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1 Introduction

In the last decades, the theory and the methods of multiobjective optimiza-

tion problems (MOP, in what follows) have attracted much attention from the

researchers community (for a thorough presentation see, for instance, [1-3]).

Along the years, different solution concepts for MOP have been introduced and

studied. Among them, without a doubt, one of the most investigated is the

weak efficiency. Aiming at investigating the Hölder regularity of the solution

set-valued mapping of perturbed multiobjective optimization problems, Bed-

narczuk considered in [4] (see also [5], and [6] for a slightly different definition)

the more restrictive notion of weak sharp efficiency, where a growth condition

on the vector-valued function is imposed. This approach was first proposed

by Burke and Ferris [7] for scalar optimization problems, in order to over-

come the strong condition of isolatedness of the local sharp minima. Later, it

was applied in many other optimality frameworks, like variational inequalities

and vector optimization problems, in order to analyse the finite convergence of

approximation algorithms (see, for instance, [8-10] and the references therein).

Inspired by the afore-mentioned ideas, in this paper we focus on the weak

sharp efficiency proposed in [4]. Our purpose is to find sufficient conditions on

the objective function entailing the existence of weak sharp efficient points,

in their local version. The approach takes advantage of variational analysis

techniques, already used by the authors, when studying sensitivity of equi-

librium problems (see [11]), like regularity and subregularity of the diagonal

subdifferential map.

In [4], the condition of weak sharp efficiency is investigated through the

Hölder regularity of the ε-solution multifunction. Our goal is rather to find

conditions on the components of a vector function, that guarantee the existence

of weak sharp efficient points. The idea goes through a reformulation of the



Title Suppressed Due to Excessive Length 3

MOP via a suitable equilibrium problem, whose solution set is exactly the set

of weak efficient points of the aforementioned vector function. In the same way,

the set of its weak sharp efficient points can be identified with the solution set

of a “stronger” equilibrium problem, whose solutions can be characterized by

a suitable metric regularity of the so called diagonal subdifferential operator

already studied by the authors in [11].

The paper is organized as follows: in Section 2, we recall some regularity

and subregularity notions of maps needed in the sequel, together with some

lemmata. In Section 3, we investigate how the regularity properties of each

function belonging to a finite family are inherited by the convex hull map of

this family. In the last section, we use the previous results to give sufficient

conditions for weak sharp efficiency.

2 Preliminaries and Notations

Let E,F be metric spaces, and T : E ⇒ F be a set-valued map. Denote by

gphT the graph of T defined as gphT := {(x, y) ∈ E × F : y ∈ T (x)}, by

domT the domain of T defined as domT := {x ∈ E : T (x) 6= ∅}, and by

T−1 : F ⇒ E the inverse map defined as T−1(y) := {x ∈ E : y ∈ T (x)}. For

any subsets A,B of a metric space E, the excess of A beyond B is defined as

e(A,B) := sup
a∈A

d(a,B) = sup
a∈A

inf
b∈B

d(a, b),

under the convention e(∅, B) := 0, and e(A, ∅) := +∞, for A 6= ∅.

Let us now recall some preliminary notions concerning the regularity of a

map (see, for instance, [12,13]). Given a point (x, y) ∈ gphT, the set-valued

map T is said to be:



4 Monica Bianchi et al.

(i) metrically regular around (x, y), iff there is a positive constant k, along

with neighbourhoods U of x and V of y, such that

d(x, T−1(y)) ≤ kd(y, T (x)), ∀x ∈ U , y ∈ V; (1)

(ii) metrically subregular at (x, y), iff there is a positive constant k, along with

a neighbourhood U of x, such that

d(x, T−1(y)) ≤ kd(y, T (x)), ∀x ∈ U ; (2)

(iii) strongly metrically subregular at (x, y), iff there is a positive constant k,

along with a neighbourhood U of x, such that

d(x, x) ≤ kd(y, T (x)), ∀x ∈ U ; (3)

(iv) calm at (x, y), iff there exist a positive constant k, and neighbourhoods U

of x and V of y, such that

e(T (x) ∩ V, T (x)) ≤ kd(x, x), ∀x ∈ U .

The metric regularity of T around (x, y), with constant k, is equivalent to the

linear openness of T around (x, y); i.e., there exist positive constants k and τ,

along with neighbourhoods U of x and V of y, such that

B(y, ρ) ⊂ T (B(x, kρ)), ∀(x, y) ∈ gphT ∩ (U × V), 0 < ρ < τ.

Similarly, the metric subregularity of T at (x, y) is equivalent to the calmness

of T−1 at (y, x) (see, for instance, Propositions 2.7 and 2.2 in [14]). Moreover, it

follows directly from the definition that, if T is strongly metrically subregular

at (x, y), then T−1(y) ∩ U = {x}.



Title Suppressed Due to Excessive Length 5

In the sequel, our results will be stated in the framework of Euclidean

spaces. The space Rk will be endowed with the `1-norm, i.e., ‖x‖ =
∑k
i=1 |xi|,

for every x = (x1, . . . , xk) ∈ Rk. We will denote by B(x, r) the open ball

centred at x with radius r, and by Σk−1 the simplex in Rk given by

Σk−1 =
{
λ ∈ Rk+ : ‖λ‖ = 1

}
.

The usual inner product will be denoted by 〈·, ·〉.

Let us consider a vector function F = (f1, f2, . . . , fm) : Rn → Rm, and the

associated multiobjective optimization problem

min
x∈Rn

F (x), (MOP)

where the ordering cone in Rm is given by the non-negative orthant.

We will denote by WEF the set of all global weakly efficient points of the

MOP, i.e., x ∈WEF if and only if F (z) /∈ F (x)− int(Rm+ ), for all z ∈ Rn.

Under the assumption that fi is differentiable for every i = 1, 2, . . . ,m, we

associate to F the set-valued map HF : Rn ⇒ Rn defined as

x 7→ HF (x) = conv(∇f1(x), . . . ,∇fm(x)),

where conv(y1, y2, . . . , ym) = {
∑m
i=1 λiyi, λi ≥ 0,

∑m
i=1 λi = 1}. It is well-

known that, under the additional assumption that fi was convex on Rn for

every i = 1, 2, . . . ,m, 0 ∈ HF (x̄) if and only if x ∈WEF ; i.e.,

WEF = H−1F (0).

Indeed, the convexity of the functions fi entails that the set F (Rn) + Rm+ is a

convex subset of Rm. From [1], Ch. 5, Corollary 5.29, x ∈ WEF , if and only
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if there exists λ ∈ Σm−1 such that

〈λ, F (x)〉 ≤ 〈λ, F (x)〉, ∀x ∈ Rn,

i.e., x is a global minimum for the function x 7→ 〈λ, F (x)〉. By the differentiabil-

ity assumption on fi, i = 1, 2, . . . ,m, this is equivalent to
∑m
i=1 λi∇fi(x) = 0,

i.e., 0 ∈ HF (x).

The more restrictive notion of weak sharp efficient points of order β > 0,

WSEβF , of the function F, has been defined in [4] as

x ∈ Rn : F (z) /∈ F (x) + αdβ(z,WEF )B(0, 1)− Rm+ , (4)

for some positive α, and for all z ∈ Rn \WEF .

Let us now recall some monotonicity notions, that will play a significant

role in the next results. A map f : Rn → Rn is said to be locally monotone at

x ∈ Rn, iff there exists a neighbourhood U(x) of x such that

〈f(x)− f(x), x− x〉 ≥ 0, ∀x ∈ U(x). (5)

In particular, if

〈f(x)− f(x), x− x〉 ≥ α‖x− x‖2, ∀x ∈ U(x), (6)

for some α > 0, then we say that f is locally strongly monotone at x. Note that,

if f is locally strongly monotone at x, then it is strongly metrically subregular

at (x, f(x)), with constant 1/α. In addition, f : Rn → Rn is said to be locally

monotone around x ∈ Rn, iff there exists U(x) such that

〈f(x)− f(x′), x− x′〉 ≥ 0, ∀x, x′ ∈ U(x). (7)



Title Suppressed Due to Excessive Length 7

Moreover, if

〈f(x)− f(x′), x− x′〉 ≥ α‖x− x′‖2, ∀x, x′ ∈ U(x), (8)

for some α > 0, we say that f is locally strongly monotone around x. In

the sequel, when the neighbourhood is already given, the local monotonicity

around a point will be simply denoted by monotonicity in the neighbourhood.

Let us now prove a relationship between strong monotonicity and metric

regularity.

Lemma 2.1 Let f : Rn → Rn be continuous and locally strongly monotone

around x, with constant α > 0. Then, f is metrically regular around (x, f(x))

along with a suitable U ′(x) and V(f(x)) = Rn, and constant k = 1/α.

Proof Denote by U(x) the neighbourhood of x where f is strongly monotone.

Let r > 0 be such that B(x, 2r) ⊂ U(x), and set B′ = clB(x, 2r). We will

prove that f is open at linear rate around (x, f(x)), i.e., there exists τ > 0

such that, for every ρ ∈]0, τ [ and every x ∈ B(x, r) = U ′(x),

B(f(x), ρ) ⊂ f(B(x, ρ/α)).

Then, the result will follow by the well-known equivalence between metric

regularity and openness at linear rate (see, for instance, [14]). Consider the

normal cone NB′(x) to B′ at x ∈ B′, i.e.,

NB′(x) := {u ∈ Rn : 〈u, x′ − x〉 ≤ 0, ∀x′ ∈ B′},

and define the operator T : Rn ⇒ Rn as follows:

T (x) =


f(x) +NB′(x), x ∈ B′,

∅, x /∈ B′.
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By a classical result on monotone operators (see for instance [15]), T is max-

imal monotone. Since domT is bounded, Theorem 2.17 in [16] entails that T

is surjective. In addition,

〈u− u′, x− x′〉 ≥ α‖x− x′‖2, ∀x, x′ ∈ B′,∀u ∈ T (x), u′ ∈ T (x′). (9)

Fix now τ = rα, let ρ ∈]0, τ [, and choose x ∈ B(x, r), and y′ ∈ B(f(x), ρ). By

(9), T is one-to-one, therefore, taking into account the surjectivity of T, there

exists a unique x′ ∈ B′ such that y′ ∈ T (x′). Since T (x) = {f(x)}, by (9),

where u = f(x), u′ = y′, we get

‖x′ − x‖ ≤ 1

α
‖y′ − f(x)‖ < ρ

α
,

hence x′ ∈ B(x, ρ/α). Moreover, ‖x′ − x‖ < ρ/α + r < 2r; this implies that

x′ ∈ B(x, 2r), and thus T (x′) = {f(x′)}, and y′ ∈ f(B(x, ρ/α)), thereby

proving the openness of f around (x, f(x)), with constant 1/α. ut

3 Regularity Properties of the Convex Hull Map

Let Rnm be the product space Rn × · · · × Rn︸ ︷︷ ︸
m times

, and define the convex hull map

conv : Rnm ⇒ Rn as follows:

conv(x1, x2, . . . , xm) =

{
m∑
i=1

λix
i, λ ∈ Σm−1

}
.

Given the functions gi : Rn → Rn, i = 1, · · · ,m, let us consider the closed

and convex valued map conv(g1, g2, · · · , gm) : Rn ⇒ Rn defined as

conv(g1, · · · , gm)(x) := conv(g1(x), g2(x), ..., gm(x)).
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This section is devoted to the investigation of metric regularity and calmness

properties of the map conv(g1, g2, · · · , gm).

Following [12], Section 1.3., let us first recall that a map h : Rn → Rl is

said to be calm at x ∈ Rn with constant k, iff there exists a neighbourhood

U(x) of x such that

‖h(x)− h(x)‖ ≤ k‖x− x‖, ∀x ∈ U(x).

When the inequality is satisfied for every point x′ ∈ U(x), and not only for x,

then h is said to be locally Lipschitz at x, or Lipschitz on U(x), The following

proposition holds:

Proposition 3.1 Let gi : Rn → Rn, i = 1, . . . ,m and let x ∈ Rn. If we

suppose that all the functions gi are calm at x with constant ki and common

neighbourhood U(x), then the set-valued map conv(g1, g2, · · · , gm) is calm at

(x, y) for every y ∈ conv(g1, g2, · · · , gm)(x), with constant k = m · maxi {ki}

and neighbourhood U(x).

Proof Let us first prove that the map conv : Rnm ⇒ Rn satisfies

e(conv(x1, x2, . . . , xm), conv(y1, y2 . . . , ym)) ≤
m∑
i=1

‖xi − yi‖ (10)

for every (x1, x2, . . . , xm), (y1, y2 . . . , ym) ∈ Rnm. Indeed, let us take two

points (x1, x2, . . . , xm), (y1, y2 . . . , ym) ∈ Rnm and λ ∈ Σm−1. Hence,∑m
i=1 λix

i ∈ conv(x1, x2, . . . , xm),
∑m
i=1 λiy

i ∈ conv(y1, y2 . . . , ym). Then,

‖(
m∑
i=1

λix
i)− (

m∑
i=1

λiy
i)‖ = ‖

m∑
i=1

λi(x
i − yi)‖ ≤

m∑
i=1

‖xi − yi‖.

This implies that, for every z ∈ conv(x1, x2, . . . , xm),

d(z, conv(y1, y2 . . . , ym)) ≤
m∑
i=1

‖xi − yi‖,
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and therefore (10) holds.

Now, for every x ∈ U(x), we obtain

e(conv(g1(x), · · · , gm(x)), conv(g1(x), · · · , gm(x))) ≤
m∑
i=1

‖gi(x)− gi(x)‖

≤ k‖x− x‖,

and the assertion easily follows with V(y) = Rn. ut

In order to investigate some metric regularity properties of the map

conv(g1, · · · , gm), we introduce the selections gλ : Rn → Rn, defined as

gλ(x) =

m∑
i=1

λigi(x), λ ∈ Σm−1.

Our first result provide a sufficient condition for the map gλ to be strongly

metrically subregular. The proof of this property is based on a result related to

the inverse mapping theorem for strong metric subregularity (see [12], Section

3.9). As a matter of fact, according to [12], such an inverse function theorem

cannot be stated if strong metric subregularity is relaxed to metric subregu-

larity, since this last property is not stable under perturbations.

Lemma 3.1 (Theorem 3I.7 in [12]) Let φ, ψ : Rn → Rn be maps, and let

x ∈ Rn. If φ is strongly metrically subregular at x with constant k, and ψ is

calm at x with constant L, with a common neighbourhood U(x), and Lk < 1,

then φ + ψ is strongly metrically subregular at x with constant k
1−Lk within

U(x).

We can now prove the mentioned result about gλ:

Theorem 3.1 Let gi : Rn → Rn, i = 1, . . . ,m, and let x be a point in Rn.

Suppose that the maps satisfy the following assumptions:
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(i) there exists i0 ∈ {1, 2, ...,m} such that gi0 is locally monotone and strongly

metrically subregular at x, with constant k;

(ii) for every i ∈ {1, 2, . . . ,m} \ {i0} , gi is calm at x, with constant Li, and

locally strongly monotone at x, with constant αi.

Then the function gλ is strongly metrically subregular at (x, gλ(x)) with con-

stant

k′ = k +

m∑
i=1, i 6=i0

1 + kLi
αi

,

for every λ ∈ Σm−1.

Proof Without loss of generality, let i0 = 1. Fix εi > 0, i = 2, . . . , ,m, such

that
m∑
i=2

(1 + kLi)εi < 1. (11)

Suppose first that λi ∈ [0, εi] for every i = 2, . . . ,m. Then, by (11), we have∑m
i=2 εi < 1, and hence λ1 > 0.

Now, let us consider the map g : Rn → Rn defined as follows

g(x) =

m∑
i=2

λigi(x).

Obviously, g is calm at x with constant
∑m
i=2 λiLi. Furthermore, since g1 is

metrically subregular at x with constant k, then λ1g1 is metrically subregular

at x with constant k/λ1. Since k
∑m
i=2 λiLi < λ1, then, by Lemma 3.1, the

function gλ = λ1g1 + g is strongly metrically subregular at (x, gλ(x)) with

constant

k

λ1 − k
∑m
i=2 λiLi

. (12)

Moreover, since λi ∈ [0, εi] for every i = 2, . . . ,m, we have

k

λ1 − k
∑m
i=2 λiLi

≤ k

(1−
∑m
i=2 εi)− k

∑m
i=2 εiLi

.
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Therefore, the constant (12) can be taken independent on λ, and is given by

k

(1−
∑m
i=2 εi)− k

∑m
i=2 εiLi

.

It remains to consider the case where the condition: λi ∈ [0, εi] for every

i = 2, . . . ,m, is not satisfied. In this case, λ = (λ1, ..., λm) ∈ ∪mi=2Si, where

Si = {λ ∈ Σm−1 : λi ∈]εi, 1]}.

If λ ∈ Si, then the map λigi is locally strongly monotone at x with constant

λiαi; therefore, since λjgj is locally monotone at x, for every j 6= i (including

j = 1), the map gλ is locally strongly monotone with constant λiαi at the

same point. Since λi > εi, the map gλ is also locally strongly monotone at x,

with constant εiαi. Therefore, from the inequality

εiαi‖x− x‖2 ≤ 〈gλ(x)− gλ(x), x− x〉 ≤ ‖gλ(x)− gλ(x)‖ ‖x− x‖,

it follows that gλ is strongly metrically subregular at x, with constant 1/εiαi.

The last part of the proof is devoted to find a uniform constant of strong

metric subregularity for every gλ, when λ is any point Σm−1. Let us consider

the following linear system of m−1 equations with respect to m−1 unknowns

ε2, ..., εm:

1−
m∑
i=2

εi − k
m∑
i=2

εiLi = kεjαj , j = 2, · · ·m

It gives, as the unique solution, ε2, ..., εm such that:

1

εj
= αj

(
k +

m∑
i=2

1

αi
+ k

m∑
i=2

Li
αi

)
, j = 2, . . . ,m.

Note that
∑m
i=2(1 + kLi)εi < 1. With such a choice of εi, we have that, for

every λ ∈ Σm−1, the function gλ is strongly metrically subregular at x with
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constant k′, where

k′ = k +

m∑
i=2

1

αi
+ k

m∑
i=2

Li
αi

= k +

m∑
i=2

1 + kLi
αi

.

ut

Remark 3.1 In Theorem 3.1 the monotonicity assumption plays a central role

in proving the strong metric subregularity of the selections gλ. Indeed, let

g1, g2 : R2 → R2, given by

g1(x1, x2) = (x1, x2), g2(x1, x2) = (3, 0) + (x1,−x2)

and let x = (0, 0). The function g2 is not monotone. Since gλ(0, 0) = (3λ2, 0),

the inequality

‖x‖ ≤ k‖gλ(x1, x2)− gλ(0, 0)‖ = k‖(x1, (λ1 − λ2)x2)‖

cannot be fulfilled for any choice of k, if λ1 = λ2 = 1/2, and thus gλ is

not strongly metrically subregular. Moreover, for λi 6= 1/2, the function gλ

is strongly metrically subregular at x, but the constant k can not be chosen

independent from λ.

Remark 3.2 The strong metric subregularity of the maps {gλ}λ∈Σm−1 does

not imply the strong metric subregularity of the convex hull map. Take, for

instance, g1, g2 : R2 → R2 given by

g1(x1, x1) = (x1, x2), g2(x1, x2) = (3, 0) + (x2,−x1).

These functions satisfy the assumptions of Theorem 3.1 at (0, 0), with all

constants equal to 1. From the final assertion of Theorem 3.1 the map gλ is

strongly metrically subregular at ((0, 0), gλ(0, 0)), for all λ ∈ Σ1. We show
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that the set-valued map T (x) := conv{g1(x1, x2), g2(x1, x2)} is not strongly

metrically subregular at ((0, 0), (0, 0)), i.e., it is not fulfilled that:

‖(x1, x2)‖ ≤ kd((0, 0), T (x1, x2)), (x1, x2) ∈ U(0, 0),

for any k > 0. Indeed, standard computations show that (0, 0) ∈ T (x1, x2)

for every (x1, x2) such that x21 + x22 + 3x2 = 0, and x1, x2 ≤ 0. Thus the

right-hand-side evaluated at these points is 0, while the left-hand-side is not.

For the reason explained in the remark above, we propose to study the met-

ric regularity property of the map conv(g1, g2, . . . , gm). To do this, a stronger

version of Theorem 3.1 is required. The next result is the counterpart of Lemma

3.1 for metric regularity of the sum of two maps.

Lemma 3.2 (Theorem 3F.1 in [12]) Let φ, ψ : Rn → Rn be maps, and let

x ∈ Rn. If φ is metrically regular at x with constant k, and ψ is Lipschitz

with constant L, with common neighbourhood U(x), and Lk < 1, then φ + ψ

is metrically regular at x with constant k
1−Lk within U(x).

Theorem 3.2 Let gi : Rn → Rn, i = 1, . . . ,m, let x be a point in Rn. Suppose

that:

(i) there exists i0 ∈ {1, 2, ...,m} such that gi0 is metrically regular around

(x, gi0(x)) with constant k, and neighbourhoods U(x) and V(gi0(x)), mono-

tone and continuous on U(x);

(ii) for every i ∈ {1, 2, . . . ,m} \ {i0} , gi is Lipschitz, with constant Li, and

strongly monotone, with constant αi, on U(x).

Then, for every λ ∈ Σm−1, the function gλ is metrically regular around

(x, gλ(x)) with constant k′ = k +
∑m
i=1, i 6=i0

1+kLi

αi
, along with U(x) and Rn.

Proof We follow the proof of Theorem 3.1. The case λi ∈ [0, εi], i = 2, · · ·m

can be similarly discussed via Lemma 3.2. When this condition is not satisfied,
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the assumptions on the maps {gj}mj=2 entail that there exists i ∈ {2, 3, . . . ,m}

such that the map gλ is strongly monotone on U(x) with constant εiαi. Fur-

thermore, gλ is continuous as a sum of continuous maps. By Lemma 2.1, gλ is

metrically regular with constant 1
εiαi

. As in Theorem 3.1, we can find a uni-

form constant for metric regularity of all the functions gλ, where λ ∈ Σm−1.

ut

Taking into account the uniform metric regularity of the selection maps

gλ, we are now able to prove the following result:

Theorem 3.3 Under the assumptions of Theorem 3.2, the set-valued map

conv(g1, ..., gm) is metrically regular around (x, y), for all y ∈ conv(g1, ..., gm)(x),

with constant k′ = k +
∑m
i=1, i 6=i0

1+kLi

αi
.

Proof Let x ∈ U(x), and y ∈ conv(g1, . . . , gm)(x). Then y = gλ(x) for some

λ ∈ Σm−1. By Theorem 3.2, gλ is metrically regular around (x, gλ(x)). By the

equivalence between metric regularity and linear openness, we have that

B(y, ρ) ⊂ gλ(B(x, ρk′)) ⊂ conv(g1, g2, . . . , gm)(B(x, ρk′)), 0 < ρ < τ,

for some positive τ. This proves the linear openness of conv(g1, ..., gm) around

(x, y), and therefore the assertion follows from the same equivalence. ut

Note that the conditions of the theorem above are not necessary, as the

next example highlights:

Example 3.1 Take, for instance, the functions

g1(x) =


x, x ∈ Q,

0, x /∈ Q,
g2(x) =


−x, x ∈ Q,

0, x /∈ Q.

Both of them are not open; indeed, for any x0 ∈ R, and for any positive r,

g1(B(x0, r)) ⊂ Q, g2(B(x0, r)) ⊂ Q,
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therefore no open set can be included in the image of any ball. In particular,

the functions are not open at linear rate for any point x0. However, a trivial

computation shows that the set-valued map co(g1, g2), given by

conv(g1, g2)(x) =


[−x, x], x ∈ Q,

{0}, x /∈ Q,

is open at linear rate k = 1 around any point (x0, y0) ∈ gph conv(g1, g2).

4 Application: Weak Sharp Efficiency and Metric Subregularity

In this section, we deal with weak sharp efficiency, in its local version, for the

multiobjective optimization problem. In particular, in our main result we will

provide sufficient conditions on the functions fi, that guarantee the existence

of local weak sharp efficient points.

Let F : Rn → Rm, F = (f1, f2, . . . , fm), where fi is convex, for every

i = 1, 2, . . . ,m. First of all, we reformulate the MOP as a suitable equilibrium

problem, which shares the solution set (see, for instance, [17]). Denote by

ϕ : Rn × Rn → R the bifunction defined as follows:

ϕ(x, y) := max
z∈Σm−1

〈z, F (y)− F (x)〉; (13)

it is easy to prove that x ∈WEF if and only if x is a solution of (EP), i.e.,

ϕ(x, y) ≥ 0, ∀y ∈ Rn.

Let us consider the diagonal subdifferential operator Aϕ : Rn ⇒ Rn asso-

ciated to ϕ and given by

Aϕ(x) := {x∗ ∈ Rn : ϕ(x, y) ≥ 〈x∗, y − x〉, ∀y ∈ Rn}.
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Obviously, x is a solution of (EP), if and only if 0 ∈ Aϕ(x), i.e., x ∈ (Aϕ)−1(0).

In the next proposition, we strengthen this property.

Let us first recall a well-known formula for the subdifferentials of supremum

functions (see, for instance, Theorem 4.4.2 in [18]). Let S be a compact set

in some metric space, and let {hs}s∈S be a family of convex functions on Rn.

Suppose that the map s 7→ hs(x) is upper semicontinuous for every x ∈ Rn,

and the function h defined as h(x) = sups∈S hs(x) is finite everywhere. Then

∂h(x) = cl conv(∪s∈S{∂hs(x) |hs(x) = h(x)}).

Proposition 4.1 Let F : Rn → Rm, F = (f1, f2, . . . , fm), where fi is convex

and differentiable, for every i = 1, 2, . . . ,m, and let ϕ given by (13). Then

Aϕ(x) = HF (x), ∀x ∈ Rn,

where HF (x) = conv(∇f1(x), . . . ,∇fm(x)).

Proof Let x∗ ∈ HF (x), i.e., x∗ =
∑m
i=1 λi∇fi(x), for some λ ∈ Σm−1. Then,

from the convexity of fi, for every i, we get

m∑
i=1

λi(fi(y)− fi(x)) ≥
m∑
i=1

〈λi∇fi(x), y − x〉 = 〈x∗, y − x〉, ∀y ∈ Rn.

This implies that

ϕ(x, y) = max
z∈Σm−1

〈z, F (y)− F (x)〉 ≥ 〈x∗, y − x〉, ∀y ∈ Rn, (14)

thereby implying that x∗ ∈ Aϕ(x).
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Suppose now that x∗ ∈ Aϕ(x), i.e., (14) holds. Then,

x∗ ∈ ∂( max
z∈Σm−1

〈z, F (·)− F (x)〉)|y=x

= cl conv

 ⋃
z∈Σm−1

m∑
i=1

zi∇fi(x)

 = HF (x),

as required. ut

As well as a relationship holds between the solutions of the equilibrium

problem with bifunction ϕ and WEF , a connection between the set WSEβF

and the solutions of a “stronger” equilibrium problem defined by (13) can be

highlighted.

Proposition 4.2 Let x belong to WSEβF (with constant α); then,

ϕ(x, y) ≥ α

m
dβ(y, (Aϕ)−1(0)), ∀y ∈ Rn.

Conversely, if

ϕ(x, y) ≥ αdβ(y, (Aϕ)−1(0)), ∀y ∈ Rn,

then x belongs to WSEβF (with constant α).

Proof Note that the definition of WSEβF (4) can be equivalently restated as

follows:

F (y) /∈ F (x) + αdβ(y,WEF )B(0, 1)− int(Rm+ ), ∀y ∈ Rn. (15)

By Proposition 4.1 we have that WEF = H−1F (0) = (Aϕ)−1(0). If x ∈WSEβF ,

then, for every y ∈ Rn, there exists i ∈ {1, 2, . . . ,m} such that

fi(y)− fi(x) ≥ α

m
dβ(y,WEF ).
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This implies that ϕ(x, y) ≥ α
md

β(y,WEF ).

The converse implication can be easily proved, arguing by contradiction.

If x /∈ WSEβF , then, in particular, fi(y) − fi(x) < αdβ(y,WEF ) for every

i ∈ {1, 2, . . . ,m} and for some y ∈ Rn. This implies that

〈z, F (y)− F (x)〉 < αdβ(y, (Aϕ)−1(0)),

for every z ∈ Σm−1, and thus x cannot satisfy the assumption. ut

The same result holds if we consider the local version: we say that x ∈ Rn

is a local weak sharp efficient minimum of order β > 0 (x ∈ LWSEβF ) if

F (z) /∈ F (x) + αdβ(z,WEF )B(0, 1)− Rm+ , (16)

for some positive α, and for all z ∈ U(x) \ WEF , where U(x) is a suitable

neighbourhood of x. In particular, if

ϕ(x, y) ≥ αdβ(y, (Aϕ)−1(0)), ∀y ∈ U(x), (17)

then x ∈ LWSEβF with constant α.

In the following, we will focus on the case β = 2, and provide a sufficient

condition for (17). To this purpose, we need the next result (see Theorem 2 in

[11]):

Lemma 4.1 Let ϕ : Rn × Rn → R be a bifunction, and let x ∈ Rn be such

that

(i) ϕ(x, ·) is convex and lsc;

(ii) ϕ(x, y) ≤ ϕ(x, z) + ϕ(z, y), for all y, z ∈ Rn;

(iii) Aϕ is metrically subregular at (x, 0), with neighbourhood U = B(x, r), and

k > 0.
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Then, there exists U ′ = B(x, 2r/3), and 0 < c < 1/4k such that

ϕ(x, x) ≥ c d2(x, (Aϕ)−1(0)) ∀x ∈ U ′.

We can now apply Lemma 4.1 to the function ϕ defined in (13), and the

next result follows:

Proposition 4.3 Let HF be metrically subregular at (x, 0), with neighbour-

hood B(x, r) and constant k. Then x ∈ LWSE2
F , with U(x) = B(x, r′), by

taking α < k/4, and r′ = 2r/3.

Proof By Proposition 4.1, HF = Aϕ. By taking into account Proposition 4.2,

the assertion follows from Lemma 4.1. Indeed, condition (i) is satisfied from

the convexity of the functions fi. Moreover, for every y, y′ ∈ Rn,

ϕ(x, y) = max
z∈Σm−1

〈z, F (y)− F (x)〉

≤ max
z∈Σm−1

〈z, F (y′)− F (x)〉+ max
z∈Σm−1

〈z, F (y)− F (y′)〉

= ϕ(x, y′) + ϕ(y′, y),

thereby (ii) holds. ut

Unfortunately, the example below shows that the local weak sharp effi-

ciency cannot be characterized via the metric subregularity of the map HF .

Example 4.1 Take F : R → R2, F (t) = (|t|γ , |t|2γ), with γ > 1 (in this case,

both functions are differentiable everywhere). For every γ, the image is the

same, and t = 0 is the only weak efficient point. Note that the map HF given

by

HF (t) = conv(γ sign(t)|t|γ−1, 2γ sign(t)|t|2γ−1)

is never metrically subregular at (0, 0).
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Indeed, d(t,H−1F (0)) = |t|, while d(0, HF (t)) = 2γ|t|2γ−1. For t small, the

inequality d(t,H−1F (0)) ≤ kd(0, HF (t)) does not hold for any k. On the other

hand, t = 0 belongs to LWSE2
F if and only if γ ≤ 2, since f1(t) = |t|γ ≥ α|t|2

for a suitable α > 0, and for small values of t.

In order to get weak sharp efficient points of order 2, via Proposition 4.3,

we are now interested in giving sufficient conditions for metric subregularity

of the map HF . In the next proposition we prove a stronger result, i.e. the

metric regularity of the map HF around a point (x, 0), which in its turn will

entail that x is a local weak sharp efficient point of order 2.

Theorem 4.1 Let F = (f1, f2, . . . , fm) : Rn → Rm, with fi convex and dif-

ferentiable for every i = 1, 2, . . . ,m. Let x ∈ WEF , and suppose that there

exists a neighbourhood U(x) of x such that:

(i) there exists i0 ∈ {1, 2, ...,m} such that ∇fi0 is metrically regular around

(x,∇fi0(x)) with constant k, along with U(x) and V(∇fi0(x)), and contin-

uous on U(x);

(ii) for every i ∈ {1, 2, . . . ,m} \ {i0} , ∇fi is Lipschitz, with constant Li, and

strongly monotone, with constant αi, within U(x).

Then, HF is metrically regular around (x, 0) with constant

k′ = k +

m∑
i=1, i 6=i0

1 + kLi
αi

,

along with U(x) and Rn. In particular, x ∈ LWSE2
F .

Proof By applying Theorem 3.3 for gi = ∇fi, i = 1, 2, . . . ,m, we obtain the

first assertion. The second one is a consequence of Proposition 4.3. ut

Via Lemma 2.1, we can provide sufficient conditions on the functions

{fi}mi=1, that entail the metric regularity of HF and, as a byproduct, to the

existence of a local weak sharp efficient solution of MOP.
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Corollary 4.1 Let F = (f1, f2, . . . , fm) : Rn → Rm, and x ∈ WEF . Suppose

that, for some positive r, and for every i = 1, 2, . . . ,m, fi ∈ C2(B(x, r)) and

is strongly convex on B(x, r). Then, x ∈ LWSE2
F .

To conclude, note that the vector-valued function F = (f1, f2) : R → R2,

where

f1(x) =


ax2, x < 0,

bx2, x ≥ 0,

f2(x) = (x− 1)2,

satisfies the assumptions of the theorem above at x = 0 for every a, b > 0, but

not those of the corollary, if a 6= b.

5 Conclusions

In this paper, we study the existence of weak sharp efficient points for multiob-

jective optimization problems in their local version. To obtain our results, we

use different techniques coming from variational analysis, like metric regularity

and metric subregularity of the diagonal subdifferential operator associated to

a suitable chosen equilibrium problem, strongly related to our multiobjective

optimization problem.

The convex hull map built by the gradients of the objective functions plays

an important role in investigating the existence of weak sharp efficient points.

Namely, the metric regularity of this map around a certain point of its graph

assures the local weak sharpness of the first component of that point. To

this aim, we first investigate how the regularity properties of each function

belonging to a finite family are inherited by the convex hull map of this family.

We use these results to give sufficient conditions for weak sharp efficiency in

terms of the objective functions of the investigated multiobjective optimization

problem.
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