consequently also the ordered pair (z,y) € LxL.
We say that (z,y) is a modular pair if

Vu<y uV(xAy)=(uVze)Ay. (2.4)

Definition 2.2.7. Let L be a lattice. Then L is modular if (z,y) is a
modular pair for every x,y € L.

Remark. Let L be a modular lattice. By inequality (2.3), to establish
modularity of a pair (x,y) in L, it suffices to show that for all u € L we have

u<y = uV(zAy)>(uVz)Ay. (2.5)

We also observe that every sublattice of L is modular, since clearly modu-
larity of the sublattice is induced by modularity of L.
Example 2.2.8.

(a) If x and y are comparable in L (i.e., z < y or y < x), then it is easy to
verify that the pair (x,y) is modular. Thus, every chain is a modular
lattice.

(b) Let G beagroup. Let N(G) = {N < G | N < G} be the set of all normal
subgroups of G. Then NV (G) is a sublattice of the subgroup lattice £(G),
where the join of two subgroups H, K € N(G) is the subgroup HK. If
N < @ such that N < K, then it is not difficult to prove that

NHNK < (HNK)N.
Therefore, N'(G) is modular.

12
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(c¢) Let Sy be the subspace lattice of a vector space V. Then Sy is modular.

There are various ways to characterize modular lattices. An example is
the so-called Dedekind’s modularity criterion, which states that a lattice L
is modular if and only if

Vu,z,y €L <y, uAhr=uAy,uVr=uVy = x=y.

For finite lattices, the following characterization is of particular interest
and involves graded lattices.

Theorem 2.2.9. Let L be a finite lattice. Then the three following conditions
are equivalent.

(1) L is modular.

(ii) For all x,y € L, we have that

x Ay is covered by x &y is covered by x V y.

(#i7) L is graded, and its rank function rky satisfies

rkr(z) +rkr(y) =rkp(z Ay) +rkp(zrVy) Va,yeL.

The identity in (i77) corresponds to the well-known Grassmann Theo-
rem for vector spaces, where the rank function on the subspace lattice Sy
coincides with the dimension of subspaces.

Another important property of a finite modular lattice L concerns the
different representations of an element in L as a join of some join-irreducible
elements. Let \/!", z; be the join of elements z1, ..., z, € L. We recall that
the join \/[, x; is said to be irredundant if for every k € {1,...,m}

m

\/xi >V VT VIl V- Vg = \/xj.

i=1 j#k
Theorem 2.2.10 (Kurosh-Ore). Let L be a finite modular lattice, and let
reL,xz#0.

(1) If x has two representations x = \/{_ y; and x = \/i_, z; as joins

of join-irreducible elements y1,...,Ym, 21,-..,2n tn L, then for every
i€ {l,...,m} there exists j € {1,...,n} such that

r=n V- Vyi 1V Vyira Ve V.

(i) If = has two representations x = \/i~, y; and x=\/j_, z; as irredun-

dant joins of elements y1,...,Ym, 21, ..., 2n € JI(L), then m = n.

13
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As a natural continuation of the Kurosh-Ore Theorem, we have Theorem
2.2.14 below. But we need firstly to recall the following important class of
lattices.

Definition 2.2.11. A lattice L is distributive if
Vu,z,y € L uV(zAy)=(uVa)A(uVy). (2.6)

It is evident that distributivity condition (2.6) is a strengthening of mod-
ularity condition (2.4). By definition, in a distributive lattice L, every pair
(z,y) of elements z,y € L is modular. So, if L is a distributive lattice, then
L is modular.

Remark. Clearly, every sublattice of a distributive lattice is distributive.

We also observe that a lattice L is distributive if and only if
Vu,z,y € L ulN(zVy)=(uAz)V(uAy). (2.7)
Conditions (2.6) and (2.7) are the usual distributivity laws.
Example 2.2.12.

(a) Let X be a finite set, |X| = n. Then we denote by B, the set of all
subsets of X (so, B,, = 2%), ordered by inclusion. With the operations of
intersection N and union U, the poset B,, is clearly a distributive lattice.

(b) Every chain is a distributive lattice. Moreover, if C; and Cy are two
chains, then C; x Cs is distributive too. The lattice B,, in (a) is isomor-
phic to the direct product of n chains of length 1.

(¢) Let V be a vector space over a field K, such that dimg (V) > 2. We take
two elements eq, es of the canonical basis of V. Let Sy be the subspace
lattice of V. Let T1 = (e1), To = (e2), T3 = (e1 + e2) be elements of Sy .
Then it is immediate to see that

T5N (T1 + TQ) #* (T3 N Tl) + (T3 N TQ).
Thus, Sy is not distributive.

If L is a distributive lattice, the set (and subposet) JI(L) of join-irreducible
elements in L has some nice features. Especially for finite distributive lat-
tices, JI(L) reflects the structure of L. Here below, a property that we will
use in section 4.4.

Proposition 2.2.13. Let L be a distributive lattice and let p € JI(L) be a
join-irreducible element of L. If p < x1V---Vx, for some x1,...,xy, € L,
then p < x; for somei € {1,...,n}.

14
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Proof. By distributivity, we have
p=pA(x1V---Va,)=(pPAx1)V---V(pAx,).
Since p € JI(L), then p must be equal to pAx; for some i, whence p < z;. [

If L is a finite distributive lattice and x € L, we know that two different
representations of x as a join of some join-irreducible elements have the same
number of components, by Theorem 2.2.10. In fact, we have more: for a finite
distributive lattice L, the representation of x € L as an irredundant join of
some join-irreducible elements is unique, in the following sense.

Theorem 2.2.14. Let L be a finite distributive lattice, and let x € L,
x # 0. If x has two representations x = Vitiyi and z = \/;L:1 zj as
irredundant joins of elements yi,...,Ym,21,---,2n € JI(L), then m = n
and {y1,...,ym} =121, 2m}-

Corollary 2.2.15. The rank of a finite distributive lattice is |JI(L)] .

Finally, there is a remarkable result that connects the structure of a
finite distributive lattice L with the set of join irreducible elements in L. In
particular, a role is played by the lattice of order ideals in the poset JI(L).
But we need some notation.

Let P be a finite poset, so that |P| = n. Then we set

O(P) ={I C P| I is an order ideal of P}

the set of order ideals of P. Let I; and I be two order ideals of P. Then
both I1 N I and I; U Iy are order ideals of P. So, we observe that O(P),
ordered by inclusion, is isomorphic to a sublattice of B, (as described in
Example 2.2.12, (a)). In particular, O(P) is a distributive lattice.

Remark. An order ideal of P is a join-irreducible element in O(P) if and
only if it is a principal ideal of P. Thus, since P is finite, we have that
I € JI(O(P)) if and only if I = P<, for some x € P. Hence, there is a
one-to-one correspondence between JI(O(P)) and P. Moreover, notice that
P., C P, if and only if <y in P. Hence,

J(O(P)) ~ P.

Since O(P) is a finite distributive lattice, we obtain that the rank of O(P)
is | P|. By Theorem 2.2.14, for another poset (), we have that O(P) ~ O(Q)
if and only if P ~ Q.

This information can be exploited to prove the following Fundamental
Theorem of Finite Distributive Lattices (FTFDL).

15
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Theorem 2.2.16 (FTFDL). Let L be a finite distributive lattice. Then there
s an isomorphism

L~O(UI(L)).
Moreover, if P is a poset such that L ~ O(P), then P ~ JI(L).

The isomorphism between L and O(JI(L)) is given by f : L — O(JI(L)),

so that

f(z):={a€JI(L)|a<x}.
In the sense of Theorem 2.2.16, the structure of a finite distributive lattice
is completely determined by its set of join-irreducible elements.

We recall that a lattice is said to be boolean if it is a complemented
distributive lattice. The lattice B, of Example 2.2.12 is a finite boolean
lattice. By Theorem 2.2.16, every finite distributive lattice is isomorphic to
a sublattice of a boolean lattice. We also observe that |JI(B,)| = n and
JI(B,,) is an antichain. As a consequence of Theorem 2.2.16, we have the
following.

Corollary 2.2.17. Let L be a finite distributive lattice. Then

L is boolean < JI(L) is an antichain;

< every x € JI(L) is an atom of L;
& 1 s ajoin of atoms of L;
=

L is atomistic.

2.3 Subspace lattices induced by linear groups

In this section we consider in detail the subspace lattice Sy and some
special sublattices S(V, H) C Sy arising from the natural action of a group
H < GL(V) on Sy, induced by right matrix-vector multiplication. Although
some general definitions can be given for any vector space V over a field K,
we shall specify V' ~ Fy for some n € N and ¢ a prime power, if it is our
interest that S(V, H) is finite.

Definition 2.3.1. Let V be a vector space over a field K. Let h € Endg (V)
be a K-linear endomorphism h : V' — V. We say that a subspace W <V is
h-invariant if Wh C W.

Notation. We denote by S(V, h) the set of all h-invariant subspaces of V:
S(V,h) ={W <V | W is h-invariant}.

We are mainly interested in the invertible endomorphisms h : V. — V|
that is, the elements h € GL(V'), where V ~ K™ is a vector space of finite
dimension over K. So, in this case, a subspace W of V is h-invariant if and
only if Wh=W.
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Remark. Let h € GL(V) and let A = (h) be the subgroup of GL(V)
generated by h. It is immediate to see that if W < V' is h-invariant, then W
is h¥-invariant for all h* € A. Similarly, let hy, ..., h, € GL(V) and consider
the subgroup B = (hi,...,hy) < GL(V). Let W <V be h;-invariant for all
i=1,...,r. Then W is b-invariant for all b € B.

Definition 2.3.2. Let V be a vector space of finite dimension over K, and
let H < GL(V). We say that a subspace W < V is H-invariant if W is
h-invariant for all h € H.

Notation. We denote by S(V, H) the set of all H-invariant subspaces of V:

S(V,H)= () S(V,h).
heH

In particular, if A = (h) for some h € GL(V), then S(V, A) = S(V, h).
And similarly, if B = (h1,...,h,) < GL(V), then S(V,B) =(;_; S(V, h).

Remark. Let Sy be the set of all subspaces of V, and let G = GL(V).
There is an obvious action of G on Sy given by

Sy xG > (W,g)— W9 :=WgeSy. (2.8)

With respect to this action, we denote by stabg (W) the set of all g € G such
that Wg =W i.e.

stabg(W) = {g € G | W is g-invariant }.
If H is a subgroup of G = GL(V'), we have that
S(V,H) = {W <V | H C staba(W)}.

A subspace W of V is said to be non-trivial if W # 0 and W # V.
Clearly, trivial subspaces 0 and V are element of S(V, H) for all H < GL(V).

Definition 2.3.3. Let H be a subgroup of GL(V'). If there exists a non-
trivial subgroup W < V such that W is H-invariant, then H is called re-
ducible. Otherwise, we say that H is irreducible.

In other terms, H is irreducible if and only if S(V, H) = {0, V'}.
Example 2.3.4.

(a) Let H be the trivial subgroup 1 < GL(V'). Then S(V,1) is the set of
all subspaces of V, i.e. S(V,1) = Sy. Similarly, S(V,Z) = Sy, where
Z < GL(V) is the centre of GL(V).

17
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(b) Let V. =@;_; W;. We consider the subgroup H < GL(V) such that

T
H = m StabGL(V)Wi y
i=1
where each stabilizer is defined with respect to the action of GL(V') on
Sy as given in (2.8). Then, clearly, each W; € S(V, H). It is not difficult
to see that a subspace U € S(V, H) if and only if U = P, W; for
some J C {1,...,r}.

Indeed, for every H < GL(V), if Wy, Wy € S(V, H), then we have also
Wi+Wsy € S(V,H) and WiNW, € S(V, H). It means that S(V, H) is closed
under intersections and linear sums of subspaces, which are, respectively, the
meet and join operations for the subspace lattice Sy ordered by inclusion.
Thus, (S(V, H),C,N,+) is a modular lattice.

Proposition 2.3.5. Let V be a vector space of finite dimension over K.
Then S(V, H) is a sublattice of Sy for every subgroup H < GL(V'). Hence
S(V, H) is modular.

As already observed above, 0 and V' are elements in S(V, H) for every
subgroup H < GL(V'). Moreover, they are respectively the minimum and
the maximum of S(V, H).

Remark. Let H and K be two subgroups of GL(V) such that H < K.
Then S(V, K) is a sublattice of S(V, H).

Let K = [F; be the finite field with ¢ elements. Then, for every sub-
group H < GL(V') we have that S(V, H) is a finite lattice. Since S(V, H)
is modular, by Theorem 2.2.9 it is also graded. Nevertheless, in this case
the rank function defined on S(V, H) does not necessarily coincide with the
dimension of subspaces.

Example 2.3.6. Let K = F, and V ~ K" such that V = @;_; W;. Let
H be as in (c¢) of Example 2.3.4. We have observed that there is a one-to-
one correspondence between subspaces in S(V, H) and subsets of {1,...,r}.
Let U; = @jeJl W; and Uy = @jeh W;, with Ji,Jo C {1,...,r}. Then
Uy < Us if and only if J; C Jo. Therefore S(V, H) is isomorphic to the
boolean lattice B, with r atoms. If there exists ¢ € {1,...,r} such that
dimg (W;) > 2, then it is clear that there are subspaces U € S(V, H) such
that I‘k‘g(vyH)(U) # dimg (U).

Let T € S(V, H) be an H-invariant subspace of V. The principal order
ideal of S(V, H) generated by T is

S(V,H)<r = {W € S(V,H) | W < T}.

We immediately notice that S(V, H) < is also a sublattice of S(V, H). Then,
0 and T are respectively the minimum and maximum of S(V, H)<r, and
S(V, H)<r is modular.
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Notation. We can also denote the ideal S(V, H)<r by S(T', H), if the context
allows it, i.e., if the vector space V is fixed and it is clear that H is a subgroup

of GL(V).

Remark. Let V ~ Fy and H < GL(V). Let T € S(V,H). Then both
S(V,H) and S(T, H) are graded lattices. We denote by rky and rkp the rank
functions defined on S(V, H) and S(T, H) respectively. Let W € S(T, H).
It is immediate to see that

rky (W) = rkp(W).
So we can just write rk(W') to denote the rank of W in both of these lattices.

We know that every sublattice of a modular lattice is modular, and that
every sublattice of a distributive lattice is distributive. But it is false, in gen-
eral, that a sublattice of a boolean lattice is boolean. It is true, anyway, if we
assume that S(V, H) is boolean and we consider the sublattice S(V, H)<r .
Indeed, by Theorem 2.2.14 and Corollary 2.2.17, all the join-irreducible ele-
ments of S(V, H)<r are the atoms of S(V, H) which are contained in 7.

Proposition 2.3.7. Let V be a vector space of finite dimension over Fq. If
S(V, H) is boolean, then S(V, H)<t is boolean for every T € S(V, H).

Last thing we want to point out about H-invariant subspace lattice con-
cerns quotient vector spaces. Let V be a vector space and H < GL(V).
Let W € S(V,H). Since W is H-invariant, there is a natural action of H
on the quotient space V/W and its subspace lattice Syw, such that for all
(W + X)/W € Syyw and h € H we have

<W+X h) R <W+X>h__ W+ X" W+ Xh

W W W W € SV/W . (2.9)

For every subspace X < V, let X = (W + X)/W. The set of H-invariant
subspaces of V/W is therefore

S(WV/W,H) ={X<V/W | X"=X VheH}
In an obvious way, we can endow S(V/W, H) with the structure of a modular
lattice.

2.3.1 Cyclic matrices

The structure of the H-invariant subspace lattice S(V, H) will play a sig-
nificant role in issues addressed in the following chapters, where applications
will concentrate on finite classical groups. In particular, Corollary 2.3.13
and Proposition 2.3.14 determine the structure of S(V, H) when H contains
a cyclic matrix, by showing that in this case S(V, H) is a distributive lattice.
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In §4.4 and §5.3 we will see in detail how this condition can be exploited for
questions concerning the Mobius function of groups.

We remind our assumption that V'~ Fy is a vector space of finite dimen-
sion over Fy , and we identify GL(V) with the matrix group GL(n,¢). Then
we look for a “large” class of subgroups H < GL(V') so that S(V, H) has the
nice property of being a finite distributive lattice.

For the sake of completeness, we could also recall here some elementary
but useful notions of linear algebra. A general reference for this part is [18].

Let £ € GL(n, q).

e The characteristic polynomial of £ is the polynomial c¢(t) € Fy[t]
such that c¢(t) = det(tl, — &).

e The minimal polynomial of £ is the unique monic polynomial of least
degree mg(t) € Fy[t] such that me(£) = 0. It is the monic generator of

Ie = {f(t) € Fo[t] | f(§) =0} < Fylt].
By Cayley-Hamilton Theorem, we know that c¢(t) € I¢.

Definition 2.3.8. An element £ € GL(n, q) is said to be a cyclic matrix
if its characteristic polynomial c¢(t) equals its minimal polynomial mg(t).

Let A € GL(V) and w € V. The A-module generated by w is the span
of w,wA,wA?,... in V and it is denoted by (w)4. We have the following
characterization for cyclic matrices, which explains their name.

Proposition 2.3.9. Let V ~ Fy and § € GL(n,q). Then, § is a cyclic
matrixz if and only if there exists a vector v € V' such that

(v)e = (v, 0., 0" ) = V.

In this case, we refer to v as a cyclic vector for £ on V, and we call
(v,€) a cyclic pair for V.

Remark. Similarly, if a subspace W < V is a é&-module generated by a vector
w, we call (w,&) a cyclic pair for W. We notice that W = (w)¢ € S(V,¢§)
and it is the smallest £-invariant subspace containing w.

Is it possible to determine a cyclic pair (w,§) for every W € S(V,§)?
What information can we deduce about the structure of S(V,£)? The fol-
lowing results provide a good answer to these questions for cyclic matrices.

Lemma 2.3.10. Let & € GL(n,q) be a cyclic matriz with minimal polyno-
mial me(t). Let v be a cyclic vector for § on V ~ Ty, such that V = (v)¢. We
assume that me(t) = fi(t)f2(t) for some monic polynomials fi, fo € Fylt].
So, let W = (vf1(§))e £V be the &-module generated by v fi(§), and denote
by §w the restriction of & to W. Then
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(i) f2(t) is the minimal polynomial of &y ;
(i) dim(W) = deg(f2) = n — deg(f1);

(11d) W = ker(f2(¢))-

As a consequence, we obtain that every W € S(V,§) admits cyclic pair
(w,§), for some w € V, such that (w)e = W.

Proposition 2.3.11. Let £ € GL(n,q) be a cyclic matriz with cyclic vector
veV ~Fp, such that V= (v)e. If W € S(V,§), then

q’

(1) W +w is a cyclic vector for & on V/W.
Let ¢(t) € Fy[t] be the characteristic polynomial of & on V/W. Then
(i) W = (ve())e -

Remark. In particular, we observe that if & € GL(n,q) is a cyclic matrix
and W < V is an eigenspace of £, then dim(W) = 1.

Now we put together the above information to describe S(V.§).

Theorem 2.3.12. Let £ € GL(n,q) be a cyclic matriz with minimal poly-
nomial me(t), and denote by D(mg) the set of all monic divisors of me(t) in

Fylt]. Let v be a cyclic vector for § on V ~TFy, such that V = (v)e. Then

S(V,8) ={{wf(€)e <V | f(t) € D(me)}.

In particular, if me(t) = f(t)g(t), then (vf(£))e = ker(g(§)) by (iii) of
Lemma 2.3.10. So, we also have that

S(V,€) = {ker(g()) <V | g(t) € D(me)}

The set D(myg), ordered by divisibility (i.e., g1(t) < g2(t) if and only if
g1(t) | g2(t)), turns out to be a lattice, where g1 (t) A g2(t) = ged(g1(t), g2(t))
is their monic greatest common divisor and g1 (t) V g2(t) = lem(g1(t), g2(t))
is their monic lowest common multiple.

Corollary 2.3.13. Let V >~ Fy. Let §{ € GL(n,q) be a cyclic matriz with
manimal polynomial me(t), and denote by D(mg) the lattice of all monic
divisors of me(t) in Fy[t]. Then there is an isomorphism

given by the map D(m¢) > g(t) — ker(g(§)) < V.

Proof. The map ¢(t) — ker(g(&£)) is surjective by Theorem 2.3.12. Let
91(t), 92(t) € Fy[t] be two monic divisors of me(t). It is immediate to see

that if g1 (¢) divides ga(t), then ker(g1(§)) C ker(g2(£)). And if g1 (t) # ga2(1),
then ker g1(n) # ker ga(n) . O
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The structure of the lattice D(m¢) is well-known and depends on the
prime factorization of me(t) in Fg[t]. Let

me(t) = fr(t)* - fr ()

where fi(t),..., fr(t) € Fy[t] are monic and irreducible. Then
D(me) ~ [[ Cleu) = Clan) x -+ x Clay)
i=1

where [[i_; C(o;) denotes the direct product of r chains C(aq),...,C(a)
of length, respectively, aq, ..., a,. So, we have the following.

Proposition 2.3.14. Let V ~Fj and let § € GL(n,q) be a cyclic matriz.
Then the lattice S(V,&) of &-invariant subspaces of V' is isomorphic to a
product of chains.

Remark. In Example 2.2.12, we have seen that the direct product of chains
is a distributive lattice. Therefore, if £ is cyclic, S(V, &) is distributive.
Moreover, for every subgroup H < GL(V) such that £ € H, we have that
the lattice of H-invariant subspaces S(V, H) is distributive too, since every
sublattice of a distributive lattice is distributive. From the point of view of
abstract finite distributive lattices, a study on products of chains and the
structure of their sublattices can be found in [39].

Since we are dealing with vector spaces, we can equivalently state Propo-
sition 2.3.14 with the language of linear algebra, as Brickman and Fillmore
do in [7].

Definition 2.3.15. Let V be a vector space and let £ be a sublattice of the
subspace lattice Sy,. Let £1 and Lo be two sublattices of £. Then L is the
direct sum of £4 and Ly if W1 "Wy =0 for all Wy € L1, Wy € Lo, and

£:{W1€BW2 ’ Wh € Lq, WQGEQ}.

The lattice operations can be performed coordinate-wise and clearly, in this
case, L ~ L1 X Lo.

A lattice of subspaces of V' that cannot be written as a non-trivial direct
sum is called @-irreducible.

By Corollary 2.3.13, we have that Proposition 2.3.14 is equivalent to
saying that the lattice S(V, §) is a direct sum of sublattices L1, ..., £, so that
every L; is a chain of ¢-invariant subspaces with minimum 0 and maximum
Vi. Then every W € S(V,§) is uniquely representable in the form W =
Wi & - ® W,, where each W; € L£;. In particular, 0 = 0 --- & 0 and
V=Vi&- - -®V,. We also notice that every chain £; is @®-irreducible.
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Remark. It is interesting to note that, even if £ is not a cyclic matrix,
S(V, &) has the structure of a direct sum of @®-irreducible sublattices. In this
case, nevertheless, there exists i € {1,...,r} such that L; is not a chain, and
S(V,£) is not distributive (see |7, Theorem 2| for details).

At this point, can we say something about the number of subgroups H <
GL(n, ¢) with the property that S(V, H) is a distributive lattice? Maybe we
do not have a precise answer, but we can think that from a cyclic matrix
¢ € GL(n,q) we can move to the subgroup (£) generated by &, and, more
generally, to all subgroups H < GL(n, q) containing £. For such subgroups,
we even know that S(V, H) is a sublattice of a product of chains. So, first

of all, we are interested in estimates on the number of cyclic matrices in
GL(n,q).

Remark. All conjugates of a matrix £ € GL(n,q) have the same charac-
teristic polynomial and the same minimal polynomial. So, if £ is a cyclic
matrix, then all conjugates of £ in GL(n, q) are cyclic matrices.

Conversely, are two cyclic matrices similar, if they have the same minimal
polynomial?

Example 2.3.16. Let £ € GL(n,q) be an irreducible matrix, which means
that S(V,€) = {0,V}. Let v € V, v # 0. Then we have that (v)¢ =V and,
by Proposition 2.3.9, the matrix £ is cyclic. Since the vectors v, v€, ..., v€" !
form a basis of V', the matrix £ is similar to

0 1 0 0
0 0 1 ... :
SEme=| (2.10)
0 0 0o - 1
—C¢ —C€ —C -+ —Cp-1
such that v€" = —cov — c1v€ — ... — ¢p_10E" 1. Then

mg(t) ="+ Cn_ltn_l +...+cit+cg

is the minimal polynomial of £ in Fy[t]. It follows that every irreducible
matrix in GL(n, ¢) with minimal polynomial mg(?) is similar to =Z,,. Hence
all irreducible matrices with the same characteristic polynomial are similar.

This can be generalized for all cyclic matrices in GL(n, q).

Proposition 2.3.17. Let & € GL(n,q) be a cyclic matriz with minimal
polynomial me(t). Then & is similar to a matriz =y, as in (2.10), such that
me(t) ="+ cp1t" L+ .. 41t +co. Moreover, € is conjugate to any other

cyclic matriz in GL(n, q) with the same minimal polynomial.
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Now, let f(t) € Fy[t] be a monic polynomial
f) =t"+an_1t" 4+ ... +ait+ag

such that f(0) = ap # 0. Then, we have the companion matrix of f(¢) in
GL(n, q), that is

0 1 0 0
0 0 1
Sp= : 0
0 0 0 1
—ap —ap —az -+ —0ap-1

Clearly, = is a cyclic matrix with minimal polynomial f(t).

Thanks to estimates on the number of monic irreducible polynomials of
degree r over [Fy, and by using the correspondence between minimal poly-
nomials and companion matrices, Praeger and Neumann make precise the
assertion that almost all matrices in GL(n,q) are cyclic, in the following
sense (see [30] and [31]).

Theorem 2.3.18. Let Cyc(n, q) be the set of all cyclic matrices in GL(n, q).
Let
_ [Cye(n, g)|

|GL(n, q)|

be the probability that a matriz in GL(n,q) is cyclic. Then, for alln > 1
and prime powers q

P(Cyc(n,q))

1
q(®>—1)°

In particular, if n = 1, then Cyc(1,q) = GL(1,¢q) and P(Cyc(1,q)) = 1.
If n = 2, then a matrix £ € GL(2,¢q) is non-cyclic if and only if £ is scalar,
i.e. ¢ isin the centre of GL(n,q). Since |GL(2,q)| = q(¢*> — 1)(¢ — 1) and
|Z(GL(2,q))| = ¢ — 1, we have that

1 - P(Cye(2,9)) = 1/q(¢* = 1).

1 — P(Cyc(n,q)) <

If n > 3, then Praeger and Neumann show that

1 — P(Cyc(n,q)) < 1/q(¢° —1).

In fact, in [30], they achieve upper and lower bounds for P(Cyc(n, q)), which
are enough to establish that P(Cyc(n,q)) =1 —¢>+O(q~*). Actually, the
proportion of cyclic matrices in any group containing SL(n,¢q) is not much
different from this, and in [31] they obtain similar estimations for other
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irreducible finite classical groups. Moreover, if we fix ¢ and look at the limit,
as n — 00, of the probability that an element of GL(n, q) is cyclic, we obtain

1—q’5

1—¢3

P(Cyc(n,q)) —

(see [43, Equation 6.24]). Finally, in his PhD thesis 8], Brown extends such
results to maximal reducible subgroups of GL(n, q).

Since most of the elements in GL(n, q) are cyclic matrices, it seems rea-
sonable to choose and study S(V,H) when the subgroup H < GL(n,q)
contains a cyclic matrix, in the sense that such subgroups constitute a re-
markably large class of subgroups of GL(n, ¢). This motivates the choice of
focussing on distributive lattices S(V, H) in Chapter 4 and Chapter 5, where
we will deal with problems concerning the subgroup lattice of GL(n, ¢q).

Remark. Instead of the probability of finding a cyclic matrix in GL(n, q),
it may also be interesting to study the following question.

Question. What is the proportion of subgroups which contain some cyclic
matriz among all subgroups of GL(n,q)?
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Chapter 3

The Mobius function

The Mobius function of locally finite partially ordered sets is a classical
tool in enumerative combinatorics, and it generalizes the number-theoretic
Mobius function p : N — Z defined, for any positive integer n, as

1 ifn=1
p(n) =< (=1)" ifn=p;-...-p,, with prime factors p; # p; Vi # j
0 if n is divisible by p?, for some p prime.

We want to introduce such a generalization and state the related key
results that will be used in the following chapters, where we will develop
some methods in order to compute the Mobius function for finite classical
groups. This chapter is therefore divided into two main sections. In §3.1 we
collect some facts concerning the M&bius function of abstract locally finite
posets ([41] is the main reference for this part). In section §3.2, we try to
motivate our interest in connections between the Mobius function and the
theory of groups through stimulating open questions. Some basic knowledge
is assumed both for finite and profinite groups. We refer to [35] and [44] for
the necessary general background.

3.1 The Mobius function of locally finite posets
Let (P, <) be a poset. We assume that every interval
[zyl={teP|z<t<y}
in P is finite, so that P is locally finite.

Definition 3.1.1. The Mo6bius function associated with a locally finite
poset P is a map up: P X P — Z satisfying

up(z,y) =0 unless z <y,
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Chapter 3, § 3.1

and defined recursively for x <y by

up(z,z)=1 and Z up(z,t) =0 if z <y. (3.1)
z<t<y

Notation. Let S be an interval [z, y] of P. It is clear, by definition, that the
Mobius function pg of S equals the restriction of up to S. So, we can simply
use u to denote both up and its restriction pg, if the context allows it.

Example 3.1.2.

(a) Let C be a finite chain and x,y € C. Then
1 ifx=y;
wu(z,y) =< —1 if xis covered by y;

0 otherwise.

(b) Let P and @ be two locally finite posets, and let P x @ be their direct
product. If (z1,y1) < (x2,y2) in Px@Q, then the interval [(z1, y1), (x2,y2)]
is finite and

pwrxQ((z1,91), (2,92)) = pp(z1,22) - (Y1, y2) -

Indeed, if (z1,y1) = (22, y2), then pp(z1, x2) 1o (Y1, y2) = 1. Otherwise,
if (x1,91) < (z2,y2), then it is immediate to see that

Z :UP(xlat)'luQ(ylau):O-

(z1,91)<(t,u)<(z2,y2)
Hence (3.1) is satisfied and it determines ppxq((21, Y1), (22, y2)) uniquely.

(¢c) Let » € N. By combining (a) and (b) above, we can determine the
Mobius function of a direct product P of r locally finite chains. W.l.o.g.,
we can assume that each chain has finite length > 1 and we can com-
pute pp(0,1), where 0 and 1 are the minimum and maximum of P,
respectively. If all chains have length 1, then P is isomorphic to the
boolean lattice B, and pp(0,1) = (—1)". Otherwise, if there exists a
chain of length > 2, then up(0,1) = 0. We will extend this example
with Theorem 3.1.14 in §3.1.1.

(d) By applying (c¢), it is immediate now to represent the number-theoretic
Mébius function g : N — {0,£1} through the Md&bius function of a
locally finite poset. Let P = (N, =), so that m < n < mln. P is a
locally finite poset and the interval [1,n] in P is isomorphic to a direct
product of chains. Thus,

pup(l,n)=p(n) VneN.
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(e) Let V ~ Fy and let Sy be the subspace lattice of V. If U < W in
Sy, then the interval [U, W] is isomorphic to the subspace lattice of
W/U ~ T for some m < n. Therefore, u(U, W) in Sy depends only on
the dimension of the quotient space W/U. We will show how to easily
compute p(0,V), by using Theorem 3.1.10.

Let x and y be two elements of the poset P, such that x <y. Let C C P
be a chain such that its minimum is x and its maximum is y. Then, we say
that C is a chain from z to y. In a finite interval [z, y], the chains from x
to y determine the M6bius function of the interval, as follows.

Theorem 3.1.3 (P. Hall). Let (P, <) be a locally finite poset, and let x,y € P
such that © < y. Then

nlzy)= Y ()19

Ce’c.’l),y
where Kyy={C C P |C is a chain from x to y}.

Hall’s Theorem can be easily proven by induction on the length of [z, y]
and it provides a tool which is useful to characterize and estimate the Mobius
function on several occasions.

Example 3.1.4. Let P be a locally finite poset and P* its dual. If [z,y] is
an interval in P, then

ly, 2] ={te P* | y>t>a} C P*

is a finite interval in P*, and it is essentially the dual of [x,y]. Let K, be
the set of all chains from z to y in P, and let ICg,x be the set of all chains
from y to = in P%. Clearly, there is a one-to-one correspondence from Kz.y

to IC?,J, such that every chain of length r in K, corresponds to a chain of
length r in Ing . Therefore, by Proposition 3.1.3 we have that

p(x,y) = pf(y, @), (3.2)
where g is the Mobius function of P and yuf is the Mdbius function of P*.

Remark. If we apply the recursive formula of Definition 3.1.1 to the M&bius
function pf of the dual poset P, for y > x in P* we have that (3.1) turns

into
> W y,t) =0,
y>t>z
which can be equivalently written as

Z p(ty) =0.

r<t<y
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by (3.2) of Example 3.1.4. So, for x <y in P, the M&bius function of P can
be defined also by

p(y,y) =1  and Z p(t,y) =0 if x <y. (3.3)

z<t<y

Depending on the specific circumstances, sometimes (3.3) is more convenient
than considering (3.1).

If L is a locally finite lattice, then each interval [z,y] in L is a finite
lattice. So, we may assume that L is a finite lattice with minimum 0 and
maximum 1. We are interested in pur(0,2) and pr(z,1) for z € L. The
following result is often helpful, because it allows us to ignore all elements
which are not meets of coatoms or, dually, which are not joins of atoms.

Proposition 3.1.5. Let L be a finite lattice. Let M be the set of coatoms
in L, and N be the set of atoms in L.

(i) Let M  ={x1 A--- ANz, €L | x1,...,2. € M, 7 > 1} U{1}. Then

{ :U’L(xvi)::uMA(xai) ’ifl‘GMA
0

pr(x, 1) = otherwise.

(i3) Let NV ={y1V---Vy. €L | y1,...,yr € N, r > 1Y U{0}. Then

{ IL’LL((j?y):Iu’N\/(O’y) Z'fﬂj‘ENV

pr(0,y) =0  otherwise.

Both (i) and (é¢) in Proposition 3.1.5 can be easily proven by induction
on the length of [x,1] and [0,y], respectively. We want to observe that this
kind of proof needs Definition 3.1.1 for (i) and the equivalent definition as in
(3.3) above for (7). Proposition 3.1.5 can also be considered as a corollary of
the next more general result, which is referred to as the Crosscut Theorem.

Theorem 3.1.6 (Crosscut Theorem). Let L be a finite lattice with min-
imum 0 and mazimum 1, so that 0 # 1. Let M be the set of all coatoms in
L. Let X C L be a subset such that M C X and 1 ¢ X. Then

p(0.0) = 3 (-]
Yey

where
Y={YCX |Y#0 and J\ y=0}.

yey
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Consequently, assuming X = M, we can say that (0, 1) is the difference
between the number of ways to express 0 as a meet of evenly many coatoms
in L and the number of ways to express it as a meet of oddly many coatoms.
In particular, if 0 is not a meet of coatoms in L, then ,UL(O, i) = 0.

Remark. In the dual version of the Crosscut Theorem, N is the set of all
atoms and it takes the place of M above. Then we assume that X C L is a
subset so that N € X and 0 ¢ X. The conclusion is essentially the same,
but we have to use the joins of elements in X that are equal to 1.

Among other applications, Theorem 3.1.3 and Theorem 3.1.6 establish an
interesting connection between combinatorics and algebraic topology. The
bridge between these two areas is an interpretation of the Mobius function as
a reduced Euler characteristic of a special simplicial complex (for elementary
definitions, see for instance [29]). We mention the main result, giving a brief
description, but we refer to [41] for all details.

Let P be a finite poset and let P denote {0} UuPU{l},ie P with an
extra minimum 0 and an extra maximum 1 adjoined. Then, by Theorem
3.1.3, we have that

pp(0,1) = =y +72 — s+ ... (3.4)

where each 7; is the number of chains of length i from 0 to 1 in p. Clearly,
if we consider a chain 0 = To <2 < < X1 < Ty = 1 of length 7 in P
then z1 < --- < z;_1 is a chain of length 1—2in P. We observe that v; = 1.
Now, for the same finite poset P, we define the simplicial complex o(P)
as follows. The vertices of o(P) are the elements of P, and the faces of
o(P) are the chains of P. This is the reason why o(P) is called the order
complex of P. We remind that the Euler characteristic of o(P) is

X(EP) =) (-)Fi=F-Fi+F-F+... (3.5)

%

where each F; is the number of i-faces of o(P). Topologically, a 0-face is a
single point (i.e., a chain of length 0 in P), a 1-face is a segment (i.e., a chain
of length 1 in P), etc., so that we have that F; = ~;42 for all ¢ > 0.

Proposition 3.1.7. Let P be a finite poset. Then
up(0.1) = (o (P)) (3.6)
where X(o(P)) = x(o(P)) — 1.

X(o(P)) is the so-called reduced Euler characteristic of o(P), which
also counts —F_; = —1 in (3.5), where F_; is the number of —1-faces of
o(P). There exists a unique —1-face, that is the empty face () of o(P).

30



Chapter 3, § 3.1

Remark. If L is a finite lattice, there exist a minimum 0 and a maximum 1
in L (and we may always assume 0 # 1). Let L* = L\ {0, 1} be the subposet
of L given by L without minimum and maximum. Then (3.6) turns into

pr(0,1) = X(o (L") (3.7)

Moreover, let X and ) be the same set as in Theorem 3.1.6, so that

)= (=,

Yey

—>

11,0,

and define ¥ :={Y C X | Nyey ¥ # 0} U{0}. Thus, we have that
pr(0,1) == 3" (- = 3" (-
veyt ve)t
and, if we identify WL with a simplicial complex, we obtain
X(o (L) = pr(0.1) = XOP). (38)

This proximity of the Mobius function to topological objects can be no-
ticed also in the following theorem, known as Crapo’s Closure Theorem.

Definition 3.1.8. Given a partially ordered set (P, <), a closure operator
on P is a function c¢: P — P satisfying the following three conditions:

o VxeP x<c(x);
o Vz,ye P z<y = c(z)<c(y);
e VzeP cle(x))=c(x).

Notation. The closure can be denoted by ~: P — P and z — Z.

By analogy to topology, an element z in P is said to be closed with
respect to the closure c if ¢(x) = . Then

P={reX | c(z)=x}

is the subposet of closed elements in P.
If P is locally finite and c is a closure operator on P, then P is locally
finite. Let up and pp be the Mobius functions of P and P, respectively.

Theorem 3.1.9 (Crapo’s closure theorem). Let P be a locally finite poset
and let ¢ : P — P be a closure operator on P. Fix x,y € P so that
c(y) =y € P. Then

S pipla, ) = { pp(r,y) if x=c(z)

0 otherwise
z€eY

where Y ={z€ P | c(2) =y }.
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A proof can be found in [12]. Moreover, in [11] there is another remark-
able theorem due to Crapo that we want to mention.

Theorem 3.1.10 (Crapo’s complement theorem). Let L be a finite lattice
with manimum 0 and mazimum 1. Let x € L and let - be the set of
complements to x in L. Then

p0,1) = D u0,9)¢(y, 2)u(z 1)

y,z€xL

where ( : P X P — 7 is defined as

C(y,Z)Z{ 1 ify<z;

0 otherwise.

In particular, if x+ is an antichain, then we have

p0,1) = Y u(0,y)p(y, 1). (3.9)

yExt

As an immediate application, we can use (3.9) to compute u(0,V},) on
the subspace lattice Sy, of a vector space V;, ~ Fy, in the following way. Let
T € Sy, be a subspace of V' of dimension 1. We notice that a complement
of T in Sy, is a subspace W of dimension n — 1 such that T £ W. We
observe that such a complement W is a coatom of Sy, hence u(W, V) = —1.
Moreover, for each complement W we have that (0, W) = u(0, V,,—1), where
Vo1 ~F2~1 . By (3.9), we obtain that

p(0, Vo) == > (0, Vyoy) = =T - (0, V1)
weTt

where T is the set of complements of 7. So, we need the number of com-
plements of T'. The number of subspaces of V,, dimension n — 1 is

n
n—1 q

and the number of subspaces of dimension n — 1 containing T is equal to the
number of subspace of dimension n — 2 in V,,/T ~ V,,_4, that is

n—1
< > =¢" P+ + 41,
n—2 q

We conclude that p(0,V,,) = —¢" (0, V,,_1). By induction, there follows
that .
(0, Vo) = (—1)"q" "2 g = (~1)7ql3). (3.10)
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3.1.1 Order ideals and finite distributive lattices

Now we want to highlight some results which directly involve order ide-
als. In the following chapters, it will become clearer why we look at the role
of these structures with special interest. The following is a natural general-
ization of the number-theoretic Mdobius inversion formula.

Theorem 3.1.11 (M&bius inversion formula). Let P be poset for which every
principal order ideal is finite. Let K be a field and f : P — K be a function.

For all x € P, let
g(x) =Y fy).
y<w

Then, for all x € P we have that

fl@) =" gnulyx)

y<w
where 1 is the Mébius function of the principal order ideal P<,.

Example 3.1.12. Theorem 3.1.11, combined with equation (3.10), can be
used to count the number of spanning subsets of a vector space V ~ Fy'.
This result can be found in [41] and the same idea can be actually applied
to determine the number of generating sets for a finite group. We will focus
on such a question in §3.2.

Let L be a finite lattice with minimum 0 and maximum 1, and let I C L
be an order ideal of L. In the following theorem, we see how we can obtain
information on uz(0,1) in terms of I and its Mdbius function. Actually,
we will consider I := I U {1}, that is I with the maximum 1 adjoined (we
observe that clearly, by definition of an order ideal, 0 € T ). The outcome is
particularly relevant if we are interested in computational problems related
to the Mobius function of the lattice, because a large ideal I C L would allow
us to give a more precise estimate of L((), i). An example of application of
Theorem 3.1.13 will be given in Chapter 5 to express the Md&bius function
of finite linear groups in terms of the ideal of reducible subgroups defined in
Chapter 4.

Since it is so relevant, and even if it can be seen as a consequence of [3,
Theorem 5.5|, we prefer to provide a direct proof for Theorem 3.1.13 based
on Hall’'s Theorem (Theorem 3.1.3).

Theorem 3.1.13. Let L be a finite lattice with minimum 0 and mazimum
1, and let I C L be an order ideal of L. Let I =TI U{1}. Then

pe(0,1) = up(0.1) + D pz_ (0.9) - prly, 1) (3.11)
yGL\f

where Toy={zel|z<y}uU{y}.
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Remark. Notice that, if 1 ¢ I, then T # L and (3.11) can also be written
as

pe(0.1) = > pp (0,) - pely 1) (3.12)
yeL\I

since f<i =T and pp(i,1)=1.
Proof. Let K be the set of all chains from 0 to 1 in L, and let

K;={CeK|CCTI}

be the subset of K whose elements are the chains C contained in 1. By
Theorem 3.1.3,

pr(0,1) =) (=) =" (=)D + Y (-9

ceK Ceky CeR\Ky

=pp(0,1) + Y (D1, (3.13)
CeK\K;

We focus onto the second term on the right-hand side of (3.13). If C' € K\K7,
then C'\ I is a chain in L and C'\ I has a minimum element y # 0. For each
ye L\ I we set

Ky, ={C € K\ Kz |y is the minimum of C'\ I}.
Then we define
Jy=1{D C f<y | D is a chain from 0 to y in f<y},
L, ={E C Ls, | Eis a chain from y to 1 in Ls,}
and observe that there is a bijection
B:TyxLy—=Ky, (D,E)—DUE.

between J, x L, and K,. Clearly the map f is well-defined and, if C' € ICy,
then C' can be uniquely represented as an union C' = DUFE, with D € J, and
E € L. In particular, |C| = |D|+ |E|—1 and therefore £(C') = ¢(D) +{(E).
Thus we have

S EDEO = ST (CDARHE) 2 Y (D) ST (i)

Cek, (D,E)ETy %Ly DeJ, EeL,

= :U’f<y (0’ y) ’ NL(ya ]-)
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where the last equality is given again by Theorem 3.1.3. Since
Yo DW= Y ()19,
Cek\K+ yeL\T CEKy
we can write (3.13) as
pe(0,1) = pp(0,1) + D7 pz (0.) - prly. 1)
yeINT

O

Remark. In Theorem 3.1.13 we assume that L is a finite lattice because we

need the existence of a maximum 1 and a minimum 0. But actually no other
special property of lattices is required.

Finally, order ideals can be applied to determine the Mobius function of
a finite distributive lattice.

Let L be a finite distributive lattice. Hence, by the fundamental Theorem
2.2.16, we have that L ~ O(P) for the subposet P = JI(L) of join-irreducible
elements of L. In particular, the isomorphism between L and O(P) is given
by f: L — O(JI(L)) so that

f(x) ={acJI(L)|a<x}.
By I, we denote the ideal f(z) € O(P), for all x € L. So, for example,
Iy={acJ(L)|a<0}=0 and I; =2{acJI(L)]|a<1}=1JI(L)
We remind that O(P) is ordered by inclusion.
Remark. For every interval [I,I'] of O(P) we have that
1,7 = O(I'\ T)

where I’ \ I is regarded as an induced subposet of P. We also notice that
every interval [I,I'] of O(P) is distributive and I' \ I = JI([I, I']). Let A be
the set of atoms in the subposet I’ \ I. Then, the join of all atoms in [I, ']
is the order ideal I U A. Therefore, I’ is a join of atoms of [I, I’] if and only
if the interval [I, I'] is a boolean lattice.

Let x,y € L so that x <y. Then I, C I, and we apply the above remark,
together with Corollary 2.2.17 and (c¢) of Example 3.1.2, to say that

(=1)Ho\ el = (—1)é(HzTu]) if [I, ] is boolean;

por)Ie, Iy) =
0 otherwise.

Thanks to the isomorphism f : L — O(JI(L)) sending x to I, we can
conclude as follows.
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Theorem 3.1.14. Let L be a finite distributive lattice, and let x <y in L.
Then

(=1)X=vD) if [,9] is boolean;

0 otherwise.

pr(r,y) = {

In particular,

(—1)PHE) if L is boolean;

0 otherwise.

ML(Oﬂ i) = {

3.2 The Mobius function of groups

Let £(G) denote the subgroup lattice of a group G. Let G be a group
such that £(G) is locally finite. The M6bius function of G is the Mébius
function of its subgroup lattice, that is p : £(G) x L(G) — Z such that

W(H,G)=1 if H=G

S u(K,G)=0 if H£G.
H<K<G

Usually the M6bius function of G is also written as a one-variable function
pa  L(G) = Z

such that
ua(H)=1 if H=G

S ue(K)=0 if H£G.
H<K<G

So, the expression p;(-) will simply substitute u(-, G) in the classical nota-
tion presented in §3.1. Clearly, all properties that we have shown for abstract
posets and lattices have a group-theoretic counterpart.

Example 3.2.1.

(a) If we consider the classical Mobius function p : N — {0, £1}, then we
have that

p(n) = pz(nZ) = pc, (1)
for each cyclic group C), of order n € N.

(b) Let G and G2 be two finite groups of coprime order. Let H; < G and
H2 S GQ. Then

pw(Hy x Ha, Gy x G2) = p(Hy, Gh) - p(Hz, Ga).
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The subgroup lattice £(G) has a maximum and its coatoms correspond
to the maximal subgroups of G. So, for £L(G), Theorem 3.1.5 can be read as
follows.

Proposition 3.2.2. Let G be a group and let H be a subgroup of G of finite
index. If pg(H) # 0, then either H = G or there exist mazimal subgroups
My,...,M, of G such that H =My N---NM,.

Remark. It is not difficult to see that the converse of this fact is false. An
easy counterexample is given by the following solvable group of order 20

G=CyxCs5=(x,t|th=2"=1, 2" =2?),

whose maximal subgroups are K := (t?) x (z) and M; := (tz*) for i =
0,...,4. Since M; N M; = 1 for i # j, we have that the trivial subgroup
1 is an intersection of maximal subgroups of G. By definition of ug, we
notice that pug(K) = pug(M;) = —1 (this is an obvious general property of
maximal subgroups), and ug(K N M;) = 1 for all i = 0,...,4. The only
other subgroup in the lattice £(G) is C5 = (x), which has index 4 in G and
is contained only in K. Therefore, u(C5) = 0. An easy calculation shows
that
pe() == Y ne(H)=0.

14£H<G

3.2.1 Some related questions

In [23] and [24], Kratzer and Thévenaz investigate, among others, con-
ditions under which the converse of Proposition 3.2.2 holds for finite solv-
able groups and they can obtain many interesting results characterizing the
Moébius function of such groups.

Example 3.2.3. Let G be a finite nilpotent group and let H be a proper
subgroup of G. Then, ug(H) # 0 is equivalent to saying that H is an
intersection of maximal subgroups in G. Indeed, if H is an intersection of
maximal subgroups of a finite nilpotent group G, then H is normal in G and
w(H,G) = u(l,G/H). Moreover, G/H is abelian because G’ < ®(G) < H,
where G’ denotes the commutator of G and ®(G) the Frattini subgroup.
Hence G/H ~[];_, ng, where each C’gj is isomorphic to ng with p; prime.

Therefore .

(i, G) = [0

i=1
by (b) in Example 3.2.1.

By using Crapo’s Complement Theorem (Theorem 3.1.10), Kratzer and
Thévenaz are even able to find a formula for pug(H) in all finite solvable
groups.
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Theorem 3.2.4 (|23, Théoréme 2.6). Let G be a finite solvable group. Let
1=G,<1G,.1 <4--- <G Gy =G be a chief series of G, and H < G.
We can consider the series

H=G,H< G, 1HL ---<Gi1H<GyH =G (3.14)
whence we have the following series given by all distinct terms in (3.14):
H=H.<H, _1<---<H{<Hy=0G.

Let s; be the number of complements of H; in the interval [Hi1+1,G] C L(G),
foralli=1,...;r—1. Then

r—1
wH,G) = (-1)" Hs

Solvable groups represent an important source of problems related to the
Moébius function. For instance, if G is a finite solvable groups, we can receive
information on p¢g also from the Mébius function that can be defined on the
poset I'(G) of conjugacy classes of subgroups in G.

Let G be a finite solvable group. Let H, K < G and let [H] and [K]
denote their conjugacy classes in G. We say that

[H<[K] nI(G) <« H<KYI forsomegeG

and we denote by A(H,G) the value urq([H], [K]) given by the Mobius
function pr )y of T'(G). Let p be the usual Mobius function on the subgroup
lattice £(G). Then, Pahlings shows in [33] that

W(H,G) = [N (H) : G' 0 H| - MH, G) (3.15)

extending a previous result contained in [19] for the trivial subgroup 1 < G.
It is observed in [33] that Equation (3.15) seems to be true for many non-
solvable groups as well, but not for all of them. Some recent results, together
with examples and counterexamples, are given in [14] by Dalla Volta and
Zini. Moreover, Dalla Volta and Lucchini in [13] have recently generalized
the Mobius function A, by considering the Md&bius function defined on the
poset of the A-conjugacy classes of subgroups of GG, where A is a subgroup
of Aut(G). In this work, there are also some generalizations of Hall’s results
in [16], that we will now introduce as a further motivation.

Hall’s interest in the Mobius function of finite simple groups is motivated

by questions concerning the probability of generating groups. As in [16], let
G be a finite group and let

or(G) = #{(91, .- ) € G* | {91, 0) = G}
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be the number of ordered k-tuples of elements in G which generate the group,
so that we define
_ ok(G)

PG R = S (3.16)

as the probability that k elements (independently chosen) generate G. Sim-
ilarly, for all subgroups H < G, we set

ou(H) = #{(g1.--- ) €G" | (g1,-...q0) = H}.

Then

> en(H) =G

H<G
and by applying the Mobius inversion formula (Theorem 3.1.11) on the sub-
group lattice £(G), we immediately obtain

or(G) = Y [H|*u(H,G).

H<G

Thus, (3.16) can be written as

P gy = S et
}%:G|G:H|k

In [27], Mann proves that a similar result holds for all finitely generated
profinite groups, as we explain in the following paragraph.

We recall that a profinite group is a compact, Hausdorff, and totally
disconnected topological group (see [44| for more details about this defini-
tion). If G is a profinite group, then a subgroup of G is said to be open if
it is also an open subset with respect to the topology of G. We denote by
H <, G an open subgroup of G and we observe that the index of H in G is
finite, since GG is a compact topological group.

Let G be a profinite group and let X be a subset of G. We say that
X (topologically) generates G if the subgroup (X) < G generated by X
is dense in G. If there exists a finite subset X that generates GG, then G is
called finitely generated. We have the following interesting property for
finitely generated profinite groups (see Proposition 2.5.1 in [34]).

Proposition 3.2.5. Let G be a finitely generated profinite group. Then, for
each n € N, the number of open subgroups of G of index n is finite.

Remark. Moreover, it is worth recalling that an important theorem of
Nikolov and Segal (Theorem 1.1 in [32]) states that in a finitely generated
profinite group, every subgroup of finite index is open. It implies that the
topology of a finitely generated profinite group is completely determined by
its underlying abstract group structure.

39



Chapter 3, § 3.2.1

Hence, if £(G), denotes the lattice of open subgroups of a finitely gen-
erated profinite group G, by Proposition 3.2.5 we have that L(G), is locally
finite. Therefore, we can define recursively the Md&bius function associated
with the lattice £,(G) of the open subgroups in G as

pa : Lo(G) = Z
such that
pe(H)=1 if H=G
S ue(K)=0 if H<,G. (3.17)
H<,K<,G

Remark. Obviously, (3.17) generalizes the definition given for finite groups.
A finite group G is endowed with the discrete topology, hence every subgroup
of G is an open subgroup. Also in this case, ug(-) has the same meaning as

N('aG)‘

If G is a finitely generated profinite group, then the direct product G*
admits a normalized Haar measure v.

Notation. By (g1,...,9x) = G we mean that the elements g1, ..., gy topo-
logically generate G.

The set
{(gla'-'agk) EGk | <glv"'agk> :G} C Gk

is a closed subset of GF, hence it is measurable with respect to v. We
can define the probability P(G, k) that k random ordered elements (chosen
independently and with possible repetition in G) generate the whole group
as

PG k) =v ({91, 00) € G | Tgr, a6 = G}) .

A profinite group G is said to be positively finitely generated (PFG)
if P(G, k) > 0 for some choice of k € N.
Mann shows that for all £ € N we have

P(G, k) = Z pa(H)

CHIF
HSOG]G.H]

Moreover, he conjectures that if G is a PFG profinite group, then P(G,k)
can be interpolated in a natural way by an analytic function defined for all
s in some complex right half-plane, and that this function can be expressed

as
pa(H
Pt = 3 (B
H<,G '

Since only subgroups with non-zero Md6bius coefficient for G occur in the
sum, the growth of their number could provide useful information for the
convergence of the series Pg(s). In particular, we need some specific notions
of growth, as follows.
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Notation. Let b,(G) denote the number of open subgroups H of index n in
G satisfying uq(H) # 0.

We say that by, (G) grows polynomially if b,(G) < n! for some ¢ indepen-
dent of n. Similarly, ug(H) grows polynomially (in terms of the index) if

| (H)| is bounded above by a polynomial function in the index of H in G,
ie. if [ug(H)| < |G : H|" for some u independent of H <, G.

Theorem 3.2.6. Let G be a PFG group. The series P(G,s) is absolutely
convergent in some complex half-plane if and only if both ug(H) and b,(G)
grow polynomaually.

Proof. Obviously if P(G, s) converges absolutely, then |ug(H)| must be poly-
nomially bounded by |G : H|. Since ug(H) is an integer, the subgroups of
index n contribute at least b, (G)/n® to the series of absolute values, so b, (G)
also grows polynomially. Conversely, if |ug(H)| and b, (G) are polynomially
bounded in terms of |G : H| and n respectively, then there exists a large
enough constant C' > 0 such that for all s, with R(s) > C, the series is
absolutely convergent. d

Conjecture 3.2.7 (Mann, [28]). Let G be a PFG group. Then |uc(H)| is
bounded by a polynomial function in the index |G : H| and by(G) grows at
most polynomially in n.

We recall that a group is monolithic if it contains a unique minimal
normal subgroup.
Let G be a finitely generated profinite group.

Notation. We denote by A(G) the set of finite monolithic groups L such that
soc(L) is non-abelian and L is an epimorphic image of G .

If L € A(G), then let b},(L) be the number of subgroups K < L such
that |L : K| =n, Ksoc(L) =L and pr(K) #0.

Theorem 3.2.8 (Lucchini, [25]). Let G be a PFG group. Then the following
are equivalent.

(1) There exist two constants vy , y2 such that
bn(G) <n"  and |pe(H)| <|G:H|™
YV n € N and for each open subgroup H of G .
(ii) There exist two constants ¢1, co such that
B(L) <n and  |pr(X)] < |L: X[
VLeAG),VYneN and for each X < L with L = X soc L.

Thanks to Theorem 3.2.8, Mann’s conjecture can be stated just in terms
of finite monolithic groups with non-abelian socle.
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Conjecture 3.2.9 (Lucchini, [25]). For any positive integer d € N there
exists a constant cq such that the following holds: if L is a d-generated finite
monolithic group and soc L is non-abelian, then

b(L) <% and  |up(X)] < |L: X[
for each n € N and each X < L with L = X socL.

Actually, Conjecture 3.2.9 can be reduced to finite almost-simple groups.
A finite group G is called almost-simple if there exists a non-abelian simple
group S such that S < G < Aut(S5).

Conjecture 3.2.10. There exist two absolute constants 1, v such that for
each finite almost-simple group G we have

(1) |WK,G)| <|G: K" foral K <G;
(17) bp(G) <n foralln € N.

It means that if Conjecture 3.2.10 is true, then also Conjecture 3.2.9 is
true. By Theorem 3.2.8, Mann’s conjecture would be proven for all PFG
profinite groups.

Now, the idea is to use the classification of finite simple groups to study
Conjecture 3.2.10 for different classes of finite almost-simple groups.

In [10], Colombo and Lucchini proved that the alternating and symmetric
groups (Alt(n), Sym(n), for n > 5) satisfy Conjecture 3.2.10, so that they
obtained a proof of Mann’s conjecture for finitely generated profinite groups
with the property that all the non-abelian composition factors of every finite
epimorphic image are permutation groups of alternating type. The argu-
ment in their proof is based on an application of Crapo’s Closure Theorem
(Theorem 3.1.9), as we will see at the beginning of Chapter 5.
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The reducible subgroup ideal

In this chapter we start to investigate properties of the Mobius function
of finite classical groups, with emphasis on the linear case of GL(n, q). Most
of the presented results are an original revision of some ideas and methods
used by Shareshian in [38] to determine the number (1) for this kind of
groups. We want to generalize Shareshian’s outcome to any subgroup H in
the subgroup lattice of G, with the purpose of finding estimations which can
be helpful to study the conjectures of §3.2.

A central role is played by the reducible subgroup ideal, which is defined
in §4.1 for a given subgroup H < G and denoted by Z; (G, H). In §4.2 we see
that it is possible to give an expression of its Mdbius function by using only
subsets of the lattice of H-invariant subspaces. This is interesting because
it allows to exploit the computations that are presented in §4.3. In §4.4,
attention is drawn to distributive lattices.

4.1 Definition of the ideal Z,(G, H) and notation

By a finite classical group we mean one of the linear, unitary, orthogonal
or symplectic groups on finite vector spaces. General references for defini-
tions of such groups are, for instance, [2], [6] and [42]. Our main results
do not depend on the classical form defined on the vector space V', and if
necessary, we focus on linear subgroups of GL(V'). For this reason, we are
not interested in recalling here all the properties related to classical forms on
V. Nevertheless, it is important to remember that Kleidman and Liebeck in
[21] give a very detailed description of finite classical groups and their sub-
group structures, which are analysed starting from the fundamental results
of Aschbacher in [1].

Let G be a finite classical group: Aschbacher establishes the existence of
nine classes of maximal subgroups of G, denoted by C;(G) for i = 1,...,9,
such that each H < G is contained in a subgroup M € C;(G), for some
i =1,...,9. The precise description of Aschbacher’s classes for every finite
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classical group G is not easy and would be beyond the scope of this thesis,
but a rough description is useful to understand what will follow.

So, if G is a finite classical group defined for a vector space V ~ Fy, we
have 8 classes of geometric maximal subgroups of G:

e C;(G): maximal reducible subgroups of G (stabilizers of subspaces);

o C3(G): stabilizers of decompositions V = @;:1 Vj, such that the di-
mension of all V; is the same (dim(V}) = a for all j. Hence, n = at);

G

stabilizers of prime degree extension fields of Fy;

Q

stabilizers of tensor decompositions V =V} ® Vo;

Q

stabilizers of prime index subfields of Fy;

):
):
):
G):

Cs(
Ca(
o Cs(
Cs( normalisers of symplectic-type r-groups with ged(r, q¢) = 1;

e C7(G): stabilizers of decompositions V' = ®§-:1 Vj, such that the di-
mension of all Vj is the same (dim(V;) = a for all j. Hence, n = a');

e C3(G): classical subgroups.

The ninth class Cy(G) is the class of almost simple groups which do not lie in
any of the other eight classes. Using the notation of [21], this class is usually
referred to as the class S.

In his doctoral thesis [38], Shareshian tries to figure out how he can
compute (1, G) for several finite classical groups. His idea is to approximate
p(1, G) through a good function fagnp(u,1), which allows to obtain a formula
of the following type:

n(1,G(n, p*)) = fG,n,P(uv 1)+ Z w1, K). (4.1)
KeCy

Here G = G(n,p") denotes a family of finite classical groups with the same
defining classical form, which act in a natural way on the vector V of finite
dimension n over the finite field of order ¢ = p*. If Cq,...,Cs,Cy are the
above described classes for the subgroups of G, then the function fg p ,(u, 1)
provides an estimate of u(1,G) with respect to the contributions given by
the subgroups of G which belong to the classes C;, for i € {1,...,8}.

Actually, Shareshian’s approach focuses on the first class C;(G), that is
the class of reducible subgroups of G. He studies in detail this class, and
then tries to consider groups for which most of the other classes are empty.

In particular, the reducible subgroups of G contribute to fgnp(u,1)
through the computation of the Mdébius function of

7.(G) = {K < G| K < M for some M € C,(G)} U{G?},
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which is obtained by adjoining the maximum G to the order ideal
Z,(G) ={K <G| K <M for some M € C;(G)}.

We observe that Z;(G) = L(G)<c, () is the order ideal in £(G) generated
by C1(G), and its definition is independent of the classical form on V. We
have that

'u(l’ G> - Mfl(G)(l’ G) - Z :u(la K) (42)
K<G
K¢ (G)
where
1z, ) (L G) = = Z pr, o) (1, K) = — Z (1, K)
KeT,(G) KETy(G)

by the general definition of an order ideal and by construction of uz, ().

Shareshian is indeed able to obtain explicitly fg . p(u,1) when many of
the classes C;(G) are empty, for i > 2. Therefore, he considers orthogonal
groups in odd characteristic and prime dimension, assuming some special
condition on n. He also obtains some results when G is a linear group in
odd characteristic and dimension 2. For some groups he even finds the exact
value of p(1,G).

Shareshian only considers the case of the trivial subgroup H = {1},
but his methods seem to suggest a general strategy for the computation
of u(H,G), for any non-trivial reducible subgroup H < G. Since we are
interested in all values of the M&bius function of G, and not only in u(1,G),
now we proceed from the following question to generalize the argument of
Shareshian for all subgroups H of a finite classical group.

Question. Can (4.1) and (4.2) be generalized to any subgroup H # {1}7

The positive answer is immediate, as we can see with the following Defi-
nition 4.1.1 and Equation (4.3).

Let H < G and consider the lattice
L(G)sn={K <G| H<K)

of subgroups containing H so that the intersection C1(G) N L(G)>p is the
set

Ci1(G,H) = {stabg(W) |0 < W <V, H C stabg(W) }

of maximal reducible subgroups of G containing H. So, we can define an
analogue of I1(G) as follows.
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Definition 4.1.1. The reducible subgroup ideal in £(G)> g is the order
ideal generated by C1(G, H). Namely,

T,(G,H) ={K <G| H <K < M for some M € C;(G,H)}

Remark. If H is reducible, then H € 7;(G, H). Otherwise, if H is irre-
ducible, clearly we have that H ¢ Z,(G, H) and Z;(G, H) = ) is the empty
ideal.

Notation. If H is reducible, we set
T.(G,H) = T, (G, H) U{G} .

by adjoining the maximum G to Z;(G, H), which has minimum H. Other-
wise, if H is irreducible, we set 7, (G, H) = {H, G} by adjoining the minimum
H and the maximum G to the empty poset ().

Then, similarly to (4.2), we have

WH,G) = iz, . (H.G) = Y plH.K) (4.3)
K¢T)(G,H)
H<K<G
where piz 5y is the Mobius function on Z; (G, H). So, if we are able to
compute
K7, (G, H) (H,G),
then we could try to study the sum over the other non-empty Aschbacher
classes as suggested by Shareshian in his thesis.

In Chapter 4.5, we will see an example in this direction. Under some
particular conditions, we will compute the value pu(H, G) for some particular
subgroup H of G. A different use of the Mdbius function of Z;(G, H) will
be explained in Chapter 5 to study u(H,G).

Definition 4.1.2. Let G be a finite classical group and let H be a subgroup
of G. Let Z; (G, H) be the reducible subgroup ideal of £(G). We say that

,Ufl(G7H)(H7 G)

is the Mdbius number of Z,(G, H) , where Z,(G, H) is defined as above.
In particular, if H is irreducible, then Z,(G, H) = {H,G} and

“fl(G,H)(H7 G)=-1.

Therefore, the definition of the Mobius number of Z;(G, H) is interesting
especially when H is a reducible subgroup of G.

Remark. It will be interesting to observe that our argument in §4.2 is again
independent of the classical form on the vector space V. We will only fix a
subgroup of GL(V') and then develop a purely combinatorial idea using the
lattice S(V, H) of H-invariant subspaces of V.
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4.2 The Mobius number of the ideal

We begin with fixing some more notation that will be used in this sec-
tion. In particular, they allow us to prove Theorem 4.2.4, giving a “first
approximation” of u(H,G).

Notation. Remind that S(V, H) is the lattice of H-invariant subspaces of V.
We define
S(V,H)" = S(V, H)\{0,V}.

Moreover, throughout the next sections, we will consider the following three
sets:

(a) W(G,H) = {X CCl(G,H) | Myrex M #HY:
(b) WG, H) = {Y CCL(G,H) | Myrey M = H};
(¢) V(G H) = {E CS(V,H)* | Myepstaba(W) # H}.

for H < G < GL(V).
We also remark that ) € U(G, H) and 0 € V'(G, H), but § ¢ ¥(G, H)C.

The aim is to express the Mobius number of the ideal Z; (G, H) by using
only the set W/(G, H), which is a set of H-invariant subspaces. This is useful
because we would only use properties of S(V, H) to characterize the Mébius
function of £(G)>p. We focus on some subgroup H, such that the lattice
S(V, H) is well-known. In particular, we will consider more deeply the case
when S(V, H) is distributive (see §4.4) or some particular case in Chapter
4.5.

We need a combinatorial lemma, that will be immediately applied to the
above defined sets.

Lemma 4.2.1. Let G be a finite group and H a subgroup of G. Let G act
on a finite set X, so that for all x € X

Gy={9e€G |29 =z}

is the stabilizer of x in G. Let X' C X be a subset such that H < G, for all
x € X', Set

e G={G, | z e X'};
e R={ECG | Ngep K#H}:
e S={QCX'| ﬂerGx;éH}.

Then
Z(_l)lE\ — Z(_l)\QI )

EcR QeS
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Proof. If Q is a subset of X', then let Gg = {G, | v € Q}. For every E € R,
we define

Se={QeS | E= Gy}

S=|]se

EecR
is the disjoint union of all the Sg, and it suffices to show that for each F € R

we have
(_1)|E\ - Z (_1)|Q\.

QESE

Then

Fix E € R and observe that
QeSy « Q=[] x,

KeFE
where Qg = {r € Q | Gy = K}. Then define, for each K € E,

Xy={zeX' | G,=K}C X,

and notice that Qx C X} . So, by using the principle of inclusion-exclusion
and the fact that the Qi are non-empty and can be chosen independently,

we get
Z (_1)|Q\ - H Z (_1)|QK| - H (-1) = (_1)|EI_
QESE KeFE \0#£QrCX}, KeFE

-~

=-1
O

As an immediate consequence, we find out a link between ¥ (G, H) ad
V'(G,H).

Proposition 4.2.2. Let V' be a vector space of finite dimension over F, .
Let H < G < GL(V). Then we have that

oo =pFl= Y (-l (4.4)
EeV/(G,H) XeV(G,H)

Proof. We consider the natural action of G on V. Then, by lemma 4.2.1,
the equality is an immediate consequence of the definitions of S(V, H)*,
Ci1(G,H),Y(G,H) and V'(G,H) . O

On the other hand, if we try to compute
Z (_1)|Y| )
Yew(G,H)C

we realize that, by Crosscut Theorem (Theorem 3.1.6), this sum is the link
to the Mébius number of Z; (G, H).
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Proposition 4.2.3. Let V be a vector space of finite dimension over F, .
Let H < G < GL(V). Then we have that

nz G = > (=)' (4.5)
Yew(G,H)C

Proof. In order to use Theorem 3.1.6, we need a finite lattice L and the set
of all coatoms in L. We observe that Z;(G, H) is a sublattice of L(G)>p,
because the subgroup generated by two subgroups K, Ko € Z:(G, H) is
either in Z; (G, H) or equal to G. Hence, fl(G, H) is a finite lattice, whose
coatoms are the subgroups in C;(G, H). Since

V(G H) ={Y CC(GH) | Y#0 and (| M=H},
MeY

by Theorem 3.1.6 we immediately obtain (4.5). O

Remark. We observe that (G, H) U ¥(G, H) is the power set of C;(G).
Since for every finite set A of cardinality n > 0 we have

0 =3 (M) 1k = -1y =0,
S

then clearly

> e Y (M=o (4.6)

XeV(G,H) YeU(G,H)C

If we put together equations (4.4), (4.5), and (4.6), we obtain an expres-
sion of the Mobius number of Z; (G, H) by subsets of S(V, H).

Theorem 4.2.4. Let V' be a vector space of finite dimension over F,. Let
H <G < GL(V). Then

_'ufl(G,H)(I_L G) = Z (_1)‘E| : (4.7)
EeV (G,H)
Proof. By (4.6), we have
Z (- = — Z ES
XeV(G,H) Ve (G,H)C

Then, by Lemma 4.2.2 and Lemma 4.2.3,

Z (_1)|E|: Z (_1)|X\:_ Z (_1)\)?\

Bew!(G,H) Xew(G,H) Yeu(G,H)E

= _Nfl(QH)(Hv G) .
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The sum

> (-

EeV(G,H)

coming from (4.6) can be exploited to estimate the Mobius function of G.
In the following section we shall develop methods to obtain information for
w(H,G), at least for some specific subgroup H < G such that the lattice
S(V, H) is known.

4.3 Some relevant sets of H-invariant subspaces

According to what we have mentioned in the last part of §4.2, we want
to introduce some special subsets of H-invariant subspaces.
First, we recall that by Theorem 4.2.4 we have

- Mfl(G’H)(Ha G) = Z (_1)|E| (4'8>
EeV/(G,H)

where
V(G H)={ECS(V,H)" | [ stabe(W)# H}.
WeFE

In order to simplify the computation in (4.8), we look for some subset
S C ¥/ (G, H), so that the sum can be split into the following two parts:

SoCE = Y E e S e,
EeV/(G,H) EcV(G,H)NS EeV (G,H)\S

In §4.3.1 and §4.3.2 of this section, we will introduce the following two
particular kinds of sets of H-invariant subspaces:

e N(V,H): the collection of non-spanning sets in S(V, H);
e D(V,H): the collection of decomposing sets in S(V, H).
Their union will be denoted by

T(V,H) = N(V,H)UD(V,H).

In §4.4 we will be interested in some particular case for which it will be useful
to split the sum in (4.8) in the following way:

_NfI(G’H)(Hv G) = Z (_1)‘E| + Z (_1)|E| .
EeW (G,H)NT(V,H) EeWw (G, H)\I(V,H)

We will show that, if the lattice S(V, H) is distributive and it has prime
rank, then

> (-D)IEl = 0. (4.9)

Eev/(G,H)\I'(V,H)
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It may be interesting to observe that, whenever the condition
I'(V,H) C ¥'(G,H) (4.10)
is satisfied, then

—17, c.mH, G) = Z (—DIE = Z (—1)El

EeV(G,H) EeT(V,H)

In Theorem 4.4.5, we will show that
ORCIERY
EcT(V,H)

for all subgroups H such that S(V, H) is distributive.

In Chapter 5, moreover, we will identify a class of subgroups such that

“fl(G,H)(Hv G)=0.

4.3.1 Non-spanning sets

We start with non-spanning sets of V. As we are considering, for some
reducible subgroup H < GL(V'), the lattice S(V, H) of H-invariant subspaces
in V, every subspace is H-invariant, unless otherwise stated.

Notation. Let H < GL(V) and let X € S(V, H) be a H-invariant subspace of
V. Since the context is clear, in the sense that we consider only H-invariant
subspaces, we denote by S(X, H) the principal order ideal S(V, H) generated
by T, instead of writing every time

Moreover, we have S(X,H)* = S(X,H) \ {0,X}. Clearly, if X =V, the
lattice S(X, H) coincides with S(V, H).

Definition 4.3.1. Let V be a vector space and H < GL(V). Let X €
S(V,H) \ {0}. We say that a set E C S(X, H) is non-spanning for X if

Y W#X.
WeFE
Notation. The collection of all non-spanning sets for X is denoted by
N(X,H)={ECS(X,H)" | Y W #X},
WeFE

where we exclude the possibility for subspace in E to be the zero-space

0. We also observe that for us the empty subset () is non-spanning, hence
e N(X,H).
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We see that, by using the Crosscut Theorem (Theorem 3.1.6), it is quite
easy to compute
>
EEN(X,H)

Proposition 4.3.2. Let V be a vector space of finite dimension over F,
and let H < GL(V). Let X € S(V,H) \ {0}. Then

Z (—1)lF = —ps(x,m)(0, X) (4.11)
EEN(X,H)

where pgs(x iy denotes the Mdobius function of S(X, H).

Proof. The equality follows immediately from the application of the dual
version of Theorem 3.1.6. We consider the lattice S(X, H), whose atoms
are contained in S(X,H)*. But 0 ¢ S(X,H)*, and 0 is the minimum of
S(X, H). Therefore, we have

ps(x,m) (0, X) = Z (—1)i7! (4.12)
FeN(X,H)t

where N(X,H)t = {F C S(X,H)* | Yyyep W = X} is the collection of
spanning sets for X in S(X, H)*. Consequently,

_,US(X,H)(OvX): Z (—1)|E|-
EEN(X,H)

In particular, for X =V we have

Corollary 4.3.3. Let V' be a vector space of finite dimension over Fy, and
let H < GL(V). Then

Z (—1)/El = —psv,m)(0, V),
EeN(V,H)

Remark. If H =1, clearly S(V, H) = Sy that is the subspace lattice of V.
We have that

>0 ()= s, (0.V) = (1)),

EeN(V,1)
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4.3.2 Decomposing sets

Asregards to D(V, H), we do not have such an immediate way to compute

>y

EeD(V,H)

as in the case of N(V, H). In this section we gather some general information,
that we shall use under additional assumptions in §4.4 or in Chapter 4.5.

Let V' be a vector space and H < GL(V). Let X € S(V,H) \ {0}. A
proper direct decomposition of H-invariant subspaces for X is given by
a subset A C S(X, H)* of proper subspaces of X such that

ZT:X
TeA

and
VI, o e A TiNTy,=0.

x=@r.

TeA

Remark. Since S(X, H)* = S(X, H) \ {0, X}, we observe that |A| > 2.

We write

We will denote by ©(X, H) the collection of all proper direct decompo-
sitions of H-invariant subspaces for X, namely

D(X,H) = {A CS(X,H)* | X = EBT}

TeA

Notation. With some abuse of notation, if A = {S1,...,S,} € D(V,H)
is a finite proper direct decomposition of H-invariant subspaces for X €
S(V,H) \ {0}, we could write sometimes

A:X=(PS;eD(X,H).
j=1

Observe also, in particular, that we do not care about the order in which we
write the 5.

We give now the following relevant definition.

Definition 4.3.4. Let V be a vector space and H < GL(V). Let X €
S(V, H)\{0}. A subset E of S(X, H)* is said to be a (proper) decomposing
set of H-invariant subspaces for X if it satisfies the two following conditions:

(Z) ZTGET = X;
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(73) there exists a proper direct decomposition A € ©(X, H) such that

VIieE ISeA: TCS.

The collection of all decomposing sets of H-invariant subspaces for X €
S(V,H) \ {0} is denoted by

D(X,H)={E CS(X,H)" | E is a decomposing set for X} .

Remark. Let F be a decomposing set of H-invariant subspaces for X and
let A € ®(X, H) be so that for every T' € E there exists S € A with T'C S.
Fix Sy € A, and set

F={WeEFE|TC Sy}

Then So =) yyerpW.

If V is a vector space of finite dimension over F,, then for every X €
S(V,H) \ {0} the cardinality |D(X, H)| is finite, and we have |E| < oo for
every E € D(X, H). In this case, we want to find a different way to express

S (-pE.

EeD(X,H)

First, we can compare two direct decompositions Ay, Ag € D(X, H) by
saying that Aj is finer than Ay if

vSeA; dJRe€ Ay suchthat S CR.

Lemma 4.3.5. Let V be a vector space of finite dimension over Fq, and let
H < GL(V). Let X € S(V,H)\ {0}. Let E = {Th,..., T} C S(X,H)*
such that E € D(X,H). Then there exists a unique finest proper direct
decomposition X = @}_, S; € D(X, H) such that each T; is contained in
some Sj .

Proof. Let X = @JL, S; and X = P2, S] be two direct decompositions in
D (V, H) such that each T; is contained in some S; and in some Sj.

Let I ={(j,1) : S;NS] # 0} (obviously |I| < oo). Since S Ty =V and
each T; is contained in S; N S} for some (j,1) € I, we have

X=& s;nS ed(V.H).
(J,hel

Since S(X, H) is finite, the result follows immediately. O

As a direct consequence of Lemma 4.3.5, we have the following.
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Proposition 4.3.6. Let V' be a vector space of finite dimension over Fy,
and let H < GL(V). Let X € S(V,H) \ {0}. Then there exists a surjective
function

Ox :D(X,H) - (X, H)

that maps each E € D(X, H) into the finest proper direct decomposition A
such that every T € E is contained in some S € A.

Notation. So, using the notation of Preposition 4.3.6, for all E € D(X, H) we
denote by Ox(E) the finest proper direct decomposition A such that every
T € F is contained in some S € A. If the context is clear, we can just write
O(E). There is an equivalence relation on the set D(X, H) induced by 0Ox,
whose equivalence classes are

D(X, H)a = {E € D(X, H) | 0x(E) = A) = 051 (A).
for all A € ®(V, H). Then

D(X,H)= || DX H)a.
Ae®(V,H)

So we can write

PORRCILEND'S PO

EeD(X,H) A€D(X,H) \EeD(X,H)a
where
Z (-1)El = Z (-1)E.
EeD(X,H)a EeD(X,H)
A(E)=A

Proposition 4.3.7. Let V be a vector space of finite dimension over F,
and H < GL(V). Let X € S(V,H) \ {0}. Let A: X = €P)_,S; be any
proper decomposition of X such that A € (X, H). Then

> F == [T D> piA (4.13)
EeD(X,H)a Jj=1 FeT(S;,H)
where I'(Sj, H) = N(S;, H) UD(S;,H).

Proof. Fix E = {Ty,..., T} € D(X, H) with dx (E) = A.
For each j € {1,...,r} set

B, = (T} | T: < Sy}.

Since £ € D(X, H), we have that the subspaces in Ej span S;. Therefore
E; ¢ N(S;, H). Moreover:
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e by definition, if F; contains some V; = S;, then E; ¢ D(S;, H);

e if F; does not contain S;, then E; ¢ D(S;, H) as well, since otherwise
there is a finer proper direct decomposition of X in ©(X, H) such that
each V; is contained in some addend.

So Ej ¢ F(S],H)
Conversely, if for each j € {1,...,r} we choose a collection F; C Sg,(H)\{0}
of non-trivial subspaces of S; fixed by H, such that

Fy ¢ (S5, H),

then I := (J;_; Fj, F € D(X, H) and satisfies Ox(F") = A. Notice that
the Fj can be chosen independently of each other.
So we have |E| = |E1| + ...+ |E,| and

Z (_1)|E| _ Z (_1)|E1|+...+|Er|

EeD(X,H)a E1C Ss, (H)\{0},...,E-C Ss,. (H)\{0}
Fr@T(S1,H),....Er@T(Sy, H)
= Z (=DIEd o (=1)lE

E1C Ss, (H)\{0},...,BrC Ss,. (H)\{0}
Er@D(S1,H),..., ErgT(Sy H)

Y e
j=1 FCSs,;(H)\{0}
F¢r(S;,H)

Since Sg;(H) \ {0} is a finite a set,
> = Y

FC s, (H)\{0} FeT(S;,H)
F¢r(s;,H)

and finally we obtain (4.13). O
In particular, for X =V, we have the following.

Corollary 4.3.8. Let A :V = @§:1 S; be any proper decomposition of V
such that A € ©(V,H) . Then

DR GETETS § () SRS
EeD(V,H)a 7=1 FEF(SJ,H)
where I'(Sj, H) = N(S;, H) UD(S;,H).

Lastly, we want to define here the rank of a direct decomposition, in a
general context. It will be particularly useful in §4.4, where we assume that
the lattice S(V, H) is distributive.
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Definition 4.3.9. Let V be a vector space of finite dimension over I, . Let
H<G=GL(V)and let X € S(V,H) \ {0}. Let A € D(X, H) be a proper
direct decomposition of H-invariant subspaces for X. We say that A has
rank k, for k € N| if

k=max{rk(S) | Se€ A}

where rk(S) denotes the rank of each S € A in the modular lattice S(X, H).
We will write rkg(A) to denote the rank of A.

Remark. Observe that for a proper direct decomposition A € ©(X, H) we
have rkgp(A) < rk(X), since rk(S) < rk(X) for all S € A.

Example 4.3.10. If rkp(A) =1 for some A € D(X, H), then X is a direct
sum of subspaces of rank 1 in S(X, H). This means that every T' € A is an
atom of S(X, H).

Remark. In general, there could be more than one proper direct decom-
position in D(X, H) of rank 1. As an example, take X = V =~ F and
H =1 < GL(V). It could also happen that there is no proper direct decom-
position of rank 1. For instance, take X = V and H a maximal parabolic
subgroup (i.e. the stabiliser of a complete flag, that will be also defined in
§5.3.1).

In the situation presented in the following proposition, we have exactly
one proper direct decomposition of rank 1 in ©(X, H). It is a direct conse-
quence of Corollary 2.2.17 and it will be used in section §4.4, for the com-
putation of E:EGD(VH)(—I)‘E| when the lattice S(V, H) is boolean.

Proposition 4.3.11. Let V be a vector space of finite dimension over F,,
and let H < GL(V). Let X € S(V,H) \ {0} and assume that the sublattice
S(X, H) is distributive. If there exists A € D(X,H) with rkp(A) = 1,
then S(X, H) is boolean and A is the unique proper direct decomposition of
H -invariant subspaces for X of rank 1.

4.3.3 Antichains

Now we concentrate on the term

> (1)l (4.14)

EeV/(G,H)\I'(V,H)
which is relevant if we are considering 1z, (G H)(H ,G) written as
e EO= Y e Y ()
BeV/(G,H)NT(V,H) EeV/(G,H)\I'(V,H)

Antichains play an important role. The next results will be useful in §4.4
and in Chapter 4.5.
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Definition 4.3.12. Let V' be a vector space over F,. Let H < G < GL(V).
Let E € V'(G,H)\I'(V,H). Then

Ap ={T € E | T is maximal in E}

is the set of elements of FZ which are maximal in £ with respect to the order
relation induced by S(V, H) .

Proposition 4.3.13. Let V be a vector space over F,. Let H < G < GL(V).
Let E € V' (G,H)\T'(V,H). Then Ag is an antichain in S(V,H)* and
Ap e V(G,H)\T'(V,H) .

Proof. By definition, the elements of Ap are maximal subspaces in E. Then
T is not contained in 15 for any 77, 15 in Ag . Since A C E, we have that
if g € G stabilizes all elements of F, then g stabilizes all elements of Ag. So,
by definition, Ag € ¥/(G, H). Moreover we notice that

ApeN(V,H) & FEeN(V,H)
Ape D(V,H) & Ee€D(V,H).

Therefore A € I'(V, H) if and only if £ € I'(V, H). O

If V is a vector space over F; and G < GL(V'), we denote by

A={Ae V(G H)\T(V,H) | Ais antichain in S(V, H)*}
the set of antichains in S(V, H)* which lie in ¥(G,H)\T'(V, H)
Proposition 4.3.14. Let V be a vector space over F,. Let H < G < GL(V).
Then
S pE-Y Y
Eev (G, H)\I(V,H) AEA Ap=A

Proof. This is an immediate consequence of the definition of A and follows
from the fact that

E eV (G,H)\T'(V,H) & Ag is antichain & Ag € V'(G,H)\T'(V,H),
as showed in proposition 4.3.13. O

Thus, by Proposition 4.3.14, the study of the behaviour of sums over an-
tichains in S(V, H) seems interesting to estimate (4.14). Here below, Propo-
sition 4.3.15 and the following corollary state a nice property, that will be
applied to prove Lemma 4.3.17, which is the main result of this focus on
antichains. We are assuming that V, G, H, A are the same as above.
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Proposition 4.3.15. Let A={Xy,..., X} € A and let
E eV (G,H)\T(V,H), so that Ap = A.
Assume that there existi € {1,...,k} and J C {1,... k} such that

0<X=XN> X;<X;.
JjEJ
Then EY = EU{X} and E- = E\{X} are in ¥'(G,H)\I'(V,H) . Moreover
Proof. X < X; implies that A+ = Ap- = Agp = A. For the same reason,
since F € V/(G,H) \T'(V,H), we have that ET, E~ ¢ T'(V,H). Now
we verify that £~ and ET are in V/(G, H). Clearly E~ € ¥/(G, H) since
E~ C E. As concerns E™ | just notice that, if g € G stabilizes each T' € E,
then g stabilizes each X; € A = Ag. So g € stabg(X). Indeed

(X;n ZXj)g = X;g N Zng =X;N ZX] .
jed jed jed
U

Corollary 4.3.16. Let A = {Xy,..., Xy} € A. If there exists some i €
{1,...,k} and J C{1,...,k} such that

0<X:=X;n) X; <X,
jeJ

then
(-1)El=0.
EeV (G, H)\I'(V,H)
Ap=A

Proof. By proposition 4.3.15, there is a bijection
B:{E | Ap=A, E=E"} 2 {E | Ag=A, E=E"}

given by: E — E~ . The corollary follows from the remark that exactly one
of E¥, E~ is equal to E. Thus

(—=DIETT 4 (—)lF T =0,
O

We give a direct proof of the following lemma for the lattice S(V, H) of
H-invariant subspaces, although a similar result can be generalized to all
finite modular lattices. We remind that, by Proposition 2.2.9, every finite
modular lattice is graded, hence it admits a rank function.
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Lemma 4.3.17. Let V' be a vector space of finite dimension over Fy, and
let H< G = GL(V). Let A ={Xy,...,Xx} be an antichain in S(V,H)*
satisfying the following three conditions:
(a) i, Xi=V;
(b) there do not exist Wi, Wy € S(V, H) such that

1) V=W & Wy and

2) each X; is contained in either Wy or Wy ;

(¢c) Vie{l,...,k} andVJ C{1,... Kk}

Xin)_ X;e{0,X:}.
jeJ
Then all the X; have the same rank in S(V, H).
Proof. Let r = rk(V') be the rank of V' in S(V, H) and proceed by induction
on r. If r =1, the claim is trivially true. So, let r > 1 and ¢; = rk(X;) < r

in S(V,H). We may assume that £ > 1 and ¢; < g2 < --- < ¢ . We first
show that gx_1 = qr . By conditions (b) and (c¢), we have that

By (¢) we know that X3 N X; = 0 and there exists some j € {2,...,k — 1}
such that

j j-1
X < ZXi and XkﬂZXZ- =0.
=1 i=1

For this j, we have X; £ Z{;ll X, hence X; N Z{;ll X; = 0. This implies
that

Jj—1 Jj—1 J
qr +1k <ZX1> =rk (Xk + ZX1> <rk (Xk + ZXz)

i=1 i=1 i=1
J Jj—1
< rk (Z)Q) = qj +rk (ZX1> s
=1 =1

and therefore, gx = ¢; = qx—1.
Now let V =V/X}, and let T = (T + Xj)/ Xy for each T € S(V, H).

Claim: {X; bie{1,..k—1} is an antichain in S(V, H) satisfying conditions
(a), (b), (¢) with respect to V.

If it is true, then by inductive hypothesis all the X; have the same rank in

60



Chapter 4, § 4.3.3

S(V,H). By (c), rk(X;) in S(V, H) is equal to ¢; = rk(X;) in S(V, H).

Proof of the claim. We assume that X;NX; # 0 for some 4,5 € {1,...,k—1}.
This means that
T+ X =25 + Xy,

for some x; € X; and z; € X;. Thus x; € X; + X}, and z; € X; + X, and
by condition (¢) we have X; C X; + X, and X; C X; + X}, . Thus,

Xi+ X=X+ Xy

and X; = X ;. Therefore {X; }ief1,..k—1} is an antichain. Clearly this an-
tichain satisfies (a) with respect to V.

Suppose that {X; };eq1,. 51} does not satisfy (b) with respect to V. Then
there exist W1, Wo €€ S(V, H) such that V =W, ® Wy and each X; is
contained in either Wi or Wy . Let Wi, Wy be the respective preimages of
W1i,Wsq in V. We define

I :{iE {1,...,k—1} ‘ Yl SWl} and IQZ{iE {1,...,/€—1} | Y, SWQ}
Since the X; satisfy (a) with respect to V, we notice that
{Xi | i € Il} U {Xk}

is an antichain in S(Wy, H) satisfying (a) and (¢) with respect to W; . Sim-
ilarly, {X; | i € I} U {Xy} is an antichain in S(Ws, H) satisfying (a)
and (c) with respect to Wa. By the definition of W1, W5, we have that
WinNnWy=X;. If{X;|ie€ L} U{Xy} does not satisfy (b) with respect to
W1, then there exist Y7, Ys € S(W1, H) such that Wi = Y] @ Ys and each of
the X; C W is contained in either Y7 or Yo . We may assume that X C Y7.
But then, V = (Ws + Y1) @ Y, and each of the X; € A is contained in either
W5+ Y7 or Ys, contradicting the fact that our original antichain satisfies ()
with respect to V. Therefore {X; | i € I; } U{X})} must also satisfy condition
(b) with respect to W7 and these X; C W; have the same rank in S(W1, H)
by inductive hypothesis. A similar argument may be applied to W5 . This
means that ¢; = g for alli € {1,... k}.

Finally, we verify (c) on V. Let

X; N ZYJ #0
JjeJ
for some i € {1,...,k—1} and J C {1,...,k —1}. Then we must also have
Xin (X + ) X)) #0
JjEJ
and, by condition (¢) with respect to V, X; < X + ZjeJXj' Therefore
X, C ZjeJ X, and {X; }ief1,..k—1} satisfies (¢) with respect to V. O
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Lemma 4.3.17, together with Corollary 4.3.16, implies that

> =

EcV/(G,H)\I'(V,H)

if S(V, H) is a distributive lattice of prime rank. This is the first result in
the following section §4.4. Then, we will try to say something about

DR

EcW/(G,H)NI(V,H)

4.4 Distributive lattices of H-invariant subspaces

In this section we will always assume that the lattice S(V, H) is dis-
tributive. We recall that such a lattice can be either boolean (e.g., take
H =@;_, GL(W;), with V = @;_, W;) or non-boolean (e.g., take the sta-
biliser of a complete flag in dimension n > 2).

In general, by Proposition 4.2.4, we have that

_Mfl(G’H)(Hv G) = Z (_1>|E|
Eev/'(G,H)

where
V(G H)={ECS(V,H)" | () staba(W)# H}.
WeE
We can split the sum into

) (—1)E ¢ > (—1)El (4.15)

EeV'(G,H)NT(V,H) EeV (G, H)\T'(V,H)

In the following theorem we assume that S(V, H) is a distributive lattice
of prime rank.

Theorem 4.4.1. Let V' be a vector space of finite dimension over Fq, and
let H<G<GL(V). Let S(V,H) be distributive. Let A ={X1,..., X} be
an antichain in S(V, H)* such that A € (G, H)\T'(V,H). If V has prime
rank in S(V, H), then

> (-DIFl =0,

EeV (G,H)\I(V,H)
Ap=A

Proof. Suppose for contradiction that

> (-DE£0.

EeV (G,H)\I'(V,H)
Ap=A
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Since A € V'(G,H) \ T'(V, H), by Corollary 4.3.16 we have that A satisfies
conditions (a), (b), (¢) of Lemma 4.3.17. Let J C {1,...,k} be minimal
with respect to the property that ZjeJ X; = V. Then, by condition (c),
V = @,c;X;. Since rk(V) is prime and all the X; have the same rank
in §(V,H), we have that rk(X;) = 1 Vi. Then each X; € A is an atom,
and therefore join-irreducible, in S(V, H). Since S(V, H) is distributive, by
Lemma 2.2.13 we have that if X; € A then X; < X; for some j € J. Then
it is possible to write V' = Wy & W5 so that each X is contained in either
Wi or Wy . But this contradicts condition (b) of lemma 4.3.17. O

Then, the second term in (4.15) vanishes under the same assumptions.

Corollary 4.4.2. Let V be a linear space of finite dimension over F,, and
let H< G = GL(V). Let S(V,H) be distributive. If V' has prime rank in
S(V,H), then

— bz a,m)(H,G) = Z (—1)El. (4.16)
EeV (G,H)NT(V,H)
What can we say about (4.16)7
By using the definition of V'(G, H), that is,
V(G,H)={E CS(V,H)* | () stabg(W)# H}, (4.17)
WeFE

we immediately have the following general proposition (not only for distribu-
tive lattices).

Proposition 4.4.3. Let V be a linear space of finite dimension over F,,
and let H < G = GL(V). If for every E € I'(V, H) there exists an element
g € G such that
ge ) staba(W) but g¢ H, (4.18)
WeFE
then T'(V,H) C ¥'(G, H). In particular,

3 DI = 3T (-nlEl (4.19)

Ee€V(G,H)N[(V,H) Eel(V,H)

Example 4.4.4. By Proposition 4.5.11 in §4.5, we will see an example in
which the condition (4.18) is satisfied.

So, by Corollary 4.4.2, if S(V, H) is distributive of prime rank, then one
could be interested in computing

> (-p# (4.20)

Eel(V,H)
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to obtain uz, (g i) (H,G), provided that the condition (4.18) in Proposition
4.4.3 holds true.

In §4.4.1 and §4.4.2 we compute (4.20), showing that it is 0 by the fol-
lowing theorem.

Theorem 4.4.5. Let V' be a vector space of finite dimension over F,. Let
H be a reducible subgroup of GL(V). If the lattice S(V, H) of H -invariant
subspaces is distributive, then

> (1 =o

EeI(V,H)

Remark. Actually, the same proof shows more generally that, if X €
S(V, H) satisfies

e 1k(X) >2in S(V, H) and the sublattice S(X, H) is distributive,

> (—pFl=o.

Eel(X,H)

then

By proposition 4.3.3, we know that

Z (-DIF = —psv,m)(0, V).
EeN(V,H)

The proof is divided into two cases.
e §4.4.1: S(V, H) is boolean;
e §4.4.2: S(V, H) is distributive, but non-boolean.

We recall that I'(V, H) = N(V, H) U D(V, H), hence

PG N N G S LS N G DL (4.21)

Eel(V,H) EeN(V,H) EeD(V,H)

In both cases, we will compute separately the two terms on the right-hand
side of (4.21).

4.4.1 The boolean case

Let S(V, H) be boolean. First of all, by Theorem 4.3.2, independently of
the structure of S(V, H) we have that

> (1) = —psem(0,V).
EeN(V,H)
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Therefore, by Theorem 3.1.14, we immediately obtain that

> ()F= (-t (4.22)

EeN(V,H)

where r = [JI(S(V, H))| is the number of join-irreducible elements of S(V, H).
We recall that in a boolean lattice every join-irreducible element is an atom.
In particular, S(V, H) is isomorphic to a direct product of r chains of length
1 and V is the direct sum of all atoms of S(V, H).

The proof of Theorem 4.4.5 for a boolean S(V, H) relies in the two fol-
lowing lemmas. Before we state the first lemma, we remark an application
of Proposition 4.3.11.

Remark. If S(V, H) is boolean and JI(S(V,H)) = {P1,..., P} is the set
of its atoms, then we have a proper direct decomposition of rank 1 given by

Ay ={Pi,....P.}). (4.23)

By Proposition 4.3.11, we observe that A; = {Pi,..., P} is the unique
proper direct decomposition of rank 1 for S(V, H). This fact is useful in the
proof of Theorem 4.4.5 for the boolean case.

Lemma 4.4.6. Let JI(S(V,H)) = {P1,...,P.} be the set of atoms in
S(V,H). Let Ay = A(V,H) € ©(V,H) be the unique proper direct de-
composition of rank 1 in D(V, H), so that Ay = {Pi,...,P.}. Then

S E =y

EeD(V,H)
A(E)=A,(V,H)

Proof. 1t is clear that the unique E € D(V, H) such that 0(E) = A(V, H)
must be
E={P,....,P}.

S E =y

EeD(V,H)
A(E)=A(V,H)

Therefore,

O

Remark. Let JI(S(V,H)) = {Pi,..., P} is the set of atoms in the boolean
lattice S(V, H). Let A be a direct decomposition of V' in S(V, H), so that
A={S,...,5} lrko(A)=m >2 (ie. A# A(V,H) of Lemma 4.4.6),
then

die{l,...,l} suchthat S;=P; +---+PF;

m *
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Lemma 4.4.7. Let J(S(V.H)) = {P1,...,P.} be the set of atoms in
S(V,H). Let A = {S1,...,S} € ©(V,H) be a proper direct decomposition
such that rko(A) > 2. Then

> (-pFl=o.

EeD(V,H)
O(E)=A

Proof. We proceed by induction on the rank of A. If rkg(A) = 2, then there
exists S; of rank 2, namely S; = Pj, + Pj,. Let E € D(V, H) such that
O(E) = A. This implies that S; € F/, since P;, and Pj, are atoms in direct
sum. Now assume that P; € E. Then we have another E~ € D(V, H),
given by E'\ P; , such that A(E~) = A. Notice that

(—)IE 4 (—)F T =0.

And conversely, for each E' € D(V, H) such that 0(F) = A and Pj, ¢ E, we
have ET = EU{P;, }. So, in general, for any A of rank 2, there is a 1-to-1
correspondence between

Et € D(V,H) s.t. P E- e D(V,H) s.t.
IEt)=Aand P;, € F OE7)=Aand P;, ¢ E= |~

Thus

> (-pFl=o.

EeD(V,H)
A(E)=A

Now let M € N, M > 2, and assume that the result holds for each § €
D(V,H) of rank m, with 2 <m < M — 1. We prove that it holds true also
for A of rank M. Let A = {S1,...,5;}. By Corollary 4.3.8, we have that

S (= (- ﬁ Sy

EeD(V,H) Jj=1 FeI'(S;,H)
A(E)=A

There exists S; of rank M in S(V, H), i.e
R
for some atoms Pj,,..., Pj,, in S(V, H). By proposition 2.3.7, the sublattice
S(Si,H)={T' e S(V.H) | T < 5;}

is boolean. Its atoms are P, ... Clearly, if we prove that

JM

Z ()il =0,

Fel(S;,H)
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we are done. So we write
)SINEILTS SRR SIS
Fer(S;,H) FeN(S;,H) FeD(S;,H)
By proposition 4.3.3 and theorem 3.1.14, we have that

Z (-DlFl = —pis(s;.m (0, 8i) = (—=1)MHT
FEN(Si,H)

Moreover, by the same argument that we have seen for D(V, H), we obtain
that

PORNCHLEIED DENRCL DS > (-

FeD(S;,H) EeD(S;,H) AeD(S;,H) | EeD(S;,H)
A(E)=A1(S;,H) A#A(Si,H) \ 9(E)=A

SCILETDY > (-

AeD(S;,H) \ EeD(S;,H)
A#£A (S, H) \ 9(E)=A

Let 6 € ©(S;, H). Then the rank of § is < M. Let P;

inii1s - - - » Dy, be all the
remaining r — M atoms in S(V, H) such that

SiﬂPjM+1 :"':SiﬂPjTZO.
We define
A/:‘;U{PjMH?"'ﬂPjr}

and observe that A" € ©(V, H). Moreover, we have that 2 < rkg(A’) < M.
Then, by inductive hypothesis

> (-pFl=o.

EeD(V,H)
a(E)=A’
Since Pj,,.,,..., P}, are atoms in S(V, H), we have that
DI IC I SO L S DRG]
EeD(V,H) EeD(S;,H) EeD(S;,H)
a(E)=A d(E)=6 A(E)=5
Thus

0= S pF =5 o= > (-1

EeD(S;,H) EeD(S;,H)
O(E)=§ O(E)=§
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and finally

S D = ()M ()M 0.

FeT(S;,H)

Lemma 4.4.6 and Lemma 4.4.7 prove the following.

Proposition 4.4.8. Let V be a linear space of finite dimension over F,
and let H < GL(V). If S(V, H) is boolean, then

ST () = 1y (4.24)
EeD(V,H)
where r = |JI(S(V, H))| is the number of join-irreducible elements in S(V, H).

Therefore, by putting together (4.22) and (4.24), we have proven Theo-
rem 4.4.5 when S(V, H) is boolean.

4.4.2 The non-boolean case
If S(V, H) is a distributive lattice, but it is not boolean, then
> () = —psm(0,V) =0 (4.25)
EeN(V,H)

by Theorem 4.3.2 and Theorem 3.1.14.
In this case, in order to prove Theorem 4.4.5 it suffices that

> (-pFl=o.

EeD(V,H)
As in the boolean case, we first need a lemma.

Lemma 4.4.9. Let V be a vector space of finite dimension over Fq, and
H < GL(V). Let S(V,H) be a non-boolean distributive lattice.

(1) There exists a subspace W € S(V,H) such that W # 0 and W s
covered by a join-irreducible element of S(V, H).

(1) Let W € S(V,H), W # 0, and assume that W is covered by a join-
irreducible element of S(V,H). If E € D(V,H), we define E* =
EU{W} and E- = E\ {W}. Then Et and E~ are in D(V, H).

Proof.

(7). Since S(V, H) is distributive, but it is not boolean, by Corollary 2.2.17
there exists a join-irreducible element @ in Sy (H) that is not an atom, i.e.
@ is join-irreducible and it covers a subspace W € S(V, H), with W # 0.
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(73). Let E = {V1,...,V4} € D(V, H) such that

t T
di=v=s;,
k=1 j=1

where {S1,...,S,} € ©(V, H) and for each k there exists j such that V}, C
S;. As above, let @ be a join-irreducible subspace covering W in S(V, H).
So we have

u

=1
with Vi, ..., Vi, € E, u € {1,...,t}. Notice that E* and E~ are distinct
collections of non-trivial subspaces in S(V, H), since E* contains W and E~
does not. Moreover, £ = E+ or E = E~ . First we show that both ET and
E~ generate V. If E = E~, then clearly also E U {W} spans V. On the
other hand, assume that F = ET, so that W = V; for some s € {1,...,t}.
By Lemma 2.2.13, since @ is join-irreducible,

QgZVki = Q< Vg forsomeie {1,...,u}.
i=1

So we have

W=V.<Q<V = W=V,<V, = > V%=V,

1<k<t
k#s

which means that also E \ {W} generates V. In general, by the previous
argument based on Lemma 2.2.13, we have shown that W < V}, for some k €
{1,...,t}, with Vi, # W. Now it is easy to see that the direct decomposition

{S1,...,S;}, which we have defined for E € D(V, H), is suitable for both E*
and E~. Therefore, we conclude that both ET and E~ are in D(V, H). [

By applying the above Lemma 4.4.9, we directly obtain the following
proposition. Together with (4.25), it gives Theorem 4.4.5 when S(V, H) is
distributive and non-boolean.

Proposition 4.4.10. Let V be a vector space of finite dimension over F,,
and H < GL(V). Let S(V,H) be a non-boolean distributive lattice. Then

> (-pFl=o. (4.26)

EeD(V,H)

Proof. Assume that D(V, H) # (), otherwise there is nothing to show. So,
by (i) of Lemma 4.4.9 we know that there exists a subspace W € S(V, H)
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such that W # 0 and W is covered by a join-irreducible element of S(V, H).
Then there is a 1-to-1 correspondence between

{ EY e D(V,H) st. We E* } +—{ E-€D(V,H) st. W¢ E~ }

given by (ii) of Lemma 4.4.9.
Notice that clearly
(—)F 4 (—nF T =0,

> (-pFl=o.

EeD(V,H)

Thus

4.5 An example in GL(n, q)

In general, the lattice S(V, H) is not distributive. In this section we
present an example of a family of subgroups H in GL(V), for V' = Fy, so
that the structure of the correspondent S(V, H) is not distributive, except
for some special cases that we consider preliminarily. The aim is to show
that the same methods studied in the previous sections of this chapter can
be reworked for different classes of subgroups.

We start with fixing the notation, defining our family of subgroups H <
GL(V), and showing the special cases which could be known by Shareshian’s
results contained in [38] or by what we have previously presented. Then we
will concentrate on the other subgroups of the family and we will see some
general properties related to their reducible subgroup ideal Z;(G, H). In
particular, we will obtain again that

DORENCHIEE

EcV/(G,H)\I'(V,H)

if the rank rk(V) of V in S(V, H) is prime.

Notation and special cases

Let V ~ Fy be a vector space of finite dimension over F,. Let r be a
positive integer such that 0 <r <n. If r > 1,fori=1,...,r let m; € N so
that

my+ -+ m, <n.

Then we fix the following basis of V' :

1 r r
E = {wg ),...,w,(iz,...,wg ),...,w,(nz,vl,...,vn_(m1+..,+mr)}
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so that
V= Wy ... (r) (r)
<w1 7"'7wm1> @ D <’UJ1 7--'7wm,.> @ <U17"'7vn—(m1+--~+m7»)> .

So, we have that
V=& --eW,eWe

where
Wy = <w§1), o wDy = Vi(m, q)
WT = <w§r), e ,’UJ,,(;Z =~ V<m’r7 q)>
and

W= (1, U (g peetmy)) = V(0= (M1 4 +my), q) -

represents the canonical complement of Wi @ ---® W, in V' with respect to
base £. We denote by W the sum

W=W,® --aW,

so that V =W @ W¢.

Let G = GL(V) ~ GL(n,q). Similarly we have GL(W;) ~ GL(m;, q).
Moreover we call Zye the centre of the group GL(WW¢), that is the subgroup

Zwe = Z(GL(W*)) = {zIwe | z € F}

consisting of the scalar transformations. We denote Zy . also as Zg, if d is
the dimension of W€,

We consider the following class of subgroups H < G:

H=GL(W)®--- @ GL(W;) ® Zw- (4.27)
such that
H ~ GL(m1,q) © - ® GL(my, @) ® Zp—(my 4 4m,) (4.28)
with0<r<nand m;+---+m, <n.
We observe that we also include the following special cases:
e r =0, meaning that H = Z,,;

e my+---+m, =n, meaning that H = GL(my,q) @ --- ® GL(m,,q) .
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We see that H is an intersection of maximal subgroups of G = GL(V),
as follows. We recall that the stabilizers of subspaces in GL(V') are maximal
subgroups of GL(V') (this is part of Aschbacher’s classification, but for a
direct proof one can also see [22]). So, for any 0 < U < V the subgroup
stabg(U) is maximal in G. Let

K =GL(W1)® --- & GL(W,) ® GL(W°).
Then
K = stabg(W1) N - - - Nstabg(W;.) N stabg (W) (4.29)

is an intersection of maximal subgroups of GL(V'). Now, if mj+---+m, = n,
we have that dim(W¢) = 0 and consequently H = K. Then, by (4.29), H is
an intersection of maximal subgroups of GL(V). Otherwise, we know that
W€ is not the only complement of W in the subspace lattice of V. Let

WE={T<V|V=WaT}
be the set of all complements of W in Sy. Then
[ staba(T) = GL(W) & Zw- (4.30)
Tewt
is an intersection of maximal subgroup of G. Therefore,
H=Kn () staba(T) (4.31)
Tewt

is an intersection of maximal subgroups of G.

What is S(V, H) for such a subgroup H? We can observe that if = 0,
ie. H=Z,,then S(V,H) = S8(V, Z,) = Sy is the subspace lattice of V. On
the opposite, if W¢ = 0 and we have that H = GL(W;) & --- & GL(W,) for
V = @;_, W;, then the lattice S(V, H) is boolean, since the only H-invariant
subspaces are the sums of the Wy, ..., W,.. In particular, Wy, ..., W, are the
atoms of S(V, H). In general, by elementary linear algebra, we can state the
following proposition that characterizes the H-invariant subspaces.

Proposition 4.5.1. Let V ~Fy,

sothatV=W1 & ---®&W, B WE°. Let
H=GLW)&---&GL(W,) & Zwe <GL(V).

Then, the H-invariant subspaces of V' are of the form:

(a) T <W€;

(b)) T+ Wi +---+W;, , withl <ig <ig<---<ip<r andT <W°,
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The following definition is related to Proposition 4.5.1 and it will be used
throughout this chapter.

Definition 4.5.2. Let V ~ Fg, sothat V=W & ---®W, P WE°. Let
H=GLW)®---®GL(W,)® Zw. <GL(V).
We say that a subspace S <V is mixed if

S=> Wi+T
el
where 0 #I C {1,...,r}and 0 < T < W°.

By Proposition 4.5.1, every mixed subspace is H-invariant. Since S(V, H)
is a modular lattice, by Theorem 2.2.9 it is also graded.

Remark. Let rk : S(V, H) — N denote the rank function of S(V, H), for H
as above. Let W = W1 ®- - -®@W,.. Let m; = dim(W;) and m = mi+---+m, .
In particular we observe that

o rk(W;)=1foralli=1,...,r;
k

[ J
=]

W) =

(
(
o rk(W¢) =dim(V/W)=n—m;

(

=

k(V)=n—m+r.

Special cases

In this section we briefly review some special cases of the example that
we are considering. More precisely, we have the following extreme cases.

(a) r=0and H = Z,. This case has been considered by Shareshian in [3§].

(b)) n—m=dim(W¢) =0andr>1= H=GL(W;)&---&GL(W,). In
this case, the lattice S(V, H) is boolean. It is isomorphlc to the product
of r chains of length 1.
Similarly, if n — m = dim(W¢) = 1 and » > 1 we have that H =
GL(W1)©--- @& GL(W;) ® Zwe , where Zy. ~ F;. Also in this case, the
lattice S(V, H) is boolean.

We consider now these cases separately, just to highlight some relevant
facts.
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Shareshian’s results for »r =0

This is the case described by Shareshian to find u(1,PGL(n,q)). Ac-
tually, he obtains some partial results using the arguments that we have
generalized in Chapter 4. Since

(1, PGL(n, q)) = p(Zn, GL(n, q))
we can consider H = Z,, < GL(n,q) = G. Shareshian observes that
I'(V,H) C V' (G, H)
and, if the dimension n is prime, then

— Y (nE= |GL(V)|

HZ, (G, H) n_ 1)
' E€T(V,H) n(g" = 1)

If n is small, we have not only that many of the geometrical classes C;(G, H),
fori=1,...,8, are empty, but also that the class Co(G, H) may be known.
Here, as an example, we list some results for PGL(n, q).

Theorem 4.5.3 ([38], Theorem 1.7 and Theorem 1.8).
If p > 3 is prime and if n = 2, then

u(1, PGL(2,p%)) = p(a) - [PSL(2, p)]

where
1 ifa=1 p=3,5modS8;
pla) = .
0 otherwise.
If p =3, then
w(1,PGL(2,3%)) = o(a) - |PSL(2,3%)]
where

o(a) = { —p(a) if a is odd;

0 if a is even.

Theorem 4.5.4 ([38], Theorem 1.9). Let V ~ Fg , with ¢ = p® for an odd
prime p. If PSL(V) < PGL(V), then p(1,PGL(V)) = 0.

By using the same argument, he similarly obtains also a result for PSL(3, q).

Theorem 4.5.5 (|38], Theorem 1.9). Let p be an odd prime and let a be a
positive integer. Then

—6|PSL(3,p%)| ifa=1 and p=1,4 mod 15;
wu(1,PSL(3,p%)) = ¢ —6|PSL(3,p%)| ifa=2 andp=2,7,8,13 mod 15;

0 otherwise.
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Boolean lattices

Boolean lattice can arise from S(V, H), for some cases in the family of
subgroups H that we are considering.

For instance, if n— (mi+---4+m,) =0and r = 1, then H = GL(V) =
and S(V,H) = {0,V}. Here we know that, by definition, u(G,H)
w(G,G) =1.

G

Now, let n — (my +---+m,) =0 and r > 1. Then
H=GL(W)) & - @ GL(W,).

In this case we could be interested in
Mfl(G’,H)(Ha G) =— Z (—1)|E‘-
EcV/(G,H)

Even though we know by Theorem 4.4.5 that

> (pFl=o,

EeI(V,H)

we have that in general

> (=pFlxo.

EeV/(G,H)
An example is the following.

Example 4.5.6. Let r = 2. Then S(V, H)* = {W1, W5}, and we have that
D(V,H) = {{W1,Wa}} is not contained in (G, H). On the opposite, here
we have N(V, H) = {0, {W1},{W2}} = ¥(G, H) and

> (pFl=-1.

EeV/(G,H)
Remark. We observe that if n — (m; +---+m,) =1 and r > 1. Then
H=GL(W1) @ --- @ GL(W;) ® Zw-
where Zye =~ GL(W¢) ~F;. So, we can write H as
H = GL(W1) @ --- @ GL(W;) ® GL(W®)
and the lattice S(V, H) is boolean with 7 + 1 atoms.

We want to state the following Proposition 4.5.7, because it will be used
in §4.5 as an inductive step in the proof of Proposition 4.5.16.
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Proposition 4.5.7. Let V =W @T be a vector space of finite dimension n
over Fy, so that W =W &---& W, and dim(T") = 1. Let H < GL(V) such
that

H=GLW))&---®GL(W,) ® GL(T) .

Let
X=) Wi+T
el
be a mized subspace of V', for some I C {1,...,r}, 0 £ I. Then

> (-pFl=o.

EeT(X,H)

Proof. 1f dim(T') = 1, there is no non-trivial H-invariant subspace of W¢. By
Proposition 2.3.7, the lattice S(X, H) is boolean, since S(V, H) is boolean.
Then, by Proposition 4.4.5,

> (pFl=o.

Eer(X,H)
O

Now we can introduce a general method, that is strictly related to Shareshian’s
argument and what we have seen in §4.4. It may be useful if one is interested
in computing
HZ (G, H) (H,G).

The case with r>1and n—m > 2

We present now a more general argument that can be used with the
following conditions for n, m,r:

r>1 and n—m>2

where m = mq + - -- + m,. This assumption will remain valid in all results
presented in this section, unless otherwise stated.

Actually in this case, for the group H that we are considering, we are
able to prove only Theorem 4.5.8 and Corollary 4.5.9, obtaining that

> pFi=o0

EeV(G,H)\T'(V,H)

if rk(V) in S(V, H) is prime. Unfortunately, we can not use our methods to
compute

//Jfl(aH)(Ha G)
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because it is impossible to apply the criterion of Proposition 4.4.3, as we will
explain in Example 4.5.10. For this reason, we will define another subgroup

Hy = GL(W1) @ --- ® GL(W;.) @ Idy-
such that
e S(V,H)=S8(V,H;), and
e we can apply to H; the criterion of Proposition 4.4.3.

For H;, we will prove that

M7, (G, Hy) (H1,G) =0

if the rank of V' in S(V, Hy) is prime.

Now we prove that

Y. (=0

BV (G,H)\T'(V,H)

if rk(V) in S(V, H) is prime. The proof of this fact is very similar to the
proof that we have seen in Theorem 4.4.1.

Theorem 4.5.8. Let V. =W @ W€ be a vector space of finite dimension n
over Fy, so that W =W1 & --- @ W,. Let H < GL(V) such that

H=GL(W1)®---® GL(W,) ® Zye.

Let A ={Xy,..., X} be an antichain in S(V, H)* such that A € ¥'(G, H)\
I'(V,H). If the rank of V in S(V, H) is prime, then

> (-1)El =0.

EeV (G, H)\I'(V,H)
Ap=A

Proof. Suppose for contradiction that

> (-DIFl£0.
EeV(G,H)\I'(V,H)
Ap=A

By corollary 4.3.16 and since A € ¥/ (G, H)\I'(V, H), we have that A satisfies
conditions (a), (b), (¢) of lemma 4.3.17. Let J C {1,...,k} be minimal with
respect to the property that ZjeJ X; = V. Then, by condition (c), V =
@®,cs X; - Sincerk(V) is prime and all the X; have the same rank in S(V, H),
we have that rk(X;) = 1 Vi. Then either X; € {W;,..., W,} or X; =T,
where T is some subspace of W€ of dimension 1 in V. So each X is contained
either in W or in W¢. Then we have contradiction with (b) of lemma 4.3.17.

O
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As an immediate consequence we obtain the following corollary.

Corollary 4.5.9. Let V =W & W*€ be a vector space of finite dimension n
over Fy, so that W =W1 & ---&W,. Let H < GL(V) such that

H=GL(W1)® & GL(W,) ® Zye.
Let the rank of V' be prime in S(V, H). Then
> =0
E€V/(G,H)\I'(V,H)

and

—pzy(6m) (H, G) = Z (—n)lFl.
EeV(G,H)NT(V,H)

In the following section, we give a general criterion that can be used to
reduce the calculation of

—pz (c,m)(H,G) = Z (—1)/F
EeW(G,H)NT(V,H)

S (-

Eel(V,H)

to the calculation of

Application of the criterion of Proposition 4.4.3

By Corollary 4.5.9, we want to compute

—pz(c,m)(H, G) = Z (—1)/F
EeW(G,H)NT(V,H)

in order to find pz, (g m)(H,G). The calculation could be easier if we had
I'(V,H) C ¥ (G, H), because in this case we would have that

Z (—1)/Fl = Z (—1)I®!
EcV/(G,H)NT(V,H) E€T(V,H)

In particular, we recall that

V(G H)={ECS(V,H)" | [ stabe(W)# H}.
WeFE
As we have shown in Proposition 4.4.3, T'(V,H) C ¥/ (G, H) if for every
E e N(V,H)uU D(V, H) there exists an element g € G such that
g€ () stabg(W) but g¢H (4.32)
WeFE

where G = GL(V) is acting in a natural way on the subspace lattice Sy .
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Remark. In [38], the subgroup considered by Shareshian is the centre of
GL(V), i.e. H = Zy = Z(G), and we have that T'(V, Zy) C V/(G, Zy).
Indeed, if E € N(V,Zy) or E € D(V, Zy), then there exist two subspaces
U W <V such that V.= U & W. So, we can define ¢ € GL(V') such that
gu = Iy and g = —Iw. Then, this element g satisfies (4.32), because

g Zy.

Finding such an element in G for all E € I'(V, H) is not an easy task at
all. Sometimes it is even impossible, as shown in the following example.

Example 4.5.10. Let V=W &--- & W, @ W and H < GL(V) such that
H=GL(Wi)®---&GL(W,) @ Zye.
Consider the following element E of D(V, H) given by the collection
E = {Wy,...,W,, all subspaces of W*¢}.

E € D(V,H) since W1 & ---® W, & W€ is a non-trivial direct decomposition
of V. There follows that

H =GL(W) @ & GL(W,) ® Zwe = () staba(T),
TeFE

hence an element g as in (4.32) does not exist.

So, unfortunately, it is not possible to use this criterion directly with
the subgroup H. Now, we consider a modified version of H given by the
subgroup

Hy =GL(W;) & --- & GL(W,) & Idwe-,

such that the criterion can be applied with the following element

_ | m 0 [ Idw 0
9‘[0 —Inm}_[o —JdWC]GG &g H

where dim(W) =m and dim(W¢) =n —m.

For H,, we can state the following proposition.

Proposition 4.5.11. Let V =W W€ be a vector space of finite dimension
n over Fy, so that W =W, &--- @ W,. Let G = GL(V) and H; < G such
that

Hy =GL(W;) & --- & GL(W,) & Idwe.

Then F(V, Hl) g \I//(G, Hl) .
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We decide to investigate the sum
>
EeT(V,Hi)
for Hy, since by Proposition 4.5.11 and Corollary 4.5.9 we have that
Mgy (HG) = D (D= T (-DFL
EeV/(G,Hy) Eel(V,Hy)
Indeed, T'(V, Hy) C ¥/(G, H1) and
> (-D)IEl = .
EeV/(G,H)\I(V,H)
We also notice that S(V, H1) = S(V, H). So, we can write
~ 17,y (H1L, G) = Z (=1 (4.33)
Eel(V,H)

We remark that

oo=pEl= N —pFEly Y (- (4.34)

Eel(V,H) EeN(V,H) EeD(V,H)
and we proceed by computing separately

> (-1l and > (-pEl

EEN(V,H) EeD(V,H)

The sum over the non-spanning sets

Notation. As previously noted, S(V,H;) = S(V,H). Then, we also have
that N(V,H) = N(V,H,), D(V,H) = D(V,Hy), I'(V,H) =T'(V, Hy). Since
the following results are related only to the subspace lattice (which is the
same for H and Hp), we only use the terms with H to simplify the notation.
All the obtained results can be similarly referred to Hj.

Now we compute
SREICEN SENEICE
EeN(V,H) EeN(V,Hy)
By Proposition 4.3.3 we have that
> ()F = —psm (0, V).
EeN(V,H)

Remind that V = W@ W€, where W = W1 @®- - -®W,., and that we know
the H-invariants subspaces in S(V, H) (Proposition 4.5.1). We use this to
compute sy, (0, V). Firstly, we prove a lemma.
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Lemma 4.5.12. Let V. =W @ W€ be a vector space of finite dimension n
over Fy, so that W =W1 & ---&W,. Let H < GL(V) be such that

H=GL(W))®--- & GL(W,) ® Zye.

Then for any 1 < i1 <io < --- < i <71 and for any T < W€, we have

Z psw,m) (0,8 + Wiy + -+ W;, ) =0.
0<S<T

In particular

Z usv,m) (0, T+ Wiy + -+ + W, ) = 0.
0<T<We

Proof. Let T' < W€ be any subspace. The proof is by induction on k. Let
k= 1. If we consider T+ W;, € S(V,H), with W;, € {Wy,...,W,}, then

KS(V,H) 0,7+ Wyy) = — Z HS(V,H) (0,5)
0§S<T+W¢1
SeS(V,H)
- Z psv,m)(0,5) — Z psv,m) (0,8 + Wi,)
0<S<T 0<S<T
and

> uswm(0,8) =0
0<SsS<T

by definition of the Md&bius function. This implies that

Z s,y (0,8 + Wi ) =0
0<sS<T

for each T' < W€ Assume now that for any 1 < j; < jo < - < jyu <71,
with u < k, we have

Z MS(V’H)(O,Sﬂ-leﬂ-""f‘Wj )=0.
0<S<T

Let 1 <y <io<--- <, <71 andX::T—i—Wil—i—---—i—W}k. Then

psw,m)(0, X) = — Z pswv,m(0,5).
0<S<X
SeS(V,H)

By Proposition 4.5.1 we can classify the subspaces of X in S(V, H) in the
following families

Fir={Y|Y<T}h
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= {Y—Fle-l-"'-i-Wju Y <T, {jl,...,ju}C{il,...,ik} Withu<k};
= {Y+Wi1—|—"-+Wik|Y<T}.

So

psw,m) (0, X) Z psv,m)(0,5) — Z nsv,m)(0,8) — Z psv,m)(0,5) -
SeFi SeFs SeFs

But

> s (0,8) = > psw,m(0,8) =0.
SeF1 0<S<T

Moreover, by inductive hypothesis, also
Z psv,m)(0,5) =0.
SeFa
Finally we obtain
s, (0, X) ==Y uswmy(0,8) = = D psmy (0, Y+ Wi+ +W,)
SeF; 0<Y<T

whence

Z MS(V,H)(075+ Wi, + -+ W, ) =0.
0<S<T

O
Now we can prove the following Proposition 4.5.13 and compute sy, (0, V),

in order to get
DL
EeN(V,H)

Proposition 4.5.13. Let V =W W€ be a vector space of finite dimension
n over Fy, so that W =W, & --- @ W,. Let H < GL(V) be such that

H=GLW))® - --®GL(W,) ® Zye.
Let X be a mized subspace of V,
X=) Wi+T

i€l
where 0 £ 1 C{1,...,r} and 0 <T < W¢. Then
Z (—1)|E| = —MS(X,H)(O,X)
EEN(X,H)

= (=)™ g1y (0,T)

_ (_1)|I|+1(_1)dim(T) q(dimz(T)) .
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Proof. By lemma 4.5.12 we have that

Z ps,m)(0,S +W) =0
0<S<T

for any T' < W¢€. Notice that
MS(V,H)(Ov V) = MS(V,H)(Oa We+Wp+--- 4+ WT)

So, in particular,

Z /LS(V’H)(O,T+W1+"’+WT):0.
0<T<We

Therefore

psvn (0, V) == > pswm (0, T+ Wi+ + W),
0<T<We

Now we observe that
MS(V,H)(Oa Wi+Wy+---+ Wr) = ,U«g;(W’H)(O, Wi+Wy+---+ Wr)
and, since the lattice Sy (H) is boolean, by theorem 3.1.14
psw,m) (0, W1 + Wo + -+ W) = (=1)".
Thus we can sum up the above information in the following conditions:
{ S s (0,S+W) =0 if 0£T <We,
0<S<T
psv,m (0, W) = (=1)".
Then
psw,m) (0, V) = (=1)" psy. (0, W)

where ps,,. is the Mdbius function on the lattice of subspaces of W¢. By
Proposition 4.3.2 we obtain

MS(V7H) (Oa V) = (_1)T(_1)n—(m1+...+mT) q(

ne(midotme))

O]

Corollary 4.5.14. Let V. = W @ W€ be a vector space of finite dimension
n over Fy, so that W =W, & --- @ W,. Let H < GL(V) such that

H=GL(W;)&---& GL(W,) & Zye.
Let m; be the dimension of each W; , and let m = mq +--- +m,. Then
z: (—1ﬂE|:'—M504HﬂOaV)
EEN(V,H)
= (1) gy (0, W)
(nm(mat )

_ (_1)r+1(_1)n—(m1+~--+mr-) q
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The sum over the decomposing sets and I'(V, H)

Our final goal is to show that

Z (_1)‘E| :Ov

Eel(V,H)

or equivalently that

PORECICEE DI

EeD(V,H) EeN(V,H)

Let V.= W @ W€ be a vector space of finite dimension n over I, , so that
W=W,@---®W,. Let H< GL(V) such that

H=GL(W)) & & GL(W,) & Zye .
Let X € S(V,H) \ {0}. We define
o O(X,H)p CD(X, H) such that
D(X,H)o={A €D(X,H) | 3 mixed subspace S € A}.

o D(X,H) =D(X,H)\ D(X,H).

Remark. Let X € S(V,H) \ {0}. By Proposition 4.3.6, if E C S(X, H)*
is such that F € D(X, H), then there exists a mixed subspace S € E if and
only if 0(E) € ®(X,H)o .

Also in this case, we prove a preliminary lemma.

Lemma 4.5.15. Let V. = W @& W€ be a vector space of finite dimension n
over Fy, so that W =W @ --- @ W,. Let H < GL(V) be such that

H=GLW) & & GLW,) & Zyye.
Let X € S(V,H) \ {0}. Then

)OI D DERCILE EE DR

AeD(X,H)* \ EeD(X,H) EeN(X,H)
(E)=A

Proof. Let E € D(V, H) be such that 9(F) € ©(V, H)*. This means that no
mixed subspace is contained in J(F), and consequently E does not contain
any mixed subspace. We can write

E=F,UF,, with F10F2:®,

where F} is the set of subspaces in F contained in W =W; & ---® W,.; on
the other hand, F5 is the set of subspaces in E contained in W€
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e i ={S<W | SeFE},
.FQZ{SSWC|SEE}
Moreover FE falls in one, and only one, of the following three cases:

(a) E\{W} is spanning for V,ie. Y g.pS =V (and E\{W} € D(V,H)).
It means also that Fy \ {W} is spanning for W.

(b) E\ {W} is non-spanning for V, but E \ {W¢} is spanning for V. In
particular it implies that F} \ {W} is non-spanning for W, so W € Fy |
but Fy \ {W*€} is spanning for W¢.

(¢c) E\{W} is non-spanning for V and E\ {IW*°} is non-spanning for V. This
necessarily implies that W, W¢ e E. So both F; \ {W} is non-spanning
for W and F» \ {W*} is non-spanning for W¢.

In case (a), both E/, = E\ {W} and E] = EU{W} are in D(V,H), and
d(E.), O(E!) € ©(V,H)*. Obviously E € {E/, E!}, but most importantly

(=DM () IEUWEH — ¢,
This implies that the sum over all the addends (—1)/®!, with E as in case
(a), is 0.
In case (b), both E} = E\ {W°} and E} = EU{W¢} are in D(V, H), and
I(E}), O(E)) € ©(V,H)*. Again E € {E}, E/'}, and we have

(=)W () IEUWH — ¢,
This implies that the sum over all the addends (—1)/®!, with E as in case

(b), is 0.
So, for the sum

we can just consider E as in case (¢), where we have

E:FluFQZF{UFQIU{WWc}
so that F{ = Fy \{W}, F)=F,\ {W¢}, and

Fl e N(W,H), F,eNW¢H).

85



Chapter 4, § 4.5

Thus we can compute

Z Z <_1)\EI — Z Z (_ )\F{|+IF2’\+2
Ae®(V,H)* \ EeD(V,H) FIeN(W,H) \F,eN(We,
A(E)=A
= I (— 1)l
F’eN WH F’eN(W H)

By Proposition 4.5.13

Sl Y CUE | = s Y (-

AeD(V,H)* \ E€D(V,H) FleN(W,H)
(E)=A

= sy (0, W) - (=)™

= (=1)" psyem) (0, WF)

= _ Z (1)1l

EeN(V,H)

In particular, for X =V, we have that

DR D SRS PR SR
AeD(V,H)* \ E€D(V,H) EEN(V,H)
a(E)=A

We use the previous result to conclude the main result about the sum

>, (=0

Eel(X,H)
for our subgroup H.

Theorem 4.5.16. Let V =W ® W€ be a vector space of finite dimension n
over Fy, so that W =W1 & --- @ W,. Let H < GL(V) be such that

H=GL(W;)®--- & GL(W,) & Zye.
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Let
X=) Wi+T
el
be a mized subspace of V', for some I C{1,....r}, 0 # 1, and 0 <T < W°.
Then

> (-pFl=o. (4.35)
Eel(X,H)
In particular, if X =V, we have that
> (-plFl=o.
Eel(V,H)

Proof. We proceed by induction on the rank of X. Since X is a mixed
subspace in S(V, H), we observe that the minimal case is rk(X) = 2, where
X is necessarily of the form

X=W;+T

for some i € {1,...,7} and T' < W€ such that dim(7") = 1.

So, if rk(X) = 2, then (4.35) is true by Proposition 4.5.7.

Now let rk(X) = k£ > 2 and assume that (4.35) is true for every mixed
subspace Y € S(V, H) such that rk(Y') < k. We want to prove that

> (pFl=o.

EEel(X,H)
We have
Z (—1)El = Z (—D)IEl 4 Z (—1)IZ!
EE€T(X,H) EeN(X,H) EeD(X,H)
SR SRCLED Sl WD T
EeN(X,H) AeD(X,H) \ EeD(X,H)

(E)=A

But by Lemma 4.5.15, we know that

)OI D DENCEICE T RN

AeD(X,H)* \ EeD(X,H) EeN(X,H)
(E)=A

Therefore
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and it suffices to prove that

> > ¥ =o.

A€D(X,H)o \ EED(X,H)
A(E)=A

Let A € (X, H)o. Then A has rank ¢ < k, i.e.
t = max{rk(S) | S € A} <k,

since the rank of X is k and A is a proper decomposition. So, A contains a
mixed subspace S such that rk(S) < k. By inductive hypothesis

> (-pFl=o.

EeI(S,H)
Then
> =0
E€D(X,H)
8(E)=A
by Lemma 4.3.7, and therefore we obtain (4.35) for X. O

Remark. We have seen that

doo(=pFl= M (—pFl=o.

Eel(V,H) Eel(V,H)
Therefore
bz, (G, i) (H1, G) =0 (4.36)

where

Hy = GL(W)) @ --- & GL(W,.) & Idyye .

In Chapter 5, we will define a closure operator on the subgroup lattice of G
and we will obtain again this result as a particular case of the fact that every
non-closed subgroup K in G has uz, (¢ k) (K, G) = 0 (see Proposition 5.2.3).
In the situation we have presented above, H; is non-closed with respect to
such a closure operator. On the contrary,

H =GL(W)®--- & GL(W,) ® Zwe

is closed, and H is precisely the closure of Hj in the subgroup lattice L(G).
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Some very particular case

Following the idea suggested by Shareshian in [38], we recall that one
could write p(H, G) through a function fg , ,(u, H) so that

w(H,G(n, p*)) = fG,n,p(u7 H)+ Z n(H, K), (4.37)
KeCy

where fgnp(u, H) depends on the classes C;(G, H), for i = 1,...,8, in As-
chbacher’s classification. We could try to find the contribution given to the
function fg, by these classes, wondering when they are empty, so that
their contribution is equal to 0. Combining this kind of results with our
knowledge of Mfl(G,H)(H’ G), we could obtain the exact value of u(H,G).
This is clearly not easy in general.

In a very particular situation, related to the example that we have seen
in this section, we get the following result.

Theorem 4.5.17. Let G = GL(n,q), and let H < G be such that
H = GL(m,q) ® In—m .

Let g = p be an odd prime and let the dimension n be prime. If n —m + 1
18 prime, then
fanp(H) =0

and in particular

u(H,G) = > porc (H) .

KeCy(G,H), HCK

Proof. By Theorem 4.5.16 and by using the condition that the rank of V' in
S(V,H)is n—m+ 1 and it is prime, we get that

LG = > ()= 3 (=0

EcV/(G,H)) Eer(V,H))

By [21, Table 3.5.A], we see that H is not contained in any maximal subgroup
of the classes C; for ¢ = 2,...,8. This is essentially because of the prime
dimension n and the prime order ¢ of the field. ]

In general, we do not have much information about the ninth class. Just
to give an example, we considered the groups of low dimension studied by
Schréder in his PhD thesis ([37]), and we saw that in dimension n = 13 also
class Co(G, H) is empty for p > 5. In this case, p(H,G) = 0.
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Reducible subgroups and a
closure operator

In [10] Colombo and Lucchini solve Conjecture 3.2.10 for the family of
all symmetric and alternating groups, i.e. Sym(n) and Alt(n), with n > 5.
One of the key ingredients in their argument is Crapo’s Closure Theorem
(Theorem 3.1.9), that is applied to the lattice of subgroups L(G), for G €
{Sym(n), Alt(n)}. In §5.1.1 of this chapter, we briefly remind Colombo-
Lucchini’s argument and then we show how it is possible to define a closure
operator also for the subgroup lattice of a finite irreducible subgroup G of
GL(n, ¢). In this way, we can express ug(H) as

pe(H) = Z WK, G) g(H,K)
Kelrrg(H)

where Irrg(H) denotes the set of irreducible subgroups of G containing H.
The function g comes from Crapo’s Closure Theorem. In section §5.2, we
revisit this argument by substituting the function g with the Mobius number
of the ideal Z; (K, H) for any irreducible subgroup K of G. This is possible
by Theorem 3.1.13 that we have shown in Chapter 3. We prove that

() (H, K) = g(H, K) =0

if H is not a closed subgroup in K, similarly to what happens in Colombo-
Lucchini’s argument. Therefore, if ug(H) # 0, then there exists at least one
subgroup K € Irrg(H) such that ug(K) # 0 and H is closed in K. By using
Proposition 5.3.2, we explain why it may be interesting to count the number
of closed subgroups in G = GL(n,q) in order to estimate the number of
subgroups H < G = GL(n, q) such that ug(H) # 0. Our related results are
contained in §5.3, where we assume that H is a subgroup of G = GL(n, q)
such that the lattice S(V, H) is isomorphic to a product of chains.
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5.1 Closure operators on subgroup lattices

In this section we recall the notion of a closure operator, and we see the
example used for the symmetric group by Colombo and Lucchini in [10].
They prove that if G is a finite transitive permutation group, then in order
to bound the number of subgroups H < G with ug(H) # 0 and to estimate
|ua(H)|, it suffices to obtain

(I) similar bounds for the particular case when H is transitive;

(II) estimations on the number of subgroups of G that are maximal with
respect to the property of admitting a certain set of orbits.

In case G is an irreducible finite linear group, we can define a similar
closure operator by using the join-irreducible subspaces of S(V, H), for H <
G. This definition is given in §5.1.2.

5.1.1 Transitive permutation groups

Let G < Sym(€Q) be a transitive permutation group on a finite set Q. A
closure operator (in the sense of Definition 3.1.8) considered by Colombo
and Lucchini in [10] is

— L(G) = L(G)
such that for all H < G we have the closure

H := (Sym(A1) x - x Sym(Ag)) NG,

where {A1,..., Ag} is the set of orbits of H with respect to its action on €.
Clearly, we have identified H with a subgroup of (Sym(Aj)x---xSym(Ag)) <
Sym(2).

We say that H is a closed subgroup of G if H = H.

Notation. We have that

L(G) = {H e £(G) | H = H}

is the subposet of closed subgroups in £L(G) . Since G is transitive, G € L(G).
Moreover, for any H € L(G) we write

tizey(H, G)

to denote the Mobius function associated with £(G) .

Remark. It is worth noticing that in general £L(H) # L£L(G) N L(H) when
H is a transitive permutation subgroup of G on €.

Let G < Sym(Q) be a transitive permutation group on a finite set {2, and
Let H < G. Then we define:
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e the subset
T(H)={K<G|H<K and K is transitive on Q} C L(G)
of all transitive subgroups of G containing H;

e the function g : L(G) x L(G) — Z such that

JH.Y) { pery(HLY) i Y € T(H) and H € £{Y)
0 otherwise.

The following proposition allows us to write ug(H), for all H < G, in
terms of pug(K) and g(H, K), where K ranges over all transitive subgroups of
G. Such an expression is useful in [10] to give estimates for Conjecture 3.2.10.
In the proof, there is also an interesting use of Crapo’s Closure Theorem
(Theorem 3.1.9), together with Mobius Inversion Formula (Theorem 3.1.11).

Proposition 5.1.1 ([10], Lemma 1.4). Let G < Sym(Q) be a transitive
permutation group on a finite set 2, and let H < G . Then

po(H) = Y pa(K)g(H K).
KeT(H)

In particular,

pa(H) < Y |ua(K)|-g(H, K)|.
KET(H)

Proof. Consider a subgroup X < G such that X € T(H). Then X is
transitive on © and obviously X € £(X). Moreover, Y € T(H) and Y < X
if and only if X is the closure of Y in £(X). By Crapo’s closure theorem

we obtain

> uy(H):{ Hzoy(H, X) if H € L(X)

YeT (i) Y<X 0 otherwise

since py (H) = pgx)(H,Y). Let f: L(G) x L(G) — Z be the function
defined as () (H)
o py(H) i Y eT(H

FHY) = { 0 otherwise

and notice that

g(H7X): Z f(H7Y)

YET(H),Y<X

Thus, by Mébius inversion formula (Theorem 3.1.11), we have

f(H7X>: Z g(H,Y)Mx<Y).
YeT(H),Y<X

In the last expression, set X = G and Y = K to get the result. O
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In [10], moreover, an upper-bound is given on the absolute value of the
function g. It is interesting to notice that it is written in terms of the number
of H-orbits of the set 2, as follows.

Proposition 5.1.2 (|10, Theorem 1.5). Let G be a transitive permutation
group on a set Q, and let H < G. If K € T(H) and K # H, then

(r!)?
2

l9(H, K)| <

where 1 is the number of orbits of H in its natural action on €.

By Proposition 5.1.2, an estimation on the number of orbits r in terms
of the index |G : H| is useful if we are looking for a similar estimation on
|ic(H)|. Colombo and Lucchini obtain results in this direction.

Remark. Let H be a subgroup of a transitive group G < Sym(f2). Let
A ={Aq,...,Ar} be the set of the orbits of H with respect to its action on
Q. Then we have that the closure of H can also be written as

H = stabg (A1) N -+ Nstabg(Ag) (5.1)
where stabg(A;) ={g€ G| a9 € A; Ve A}

This remark suggests a way to define an analogue closure operator on
the subgroup lattice of an irreducible subgroup of GL(V), for V ~ Fy -

5.1.2 Irreducible linear groups

Remark. Let G be a transitive permutation group on a finite set Q. If H
is a subgroup of GG, then we could define the lattice of H-invariant subsets

of ) as
BQ,H) ={ACQ|z"e A VYzeA YheH}.

We notice that B(2, H) ordered by inclusion is a boolean lattice. Indeed,
if {A1,...,Ar} is the set of H-orbits on 2, then every H-invariant subset
A € B(Q, H) is an union of orbits. In particular, Ai,..., Ay are the atoms
of B(Q2, H), and the only join-irreducible elements of this lattice.

Now, let G be an irreducible subgroup of GL(n,q). Let H < G. We
know that the lattice S(V, H) of H-invariant subspaces of V =~ [y is a finite
modular lattice. Therefore, every subspace W € S(V, H) can be seen as the
join of some join-irreducible elements of S(V, H), i.e.

W=U+-+U

for some Uy, ..., U € JI(S(V, H)).
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In this sense, join-irreducible elements of S(V, H) play the same role of
orbits in B(€2, H) above. Therefore, we define a closure operator on £L(G),
for G < GL(n,q) as follows. Let G be an irreducible subgroup of G and
H <. Let

JI(S(V,H)) = {Wh,...,W,}
be the set of join-irreducible subspaces in S(V, H). Then, the closure of H
in G is
H = stabg(Wp) N -+ - N stabg(W,.). (5.2)

Remark. Since every subspace in S(V, H) can be expressed as the sum of
some join-irreducible subspaces, we have that

ge (| stabe(W) = T9=T VT eS8V, H). (5.3)
WeII(S(V,H))
Therefore, we can equivalently define the closure of H in G as

H= ﬂ stabr (W) .
WeS(V,H)

We also observe that S(V, H) = S(V, H). Indeed, S(V,H) C S(V, H) since
H C H. Conversely, S(V,H) C S(V, H) by (5.3).

So, we have that the function ~: £L(G) — L(G) is a closure operator on
the subgroup lattice £(G), in the sense of Definition 3.1.8. A subgroup H
is said to be closed in G if H = H, and the subposet of closed subgroups in
G is denoted by L£(G). Since G is irreducible, we have that

G = stabg(0) Nstabg(V) = G

and clearly G € L(G).

Similarly to the case of permutation groups, we can define
e the subset
Irrq(H) ={K <G | H<K, K is irreducible on V' } C L(G)
of irreducible subgroups of G containing H;

e the function ¢ : L(G) x L(G) — Z such that

o(H.K) = | P K) i K € Ire(H) and H € L(K)
7 0 otherwise.

Then, for irreducible linear groups Proposition 5.1.1 assumes the follow-
ing form.
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Proposition 5.1.3. Let G < GL(n,q) be an irreducible linear group on a
V~F" andlet H<G. Then

q

pe(H) = > pe(K)g(H,K).
Kelrrg(H)

In the next section, we apply Theorem 3.1.13 to get a similar expression
for pg(H) by using the Mébius number of the reducible subgroup ideal
7, (G, H) instead of the function g. A potential advantage is that we may
be able to compute Z; (G, H) by using Theorem 4.2.4.

5.2 Closed subgroups and the reducible subgroup
ideal

Let V ~ Ty, and let G be an irreducible subgroup of GL(V'). We recall
that
Ci1(G,H) = {stabg(W) |0 < W <V, H C stabg(W) }

is the first class of Aschbacher restricted to the subgroups containing H. The
ideal generated by C1(G, H) in L(G)>pg is

T,(G,H) ={K <G| H < K < M for some M € C,(G,H)}
Moreover we have
7.(G,H) = I, (G, H) U {H, G}.
In particular, if H is a reducible subgroup of G, then H € Z;(G, H) and
T,(G, H) = T; (G, H) U {G}.
Both 7 (G, H) and Z, (G, H) are subposets of £(G).
Now, for any irreducible subgroup K of G, we can similarly define
e Ci(K,H) = {stabg (W) |0 < W <V, HC stabg (W) };
e Z/(K,H)={L<K|H<L<M forsome M € C;(K,H)},
e 7,(K,H) = T,(K,H) U {H,K}.
Remark. If W is a non-trivial subspace of V', then we have
stabr (W) C stabg ().
Therefore, if X € 7,(K, H), then X € Z;(G, H) and

T(K,H) = {X e T,(G, H) | X < K}. (5.4)
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In Chapter 3, we have proven Theorem 3.1.13, that allows us to express
the M6bius function of a finite lattice L in terms of the M&bius number of an
order ideal I. We need to recall Theorem 3.1.13 for the notation, and then
we apply it to give ug(H) in terms of the reducible subgroup ideal Z; (G, H).

Theorem (3.1.13). Let L be a finite lattice with minimum 0 and mazimum
1, and let I C L be an order ideal of L. Let I =1 U{1}. Then

pe(0,1) = pp(0, 1) + Y pz (0.9) - pr(y. 1) (5.5)
yEL\f

where Toy={zel|z<y}uU{y}.

In our case, the lattice is £(G)>py , with minimum H and maximum G.
The ideal is obviously Z; (G, H), and we focus on

f1 <G7 H)<K

for K € L(G)>n \Z1(G, H). But this is equivalent to requiring that K is an
irreducible proper subgroup of GG, hence

TG H)ex ={X e L(G,H) | X < K} =T,(K, H)

as in (5.4).
Then we have the following.

Theorem 5.2.1. Let G be an irreducible subgroup of GL(n,q). Let H be a
subgroup of G. Then

WH,G) = pz, oy (HG)+ Y (K, G) - iz, gy (H, K.
K¢7,(G,H)
H<K<G

Remark. Since ;(G,G) =1 and G is irreducible, Theorem (5.2.1) is equiv-
alent to saying that

K¢7,(G,H)

where the term 17, (G.H) (H,QG) is equal to
M(K7 G) : :UJfl(KjH)(H> K)
for K =G.

If we denote by Irrg(H) the set of irreducible subgroups of G that contain
H, then we can finally write (5.6) as

WHG) = Y w(K,G)-pz, g (H K. (5.7)
Kelrrg(H)
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In Chapter 4, we have computed 17, ( H, K) and by Theorem 4.2.4

K,H)(
we know that

— g ey (HK) = Y (=) (5.8)
EcV/ (K,H)

where
V(K ,H)={ECS(V,H)" | () stabx(W)# H}.
WeE

We can try to use expression (5.8) of uz (K, H)(H , K) in order to find
some bound on its absolute value in terms of the number of join-irreducible
elements in S(V, H), as in Proposition 5.1.2 with respect to g(H, K) and the
orbits of H. A first approximation is the following.

Proposition 5.2.2. Let G be an irreducible subgroup of GL(V'), with V ~
Fy . Let H<G. If K € Irrg(H), then

1z, o (H K| <22 (5.9)

wherer = |JI(S(V, H))| is the number of join-irreducible elements of S(V, H).

Proof. By (5.8), we have that

(H, K)’ = Z (—1)Bl| < oV UCH) < oIS(VH)I
EeV/(K,H)

HZ, (k,H)

Since every element of S(V, H) is a join of some join-irreducible elements,

|S(V,H)| < 2. O

Actually, it would be interesting to find some estimates of this value in
terms of the index |G : H|. Maybe a better approximation in terms of the
join-irreducible elements is necessary.

In the following proposition, we have a remarkable property of subgroups
which are not closed in an irreducible subgroup K < GL(n, q).

Proposition 5.2.3. Let H < G and K € Irrg(H). If H is not closed in
K, then

'“fl(K,H)(I—LK) =0.

Proof. Let Wy,..., W, be the join-irreducible elements of S(V, H). Assume
that H is not closed in K. Then
T
HS ﬂ stabg (W;)

=1
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and we have that
HS () stabg(W) VECS(V,H)", E#9.
WeE

Thus, if H is not closed in K, by definition of W'(K, H) we have that
ECS(V,HY = EecU(K H).
So,

> (-pFi=o.

EcV/(K,H)

We will apply this result in §5.3 to prove Proposition 5.3.2.

5.3 The number of closed subgroups

Now we are interested in the number of closed subgroups in GL(n,¢q). A
motivation can be found in part (i7) of Conjecture 3.2.10, as follows. For
m € N, let b, (G) the number of subgroups of G such that |G : H| = m and
ua(H) # 0. We would like to estimate the growth of b,,(G) with respect to
m and give a polynomial bound

bn(G) <m® VmeN

for all G = GL(n,q), such that the constant « is independent of n and
q. Such a polynomial bound can be applied to Conjecture 3.2.10, if the
considered almost-simple groups are PGL(n, q).

Conjecture 5.3.1. Let G = PGL(n,q). Then there exists an absolute con-
stant «, independent of n and q, such that

bm(G)Sma VmeN
where
bn(G)=#{H <G | |G: Hl=m and u(H,G) #0}.

The following proposition is useful because it reduces the problem to
estimating the number of closed subgroups and the number of irreducible
ones.

Remark. We notice that a closure operator can be defined also for the
subgroup lattice of PGL(n,q) in the same way as we defined the one for
GL(n, ¢). Our results are actually given for GL(n, ¢), but it is not difficult to
obtain the analogue for the quotient GL(n,q)/Z(GL(n, q)), since the centre
Z(GL(n,q)) is contained in every closed subgroup of GL(n, q).
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Proposition 5.3.2. Let G be an irreducible subgroup of GL(n,q), and let
H < G. If pg(H) # 0, then there exist a subgroup K € Irrg(H) and a
closed subgroup C' in G such that H= K NC.

Proof. Let H < G such that pug(H) # 0. We know that

peH)= Y K. G) - pg, g g (H K)
Kelrrg(H)

Therefore pg(H) # 0 implies that there exists a subgroup K € Irrq(H)
such that

,LL(K, G):ufl(KyH)(Ha K) # 0.
Then we have that 12, (k1) (H,K) # 0. By Proposition 5.2.3, we conclude
that H is closed in K.

If H is closed in K, then there exists a closed subgroup C in G such that
H=KnC. Indeed

H= () stabg(W)=Kn () staba(W).
WeS(V,H) WeS(V,H)

O]

By Proposition 5.3.2, in order to prove Conjecture 5.3.1 we need that the
two following conditions hold:

e the number
#{K <G| KEelrrg(H), nc(K)+#0, |G : K| divides m}
is polynomially bounded by the index m = |G : H|;

e the number of closed subgroups in G of index dividing m = |G : H| is
polynomially bounded by m.

In view of Conjecture 3.2.10, one could be interested in estimating the
number of closed subgroups in GL(n,q). In §5.3.1, we concentrate on the
number of closed subgroups H in GL(n,q) such that the lattice S(V, H) is
isomorphic to a product of chains. An example for this kind of subgroups is
represented by the closure of the subgroup generated by a cyclic matrix in

GL(n, q).

5.3.1 Closure of subgroups generated by cyclic matrices

In this section, we prove that there is a polynomial bound, with respect
to the index |G : H| = m, on the growth of the number of closed subgroups
H < GL(n,q) such that the lattice S(V, H) is isomorphic to a product of
chains. This is the case, for example, when H is the subgroup generated by
a cyclic matrix in GL(n, ¢). In particular we have the following theorem.
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Theorem 5.3.3. Let V ~ T and G = GL(n,q). Let

PGy =#{H <G| H=H, S(V,H) is a product of chains, |G : H| = m}.

Then there exists an absolute constant «, independent of n and q, such that
&rd(G)y <m® VYmeN.

The proof in divided into three parts. At first we consider only closed
subgroups H of G such that the lattice of H-invariant subspaces of V is
boolean. Then we study the same, but for closed subgroups H of G such
that S(V,H) is a flag (i.e. a chain of subspaces) in V. Finally, we can
combine the previous results to prove Theorem 5.3.3.

Notation. We will consider the following three sets:

(a) FbooU(@) is the set of closed subgroups H < G such that |G : H| = m
and the lattice S(V, H) is boolean.

(b) Fi9(G) is the set of closed subgroups H < G such that |G : H| = m
and the lattice S(V, H) is a flag.

(c) F°U@) is the set of closed subgroups H < G such that |G : H| = m
and the lattice S(V, H) is isomorphic to a product of chains.

The case of F2°UG)

In this case, the lattice S(V, H) is boolean. In other terms, by Corollary
2.2.17, it is isomorphic to a product of r chains of length 1. We want to
prove Proposition 5.3.4 in order to say that the number of closed subgroups
H in GL(n,q) such that |G : H| = m and S(V, H) boolean is polynomially
bounded by m, independently of n and ¢g. Firstly, we recall some notions
about the g-binomial coefficient.

Remark. We denote by (Z)q the g-analogue of the binomial coefficient (Z)
It means that

(2), = e = 610

where ( 0 (-1
¢ —-1)-...-(¢g—
= 5.11
[ ]q (C] — 1)z ( )
Both (5.10) and (5.11) descend from the definition of [z], as
z—=1 _ (qz — 1)

lg=1+q+q¢+ - +gq

(¢—1)
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If V.=TFy and x is a positive integer < n, it is known that (Z)q represents
the number of subspaces of V' of dimension x.

We know, moreover, that |GL(n,q)| = (¢" —=1)-...- (¢ —1) q(g), which
can be also written as

IGL(n, q)| = [n]g!(q — 1)" q3) (5.12)

by using (5.10).
So, finally, let V' ~ FZ and Wi, Wy <V such that V = W; & Ws. Let

H = GL(W) & GL(W»).
We use the g-binomial coefficient to express the index of H in G = GL(n, q).

In particular, if x; = dim(W;) and zo = dim(Ws), we have 9 = n — ;.
Then

[GL(V)| [n]g!(q — 1) ¢(2)
|GL(W1)] - [GL(W2)| [z1]4!(g — 1)™ q(zzl)[n — a1],!(q — 1) q("}zl)

:<”>.qmmam. (5.13)
q

We can use (5.13) to prove the following Proposition 5.3.4. Actually,
its proof is similar to the proof of [10, Lemma 2.3]|. This is quite natural,
since the lattice B(€2, H) considered (implicitly) by Colombo and Lucchini
for permutation groups is boolean, as we have observed at the beginning of
§5.1.2.

Proposition 5.3.4. Let G = GL(n,q) and
en’(G) = #F;7(G).
Then there exists an absolute constant o, independent of n and q, such that

ool (Gy <m™  V¥meN.

m

Proof. Let V >~y and let H be a closed subgroup of G = GL(V') such that
H is closed in G. Then

H = ﬂ stabg(W;)
i=1
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where JI(S(V, H)) = {W1,..., W, } is the set of join-irreducible elements in
S(V,H). If S(V, H) is boolean, then W7y,..., W, are the atoms of S(V, H)
and, in particular, V = @;_, W;. Then

H = (" staba(W;) = GL(W1) @ - - - @ GL(W,.),
i=1
with [H| = [GL(W1)| - ... - |GL(W,)|.
Let z; = dim W, for alli = 1,...,7 and let m = |G : H|. We can inductively
use (5.13) to obtain that

[GL(V)|
[GL(Wy)| - ... |GL(W, )]

<n> (n—a:1> (n—xl—...—xr_g) .
w1/, x /), Tr_1 .

where the exponent

m=|G: H|=

e:=¢€e(n,r1,...,2xr—1) =x1(n—x1) + x2(Nn — 1 —X2) + ... + Tr_12y

depends only on n,zy,...,z,—1. Let

d d—x1 —...—Ti—
v1=< )’ ’Ui:( " : 1) fori=2,....,r—1, v =¢
T/ X q

so that m = vy - ... - v,. By [20], the number of such ordered factorizations
of m is at most m2. If we fix the factorization m = v; - ... - v,, then for
alli=1,...,r — 1 there are at most two possible values of x; for which we
have v;, and v, is uniquely determined by the previous v;. So, for every fixed
ordered factorization, we have at most 2”1 possibilities, and 2"~ < m.
Then there are at most m?3 choices of 1, ..., z, giving the same m. Hence
there are at most m3 conjugacy classes of closed subgroups H with index
m such that S(V, H) is boolean. Each of these subgroups has at most m

conjugates, so c2°(G) < m*. O

The case of 7" (G)

Similarly to Proposition 5.3.4, we want to prove that the number of closed
subgroups H in GL(n,q), such that |G : H| = m and S(V, H) is a flag, is
polynomially bounded by m, independently of n and ¢q. Here we follow [45]
for notation and remarks about flags of subspaces.

Let V' ~ Fy be a finite vector space of dimension d over F,. A flag f
on V is a sequence (0, W1y, ..., Wy, V) of subspaces of V' such that

O<Wi < <Wr<V.
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Moreover, we say that f = (0, W1,..., Wy, V) is a flag of type (di,...,dy),
where d; := dim(W;) for alli =1,... k.

Remark. A flag f on V can be also regarded as a subposet of the subspace
lattice of V. In particular, f is a chain of subspaces from 0 to V', ordered by
inclusion.

If k=n—1, so that di =1 and d;11 = d; + 1 for all ¢, then the chain
from 0 to V has length n, and the flag is called complete.

Let Fly be the set of all flags on V. The group G = GL(V) acts on Fly
in the obvious way:

(O,Wl,...,Wk,V)g:(O,Wf],...,Wﬁ,V) VgEG.

In particular, with some abuse of notation, we have that the stabilizer of a
flag f = (0,Wq,..., Wy, V) is

k
stabg(f) ={g € G| W{ =W; Vi=1,...,k} = [ ]stabaWi.
=1

where stabgW; also denotes the stabilizer in G of W; with respect to the
usual action of G on the subspace lattice of V. So, for us stabg(W;) is an
equivalent way to write stabg (0, W;, V).

The stabilizer in G of a flag on V is also called a parabolic subgroup
of GL(V). In particular, if the flag is complete we say that it is a maximal
parabolic subgroup. We remind the following fact.

Proposition 5.3.5. A subgroup P < GL(V') is parabolic if and only if it is
closed in GL(V) and S(V, P) is a flag on V.

Proof. On one side, the implication is trivial by definition. On the other side,
the implication is a consequence of Bruhat decomposition (see for instance
[5])- O

Let V ~ Fg and let
O<dy <---<dp<d
be a sequence of positive integers. We set
Fly(di,...,d;) ={f flagon V| f is of type (di,...,dg)}.

We observe that GL(V) acts transitively on Fly(dy,...,d;) and, con-
sequently, the stabilizers of flags in Fly(dy,...,dy) are conjugate to each
other.

So, we have the following proposition.
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Proposition 5.3.6. Let G = GL(n,q) and
ch9(G) = #FJ(G).
Then there exists an absolute constant as, independent of n and q, such that
cfl9(@) <m* VYmeN.,

Remark. By Proposition 5.3.5, ¢/ (@) is the number of parabolic sub-

groups of index m in G.

Proof. Let H be a parabolic subgroup of G = GL(V), V ~ IFZ. Then H is
the stabilizer of a flag f:

O<Wi <o < W<V,
so that

H = stabg(f) = ﬂ stabg (W;),
i=1

where {Wy,..., Wi} = JI(S(V,C)) is the set of join-irreducible elements of
S(V,H). Let x; =dimWj; for all i = 1,...,k and let m = |G : H|. Consider
the set of all flags of type (x1,...,x%) on V, denoted by Fly(z1,...,xx).

Since the action of G on Fly(z1,...,x) is transitive, we have that
|GL(V)
Fly(zy,...,21)| = ————.
v = Tstabe(f)
But we can also compute |Fly (z1,...,x)| as follows:

Flv (@1, 2| = |Fly ()] - [Fl, (@1, .25 1))
= |Fly (xp)| - [Flw, (xk—1)] - - - - [Flwy (1))

(). ) ().

by using the ¢-binomial coefficient. Then we have

d T
m= |G H| = |Fly(an, .. 22)| = (l_k> ~ (xk’:)
q - q

vk:<d), vi:<xi+1> fori=1,...,k—1
Tk q €Ty q

so that m = vg-...-v1. Asin the proof of Proposition 5.3.4, we know that the
number of such ordered factorizations of m is at most m? by [20]. Moreover,

().

Let
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if we fix the factorization m = v-...-v1, foralli = 1,..., k there are at most
two possible values of x; for which we have v;, and vy, is uniquely determined
by the previous v;. So, for every fixed ordered factorization, we have at
most 2% possibilities, and 2¥ < m. Then there are at most m?® choices of
x1, ..., T} giving the same m. Hence there are at most m? conjugacy classes
of closed subgroups H with index m such that S(V, H) is a flag. Each of
these parabolic subgroups has at most m conjugates, so cﬁag(G) <m* O

The case of F5r*Y(G)

Here we use together Proposition 5.3.4 and Proposition 5.3.6 in order to
prove Theorem 5.3.3, that we write again here below. The assumption now
is that S(V, H) is a product of chains.

Theorem (5.3.3). Let G = GL(n,q) and
Irol(G) = #FTG).
Then there exists an absolute constant o, independent of n and q, such that
ol @) <m® ¥meN.

Proof. Let V =~ Fg and let H be a closed subgroup of G = GL(V). We
assume that S(V, H) is isomorphic to a product of r chains ~1,...,v,. For

all i = 1,...,r, let Wk:) be the maximum of ~;, so that k; = dim(Wéf)).
Then, each ~; is a flag on W]S) of the form:

0= Wéi) < Wli) << ka)_l < W,Ef)

and every subspace T' € S(V, H) can be identified with a r-tuple of subspaces
w ...,Wj(:)) € [I;_; i, so that j; € {0,...,k;} and

J1 0
T= @ Wj(z‘i) ’
=1
In particular,
v=Ppw. (5.14)
=1

The set JI(S(V, H)) of the join-irreducible elements in S(V, H) coincides
with the union of the chains:

ISV H)) = J-
i=1
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It means that every join-irreducible element of S(V, H) is one of the Wj(l),
withi € {1,...,r} and j € {1,...,k;}, and it can be identified with a r-tuple
of the form (0,...,0,W”,0,...,0) € [Ti_; 7 such that W " € ;. Since
H is closed, H is uniquely determined by the join-irreducible elements of
S(V, H) in the following way:

r ks
H= ﬂ stabg(W) = ﬂ ﬂ stabg(W:") . (5.15)

WeII(S(V,H))

Let |G : H| = m. Then, as we have seen in the proof of Proposition
5.3.4, for each divisor m of m we have at most m* decompositions of V as
n (5.14) such that
|GL(V)|

| Vi stabg (W)

Thus, we have at most m® such decompositions of V.

m =

Now we fix one of these decompositions: V = @;_, W,S) Foralli=1,...,r
we can consider the relative chain C; = ~; U {V'} given by

0=w <w’ <. <w? <wl <v

e = (), (), (),

where z; = dim(Wj(i)) for each j =1,...,k;. We observe that

(n) _GLv)|
ki) g stabg(W)

has been fixed with the decomposition of V', so that we have

such that

JGL(vV)| Istabg (W)
Y17 Istabe(Cy)| - |GL(V))

stabe(W) [ ay,
© |stabg(Cy)|

: (ij) . (5.16)

As in the proof of Proposition 5.3.6, there are at most y} ways to choose the
chain Cj, for alli =1,...,r
Now, we observe that

Tki-1/

stab(W))|  [GLW,))|

;= = 5.17
Y |staba(C;)] |stab (5.17)
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and that
GL(V
m=|G:H| = —— IGL(V)I : (5.18)
‘Sta GL(W,ii))(fyl)’ Tt ‘Sta GL(W,i:))(FYT)’
So, by Equations (5.17) and (5.18), we obtain that
1
o lenan) Lol
> =Y. Yr,
|StabGL(W,$>)(71)| [stabgy, gy (7] '
hence yf ... y* < m®* is an upper bound on the number of chains, if we
have fixed y1,...,y,. But now we see that y; - ...y, is a factorization of a
divisor d of m. By [20], there are at most d? such factorizations for all d, so
that we can choose at most m? factorizations yi - ... y,, after we have fixed
the decomposition of V = @;_, W,g:)
Finally, we have that
Arod(G) <m® -mt-m? = m!2
O

Some final comments

Many arguments of this thesis give us only partial results. We list here
some possible hints for future research.

1. By Theorem 5.3.3, we have a polynomial bound in m
zm <m® forallmeN

on the number z,, of closed subgroups of index m in GL(n, ¢) that are the
closure of subgroups generated by cyclic matrices. Indeed, if £ is a cyclic
matrix of GL(n, q), then S(V, H) is isomorphic to a product of chains if
H={(¢). And S(V,H) = S(V, H).

We can also notice that in general the subgroup generated by a cyclic
matrix is not closed in GL(n,q). For instance, let

01 0
¢=[o0 01
100

be the companion matrix in GL(3,5) of the polynomial
3 —1=@t—-1)(1+t+1t*) €Fs[t].
Then H = (¢) has order 3, but
H ~ GL(1,5) ® GL(2,5).

However, in general, these are not the only closed subgroups of GL(n,q).
The following are worth to be studied.
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e To find a similar estimate on the number of closed subgroups K that
contain some cyclic matrix. In this case, S(V, K) is a sublattice of a
product of chains.

e In view of Proposition 5.3.2, it is also important to obtain informa-
tion about the structure of closed subgroups which do not contain
cyclic matrices and some estimates on their proportion among all
closed subgroups of GL(n, q).

2. In §5.2, we have motivated the relevance of the Mébius number

Mfl(K,H)(Ha K) (5'19)

of the ideal Z; (K, H), for an irreducible subgroup K < G containing H.
Here some comments about it.

e By Proposition 5.2.3, if H is not closed in K, then

Mfl(K’H)(Ha K)=0.

If H is closed in GG, we have presented in §4.5 some methods to compute
(5.19), or at least estimate it. In general, by Theorem 4.2.4,

ng, e HEK) = > (=DFL (5.20)
EcV/ (K,H)

e In Proposition 5.2.2, we have given a possible bound to the absolute
value of (5.20), in terms of the number r of join-irreducible elements
in S(V, H). The number r does not depend on the irreducible sub-
group K.

In general, by Proposition 4.4.3, if for every E € I'(V, H) there exists an
element z € K such that

z e () stabx (W) but x ¢ H, (5.21)
WeE

then I'(V, H) C ¥/(K, H) and

> D= > (-plFl. (5.22)

EcV(K,H)NT(V,H) Eel(V,H)

By Corollary 4.4.2, if S(V, H) is distributive and has prime rank, then

S (pEl= > (—1)E. (5.23)

EcV/(K,H) EcV/ (K, H)NT'(V,H)
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It is interesting to characterize subgroups H < K < G such that S(V, H)
is distributive of prime rank, when there exists an element = € K as
in (5.21). If such an element exists for all E € I'(V, H), then by Equations
(5.20), (5.22), and (5.23), and by Theorem 4.4.5 we have that

'ufl(K,H)(Hv K) = Z (71)|E\ — Z (71)IE\.

EeV!(K,H) EeT(V,H)
. By using
o)=Y pa(K) - g, e (H.K). (5.24)
Kelrrg(H)

we should investigate how many terms in the sum 5.24 are equal to 0.
This is the case if “fl(K,H)(H’ K) =0 or ug(K) = 0. In order to bound
the absolute value |ug(H)| in terms of the index |G : H|, we also need
estimates on the number of irreducible subgroups in GL(n,q) and on
|ue(K)| for an irreducible subgroup of G.
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