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Brain functional connectivity is a widely investigated topic in neuroscience.
In recent years, the study of brain connectivity has been largely aided by
graph theory. The link between time series recorded at multiple locations
in the brain and the construction of a graph is usually an adjacency matrix.
The latter converts a measure of the connectivity between two time series,
typically a correlation coefficient, into a binary choice on whether the two
brain locations are functionally connected or not. As a result, the choice of
a threshold 1 over the correlation coefficient is key. In the present work we
propose a multiple testing approach to the choice of T that uses the Bayes
False Discovery Rate (FDR) and a new estimator of the statistical power
called Average Power Function (APF) to balance the two types of statistical
error. We show that the APF estimator substantially improves current
methodology as it is unbiased, asymptotically robust in case of
independence and stationary dependence of the tests and it is reliable
under several simulated dependence conditions. Moreover, we propose a
robust method for the choice of T using the 5% and 95% bootstrap
percentiles of the APF and FDR distributions respectively to improve
stability. We applied our approach to functional Magnetic Resonance
Imaging (fMRI) and High Density Electroencephalogram (HD-EEG) data.
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Abstract

Brain functional connectivity is a widely investigated topic in neuroscience. In recent years, the study of brain
connectivity has been largely aided by graph theory. The link between time series recorded at multiple locations in the
brain and the construction of a graph is usually an adjacency matrix. The latter converts a measure of the connectivity
between two time series, typically a correlation coefficient, into a binary choice on whether the two brain locations are
functionally connected or not. As a result, the choice of a threshold 7 over the correlation coefficient is key. In the present
work we propose a multiple testing approach to the choice of 7 that uses the Bayes False Discovery Rate (FDR) and a
new estimator of the statistical power called Average Power Function (APF) to balance the two types of statistical error.
We show that the APF estimator substantially improves current methodology as it is unbiased, asymptotically robust in
case of independence and stationary dependence of the tests and it is reliable under several simulated dependence
conditions. Moreover, we propose a robust method for the choice of 7 using the 5% and 95% bootstrap percentiles
of the APF and FDR distributions respectively to improve stability. We applied our approach to functional Magnetic

Resonance Imaging (fMRI) and High Density Electroencephalogram (HD-EEG) data.
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Introduction

Functional connectivity is defined as the temporal depen-
dency within spatially remote neurophysiologic events'. In
the past years an increasing body of neuroimaging studies
explored functional connectivity by measuring the level of
co-activation of time series between brain regions. Graph
theory is increasingly used to define brain connectivity?;
in the graphical representation of a brain network, a node
corresponds to a brain region while an edge corresponds
to an interaction between two brain regions®. Binary brain
networks are defined only by the presence or absence of
connections between brain areas. Although weighted graphs
might carry more information, neuroscientists often rely on
the detection of significantly active brain areas to prove
their hypotheses or formulate new ones; furthermore, binary
networks are simple to understand and explain and they
have an easily defined null model for statistical comparsion*.
Alternative methods to define thresholds for a connectivity
measure such as Graphical LASSO and Mixed Graphical
Models rely on multivariate assumptions of the time-series
and are often computationally challenging’. On the other
hand, the problem for binary networks is usually that of
defining a threshold over a measure of connectivity that
turns the matrix of all pairwise dependencies between brain
areas into an adjacency matrix. This allows the calculation
of several measures that summarise important global and
local characteristics of brain connectivity, such as centrality,
efficiency, density, and small worldness property *.

By partitioning the brain into several anatomical regions of
interest (ROI) and extracting time series from each ROI, we

can subsequently employ a measure of dependence, namely
the nonparametric Spearman’s correlation between each pair
of ROISs. The resulting correlation matrix is converted into an
adjacency matrix by fixing a threshold 7 on the Spearman’s
test statistics.

In a recent study Sala et al.* proposed a method to derive the
adjacency matrix by using a multiple testing procedure on the
correlation coefficients. The multiple testing problem arises
from pairwise testing the correlation test statistics of all the
time series recorded. Sala et al.* controlled type I and II error
rates using the postive False Discovery Rate (pFDR) and
False Nondiscovery Rate (pFNR) estimates and a method for
balancing the two errors.

The present study employs the Bayes False Discovery Rates®
together with a new Bayesian estimator of the statistical
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power called Average Power Function (APF). The latter is
proven to be unbiased and to asymptotically approximate the
actual value of the parameter both in the case of independent
and stationary associated p-values. Simulation results show
that APF has low bias and mean squared error (MSE) over its
full range and also for several types and strengths of spatial
dependence among tests.

Furthermore, as stability is an important feature of a testing
procedure”’, we propose a robust method to find a suitable
threshold 7 for the Spearman’s test statistics. We employ the
95" and 5" Bootstrap percentiles of FDR and APF respec-
tively to find a threshold on the p-values that guarantees
both a small type I error and a reasonably high power with
95% probability. We tested our approach with a Monte Carlo
(MC) simulation study and both functional Magnetic Reso-
nance Imaging (fMRI) and High Density Electroencephalo-
gram (HD-EEG) data recorded from a healthy subject.

Multiple Testing

In order to deal with multiple testing we consider m pairs
of hypotheses Hy and H;, with a priori probabilities defined
by mo = P(Hp) and m; = P(H;) = 1 — mp. Each pair is put
through an hypothesis test that returns a p-value p; for j =
1,..,m which is assumed to be uniformly distributed under
Hy.

Let us also consider the probability of false discoveries,
called Bayes False Discovery Rate®,

P(p; < y|Ho)P(Ho) _ 270
P(p; <7) F(y)’

where v and F' represent a suitable threshold for the p-values
and their cdf, respectively. Moreover, the probability of true
discoveries called Average Power Function (APF) can be
defined as

FDR(y) =P(Hylp; <7) =

APF(v) =P(p; <~|H1) = P(H1lp; < ¥)P(p; <)

P(H;)
_ [1-FDR(M)|F(v) _ F(y) —ym
1-— ™0 1-— ™0 '

We propose the following estimates
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FDR(y) = 1.,
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for which the choice of the p-values empirical cdf F('y) =
#{p; < ~v}/m leads to the expected values,

E[FDR(y)] > —2— = FDR(v),

ElF ()]
Emﬁﬁmﬂzzgg¥@éfﬂ9:APFw»

due to Jensen’s inequality and E[F('y)] = F(y) =~m +
APF(y)m.

It is worth noting that the FDR estimate is conservative while
the APF estimate is unbiased.

Information regarding the a priori probability 7y can be

acquired empirically from the data.This approach defines a
conservative estimate of the a priori probability 7y as showed
by Storey (2002)'°,

_#Hp >N _1-F)

To(A) m(1—\) 1—Xx

whose expected value depends on A and is defined as

ﬂ%mki{2?=m+
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m™ >
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which is obtained through

E[1-F\)]=1-F\)=(1-Xm+ [1 — APF(\)]m1.

Therefore, the empirical Bayes estimates of FDR and APF
are

FDR(y) - Vﬁo((;\)l) 7
APF() = TR0,

with A; # As. In order to derive the optimal value of A\ for
each estimate, we resample the m p-values with replacement
B times, we calculate the bootstrap versions of 7p(\) over a
range of A values (e.g. from O to 1 with step 0.05) and we
minimise the bootstrap estimate of the corresponding mean
square error (MSE) as in®.

The optimal values of A for the two estimates allow
us to construct the one-sided (1 — «)-confidence intervals

for the parameters by taking, respectively, the (1 — a)-
quantile of the F DR, (v) bootstrap distribution as the upper

confidence bound, and the «-quantile of the APF 2 (7)
bootstrap distribution as the lower confidence bound of the
corresponding parameters.

Since it is not sufficient to control the FDR alone, we propose
a robust approach to balance the two types of error rate.
The trade-off can be made by first choosing the alpha value
for both the (1 — a)-quantile of the bootstrap distribution of
FDR and the a-quantile of the bootstrap distribution of APF
and then evaluating these quantities over all the gamma range
and identifying a suitable gamma threshold such that (first)
the FDR is low and (second) the APF is reasonably high,
both having (1 — «) probability.

Asymptotics

In the case of independent p-values, by the strong law of
large numbers, we have F'(vy) — E[F(v)] = F(v) almost
surely, from which it follows that,

7io(A) =E[fo(N)] = mo {1 + 1_51—}35()\);:} o

Ah YE[Fo(N)] _ 7o 1—APF(A) m
FDR() = E[F(y)] F() {1 1—A mj
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almost surely, by the continuous mapping theorem.

In case of stationary associated p-values, if
> Cov(ps, pj) = o(m) for m — oo then, by a result of
Yu (1993)'1,

sup{F'(7) — F(7)} — 0,
o
almost surely, from which it follows that
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almost surely, by the continuous mapping theorem.
Therefore, when A is chosen so that APF()) is close
to 1 (for example, if A\ is near 1), the empirical Bayes
estimates asymptotically approximate the actual values of the
corresponding parameters.

The case of nonparametric independence
testing

Let us consider the case of m pairs of hypotheses Hy:
independence vs. H;: dependence, with a priori probabilities
defined by w9 =P(Hp) and m =P(Hy)=1—m. We
apply the approach introduced in Section 2 to this scenario
where dependence is measured through the Spearman’s test
statistics which is

where n is the number of sampled points in the time series,
r; represents the Spearman’s rank correlation coefficient and
t;, j = 1,...,m are approximately distributed under the null
hypothesis as a Student’s ¢ with n — 2 degrees of freedom.
The corresponding m p-values are approximated by

pj =2 = 2F,2([t5]),

where F,,_5 is the Student’s cumulative distribution function
(cdf) with n — 2 degrees of freedom. A threshold v on the

p-values corresponds to a threshold 7 on the test statistics.
The idea of basing multiple testing procedures on correlation
coefficients is common in the biological literature .
Information regarding the a priori probability my can be
either acquired from previous studies or empirically from
the data which is the approach we employed here in the
application to fMRI and EEG data. We will always refer
to the pair of hypotheses defined above in the following
sections where our multiple testing procedure is applied to a
simulation study and the construction of fMRI and HD-EEG
brain networks.

Simulation study

We performed a Monte Carlo (MC) simulation study to
assess the performance of the proposed APF estimator
together with the FDR estimator. Multiple tests of the
form Hp:po =0; Hy : pg =2 were simulated on the
Spearman’s test statistics by using its normal asymptotic
distribution with 02 = 1.We define one hundred tests with
mo = 0.3 as the proportion of true null-hypotheses (treated
as known) and m; = 1 — mg; this corresponds to 100 nodes
and 7000 edges graph. Tests were repeatedly simulated B =
1000 times by drawing from a multivariate normal with
parameters ;1 = (01, ..., 039, 231, ..., 2100) and & = I1g. For
each test the p-value is defined as p; , = P{N(0,1) > z;}
for the b-th iteration, where z; is the i-th observed value of
the vector z drawn from Nygo(p, X).

The multivariate normal distribution allows to study the
performance of the estimators when the independence
between tests is violated; by modifying the correlation
structure in Y, we employed typical forms of spatial
dependence, namely the first-order autoregressive structure
pl4"3 and the Matérn class of covariance functions C, (d)
forv = (1/2,00) and p = (0.2,0.4,0.7),

ot o)

where d is is the absolute distance between two tests, I' is the
gamma function and K, is the modified Bessel function of
the second kind'#. To assess the overall performance of the
estimators we computed the MC bias and MSE as follows:

Cy(d)

B
— 1 —
Biasapr(7) =B ZAPF*I’(V) — APF (),
b=1
1

(APF(7) — APF(7))*,

M ®

M@PF('V) =5

o>
Il

1

and similarly for the FDR. Monte Carlo Bias and MSE were
reported for a sensible set of « values in Table 1.

Application

A thirty year old healthy woman from the research team
of the Scientific Institute Santa Maria Nascente of the Don
Gnocchi Foundation (Milan, Italy) volunteered for the study.
She underwent resting state functional Magnetic Resonance
Imaging (fMRI) and High Density electroencephalogram
(HD-EEG) recordings. Each exam lasted 20 minutes and was
recorded at the same hour of the day in a darkened room with
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the subject laid in supine position with eyes closed. She was
instructed to keep alert and relaxed; no specific mental task
was requested.

fMRI

The resting state fMRI was carried out at the Department
of Radiology using a 1.5 T Siemens Magnetom Avanto
(Erlangen, Germany) MRI scanner with 8-channel head coil.
BOLD EPI images were collected at rest for approximately
8 minutes. High resolution T1-weighted 3D scans were
also collected to be used as anatomical references for
fMRI data analysis. Standard pre-processing involved the
following steps: motion and EPI distortion corrections, non-
brain tissues removal, high-pass temporal filtering (cut-off
0.01 Hz) and artefacts removal using the FMRIB ICA-based
Xnoiseifier (FIX) toolbox '°.

After the pre-processing, the resulting 4D dataset was
aligned to the subject’s high-resolution T1-weighted image,
registered to MNI152 standard space and subsequently
resampled to 2 x 2 x 2 mm? resolution. One hundred
ninety volumes were available for successive analyses. fMRI
time series were then extracted as the average signal within
each of 84 human functional Brodmann’s Areas (BA) as
regions of interest (ROIs) using the Resting-State fMRI Data
Analysis Toolkit REST '°.

HD-EEG

The high density EEG (HD-EEG) was recorded in the
Neurophysiology Lab using a BrainVision Recorder 1.20
(Brain Products GmbH, Germany) and a pre-cabled EEG
recording cap equipped with 64 Ag/AgCl electrodes with
FCz as the reference. Analog signals were digitalized at 500
Hz sampling rate and bandpass filtered from 0.1 to 100 Hz.
Raw data were further notch filtered at 50 Hz and band-pass
filtered (1-30 Hz) off-line. Before segmentation, both visual
inspection and Independent Component Analysis (ICA) were
used for semi-automated removal of ocular artefacts'’. Data
were then segmented into consecutive non overlapping 2.5-
seconds epochs yielding 120 epochs available for successive
analyses.

EEG time series for each ROI were obtained by first
applying the standard procedures for the computation of
mean spectral density. The cross-spectral matrix was used
as input for SLORETA source analysis'®. Source activities
were combined into 84 regions of interest (ROIs). Each ROI
centre was placed at the respective BA centroid and then the
time series of the electric neuronal activity at the ROIs were
extracted.

Results

Figure 1 and Table 1 report the results of the Monte Carlo
simulation study. Figure 1 shows the difference between the
true values of APF (blue) and their point estimates computed
throughout the full v range for different covariance functions
and correlation intensities. The estimates are close to the
true values of APF for the full v range and in almost every
scenario tested, the highest variability being observed with
the most correlated spatial structure. Table 1 reports MC Bias
and MSE of APF and FDR for a meaningful set of + values

and for different correlation patterns and intensities. All the
estimates of FDR and APF show low bias and MSE. The
APF bias turns out to be always conservative for v values
equivalent to the range of power most useful in applications
(0.4 t0 0.9). The MSE tends to grow, especially for the APF,
as v increases or the spatial correlation structure becomes
stronger.

fMRI and HD-EEG brain network construction

We computed the 95" percentile of the bootstrap distribution
of FDR (95" F D R*) together with the 5! percentile of

the bootstrap distribution of APF (5" APF*b) to identify
a suitable threshold 7 for the construction of the fMRI and
HD-EEG networks. Figure 2 shows the selected quantiles of

FDR and APF over a range of 7 values. Both 95" FDR*

and 5" APF*b decrease as the threshold 7 increases. This
allowed us to draw the trade-off between type I error and
power for the two networks (Figure 3). Therefore, it was
possible to balance power and typeﬂr by considering the

set of pairs (95" FDR* (), 5" APF*b(v)) and choosing
a suitable pair. An example for both the fMRI and HD-
EEQG is reported in Table 2. In order to find a suitable trade-
off for these data we considered the standard experimental
framework where priority is on controlling the type I error;
however, we also added the APF to the decision-making
process. In particular, we chose 7 so as to achieve at least
50% of APF (with 95% probability) while keeping the FDR
low (at most 10% with 95% probability).

The FDR-APF trade-off for the fMRI network (Figure 3,
left) did not provide alternatives: to control both errors
sensibly we had to select a threshold 7 returning estimates
of FDR and APF not greater than 10% and of at least
50% respectively with 95% probability. In this scenario, a
threshold 7 returning an FDR of at most 5% would not
guarantee an APF of at least 50% with 95% probability
(Figure 3, left).

On the other hand, without any a priori knowledge about the
HD-EEG network, the FDR-APF trade-off allowed different
reasonable choices of the threshold 7 (Figure 3, right). For
instance, the researcher could arguably favour a low upper
bound for the FDR and guarantee no more than at least
50% of APF with 95% probability (Table 2, HD-EEG(1)),
although, in this case it would be better choosing a less
conservative FDR in order to gain a much more desirable
lower bound for the power (Table 2, HD-EEG(2)). It is worth
noting the macroscopic impact these choices have on the
properties of the subsequent brain networks; for instance,
the resulting HD-EEG networks have density, i.e. number
of links over all possible connections'®, of 0.46 and 0.72
respectively (Table 2).

Discussion

The present study addresses the problem of setting a
threshold 7 on the correlation coefficient between time
series of brain activity recorded from several brain areas.
An adjacency matrix is consequently defined for the
construction of networks which are widely employed by the
neuroscientific community for the study of the brain activity.
To this purpose, we paired the Bayes FDR® with a new
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estimator called Average Power Function (APF) to take into
account both type I error and statistical power in the choice
of 7. As pointed out in Sala et al.*, combining the two types
of error helps the construction of reliable brain networks.
The APF has features which improves substantially the
current literature* as we were able to prove its unbiasedness
and its almost sure convergence to the actual value of the
parameter, either when assuming independent or stationary
associated p-values. As the spatial dependence of multiple
tests can affect the selection of the threshold 7, the behaviour
of the APF and FDR estimator under different types and
strengths of dependence of the tests should be considered.
Here we employed standard forms of spatial dependence and
thus our results might not be the same in other scenarios.
Nonetheless, our results showed that both FDR and APF
have low Monte Carlo bias and MSE, even when different
structures of spatial dependence among tests are considered.
Furthermore, as reproducibility of results is of major concern
in neuroscientific studies employing testing procedures’, we
proposed the combined use of 95% and 5% percentiles
of FDR and APF bootstrap distributions respectively to
account for sampling variability in the choice of 7 and hence
returning more robust results in terms of network stability.
This approach allows also a straightforward interpretation of
the threshold as the 95% probability of achieving at least the
power and at most the type I error estimated by the pair of
APF and FDR percentiles chosen.

The results of the application to the construction of fMRI and
HD-EEG networks supported the added value of our method:
When there is only one sensible choice for the threshold
7, as in the fMRI example, the pair FDR-APF informs
researchers on both the statistical errors they are willing to
accept. On the other hand, when multiple choices of 7 are
possible, as for the HD-EEG example, the addition of the
APF enables a more informed choice of the threshold than
the FDR alone. Our method is not limited to fMRI and EEG
networks; we believe the additional information on power
helps researchers who employ multiple tests to strengthen
their results.

It is worth noting that, in the case of HD-EEG, a highly
dense brain network was expected as a result of a well-known
phenomenon called volume conduction®’. Nonetheless,
there were different sensible choices of 7 which returned
even moderately dense HD-EEG networks. In such example,
the combined use of FDR and APF proved to be a helpful tool
in selecting the threshold which most effectively captures the
correct density structure of the underlying phenomenon.
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Table 1. Monte Carlo Bias and MSE for a sensible range of v values, different covariance functions and correlation intensities. d is
the absolute distance between two nodes. Results are scaled by 10°.

Cov Function Monte Carlo Bias(MSE) [x10~°]

Independence ~v = 0.0001 0.001 0.01 0.1 0.2

FDR 31.4(0.08)  34.6(0.22) 33.7(0.43) 28.2(1.53) 50.5(2.28)
APF 176.6(52.6) 133.7(177.2) —106.6(335.4) —10.2(327.6) —276.0(254.5)
p" p=02

FDR 34.9(0.09)  47.2(0.43) 45.7(0.64) 46.5(1.92) 54.0(2.82)
APF 225.1(61.0) 149.5(218.6) —139.5(441.9) —183.1(408.2) —251.6(313.6)
Ci/2(d); p=0.4

FDR 32.7(0.08)  40.5(0.31) 38.4(0.52) 34.2(1.67) 52.9(2.49)
APF 202.3(55.3) 118.0(194.9) —132.3(370.8) —63.1(356.5) —277.4(278.1)
C(d); p=0.4

FDR 31.7(0.08)  38.1(0.30) 35.7(0.47) 27.6(1.60) 53.7(2.32)
APF 199.4(55.0) 160.8(187.5) —108.1(353.9)  18.3(343.2) —306.0(259.7)
pT p=04

FDR 40.6(0.10)  62.9(0.62) 61.7(1.00) 63.2(2.59) 53.4(3.84)
APF 283.7(76.9) 120.9(268.8) —63.8(613.4) —271.7(529.1) —127.4(423.8)
Ci/2(d); p=0.7

FDR 35.8(0.09)  50.2(0.46) 47.6(0.67) 51.6(2.02) 55.1(3.0)
APF 246.6(63.7) 132.3(225.8) —126.6(468.5) —235.9(426.2) —243.1(333.1)
Cx(d); p=0.7

FDR 37.2(0.09)  53.5(0.55) 45.4(0.72) 52.5(2.10) 46.2(3.1)
APF 236.6(67.1) 190.9(237.0) —13.8(472.2) —225.9(447.0) —134.5(342.5)
p% p=0.7

FDR 60.8(0.15)  160.0(2.47)  151.7(4.76)  118.3(6.22) 122.0(8.5)
APF 386.6(132.9) 169.5(548.1)  —10.9(1282) —271.7(1116) —380.2(849.6)

Table 2. Examples of thresholds ~ on the p-values and 7 on the Spearman’s test statistics for the fMRI and HD-EEG networks.
The 95" bootstrap percentile of FDR and the 5" bootstrap percentile APF are reported together with the resulting networks
density. Two examples of threshold are proposed for the HD-EEG network that preserve a small FDR while return different values of

APF and network density.

95" " FDR* 5" APF*> Network density

0.503 0.22
0.512 0.46
0.802 0.72

MRI
v = 0.0331 0.103
T =0.154
HD-EEG (1)
v = 0.0001 0.00003
T =0.273
HD-EEG (2)
~ = 0.0191 0.004
7 =0.168
rMRI HD-EEG
© ’ ' .
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Figure 3. Trade-off between 95t FDR* and 5" AP F*b for
the fMRI (left) and HD-EEG (right, dot-dashed) networks.
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