
SCUOLA DI DOTTORATO

UNIVERSITÀ DEGLI STUDI DI MILANO-BICOCCA

Department of

Informatics Systems and Communication

PhD program Computer Science Cycle XXXIV

Evaluating and Detecting Architecture Erosion

Surname Pigazzini Name Ilaria

Registration number 780684

Tutor: Prof. Alberto Ottavio Leporati

Supervisor: Prof. Francesca Arcelli Fontana

Coordinatore / Coordinator: Prof. Leonardo Mariani

 ACADEMIC YEAR 2020/2021

A B S T R A C T

A software architecture is eroded (or degraded) if it shows a pro-
gressive loss of structural integrity due to design principle violations
which leads to the deviation of the implemented architecture from
the intended architecture [223]. Eroded systems suffer from Architec-
tural Technical Debt (ATD), the additional effort required by develop-
ers to manage the shortcomings caused by the erosion. A symptom
of the accumulation of ATD is the presence of Architectural Smells
(AS), design decisions that impact negatively on the internal system
quality. Systems affected by AS suffer from higher maintenance costs
and are harder to evolve. This thesis investigates six different types
of AS violating different design principles in Open-Source and indus-
trial monolithic Java projects. We identify AS with our tool, Arcan,
and introduce its new extension for the representation of software
concerns. We then discuss AS from the point of view of practitioners,
trying to summarise how AS are perceived and validating Arcan re-
sults. We also report the results of our empirical studies concerning
AS and ATD evolution and correlation. Finally, we present our first
results concerning the migration and maintenance of microservices
architectures, with a focus on the detection of microservices smells.

ii

Here we may reign secure, and in my choice
To reign is worth ambition though in Hell:

Better to reign in Hell, than serve in Heav’n.

— John Milton, Paradise Lost

And malt does more than Milton can
To justify God’s ways to man.

— A.E. Housman, Terence, This is Stupid Stuff

iii

C O N T E N T S

1 introduction 1

1.1 Publications . 5

1.1.1 Published papers 5

1.1.2 Submitted papers 7

1.1.3 To be submitted papers in November 2021 . . . 7

1.1.4 Published papers not strictly related to the thesis 7

2 arcan : a tool for architectural smell detection 8

2.1 Arcan components . 8

2.2 Architectural Smells detected by Arcan 12

2.2.1 Why did we decided to detect these smells? . . 12

2.2.2 Architectural smells criticality and cost-solving 14

2.3 Arcan detection strategies 15

2.3.1 Unstable Dependency (UD) 16

2.3.2 Hub-Like Dependency (HL) 17

2.3.3 Cyclic Dependency (CD) 18

2.3.4 God Component (GC) 19

2.3.5 Feature Concentration (FC) 20

2.3.6 Scattered Functionality (SF) 21

2.4 AS detection through Semantic representation of code 22

2.4.1 Description of the approach 22

2.4.2 Analysis of the vector representation 23

2.4.3 Architectural Smells detection 24

2.4.4 Findings . 25

2.4.5 Final remarks . 25

2.5 Other tools for AS detection 27

2.6 Summary of the findings 28

3 validation and perception of the architectural

smells from the developers 30

3.1 Past studies on the validation of Arcan tool 31

3.2 An AS Evaluation in an Industrial Context 32

3.3 The perception of AS in three software companies . . . 33

3.4 Summary of the findings 37

4 empirical studies on architectural smells 40

4.1 Exploited statistical tests and techniques 40

4.1.1 Correlation analysis 41

4.1.2 Principal Component analysis 41

4.1.3 Association rules extraction 42

4.1.4 Mann-Kendall test 42

4.2 A Study on Correlation between AS and DP 43

4.2.1 Empirical Study Design 45

4.2.2 Results . 52

4.2.3 Discussion . 67

iv

contents v

4.2.4 Threats to Validity 69

4.2.5 Final remarks . 71

4.3 AS Evolution and Correlation: an Empirical Study . . . 73

4.3.1 Architectural Smells Evolution and Correlations:
Study Design . 74

4.3.2 Results . 78

4.3.3 Final remarks on correlation and collocation re-
sults . 87

4.3.4 Discussion . 88

4.3.5 Threats to Validity 90

4.3.6 Final remarks . 91

4.4 Summary of the findings 93

5 architectural debt evaluation 95

5.1 The Architectural Debt Index 97

5.2 Architectural Debt Index Evaluation 99

5.2.1 Impact of Opportunistic Reuse Practices to Tech-
nical Debt . 100

5.2.2 Evaluating the Architectural Debt of IoT Projects 113

5.2.3 Evaluating the architectural debt of agent based
systems . 121

5.2.4 Sen4Smells: A tool for ranking architecture-sensitive
smells for a debt index 131

5.3 AS Criticality Evaluation 138

5.3.1 Empirical Study Design 138

5.3.2 Results . 141

5.3.3 Discussion . 146

5.3.4 Threats to validity 148

5.3.5 Final remarks . 148

5.4 Summary of the findings 150

6 architectural smells detection in microservices

architectures 151

6.1 Industrial case studies on the migration 152

6.1.1 Candidate Microservice Identification through
Arcan . 153

6.1.2 1st Case study: Alten Italy 157

6.1.3 2nd Case study: Anoki 164

6.2 Towards Microservice Smells Detection 172

6.2.1 Microservice Smells identification - Arcan ex-
tension . 172

6.2.2 Validation - Arcan extension 175

6.2.3 Micorservices smells identification - Aroma . . 178

6.2.4 Validation - AROMA 181

6.2.5 Final Remarks . 183

6.3 Summary of the findings 185

7 related work 187

7.1 Architectural smell detection and prioritization 187

contents vi

7.1.1 Tools and data structures for the detection of
dependencies issues-based AS 188

7.1.2 Natural Language Processing models for the de-
tection of separation of concerns-based AS . . . 189

7.1.3 Architectural smells prioritization and critical-
ity evaluation . 191

7.2 Empirical studies on architectural smells 192

7.3 Architectural debt evaluation 194

7.3.1 Identification of ATD 194

7.3.2 Empirical studies on technical debt indexes . . 196

7.4 Architectural smells in microservices 197

7.4.1 Migration to microservices 197

7.4.2 Tools for microservice reconstruction and smells
detection . 199

8 final remarks and future developments 201

8.1 Discussion and final remarks 201

8.2 Future developments . 207

9 final personal note 211

a appendix 213

a.1 Additional material of AS validation and perception . 213

a.1.1 An architectural smell evaluation in an indus-
trial context: survey questions 213

a.1.2 The perception of Architectural Smells in three
software companies: interview guide 214

bibliography 217

L I S T O F F I G U R E S

Figure 2.1 Spring Boot feature graph 10

Figure 2.2 JUnit4 containment tree 11

Figure 2.3 Checkstyle similarity - virtual edges 26

Figure 2.4 Checkstyle similarity - concrete edges 26

Figure 4.1 Aggregation of DP from class level to package
level . 51

Figure 4.2 Frequency of class level AS and DP in 60 Java
projects . 55

Figure 4.3 Frequency of package level AS and DP in 60

Java projects . 55

Figure 4.4 Frequency of AS and DP in 7 domains - Class
level . 56

Figure 4.5 Frequency of AS and DP in 7 domains - Pack-
age level . 56

Figure 4.6 Frequency of AS and DP in 7 domains - Class
level . 57

Figure 4.7 Frequency of AS and DP in 7 domains - Pack-
age level . 59

Figure 4.8 Frequency of AS in 7 domains - Class level . . 60

Figure 4.9 Frequency of AS in 7 domains - Package level 61

Figure 4.10 Frequency of DP in 7 domains - Class level . . 62

Figure 4.11 Frequency of DP in 7 domains - Package level 63

Figure 4.12 The order of package association rules 65

Figure 4.13 Example of collocation of three architectural
smells - Guava 76

Figure 4.14 Spearman correlation coefficients - Architectural
smells . 83

Figure 4.15 PCA results on package dataset. 85

Figure 5.1 Reversed architecture of the BikeApp software 102

Figure 5.2 Final version of the reversed architecture of the
BikeApp software 108

Figure 5.3 Evolution of ADI value - Blynk-server 117

Figure 5.4 Evolution of ADI value - Crate 118

Figure 5.5 Evolution of ADI value - Paho.mqtt.android . 118

Figure 5.6 Evolution of ADI value - Thingsboard 119

Figure 5.7 Evolution of ADI value - Jade 127

Figure 5.8 Evolution of ADI value - Jadex 128

Figure 5.9 Evolution of ADI value - Jason 128

Figure 5.10 Evolution of ADI value - Netlogo 129

Figure 5.11 Main processing stages and parameters of Sen4Smells.132

vii

List of Figures viii

Figure 5.12 Evolution of scores for smells across different
OpenJPA versions. 133

Figure 5.13 Results of sensitivity analysis for OpenJPA . . 134

Figure 5.14 Decomposing a debt index in granularity lev-
els and over time. 134

Figure 5.15 JUnit example of CD smells 147

Figure 6.1 Migration to microservices process 154

Figure 6.2 New Arcan core components for the detection
of microservice smells 173

Figure 6.3 Sharebike call graph 176

Figure 6.4 Spring PetClinic microservices - Call graph . . 181

Figure 6.5 LAB Insurance Sales Portal - Call graph 183

Figure 6.6 BookStore - Call graph 184

Figure 6.7 Synthetic example - Call graph 184

L I S T O F TA B L E S

Table 2.1 Architectural smells definitions 13

Table 2.2 Academic and commercial tools for architec-
tural smells detection 28

Table 2.3 Comparison with Arcan detection strategies . 29

Table 3.1 Architectural smells detection confusion matrix 30

Table 3.2 Summary of architectural smells perception . . 39

Table 4.1 Analyzed Projects 47

Table 4.2 Detected Design Patterns 49

Table 4.3 (Class) dependency dataset features 50

Table 4.4 Descriptive statistics for the dependency dataset 53

Table 4.5 Statistics for architectural smells in the depen-
dency dataset 57

Table 4.6 Dependency dataset - design pattern statistics 58

Table 4.7 Association rules at class level 60

Table 4.8 Association rules at package level (top 50) . . . 66

Table 4.9 Detail of the analysed projects 76

Table 4.10 Number of architectural smells - Class level . . 80

Table 4.11 Number of architectural smells - Package level 80

Table 4.12 AS and LOC correlation - package 82

Table 4.13 AS and LOC correlation - class 82

Table 4.14 Spearman correlation test - package 83

Table 4.15 Spearman correlation - class 83

Table 4.16 Pearson test - Architectural smells 84

Table 4.17 Association rules - Architectural smells 86

Table 4.18 Summary of correlation and collocation results 87

Table 5.1 Results from SonarQube and Arcan before reuse104

Table 5.2 Number of reusable components found in open-
source repositories 105

Table 5.3 Reusable components selected in open-source
repositories . 105

Table 5.4 Search and integration efforts of the reused as-
sets (hours) . 107

Table 5.5 Technical debt and architectural debt ratios af-
ter reuse . 109

Table 5.6 Analysed projects - Metrics 113

Table 5.7 Analysed projects - Additional information . . 114

Table 5.8 Distribution analysis results 116

Table 5.9 Mann-Kendall test results 117

Table 5.10 Projects characteristics 123

Table 5.11 Distribution analysis results 124

Table 5.12 Mann - Kendall test results 125

Table 5.13 List of ADI points of interest 126

ix

List of Tables x

Table 5.14 Summary of the dataset 140

Table 5.15 Mann-Kendall results - PageRank 142

Table 5.16 Mann-Kendall results - Severity 143

Table 5.17 Severity and PageRank correlation (last version
only) . 144

Table 6.1 Detected Architectural Smells 158

Table 6.2 Main Entities . 160

Table 6.3 Logical Layer Results 160

Table 6.4 Topic Detection results 162

Table 6.5 Candidates Microservices 163

Table 6.6 Anoki analysed versions 165

Table 6.7 Analyzed projects 176

Table 6.8 Shared Persistence results 177

Table 6.9 Hard-Coded Endpoints results 178

Table A.1 Proposed questions 215

1
I N T R O D U C T I O N

We live in a world heavily relying on software, where developing
good software is of fundamental importance. However, what do we
mean with “a good software”? In software engineering we agree with
measuring the goodness of software by evaluating different software
quality attributes [108], such as reliability, security and maintainabil-
ity. In particular in this thesis we take into consideration the quality of
software architectures and what happens when such quality is compro-
mised. Software systems have large and complex architectures that
are the result of ongoing design processes involving the decisions of
several developers and architects. Starting from an intended architec-
ture built upon planned design choices and following specific design
principles, the evolution of the system may lead to the deviation from
the original architecture, and the system may experience architecture
erosion. A software architecture is eroded (or degraded) if it shows a
progressive loss of structural integrity due to design principle viola-
tions which leads to the deviation of the implemented architecture
from the intended architecture [223]. Erosion is a natural condition
for an evolving architecture. Even without considering systems de-
veloped with agile practices [194], in general the software life-cycle
includes progressive adaptations according to the possible changes
in requirements, bug-fixing, changes in the execution environment
and implementation upgrades, such as the substitution of a library
with another. All these activities implicate the evolution of the archi-
tecture and the consequent deviance from the original architecture,
often resulting in architectural violations [100]. However, if such vio-
lations are taken into account and fixed, and the software architecture
evolves along with the system, i.e., the architecture is restructured ac-
cording to the new requirements, erosion could be a temporary condi-
tion. On the contrary, if the architecture progressively erodes without
containment actions (such as refactoring activities [240]), then erosion
becomes a persistent problem impacting the system quality, in partic-
ular its maintainability, performance and capability of evolve [100].

In other words, this means that systems affected by architecture ero-
sion can suffer from software performance decrease, for instance the
systems could require more computational resources. Moreover, the
system could be hard to maintain, meaning that a small bug-fixing
that should require few minutes work, ends up in the refactoring of
large portions of code [177]. Last but not the least, designing and im-
plementing new functionalities could become a troublesome activity,
because eroded systems are usually structurally entangled, hard to

1

introduction 2

comprehend and hard to integrate with new components [102]. That
is why it is important to identify architecture erosion, so that devel-
opers can take action and remove it.

However, in order to manage architecture erosion, we need a mean
to identify and quantify it. We mentioned that the cause behind the
architecture erosion is the introduction of architecture violations. The
amount of architecture violations in a system is called Architectural
Technical Debt (ATD) [153], a sub-type of the wider concept named
Technical Debt (TD). TD is a metaphor introduced in 1992 by Ward
Cunningham [62]. TD is the consequence of bad design or implemen-
tation decisions which seems to provide benefit in the short term, but
impact negatively on the future of the software. In this thesis we do
not consider implementation decisions, but focus mainly on identify-
ing and quantifying architectural debt, i.e., the design decisions re-
lated to architectural layers, subsystems, interfaces, technologies and
frameworks, among the others [246].

It is not trivial to identify ATD in a system, because the causes of
the debt cross many aspects related to the software life-cycle: debt can
be introduced by mistake by developers, could be caused by the time-
to-market pressure affecting developers, could be due to the lack of
team expertise or the lack of architecture documentation [246]. That
is why a part of the research focus on the study of ATD symptoms, i.e.,
hints about the presence of a source of debt: identifying a symptom
is the first step for diagnosing the debt. The thesis focuses on this
aspect: the study of ATD symptoms, their detection and evaluation.

A specific category of symptoms largely investigated in this thesis
is the one of Architectural Smells (AS). An architectural smell is a com-
monly used architectural decision that negatively impacts the system
internal quality [91], i.e., they are the result of the above mentioned
architectural violations[105].

AS come in many types, depending on which design principle they
violate. In this thesis, we focus our studies on six types of AS, di-
vided into the three related to architecture dependency issues, namely
Cyclic Dependency, Unstable Dependency and Hub-Like Dependency;
the one affecting architecture modularity, named God Component;
the two breaking the separation of (software) concerns, namely Scat-
tered Functionality and Feature Concentration.

The first part of the thesis focus on Arcan: an automatic tool for
architectural smells detection. We exploit Arcan to identify the six
AS and collect data useful for statistical analysis on software evolu-
tion and quality. In the following chapters, we first describe Arcan
components and detection strategies. A particular attention is given
to the introduction to our approach for the modeling of architectural
concerns and for the identification of the two smells violating the
separation of concerns principle, Scattered Functionality and Feature
Concentration. Following, we present our studies investigating the

introduction 3

impact of AS on software quality. To reach our goal, we probed the
perception of practitioners, conducting a set of case studies in indus-
trial context [79][217] and asking them in what ways AS impacted
software quality according to their experience. At the same time, we
seized the opportunity to validate the results of our tool, in terms of
precision.

We then describe our empirical studies investigating the correlation
and evolution of AS in Open-Source projects, starting from the anal-
ysis of the relationships between AS and Design Patterns (DP) [88].
Given that DP adoption is widely recommended, since they are veri-
fied and distilled design solutions, we could expect that AS and DP
represent different concepts in terms of software quality and as such
are mutually exclusive. However, we found out that these two con-
cepts can be related in some cases [199], e.g., the occurrence of ar-
chitectural smells can interfere with the presence of design patterns.
Moreover, we report our study about the evolution and correlation
among different types of AS: in this case we found that two smells
named Cyclic Dependency and Unstable Dependency are often collo-
cated, suggesting a possible common cause behind their introduction.

As already outlined, AS are a symptom of ATD, thus the identifica-
tion of smells is crucial to identify this source of debt. Concerning this
aspect, we describe our studies aimed to evaluate the ATD amount,
measured in terms of AS, of Java projects belonging to different ap-
plication domains. One way to quantify the ATD of a given project is
to evaluate an ATD index, i.e., a numerical value that varies as long as
ATD increases or decreases. We exploit our existing ATD index based
on AS detection, named Architectural Debt Index (ADI), to compute
the amount of ATD in our studies. In particular, we investigate the re-
lationship of ADI evolution in Open-Source projects with the content
of the commit messages written by their developers [80][196]. For
instance we take in consideration messages indicating a bug-fixing,
a code improvement or a refactoring, to understand whether such
activities influence the ATD trend during the evolution of a project.
Moreover, we report a study we participated in concerning the im-
pact of opportunistic reuse practices on TD and ATD [50]. We also
participated in a large study about technical debt tools [26], however
we do not describe it in this thesis.

The instances of AS are not equally critical for the system. Indeed,
one of the most challenging theme emerging from AS studies is AS
prioritization, i.e., to order the smell instances depending on their
criticality. Concerning this direction, we investigated the relationship
among AS criticality and the PageRank of the system under analy-
sis. PageRank is a measure that estimates whether an architectural
smell is located in an important part of the project, where the impor-
tance is evaluated according to how many parts of a project depend
on the one involved in the architectural smell. We report both the

introduction 4

preliminary case study we conducted about such topic [82] and the
subsequent empirical study [200].

All the studies mentioned until now regarded smells affecting mono-
lithical architectures, i.e., self-contained systems made of strongly cou-
pled components. However, we also studied the role of architectural
smells on the migration from monolithic architecture to microservices
architecture, an architectural style where, differently from the mono-
lithical one, the components (services) are loosely coupled. In particu-
lar, we introduced an approach to identify candidate microservices in
monolithic Java projects by exploiting AS detection and we validated
such approach in two case studies in industrial settings [198] [79].

Finally, we developed an extension of the Arcan tool and a new tool,
named AROMA (Automatic Recovery of Microservices Architecture),
for the detection of microservices smells. This kind of smells are the
counterpart of AS in microservices architecture. In this case, we did
not have the opportunity to conduct industrial case studies, however
we report the first results of the analysis ran on Open-Source projects.

The main subject of this thesis, ATD and AS, is large and includes
many different facets. Indeed, as just outlined, we addressed with
our research many topics that concern AS occurrence, perception and
evolution. For the sake of simplicity, for each study referring to an
investigated problem (represented by each chapter), we indicate its
research questions, and discuss the overall findings at the end of each
chapter, with the aim to link the results one with another. Moreover,
in Chapter 8 we discuss all the topics introduced in the thesis. In the
chapter, we eventually answer a set of recapitulatory questions with
the aim to summarise and give shape to the findings of the thesis.

In brief, the main contributions of this thesis are:

• Definition and implementation of two new detection algorithms
for the identification of architectural smells violating the sepa-
ration of concerns design principle - Chapter 2;

• Validation and analysis of the perception of architectural smells
in industrial context - Chapter 3;

• Empirical studies of architectural smells correlation and evolu-
tion - Chapter 4;

• Architectural debt evaluation of Open-Source projects - Chap-
ter 5;

• Study of the role of AS during the migration to microservices
and definition and implementation of new algorithms for mi-
croservices smells detection - Chapter 6.

We aim with this thesis to concretely contribute to the research in
the field of AS detection and ATD management. The development
of dedicated algorithms and tools for AS detection can be of valid

1.1 publications 5

support for developers facing the negative consequences of AS every-
day. On the other hand, our studies about the correlation, evolution
and impact of AS are useful for both practitioners and researchers, to
acquire empirical knowledge about the nature of AS.

1.1 publications

The lists of published and submitted papers are reported in the
following. The contribution of Pigazzini is indicated at the end of the
reference. Papers covered in this thesis are marked with [Discussed]
and the name of the corresponding section.

1.1.1 Published papers

Darius Sas, Paris Avgeriou, Ilaria Pigazzini, Francesca Arcelli
Fontana, “On the relation between architectural smells and source
code changes” in Journal of Software: Evolution and Process (JSEP),
2021 (in press). Contribution: performed part of the analysis.

Darius Sas, Ilaria Pigazzini, Paris Avgeriou and Francesca Ar-
celli Fontana, “The perception of Architectural Smells in industrial
practice” in IEEE Software, August 2021 (Early Access). Contri-
bution: collected the data, performed the analysis and wrote
part of the paper. [Discussed, Section 3.3]

Paris C Avgeriou, Davide Taibi, Apostolos Ampatzoglou, Franc
esca Arcelli Fontana, Terese Besker, Alexandros Chatzigeorgiou,
Valentina Lenarduzzi, Antonio Martini, Nasia Moschou, Ilaria
Pigazzini, Nyyti Saarimaki, Darius Daniel Sas, Saulo Soares de
Toledo, Angeliki Agathi Tsintzira, “An overview and compari-
son of technical debt measurement tools”, IEEE Software, vol. 38,
no. 3, pp. 61-71, May-June 2021. Contribution: collected the data
and wrote a small part of the paper.

Ilaria Pigazzini, Davide Foppiani and Francesca Arcelli Fontana,
“Two different facets of architectural smells criticality: an empir-
ical study” in Proc. Of the 1st International Workshop on Min-
ing Software Repositories for Software Architecture, ECSA 2021

Companion Volume, 3 – 17 September, 2021, Virtual. Contribu-
tion: wrote the paper. [Discussed, Section 5.3]

Ilaria Pigazzini, Daniela Briola and Francesca Arcelli Fontana,
“Architectural Technical Debt of Multiagent Systems Develop-
ment Platforms”, in Proc. Of the 22nd Workshop From Objects to
Agents (WOA), September 1-3, 2021, Bologna, Italy. Contribu-
tion: conceived and designed the analysis, collected the data,
performed the analysis and wrote the paper. [Discussed, Sec-
tion 5.2.3]

1.1 publications 6

Rafael Capilla, Tommi Mikkonen, Carlos Carrillo, Francesca Ar-
celli Fontana, Ilaria Pigazzini, Valentina Lenarduzzi, “Impact
of Opportunistic Reuse Practices to Technical Debt” , in Proc. Of
2021 IEEE/ACM International Conference on Technical Debt (TechDebt),
pp. 16-25, June 3, 2021, Virtual. Contribution: performed part
of the analysis and wrote part of the paper. [Discussed, Sec-
tion 5.2.1]

Ilaria Pigazzini, Francesca Arcelli Fontana, Bartosz Walter, “A
Study on Architectural Smells and Design Patterns Correlation”,
the Journal of Systems and Software (JSS), vol. 178, August 2021.
Contribution: designed the analysis, collected the data, performed
the analysis and wrote the paper. [Discussed, Section 4.2]

Andrés Diaz Pace, Antonela Tommasel, Ilaria Pigazzini, Francesca
Arcelli Fontana, “Sen4Smells: A Tool for Ranking Sensitive Smells
for an Architecture Debt Index”, in Proc. Of IEEE IEEE Congreso
Bienal de Argentina (ARGENCON), pp. 1-7, 2020, Virtual. Contri-
bution: performed part of the analysis. [Discussed, Section 5.2.4]

Francesca Arcelli Fontana, Federico Locatelli, Ilaria Pigazzini,
Paolo Mereghetti, “An architectural smell evaluation in an in-
dustrial context”, in Proc. of International Conference on Software
Engineering Advances (ICSEA), pp. 79-85, 8-22 October, 2020, Porto,
Portugal. Contribution: wrote the paper. [Discussed, Section 3.2]

Ilaria Pigazzini, Francesca Arcelli Fontana, Valentina Lenarduzzi,
Davide Taibi, “Towards Microservices Smells Detection”, in Proc.
Int. Conference on Technical Debt (TechDebt), pp. 1-7, 28-30 June
2020, Seoul, Republic of Korea. Contribution: developed analy-
sis tool, designed the analysis, collected the data, performed the
analysis and wrote the paper. [Discussed, Section 6.2.1]

Francesca Arcelli Fontana, Ilaria Pigazzini, Claudia Raibulet,
Stefano Basciano and Riccardo Roveda, “The PageRank and
Criticality of Architectural Smells”, The 6th Workshop on Soft-
ware Architecture Erosion and Architectural Consistency (SAE-
roCon), in Proc. 13th European Conference on Software Architecture
(ECSA), pp. 197-204, 9-13 September 2019, Paris, France. Contri-
bution: wrote the paper.

Ilaria Pigazzini, “Automatic Detection of Architecture Erosion
through Semantic Representation of code”, in Proc. 13th Euro-
pean Conference on Software Architecture (ECSA), pp. 59-62, 9-13

September 2019, Paris, France. Contribution: conceived and de-
signed the analysis, collected the data, performed the analysis
and wrote the paper. [Discussed, Section 2.4]

Ilaria Pigazzini, Francesca Arcelli Fontana, Andrea Maggioni,
“Tool support for the migration to microservice architecture:

1.1 publications 7

an industrial case study”, in Proc. 13th European Conference on
Software Architecture (ECSA), pp. 247-263, 9-13 September 2019,
Paris, France. Contribution: conceived and designed the analy-
sis and wrote the paper. [Discussed, Section 6.1.2]

Francesca Arcelli Fontana, Paris Avgeriou, Ilaria Pigazzini, Ric-
cardo Roveda, “A Study on Architectural Smells Prediction”, in
Proc. The 45th Euromicro Conference on Software Engineering and
Advanced Applications (SEAA), pp. 333-337, 28-30 August, 2019,
Kallithea-Chalkidiki, Greece. Contribution: wrote part of the pa-
per.

1.1.2 Submitted papers

Ilaria Pigazzini and Francesca Arcelli Fontana “Architectural
Smells Evolution and Correlation: an Empirical Study”, submit-
ted to the Journal of Systems and Software (JSS), 2021. Contribution:
designed the analysis, collected the data, performed the analy-
sis and wrote the paper. [Discussed, Section 4.3]

1.1.3 To be submitted papers in November 2021

Ilaria Pigazzini, Marco Belotti, Francesca Arcelli Fontana and
Dario di Nucci, “Exploiting dynamic analysis for architectural
smell detection: a preliminary study”, to be submitted to the Jour-
nal of Systems and Software (JSS), in November 2021. Contribu-
tion: performed the analysis and wrote the paper.

1.1.4 Published papers not strictly related to the thesis

Francesca Arcelli Fontana, Ilaria Pigazzini, Claudia Raibulet,
“Teaching Software Engineering Tools to Undergraduate Stu-
dents”, in Proc. 11th International Conference on Education Tech-
nology and Computers (ICETC), pp. 262-267, 28-31 October 2019,
Amsterdam, The Netherlands. Contribution: collected data and
wrote part of the paper.

2
A R C A N : A T O O L F O R A R C H I T E C T U R A L S M E L L
D E T E C T I O N

This chapter introduces the tool for architectural smell detection,
Arcan, which has been the base for developing most of the studies
presented in this thesis.

Arcan was developed by us in the ESSeRE Lab of the University of
Milano - Bicocca. The main aim of the tool is to detect architectural
smells in Java projects, however during the past few years several
extensions were applied to it. At the moment Arcan can run also on
projects written in C/C++, it offers support for the migration towards
microservices architecture (see Section 6.1.2) and it is able to compute
an architectural debt index (see Chapter 5).

The main strength of Arcan is the dependency graph, a data struc-
ture which stores all the information related to the software archi-
tecture under analysis, starting from the representation of software
components as nodes and their dependencies as edges. The graph al-
lowed us to represent heterogeneous dimensions related to software
architectures, e.g., static metrics, semantic information and structural
information. During the various Arcan extensions, also the graph has
been improved and complemented with other data structures (see
Section 2.1).

The following sections describe Arcan architectural components
and enabling technologies, as long as the definitions of the AS de-
tected by the tool, with a brief discussion of their impact on software
quality. We report also the detection strategies implemented for the
identification of AS. We do not describe the details about the architec-
ture and the Arcan enabling technologies, but they can be consulted
in the main Arcan publications [19][21].

2.1 arcan components

Arcan relies on three main data structures: two graphs for the rep-
resentation of the project under analysis and the Containment Tree,
for the representation of the package structure. Most of the Arcan
detectors are based on graph algorithms and metrics to evaluate spe-
cific properties of the project under analysis. Setting a threshold for
each metric is not a trivial task, thus we implemented in Arcan a
method [18] which allows to compute adaptive thresholds. We now
briefly describe these main Arcan components.

8

2.1 arcan components 9

the dependency graph . It is the representation of the project
under analysis in the form of a directed graph. The basic nodes rep-
resent the system components, such as Java classes, packages and
methods. Edges represent the relationships among the various com-
ponents and are divided in different types depending on the nodes
they connect, for instance use relationship and hierarchy relationship.
The benefits of exploiting a graph data structure are mainly two: first,
for the detection of some kinds of smells, which can be identified
through graph algorithms [19]; second, this structure allows to store
all project information in a NoSQL schema-free graph database [167],
enabling the reuse of the database and the flexibility of changing its
schema basing on the detection needs. In our case, we exploit the
Neo4j [173] graph database.

the feature graph . It is the evolution of the dependency graph
which enables the modelling of software concerns. In this research
context, a concern is a software system’s role, responsibility, concept,
or purpose [251]. We propose this extension to enable the detection of
two smells which violate the Separation of concerns principle, Feature
Concentration and Scattered Functionality, described in Table 2.1. The
feature graph associates to a set of project files (Java classes) a name
in natural language (feature, as synonym of concern), enabling devel-
opers to read how features are disposed across the project. To identify
which word best defines a feature, we exploit the tf-idf score [204], a
well-known information retrieval metric: it reflects how important a
word is to a document in a collection of documents. In the context
of this work, a document corresponds to the set of words in natural
language of a single Java class and a corpus is a collection of classes.
The term which best indicates the feature for a given set of classes is
the one with the highest tf-idf score. At the end of the generation of
the features, the classes of a project are grouped by feature and, as
consequence, packages are associated to a set of features. The Tf - Idf
is defined as:

Tf− Idf = Tf(t,d)× Idf(t,D) (1)

where Tf(t,d) is the number of times that term t occurs in document
d and Idf(t,D) is the logarithmically scaled inverse fraction of the
documents di belonging to the corpus D that contains the term t.

We now describe in details the steps to be followed in order to
generate the feature graph:

1. For each package, we identify a set of classes which share at
least a use, hierarchy or interface dependency and we aggregate
the text (the code) of the classes belonging to the same set.

2. We prepare the text in order to run the tf-idf score training. To
do so, we apply some preprocessing techniques. a) We tokenize

2.1 arcan components 10

diagnostic

connector

webapp

analyzer

FailureAnalyzer
FailureAnalysis

FailureAnalysis

Reporter

Java class node

Feature node

Figure 2.1: Spring Boot feature graph

the text, via a specific regular expression, since Java code fol-
lows the Java naming convention “Camel Case”1 b) We normal-
ize the tokens, by converting them to lower case and by remov-
ing numbers, punctuation and stop words, which are the very
common words in a language. The stop words list for code com-
ments depends on the used natural language (e.g. “the” token
in English language) c) We apply stemming, that is the extrac-
tion of the morphological root of a word (e.g., “Play” is the root
of “Playing”).

3. We run tf-idf for each set of classes and then, still for each set,
we choose the highest scoring word. Such word will indicate
the feature associated to the set of classes.

As result, we obtain a new representation of the project. Classes are
grouped by feature and, as consequence, packages are associated to
a set of features.

Figure 2.1 illustrate an extract of the feature graph of the Spring
Boot project. The striped, orange nodes represent Java classes which
all belong to the feature node named “diagnostic”. Notice that the
feature nodes are linked one to another with the edge depends on: an
edge appears between two features F1 and F2 if there is at least a
dependency (either use or inheritance) between classes belonging to
F1 and classes belonging to F2.

the containment tree . It represents the structure of the pack-
ages of a given project under the form of a tree where the root node is
the root folder of the project and every node of the tree corresponds

1 CamelCase is the practice of writing compound words or phrases joining each word
without spaces and capitalizing within the compound e.g. startTopicDetection

2.1 arcan components 11

Figure 2.2: JUnit4 containment tree

to a project package. In Figure 2.2, a subtree of the entire containment
tree of JUnit 4 [15] project is represented. Looking at this figure, it is
possible to see the structure of the containment tree: at the higher
level, level 0, we find the root node which is the parent node of the
initial packages positioned in level 1. From level 2, there are all the
sub-packages derived from the level 1 packages. All nodes are linked
with their parents with an edge having as source node the child and
as target node the parent. We exploit the containment tree for the
detection of Scattered Functionality smell (see Section 2.3.6) and the
computation of the Diameter metric, used to evaluate the cost-solving
of Cyclic Dependency smell (see Section 2.3.3).

adaptive threshold generation. Some of our detectors are
based on metric thresholds. However, it is not trivial to define a static
threshold able to fit every project under analysis. Hence, we adopted
an adaptive method [18] able to generate a custom threshold given
a metric of interest. The proposed approach respects the statistical
properties of the metric, such as metric scale and distribution, further-
more it is repeatable, transparent and straightforward to carry out.
We applied our approach for a set of AS whose detection is based on
crossing a given metric(s) threshold. Given a project under analysis,
we collect all the values of the metric to obtain a dataset, and then we
generate the frequency distribution of 100 percentiles. The approach
selects the median value of the distribution and searches for the per-
centile for which all values in higher position are lower or equal to
the median. By applying this method, the most repetitive values are
filtered out of the data set, and only the more variable values remain.
The selected percentile is used as a cut-off point for the original data
set and used to calculate the corresponding threshold value. In this

2.2 architectural smells detected by arcan 12

way, we can easily obtain a valid solution to the problem of setting a
threshold value for quality metrics.

2.2 architectural smells detected by arcan

Currently, Arcan is able to detect six AS. Table 2.1 indicates for
each detected AS its Name, its Aliases (if exist), its Definition and its
Consequences, i.e., the shortcomings caused by the presence of the AS.

In the remaining of this section, we explain why we decided to
focus on this specific set of smells and briefly introduce the concept
of criticality and cost-solving of an architectural smell.

2.2.1 Why did we decided to detect these smells?

We decided to work on the smells of Table 2.1 for different fea-
tures/peculiarities of each smell described below:

• Cyclic Dependency (CD), Unstable Dependency (UD), Hub-
Like Dependency (HL) smells are based on dependency issues.
Dependencies are of great importance in software architecture:
components (class or packages) that are highly coupled and
with a high number of dependencies are considered more crit-
ical, since they have higher maintenance costs. In particular, in
the opinion of some developers, Cyclic Dependency is one of
the most common and most critical smell [155] and according
to another empirical study UD smell is one of the most com-
mon AS too [216]. The description of Arcan detection strategy
for these three smells can be found in Section 2.3.

• God Component (GC) is a problem about the size of the com-
ponents, not strictly related to the dependency structure of the
system but to how the system is modularized. Indeed, GC vio-
lates the modularity principle [151]. At the moment, the Arcan
detection strategy consists in simply computing the number of
Lines Of Code (LOC) belonging to each system package. In the
future, we could enhance the detection with a more sophisti-
cated strategy.

• Feature Concentration (FC) and Scattered Functionality (SF)
regard how software concerns are implemented in the software
architecture: a good design should follow the separation of con-
cerns principle [251], where each architectural component ad-
dresses a separate concern. When concerns are well-separated,
individual parts of the architecture can be reused, as well as de-
veloped and updated independently [144]. Arcan detects FC by
checking for each package its associated features, thanks to the

2.2 architectural smells detected by arcan 13

Table 2.1: Architectural smells definitions

Name Aliases Definition Consequences

Cyclic Dependency Dependency
Cycle, Tangle,
Cross-Module Cy-
cle, Cross-Package
Cycle, Cycle of
classes, Cyclically-
dependent Modu-
larization

Refers to a subsystem
(component) that is
involved in a chain of
relations that break
the desirable acyclic
nature of a subsys-
tem’s dependency
structure.[148]

The components involved in
a dependency cycle can be
hardly released, maintained
or reused in isolation. More-
over, a change on one af-
fected component will prop-
agate towards all the other
ones involved in the cycle.

Feature Concentration Concern Overload This smell occurs
when an architectural
entity implements
different functionali-
ties in a single design
construct. [14]

This smell violates the sep-
aration of concerns and the
single responsibility princi-
ples, moreover the compo-
nents it affects are hard to un-
derstand and maintain.

God Component God Class, Blob This smell occurs
when a component
is excessively large
either in terms of
LOC (Lines Of Code)
or number of classes.
[144]

God Components are hard
to understand, hard to mod-
ify, hard to reuse and cause
changes ripple effect. More-
over, they are hard to test be-
cause they usually comprise
too many functionalities.

Hub-Like Dependency Link Overload,
Crossing, Hub
Like Modulariza-
tion

This smell arises
when a component
has (outgoing and in-
going) dependencies
with a large number
of other abstractions.
[Suryanarayana2015]

The component in the mid-
dle of the hub is a unique
point of failure and a depen-
dency bottleneck. Moreover
the logic inside a Hub-Like
Dependency is hard to under-
stand, and the smell causes
change ripple effect.

Scattered Functionality Scattered Parasitic
Functionality

Describes a system
where multiple com-
ponents are responsi-
ble for realizing the
same high-level con-
cern and, addition-
ally, some of those
components are re-
sponsible for orthogo-
nal concerns. [90]

This smell violates the sepa-
ration of concerns principle,
it is hard to maintain and it is
hard to understand how and
where the functionality is im-
plemented in the system.

Unstable Dependency Unstable Interface Describes a subsys-
tem (component) that
depends on other
subsystems that are
less stable than itself.
[148]

The components with an
high instability are more
prone to change with respect
to the more stable ones, this
means that the component
which depends on less sta-
ble components is forced to
change along with them.

2.2 architectural smells detected by arcan 14

feature graph (see Section 2.1). If the package is associated to too
many different features, then it is affected by FC. While concern-
ing SF detection, Arcan checks for each feature if the feature
spreads across packages belonging to different branches of the
containment tree, and in that case it marks it as affected.

The definition of God Component and Feature Concentration is
similar, however they represent two different problems: a GC is pri-
marily a very large (in terms of LOC) component. FC emerges when
there is a lack of cohesion and the component implements too many
different purposes. The two smells can co-affect the same component
(see Section 4.3). In that case, the component is large in terms of LOC
and addresses too many features at the same time. In any case, Arcan
exploits two different approaches to detect them, thus we study the
two smells separately.

2.2.2 Architectural smells criticality and cost-solving

As for code smells [215], also for architectural smells it is important
to evaluate the criticality of the smells, in order to prioritize the smells
to be removed first. In such terms, criticality of an AS models the de-
gree of removal urgency associated to the AS. However, it is not triv-
ial to model and evaluate the importance and urgency of the removal
of an AS. In the literature, the identification of the best metrics to
be used for the evaluation of criticality is considered a complex task
[249], mainly because it is tightly connected to how smells are per-
ceived by developers [235] and such perception is subjected to many
variables, such as the developer experience, code ownership [190],
whether the smell is located in a central part of the project and other
facets.

On the other hand, cost-solving (cost of fixing, cost of refactoring) of
AS is the effort needed to remove a smell from the system [209]. This
variable depends less from the perception of the developers but more
from the specific characteristics of the interested AS.

Both criticality and cost-solving are particularly relevant for devel-
opers when making decisions about AS management: for instance, to
choose which smell to refactor first [155][190]. A developer may pre-
fer to refactor first the smells which require less time to be solved to
quickly enhance the quality level of the project, instead of fixing the
most critical ones. On the other hand, the developer may decide to
remove the most difficult/critical ones, but to make this decision, dif-
ferent factors must be considered: it can be too expensive and risky;
too many changes could compromise other parts. Perhaps, the most
difficult AS was created by design choice and no better solution is
available, as in the case of cycles created by callbacks for event lis-
teners in GUI components [155][199]. Finally, the most critical AS

2.3 arcan detection strategies 15

could appear in a not-central part of the project, such as a deprecated,
unessential package, and could be not interesting for the developers.

We defined a set of metrics to evaluate the cost-solving of a given
architectural smell instance and they are described in Section 2.3. Con-
cerning criticality, we measure it with PageRank, a measure inspired
by the well-known metric from Brin and Page [41] that estimates
whether an AS is located in an important part of the project [271],
where the importance is evaluated according to how many parts of
the project depend on the ones involved in the AS (as a sort of central-
ity measure of the AS). We use PageRank as a proxy of AS criticality,
i.e., the higher the PageRank, the higher the criticality of the AS.

We conducted a study on architectural smells criticality and cost-
solving (see Section 5.3). Moreover, we empirically evaluated the per-
ceived criticality of the different types of smells in two industrial stud-
ies (see Section 3).

2.3 arcan detection strategies

The following section describes the detection strategies implemented
in Arcan for the identification of the architectural smells reported in
Table 2.1.

Most of the strategies exploit the dependency graph by running
graph algorithms to understand if a certain structure (e.g., a cycle)
is present in the graph. Some check whether the architecture under
analysis overcomes the threshold value of specific also the compu-
tation of static metrics (e.g., number of Lines of Code) and finally
for the detection of two smells, Scattered Functionality and Feature
Concentration, the strategies relies on Natural Language Processing
(NLP) metrics.

For each type of smell we describe:

• Granularity level: the type of architectural component on which
the smell can be detected (Java class or package).

• Alternative Names: aliases of the smell that can be found in the
literature.

• Implementation: the description of the detection strategy im-
plemented in Arcan.

• Cost-solving evaluation: the metrics and techniques used to
evaluate the cost-solving of the AS instances. We also use the
term Severity to indicate a generic metric used for cost-solving
estimation. Cost-solving values can be used to discriminate the
different smell instances by ordering the AS from the most dif-
ficult to refactor to the less difficult. The cost-solving of an AS
is the evaluation of the impact on the removal of the AS of spe-
cific AS’s features. This is an important aspect to consider when

2.3 arcan detection strategies 16

dealing with smells and their refactoring because knowing how
much a smell is difficult to remove can be determinant dur-
ing the refactoring phase, when developers must choose which
smell to prioritise. We propose a set of metrics to automatically
evaluate the cost-solving of AS, based on the characteristics of
the different types of smells. There are two kinds of metrics: the
ones which are also used during the smell detection and whose
thresholds allow to establish whether the smell is present or
not, and the others which measure specific smell properties, not
used during the detection, but used for computing cost-solving.

• Also detected by: the names of the other tools that can detect
the smells.

2.3.1 Unstable Dependency (UD)

Granularity level: detected on packages.

Alternative Names: There are no known alternative names (accord-
ing to our knowledge).

Implementation:

• Input: a subgraph of the original dependency graph, where the
only nodes are packages and the edges represent the afference
between packages, i.e., the dependencies among packages.

• Exec: the detector computes the Instability metric [150] for every
package. For every package, the detector checks if it is afferent
to a less stable package; if so, put it in a map with the list of
related less stable packages.

• Output: a map with every package affected by the smell and the
associated packages which caused it.

Cost-solving evaluation:
Each of the following metrics allows to discriminate UD smells by

ordering the most difficult to remove ones from the less difficult. They
regard different aspects of the smell and all of them can be used to
obtain a smell ranking.

• Instability (I): The ratio of outgoing dependencies on the total
number of dependencies of a package [150]. This metric eval-
uates the package’s resilience to change and the UD detection
is based upon it. It ranges in [0,1], where 0 indicates that the
package is completely stable and 1 completely unstable.

• Degree of Unstable Dependency (DoUD): The ratio between
the number of dependencies that point to less stable packages
and the total number of dependencies of the package. Its range

2.3 arcan detection strategies 17

is in (0, 1]. The higher the metric, the higher the chance a change
occurs and propagates to the affected components, because of
its multiple less stable dependencies.

• Instability Gap (IG): The difference between the instability of
the affected package and the average instability of the depen-
dencies less stable of the package itself. Its range is in (0, 1]. The
higher the instability gap, the higher the chance the package
affected by the smell is changed due to ripple effects.

The worst case scenario occurs when all package dependencies are
unstable and with the maximum instability gap. In that case, the crit-
icality is the highest possible. Moreover, also the Instability of the
packages involved in the smells is a metric of interest, since higher in-
stability means a higher change proneness, thus a higher cost-solving.

Also detected by: Designite and Dv8.

2.3.2 Hub-Like Dependency (HL)

Granularity level: detected on classes and packages.

Alternative Names: Hub Like Modularization, Link Overload.

Implementation: We now report the implementation of the Hub-
Like Dependency on classes. The procedure is the same for packages.

• Input: a subgraph of the original dependency graph, where the
only nodes are classes and the edges represent the dependen-
cies among classes.

• Exec: for all class nodes, the detector computes the ingoing and
outgoing dependencies; then, the detector calculates the median
of the number of ingoing and outgoing dependencies of all the
classes of the system; the detector checks if the number of ingo-
ing and outgoing dependencies of a class is respectively greater
than the ingoing median and outgoing one; then, the detector
checks if the difference between ingoing and outgoing depen-
dencies is less than a quarter of the total number of depen-
dencies of the class; finally, in order to keep only the classes
with an exceptional high number of dependencies, we compute
the adaptive threshold (see Section 2.1) of the Total Number of
Dependencies metric. If the class’s dependencies are over the
threshold, then the class is considered a hub.

• Output: a map of the classes affected by the smell and their
relative Fan In and Fan Out metric values [150].

Cost-solving evaluation:
We consider four metrics to evaluate HL criticalities:

2.3 arcan detection strategies 18

• FanIn and FanOut: indicate respectively the ingoing and outgo-
ing dependencies [150].

• Total Dependencies: the total number of dependencies of a soft-
ware component (method/class/package). It corresponds to the
sum of the number of ingoing dependencies (from other class-
es/packages into the affected one) and the number of outgoing
dependencies (vice-versa) i.e. the sum of FanIn and FanOut.

Fan In, Fan Out and Total Dependencies gives information about
the size of the smell i.e. how many dependencies are affected by the
smell. The higher their values, the higher the smell cost-solving.

Also detected by: AI Reviewer, Arcade and Designite.

2.3.3 Cyclic Dependency (CD)

Alternative names: Tangle, Cross-Module Cycle, Cross-Package Cy-
cle, Cycle of classes, Cyclically-dependent Modularization.

Granularity level: detected on classes and packages.

Implementation:

• Input: a subgraph of the original dependency graph, where the
only nodes are classes or packages depending on the requested
granularity level.

• Exec: the detector launches the Depht First Search (DFS) algo-
rithm on the subgraph and collects every node involved in a
cycle in a different list.

• Output: a list for every cycle detected by the DFS algorithm.

Cost-solving evaluation: We consider the following 4 metrics for
the evaluation of Cyclic Dependency cost-solving:

• Severity: describes the structural composition of an AS i.e. the
classes/packages/methods involved in the smells and the de-
pendencies which form the smell. For CD at package level is
defined as follows:

Severity = 1− (1/NumC+NumP×NumP/NumC)

where NumP is the number of packages involved into the cy-
cle and NumC is the number of classes contained into the af-
fected packages, whose inter-packages dependencies cause the
creation of the package cycle. For smells at class level, the for-
mula becomes:

Severity = 1− (1/NumM+NumC×NumC/NumM)

2.3 arcan detection strategies 19

where NumC is the number of classes involved into the cycle
and NumM is the number of methods contained into the af-
fected classes whose inter-classes dependencies cause the cre-
ation of the package cycle.

• Diameter: computed only for CD at package level. It indicates
the worst possible distance between two packages contained
in a cycle[131] and is based on the assumption that very dis-
tant packages implement different system functionalities. The
Diameter metric is defined as:

Diameter(C) = max(δ(x,y)|x,y ∈ P(C), x 6= y)

where C is a cycle, P(C) is the set of packages contained in the
cycle and δ is the distance between two packages in the contain-
ment tree (see Section 2.1). This distance is obtained computing
the Weight metric, defined as:

Weight = 1/2d

where d is the depth of the edge in the containment tree.

Severity metric assumes higher values when the cycle forms a com-
plex structures in the dependency graph. A complex structure means
that many components (class/packages) are involved and must be
addressed during refactoring. Diameter metric can be used to eval-
uate the cost-solving, but only for cycles among packages. Cycles
among distant packages (in different branches of the containment
tree) mean that parts of the system which should be detached and
should implement different concerns, are wrongly tighten by a circu-
lar dependency. Hence higher Diameter values correspond to higher
cost-solving.

Also detected by: Arcade, AI Reviewer, Designite, Sonargraph, De-
pendency Finder, JArchitect, ClassCycle, and NDepend.

2.3.4 God Component (GC)

Alternative names: God Class, Blob.

Granularity level: detected on packages.

Implementation:

• Input: a subgraph of the original dependency graph, where the
only nodes are packages.

• Exec: for every package, the detector computes the number of
Lines Of Code belonging to the package. If this number is over a
its adaptive threshold, then the package is affected by the smell.

• Output: a table with every package affected by the smell and
the number of classes which cause the smell.

2.3 arcan detection strategies 20

The Lines of Code adaptive metric is computed through the adap-
tive procedure (see Section 2.1).

Cost-solving evaluation: We consider the following metrics for the
evaluation of God Component:

• Lines of Code (LOC): the number of lines of code of all classes
contained in the package.

• Lack of Component Cohesion (LCC): to measure the internal
cohesion of the package affected by the GC smell.

A very large package with low cohesion is more critical because
it means that the package holds too many responsibilities inside the
project; on the other hand, a very large package with a high cohe-
sion is more difficult to refactor (in terms of dividing it in smaller
packages).

Also detected by: AI Reviewer, Arcade and Designite.

2.3.5 Feature Concentration (FC)

Alternative Names: Concern Overload. [133]

Granularity level: detected on packages.

Implementation:

• Input: a subgraph of the original feature graph, where the only
nodes are packages and the feature nodes (see Section 2.1).

• Exec: for each package, the detector collects its associated fea-
tures from the feature graph. If the package is associated to too
many different features, then it is affected by feature concentra-
tion.

• Output: a table indicating for each package the number of dis-
tinct features.

We quantify the expression too many through an adaptive threshold
(see Section 2.1).

Feature Concentration is one of the new AS whose detection is
introduced in Arcan for the first time. Our implementation differs
from the one proposed by Garcia et al. [92] since we do not exploit a
topic model, but the feature graph, based on the tf-idf metric (see Sec-
tion 2.1). Our approach has the advantage that does not need an input
(i.e., the number of topics needed by the LDA algorithm) and thus is
completely automatic. It is also different from the one of Sharma et
al. [221], since they only consider static dependencies to detect this
smell, while we also exploit the additional information provided by
the feature graph. In our opinion, the semantic information must be

2.3 arcan detection strategies 21

considered when we aim to identify smells which impact on the sep-
aration of concerns principle. We try, by considering the words in nat-
ural language coming from the code, to reverse engineer the abstract
concepts addressed by the architectural components.

Cost-solving evaluation:
The metrics used to compute the cost-solving of this smell is:

• Number of Features (NoF): the number of distinct features as-
sociated to the affected package.

Packages with a higher number of distinct features imply longer
time for their removal: in this case a smell with high NoF is more
critical.

Also detected by: Arcade, Designite.

2.3.6 Scattered Functionality (SF)

Alternative Names: Scatter Parasitic Functionality [92].

Granularity level: detected on packages.

Implementation: In order to detect this smell, Arcan relies on the
feature graph and on the containment tree (see Section 2.1). The
feature graph is exploited to collect features (in this context, we as-
sume that a functionality can be represented by the detected features),
while the containment tree is exploited to locate features across sys-
tem packages. As for Feature Concentration, we differentiate from
the detection of Garcia [92] and Sharma [221] by exploiting the fea-
ture graph with the tf−idf score.

• Input: a subgraph of the original feature graph, where the only
nodes are packages and the feature nodes.

• Exec: For each feature, if the feature spreads across packages
belonging to different branches of the containment tree, than
this is an instance of Scattered Functionality.

• Output: a table indicating for each features the packages which
are associated to it.

Cost-solving evaluation: The metric used to compute the cost-solving
of this smell is:

• Scatter: a measure of how much the feature is scattered over the
project. It is measured as the number of packages in which the
scattered feature is implemented.

Scatter metric reflects how many parts of the code should be taken
in consideration during refactoring, hence the higher this metric is,
the higher the smell cost-solving.

Also detected by: Designite.

2.4 as detection through semantic representation of code 22

2.4 automatic detection of architectural smells through

semantic representation of code

As already explained, we implemented in Arcan a component to
retrieve semantic information from code and store them in the feature
graph. However, prior to the choice of exploiting the tf-idf metric to
model code semantic, we explored the possibility of adopting a deep
learning model to reach the same goal2.

In particular, we tried code2vec, a neural model for representing
snippets of code as countinuos distributed vectors (code embeddings) [12].
The code embeddings approach allows to associate a continuous dis-
tributed vector to a piece of code and compute the semantic similarity
between different pieces of code. This allows to have semantic infor-
mation bounded to specific parts of code and to perform different
tasks. For instance, to understand how a specific concern of the sys-
tem spreads through code and consequently identify anomalies such
as architectural smells. We directed this study by posing a research
questions:

• RQ: “Is it possible to represent software concerns with the code2vec
model?” In order to answer the question, we investigated whether
the distributed code vector space is able to represent the seman-
tic properties of the software architecture. Code2vec takes as
input generic snippets of code. However, in order to simplify
the problem and exploit the original formulation of the model
and its provided implementation, we started from the investi-
gation of how Code2vec represents methods in Object-Oriented
(OO) code.

We implemented the study by developing a small Python applica-
tion able to query the code2vec model and collect sematic information
for all the method dependencies of a given Java project.

2.4.1 Description of the approach

The aim of the study was to investigate how concerns spread through
the architecture and to understand whether architectural smells can
be detected by leveraging code embeddings representation. We now
describe our approach and propose two detection strategies for Scat-
tered Functionality and Feature Concentration, the two AS which vi-
olate the separation of concerns principle (see Section 2.2).

Both the two detection strategies leverage the graph representation
of the structural dependencies in the project under analysis (depen-
dency graph) combined with the semantic information extracted by
the code2vec model. In particular, we exploit the ability of the model

2 A publication was extracted from this study [195]

2.4 as detection through semantic representation of code 23

to generate vectors representing the semantics of the input methods.
Hence, given an Open-Source project, the architecture of the project
is represented as G(V ,E), where V is the set of nodes comprehending
methods, classes and packages of the project and E is the set of depen-
dencies among them. Moreover, given the set of methods M ⊂ V , the
code2vec model creates a vector space where each point corresponds
to a method.

2.4.2 Analysis of the vector representation

The first part of the study focused on understanding whether code
embeddings are suitable for the representation of concerns inside soft-
ware architecture. In particular, we were interested in investigating if
vector similarity is a proper metric to quantify the semantic depen-
dency among different methods in Object-Oriented projects. The vec-
tor similarity considered in this study is the cosine similarity, which
measures the cosine of the angle θ between two non-zero vectors v
and w.

similarity(v, w) = cos θ =
v ·w

| v || w |
(2)

This metric is non-negative and bounded between [0, 1]. We chose this
metric since it is commonly used in NLP to measure document/text
distance.

The analysis consisted of the following steps:

• Generation of the code vectors associated to the methods of an
Object-Oriented project with code2vec.

• Computation of the vector similarity of all methods of the OO
project. The Cosine Similarity metric is computed for each pair
of vectors without taking into account the order, hence the total
number of combinations is

n−1∑
i=0

n− i =
n(n+ 1)

2
(3)

where n is the number of vectors.

• Compare the similarity distribution of virtual edges and concrete
edges. For virtual edge we mean the possible edge that can link
two methods; since similarity is computed for every couple of
methods, there is a similarity value for each virtual edge. In-
stead, a concrete edge is an actual dependency in the project.

The aim of the proposed analysis was to understand if similarity fol-
lows a particular distribution and to investigate if the distribution
changes when considering couples of methods which actually are
linked one to another. If proved on a meaningful number of Object-
Oriented projects, a non-random similarity distribution could be the
first sign of significance of the similarity metric.

2.4 as detection through semantic representation of code 24

2.4.3 Architectural Smells detection

The second part of the study aimed to propose the detection strate-
gies for Scattered Functionality and Feature Concentration smells
based on the code2vec model exploitation.

scattered functionality The detection of Scattered Function-
ality exploits the similarity metric to build paths on the dependency
graph which represent software concerns. The paths consist of a set
of edges, e∗t , which have the property of maximizing the similarity
value between code vector mz and the sum of the two antecedent
code vectors mx and mj. The formal definition of concern path is the
following:

Let M ⊂ V be the set of methods mi of the project. Let Em ⊂ E be
the set of method dependencies. Let G(M,Em) the induced directed
graph of G(V ,E) having for nodes M and for edges Em. Let Msrc ⊂
M be the set of source vertices of the graph. Let Msnk ⊂ M be the
set of sink vertices of the graph.

• For each mi ∈M, compute the associated code vector.

• For each msrc, for each ysrc ∈ neigh(msrc)

e∗0 = msrc → ysrc

p∗ ={e∗t | e∗t = y→ z,

mzsimilarity(mx +my,mz),

mx = out(e∗t−1),

my = in(e∗t−1),

t ∈ {1..n}}

(4)

where n is the depth of the first sink node encountered along the
concern path. Hence, the strategy to detect Scattered Functionality
on a OO project consists in the following steps:

• Compute all the concern paths of the dependency graph of
project

• If a computed path crosses more than a package, the involved
packages are affected by the smell.

feature concentration The detection strategy proposed for
this smell exploits the semantic vector similarity to run a clustering
algorithm. The aim of the clustering analysis is to group similar meth-
ods inside a given package: we hypothesized that the detected groups
correspond to the concerns of the package. Then, if a package shows
too many concerns, it may be affected by Feature Concentration smell.
The proposed detection strategy consists in:

2.4 as detection through semantic representation of code 25

• For each package, for each couple of methods mi ∈ ci,mj ∈ mj,
ci 6= cj, compute similarity(mi,mj).

• Run a clustering algorithm to identify the groups of similar
methods

• If the number of detected groups and the similarity distance
among them is high, the package is affected by Feature Concen-
tration.

The choice of a suitable clustering algorithm was not part of this (ex-
ploratory) study.

2.4.4 Findings

Figure 2.3 and 2.4 show the similarity distributions of project Check-
style v5.6 [238], computed on the 1306 methods belonging to package
checks. We chose Checkstyle because we are familiar with it (suitable
for future manual validation) and it is a small-sized project, on which
the model can be run even with limited resources. The similarity val-
ues shown in Figure 2.3 were computed on all the possible combina-
tions of different methods (virtual edges), while the ones in Figure 2.3
were computed on the couples of methods actually linked (concrete
edges). The former are bounded in [−0.3620, 1], while the latter in
[−0.1994, 0.9873]: this means that, for Checkstyle, the set of possible
values which model concrete edges among methods is smaller with
respect to the one which model all possible edges. Such finding en-
courages further analysis in order to understand the significance of
similarity. Moreover, the virtual edges distribution shows anomalous
spikes for certain similarity values, which may be caused by possible
approximations of the algorithm used during the similarity compu-
tation. Concerning the concrete edges distribution, the plot shows a
concentration of values around 0.1 and 0.25. We tried to fit it as a
mixture of two normal density distributions using the Expectation
Maximization algorithm and it resulted that the data could belong to
two different distributions.

2.4.5 Final remarks

RQ: Is it possible to represent software concerns with the code2vec
model? From our study, we found that code2vec has the poten-
tial to produce the representation of software concerns. In par-
ticular, cosine similarity computed on code2vec vectors seems to
provide additional information (method cohesion) to be attached
to software dependencies, i.e., information about how much two
methods are involved in the same concern.

2.4 as detection through semantic representation of code 26

Figure 2.3: Checkstyle similarity - virtual edges

Figure 2.4: Checkstyle similarity - concrete edges

However, we chose not to implement such approach in Arcan due
to the high computational costs required by the model to generate a
vector for each method and required by our Python script to compute
the cosine similarity between method dependencies.

In any case, the research about neural networks models is still open
and an interesting future work could be the implementation of the
proposed detection strategies for Scattered Functionality and Feature
Concentration.

2.5 other tools for as detection 27

2.5 other tools for architectural smells detection

We report in Table 2.2 a set of academic and commercial tools
which detect the same architectural smells identified by Arcan. In
general, the commercial tools offer the detection of only Cyclic De-
pendency, with the exception of AI Reviewer, which supports also the
detection of God Component and Hub-Like Dependency, and DV8,
which supports the detection of Hub-Like Dependency and Unstable
Dependency.

On the other hand, the two indicated academic tools, Arcade and
Designite, detect all of them. The difference between Arcan and the
other two tools relies in the detection strategies. Table 2.3 briefly re-
sumes the main differences between Arcan detection strategies with
the ones of Arcade and Designite. For each architectural smell, we
indicate the strategy adopted in Arcan (the rows highlighted in grey),
the strategies implemented by either Arcade or Designite (Detection
strategy column) and specify whether the approach is the Same, or
uses a Different threshold (same approach, different threshold value
for the metric to overcome) or consists of a complete Different strategy
(Comparison column).

While for the detection of dependency issues such as CD and HL
the approaches are equal or only differ for the value of some metric
thresholds, concerning SF and FC (the smells violating the separa-
tion of concerns principle) the three tools adopt completely different
approaches. In particular, the differences rely in how the the tools
represent a software concern (a system’s role, responsibility). Desig-
nite only exploits a static metric named Lack of Component Cohe-
sion (see Section 2.2) to detect concerns, while Arcan and Arcade
take both advantage of existing Natural Language Processing (NLP)
techniques. Arcade models software concerns as topics, learned from
source code with the Latent Dirichlet Allocation model, defining a
topic as a probability distribution over the system’s nonempty set
of keywords, whose elements are used to describe the system (e.g.,
via comments in source code). By examining the words that have
the highest probabilities in a topic, the meaning of that topic may be
discerned and associated to a specific part of the system (usually a
component such as a package). Arcan instead computes the Tf-Idf
(see Section 2.1), a metric able to assign the highest score to the term
(extracted from code) which better describes the concern associated
to a specific piece of code. The strength of the Arcan approach it that
is does not need additional information other than source code to run.
The topic model approach instead requires the input of a set of hyper-
parameters (parameters whose value is used to control the learning
process) and also the number of expected topics. Such inputs should
be provided by the developer using the tool, making less actionable
the tool itself.

2.6 summary of the findings 28

Table 2.2: Academic and commercial tools for architectural smells detection

Tool CD FC GC HL SF UD

ac
ad

. Arcade [132] x x x x x

Designite [64] x x x x x x
co

m
m

er
ci

al

AI Reviewer [6] x x x

DV8 [48] x x x

JArchitect [110] x

Massey Architecture Explorer [158] x

Ndepend [170] x

Sonargraph [270] x

STAN [180] x

Structure101 [103] x

2.6 summary of the findings

We presented in this section our tool, Arcan, starting from the de-
scription of its components and the data structures it exploits. We also
introduced the AS studied in this thesis and their detection strategies.
We also reported the other academic and commercial tools which de-
tect the same set of AS, highlighting the differences between their
detection strategies and the Arcan approach.

We reserved particular attention to the description of our method
to represent software concerns. We first explained our current ap-
proach, which is based on tf-idf and is an enriched version of the
dependency graph (feature graph). Then, we reported our experience
with a deep learning model for the semantic representation of code.
Finally, we acknowledged that using neural models for such a pur-
pose is promising but also resource-consuming, making them unsuit-
able, at the moment, for the integration with a detection tool such
Arcan.

2.6 summary of the findings 29

Table 2.3: Comparison with Arcan detection strategies

AS Tool Strategy

CD
Arcan Depth-first search algorithm

Arcade Strongly connected subgraphs

Designite Depth-first search algorithm

FC
Arcan #numberOfFeatures threshold

overcome

Arcade topics threshold overcome

Designite Lack of Component Cohesion
(LCC) threshold overcome

GC
Arcan #Components/LOC threshold

overcome

Designite #Components/LOC threshold
overcome

HL
Arcan Fan In and Fan Out threshold over-

come

Arcade Fan In and Fan Out threshold over-
come

Designite Fan In and Fan Out threshold over-
come

SF
Arcan Feature spreads across multiple

components

Arcade Misplaced topics

Designite Number of methods accessing
same component

UD
Arcan Package instability comparison

Designite Package instability comparison

3
VA L I D AT I O N A N D P E R C E P T I O N O F T H E
A R C H I T E C T U R A L S M E L L S F R O M T H E
D E V E L O P E R S

An important and challenging task when developing software anal-
ysis tools is their validation. Arcan suffers from false positives and in
the past few years we conducted a set of validation studies, primarily
in industrial context, to quantify the analysis precision. In all these
studies, validation is intended in terms of discerning Arcan true posi-
tives from smells’ instances correctly detected by Arcan but, for some
reasons, not considered problematic by developers. For instance, be-
cause the code was designed in that way on purpose and thus it does
not represent a problem to be solved. We call them false positive
instances, even if the structure of the smell is actually present in the
code. Table 3.1 describes how to interpret the architectural smells con-
fusion matrix. For Actual AS we mean the instances of AS which are
present in the code and at the same time are perceived as a problem
by developers. For Detected AS we mean the instances of AS detected
by Arcan.

Table 3.1: Architectural smells detection confusion matrix

Actual AS

TRUE FALSE

T
R

U
E

True positives:
AS detected
which are real
problems

False positives:
AS detected
which are not
real problems

D
et

ec
te

d
A

S

FA
LS

E

False negatives:
AS not detected
which are real
problems

True negatives:
AS not detected
which are not
real problems

In our studies, we compute the Precision of Arcan results, and when
possible Recall. Precision is defined as the fraction of actual AS (True
Positives, TP) among the detected AS (the sum of TP and False Posi-
tives, FP), thus indicating the ability of the tool of correctly identify-
ing AS:

Precision =
TP

TP+ FP
(5)

30

3.1 past studies on the validation of arcan tool 31

Recall is defined as the fraction of actual AS that were detected by
Arcan, thus quantifying how many TP the tool can detect over the
total number of actual AS (the sum of TP and False Negatives, FN):

Recall =
TP

TP+ FN
(6)

Recall is especially difficult to compute for us, because it requires
a previous detailed knowledge of the project under analysis, i.e., the
true number of AS present in the project. In our studies, we mainly
evaluate precision, since developers hardly know about the AS of
their projects.

Following in this chapter, we list the past validation studies con-
ducted on the Arcan tool results and discuss in detail two recent
studies on the perception of practitioners about the AS detected by
Arcan.

3.1 past studies on the validation of arcan tool

The Arcan detection results of CD, UD and HL smells have been
validated in our previous works. In particular, a validation of Ar-
can results has been performed on ten open source projects [19] and
also in industrial contexts through the developers feedback on the de-
tected AS instances. In a first study, the practitioners feedback about
two projects assigned a high precision value of 100% to the results
and 63% of recall [21]; in another study [155], practitioners gave feed-
back also about how they perceive AS and their possible refactoring,
through the analysis of four industrial projects. In this case the over-
all precision was 50%. Developers provided insights about why some
instances were not real problems for them, and in the case of CD
they reported the case of cycles created by callbacks from anonymous
classes in GUI components. Developers explained that callbacks for
event listeners in the GUI components could not be easily replaced,
and therefore they did not recognize CD as problematic in those
specific cases, but rather as a necessary solution. In the case of UD,
developers admitted that they did not easily understood its mean-
ing and this could be a cause behind their disagreement on it being
a problem. However, UD was also sometimes related to the use of
the Strategy design pattern. The relationship between AS and DP is
not unexpected and we further studied it in another work (see Sec-
tion 4.2), where we performed a quality analysis on some examples
of AS and DP collocation and found that there are some connections
between the co-occurrence of specific types of AS and DP. Some of
them are effects of AS false positives instances; others indicate that
specific implementations of DP can imply the introduction of AS, as
it happens for the Visitor pattern, which can cause the introduction
of CD. Concerning the smell’s impact on quality, in their opinion, HL
is the one which impacts the most the system quality and also the

3.2 an as evaluation in an industrial context 32

smell which gets worse the most during the project evolution. They
also indicated CD as one of the most impactful smell, and also as the
smell which requires more time and creates more side effects when
refactored, even if in this study many CD instances were indicated as
false positives, i.e., true problems but not to be removed.

3.2 an architectural smell evaluation in an industrial

context

According to the other AS, we conducted another validation study1,
always in an industrial context, where in addition to the above three
smells, we validated GC, FC and SF. Also in this case we collected
data about how the practitioners perceive AS. In particular, a survey
with different questions was given to the practitioners. They were
three and they were all developers belonging to the team that was
working on the analyzed project at the time the survey was proposed.
The first one was a junior developer with 4 years of experience work-
ing on the project analysed in this study. The second one was a mid-
dle developer with 9 and a half years of experience of which 1 year
and a half spent working on the project. The third one, the team
leader, was a senior developer with almost 15 years of experience
working on the project for 2 years.

We presented 19 AS instances, drawn from all the detected smells,
because we tried to include instances with different granularity (for
CD and HL) and different metric values (for FC and GC).

The survey contained 12 questions that the three practitioners had
to answer individually for each selected AS instance. We investigated
three main aspects: 1) Arcan detection precision; 2) architectural smells
perception and impact; 3) architectural smell refactoring and critical-
ity.

feedback about arcan detection precision The overall
precision of the tool was 70%. Developers provided some explana-
tion about the false positives instances: one HL was detected on a
package containing utility classes which was supposed to be used by
many other classes on purpose, thus making it a design choice; the
size of one GC was justified by the attempt of developers of avoiding
boilerplate code2, still making it a design choice; finally developers
indicated all SF instances but one as false positives because their de-
sign was layered (one layer per package) and not organized by feature
(one feature per package). this kind of smell is meant to point out de-
fects in a package-by-feature [134] organization which is desirable in
some cases, but not when the actual design is layered, as the project

1 A publication was extracted from this study [79], in collaboration with Federico
Locatelli and Paolo Mereghetti

2 Sections of code that have to be included in many places with little or no alteration.

3.3 the perception of as in three software companies 33

analyzed in this study, where the smell was detected each time a ver-
tical feature of the architecture was scattered among the packages.
Developers got aware of that and signaled it to us, except for the case
they considered true.

feedback about as perception and impact Concerning the
practitioners’ perception of AS, all the smell types were considered af-
fecting maintainability by at least one developer. For one GC instance
a developer suggested an additional aspect, that “they affect the do-
main structure” i.e. how the domain model is organized across the
different packages.

We also investigated which AS type, in the opinion of the develop-
ers, gets worse as time passes, when left in the system. We discovered
that the developers found Hub-Like on classes and Feature Concen-
tration the most problematic in these terms.

feedback about refactoring and criticality Concerning
refactoring, developers pointed out that the refactoring of the ones
regarding the separation of concerns (FC and SF) is crucial when mi-
grating from a monolithic architecture to microservices. This because
these types of smells affect how the system functionalities are orga-
nized, and a microservices migration requires to identify, isolate and
put in the same microservice all the classes that work on the same
functionality.

Moreover, they confirmed some of the results of the previous study,
indicating HL as the most critical smell (see Section 2.2.2).

3.3 the perception of architectural smells in three soft-
ware companies

In addition to the previous considerations about these AS, we re-
cently conducted a study in industrial context3 about the perception
and management of GC, CD, UD and HL smells. Differently from
the studies already introduced, in this case we did not validate Arcan
detection results, but tried to gain a deeper and qualitative insight
about the experience of practitioners in managing the presence of AS
in their systems.

We collected data by interviewing 21 practitioners from 3 compa-
nies in Europe operating in two different domains (Embedded Sys-
tems and Enterprise Applications Development). The first company
provided 12 participants, the second 6 and the third 3. The practi-
tioners’ background varies from a few years of activity (junior de-
velopers) up to 25 years of practice (architects). Interviews were semi-

3 A publication was extracted from this study [217], in collaboration with Darius Sas
and Paris Avgeriou.

3.3 the perception of as in three software companies 34

structured and each lasted approximately 30 minutes (see Appendix A.1.2
for the interview guide).

feedback about architectural smell perception Con-
cerning the perception of the different kinds of AS, participants re-
ported being the most familiar with GC among the four studied AS,
because many of them reported personal experiences in managing
this kind of smell. GC is perceived as a common cause of mainte-
nance issues as well as reduced evolvability of the affected compo-
nent, mainly as a result of the high level of complexity that character-
izes its instances.

Opinions on CD were generally aligned, and most participants con-
sidered CD as detrimental for maintainability, reliability, and testabil-
ity. Concerns about reliability (e.g. deadlocks) were mostly expressed
by the participants working on C/C++ projects, highlighting that
even if some CD instances have not caused issues yet, they pose a
high risk for future undertakings. On the other hand, participants
working with Java perceived it as less detrimental than other smell
types like GC.

Opinions were much more polarized when the HL smell was dis-
cussed. Some participants mentioned that: (1) it should not be consid-
ered a problem because it could be a result of an intentional design
decision; (2) it should not be a cause of concern as long as it is un-
derstandable; and, (3) as one participant expressed, it is easy to solve
it. However, other participants (and especially the ones working with
Java) mentioned that HL is very important to avoid because it is not
easy to manage and it hinders both maintainability and evolvability
by making it hard to understand how to insert new code in the pres-
ence of a HL. This feedback confirms the opinions of the developers
described in the previous study (see Section 3.2).

Concerning UD, participants generally perceived it as a threat to
both maintainability and evolvability, highlighting their concerns about
the change ripple effects associated with UD and underlining the im-
portance of avoiding dependencies towards packages that constantly
evolve. Nevertheless, one developer expressed his doubts about the
importance of this AS while few developers outlined that they did
not fully understand it (they could not recall any similar experience
and connect it to the UD definition) and gave no feedback about it.

feedback about architectural smells impact on main-
tenance and evolution The participants discussed plenty of
anecdotes and experiences about maintenance and evolution issues
that they associated with the presence of AS. Almost all anecdotes
about GC involve the difficulty of understanding the functionality
provided by the component, mainly caused by the excessive internal
entanglement of files (or classes), the excessive amount of function-

3.3 the perception of as in three software companies 35

ality implemented, and the way functionality is scattered across the
component. The relationship between GC and code duplications was
also frequently discussed. Components affected by GC do not pro-
vide fine-grained classes that can be easily reused inside or outside
the component, but large and entangled classes. Hence, when devel-
opers need to reuse an existing functionality, they prefer to copy the
entire class and adapt it for the new purpose, instead of extracting a
small, reusable functionality. On top of creating duplicated code, this
also further enlarges the existing GC.

The experiences about CD are rather diverse and range from deal-
ing with deadlocks and low throughput to unclear chain of command
between components and poor separation of concerns in general. Cy-
cles were also reported as an “intertwined mess” that is hard to un-
derstand; e.g. when there is a package that requests data from an-
other package which in turn requests it back from the initial package.
These problems resulted in a significant amount of effort required to
be fixed or dealt with along the way, and in some cases they showed
up only in production or at the customer. Participants also mentioned
problems that had a more widespread impact; for example, a cycle
prevented the creation of a microservice out of a subset of packages,
as all the packages in the cycle had to be included in the microservice
(the desired functionality could not be isolated, see Section 6.1.2).

Concerning HL, practitioners associated it with two types of issues:
(1) difficulty of understanding the logic in the central component and
(2) change ripple effects propagating from the components that the
central component depends upon to the components depending on it,
mentioning also a possible overlap with UD. The former was usually
associated with how the central component exposes its functionality
through its interface. The latter caused changes to unexpected parts
of the system that practitioners did not expect to relate to the initial
change, during activities such as bug fixing.

The maintenance issues that associated with UD the most, were
change ripple effects. In several instances, practitioners reported that
functional changes to a certain component (or package) also required
several files in other components to change as well. As reported by
two participants, the possibility of changes propagating to other com-
ponents increases the difficulty of making changes: practitioners are
forced to only make changes compatible with the other components
in order to avoid changing and recompiling those other components.

feedback about the introduction and management of

architectural smells Participants reported their experiences
about how they get to introduce an AS in the system. Some partic-
ipants admitted that it often happens by design; for instance con-
cerning GC, the component or the file is intended to be large. Sub-
sequently, as reported by other interviewees, developers tend to un-

3.3 the perception of as in three software companies 36

derestimate the severity of the introduced GC, while the incremental
changes applied to it contribute in making it even larger. In other
cases, AS are introduced inadvertently. For example, the participants
reported that a bad separation of concerns at design time or the
wrong exploitation of class inheritance, can result in CD. Another
participant mentioned that they used to create a dedicated interface
to hide unstable components behind it as a “practice” to avoid the
propagation of changes; however, this is precisely the description of a
UD smell, being misinterpreted as a good practice. In many cases, in-
troducing AS seems unavoidable and accepted as a “necessary evil”.
For example, one participant explained that in view of an imminent
deadline, they focus on developing the new feature and having a first
structure of the code, without caring about its maintainability. Mov-
ing on to the management of AS, we asked the participants about
their experiences with AS refactoring. Most of them had experience
with the refactoring of GC, in particular the practice of splitting the
component in smaller pieces by applying incremental changes or by
detaching the smallest, easiest sub-components first. One interviewee
managed to break a CD by re-modelling the involved dependencies to
follow a hierarchical structure; others reported creating replacement
interfaces and slowly migrating clients to them while refactoring the
existing components. In contrast, developers do not commonly refac-
tor HL because of the required effort; if they can, they tend to “code
around it” without removing it when developing new features, allow-
ing it to persist. One interesting reason mentioned for not refactoring
AS is the absence of a comprehensive regression test suite. Concern-
ing practices which support the refactoring of AS, some participants
mentioned the usage of SonarQube to keep the code readable and
maintainable; this can ease the refactoring of AS, since often the poor
quality of the code makes refactoring even more difficult and time-
consuming. Another indicated pair programming and the help of se-
nior developers as valid support. However, not all the interviewees
reported the adoption of refactoring practices. Some even pointed
out that they avoid refactoring because their clients do not pay for
refactoring time and as long as the system has no visible problems in
production, they do not intervene.

Finally, we also asked whether practitioners use tools to manage
architectural smells. SonarQube was mentioned by quite a few partic-
ipants, but only once in regard to an AS (i.e. to detect cycles). Besides
that, practitioners do not rely on any specific tool to manage AS.

feedback about scattered functionality and feature con-
centration We extended the study with 8 of the 21 developers,
in particular 4 junior developers, 2 senior developers, one DevOps
specialist and one Scrum Product Owner, working on enterprise Java
projects. We distributed an online survey to investigate their opinion,

3.4 summary of the findings 37

specifically about the perceived harmfulness of Scattered Functional-
ity and Feature Concentration. From their answers, all the smells have
an impact on software quality. In particular, both SF and FC impact
readability and maintainability. SF is a problem because “Makes the
code less reusable” and a “problem arises when the change to a feature in-
volves multiple components.”. Moreover, “SF is difficult to maintain over
time and new changes [when present] degrade the system quality and its
efficiency”. FC should be avoided because “Every class should have only
one responsibility and should not cover multiple concerns”.

3.4 summary of the findings

We now resume the results of our research about Arcan valida-
tion and the perception of AS by industrial developers. Table 3.2 re-
sumes the interesting feedback we had from the practitioners who we
reached out. For each AS detected by Arcan, we indicate an example
of false positive AS (False positive example column) encountered by the
developers; the general perception of the smells along with the im-
pact they have on the affected system (Perception and Impact); finally
the quality attributes which are affected by the smells (Affected Q.A.,
legend at the bottom of the table).

For what concerns Arcan validation and AS false positives, we ac-
knowledge that we are far from the 100% precision of the results,
in terms of identifying smells that are considered as real problems by
developers. The false positives we identified during our validations
are not easy to spot, because they require the detector to capture fac-
tors external to code. For instance, in some cases developers declared
they introduced the smells by design, meaning that they were aware of
what they were doing. In other cases, developers admitted that they
had no other choices. Both static and dynamic analysis and even the ex-
ploitation of Natural Language Processing (NLP) techniques cannot
extract this kind of information from code. To overcome this problem,
the detection approach must be fundamentally different and involve
the developers’ input in the first place. Some works in this direction
have been conducted in the field of self-admitted technical debt [201],
where the symptoms of debt are searched in the code comments and
in other natural language bits, such as messages of git commits. Other
research lines point to annotate the code with heterogeneous infor-
mation, such as annotation about architectural decisions [161] and
design flaws [191]. In brief, future works about AS detection and the
management of false positive smell instances should focus on devel-
oping approaches able to collect architectural decisions information.

Concerning the perception of AS, i.e., what developers think about
the smells independently from the tools able to detect them, we can
confirm that developers actually experience AS and their consequences
in everyday coding and that the six considered AS, when actually

3.4 summary of the findings 38

present, represent a problem for the maintainability of the code. How-
ever, even if we found agreement, the perception, as implied by the
term itself, is subjective and bounded to the personal opinions of
the single developer, determined by his/her/they past experiences,
seniority, education and skills. The smells for which we noted the
majority of discordance are Cyclic Dependency and Hub-Like Depen-
dency. To conclude, architectural smells are real problems, causing
concrete shortcomings and worthy of attention by the software engi-
neering community. Architectural smells are inherently complex, be-
cause of the fact they are design decisions: decisions cannot be inferred
directly from code and depend from many external factors, and thus
they cannot be generalised. Instead, they are tied to the people who
are making such decisions: software architects and developers. Fu-
ture directions concerning this subject can be found at the end of the
thesis in Section 8.2.

3.4 summary of the findings 39

Table 3.2: Summary of architectural smells perception

AS False positive
example

Perception and Impact Affected Q.A.

CD Callbacks from
anonymous
classes in GUI
components,
considered a
necessary solu-
tion.

Creates a lot of side ef-
fects when refactored.

Maintainability,
Reliability, Testa-
bility

FC - Hinders the migration to
microservices.

Maintainability
and Readability

GC An intentional
design choice.

Very dangerous. Inter-
nal entanglement pre-
vents changes. Hinders
the migration to mi-
croservices. The affected
code is hard to under-
stand.

Maintainability
and Evolvability

HL A package con-
taining utility
classes, created
by design.

It get worse as long as
time passes. It is the
worst smell to have in a
system.

Maintainability,
Evolvability and
Understandabil-
ity

SF An architecture
designed by
layer (one layer
per package).

Makes thecode less
reusable. Hinders the mi-
gration to microservices.

Maintainability
and Readability

UD Sometimes
caused by the
presence of the
Strategy design
pattern.

It should be avoided.
Not fully understood by
developers.

Maintainability
and Evolvability

4
E M P I R I C A L S T U D I E S O N A R C H I T E C T U R A L
S M E L L S

The development and validation of Arcan gave us the opportunity
to analyse many software projects and conduct empirical studies on
architectural smells. In particular, the studies presented in this chap-
ter regard the evolution of AS and their correlation with AS them-
selves and design patterns.

The general workflow of such studies consists in 1) the definition
of the research questions 2) the collection of raw data, usually the
output of one or more software analysis tools executed on public
software repositories; 3) the generation of a dataset; 4) the execution
of statistical tests to investigate possible relationships among the data;
5) the interpretation and discussion of the results, with a focus on the
insights and takeaways that could be useful for the software engineer-
ing research community and the software developers.

A common threat for such kind of empirical analysis is the diffi-
culty of doing validation of the results: the ideal validation would
be to submit the studies’ outcome to the developers or to compare
the outcome with a ground-truth. However, developers are not easy
to reach out and unfortunately, to the best of our knowledge, there
are no available ground-truths containing data about AS. In any case,
the studies reported in the following sections comprise also a discus-
sion of their threats, and when possible we complemented the data
analysis with manual validation, by checking the results (e.g. the cor-
relation between a smell and a design pattern) directly in the source
code of the analysed projects.

In the following sections, first we introduce the main statistical tests
and techniques we exploited to analyse architectural smells data, then
we describe one by one our empirical studies. At the end of the chap-
ter, we summarise our results and findings.

4.1 exploited statistical tests and techniques

Given a large quantity of data, we need tools and techniques to
extract valuable information, on the top of which we can draw some
conclusions about the research questions defined in our empirical
studies. Thus, we run well-known statistical tests, implemented in
popular languages (R language [241]) and tools (KNIME platform [114]).
We know introduce them and explain how we use them in the context
of our empirical studies.

40

4.1 exploited statistical tests and techniques 41

4.1.1 Correlation analysis

Correlation analysis is a method of statistical evaluation used to
study a relationship between two variables. Measuring the correlation
between two dimensions can be useful to understand whether they
are in some kind of relationship. When testing the correlation of vari-
ables such as number of architectural smells and number of design
patterns, we relied on Pearson [34], Spearman [227] and Kendall [119]
correlation tests. Spearman rho and Kendall tau rank correlations are
two of the correlation coefficients commonly used to measure the
strength of the relationship between two variables that are not nor-
mally distributed. In our study we usually adopt them because our
variables tend not to be normally distributed. This because synthetic
(not physical) quantities such as the properties measured on software
(number of lines of code, coupling, cyclomatic complexity, number of
architectural smells) do not follow the normal distribution, but the
power law [146]. In any case, we checked the normality of the con-
sidered variables in each of our studies. The correlation coefficients
resulting from the tests ranges from -1 to 1, where -1 indicates strong
negative correlation, 1 is strong positive correlation and 0 means no
correlation. The result is considered significant if the p-value of the
test is < 0.05.

4.1.2 Principal Component analysis

Principal Component Analysis (PCA) is a multivariate technique
for identifying the linear components of a set of variables. In our con-
text, we exploit PCA to identify relationships among several variables
(e.g. architectural smells), not just pairs, as done by correlation anal-
ysis. For instance, it can be useful to detect collocation between set
of three or more AS. Some previous studies used this analysis with
the same aim, but to identify collocated code smells Similar usage
of PCA has already been done in previous studies to identify collo-
cated code smells [253, 254]. To check whether the data are suitable
for PCA, as suggested in the work of Walter et al. [254], we compute
the Kaiser−Meyer−Olkin measure (KMO) [115]. This test measures
sampling adequacy for each variable in the dataset and for the com-
plete dataset. It is a measure of the proportion of variance among
variables that might have common variance. The lower the propor-
tion, the more suited the data is to PCA. Quality of the data sample
is claimed satisfactory if KMO > 0.50 [115]. Still following Walter indi-
cation, we also run the Bartlett’s test of sphericity [31], which verifies
if the dimensionality of the dataset can be effectively reduced. The
two described tests are complementary and in our studies we run
both of them to assess the suitability of the dataset for PCA analysis.

4.1 exploited statistical tests and techniques 42

4.1.3 Association rules extraction

An association rule is the expression of a relationship among data
items in a dataset. It is an if-then statement composed by an {antecedent}

and a {consequent}. An example of a rule explaining the relationship
between two AS is {HL, FC} → {CD}, which can be read as “If Hub-
Like Dependency and Feature Concentration affect a component at
the same time, then the component belongs to a cycle”. The associa-
tion rule extraction technique aims to automatically extract such rules
from a dataset composed of transactions; in our case a transaction cor-
responds to a vector of the binary features (architectural smells, soft-
ware metrics etc.) associated to a single component.

We also adopt commonly used metrics for evaluating a quality of a
rule: support, confidence [4], conviction and lift [42], with the follow-
ing definitions.

Given a rule defined as X→ Y,
Support (Supp) of a rule is the ratio of transactions that match the

rule with respect to the entire dataset.
Confidence (Conf) is the ratio of transactions that contain both the

antecedent X and the consequent Y.

Conf(X→ Y) =
Supp(X∪ Y)
Supp(X)

(7)

Lift is the ratio of the observed support to the expected support, if
X and Y are independent. If lift is equal to 1, it means that the rule is
not significant for the dataset.

Lift(X→ Y) =
Supp(X∪ Y)

Supp(X)× Supp(Y)
(8)

Conviction (Conv) is the ratio of the probability that X will appear
without Y if they are dependent, divided by the observed frequency
of the appearance of X without Y. Conviction is useful to measure the
degree of implication of the association, i.e., how much Y depends
on X; in particular, high conviction indicates that the consequent
is highly dependent on the antecedent, while conviction of value 1

means that the items are unrelated.

Conv(X→ Y) =
1− Supp(Y)

1−Conf(X→ Y)
(9)

4.1.4 Mann-Kendall test

We exploit the Mann-Kendall test, which is a non-parametric test
able to assess if there is a monotonic upward or downward trend of a
variable of interest over time. The null hypothesis for this test is that
there is no monotonic trend in the series. The alternate hypothesis is
that a trend exists. This trend can be positive, negative, or non-null.

4.2 a study on correlation between as and dp 43

Notice that this test can be used to find trends for as few as four
samples. In our case, usually one sample corresponds to one code
commit (version). However, with only a few analysed samples, the
test has a high probability of not finding a trend when one would
be present if more commits were provided. Hence, in our studies we
analyse at least eight commits.

4.2 a study on correlations between architectural smells

and design patterns

Design patterns (DP) [88] are generic, reusable solutions for re-
curring software design problems. Their adoption is widely recom-
mended, since they capture verified, distilled knowledge based on
experience. They also explicitly identify the trade-offs between their
advantages and shortcomings, which help developers in making in-
formed, conscious decisions concerning software design.

The two concepts, Architectural Smells (AS) and design patterns
seem not only unrelated, but even also disjoint, as they represent two
fundamentally different approaches to software quality. DP provide
recommendations for software design issues, securing some additional
quality properties, like flexibility, reusability or extensibility. They are
directly applicable, as they include instructions for implementation.
On the other hand, AS represent warnings that indicate the possible
presence of deeper quality issues that cannot be directly identified
or whose identification is hindered. Additionally, DP and AS refer to
different levels of abstraction: while DP address the tactical level, solv-
ing problems with a limited scope of methods and classes, AS usually
comprise more comprehensive issues involving modules, packages or
components, having a more strategic impact on the entire system. As
a result, even if AS and DP may be collocated or related at the struc-
tural level, there is currently no evidence that their interactions have
an impact on the quality.

motivation However, a more thorough examination reveals some
scenarios in which the relationships between DP and AS may affect the
system in meaningful ways, reaching far beyond their individual im-
pact. In this context, by “relationship” we mean a co-occurrence of
DP and AS within the same software dependency connecting two
architectural components (e.g., Java classes and packages).

First, the use of a DP is a deliberate decision of a programmer to
apply a specific solution to a given problem. Each pattern has pre-
dictable consequences, showing the benefits and trade-offs of its ap-
plication. However, they can be reduced, changed or even reversed
due to interfering factors that change the structure or behaviour of
the pattern [11]. For example, the advantages of applying the Tem-
plate Method design pattern to structure inheritance hierarchies are

4.2 a study on correlation between as and dp 44

diminished if the respective methods overriden in the subclasses do
not follow the Liskov Substitution Principle [145] or are affected by a
Tradition Breaker Code Smell (CS) [128]. Similarly, an unidirectional
dependency structure in the Observer pattern could be broken by in-
troducing cycles to it [77]. CSs have already been found to interact
with patterns [253][10], thereby affecting their prevalence. Moreover,
other studies found a relationship between the evolution of software
architecture and design pattern decay[109][76][75], i.e., architectural
changes may break the structural or functional integrity of a design
pattern. Therefore, we may conjecture that various AS, frequently re-
ferring back to an architectural planning phase, can also impact, re-
strict or even prevent the application of specific DP.

Secondly, the relationship between AS and DP can also be reverted:
smells can be manifestations of defects in pattern instances [165], e.g.,
a flawed Chain of Responsibility DP with two-directional dependen-
cies will result in the Cyclic Dependency AS. In that case, effort in-
vested in removing the smell can also fix the pattern implementation.
In general, while several studies found DP to have a positive impact
on software quality, other works reached the opposite conclusion. The
use of patterns does not always result in fewer defects, for instance,
Singleton and Observer appears more defect-prone than others [250].
Moreover, the adoption of design patterns increase the maintenance
effort, because managing code containing patterns requires more time
than implementing pattern-unrelated solutions [176][202]. Some DP
(Composite, Abstract Factory and Flyweight) have a negative impact
on the reusability and understandability of code[120]. Finally, classes
not involved in DP, or involved in some complex and change-prone
patterns, e.g., Decorator and Template Method, can be more prone to
violations [75][258].

We propose a final observation. Smells are manifestations of deeper
design or architectural issues, but this relationship is inevitably af-
fected by uncertainty: not every smell refers back to a real under-
lying problem. As a result, in some cases they can be conscious and
accepted effects of a DP, which would make them false positives. This
effect has been already studied with regard to code smells: the pres-
ence of a smell can be attributed to the application of a DP [77].
At an architectural level, Cyclic Dependencies smell [19], describing
circular references among components, can be an effect of implement-
ing callbacks [231], a common notification mechanism in GUI-related
applications. Also a Hub-Like Dependencies AS, describing architec-
tural components with numerous dependencies, can be incorrectly
detected, when actually being the implementation of Controller or
Orchestrator patterns [84].

Following from these observations, we can conclude that the ef-
fects of the mutual interactions between an AS and a DP may be
non-trivial and multi-aspect, and we can expect their significant im-

4.2 a study on correlation between as and dp 45

pact on selected quality characteristics. For that reason, the study of
these relationships deserves a closer analysis to determine how and
to what extent these concepts affect each other. Although a link be-
tween code smells and DP has been already analyzed [111, 226, 253],
no empirical study on AS has been presented. The aim of our study
is to investigate this subject1.

Since several AS concern dependencies between architectural com-
ponents, and DP strictly influence the design of such dependencies,
we can hypothesize that the eventual relationship between the two
phenomena will be revealed by analysing these dependencies.

For this reason we provide and use a dataset of 60 open source
Java projects which reports classes and packages having AS and DP,
together with the dependency information. The dataset has been cre-
ated with two existing academic software analysis tools: Pattern4 [244]
for DP detection and Arcan (see Chapter 2) for AS detection.

The results of our study can draw developers’ attention to the key
parts of software systems, and can enable them to incorporate knowl-
edge of the extracted AS-DP relationships.

The main contributions of this study are three-fold:

• we provide a dependency dataset, with information regarding object-
oriented dependencies, AS and DP;

• we present a study on the frequency and correlation of AS and DP
in 60 open source projects, based on statistical analysis, e.g., corre-
lation analysis and mining association rules;

• we formulate useful hints for developers and researchers, to help
them avoiding potentially hazardous combinations of DP and
AS, as well as to enhance the detection strategies for AS.

4.2.1 Empirical Study Design

In the following section, we describe our research questions which
guide the study of AS and DP relationship. In particular, we aim
to 1) investigate the frequency of both phenomena in the analyzed
projects, and 2) understand whether there are specific pairs of AS
and DP frequently involved in a relationship.
Our study aims to answer the following research questions:

• RQ1: What is the distribution and prevalence of AS and DP in Java
projects? We want to understand how many components (class
or package) are affected by AS and DP. This is useful for re-
searchers and developers to have an overview about the fre-
quency of the two phenomena, and also for us to set the stage

1 A publication was extracted from this study [199], in collaboration with Bartosz
Walter.

4.2 a study on correlation between as and dp 46

for the other research questions. In particular, we consider two
specific issues:

RQ1.1: Is there a difference in the distribution of AS and DP
with respect to the considered projects? Rationale: We aim to
analyze how both AS and DP are distributed in the con-
sidered software projects. Our aim is to identify the most
frequent types of smells in software projects, so that the
developers can focus their attention on them.

RQ1.2: Is there a difference in the distribution of AS and DP
with respect to various application domains? Rationale: This
question helps in assessing to what extent specific applica-
tion domains are affected by AS and DP. It is important to
know which domain is more open to AS, so that develop-
ers can be more aware of AS when dealing with projects
belonging to it. It is important also to compare the presence
of AS with the presence of DP, to understand if domains
interested by many DP are also the ones with fewer AS.

• RQ2: Which DP-AS pairs display significant relationships? Ratio-
nale: A strong relationship among a specific type of AS and DP
may indicate that the implementation of a pattern is a root cause
for the introduction of a smell, meaning that those DP, contrary
to their purpose, have a negative impact on quality. However,
we could discover that some AS imply the presence of some
DP. This could mean that those AS are false positives i.e., the
smell is present because developers had intended to program it.
On the other hand, it could signify that certain DP can help in
mitigating the negative impact caused by the AS, and they are
employed by developers to remedy the problem.

• RQ3: Can the presence of AS imply the absence of DP? or vice-versa
Can the presence of DP imply the absence of AS? Rationale: The
presence of the considered AS in the system affects the depen-
dency structure of the system itself. DP are implemented by
manipulating the structure of the system and the implementa-
tion is possible when the structure respects some principles (e.g.
it must be acyclical). Hence we want to investigate if the pres-
ence of specific AS results in the absence of specific DP, and
vice-versa. This would reinforce the conclusion that AS and DP
are mutually exclusive concepts.

analyzed projects and collected data In this study we
analyzed the 60 open source Java projects presented in Table 4.1.
This is a subset of projects being curated under Qualitas Corpus
(QC) [238], and their selection was conditioned by the availability
of properly compiled code, which is necessary for the AS detector.
For the projects, we report their application domain (Domain), name

4.2 a study on correlation between as and dp 47

(Project), analyzed version (Version), number of classes (NOC), num-
ber of packages (NOP), and the total number of lines of code (LOC).
These projects have diverse characteristics: they are assigned to seven
different domains (Graphics, Database, IDE, Middleware, Parser, Test-
ing, Tool), have different sizes (ranging from 2809 to 651118 LOC),
and are developed by different open source communities (Apache,
Eclipse, etc.). In order to balance the dataset, the original domains de-
fined in QC have been adjusted: 3D/Graphics/Media, Diagram Gen-
erator/Data Visualization and Games have been named “Graphic”,
and “SDK projects” were merged with “IDE” as “IDE”.

Table 4.1: Analyzed Projects
Domain Project Version NOC NOP LOC

Database

axion 1.0-M2 257 13 24163

cayenne 3.0.1 2991 185 192431

db-derby 10.9.1.0 3010 217 651118

hsqldb 2.0.0 644 26 143870

squirrel-sql 3.1.2 73 2 6944

hibernate 4.2.0 7119 856 431693

Graphic

batik 1.7 2299 81 178469

displaytag 1.2 320 32 20498

drawswf 1.2.9 311 34 27674

itext 5.0.3 583 34 78348

jasperreports 3.7.4 1709 61 169821

jext 5.0 761 59 60160

marauroa 3.8.1 247 41 17733

megamek 0.35.18 1859 37 242836

IDE

checkstyle 5.6 533 42 36641

colt 1.2.0 381 24 35919

drjava stable-20100913-r5387 1210 30 89477

eclipse SDK 3.7.1 24871 1425 2484311

jpf 1.5.1 140 10 13342

nakedobjects 4.0.0 2975 496 133936

Middleware

trove 2.1.0 72 4 5845

informa 0.7.0 223 26 13874

jena 2.6.3 1279 48 65774

jspwiki 2.8.4 582 70 60250

jtopen 9.4 1915 15 342032

openjms 0.7.7-beta-1 616 66 39435

oscache 2.3 115 22 7624

picocontainer 2.10.2 206 15 9253

xmojo 5.0.0 22 9 2809

quartz 1.8.3 269 51 28557

QuickServer 2.1.0 196 28 18339

sunflow 0.07.2 209 22 21970

tapestry 5.1.0.5 2119 139 97206

Parser

ant 1.8.2 1608 122 127507

antlr 3.4 381 20 47443

Continued on next page

4.2 a study on correlation between as and dp 48

Table 4.1 – Continued from previous page

Domain Project Version NOC NOP LOC

apache-maven 3.0.5 837 143 65685

javacc 5.0 107 8 14633

jparse 0.96 75 4 24796

nekohtml 1.9.14 64 7 7647

xalan 2.7.1 1402 86 183709

xerces 2.10.0 947 53 125973

Testing

cobertura 1.9.4.1 160 34 54555

emma 2.0.5312 290 27 21492

findbugs 1.3.9 1432 67 110782

fitjava 1.1 95 5 3457

jmeter 2.5.1 1038 175 94778

junit 4.10 171 28 6580

log4j 2.0-beta 606 61 32658

pmd 4.2.5 872 88 60739

Tool

freecs 1.3.20111225 146 12 22645

heritrix 1.14.4 656 48 64916

james 2.2.0 306 31 27087

jfreechart 1.0.13 1037 69 143062

jgraph 5.13.0.0 298 34 31818

jgraphpad 5.10.0.2 375 22 24208

jmoney 0.4.4 83 4 8197

jsXe 04_beta 251 14 18494

pooka 3.0-080505 491 28 44474

proguard 4.9 648 35 62618

webmail 0.7.10 115 19 10147

We collected the data on three architectural smells, namely Cyclic
Dependency, Hub-Like Dependency and Unstable Dependency (see
Section 2.2), and all the DP described in Table 4.2. These patterns
have been defined by GoF [88], except for Proxy2, which is a varia-
tion of the Proxy pattern. In that case, also called Dynamically-Typed
Proxy [35], the Proxy role has an association to Subject role (named
subject) and the method Request() declared in Proxy invokes an ab-
stract method having the same signature through the Subject associ-
ation. We chose the reported patterns since they are all identified by
one tool, called Pattern4, and represent a different subset of patterns
proposed in the GOF catalogue [88].

We performed our analysis on different aggregations of data: project
data, application domain data, and the entire dataset. By the “granu-
larity level” we mean the specific type of a Java component: class or
package.

tools To detect DP we used Pattern4 [244], capable of extracting
the patterns from the analysis of Java project’s static structure. In
particular, the implemented detection methodology is based on sim-
ilarity scoring between graph vertices, where a graph represents the

4.2 a study on correlation between as and dp 49

project under analysis. We decided to use this tool due to its free avail-
ability and the large number of detected DP. Moreover, it has been
validated on 3 open source projects, having very high (95%-100%)
precision and recall [244].

To detect AS, we employed Arcan (see Chapter 2).

Table 4.2: Detected Design Patterns
Name Type Description

Factory Method (FM) Creational
Define an interface for creating an object,
but let subclasses decide which class to instantiate.

Prototype (P) Creational
Specify the kinds of objects to create using
a prototypical instance, and create new objects
by copying this prototype.

Singleton (S) Creational
Ensure a class only has one instance,
and provide a global point of access to it.

Object Adapter (A) Structural
Convert the interface of a class into
another interface clients expect.

Composite (C) Structural
Compose objects into tree structures
to represent part-whole hierarchies.

Decorator (D) Structural
Attach additional responsibilities
to an object dynamically.

Bridge (B) Structural
Decouple an abstraction from its implementation
so that the two can vary independently.

Proxy (PR) Structural
Provide a surrogate or placeholder
for another object to control access to it.

Proxy2 (PR2) Structural
Proxy variation reported by Gunter Kniesel
and Alex Binun from University of Bonn

Command (COM) Behavioural
Encapsulate a request as an object thereby letting you
parameterize clients with different requests, queue
or log requests, and support undoable operations.

Observer (O) Behavioural
Define a one-to-many dependency between objects
so that when one object changes state, all its
dependents are notified and updated automatically.

State (ST) Behavioural
Allow an object to alter its behavior
when its internal state changes.

Strategy (STR) Behavioural
Define a family of algorithms, encapsulate each one,
and make them interchangeable.

Template Method (TM) Behavioural
Define the skeleton of an algorithm in an operation,
deferring some steps to subclasses.

Visitor (V) Behavioural
Represent an operation to be performed on
the elements of an object structure.

Chain of Responsibility (COR) Behavioural
Avoid coupling the sender of a request to its receiver
by giving more than one object a chance
to handle the request.

dataset We now introduce the dataset used during the analysis,
named Dependency Dataset. It has been created in response to the ob-
servation that in object-oriented projects both AS and DP affect the

4.2 a study on correlation between as and dp 50

structure of the code, specifically the dependencies between classes/-
packages. Moreover, for DP, the direction of the dependencies and
their type (class dependency, inheritance dependency and interface
dependencies) are important for defining the pattern itself. Arcan is
able to represent both classes/packages (nodes) and dependencies
(edges) in the dependency graph. Hence, the dataset built and ex-
ploited for this work is edge-based2.

With the Dependency dataset we are able to model each depen-
dency in the dependency graph and determine if the dependency
is part of an AS and/or a DP. The dependencies that Arcan can ex-
tract belong to one of two granularity levels: class or package. There
are four types of dependencies considered: classDependency between
class A and class B, if there is at least a method call from A to B;
inheritanceDependency between class A and class B, if A extends B;
implementationDependency, between class A and interface B, if A is
an implementation of B; packageDependency, between package C and
package D, if a class in C has a (class/inheritance/implementation)
dependency with a class in D.

The Class dependencies dataset, whose features are reported in Ta-
ble 4.3, provides information about:

• the head of the edge, i.e., the name of the class from which the
dependency originates;

• the tail of the edge, i.e, the name of the class at which the de-
pendency ends;

• the type of dependency. Three types are considered: classDepen-
dency, inheritanceDependency and implementationDependency.

• the weight of the edge (the number of times the dependency is
realized in the code);

• the smells (AS1 ... AS#) and the design patterns (DP1 ... DP#)
that involve the dependency. AS and DP are considered binary
features (we count the presence/absence of AS and DP in the
dependency).

Table 4.3: (Class) dependency dataset features

head tail type weight AS1 AS2 ... AS# DP1 DP2 ... DP#

The package dependencies dataset stores the same features except
for the “type”; as for packages we consider only packageDependency.
Moreover, the detected AS for classes are (Class) Cyclic Dependency
and (Class) Hub-Like Dependency; the detected smells for packages

2 Replication package is available at https://drive.google.com/drive/folders/

1ONSTAwyvK9d7gGp70kgLXfDZvkU80xz1

https://drive.google.com/drive/folders/1ONSTAwyvK9d7gGp70kgLXfDZvkU80xz1
https://drive.google.com/drive/folders/1ONSTAwyvK9d7gGp70kgLXfDZvkU80xz1

4.2 a study on correlation between as and dp 51

are (Package) Cyclic Dependency, (Package) Hub-Like Dependency
and Unstable Dependency. Since DP are structures implemented at
the class level, we had to aggregate our data at the package level.
We say that a package dependency is involved in a DP, if the cor-
responding dependency at the class level (i.e., a cross-package class
dependency) is involved (see Figure 4.1). For instance, if package A
depends on package B (A → B) and class C1 that belongs to A de-
pends on class C2 of package B (C1→ C2), then all the DP involving
(C1→ C2) are also counted for (A→ B).

This dataset allows for counting:

• The number of dependencies involved in at least one AS,

• The number of dependencies involved in at least one DP,

• The number of dependencies involved in an AS and a DP,

• The number of dependencies not involved in any AS,

• The number of dependencies not involved in any DP,

• The number of dependencies not involved in any AS or DP.

analysis Our dataset consists of two levels: the 1) class level,
with data point: Java class dependency, and features: DP and AS data;
2) package level, with data point: Java package dependency, and fea-
tures: DP data of the package dependencies, and AS data. We consider
(Class) Hub-Like Dependency and (Class) Cyclic Dependency smells,
(Package) Hub-Like Dependency, (Package) Cyclic Dependency and
(Package) Unstable Dependency smells.

Given this representation, we used three analysis techniques in or-
der to answer our RQs related to the frequency of AS and DP and the
relationships among them.

• Comparison of DP and AS frequencies In order to answer
RQ1.1 and RQ1.2, we computed the absolute and relative fre-
quencies of both AS and DP at the class and package level.

Used technique: distribution statistics.

A B

C1 C2
classDependency

packageDependency

DP1…DP#

DP1…DP#

Figure 4.1: Aggregation of DP from class level to package level

4.2 a study on correlation between as and dp 52

• Correlation analysis In order to answer RQ2 and RQ3 we per-
formed the Spearman [227] and Kendall [119] correlation anal-
ysis on the entire dataset. We chose them because we checked
the normality of our variables and discovered they were not
normal. In particular, we ran the Anderson-Darling test [172]
for normality. We could not use the well known Shapiro-Wilk
test [219] because our variables exceeded the maximum num-
ber of data-points (> 5000) allowed in input by the test. More-
over, we could not use the Kolmogorov-Smirnov test, since it is
not suitable when estimating the parameters from the data (as
we do), and it also expects a continuous distribution that does
not contain any ties (repeated values). Instead, the Anderson-
Darling test does not require the mean and the standard devia-
tion to be supplied. Additionally, we exploited Q-Q plots [260].
A Q-Q plot is a graphical method for comparing two probabil-
ity distributions by plotting their quantiles against each other.
These plots are often used when the dataset is large enough to
introduce bias in the Shapiro-Wilk test, as in our case.

Used technique: computation of Spearman’s rho and Kendall’s tau
rank correlation coefficents. Used tool: R language cor() func-
tion [241].

• Association rules extraction Moreover, related to answer RQ2
and RQ3 we aim to exploit association rules to identify rela-
tionships among AS and DP. An example of a rule for the AS
and DP dataset is {HL, Singleton}→ {CD}, which can be read
as “If Hub-Like Dependency and Singleton pattern affect a de-
pendency at the same time, then the dependency belongs to a
cycle”.

Used technique: an implementation of the Apriori algorithm [5].
Used tool: apriori function from the arule3 R package. Parame-
ters: for all datasets, we fixed the minimum support to 0.001 and
we reported the rules with confidence > 0.6, as used in other
empirical studies [254]. In the following, we provide the details
concerning the three analyses conducted on both classes and
packages.

4.2.2 Results

This section reports the results of our analysis starting from (1) the
computation of statistical information, to answer RQ1.1 and RQ1.2,
followed by (2) correlation analysis, and (3) association analysis to
answer RQ2 and RQ3. The complete results can be found in the repli-
cation package.

3 https://cran.r-project.org/web/packages/arules/index.html, accessed October
2021

https://cran.r-project.org/web/packages/arules/index.html

4.2 a study on correlation between as and dp 53

Table 4.4: Descriptive statistics for the dependency dataset

Tot. Min Max Mean Median St. dev.

class dependencies

#dependencies 226066 44 32834 3767.767 1692 5467.270

#not AS/DP 139416 (62%) 27 21054 2323.600 863.5 3574.855

#AS 43420 (19%) 8 4687 723.667 266 998.051

#DP 31883 (14%) 0 7578 531.383 240 1083.069

#AS/DP 86650 (38%) 17 11780 1444.167 571 2058.908

package dependencies

#dependencies 17362 1 4450 289.367 102 685.826

#not AS/DP 5341 (30%) 0 1860 89.017 23 276.486

#AS 6036 (34%) 0 1101 100.600 65 455.039

#DP 2084 (12%) 0 804 34.733 8 114.867

#AS/DP 12021 (69%) 0 2590 200.350 79 413.653

as and dp distribution and prevalence results Starting
with the answer to RQ1, we provide a description of the results re-
garding how much the different types of AS and DP affect the ana-
lyzed projects at the two studied granularity levels.

Table 4.4 reports the frequency of AS and DP at class and package
level, without considering their types. Tables 4.5 and 4.6 report the
results for AS and DP, respectively, at the class and package level, de-
pending on the different types of AS and DP. The tables indicate data
extracted from all the 60 projects, and for each reported quantity we
provide the total, the minimum, the maximum, mean and median values.
In particular, Table 4.4 shows some aggregated statistics for the en-
tire dataset. Each row reports the number of analyzed dependencies
(#dep.), the number of dependencies not involved in any AS or DP
(#not AS-DP), the number of dependencies only affected by AS (#AS),
the number of dependencies only involved in DP (#DP) and, finally,
the number of dependencies involved in AS or DP (#AS-DP). The per-
centage values reported in the parenthesis of Table 4.4 are in relation
to the total number of dependencies. The percentages reported in Ta-
bles 4.5 and 4.6 do not sum up to 100%, because some dependencies
are affected by more than one smell or design pattern at the same
time.

In the following, we introduce a detailed analysis of our dataset by
(1) investigating the frequency of AS and DP in the 60 Java projects
and their domains, (2) reporting the AS statistics and (3) the DP statis-
tics.

4.2 a study on correlation between as and dp 54

Comparison of AS and DP frequencies Figures 4.2 and 4.3 show
the frequency of AS and DP in the subject projects at the class and
package granularity levels. The x-axis indicates the projects ordered
by ascending number of dependencies, and the y-axis shows the num-
ber of AS and DP for each project (highlighted in two different colors).
As we can see from the diagram, the trend is growing for both AS and
DP.

By inspecting the proportion of AS and DP with respect to the dif-
ferent project domains (Figure 4.4 and 4.5), it becomes clear that the
projects that present high disparity in the proportion of AS and DP
belong to the Database domain. In particular, the number of depen-
dencies affected by AS at the class level is 10900, while by DP it is
15712; 3927 and 8570 at package level. Through Figure 4.6 and 4.7 we
can understand which specific DP is most prevalent, along with the
highest concentration of AS and in which domain.

In general Template Method, Singleton and Factory Method are
the most frequent DP, at both class and package level and in each
domain.

However, AS are more concentrated in selected domains, such as
Parser and Testing at class level, Graphic and Parser at package level.
By merging together the two indicators, DP presence and AS con-
centration, the following patterns are the most frequent, with the
highest concentration of smells: Template Method, Singleton and Fac-
tory Method in Parser and Testing domains at class level; Template
Method, Singleton and Factory Method in Database and IDE domains
at package level.

Architectural smells statistics Concerning RQ1.1, and in particular
the frequency AS, Table 4.5 reports the frequency of AS in the 60 an-
alyzed projects, considering their type (CD, HL, UD) and granularity
level (class and package). In particular, we indicate the total, mini-
mum, maximum and mean number of the instances of each specific
type. The most frequent smell at both class and package level is CD.
It is also the only smell which is present in all projects: in fact, the
minimum value of detected CD is 4, meaning that there is at least
one project with at least 4 cycles. At the package level, HL is less
diffused than CD.

Concerning RQ1.2, we now report the diffuseness of AS in relation
to the application domains of the analyzed projects.

Figure 4.8 and 4.9 show the frequency of class and package AS over
the 7 different domains.

The most diffused smell, for both the granularity levels, is Cyclic
Dependency (CD).

At the class level, its presence is almost equal in all the domains, with
mean = 7422.

4.2 a study on correlation between as and dp 55

Figure 4.2: Frequency of class level AS and DP in 60 Java projects

Figure 4.3: Frequency of package level AS and DP in 60 Java projects

The most affected domain is Database, with 10149 CD instances.
However, the number of CD instances varies depending on the dif-
ferent domains at package level. Graphic, Middleware and Parser do-
mains have the lowest number of CD instances, while the Testing
and Tool domains have a medium number of the smell and, finally,

4.2 a study on correlation between as and dp 56

Figure 4.4: Frequency of AS and DP in 7 domains - Class level

Figure 4.5: Frequency of AS and DP in 7 domains - Package level

Database and IDE are strongly affected by CD, with more than 1500
smells.

Concerning Hub-Like Dependency (HL), the most affected domain
at the class level is IDE, while at the package level it is Middleware.
For the Unstable Dependency (UD) smell, Database is the most af-
fected domain, with 1246 instances.

4.2 a study on correlation between as and dp 57

Table 4.5: Statistics for architectural smells in the dependency dataset

AS Tot. Min Max Mean Median St. dev.

class dependencies

CD 51959 (94%) 4 5504 865.983 281.5 1213.474

HL 8301 (15%) 0 1477 138.35 63.5 240.8923

package dependencies

CD 8445 (84%) 0 1627 140.750 63 266.9363

HL 2780 (27%) 0 259 46.333 29 55.8397

UD 4818 (48%) 0 907 80.300 36 152.6016

Figure 4.6: Frequency of AS and DP in 7 domains - Class level

Design pattern statistics Still regarding RQ1.1, Tables 4.6 present
the collected statistics of the detected DP, respectively at class and
package level, for each type. The most diffused DP are Template
Method (18518 class dependencies, 7915 package dependencies), Sin-
gleton (13915 class dependencies, 7393 package dependencies) and
Factory Method (11768 class dependencies, 8035 package dependen-
cies). Adapter pattern was the only one to remain undetected during
the analysis.

In general, the most frequently detected patterns belong to the
creational category, while the structural category contains the low-
est number of patterns.

With regard to the applications domains, we did not find a specific
prevailing DP.

4.2 a study on correlation between as and dp 58

Table 4.6: Dependency dataset - design pattern statistics

Dependencies (class) # Dependencies (package)

DP Tot. % Min Max Mean Tot. % Min Max Mean

Factory
Method

11768 27% 0 2447 196.133 2245 37% 0 1741 133.917

Prototype 157 0.3% 0 126 2.617 25 0.40% 0 124 2.35

Singleton 13915 32% 0 2992 231.917 2372 39% 0 1394 123.217

Adapter 0 0% 0 0 0 0 0% 0 0 0

Command 20 0.04% 0 7 0.333 8 0.13% 0 3 0.133

Composite 94 0.2% 0 14 1.567 11 0.18% 0 6 0.45

Decorator 867 %2% 0 174 14.45 140 2% 0 74 6.683

Observer 133 0.3% 0 34 2.217 45 0.75% 0 10 0.917

State 3458 7% 0 551 57.633 1144 19% 0 438 37.85

Strategy 8 0.01% 0 4 0.133 3 0.05% 0 2 0.05

Bridge 421 0.9% 0 105 7.017 200 3% 0 61 4.517

Template
Method

18518 42% 0 4449 308.633 2355 39% 0 1807 131.917

Visitor 319 0.7% 0 135 5.317 22 0.36% 0 68 2.017

Proxy 162 0.3% 0 22 2.7 32 0.53% 0 7 0.7
Chain of
Responsibility

623 1% 0 356 10.383 33 0.55% 0 113 2.417

4.2 a study on correlation between as and dp 59

Figure 4.7: Frequency of AS and DP in 7 domains - Package level

results of the correlation analysis To answer RQ2, we
tested the correlation between AS and DP through the computation
of Spearman rho and Kendall tau correlation coefficents.

Before running the test, we checked the normality of our variables
with the Anderson-Darling test [172]. The null hypothesis is that the
data are normally distributed; the alternative hypothesis is that the
data are non-normal. We set the significance level at 0.05. We ran
the test and rejected the null hypothesis for all the considered AS
and DP variables, at both class and package level. We also generated
Q−Q plots to confirm the results of the test, and they gave the same
result. The scripts and the results of the normality tests can be found
in the replication package.

The coefficent values are in the range [−0.058, 0.134] for class de-
pendencies, and [−0.013, 0.117] for package dependencies.

As for the Spearman’s analysis, the Kendall correlation was tested
between all the possible pairs of AS and DP. The coefficent values are
in the range [−0.009, 0.019] for class dependencies, and [0, 0.040] for
package dependencies.

Since all the coefficient values are very close to 0 (no correlation),
we can conclude that this analysis did not discover an interesting
relationship among AS and DP.

For this reason, we do not report the result tables, but they can be
consulted in the replication package.

the results of mining the association rules In order to
answer RQ2 and RQ3, we now present the results obtained from the
association rule analysis, performed on both class and package depen-
dency datasets. For each rule, we report their antecedent (Left Hand

4.2 a study on correlation between as and dp 60

Figure 4.8: Frequency of AS in 7 domains - Class level

Table 4.7: Association rules at class level

LHS RHS Support Confidence Lift Conviction

{HL, S} → {CD} 0.001 0.809 3.520 4.034

{CD, FM} → {TM} 0.004 0.628 7.676 2.473

{HL} → {CD} 0.024 0.661 2.879 2.276

{HL, TM} → {CD} 0.002 0.628 2.732 2.070

Side, LHS), their consequent (Right Hand Side, RHS) and commonly
used metrics that evaluate its quality: support, confidence [4], convic-
tion and lift [42].

We collected the rules with minimum support of 0.001 and confi-
dence greater than 0.6.

Some of the rules contain only AS. This happens because we ran
the rules extraction on all the dependency datasets, and some depen-
dencies are affected at the same time by different smell types, but by
no DP. For the sake of completeness, we leave such rules in our tables,
even if we do not discuss them.

Class rules Table 4.7 reports 4 rules extracted from the (class) de-
pendency dataset. Their support is in the range [0.001, 0.024] and the
conviction in the range [2.070, 4.034]. The involved AS are Hub-Like
Dependency (HL) and Cyclic Dependency (CD), while among the DP
there are Singleton (S), Factory Method (FM) and Template Method
(TM). CD smell is the consequence of all the rules, apart from one
where a TM pattern is present. This set is not surprising, since these
are the most frequent types of AS and DP.

4.2 a study on correlation between as and dp 61

Figure 4.9: Frequency of AS in 7 domains - Package level

We conducted a manual validation of the 4 rules, by inspecting the
code of the classes that match the rules. This was helpful for provid-
ing an interpretation of the discovered rules and to answer RQ2 and
RQ3. For each rule we provide 1) its description, to understand how
to read the rule, 2) a matching example, found in the analysed projects,
and 3) interpretation.

We need to emphasize that the reported rules refer only to the sub-
ject dataset, and should not be freely extrapolated to other data. Ad-
ditionally, they may not be applicable to all analyzed dependencies;
in Table 4.7 column “Support” indicates the prevalence of the rule in
the dataset and “Confidence” shows how frequently the consequent
is collocated with the antecedent.

However, thanks to the association rule mining, we found that in
some cases the presence of an AS is linked to the presence of specific
DP. The aim of this interpretation is to provide practitioners and re-
searchers with useful hints on what to do when specific combinations
of AS and/or DP appear. For instance, we found some examples of
false positive AS and cases of the potentially unsafe use of DP, e.g.,
when they are likely to introduce a new AS into the system.

In the following, we present an analysis of each class rule.

(R1) {HL, Singleton} → {CD}

Description: if a dependency is affected by Hub-Like Dependency
and Singleton, then this dependency also belongs to a cycle.

Example: from the manual validation of the projects from which
such a rule was extracted, we identified two scenarios:

4.2 a study on correlation between as and dp 62

Figure 4.10: Frequency of DP in 7 domains - Class level

1. One of the two classes involved in the dependency is both an
HL and a Singleton class.

2. One of the two classes involved in the dependency is a HL,
while the other class is a Singleton.

This happens because our dataset considers dependencies at the ex-
pense of classes/packages, without the information about which of
them is affected by a smell or a DP. With regard to case 1, we re-
port the example of the Findbugs project. One of its packages named
edu.umd.cs.findbugs.gui2, which groups the classes employed to
build a graphical interface, contains a class named “MainFrame” which
is a large HL (FanIn=96, FanOut=111) and a Singleton. This class has
many Cyclic Dependencies with other classes from the GUI. The rea-
son is that when the GUI frame creates a new listener (i.e., a new
instance of a GUI class), it passes itself in the constructor to enable
callbacks [248]. With regard to case 2, we report an example from the
project antlr-3.4. org.antlr.tool.Grammar, which is an HL and de-
pends on the Singleton class org.antlr.misc.IntervalSet. The de-
pendencies between them form a cycle.

Interpretation: classes like “MainFrame” could be examples of false
positives of the AS instances, where developers introduce Cyclic De-
pendencies in the project in order to implement a callback. Alterna-
tively, this could be a case of improper implementation of the call-
back, which introduces a unique class which manages both the cre-
ation of the listeners and their callbacks. The fact that the class owns
too much responsibility explains the presence of the Hub-Like De-
pendency smell, at the same time the presence of many Cyclic Depen-
dency smells is caused by the callbacks.

4.2 a study on correlation between as and dp 63

Figure 4.11: Frequency of DP in 7 domains - Package level

On the other hand, classes such as “Grammar” may be a symptom
of the overlapping of a manager/core class (the hub) with the use
of the Singleton class: it is neither a false positive, nor a bad imple-
mentation of the pattern; instead, it could be a particular type of Hub-
Like Dependency. The fact that such dependencies are also implied
in CD smells strengthens the idea that the hub is a collector of depen-
dencies and centralizes the activity of the system. We found many
classes matching this rule, hence this information could be helpful
for refining the definition of AS and proposing a new classification
for them.

(R2) {HL, Template Method} → {CD}

Description: if a dependency is affected by Hub-Like Dependency
and Template Method, then such a dependency also belongs to a
cycle.

Example: in project Emma, a class Attribute_info in com.vladiu

m.jcd.cls.attribute is both an HL and an AbstractClass of Tem-
plateMethod. SourceFileAttribute_info extends Attribute_info,
but the latter in some cases returns instances of the former (Broken
Hierarchy [231]). SourceFileAttribute_info overrides the template
method.

Interpretation: this is a false positive of Hub-Like Dependency, be-
cause dependencies toward the abstract class of Template Method af-
fected by HL are actually resolved to its concrete classes. This rule is
useful for refining the detection of the Hub-Like Dependency smell.

4.2 a study on correlation between as and dp 64

(R3) {CD, Factory Method} → {Template Method}

Description: if a dependency is affected by Cyclic Dependency and
Factory Method, then such a dependency also belongs to the Tem-
plate Method DP.

Example: In the Derby project, belonging to the Database domain,
many classes are creators, i.e., implement the Factory Method pattern.
As an example, let us consider the class Connection, which is a core el-
ement in the management of a new database connection. This class is
responsible for creating the class Agent and, at the same time, it forms
a cycle with it. Moreover, it also implements the Template Method pat-
tern, since other classes (e.g., NetConnection) inherit from this class
and extend its template methods.

Interpretation: From the manual validation of the project matching
the rule, it became apparent that classes involved in Factory Method
are likely to be part of the same cycle. This is justified by the fact
that newly created classes often need to use the creator class. More-
over, Factory Method classes tend to also implement the Template
Method pattern. However, we did not find improper use of the two
patterns. Hence, developers should only pay attention when using
Factory Methods, because their use may lead to the introduction of
new cycles.

(R4) {HL} → {CD}

We do not provide an in-depth explanation of this rule, because
it does not include a DP in its body, and because the relationship
it describes has already been investigated for rule (R1) and (R2). In
brief, we suggest that the relationship between HL and CD is justified
by the fact that classes affected by HL are by definition involved in
many dependencies, some of which can also be cyclic ones. Since the
role of hub classes is usually central in the system, it is reasonable
that other classes referred by hubs call back the hubs themselves. We
find the discussion of the rules with DP more interesting, since when
DP are combined with the presence of these two smells it gives us
additional actionable information (e.g., about false positives).

Package rules Figure 4.12 shows how the conviction and support
of the rules change depending on the order of the rules. We define the
order of a rule as the number of distinct AS and DP appearing in the
body of the rule [254].

As we can see from the plot, the rules with the highest conviction
are the ones where order is equal to 2 and 3, hence we report all the
rules with the order up to 3. The results of the package rule extraction
are reported in Table 4.8. The Table shows the first 50 rules, ordered
by conviction, with order 6 3. The total number of rules is 188; they

4.2 a study on correlation between as and dp 65

Figure 4.12: The order of package association rules

are documented in the replication package. Support is in the range
[0.001, 0.233] and confidence in the range [0.610, 0.954].

We manually validated the rule with the highest conviction value,
which puts the Visitor DP and the Cyclic Dependency AS into a rela-
tionship.

(R5) {V} → {CD}

Description: if a dependency involves Visitor, then such a depen-
dency is also involved in a Cyclic Dependency.

Example: The packages of the projects matching this rule appear
to break the Visitor pattern in different packages, causing dependen-
cies to spread from one package to the other, resulting in Cyclic De-
pendencies. An example is in the Eclipse project, where the pack-
ages org.eclipse.core.internal.resources and org.eclipse.cor

e.resources contain the implementation of the pattern and are in-
volved in a Cyclic Dependency. This is due to the anonymous class
ResourceTree$1 in package org.eclipse.core.internal.resources which
implements the Visitor interface named IResourceVisitor, located
in package org.eclipse.core.resources. The circular dependency
appears because the package org.eclipse.core.resources contains
some classes (example: ResourcesPlugin and WorkspaceJob) which
depend on classes belonging to a different package named org.ecli

pse.core.internal.resources.
Interpretation: When the concrete visitors of the Visitor pattern are

located in a different package than the Visitor interface, it is more
likely that a Cyclic Dependency will occur between the two pack-
ages. This is due to the split of the elements of the DP into different
packages. Developers should pay attention when they implement this
pattern, in order to avoid the introduction of Cyclic Dependencies.

4.2 a study on correlation between as and dp 66

Table 4.8: Association rules at package level (top 50)

LHS RHS Support Confidence Lift Conviction

{V} → {CD} 0.001 0.955 1.962 11.299

{P} → {CD} 0.001 0.840 1.727 3.210

{COR} → {CD} 0.001 0.636 1.308 1.412

{O} → {CD} 0.002 0.756 1.553 2.101

{D} → {CD} 0.006 0.729 1.498 1.892

{B} → {CD} 0.008 0.710 1.460 1.771

{ST} → {CD} 0.044 0.667 1.371 1.542

{S} → {CD} 0.086 0.630 1.296 1.389

{TM} → {CD} 0.083 0.614 1.262 1.331

{HL} → {CD} 0.112 0.700 1.438 1.710

{UD} → {CD} 0.233 0.840 1.726 3.205

{O,ST} → {CD} 0.001 0.800 1.645 2.568

{D,ST} → {CD} 0.002 0.655 1.346 1.487

{S,D} → {FM} 0.001 0.769 5.949 3.773

{FM,D} → {CD} 0.002 0.782 1.607 2.354

{S,D} → {CD} 0.001 0.846 1.740 3.338

{D,TM} → {CD} 0.002 0.870 1.788 3.938

{HL,D} → {CD} 0.002 0.846 1.740 3.338

{UD,D} → {CD} 0.002 0.919 1.889 6.334

{ST,B} → {FM} 0.003 0.636 4.921 2.394

{ST,B} → {TM} 0.003 0.610 4.500 2.219

{ST,B} → {CD} 0.003 0.753 1.549 2.081

{S,B} → {FM} 0.002 0.680 5.259 2.721

{FM,B} → {TM} 0.004 0.673 4.960 2.641

{B,TM} → {FM} 0.004 0.679 5.250 2.712

{FM,B} → {CD} 0.005 0.727 1.495 1.883

{S,B} → {TM} 0.002 0.700 5.161 2.881

{S,B} → {CD} 0.002 0.840 1.727 3.210

{B,TM} → {CD} 0.004 0.697 1.433 1.696

{HL,B} → {CD} 0.002 0.857 1.762 3.595

{UD,B} → {CD} 0.004 0.934 1.921 7.807

{FM,ST} → {CD} 0.018 0.661 1.359 1.514

{S,ST} → {CD} 0.011 0.833 1.712 3.069

{ST,TM} → {CD} 0.013 0.825 1.696 2.932

{HL,ST} → {CD} 0.016 0.808 1.662 2.680

Continued on next page

4.2 a study on correlation between as and dp 67

Table 4.8 – Continued from previous page

LHS RHS Support Confidence Lift Conviction

{UD,ST} → {CD} 0.020 0.895 1.839 4.879

{FM,S} → {CD} 0.020 0.742 1.525 1.990

{FM,TM} → {CD} 0.028 0.676 1.389 1.584

{HL,FM} → {CD} 0.020 0.818 1.681 2.815

{UD,FM} → {CD} 0.035 0.904 1.858 5.333

{S,TM} → {CD} 0.027 0.712 1.464 1.783

{HL,S} → {CD} 0.020 0.823 1.692 2.899

{UD,S} → {CD} 0.042 0.922 1.896 6.619

{HL,TM} → {CD} 0.022 0.783 1.610 2.369

{UD,TM} → {CD} 0.039 0.879 1.808 4.252

{HL,UD} → {CD} 0.067 0.910 1.870 5.694

4.2.3 Discussion

In this section, we provide the answers to each RQ and discuss the
obtained results.

RQ1: what is the distribution and prevalence of AS and DP in Java
projects?

AS affect 24% of the class dependencies dataset and 57% of package
dependencies. The most diffused type of AS is Cyclic Dependency,
which affects 29.75% of the analyzed dependencies. Megamek is the
project with the highest number of CDs, with 5504 occurrences. With
regard to the Hub-Like Dependency smell, the most affected project
is DrJava.

DP cover 19% of the dataset class dependencies and 34% of package
dependencies: the most frequent DP is Template Method with 18518
instances at the class level (42%), and 2355 instances at the package
level (39%). Hibernate is the project with the highest number of DP
instances, in particular Template Method (4449 instances), Singleton
(2992 instances), Factory Method (2447 instances) at class level; and
Template Method (677 instances, %15), Singleton (680 instances, %15),
Factory Method (609 instances, 13%) at package level.

We also counted the architecture dependencies which are involved
at the same time in AS and DP (the number of examples where AS
and DP are collocated). With respect to the total number of class de-
pendencies which make up our dataset, this intersection represents
5%, and at package level it reaches 23%. This means that, at least at
the package level, the collocation concerns almost 1/4 of the depen-
dencies, which also makes it pertinent for qualitative investigation.

Within this question we also addressed the following topics:

4.2 a study on correlation between as and dp 68

RQ1.1: Is there a difference in the distribution of AS and DP
with respect to the considered projects?

In general, both AS and DP grow in number as projects grow in
size, where by size we mean the number of dependencies (Fig-
ures 4.2 and 4.3). Given that, we notice that the trend oscillates
for both AS and DP. For instance, in correspondence with the in-
terval of projects [jspwiki,hslqdb] (see the x-axis in Figure 4.2,
on the right) the AS show a clear increase at the expense of the
number of DP, while in slightly larger projects we observe a
decrease of AS and an increase of DP. This effect occurs along
all the graphics and could indicate that projects with a large
number of DP have fewer AS.

However, this aspect goes over the aim of our research questions
and should be investigated further in order to reach a clearer
conclusion, for instance by increasing the number of analysed
projects and by testing the correlation between the number of
AS and DP of the projects.

RQ1.2: is there a difference in the distribution of AS and DP
with respect to various application domains?

At the class level, the most AS-affected application domains are
Database and IDE, specifically by Cyclic Dependency (which is
also the most frequent smell in general) and Hub-Like Depen-
dency. The same happens at the package level, where Database
and IDE are strongly affected by Cyclic Dependency (Database
from Unstable Dependency too), and Middleware domain is the
most affected by Hub-Like Dependency.

In general, without considering the granularity, Graphics is the
domain with the highest number of AS (in particular Cyclic
Dependency), while the majority of the DP are present in the
Database application domain. Hence, from the analysis con-
ducted on our dataset, we can conclude that in general AS
and Dps are equally frequent in the different domains, with
a unique exception, the Database domain, where the number of
DP far exceeds the number of AS.

RQ2: Which design pattern-architectural smell pairs display sig-
nificant relationships?

As reported in RQ1, we found, especially at the package level, a
share of dependencies where AS and DP are collocated. Hence, we
analysed whether there is a relationship between specific types of
AS and DP. In terms of a correlation coefficent, our analysis did
not identify any significant relationships. The values of Spearman
and Kendall coefficients are close to 0, indicating no correlation for
any of the analyzed pairs of AS and DP. However, the results from
mining the association rules are more interesting. In particular, we

4.2 a study on correlation between as and dp 69

extracted 4 rules regarding class dependencies that relate Hub-Like
Dependency and Cyclic Dependency smells with Template Method,
Factory Method and Singleton patterns.

We also identified some examples of false positive AS by manually
validating these rules. We found that code suspected of the Cyclic
Dependencies AS can be intentionally implemented inside a callback,
which is similar to the Observer pattern [248]. With regard to the
Hub-Like Dependency, we realized that when it is combined with
Template Method, the smell is actually a false positive. This finding
is particularly useful for refining the detection methods applicable to
AS.

Moreover, we were able to extract 188 rules at the package level. We
tried to provide an interpretation of the resulting rules by manually
reviewing the code of the analyzed projects. We did this for all the
rules at the class level and for one rule at the package level. By manual
validation we identified cases where a DP led to the presence of a
specific smell. For instance, from the analysis of a package rule we
discovered that the implementation of Visitor pattern that is spread across
multiple packages is more likely to introduce Cyclic Dependencies among
the packages. Some patterns have also been found to be defect-prone
in other studies: Observer and Singleton [250], Composite, Prototype,
and Adapter-Command [25]. In particular Sousa et al. [226] found the
Adapter-Command pattern to be highly correlated with code smells,
which are usually indicated as the counterpart of AS at code level, i.e.,
symptoms of poor software quality. Although the results reported in
the literature are not fully consistent, they indicate that some patterns
appear more troublesome than others. Our results seem to partially
confirm these findings and can be useful to developers, who should
pay attention when implementing DP that could be associated to AS.

RQ3: Can the presence of architectural smells imply the absence
of design patterns? or vice-versa Can the presence of design patterns
imply the absence of architectural smells?

We counted the number of dependencies where only AS are present,
without DP: at the class level they comprise 19% of the dataset, while
at the package level 34%. On the other hand, dependencies involved
only in DP are 14% at class level and 12% at package level. Given that
the AS and DP collocation is 5% (class) and 23% (package), we could
say that, on the basis of the numbers, there are more cases where the
two concepts are mutually exclusive, i.e., more examples where the
presence of one of the two excludes the other.

4.2.4 Threats to Validity

In this section, we discuss threats to the validity of our study, fol-
lowing the structure suggested by Yin [264].

4.2 a study on correlation between as and dp 70

Threats to construct validity, which concern the identification of
the measures adopted, can occur due to errors in the data extraction
and preparation phases. Moreover, we build and rely on a dataset
based on object-oriented dependencies: there could be errors in the
construction of the dataset, and we could have extracted biased re-
sults affected by the dependency representation. However, we relied
on well known R libraries (e.g., dyprl) to manipulate our data and we
manually checked our dataset and published both datasets and anal-
ysis results in the replication package4. Finally, some DP are related
to methods whose granularity level was not considered in this study,
and we aggregated class data to obtain a representation of DP at the
package level. Hence, the analysis of the package-level DP and AS
could have led to erroneous conclusions. On the other hand, we care-
fully explained our aggregation method and we provide examples of
manual validation also for results at the package level.

Threats to internal validity are factors that could have affected the
results obtained. In our case, they may be due to the choice of the
statistical methods used for the analysis of the dependency dataset
and their implementation in the used tools (R libraries and KNIME
platform). We mitigate this threat by relying on multiple sources, such
as similar empirical studies [78] conducted on code smells and DP
correlations [254].

Threats to external validity refer to the generalization of the results
beyond the original setting. They may arise from the nature of the
projects used in our study. We analyzed only projects written in Java
and that are publicly available. However, we partially mitigate such
issues by analyzing a large number of projects (60). Another threat is
related to the definition of software domains. Even though we relied
on the categorization provided by the Qualitas Corpus [238], we de-
cided to merge some of them in order create a more balanced dataset,
which could have influenced our results.

Threats to reliability concern the correctness of the conclusions
reached in our study. We rely on two tools (Arcan and Pattern4) to
extract dependency information and detect AS and DP in the ana-
lyzed projects. Both tools could be subject to systematic bias in the
detection. Such threats are partially mitigated by the provided repli-
cation package and the fact that both tools are available, validated
and can be applied to any compiled Java project. Validation of Ar-
can results has been performed on ten open source projects [19] and
on two industrial projects, with a high precision value of 100% in the
results and 63% of recall [21]. Moreover, the results of Arcan were val-
idated using the feedback provided by practitioners working on four
industrial projects [155]. With regard to Pattern4, the tool has been
validated on three open source projects [244]. The precision of all the
examined patterns for all projects is 100%. Recall is 100% except for

4 https://drive.google.com/drive/folders/1ONSTAwyvK9d7gGp70kgLXfDZvkU80xz1

https://drive.google.com/drive/folders/1ONSTAwyvK9d7gGp70kgLXfDZvkU80xz1

4.2 a study on correlation between as and dp 71

2 patterns: Factory Method (%66.7, %25 and %100, for the 3 projects)
and State (%95.6, %91.6 and %100).

The differences in the recall between Arcan and Pattern4 may affect
the conclusions reported in the answer to RQ1, where we compared
the distribution of AS and DP in the dataset. However, to address
the tool bias, we manually cross-validated the results, which also re-
vealed other interesting insights that have not been found by the static
analysis.

We need to acknowledge that, despite our efforts, our study does
not provide definitive answers, especially to RQ2 and RQ3. The qual-
itative analysis of association rules (RQ2) was limited to a few exam-
ples, while the answer to RQ3 relies only on quantitative data. The
latter threat is mitigated once again by the large number of analysed
projects. Concerning our qualitative analysis, we reported the exact
names of the classes/packages that we manually analysed, and since
we considered only public projects, our statements can be easily veri-
fied.

4.2.5 Final remarks

We investigated whether the presence of AS in a project influences
or is influenced by the presence of DP, under the hypothesis that the lat-
ter can sometimes have a negative impact on software quality [226]
[120] [75] [258]. We studied the presence of AS and DP in 60 open
source Java projects and explored the possible relationships that may
occur among specific types of AS and DP. We built a dataset with the
results obtained from the execution of two static analysis tools, Arcan
(for AS detection) and Pattern4 (for DP identification). The dataset is
dependency oriented, i.e., we associated information on AS and DP to
object-oriented dependencies, since both AS and DP are commonly re-
curring structures of the software architecture. We collected statistical
information about the frequency of AS and DP and their collocation:
all the analyses were conducted separately at two granularity levels,
class and package, and we also studied the results in relation to the
application domains of the analyzed projects. Then, we performed a
correlation analysis with two different coefficients, Spearman rho and
Kendall tau, in order to detect possible statistical correlations among
AS and DP. Finally, we mined our dependency dataset to extract asso-
ciation rules and, consequently, possible associations among AS and
DP.

Our results show that in our dataset there are more examples of
dependencies which are involved only in AS and only in DP, i.e., our
data seems to confirm that they are mostly mutually exclusive con-
cepts. However, from the qualitative analysis we performed with the
association rules on the collocation examples, we found hints about
what happens when AS and DP overlap.

4.2 a study on correlation between as and dp 72

There are indeed some connections between the co-occurrence of
specific types of AS and DP. Some of them are effects of AS false
positives instances, for instance the Template Method can be a sig-
nal of a Hub Like false positive. However, some relationships occur
because specific implementations of DP can imply the introduction
of AS, as happens for the Visitor pattern, which can cause the intro-
duction of Cyclic Dependencies. Both results are useful in different
aspects: by studying design constructs such as DP we can gain in-
teresting ideas on how to enhance AS detection; being aware of the
fact that the implementation of a DP can lead to effects contrary to
intentions (i.e., the introduction of bad design decision), knowledge
of AS-DP relationships helps developers to focus their attention on
specific fragments and structures. Moreover, this indicates the need
to develop new tools able to spot such smells, starting from the pres-
ence of specific DP.

4.3 as evolution and correlation : an empirical study 73

4.3 architectural smells evolution and correlation :
an empirical study

This section describes an empirical study conducted on the evolu-
tion and correlation of six architectural smells5. The aim was to gather
an insight about hidden relationships among different types of AS
and provide useful takeaways concerning AS nature and causes. The
study is guided by three Research Questions related to three main
subjects: AS frequency, AS evolution, and AS relationships. We ex-
ploit our Arcan tool (see Section 2) for the detection of the AS.

We first analyzed the frequency of each type of AS in each an-
alyzed project, with the aim to identify the smells which occur in
larger number than others. Then we studied the evolution of the de-
tected AS. In particular, we checked whether a trend is present or not
in the data, to understand if smells (also depending on their type)
tend to increase/decrease in number during the evolution of the soft-
ware projects. Finally, we studied the relationships which may occur
between different types of AS. This kind of study has been widely
explored for code smells [22, 254, 261], but few works, according to
our knowledge, have been done exclusively on AS. Knowing that two
kinds of smells tend to occur together tells us more information about
the nature of such smells and can be a hint for the definition of new
categories of AS, being useful for researchers and developers of detec-
tion tools. The correlation of smells could be also the signal that there
are common, recurring design problems behind different types of
smells. Finally, the collocation could be a hint of the presence of false
positive smells: in certain cases the common cause behind the collo-
cation is the intention of the developer of building the component in
a specific way, instead of being a design problem. We discuss some
examples of false positives in Section 3, starting from the feedback
we received in past works from industrial developers [155][79][217].
With this perspective, studies on correlation and collocation can help
in a difficult task: to distinguish real problems from intended solu-
tions. This becomes especially crucial for AS detection tools, which
often indicate the presence of AS which are not considered problems
by the developers (see Section 3).

We exploited well know statistical techniques to conduct the study,
such as correlation analysis, Principal Component Analysis (PCA)
and trend analysis. We ran Arcan on 10 Open Source Java projects,
with about 10 versions each, for a total of 98 projects. In brief, the
main contributions of this work are:

• Evolution analysis of architectural smells;

• Correlation and collocation analysis of architectural smells.

5 A publication has been extracted from this study, submitted to the Journal of Systems
and Software

4.3 as evolution and correlation : an empirical study 74

Researchers can benefit from our work since we provide empirical
evidence of AS correlation, collocation and frequency, on the top of
which future works of the field can refer to. Developers on the other
hand can increase their knowledge about AS, e.g, learn which are
the Open-Source projects that they exploit and are most affected by
smells. We highlight such hints in the discussion. Additionally, we
supply in the replication package6 our dataset and the scripts used to
conduct our analysis, which can be exploited for other future works.

4.3.1 Architectural Smells Evolution and Correlations: Study Design

As outlined above, we aim to investigate the possible relationships
among different types of AS, over the projects’ development history,
and analyze also the evolution of the AS in order to answer the fol-
lowing Research Questions:

• RQ1: which are the most frequent types architectural smells? We re-
port the number of AS detected in our dataset and identify the
most frequent types; moreover, we highlight the most affected
projects.

• RQ2: do architectural smells follow a particular trend during the de-
velopment history? we study the evolution of smells over the
projects’ history, to understand whether there is a specific trend
in the analysed data. We compare smell evolution with the
project evolution, in terms of number of dependencies, i.e., the
references among the different classes or packages, and the total
number of Lines of Code.

• RQ3: is there a relationship among the different types of AS? We aim
to discover which kinds of AS are correlated and collocated.
For correlated smells, we mean two types of AS which show
some kind of statistical relationship in the dataset. For collo-
cated smells, we mean two or more types of smells which affect
the same components [261].

motivation : The answers to RQ1 and RQ2 can be useful for de-
velopers to focus on specific types of smells despite others: they must
pay particular attention to the ones which show a positive trend be-
cause it means that these smells tend to increase during project de-
velopment; they also should take care of the ones which are most
frequent, because such smells may appear in their systems as well.

The motivations behind RQ3 are multiple. First, the discovery of AS
correlations and collocations can be useful to researchers and tools’
developers to better understand the AS nature. Moreover, the recur-

6 https://drive.google.com/drive/folders/1z0NEcy_e0xbNi6DVD9L2seW1Xp49scnA?

usp=sharing

https://drive.google.com/drive/folders/1z0NEcy_e0xbNi6DVD9L2seW1Xp49scnA?usp=sharing
https://drive.google.com/drive/folders/1z0NEcy_e0xbNi6DVD9L2seW1Xp49scnA?usp=sharing

4.3 as evolution and correlation : an empirical study 75

rent relationship among different types of AS can be the manifesta-
tion of deeper, hidden and recurrent design problems: the possible
root causes of AS, which are more difficult to identify. The colloca-
tion of AS can also help developers and researchers in finding false
positive instances of AS. Consider for instance the evidence of collo-
cation among Hub-Like Dependency, God Component and Feature
Concentration at package level. We found it thanks to two associa-
tion rules, extracted from our dataset: {GC, HL}→ {FC} and {GC, FC}
→ {HL}. Let’s analyse one example of package which matches these
rules: com.google.common.collect, a Guava package. In this case, the
package:

• has 18 182 Lines of Code (LOC)→ GC

• has balanced ingoing (Fan In) and outgoing (Fan Out) depen-
dencies→ HL

• addresses 22 features→ FC

In practice, it means that this package is affected at the same time
by all the three smells, as depicted in Figure 4.13: the large node in
the middle represents the package, surrounded by other packages.
The different textures inside the node present the multiple features
addressed by the smells. These are the results from the analysis of Ar-
can; we then looked for the Guava code on Github. By checking the
project documentation, it appears that this package contains “generic
collection interfaces and implementations, and other utilities for working
with collections” [94]. This is consistent with what we understand from
the collocation of the smells: this package is very large, with a lot of
incoming and outgoing dependencies, and addresses more concerns
than every other package in Guava. The single smells are problems
indeed, but together form a pattern which matches with the actual
purpose of the package. A package full of utilities is intended to be
used by many parts of the project, and by design implements more
than one concern. We are in front of an example of false positive AS,
or better, the single types of smell actually affect the package, but
their collocation give us additional information about how to contex-
tualize the package, i.e., hints about the possibility of being a utility
package. This is one aspect that can be investigated thanks to the
collocation analysis.

analyzed projects and collected data We analyzed 10

projects, belonging to 3 different organizations (Apache, Eclipse and
Google) and of different sizes. For each project, we took in considera-
tion about 10 versions (we will use the term “version” to generically
refer to the different releases), for a total of 98 projects. The time span
for the analyzed versions ranges from 1 year to 5 years, and is com-
parable to other empirical studies on software evolution (e.g., 6 years,

4.3 as evolution and correlation : an empirical study 76

God
Component:
18182 LOC

Feature
Concentration:

22 Features

Hub Like Dependency:
16 Fan In, 16 Fan Out

Figure 4.13: Example of collocation of three architectural smells - Guava

as reported in [193] and [181]). On average, the total number of Lines
of Code (LOC) of the analyzed projects varies from 23 732 to 397 491.
Table 4.9 reports some information about the projects: their name, the
organization they belong to, the number of versions analysed in this
study, the number of years occurred between the first and the last
analysed version, the number of lines of code (LOC) both for the first
and last analyzed version, and finally the number of classes (NOC)
and packages (NOP) for the first and last analyzed version. We choose
this set of projects because they are Open Source and publicly avail-
able on Github [93]. Moreover, they belong to different organisations
and different application domains: in this way we ensure diversity
in how architectures are designed and we collect data from varied
sources. They have also been used in other empirical studies on code
smells [97, 188, 261, 268].

Table 4.9: Detail of the analysed projects

Name Org. # Versions
Time span

(years)
LOC

(first)
LOC
(last)

NOC
(first)

NOC
(last)

NOP
(first)

NOP
(last)

Jmeter-core Apache 10 4 40 630 49 846 1575 1673 169 185

Mahout-mr Apache 10 2 63 310 61 301 971 953 104 103

Maven Apache 9 5 78 496 83 886 382 393 64 64

Struts Apache 10 3 151 703 159 008 1679 1698 79 79

Collections-core Eclipse 9 2 131 079 134 578 343 344 111 111

Jgit-core Eclipse 10 1 105 009 108 432 1394 1404 56 57

Gson Google 10 4 23 732 25 161 690 752 25 27

Guava Google 10 2 339 228 397 491 762 773 23 23

Tink Google 10 2 33 074 44 681 423 611 25 27

Truth-core Google 10 2 28 740 33 421 115 121 4 4

4.3 as evolution and correlation : an empirical study 77

For each project, we ran Arcan and collected data about the number
of the six AS (CD, UD, HL, FC, SF, GC) in relation to the projects’
architectural components (class and packages).

dataset Starting from the raw results of Arcan, we build a dataset
which we use for the analysis. Differently from the dependency dataset
introduced in the previous work (see Section 4.2), in this study each
observation corresponds to a single architectural component (class
or package). The reason is that, differently from design patterns, the
information about the type of dependency and its direction are not
essential for the analysis of AS. Moreover, extracting from Arcan only
the component information requires less computational resources,
and given the quantity of analysed data (10 versions of 10 projects,
for a total of 87429 data points), this choice allowed us to fasten the
study process.

The set of features associated to a single observation is:

• project: the name of the project the architectural component be-
longs to;

• versionIndex: an index to keep track of the analysed version the
observation refers to;

• name: the name of the architectural component;

• componentType: the type of component, class or package;

• noSmell: binary feature, true if the component is not affected by
any smell;

• AS1 ... AS#: the number of smells affecting the component, one
feature per type of AS. These features become binary in the
binary version of the dataset.

Moreover, we created a variant of the original dataset by transform-
ing AS features to binary, indicating only the presence/absence of
smells on the architectural components. We exploit this variant to
study the collocation of AS. In the next sections, we report the results
of the analysis of the entire dataset, by project and by version.

analysis For all the analysis we exploited the R language [241]. In
addition to computing the AS frequencies, we conducted 4 different
statistical analysis, whose aim were to investigate the evolution and
possible inter-smell relationships of the AS introduced in Section 2.2.
We ran them on the results of Arcan, after its execution on the projects
listed in Table 4.9.

• Computation of AS frequencies. In order to answer RQ1, we
computed the frequencies of AS for each project, for each type
of AS, at each granularity level.

4.3 as evolution and correlation : an empirical study 78

• Evolution analysis In order to answer RQ2, we conducted trend
analysis to understand how AS values evolve overtime. We ex-
ploited the Mann-Kendall test, which is a non-parametric test
able to assess if there is a monotonic upward or downward
trend of the variable of interest over time. The null hypothe-
sis for this test is that there is no monotonic trend in the series.
The alternate hypothesis is that a trend exists. This trend can be
positive, negative, or non-null.

• Correlation and collocation analysis In order to answer RQ3

we ran a set of statistical analysis to investigate both correlation
and collocation of AS. we ran the Spearman correlation test [227]
to evaluate the correlation among different types of AS. We con-
sider significant only tests with p-value < 0.05. This test is run
on the number of smell instances, divided by type, collected
from the entire dataset. We chose Spearman since it does not
require the input data to be normal: we checked the normality
of our variables with the Shapiro-Wilk test [219] and found that
they were not normal. To investigate collocation, we exploited
three different techniques. 1) First we ran the pairwise correlations
on the binary variant of our dataset. Usually, the φ coefficient
is used to obtain the pairwise correlation between two dichoto-
mous variables, but here for simplicity we ran Pearson correla-
tion test on all the AS variables, since this method is equivalent
to the phi coefficient when ran on binary values [61]. We con-
sider significant only tests with p-value < 0.05. 2) We also run
Principal Component Analysis (PCA) in order to identify the col-
location of AS. 3) Finally, we exploit association rules mining to
identify relationships among different types of AS. We use an
implementation of the Apriori algorithm [4], with the minimum
support set to 0.001 and confidence set to > 0.6, as used in other
empirical studies [253]. We also discard redundant rules [23],
i.e., rules which are equally or less predictive than a more gen-
eral rule and have the same items on the consequent side, but
one or more items less in the antecedent side.

The following sections present the results of the introduced analy-
sis.

4.3.2 Results

We illustrate here the results of all the analysis and the answers to
the RQs.

results for rq1 We show in Table 4.10 and 4.11 the number of
detected AS, for each analysed project, namely at class and package
level, in order to answer RQ1. The table reports the smell counts for

4.3 as evolution and correlation : an empirical study 79

both the first and the last versions of the given project, divided de-
pending on the type of the affected component (class or package).

The type of AS which is most common in the dataset is Cyclic De-
pendency (CD) at class level, followed by CD at package level and
Scattered Functionality (SF). This result is consistent with the results
of previous works [19][17][221], where CD (at both levels) usually
counts the highest number of occurrences in the projects under anal-
ysis. However, Guava and Truth projects are not affected by CD at
package level, in any of the analysed versions: both of them belong
to the Google organisation. Since the complete absence of CD is atyp-
ical, we compared the two projects’ characteristics to find possible
commonalities which could explain why their CD frequencies are dif-
ferent from the other projects. We found out that both projects have a
small number of packages despite the other projects, while having a
total number of lines of code (LOC) below (Truth) and over (Guava)
the average. If we compute the ratio of LOC on the number of pack-
ages for both projects, we find out that it is higher than the other
ones. This means that packages in Guava and Truth are larger than
in the other projects. We manually checked their code and we found
out that their package structure (containment tree, see Section 2.1) is
not nested, but all classes belong to packages at the same level (the
first) of the containment tree. Thus, there are not small, nested pack-
ages containing few classes, but only few large packages. This specific
way to organize packages might be the reason behind the lack of CD
at package level in these two Google projects. We aim in future works
to further study the characteristics that are common to both projects,
to identify a kind of “recipe” for CD-free software projects.

In the same way, Mahout and Maven do not have God Component
(GC) instances. Finally, Tink and Truth have no Scattered Functional-
ity (SF). In general, the peculiar projects are the ones from Google,
namely Gson, Guava, Tink and Truth. They have the smallest amount
of AS (computed as the sum of all types of smells) at package level,
ranging in [6, 23] in the first versions and in [6, 57] in the last versions.
At class level this fact is less apparent, even if the project with the
smallest number of AS is still part of the Google organisation (Tink).
While the projects having the largest number of AS, both at class and
package level, are Jgit and Jmeter: they are particularly affected by
Cyclic Dependency.

RQ1: which are the most frequent types of architectural smells?
The most frequent architectural smell is Cyclic Dependency, at
both class and package level. The most affected projects (by all
types of AS) are Jgit and Jmeter. Moreover, the considered Google
projects are all designed in a similar way and the resulting ar-
chitectures are affected by few or even zero Cyclic Dependency,

4.3 as evolution and correlation : an empirical study 80

Table 4.10: Number of architectural smells - Class level

First version Last version

Project CD HL Tot. CD HL Tot.

Collections-core 299 5 304 300 5 305

Gson 453 12 465 620 2 622

Guava 558 2 560 609 2 611

Jgit-core 6351 4 6355 15675 38 15713

Jmeter-core 3366 18 3384 5994 18 6012

Mahout-mr 306 4 310 302 4 306

Maven 148 15 163 159 22 181

Struts 528 21 549 542 17 559

Tink 118 14 132 154 14 168

Truth-core 141 6 147 175 5 180

Total 12268 101 12369 24530 127 24657

Table 4.11: Number of architectural smells - Package level

First version Last version

Project CD GC HL UD FC SF Tot. CD GC HL UD FC SF Tot.

Collections-core 37 1 1 5 2 135 181 39 1 1 6 0 0 47

Gson 11 1 2 3 2 2 21 13 1 1 3 1 2 21

Guava 0 4 1 1 1 2 9 0 4 1 1 0 0 6

Jgit-core 153 7 2 9 3 34 208 293 6 7 11 0 0 317

Jmeter-core 483 1 6 20 1 2 513 490 1 7 22 0 0 520

Mahout-mr 30 0 8 15 4 40 97 30 0 10 14 0 0 54

Maven 24 0 4 12 7 39 86 53 0 1 11 0 0 65

Struts 60 3 2 12 4 62 143 85 4 10 11 0 0 110

Tink 15 1 1 3 2 0 22 44 2 2 3 0 0 51

Truth-core 0 1 4 0 1 0 6 0 1 4 0 0 0 5

Total 813 19 31 80 27 316 1286 1047 20 44 82 1 2 1196

4.3 as evolution and correlation : an empirical study 81

indicating a possible hint about how to design CD-free software
systems.

results for rq2 In order to answer RQ2 we ran the Mann-Kendall
test to investigate whether AS have a trend over the development his-
tory. All the AS show a significant positive trend (increasing) except
for UD smell in project Mahout. Also AS at class level show positive
trends, but only for one type of smell: CD. The projects where the
trend is significant are 6, namely Gson, Jmeter, Mahout, Struts, Tink
and Truth. Thus, in general, all AS tend to increase overtime.

Since a set of the smells, namely HL, UD and CD are based on
dependency issues, we also ran the Mann-Kendall test to check the
trend of package and class dependencies over time. The Total Num-
ber of Dependencies metric is computed for each component (class or
package) belonging to a project and consists in the sum of the number
of ingoing dependencies (from other components) and the number of
outgoing dependencies (vice-versa). Our goal was to verify if there is
a relationship between the increase of the smells and the trend of de-
pendencies. The results at package level showed that the dependency
trend is positive for the following projects: Jmeter, Mahout, Struts and
Tink. Except for Jmeter, all these projects showed also positive trends
for HL, CD and UD. Thus, it is likely that a project whose package
dependencies tend to increase will be affected by more smells during
its evolution. However, at class level, only Jgit, Mahout and Guava
showed an increasing dependency trend; among them, only Mahout
showed an increasing trend of CD at class level. Additionally, we
checked the correlation between the number of AS and the total num-
ber of Lines of Code (LOC) of the projects, during their evolution
(see Table 4.12 and 4.13, notice that the bold values are the significant
ones). For smells at package level, we found significant Spearman cor-
relation between LOC and Cyclic Dependency(ρ = 0.659) and God
Component (ρ = 0.715). For smells at class level, we found a signifi-
cant relationship between LOC and Cyclic Dependency (ρ = 0.860).

Such results are a confirmation of the outcome we obtained in
other works [80][196],i.e., projects size has a relationship with the
increase/decrease of smells, but it is not the only variable affecting
the trend. For instance, the frequent application of refactoring activ-
ities has proven effective in managing AS [231] and more in general
Architectural Technical Debt [240].

RQ2: do the presence of AS follow a particular trend during de-
velopment history? Given our results, we can state that in the
case of the 10 analysed project, architectural smells tend to grow
in number as the project development proceeds i.e. they show
a positive trend. Moreover, by analysing the evolution of size in
terms of number of dependencies and number of lines of code,

4.3 as evolution and correlation : an empirical study 82

Table 4.12: AS and LOC correlation - package

CD GC HL UD FC SF LOC

CD 1.000 0.133 0.402 0.788 0.220 0.407 0.659

GC 0.133 1.000 -0.183 -0.325 -0.288 -0.194 0.715

HL 0.402 -0.183 1.000 0.515 0.225 0.053 0.030

UD 0.788 -0.325 0.515 1.000 0.434 0.550 0.324

FC 0.220 -0.288 0.225 0.434 1.000 0.659 -0.112

SF 0.407 -0.194 0.053 0.550 0.659 1.000 0.179

LOC 0.659 0.715 0.030 0.324 -0.112 0.179 1.000

Table 4.13: AS and LOC correlation - class

CD HL LOC

CD 1.000 -0.169 0.861

HL -0.169 1.000 0.074

LOC 0.861 0.074 1.000

it appears that the evolution of CD at both class and package
level is the most related to the evolution of size, in the analysed
projects. This results tells us that size is one of the factor con-
tributing to the growth of AS, however it is not the only one.

results for rq3 We report the results for each analysis con-
ducted to answer the RQ3 and summarize our findings at the end
of the section.

Spearman correlation test results As part of the answer to RQ3, we
ran the Spearman correlation test on the data relative to the different
types of AS (Table 4.14 and 4.15, bold values are significant ones). We
consider correlated pairs of smells with at least |ρ| > 0.3 [56]. Differ-
ently from the collocation analysis, we do not exploit the correlation
test to study smells which co-affect the same architectural component,
but we compare the total number of smell instances, divided by type,
detected in the entire dataset. The smell pair showing the highest
positive correlation at package level is Cyclic Dependency and Unsta-
ble Dependency (ρ = 0.763), followed by Hub-Like Dependency and
Unstable Dependency (ρ = 0.523). Also Hub-Like Dependency and
Cyclic Dependency showed a positive correlation, but very close to 0

(ρ = 0.302).
Concerning negative correlation, we found some examples, e.g, for

GC and SF, but with values very close to 0. We also computed the
correlation between Cyclic Dependency and Hub-Like Dependency

4.3 as evolution and correlation : an empirical study 83

at class level: the resulting coefficient was positive, with value equal
to 0.320.

Figure 4.14: Spearman correlation coefficients - Architectural smells

Table 4.14: Spearman correlation test - package

CD GC HL UD FC SF

CD 1.000 0.050 0.302 0.763 -0.193 -0.153

GC 0.050 1.000 0.034 -0.166 -0.220 -0.074

HL 0.302 0.034 1.000 0.523 0.167 -0.046

UD 0.763 -0.166 0.523 1.000 0.247 0.094

FC -0.193 -0.220 0.167 0.247 1.000 0.259

SF -0.153 -0.074 -0.046 0.094 0.259 1.000

Table 4.15: Spearman correlation - class

CD HL

CD 1 0.230

HL 0.230 1

Pairwise correlation results To answer RQ3, we also investigated AS
collocation. In particular, the pairwise correlation is the first analysis
we did. We ran the computation of the Pearson coefficients on both
dataset, class and package.

A blank cell is present if the corresponding smell pair had no signif-
icant correlation. We consider as significant tests with p-value < 0.05,
while we consider correlated pairs of smells with at least |ρ| > 0.3 [56].
We did not obtain interesting results for smells at class level, and even

4.3 as evolution and correlation : an empirical study 84

if we had 20 significant correlations at package level, the only pairs of
smells whose values are far from 0 are formed by Cyclic Dependency
and Unstable Dependency, with ρ = 0.520, Hub-Like Dependency
and Cyclic Dependency, with ρ = 0.303.

Table 4.16: Pearson test - Architectural smells

AS Rho P-value

package

CD, UD 0.520 0E+00

UD,HL 0.166 0

FC,HL 0.241 0

GC,HL 0.110 0

FC,GC 0.161 0

FC,UD 0.157 0

FC,CD 0.192 0

GC,UD 0.184 0

GC,CD 0.141 0

HL,CD 0.303 0

SF,CD 0.069 5E-08

SF,UD 0.078 6E-10

SF,HL - -

SF,FC 0.164 0

SF,GC 0.046 3E-04

class

(CD,HL) 0.091025 0

Principal Component Analysis results The second analysis ran to an-
swer RQ3 on AS collocation is the Principal Component Analysis
(PCA). Before running the analysis, we verified that KMO of pack-
age dataset is above the threshold (0.562) and its sphericity is also
satisfactory (Bartlett’s test is significant, p-value equals to 0). Also the
class dataset satisfacted KMO (0.5) and Bartlett’s (p-value equals to
0). Therefore, both the datasets are suitable for applying PCA.

Figure 4.15 resumes the results of the PCA on packages. Correlated
smells are located in the same sector of the graphics: Unstable De-
pendency and Cyclic Dependency are highly correlated; also Feature
Concentration, Hub-Like Dependency and God Component are cor-
related; Scattered Functionality is not correlated with the other ones.
Concerning classes, the PCA did not find correlation between Cyclic
Dependency and Hub-Like Dependency.

4.3 as evolution and correlation : an empirical study 85

Figure 4.15: PCA results on package dataset.

Association rules analysis results Still concerning AS collocation, we
now present the results obtained from the association rule analysis.
For each rule, we report their antecedent (Left Hand Side, LHS), their
consequent (Right Hand Side, RHS) and commonly used metrics that
evaluate its quality: support (Supp), confidence (Conf) [4], conviction
(Conv) and lift (Lift) [42].

We now report the collected metrics both for package and class
dataset. We extracted many package rules (43) but here we report a
selection of rules (20), based on their order. The order of a rule is the
number of distinct AS appearing in the body of the rule [254]. We
plotted the conviction and support of the rules change depending on
their order (see in the replication package). We acknowledged that
the rules of orders 2 and 3 appear more relevant (in terms of support)
than other rules. Instead, we mined only one rule concerning class
AS.

Concerning the package dataset, we found rules with support in the
range [0.002, 0.098] and conviction in the range [1.988, 7.635] (excluded
the rule with Confidence equals to 1 which entails infinite Convic-
tion). Table 4.17 reports all the mined rules along with the quality
metrics. All the types of smells appear in the rules.

We briefly comment the most interesting rules. The rule which
shows the higher support is {UD} → {CD}, moreover 5 out of the
9 rules contains the UD smell in the antecedent (column LHS), which
means that CD and UD are often collocated. Rules {GC, FC} → {HL}

4.3 as evolution and correlation : an empirical study 86

Table 4.17: Association rules - Architectural smells

LHS RHS Support Confidence Lift Conviction

Package rules

{UD,FC} → {CD} 0.014 0.897 4.214 7.635

{GC,UD} → {CD} 0.013 0.888 4.170 7.006

{HL,UD} → {CD} 0.018 0.847 3.981 5.156

{GC,HL} → {FC} 0.005 0.769 19.170 4.159

{CD,GC} → {UD} 0.013 0.782 6.134 4.005

{HL,SF} → {CD} 0.015 0.798 3.751 3.903

{GC,FC} → {HL} 0.005 0.732 12.205 3.504

{UD,SF} → {CD} 0.036 0.774 3.635 3.478

{UD} → {CD} 0.098 0.770 3.617 3.421

{HL,FC} → {CD} 0.010 0.744 3.496 3.077

{UD,FC} → {SF} 0.012 0.763 2.753 3.049

{HL} → {CD} 0.042 0.704 3.306 2.657

{FC} → {SF} 0.026 0.636 2.297 1.988

Class rules

{HL} → {CD} 0.008 0.724 2.217 2.446

and {HL, GC} → {FC} comprise the same set of smells, GC, FC and
HL. The first rule states “If a package is large and with a low cohesion
in terms of features, then it is more likely that it is also a hub of the
system” which is reasonable, since the high number of dependencies
which characterises HL smells could be caused by the fact that the
package addresses too many responsibilities and thus is referenced
by many other parts of the system. Instead, the second rule shifts FC
smell with HL smell: this confirms the tendency of these smells of
appearing together. We already discussed how this can be considered
a false positive case of smell detection in Section 4.3.1. The intuition
is that a package with such smells may be full of utility classes, used
by all the other components of the system. Finally, with a lower Con-
viction, SF appears to be collocated with UD and FC with SF.

Concerning the class dataset, only one rule was extracted and is re-
ported in Table 4.17. The rule confirms the collocation of HL and CD,
with a good confidence (about 70%) and a positive conviction.

4.3 as evolution and correlation : an empirical study 87

Table 4.18: Summary of correlation and collocation results

Correlation Collocation

AS Spearman PCA Association r.

Package

CD, UD + + +

UD,HL + +

FC,HL + +

GC,HL + +

FC,GC - + +

FC,UD + +

FC,CD +

GC,UD +

GC,CD +

HL,CD + +

SF,CD +

SF,UD +

SF,HL +

SF,FC + +

SF,GC

Classes

HL,CD +

4.3.3 Final remarks on correlation and collocation results

We resume the results of the 3 analysis we conducted in Table 4.18.
We do not include the pairwise correlation results since they are not
relevant. Here we gather the results of both correlation and colloca-
tion analysis: our aim is to highlight the relationship between pairs
of different types of AS, from different points of view. Each row
of the Table represents the relationship between two different AS
(first column). For each conducted analysis, reported in the remain-
ing columns, the significant results regarding the positive correlation
of two smells are marked with a “+”, the negative with “-”. We high-
light the Table rows corresponding to the pairs of AS which resulted
in a relationship for more than two analysis.

One of the smells’ pair which resulted in relation for all of the tests
is (Cyclic Dependency, Unstable Dependency). This show us that
CD has a strong relationship with UD: they are both smells which
regard the dependency structure of the system, and it is likely that

4.3 as evolution and correlation : an empirical study 88

the presence of one of them, due to an incorrect dependency manage-
ment, can lead to the introduction of the other. The relationship shows
also a strong effect size in terms of both correlation and collocation,
with Pearson ρ equals to 0.520 and Spearman ρ equals to 0.763. The
other pair, (Feature Concentration, God Component), shows a neg-
ative correlation for Spearman, and positive for the other two tests:
however, the Spearman test returned a value very close to zero (0.19),
making difficult to support potential insights concerning the negative
correlation.

Concerning the couples whose relationship was confirmed by at
least two tests, the relationship between Scattered Functionality and
Feature Concentration could be explained by the fact that if the con-
cerns of a project are scattered among different packages, then it is
more likely that those packages suffer of Feature Concentration, i.e.,
they implement too many (scattered) concerns. However, even if they
appear to be both correlated and collocated, their effect size is small,
compared to the other pairs of smells. The relationship between God
Component and Hub-Like Dependency, as for the one between Fea-
ture Concentration and Hub-Like Dependency, could be explained
by the example which we already discussed in Section 4.3.1, i.e., the
three smells can overlap on the same component and actually disclose
smells’ false positive instances.

Concerning smells at class level, which were of two types, Cyclic
Dependency and Hub-Like Dependency, two over the three analy-
sis gave evidence of their relationship. Concerning correlation, Spear-
man coefficient resulted positive. Concerning collocation, only the as-
sociation rule had positive conviction. However, these tests reported
also small effect size. This means that a relationship is present, but it
is not strong.

RQ3: is there a relationship among the different types of AS? Our
results showed that there are pairs of AS which are correlated
and also collocated. The strongest ones (validated by all the con-
ducted tests) are between Unstable Dependency (UD) and Cyclic
Dependency (CD).

4.3.4 Discussion

Concerning the collocation results, we found relationships among
more than two AS. By putting together the results of all the anal-
ysis, and in particular thanks to PCA, we found that, at package
level, Cyclic Dependency and Unstable Dependency participate in the
same component, with also a strong correlation. Instead, God Com-
ponent, Hub-Like Dependency and Feature concentration belong to
another component. Additionally, the extracted association rules put
in relationship multiple smells: the most interesting is the one among

4.3 as evolution and correlation : an empirical study 89

Hub-Like Dependency, God Component and Feature Concentration,
which we suggest, as explained in Section 4.3.1, being an example of
false positive AS detection.

The AS involved into the two clusters (FC, HL, GC) and (UD, CD)
impact different design principles [27] and manifest themselves in
different ways in the affected architecture. However, all clusters can
be associated to macro-problems: FC, HL, GC affect one component
at a time and have a relation with how the responsibilities of a sys-
tem are assigned; UD and CD affect the dependency structure of the
system and their instability. Our conclusion is that the AS in each
cluster share a common cause which can explain the appearance of
multiple smells in the same parts of the architecture. This could mean
that resolving one single problem (the root cause) could lead to the
resolution of all the AS. In Section 4.3.1 we discussed the hypothesis
concerning the cluster composed by (FC, HL, GC), suggesting a sce-
nario where the collocation of all the three smells actually represent
a case of false positive smells, and the component is designed in such
way on purpose. However, we propose an additional (and straightfor-
ward) scenario for such collocation: as long as additional and diverse
features are added to a component (FC), the component grows in
size (GC). At the same time, a large component (GC), which has a lot
of different responsibilities (FC), could need to use (and be used) by
many other parts of the system, resulting in a HL. Such interpreta-
tion of the collocation tells us that it is difficult to establish the root
causes behind the presence of smells and thus it is also difficult to
develop an automatic approach for the detection of such causes. The
challenge is that the causes could be related to non-technical aspects
hardly detectable by code analysis, e.g., the experience and choices of
the development team. Thus, researchers developing this kind of ap-
proaches should take into consideration different data sources than
code and develop models to represent both the AS and the context in
which the AS are detected.

Observations: Sharma et al. [221] conducted an empirical analysis
on the correlation between design and architecture smells: we now
briefly discuss our work in relation to their results. Their distinction
between design and architecture smells can be mapped to our distinc-
tion in class and package AS. Concerning AS frequency, we found out
that the most frequent smell in the considered Java projects is Cyclic
Dependency, at both class and package level. In the same way, Sharma
found that Cyclic Dependency at both design and architecture gran-
ularities occur most frequently in open-source C# repositories com-
pared to other types of smells. This further confirms its importance:
developers should avoid to introduce this kind of smells in both the
programming languages and also suggests that AS behaviour could
be cross-language. This would mean that knowing how to deal with

4.3 as evolution and correlation : an empirical study 90

certain types of smells in one language could be transferred to other
(Object-Oriented) languages.

We also computed the Spearman correlation between the number
of smells and the LOC of the considered projects, and found out that
Cyclic Dependency at both granularity levels increases along with the
size of the projects. Instead, Sharma computed the smell density (the
average number of smells identified per thousand lines of code) of
their projects and ran the Spearman correlation between density and
LOC: their results indicate that the size of a project has no impact on
the smell density of the project. They did not distinguish the type of
smells when running the correlation and did not aggregate the results
depending on the project version (they considered the total number
of smells found in a given project repository) thus this can explain the
difference in the two results.

Concerning AS correlation, Sharma tried to understand if certain
smells at design level could be superfluous, i.e., indicate the same
problem, respect to their counterpart at architectural level, and vice-
versa: they analysed pairs of smells and found varying degrees of
correlation. They interpreted this result as evidence that each type of
smell provides value adding information. We computed correlation
on different smell types at the same granularity level, thus our con-
clusions are not directly comparable with theirs. However, apart from
few examples of medium-high smell correlation, we also did not find
particularly strong correlations.

Also for what concerns AS collocation, we cannot directly compare
our results. Sharma found out that few pairs of design and AS are
collocated and this enforced the idea that the two concepts are sepa-
rated. Thus they suggested that, even if architecture smells arise from
code and implementation choices, there must be some additional (un-
known) factors which cause their introduction. Similarly, we came to
the conclusion that some types of smells may share a common cause:
we found clusters of smells which impact on the same design prin-
ciples and show some level of collocation in different analysis (PCA,
association rules). Differently from Sharma, we also propose that this
kind of analysis helps in identifying false positive AS: we discussed
this aspect in Section 4.3.1.

4.3.5 Threats to Validity

We now discuss the threats to validity, following the structure sug-
gested by Yin [264].

Threats to construct validity, which concern the identification of
the measures adopted, can occur due to errors in the data manipula-
tion and preparation phases. However, we relied on well known and
widely used data manipulation libraries of the R language, and pub-
lished all the scripts used during data preparation and analysis in the

4.3 as evolution and correlation : an empirical study 91

replication package7. Threats to internal validity are factors which
could have affected the results obtained. In our case, they may be due
to the choice of the statistical methods used for the analysis and their
implementation in the R libraries. We mitigate this threat by relying
on multiple sources, such as similar empirical studies [78] conducted
on code smells collocation [254] [261]. Threats to external validity
refer to the generalization of the results beyond the original setting.
They may arise from the nature of projects used in our study. We an-
alyzed only projects written in Java and publicly available. Moreover,
also the size of the projects, in terms of LOC, number of classes and
packages could have influenced our results. For instance, the number
of CD is correlated to the size of the project (as shown in the answer
to RQ2, Section 4.3.2), and this fact could threat the validity of the
answer to RQ1. However, we partially mitigate such issues by ana-
lyzing a large number of projects: 10 projects, about 10 versions each
for a total of 98 single-version projects, coming from three different
organizations and of different sizes (see Table 4.9). Threats to reliabil-
ity concern the correctness of the conclusions reached in our study.
We rely on Arcan tool to extract AS data from the chosen projects.
The tool could be subjected to a systematic bias in the detection. Such
threat is partially mitigated by the provided replication package and
the fact that the tool is available, validated and can be applied to any
Java project. A validation of Arcan results has been performed on ten
open source projects [19] and on two industrial projects with a high
precision value of 100% in the results and 63% of recall [21]. Moreover,
the results of Arcan were validated also in industrial settings (see Sec-
tion 2.2). Finally, another threat regards the possibility of replicating
this study. To mitigate this point, we provide a replication package
containing our dataset and the scripts used to built it. Moreover, each
analyzed project is available since they are Open Source and available
on Github [93].

4.3.6 Final remarks

In this study, we investigated AS correlation, collocation and evo-
lution, through statistical analysis of multiple versions of 10 Open
Source projects and discussed how our results relate with the ones
obtained by other authors [221], confirming some of them.

We found out that the most present AS in the dataset is Cyclic
Dependency, at both class and package level, and this confirms the
results obtained by other authors in the field [221]. This smell has
also the highest correlation with the evolution of the projects’ size:
developers should particularly pay attention to this kind of AS. More-
over, we analysed the correlation among the different types of AS and

7 https://drive.google.com/drive/folders/1z0NEcy_e0xbNi6DVD9L2seW1Xp49scnA?

usp=sharing

https://drive.google.com/drive/folders/1z0NEcy_e0xbNi6DVD9L2seW1Xp49scnA?usp=sharing
https://drive.google.com/drive/folders/1z0NEcy_e0xbNi6DVD9L2seW1Xp49scnA?usp=sharing

4.3 as evolution and correlation : an empirical study 92

found that they divides into two clusters, probably the results of the
same cause underneath.

4.4 summary of the findings 93

4.4 summary of the findings

We end the chapter by resuming the most interesting findings. We
investigated the correlation of AS with design patterns, and also among
the different types of AS themselves. Our aim was finding a relation-
ship able to tell us something about the nature of AS: whether they
cause the degradation of DP, or the contrary, if degraded DP cause
AS; whether two or more smells tend to be collocated, meaning that
they share some commonalities and may have the same root cause.
All these kinds of information are useful for two reasons: enhancing
the tools for AS detection, like Arcan, and provide guidelines to de-
velopers for managing AS.

For instance, we got useful hints from the association rules involv-
ing AS and DP: the specific combination of some smells, patterns
and application domain indicate that the smell is a false positive. We
report the case of Cyclic Dependency, collocated with Hub-Like De-
pendency and Singleton in the projects belonging to the graphical
domain, signaling the presence of a callback ({HL, S} → {CD}). This
specific example is interesting, because the association rule that mod-
els it has a strong confidence (the relationship between the antecedent
and consequent is strong). The rule could be embedded in a detector,
and help filtering out the CD false positive instances. Another rule
having strong confidence is the one associating the Visitor design pat-
tern to the CD smell ({V}→ {CD}). In this case, we are facing the case
where a wrongly implemented DP leads to the introduction of an
AS. Both rules have scarce support (i.e., not frequent in the dataset),
meaning that such collocations, even if they can be detected and have
a strong confidence, are rare.

We also found a rule associating HL to CD (at class level), in both
the empirical studies: the confidence in this case was medium-high,
about 0.6 and 0.7, and in both cases showed also a strong support.
However, both Pearson test and PCA did not find a correlation be-
tween the two, meaning that the collocation possibly does not indi-
cate any concrete relationship, but it is spurious.

Instead, PCA identified two groups of AS, that we call clusters,
namely (UD, CD) and (FC, HL, GC). The former cluster was con-
firmed by many other tests: UD and CD have strong positive correla-
tion (Spearman) and strong support, with medium-high confidence.
Concerning the latter cluster, we proposed an interpretation of it. The
collocation of such smells indicate the presence in the system of a very
large, complex component, addressing many responsibilities and be-
ing central to the system. The three smells indeed have similar defi-
nitions, and violates similar design principles. Knowing that they are
strongly correlated is not surprising, however it could be used to dis-
criminate the criticality of the smells: AS who are collocated on the

4.4 summary of the findings 94

same component indicate a serious problem that should have top pri-
ority with respect to cases where a single smell affects a component.

Future directions concerning this subject can be found at the end
of the thesis in Section 8.2.

5
A R C H I T E C T U R A L D E B T E VA L U AT I O N

As already outlined architectural smells are a symptom of Architec-
tural Technical Debt (ATD).

ATD is a metaphor used to describe sub-optimal architectural and
design choices that seem to be beneficial in the short-term, but reveal
to deteriorate the quality of software in the long-term [125]. ATD is
a type of the borader concept Technical Debt (TD), which refers gen-
erally (i.e., not only addressing the architecture) to the shortcomings
developers experience due to the presence of sub-optimal code in the
system. The reason behind the term “debt” is that it is compared to
the dynamics of financial debt. Indeed, one way to describe technical
debt is to divide it in three aspects, measurable independently: prin-
cipal, interest probability, and interest amount [44]. Principal is the
estimated effort to remove the debt-related inefficiencies in the cur-
rent design or implementation of a software system, while interest
is the additional development effort required to modify the software
(adding new features or fixing bugs), due to the presence of such in-
efficiencies. The total technical debt is the sum of the principal, and
the product of interest probability and interest amount [44].

Researching and managing ATD is a complex task, mainly because
the definition of debt is wide and open to interpretation. However,
Verdecchia et al.[246] recently produced a grounded theory about
ATD, i.e., they organized the concepts discussed by different authors
from the literature about ATD into categories and put such categories
in relation to one another. Thanks to their analysis, we can synthesise
the concepts related to ATD in the following way.

ATD instances residing in a system are called ATD items, and the
main objective of ATD identification is to detect such items. ATD
items are generated by a cause, which is very difficult to identify
a-posteriori. Indeed, approaches for ATD identification focus on
the detection of ATD symptoms (e.g., architectural smells), that are
the measurable aspects of ATD items consequences[246].

Some of the consequences of the presence of architectural technical
debt in a software project are the delay in the delivery of new func-
tionalities, the difficulty of reusing architectural components in other
projects, the compromised maintainability [72] and also the opening
towards the introduction of security vulnerabilities [178][222].

Ideally, a project should have a small amount or even no ATD, how-
ever it looks like an impossible goal to reach: managing technical
debt and assuring software quality are not the current priorities of

95

architectural debt evaluation 96

software companies [186], mostly because the culture about what is
(architectural) technical debt is not widespread and because they lack
tools that assist developers to avoid its introduction and to monitor
it. Moreover, even if the application of good design and coding prac-
tices can help in limiting the growth of ATD, it does not assure the
complete protection from it.

Indeed, the current research about ATD is focusing, among the
others, on providing means to quantify and monitor ATD items and
symptoms. The majority of the proposed identification approaches re-
quires manual analysis or the developer interaction (see Section 7.3.1),
instead, little work has been conducted concerning indexes to automat-
ically evaluate it [247]. An ATD index is a model (usually a function)
which provides a value indicating the amount of ATD in a given soft-
ware project. Usually indexes take into account code/design level is-
sues and static metrics, and output a number expressed in terms of
time or money.

Currently there are a couple of indexes for ATD evaluation, how-
ever there are several indexes for TD identification (see Section 7.3.2),
i.e., indexes which try to capture different types of TD and do not fo-
cus only on ATD. Indexes are useful not only for TD/ATD estimation,
but also to compare the software quality of different projects among
them. In brief, the value of an ATD index can be exploited by devel-
opers to track along time the evolution of ATD in a given project and
to compare the project itself with other projects (for instance of the
same application portfolio).

In a past work [210], we proposed an index based on AS: Architec-
tural Debt Index (ADI). In particular, ADI takes into account (i) the
Number of AS detected in a project, (ii) the Severity of an AS, where
for Severity we mean the cost-solving (see Section 2.2.2) of each in-
stance of AS (an instance of a type of smell, such as CD, can be more
difficult to remove with respect to another instance of CD smell) and
(iii) the Dependency metrics of Martin [150] used for the AS detection.
The final ADI(P) value quantifies the amount of architectural techni-
cal debt present in a project P. To the best of our knowledge, the only
other index dedicated to the evaluation of ATD is ATDx, defined by
Verdecchia et al. [247], which is a model to build ATD indexes based
on a set of ATD dimensions that can be collected from source-code
analysis.

In this chapter, first we describe our ADI in detail, then we discuss
some studies we conducted to evaluate ATD in different contexts and
finally we introduce a recent study we made which examine the re-
lationship between AS criticality and cost solving, the two properties
used in the computation of the ADI.

5.1 the architectural debt index 97

5.1 the architectural debt index

The Architectural Debt Index (ADI) computed by Arcan <of a
project P is defined as follows:

ADI(P) =

n∑
k=1

(
1

W
(ASIS(ASk) ∗w(ASk)) ∗History(ASk)

)
(10)

where:

• n: number of AS instances in a project P;

• ASk: k-instance of an architectural smell;

• W: the total number of dependencies involved in at least one
AS for all the AS in the project;

• ASIS(ASk): the Architectural Smell Impact Score;

• w(ASk): the Architectural Smell Weight, i.e., the number of de-
pendencies associated to the ASk;

• History(ASk): the score associated to the trend evolution of the
ASk.

The Architectural Smell Impact Score, ASIS, is based on both the es-
timation of the cost-solving of an AS and the importance of the sub-
system where the AS is found. It is defined as the product of the
SeverityScore (Formula 11) associated to the ASk smell and the PageR-
ank (Formula 12) value of the ASk, which estimates the importance
of the project subsystem affected by the ASk smell.

With the term Severity we generally indicate a metric used to eval-
uate the cost-solving of an AS. Section 2.2.2 reports all the severities
of the AS detected by Arcan, including the ones of the smells consid-
ered in the ASIS computation. SeverityScore is the quantile of a given
Severity.

We use quantiles because the SeverityScore and PageRank both as-
sume values in the range [0,∞) and we needed to normalise them in
order to exploit them in the formula. We mapped the original values
to integer values in the range [0, 1] (low to high respectively), through
the quantile(x) function which is the quantile associated to x in a ref-
erence dataset consisting of 109 projects of the Qualitas Corpus [238].

The ASIS is defined as follows:

ASIS(ASk) = SeverityScore(ASk) ∗ PageRank(ASk) (11)

.
Since both SeverityScore() and PageRank() return values between

0 and 1, ASIS represents a SeverityScore weighted by the “impor-
tance” (PageRank) of the subsystem where the AS appears.

5.1 the architectural debt index 98

The PageRank(ASk) estimates whether the AS is located in an im-
portant part of the project, where the importance is defined by the
value of the PageRank algorithm executed on the dependency graph
of the project (to evaluate if many parts (subsystems) depend on the
part where the AS is involved). The PageRank, PR is modeled starting
from the one implemented by Brin and Page [41], as explained below:

PR(v) =
1− d

N
+ d

(n∑
k=1

PR(pk)

C(pk)

)
(12)

where:

• the vertex v is a node of the dependency graph associated to a
project;

• PR(v) is the value of PageRank of the vertex v;

• N is the total number of AS in the project;

• Pk is a vertex with at least a link directed to v;

• n is the number of the pk vertexes;

• C(pk) is the number of links of vertex pk;

• d (damping factor) is a custom factor fixed at 0.85, a default
value defined by Brin and Page [41]. It can be changed accord-
ing to the PageRank value needed for every vertex and its min-
imum associated level of PageRank.

The PR value is computed only on vertices of the dependency
graph of both class and package types. PageRank value PR is used
for all the types of AS detected by Arcan, but the PageRank of an
AS which involves multiple classes and packages is considered differ-
ently, e.g, a CD smell that involves two or more classes or packages.
To compute the PageRank when an AS involves more than one ver-
tex, it is necessary to aggregate the data; a method to aggregate mul-
tiple values could be to take the maximum PR value of the group.

The PR of all the AS and the max of PR of AS involving multiple
classes or packages is computed as follows:

PageRank(ASk) =


If ASk is an AS among classes or packages:

quantile(maxn
j=1PR(vj))

If ASk is an AS of a class or a package:

quantile(PR(v))

where v is the vertex (class or package) affected by ASk, n is the
number of classes vj involved in an AS (among classes) or the number
of packages vj involved in an AS (among packages).

5.2 architectural debt index evaluation 99

We also report the q(ADI(P)), that is its quantification as a score
value in a range from 1 to 5, where 5 is the worst rating a project can
have (i.e., The higher the ADI value, the higher the debt). Also this
value is computed in relation to the reference dataset. If a project is
not affected by AS, then the ADI is not computed.

Concerning other approaches for ATD index computation, as al-
ready mentioned, Verdecchia et al. [247] developed a method to cre-
ate ATD indexes named ATDx, which they implemented in a Python
tool1. ATDx is a data-driven approach that, by leveraging the analysis
of a software portfolio, severity calculation of pre-computed architec-
tural violations via clustering, and severity aggregation into differ-
ent ATD dimensions, provides an overview of the ATD present in a
software-intensive system. With respect to ADI, which is focused on
AS, ATDx takes into consideration additional facets concerning the
software architecture, such as SonarQube [225] rules addressing ar-
chitectural issues. In this thesis, we do not confront the comparison
of ADI with ATDx because it was not an aim of the PhD work. In
the future, it could be interesting to understand their differences and
compare their outcome when computed on the same set of projects.

5.2 architectural debt index evaluation

The following sections report the results we obtained in some stud-
ies we conducted about ATD in different kinds of systems and ap-
plication domains. Our aim was to get an insight about the amount
of ATD present in Open Source projects and analyse whether there is
some kind of relationship between the presence of ATD and other fac-
tors, such as the adoption of third-party software or the application
domain of the project.

Indeed, in the first study, we run Arcan on a set of projects be-
fore and after their integration with reusable third-party components.
Then we show how ATD affects IoT platforms and multi-agent sys-
tems along their development history. Finally, we introduce a tool,
named Sen4Smells, which is the outcome of an international collabo-
ration we had and which decomposes our ADI looking for the parts
of code which contributes the most to the growth of ATD.

Notice that, in some of our studies, we analyse the evolution of
the project, i.e., we collect versions (commits, in the case of Git repos-
itories) from a public repository and run Arcan on them. However,
we do not analyse each available commit, on the contrary we sam-
ple a selection of commits (usually one commit every 30 days). This
because architectural changes tend to happen in larger time spans
with respect to code changes. A threat to such approach could be
that by managing sampling by taking in consideration only the time
gap, we would miss out “relevant commits”, where the architectural

1 https://github.com/S2-group/ATDx

https://github.com/S2-group/ATDx

5.2 architectural debt index evaluation 100

change actually happens. However, it is not important if we miss rele-
vant commits, because we take into consideration the whole evolution
and an architectural change happens during a span (not in a single
commit). Similar custom samplings were used in similar context by
previous studies [123, 171].

5.2.1 Impact of Opportunistic Reuse Practices to Technical Debt

One of the factors that may influence the estimation of technical
debt is the reuse of third-party components and their integration into
an existing system. As reuse practices may have strong implications
in the architecture (e.g. when a platform or a protocol is replaced),
we need to estimate the impact on architectural debt derived from
the reuse of software components and when a new functionality is
added. We focus on a particular type of software reuse, named oppor-
tunistic reuse, where developers search for Open Source (OS) reusable
components in key repositories, such as GitHub, Bitbucket, or Gitlab.
In many cases, selecting the right OS components is not easy as many
factors, such as licensing, popularity, low code quality (affecting tech-
nical debt) may complicate the selection process [228]. In addition,
upgradeability plays an important role in the selection of a particu-
lar component versus other options. Finally, reusing and integrating
third-party components may affect important quality attributes such
as safety, integrability, and reliability among others.

A recent study [269] proposed a reusability index based on several
metrics to quantify reuse of reusable assets, but the work does not de-
scribe a connection to technical debt when reusing components. As
to the best of our knowledge there are no works exploring the impact
and the connection opportunistic reuse plays in TD. In the research
work presented in this section2 we analyze how this opportunistic
reuse trend affects the technical debt ratios in open-source projects
and we analyze such TD ratios before and after reusing third-party
components, and what are the implications for the software archi-
tecture. More specifically, we used SonarQube (see Section 2.5) and
Arcan tools to analyze the code and architectural debt ratios in three
different applications to investigate the effects of reusing functional-
ity in open source repositories.

case study design We designed and conducted a case study [211]
to uncover the impact of opportunistic reuse practices in the quality
of systems and analyze the technical debt ratios before and after the
integration of open-source software (i.e. understood as new function-
ality) in three existing systems. Therefore, we followed the approach
of exploratory case studies [264] as a way to explore and identify the

2 A publication was extracted from this study [50], done in collaboration with Rafael
Capilla, Valentina Lenarduzzi and Tommi Mikkonnen.

5.2 architectural debt index evaluation 101

overall picture of opportunistic reuse practices. To this aim we raised
the following research questions:

• RQ1: Which are the most difficult aspects to integrate new function-
ality found opportunistically in open source projects? We study the
effort and the changes required by a developer when has to
integrate third-party components, so we can compare the inte-
gration effort to develop components from scratch, if necessary.

• RQ2: How code debt is affected after the integration of reusable assets
found opportunistically? We wanted to investigate to what extent
opportunistic reuse practices have a significant impact on TD
ratios and the number of new smells in the code.

• RQ3: How architectural debt is affected by reusing open-source soft-
ware? Like in the previous research question, we are interested
to analyze how architectural debt (ATD) is affected when new
components are introduced in existing architectures and what
changes induce.

Following, we describe the context of the exploratory study includ-
ing the three case studies we used and the repositories we chose to
reuse the components.

case study 1 : bikeapp This case study belongs to a bicycle hir-
ing system (BikeApp) developed at the Telecommunications School
from the Technical University of Madrid (UPM) between February-
May in 2020. The system promotes sustainable transportation in Mad
rid renting bikes around the city and using a mobile app. The system
is built around an API that uses a Client/Server style and a persis-
tence layer (Java Persistence API - JPA) to access the database. The
server side uses J2EE and servlets (i.e. Servlet) supported by Apache
Tomcat 9.0. The client-side uses a multi-window approach based on
Java Swing. The source code of this small project is only 2.500 SLOC,
as we did not include the third-party libraries required to develop the
software. We used the Visual Paradigm tool 16.13 to reverse the archi-
tecture of the system, shown in the class diagram in Figure 5.1, which
encompasses 52 classes. In the Figure, we can see the main BikeApp
class (in brown color), while the UML components (shown in grey
color) provide support for the hsqldb,jackess libraries for accessing
the SQL database and a connection to the EclipseLink component
aimed to link database objects to Java objects handled by the JPA per-
sistence layer. Also, the client uses the jxmapviewer graphical library
which receives the location of the bikes encoded in JSON format.

3 https://www.visual-paradigm.com/

5.2 architectural debt index evaluation 102

Figure 5.1: Reversed architecture of the BikeApp software

5.2 architectural debt index evaluation 103

case study 2 : teammates The second case study is an OS sys-
tem called TEAMMATES 4. We used version 7.6.0 for our analysis.
TEAMMATES is a free online tool for managing confidential peer
evaluations for student team projects. The students can evaluate their
performance anonymously in team projects and search/view reports
of their feedback and evaluations. TEAMMATES was designed to pro-
vide powerful peer feedback and peer evaluation mechanism with
a very high degree of flexibility. TEAMMATES runs on the top of
Google App Engine, using cutting-edge cloud technologies and ben-
efits from the infrastructure that power Google’s applications.

case study 3 : kurki This case study addresses an IT system
Kurki5, used for managing students participating in courses, their
course accomplishment, and the necessary operations to provide grades
and other related information. Kurki is a web application, where
then frontend relies on HTML, CSS, and JavaScript, and the back-
end includes Java code for implementing application-specific func-
tions, a web server for processing requests and responses, and an
SQL database for storing the information. Designed at the Depart-
ment of Computer Science, University of Helsinki, Finland, the sys-
tem has been deployed to use in the 1990s, and many of the design
choices still present in the system reflect the state-of-the-art of those
days. Over the years, portions of code have disappeared when people
working on the system have left the project, resulting in updates in
certain parts of the system. Furthermore, numerous developers have
participated in the project. Internally, the system includes some legacy
code, but things that are related to operating it has been upgraded to
today’s standards. For instance, to deploy the system, Docker is used,
and doing a git push to the master branch and running an associated
script are enough to deploy the system.

repositories To search for reusable components, we selected the
following four OS repositories: Maven, GitHub, SourceForge, and GitLab.
We based our selection on the following criteria: (i) explanation and
documentation of the component including a Javadoc file, (ii) com-
patible license and version with the target software, (iii) existence of
an import file to facilitate the integration process, (iv) access to the
source code, (v) functionality required (vi) popularity and (vii) de-
pendencies to other libraries. Some of the aforementioned items are
also discussed in [228].

data collection and analysis In this step of the study, we
performed the following tasks: (i) we run SonarQube on the three
projects and we collected the technical debt ratios, the number of

4 https://teammatesv4.appspot.com/web/front/home
5 https://github.com/UniversityOfHelsinkiCS/kurki

5.2 architectural debt index evaluation 104

code smells and issues, (ii) we run the Arcan tool to compute the ADI
(see Section 5.1) and detect three architectural smells, namely Cyclic
Dependency (CD), Hub-Like Dependency (HL) and Unstable Depen-
dency (UD) (see Section 2.2), for all the analyzed projects, (iii) we
sought in the four repositories for new functionalities to extend the
three projects, and (iv) once the components found were integrated
into the three projects, we run again SonarQube and Arcan to mea-
sure the technical debt and the other quality ratios provided by the
tools. The information about the number of components found and
reused is described in Tables 5.2 and 5.3. The results of the technical
debt rations after reuse are shown in Table 5.5 shows. The search and
integration efforts were computed manually by two researchers.

results First, we describe the outcome from SonarQube and Ar-
can tools for the three case studies before extending the functionality
with third-party components, such as we describe in Table 5.1. The re-
sults we computed include the technical debt ratios (TD ratio), code
smells (Smells) and issues (Issues) provided by SonarQube, the num-
ber of Architectural Smells (AS) and the Architectural Debt Index
(ADI) provided by Arcan and the quantification of ADI (q(ADI)) as
a score value in the range from 1 to 5. In order to select and search
for reusable assets, (1) we simulated a scenario where the project’s
team wants to extend the functionalities of that project basing on po-
tential client requirements; (2) we made a list of the new desiderata,
and (3) we searched for them in the repositories. The desiderata was
brainstormed by three researchers of our team.

Table 5.1: Results from SonarQube and Arcan before reuse

SonarQube Arcan

Case studies TD ratio Smells Issues AS ADI q(ADI)

BikeApp 5.2 248 253 0 - -

TEAMMATES 0.6 2087 2905 7 8.0 5

Kurki 1.0 504 536 3 5.0 5

Table 5.2 summarizes the number of components we found for each
project and the different repositories. For the BikeApp case study, we
searched for the following functionality: (i) encode the data between
the server and the clients, (ii) provide new functionality to geolo-
cate the bikes, and (iii) a calendar. For the TEAMMATES project, we
looked for the following functionality: (i) a voting system, and (ii) an
event manager. Finally, in the case of Kurki as it is similar to TEAM-
MATES, we decided to include only the event manager functionality
so we can compare differences in the TD ratios. For the three projects,
we used different keywords in Google as the search string to search
for reusable assets in the four repositories.

5.2 architectural debt index evaluation 105

Table 5.2: Number of reusable components found in open-source reposito-
ries

Case studies Maven GitHub SourceForge GitLab

BikeApp Encode data 115 170 9 13

Display geolocation 7867 92 5 0

Calendar 1648 111 8 2

TEAMMATES Voting system 17 14 92 9

Event manager 561 80 25 78

Kurki Event manager 561 80 25 78

In Table 5.3 we show the components we found and reused for each
project and from which repository we selected those components.
The criteria to select a component from a particular repository was
based on (i) the description of the functionality of the component, (ii)
compatibility of licenses between the software and the reused compo-
nent (iii) access to the source code, (iv) compatibility of the version of
the reused asset with the existing project and dependencies to third-
party libraries, (v) facility to import and configure the component,
and (vi) existence of a Javadoc file explaining how to use the compo-
nents found. Other criteria such as popularity or project releases can
be also considered. The developer can select one or several of these
criteria to find the most suitable asset.

Table 5.3: Reusable components selected in open-source repositories

Case studies Maven GitHub SourceForge GitLab

BikeApp Base64 — Base64 —
GoogleMaps GoogleMaps — —
JDatePicker JDatePicker — —

TEAMMATES Voting-Reward Voting-Reward,
Voting-System

— —

— FullCalendar — —

Kurki — FullCalendar — —

search and integration effort In the following, we explain
how we integrated the components found in the repositories and the
effort taken. We assume we consider the time needed starting from
the initial search for each component and project until a component
was found and reused, and the time required to integrate the compo-
nent into the project and check that the application does not contain
compilation errors and the new functionality is ready to be used. Re-
garding the search effort, we run Google queries for each new func-
tionality and we used the initial set of results to refine the search in
each of the four repositories. If the selected component does not serve,
we refine the query in each repository or we look for the next pop-

5.2 architectural debt index evaluation 106

ular component. Each repository has different facilities to perform a
refined search (e.g.: keywords, categories, or search string).

BikeApp: In this case study we reused three components. For the
Base64 component and based on the criteria we defined, we used
the search string “send java data encoded safety” in Google and we got
around 7 million responses, but the two first pages gave us 21 re-
sponses including Base64. We looked for comments about pros and
cons and we analyzed the functionality of the component as well
as the documentation and other comments. Then, we looked for the
selected component in the four repositories and eventually selected
the one from SourceForge because it does not require dependencies
to other libraries. All this effort took around 4.5 hours. The integra-
tion was done by importing the asset directly without using Maven.
We downloaded those libraries required by the client and the server
and we modified the corresponding Classpath file. Then, we modi-
fied the Servlet class (on the server-side) to gather the HTTP request
needed by the Base64 component and we added two new methods
to integrate the reused component. On the client-side, we modified
the HTTP request to process the data received. We also created a new
class to configure the app and select the type of encoding (i.e. HTML,
JSON, Base64). We spent between 1.5 and 1.7 hours in the integration
effort.

Regarding the search of the GMaps component we looked for an
asset that provides the location of the bikes, so the search string we
used was “get gps coordinates in Java”. As a result, we got 1.8 million
references. On the two first pages, we found 4 references, and the as-
set chosen was found in Maven and GitHub repositories. Based on
the same criteria as was used in the first case, we selected the com-
ponent from the Maven repository because it provides compatibility
information and which dependencies to other libraries are needed.
GitHub does not provide this information in such a clear way. The ef-
fort spent in searching the right component, and the integration effort
are shown in Table 5.4.

The integration of this asset required the modification of the class
that manages the events to select a hiring bike point and provide the
right address encoded in JSON format. We also needed to register
into the Google Cloud platform in order to access the Geocode API
used to decode the addresses of a GPS location. In addition, we had
some connectivity problems during the testing of the reused asset
that we solved by installing an additional component required by
Google.

Finally, we did the same for a calendar we needed to integrate using
Java Swing and the search string we used was “Java swing calendar”.
We got around 5 million results. From the first two Google pages, we
found a reference to the JDatePicker component, which was avail-
able in Maven and GitHub repositories. We selected the component

5.2 architectural debt index evaluation 107

from GitHub because it does not exhibit dependencies to other com-
ponents and due to the availability of a tutorial and examples of use.
We imported the component and we only needed to modify the class
that manages the event that activates the calendar. Similar to the other
components, the effort spent in the search process and integration as
well are shown in Table 5.4.

TEAMMATES: We did the same for the TEAMMATES projects
reusing 2 components. Regarding the Voting system component we
used the search string “Java student voting systems” and we got around
9.6 million answers. Screening the first two Google pages, we found
two similar components (i.e. voting reward and voting system) in dif-
ferent repositories and reused the voting system component according
to our criteria but the selection was mainly based on because is an in-
dependent Java project that does not require dependencies to external
projects and also does not require changes to be integrated with other
software. The second component is an extended calendar including
an event manager for appointments. We used the search string “event
manager calendar in Java” and we got 9.8 million results but we reused
the Event manager component from GitHub because of the examples
provided by the third-party developer, documentation of use, as well
as references from the other repositories to this component. The re-
sults about the components found and reused are shown in Table 5.3,
while the effort reusing and integrating both components is available
in Table 5.4.

Kurki: As this is a similar project like TEAMMATES, we decided to
integrate the same FullCalendar component previously reused so we
can compare the trend of the TD ratios of both projects and observe
if there are significant architectural differences. In this case the search
effort is equal to 0 and the integration effort compared to TEAM-
MATES just a little bit higher due to differences in the technologies
used in both projects. Table 5.4 describes the summary of the search
and integration efforts for the different components.

Table 5.4: Search and integration efforts of the reused assets (hours)

Case studies Assets Search effort Integration effort

BikeApp Base64 4.5 1.7
GoogleMaps 5 5.5
JDatePicker 6 1.1

TEAMMATES VotingSystem 6.5 1.4
FullCalendar 6 2

Kurki FullCalendar 0 2.2

Architecture after reuse: Finally, we reversed the new architecture
of BikeApp including the new components. As we can see in Figure
5.2, the new classes and components are shown in green color while
the entities required by these elements are displayed in light yellow.

5.2 architectural debt index evaluation 108

Figure 5.2: Final version of the reversed architecture of the BikeApp soft-
ware

Some of the new entities in green were created by us to invoke the
three new components. We added 13 new classes and components for
the new functionality reused, that is an increment of 17% of elements
from the original design. It might be possible that reusing different
components could have different numbers in terms of new function-
ality, but what is more important is that the architectural style did
not change after reuse.

debt ratios after reuse In Table 5.5 we describe the results
of the technical debt ratios from SonarQube and the ADI index from
Arcan after reuse. As we can observe we computed the TD ratios for
each project taking into account the SLOC of the new components in a
cumulative way (i.e. the TD ratio of the last component of each project
includes the previous ones). In the case of the BikeApp project, the
trend of the TD ratio observed decreased from 4.5 to 1.7. However,
the number of smells and issues for SonarQube increased from 248

and 253 (see Table 5.1) to 3551 and 3759 respectively.
From the results of Arcan, we did not find any architectural debt

in the original version of the project, but this debt increased after
reuse. Our results show many architectural smells (30 for Base64, 64
for BikeApp-GoogleMaps, and 66 for BikeApp-JDatePicker) with a
high q(ADI) value. In particular, Arcan identified the following ar-

5.2 architectural debt index evaluation 109

chitectural smells: 1 UD, 43 CD, 3 HL for Base64; 18 UD, 43 CD, 3
HL for GoogleMaps; 19 UD, 44 CD and 3 HL smells for JDatePicker.
Concerning the specific types of smell detected, Arcan only identi-
fied smells of type Cyclic Dependency. Hence, the values reported in
Table 5.5 refer only to that type of smell.

Regarding the TEAMMATES project, we observed that due to the
size of the project (i.e. 128k SLOC) and the small size of the reused
components, the TD ratios shown in Table 5.5 are the same. Only the
number of smells and issues varied. In the case of the voting sys-
tem, the number of smells grew from 2087 to 2136 and the number of
issues increased too from 2905 to 2977. For the event manager compo-
nent, we got the same number of smells as for the voting system, the
increment is insignificant, that is 2979 issues. Regarding Arcan results,
the ADI value (both ADI and q(ADI)) did not change since the orig-
inal project versions. In particular, the ADI value, which equals 12.0
for both extensions, is very close to the ones of BikeApp-GoogleMaps
and the BikeApp-JDatePicker. The only change happened in terms of
detected smell types: respect the original version, which counted 5

UD and 2 CD, the extended ones show one more UD (for a total of 4)
and one less CD (for a total of 3). About Kurki, we observed the typ-
ical increment in the number of code smells and TD issues compared
to the initial project but the TD ratio decreased from 1.0 to 0.6. This is
caused because Kurki is not so big a project like TEAMMATES and
doubling the number of SLOC after including the new functionality
led to a significant reduction of the TD ratio. Regarding Arcan results,
as happened for TEAMMATES, the ADI value (both ADI and q(ADI))
did not change from the original project version. Also, the number of
smells by type remained the same, i.e., one smell per type.

Table 5.5: Technical debt and architectural debt ratios after reuse

SonarQube Arcan

Case studies Assets TD ratio Smells Issues AS ADI q(ADI)

BikeApp Base64 4.5 365 383 30 1.0 3

GoogleMaps 1.7 3494 3701 64 11.0 5

JDatePicker 1.7 3551 3759 66 10.0 5

TEAMMATES VotingSystem 0.6 2136 2977 7 12.0 5

FullCalendar 0.6 2136 2979 7 12.0 5

Kurki FullCalendar 0.6 735 678 3 5.0 5

findings In this section, we describe our findings answering the
three research questions.

We can say that the most complex issues we found during the inte-
gration of the reused components are the following. First, to identify

5.2 architectural debt index evaluation 110

which elements of the target project which 1) needed to be modified
2) are influenced by the architectural style of the project and 3) are
underlying technologies used to implement the architectural style of
the project. For instance, for BikeApp and TEAMMATES projects us-
ing the model-view-controller (MVC) style we needed to identify the
right Web technologies (e.g. BikeApp uses Swing to implement the
"view" while TEAMMATES uses Angular).

Second, seeking the right component according to the architectural
style and technologies used in the target project, as in other cases the
integration of a reused component using different technologies may
lead to performing another search. This happened when we integrate
the voting system component for TEAMMATES. Also, in the case
of TEAMMATES and Kurki, we observed certain differences in the
integration effort caused by the different technologies used in both
projects.

Third, other minor issues like the invocation of the new compo-
nent or the creation of an instance of the object can be solved by
common programming techniques. Independently of some integra-
tion problems, we followed the criterion of ease of integration based
on a small number of dependencies to third-party libraries and the
compatibility of the reused component with the existing application.
In brief,

RQ1: Which are the most difficult aspects to integrate new func-
tionality found opportunistically in open source projects? The
most complex issues we found during the integration are the
identification of the parts of code to be modified in the target
project, the identification of the reusable component itself and
the technological gap that might arise between the target project
and the reusable component.

From the analysis of the code debt variation before and after the
reuse, we observed from Table 5.5 that the Sonarqube Technical Debt
ratio decreases if we reuse large-scale components like the Google
Maps one. On the contrary, if we start from a large software project
and the sizes of the components are small, the code debt ratio pro-
vided by SonarQube remains almost the same. In addition, in the
majority of the cases, the number of SonarQuve smells and issues
increase, but we found one case (i.e. the voting system component)
where the number of issues decreased a bit. Another aspect not cov-
ered in this study but worthy to be investigated is the criticality of the
new smells and issues and not counting only the number of instances.

RQ2: How code debt is affected after the integration of reusable
assets found opportunistically? The TD ratio appears to decrease
when reusing large-scale components and to stay the same with

5.2 architectural debt index evaluation 111

small components. However, the number of SonarQube smells
and issues increases.

Finally, concerning the impact of reuse on architectural debt, our
results show that reuse has an impact in terms of architectural smells
and consequently of architectural debt. In general, from what we ob-
served in Table 5.5, architectural debt increases after reuse, and in
particular when reusing large-scale components (Google Maps and
JDatePicker). In the case of project TEAMMATES, where the number
of AS does not change after reuse, the debt increases too, meaning
that the AS worsen in terms of severity (see Section 2.2.2), e.g., they
grow in size and affect more components (classes and packages). The
only project which was not affected by reuse is Kurki, whose num-
ber of architecture smells (AS) and ADI values remained the same.
Instead, in some cases, we needed additional search effort to find
suitable components aligned by the technologies supporting the ar-
chitecture of the project.

RQ3: How architectural debt is affected by reusing open-source
software? The number of architectural smells and the architec-
tural debt tend to increase after reuse.

threats to validity Some factors might have influenced the
results reported in our study. We discuss the main threats to validity
and how we mitigated them according to Yin’s guidelines [264]. To
enable the study replicability, all exploited material can be found in
the replication package6

Construct Validity. We adopted the default set of collected measures
considered by the SonarQube model since practitioners are reluctant
to customize the built-in quality gate and mostly rely on the standard
set of rules [245]. Also, we have tried as well as possible to replicate
the conditions adopted by practitioners that use this tool, although
we are aware that the detection accuracy of some rules may not be
precise.

Internal Validity. SonarQube detected duplication of the same issue,
reporting the issue violated in the same class and in the same posi-
tion but with different resolution times. We are aware of this fact, but
we did not remove such issues from the analysis since we wanted to
report the results without modifying the output provided by Sonar-
Qube and introducing other biases in the study.

External Validity. We analyzed three case systems trying to select dif-
ferent projects with different characteristics. However, we are aware
that other projects might present slightly different results. We have
considered for architectural debt detection only the AS detected by
the Arcan tool. We could have different results by considering other

6 https://github.com/CCS-repository-public/techdebt-2021

https://github.com/CCS-repository-public/techdebt-2021

5.2 architectural debt index evaluation 112

AS, but these smells based on dependency issues are certainly partic-
ularly critical for a project. In the future, we plan to extend the works
by considering additional types of AS.

Conclusion Validity. We can rely on the two tools we selected. Sonar-
Qube is one of the most popular static analysis tools largely adopted
both in academia [139, 140] and in industry [245]. Validation of Arcan
results is discussed in Chapter 3.

final remarks To the best of our knowledge, this is the first
work that examines the impact of TD when reusing software compo-
nents opportunistically in different software repositories. Our main
findings show that for larger projects the TD ratio provided by Sonar-
Qube remains stable or decreases, but in most cases, the number of
code smells and TD issues increase. The same happens when we
add a large component to a small project. We also evaluated the
projects’ architectural debt and the number of architectural smells
before and after reuse. Similar to SonarQube, Arcan detected more
architectural smells after reuse, which resulted in increasing archi-
tectural debt. One interesting outcome is that in the most affected
project (BikeApp), the most common type of smell is Cyclic Depen-
dency, suggesting that developers should particularly pay attention
to this specific smell while reusing software. This work, being a case
study, does not provide conclusive evidence of the effect of oppor-
tunistic reuse on TD. Therefore, further research is needed on the
topic, to better understand the right approach to measure TD in rela-
tion to opportunistic code reuse.

5.2 architectural debt index evaluation 113

5.2.2 Evaluating the Architectural Debt of IoT Projects

IoT software development is known to be different from the de-
velopment of other kinds of applications [59]. Development of IoT
applications, as outlined by Patel et al. [189], is particularly challeng-
ing because it involves dealing with a wide range of issues such as
“lack of separation of concerns and lack of high-level of abstractions
to address both the large scale and heterogeneity” and other issues.
Hence, Software Engineering technologies and tools are crucial to de-
sign, develop, deploy, and maintain high-quality IoT systems [129]
and it is important to capture the software engineering needs in the
IoT context.

While many works have done on evaluating ATD of non-IoT re-
lated systems, according to our knowledge this kind of analysis has
not been yet explored for IoT systems. We wanted to start exploring
this field, hence, in this section7 we focus our attention on evaluating
the ATD of 4 IoT platforms. An IoT platform is a set of software com-
ponents that support developers in implementing IoT architectures.
A platforms allows to build applications, connect to devices and re-
motely collect data, secure connectivity, and execute sensor manage-
ment. To evaluate ATD we use the Arcan tool. We report the results
obtained that show that also IoT platforms can be subjected to ATD
and suggest developers to take care of ATD by conducting periodical
refactorings.

study design We introduce the design of this study and the fol-
lowing Research Questions we aim to answer:

• RQ1: Which are the most present types of AS in IoT platforms?

• RQ2: What can we observe according to architectural debt of IoT plat-
forms?

To answer the two RQs we evaluate the ATD in terms of the AS
and the Architectural Debt Index (ADI) computed through Arcan.

7 A publication was extracted from this study [81]

Table 5.6: Analysed projects - Metrics

Project #Com.
First

commit
Last

commit
LOC
first

LOC
last

crate 432 26/06/2013 11/01/2021 208 470982

thingsboard 238 05/12/2016 12/01/2021 103106 178221

blynk-server 74 28/04/2018 23/12/2020 47382 54692

paho.mqtt.android 43 27/08/2015 04/06/2020 5591 6405

5.2 architectural debt index evaluation 114

Table 5.7: Analysed projects - Additional information

Project Domain Github

crate Distributed
database

https://github.com/crate/

crate

thingsboard Data analytics
platform

https://github.com/

thingsboard/thingsboard

blynk-server Home automa-
tion platform

https://github.com/blynkkk/

blynk-server

paho.mqtt.android Device connectiv-
ity framework

https://github.com/eclipse/

paho.mqtt.android

Since we have large experience [21][210][79] in analyzing the ATD
in open source projects, but not in IoT systems, through the answer
to these RQs we aim to analyze the ATD of IoT systems, in order
to provide some preliminary hints to the developers. In case ATD is
present or specific AS are identified in the systems, developers have
to pay attention to these problems to prevent them or remove them
as soon as possible.

analyzed projects We selected four IoT Java projects from the
list made available by Corno [59]. In particular, we selected the projects
written in Java, the programming language supported by Arcan. All
projects are hosted on Github, among the Open-Source and popular
ones in the Github community (highly ranked with Github stars). Ta-
ble 5.6 and 5.7 show the main project characteristics: names, the num-
ber of analysed commits, the considered time period (date of the first
and last commit), size expressed in Number of Lines of Code (LOC)
both for the first and last commit, the application domain and finally
the Github url. Concerning the commit analysis, we considered only
commits pushed or merged into the master branch, starting from the
beginning of the commit history and by sampling one commit every
30 days.

collected data We collected data about CD and HL, both at
class and package level, and UD. We also computed for each analysed
version its ADI value.

analysis In order to answer our research questions, we conducted
two kinds of analysis on the architectural debt data (number of AS
and ADI) collected with Arcan. First, we extracted a set of statistical met-
rics (mean, standard deviation, minimum value, maximum value) to
ease the interpretation of the results. All metrics are evaluated with
respect to the analysed time period, i.e., the data extracted from the

https://github.com/crate/crate
https://github.com/crate/crate
https://github.com/thingsboard/thingsboard
https://github.com/thingsboard/thingsboard
https://github.com/blynkkk/blynk-server
https://github.com/blynkkk/blynk-server
https://github.com/eclipse/paho.mqtt.android
https://github.com/eclipse/paho.mqtt.android

5.2 architectural debt index evaluation 115

considered commits. In this way, we can compare the results of the
different projects, even if they were calculated on time periods of dif-
ferent length.

We also conducted trend analysis to understand how ADI and AS
evolve overtime. We exploited the Mann-Kendall test (see Section 4.1),
which is a non-parametric test able to assess if there is a monotonic
upward or downward trend of the variable of interest over time. In
the context of this study, given the number of AS and the ADI value
for each commit, the test is able to compare the values across history
(i.e., the commits ordered by time of creation) and determine whether,
along time, the number of AS and ADI increases/decreases or does
not show a trend. If a trend is present, it can be the first clue that the
presence of AS and ADI has a relationship with other kinds of vari-
able, i.e., the maturity of the project, the seniority of the developers,
the development practices adopted by the developers and so on.

Finally, we conducted a manual validation of the results of the tests.
In particular, we collected the commit comments attached to Github
and the available release notes. This was useful to offer an interpre-
tation of the results of the single projects and to acquire information
useful to compare the different projects among them.

findings In this section, we report the results of our analysis and
also the answers to our research questions. Table 5.11 reports results
of the distribution analysis conducted on the 4 projects. The statistics
are evaluated on the number of AS, also divided by type (CD, HL,
UD), and on ADI, measured for each commit during the considered
time period. The project with the highest mean number of AS is Crate
(≈ 425), which has also the highest mean value of ADI (≈ 35). On the
other hand, Blynk-server has the lowest AS and ADI mean values.
Hence we can provide the answer to the first RQ:

RQ1: Which are the most present types of AS in IoT platforms?
The most present types of AS (on average) are UD (see values
of Blynk-server and Paho.mqtt.android) and CD (see values of
Crate and Thingsboard). The less present AS is HL.

We also ran the Mann-Kendall tests to analyse the trend of the same
variables (CD, HL, UD, AS and ADI). Table 5.12 reports the results
only of the significant cases, i.e., with p-value < 0.05. The table also
indicates whether the trend is increasing (+) or decreasing (−).

We now put in relation the results of the two analysis and provide
a brief discussion of the architectural debt of each project. Each of
the following figures depicts the ADI trend (y-axis) of the projects,
computed for each commit (x-axis).

Blink-Server: The ADI trend is decreasing, as also pictured in Fig-
ure 5.3. Another decreasing trend is the number of CD, which is also
the type of smell most present in this project, i.e., which determines

5.2 architectural debt index evaluation 116

Table 5.8: Distribution analysis results

Metric Blynk-server Crate Paho.mqtt.android Thingsboard

CD mean 1.73 379.50 11.52 5.00

CD std.dev 1.58 435.95 3.60 0.00

CD min 1 4 6 5

CD max 5 1456 20 5

HL mean 1.00 2.37 1.00 1.00

HL std.dev 0.00 1.20 0.00 0.00

HL min 1 1 1 1

HL max 1 5 1 1

UD mean 3.75 52.03 14.34 2.00

UD std.dev 1.90 34.85 3.19 0.00

UD min 1 1 10 2

UD max 11 143 24 2

AS mean 3.54 425.19 6.93 25.97

AS std.dev 3.26 468.11 1.98 6.37

AS min 1 1 1 17

AS max 17 1568 8 45

ADI mean 0.92 34.84 5.47 2.94

ADI std. Dev 1.03 28.74 2.37 1.30

ADI min 0 0 0 1

ADI max 5 199 8 8

the most the value of ADI. This means that the continuous removal
of CD contributes to the progressive reduction of the architectural
debt estimation. In general, this project on average has the smallest
number of AS, the smallest values of ADI and the best history in
terms of architectural quality improvement. We manually checked
the changelog available on Github and realised that one thing that
distinguishes this project from the others ones is the (good) habit, of
the development team, of conducting periodic refactorings. The evi-
dence of this behaviour can be easily traced from the changelog titles
(“fixes”, “improvements”, “cleanup”). One example, the comment to
the release 0.38.5 includes the statements “Tests speedup and refactor-
ings”, and also “Singletons for Hardware handler”: Singleton is the name
of a design pattern [88], an additional signal of the fact that they par-
ticularly took care about design quality and best practices. However,
this is also the smallest project in terms of LOC and also the project
with the shortest history. This could have influenced the final results.

5.2 architectural debt index evaluation 117

Table 5.9: Mann-Kendall test results

Project Variable p-value Trend

Blynk-server CD 0.002 -

Blynk-server ADI 1.87E-07 -

Blynk-server AS 1.66E-14 -

Crate CD 0 +

Crate HL 0 -

Crate UD 0 -

Crate AS 0 +

Paho.mqtt.android AS 0 +

Paho.mqtt.android ADI 0 +

Thingsboard ADI 0.004 +

We also checked the changelog of the commits corresponding to the
sudden drop of the ADI value from 5 to 0: in this case we have not
found references to any refactoring activities, however they report the
“Drop [of an] old HTTP API”. Our idea is that the developers changed
a relevant part of the code related to a legacy, eroded system’s API
and this substantially improved the ADI value.

Figure 5.3: Evolution of ADI value - Blynk-server

Crate: This project showed no ADI trend. From Figure 5.4, we can
see why: instead of following a trend, the data are distributed in pe-
riods where ADI oscillates between fixed values. In particular, in the
first ≈ 250 commits it ranges from 20 to 50, then it starts increasing
and oscillating between 20 and 200, and finally, in the last commits,
it is subjected to a strong decrease, ranging from 0 to 20. The oscilla-
tory behaviour might be explained by the fact that the development

5.2 architectural debt index evaluation 118

team exploits a code quality checker, named Spotbugs, which they
could use periodically to clean up the code. However, Spotbugs does
not address architectural or design concerns. Hence, we checked in
the project changelog, but we did not find indications to interpret the
evolution of architectural debt for this project. In brief, this project
has the highest mean ADI value, the larger number of AS, but we
have no clear information about the architectural debt history.

Figure 5.4: Evolution of ADI value - Crate

Paho.mqtt.android: This project’s ADI trend is increasing (Figure 5.5).
The few amount of commits allows us to follow the evolution of its
subsequent plateaus. Even if computed on few commits, its mean
ADI is the second highest among the four projects. We manually
checked the commits’ comments, but we did not find any interest-
ing clue behind why this project tends to increase its ADI.

Figure 5.5: Evolution of ADI value - Paho.mqtt.android

Thingsboard: Also this project ADI is increasing during time, even
if it cannot be grasped directly from Figure 5.6: the value oscillates a

5.2 architectural debt index evaluation 119

lot in the space of few commits. We manually checked the commits
and release comments, and found out that the development team
maintains two distinct versions of the project: thingsboard 3.X.X and
thingsboard 2.X.X, and both version releases are periodically merged
into master (the git branch that we consider during the analysis). This
explains why the ADI oscillates in this way.

Figure 5.6: Evolution of ADI value - Thingsboard

To conclude:

RQ2: What can we observe according to architectural debt of
IoT platforms? the analysed projects show an increasing ADI
trend, with the exception of project Blyink-server, whose periodi-
cal refactorings allowed the control of the debt. Thus, developers
of IoT systems should take care of the appearance of architectural
debt and schedule frequent maintenance activities.

threats to validity This study presents some threats to valid-
ity, we describe them according to Yin’s guidelines [264].

Concerning the construct validity, we chose to use our ADI, and
the choice highly influence the results, because the index is based on
AS and other kinds of indexes may take into account different facets
related to ATD. However, we chose to use ADI because 1) we wanted
to focus exclusively on ATD and not on other kinds of debt, 2) we
already had it implemented in Arcan 3) at the moment of the study
the implementation of ATDx [247] was not available.

Concerning internal validity, the consulted code commits may have
been misleading, providing poor insights about the actually commit-
ted activities. However, code comments are considered a (limited) but
valid source of information and have been exploited in other stud-
ies [262][206].

Concerning external validity, we analysed few projects, all written
in Java. However, our aim was to conduct a preliminary study and

5.2 architectural debt index evaluation 120

focus on the manual validation of single commit comments, which
would have not been feasible with a large pool of projects. In the
future, we aim to extend our analysis to more and different types
of projects. Another threat concerns the considered types of AS: the
choice of other smells may lead to different results. In the future, we
want to extend ADI with more types of AS and subsequently extend
the analysis on such smells.

Concerning reliability, we amply discussed the validation of Arcan
results in Section 3.

final remarks We evaluated the architectural technical debt of
4 IoT platforms, during their development history, for a total of 787

analysed commits. In particular we computed the Architectural Debt
Index (ADI), based on the detection of 3 different AS. All the consid-
ered projects are affected by architectural debt, in particular project
Crate. However, we found evidence in the changelog of project Blynk-
Server that periodical refactorings are effective in keeping the debt
under control: indeed, it is the only project with a decreasing ADI
trend along its development history. Another finding regards the type
of architectural debt discovered in the projects: from our analysis we
found out that Cyclic Dependency and Unstable Dependency are the
most present types of AS. However, this is a preliminary study con-
ducted on few projects, and we analysed only Java code. Moreover,
we did not keep in consideration the fact that the analysed project-
s/platforms came in different types and had different purposes, and
whether the impact of AS changed depending on such types.

5.2 architectural debt index evaluation 121

5.2.3 Evaluating the architectural debt of agent based systems

As in the case of IoT projects, to the best of our knowledge, there
are no studies about ATD in MultiAgent Systems (MAS) and MAS
development platforms. Anyway, the MAS community is deserving
to performance [169], scalability [8], security [69] and in general Soft-
ware Engineering aspects more and more attention in the last years.
Trend which is confirmed for example by the creation of the dedicated
Software Engineering area of interest at AAMAS (International Con-
ference on Autonomous Agents and Multiagent SystemsInternational
Conference on Autonomous Agents and Multiagent Systems), work-
shops focusing on Software Engineering topics (for example EMAS
(Engineering Multi-Agent Systems) and AREA (Agents and Robots
for reliable Engineered Autonomy) [51]), and works on Engineering
MultiAgent Systems (for example [157, 266]). It looks like it is only a
matter of time before other Software Engineering topics will be faced
by the MultiAgent Systems community too.

In this study8 , we aim to analyse four well-known and largely
adopted MAS development platforms (Jade, Jason, Jadex and Net-
logo) in order to evaluate their architectural debt: since these plat-
forms are used by many developers and have been released in many
versions in a quite long lifespan, we are interested in evaluating if
they suffer of ATD, so that in case to provide to their developers use-
ful hints to improve their quality.

Also in this case, We exploit Arcan to compute the Architectural
Debt Index (ADI).

Our results show that the considered systems suffer from ATD,
thus their developers should be aware of it so that to be able to man-
age these issues in future releases.

study design We introduce the design of this study and the fol-
lowing Research Questions we aim to answer:

• RQ1: Which is the most present type of AS in MultiAgents Systems
platforms?

• RQ2: What can we observe according to architectural debt of MultiA-
gents Systems platforms?

To answer the two RQs we evaluate the ATD in terms of the AS and
the Architectural Debt Index (ADI) computed through Arcan. Since
we have large experience [21][210][79] in analyzing the ATD in open
source projects, but not in MAS development platforms, through the
answer to these RQs we aim to analyze the ATD of MAS platforms, in
order to provide some preliminary hints to their developers. In case

8 A publication was extracted from this study [196], done in collaboration with Daniela
Briola.

5.2 architectural debt index evaluation 122

ATD is present or specific AS are identified in the systems, developers
have to pay attention to these problems to prevent them or remove
them as soon as possible.

analyzed projects We selected four well-known MAS devel-
opment platforms, namely Jade [33], Jadex[40], Jason[39] and Netl-
ogo[259], and analysed their development history. These projects are
written in Java, the programming language supported by Arcan. All
projects but Jade are hosted on Github, which, given the large amount
of code commits (code snapshots at specific points in time), enables
the easy analysis of their history. Table 6.7 shows the main project
characteristics: names, the number of analysed commits, the consid-
ered time period (date of the first and last commit), size expressed
in Number of Lines of Code (LOC) both for the first and last commit
and finally the download url. Concerning the commit analysis, we
considered only commits pushed or merged into the master branch,
starting from the beginning of the commit history and by sampling
one commit every 30 days. We conducted a different analysis for Jade,
which is the only project not hosted on Github. We collected six ver-
sions from the Maven Central Repository9 and run Arcan on all of
them. Since we found only the jar files, we could not report the num-
ber of Lines of Code in Table 6.7.

Notice that the selected projects have different history, community,
development team and purpose: indeed, different amounts of com-
mits are sampled in each case. This makes the individual results diffi-
cult to compare directly. However, we propose a preliminary analysis
which shall be complemented with manual validation from develop-
ers and additional context information.

collected data We collected data about CD and HL, both at
class and package level, and UD. We also computed for each analysed
version its ADI value.

We ran Arcan on the commits of each considered project and orga-
nized the results in a dataset, where each observation corresponds to
a single commit of a single project. The columns of the dataset store
the data about 1) the project the commit belongs to 2) the number
of AS detected in the commit (one column for each type) and 3) the
value of the ADI of the commit. The dataset and the analysis script
are available in the replication package10.

analysis In order to answer our research questions, we conducted
the same analysis adopted in the study about IoT ATD (see Sec-
tion 5.2.2), i.e., statistical metrics computation (about ADI and AS),
trend analysis and manual validation of the commit comments. No-

9 https://mvnrepository.com/artifact/com.tilab.jade/jade

10 https://gitlab.com/essere.lab.public/mas-atd-evaluation

https://mvnrepository.com/artifact/com.tilab.jade/jade
https://gitlab.com/essere.lab.public/mas-atd-evaluation

5.2 architectural debt index evaluation 123

Table 5.10: Projects characteristics

Project #Commits First commit Last commit
LOC

first commit
LOC

last commit Download url

Jade 6 23/12/2015 06/06/2017 - - https://

mvnrepository.

com/artifact/

com.tilab.

jade/jade

Jadex 111 05/11/2008 16/03/2018 130288 502220 https:

//github.com/

actoron/jadex

Jason 38 23/03/2017 20/04/2021 37447 45825 https:

//github.com/

jason-lang/

jason

Netlogo 25 05/08/2011 09/05/2016 60260 56075 https:

//github.

com/NetLogo/

NetLogo

tice that, concerning trend analysis, the Mann-Kendall test can be
used to find trends for as few as four samples. In our case, one sam-
ple corresponds to one commit. However, with only a few analysed
samples, as in the case of Jade (only 6 versions), the test has a high
probability of not finding a trend when one would be present if more
commits were provided. Hence, we report also the results of Jade
trend analysis, but knowing that they could be less relevant with re-
spect to the other analysed projects.

findings We now report the results of our analysis and also the
answers to our research questions. Table 5.11 reports results of the
distribution analysis conducted on the four projects. The statistics are
evaluated on the number of AS, also divided by AS type (CD, HL,
UD), and on ADI, measured for each commit during the considered
time period. The project with the highest mean number of AS is Jade
(≈ 879), and it has also the highest mean value of ADI (≈ 38).

On the other hand, Netlogo has the lowest AS and ADI mean val-
ues. On the other hand, Netlogo has the lowest AS and ADI mean val-
ues. Notice that it is reasonable to have a non-zero number of AS in
large projects as the considered ones. We analysed many Open Source
Java projects in past works, indeed the ADI value is tuned with a ref-
erence dataset of past analysed projects. However, to be able to define
how much is a “good” amount of AS in MAS platform is not a trivial
task, because the answer is largely bounded to the development con-
text (e.g., developers, developers skills, MAS platforms peculiarity).
That is why in this study we mainly focused on the evolution of ADI
and in grasping some insights about why the AS appear/disappear.

We can provide the answer to the first RQ:

https://mvnrepository.com/artifact/com.tilab.jade/jade
https://mvnrepository.com/artifact/com.tilab.jade/jade
https://mvnrepository.com/artifact/com.tilab.jade/jade
https://mvnrepository.com/artifact/com.tilab.jade/jade
https://mvnrepository.com/artifact/com.tilab.jade/jade
https://github.com/actoron/jadex
https://github.com/actoron/jadex
https://github.com/actoron/jadex
https://github.com/jason-lang/jason
https://github.com/jason-lang/jason
https://github.com/jason-lang/jason
https://github.com/jason-lang/jason
https://github.com/NetLogo/NetLogo
https://github.com/NetLogo/NetLogo
https://github.com/NetLogo/NetLogo
https://github.com/NetLogo/NetLogo

5.2 architectural debt index evaluation 124

Table 5.11: Distribution analysis results

Metric Jade Jadex Jason Netlogo

CD mean 846.83 123.38 61.95 9.06

CD std.dev 7.96 55.78 13.22 4.31

CD min 837 1 48 1

CD max 856 193 91 16

HL mean 5 1.62 3.34 1.00

HL std.dev 0 0.49 0.58 NA

HL min 5 1 2 1

HL max 5 2 4 1

UD mean 28 67.96 8.55 1.79

UD std.dev 1.67 28.19 2.36 0.43

UD min 27 1 7 1

UD max 31 103 15 2

AS mean 879.83 192.12 73.84 7.2

AS std.dev 7.22 83.32 13.71 6.09

AS min 869 2 59 1

AS max 888 289 110 18

ADI mean 38.33 10.80 23.45 3.96

ADI std. Dev 1.97 5.95 3.06 3.52

ADI min 35 3 19 0

ADI max 41 23 30 11

RQ1: Which is the most present type of AS in MultiAgents Sys-
tems platforms? The most present type of AS (on average) is CD.
The less present AS is HL.

We also ran the Mann-Kendall tests to analyse the trend of the same
variables (CD, HL, UD, AS and ADI). Table 5.12 reports the results
only of the significant cases, i.e., with p-value < 0.05. The table also
indicates whether the trend is increasing (+) or decreasing (−).

We now put in relation the results of the two analysis and provide
a brief discussion of the architectural debt of each project. In particu-
lar, we manually checked the commit comments of each project, with
a focus on the commits which presented large drops of the ADI value
(points of interest). Our aim was to find a relationship between the
change in the value of ADI and the content of the commit under anal-
ysis, starting from the description reported in the commit comment
by the developers. For instance, if a sudden decrease in the ADI is

5.2 architectural debt index evaluation 125

Table 5.12: Mann - Kendall test results

Project P-value Variable Trend

Jade 0.019 ADI -

Jadex 0.000 ADI +

Jadex 0.000 AS +

Jadex 0.000 CD +

Jadex 0.043 HL +

Jadex 0.043 UD +

Jason 0.003 AS +

Jason 0.000 CD +

Netlogo 0.000 ADI -

Netlogo 0.000 AS -

backed by a comment stating that a major refactoring was applied
in the commit, then the Arcan result is validated and we obtain an
insight about practices for the removal of ATD.

The following figures depict the ADI trend (y-axis) of the projects,
computed for each commit (x-axis). Table 5.13 reports the main points
of interest in the projects commit history, identified by the Date of the
commit, the Commit hash, the ADI value and the interesting Charac-
teristics of the commit. The table does not report results concerning
Jade because we conducted a different kind of analysis on it. Given
that Jade is not hosted on Github, we could not analyse the commit
comments, however we manually checked its changelogs.

jade As underlined before, the scarce number of analysed versions
may have hindered the trend analysis results. However, the Mann-
Kendall test gave an output for the ADI variable. In particular, the
ADI trend is decreasing, but not dramatically (see Figure 5.7). The
detected ADI value ranges from 35 (last analysed version, 4.5.0) to 41
(first analysed version, 4.3.0). Given the few versions, we were able
to manually analyse the changelog11 of all of them. We checked for
key-terms, namely Improvement(s) and Fix(es). We noticed that each
version is characterised by many fixes, with version 4.4.0 having the
greatest number of changelog comments addressing them (8). Con-
cerning improvements, we identified few of them (approximately one
per version), with most of them referring to enhancements to secu-
rity. However, version 4.5.0 reports a comment about “Improved code
style and logging”. A clean code style can improve maintainability,

11 https://jade.tilab.com/doc/ChangeLog, accessed October 2021

https://jade.tilab.com/doc/ChangeLog

5.2 architectural debt index evaluation 126

Table 5.13: List of ADI points of interest

Project Date Commit hash ADI Characteristics

Jadex 08/06/2009 09681d4371f53a1822de0a16c5b86e8349ea43c1 3 Min ADI value

Jadex 08/10/2009 5d266d02e4e9d90bde2dd942a7aff456eeca1aa4 3 Min ADI value

Jadex 14/12/2010 81be90b42d44a135e74d8a00213406951b78acaa 3 Min ADI value

Jadex 15/08/2011 a5b92b3f35a33222cd501bb37a2200e67d24187a 3 Min ADI value

Jadex 09/09/2014 fc28f548505583bfb2f1adcb1d3e368ec81aafd0 21 ADI drop, pre-
ceded by fixes and
introduction of
new data structure

Jadex 13/11/2017 6292d0cc21c24fa16627725e1bd0bfab52531222 9 ADI drop, pre-
ceded by fixes

Jason 20/04/2021 680921bbe8ff0247427d22e57ea3e36497143cd5 25 ADI drop, pre-
ceded by the
implementation
of a new test
framework

Netlogo 07/02/2012 15daf0d82f11acc3a66ac9ca369fccf4efe77776 8 ADI drop

Netlogo 08/05/2012 5c5f707059b9a5c6546702cd2092b58e971b2632 6 ADI drop

Netlogo 17/05/2013 00ab7fae6c16c7a9b7e6b928080b15e0cd532e29 3 ADI drop

Netlogo 17/06/2013 82673cd6eda0f19b1dd533bd0e3a629ea24f23e6 3 ADI drop

Netlogo 31/01/2014 05710fe041397fd70286bc2347343993dd4f5563 0 ADI drop, corre-
sponding to pull-
request

Netlogo 13/03/2014 9056a8d98b69a2a984580d2cafceffc50685acb6 0 ADI drop, corre-
sponding to pull-
request

Netlogo 15/05/2014 c6a5902697212fb7adc14ae8d1e8a3e428e4dae8 2 ADI drop, corre-
sponding to the ad-
dition of a new
Scala submodule

Netlogo 04/09/2014 895609613fc1b5f592ff9eb84dcc5767f40ee7ec 0 ADI drop, corre-
sponding to pull-
request

5.2 architectural debt index evaluation 127

and this could be reason behind the ADI value of this version, the
lowest detected.

Figure 5.7: Evolution of ADI value - Jade

jadex The ADI trend is increasing (see Figure 5.8). The same hap-
pens for all the other variables (number of AS, CD, HL and UD).
Indeed, Jadex is the project with the highest mean number of AS.

We manually analysed the points in time where ADI reached its
lowest values, with the aim to understand whether interesting prac-
tices to manage architectural debt could emerge. In particular, we
analysed the five commits corresponding to the lowest values of ADI,
equals to 3 (see Table 5.13). Unfortunately, there are no messages or
comments associated to those specific commits. The only interesting
aspect is that all the five commits were created by the same two au-
thors. We also analyse the period of time between and 09/09/2014

comments report multiple time the word “fix” and also the adoption
of a dedicated info structure for Non-Functional properties (NFPrope
rtyInfo class). which are Non-functional property annotation.

Another point of interest in the Jadex history is on date 13/11/2017,
when ADI drops from value 17 to 9. We checked the commit com-
ments between the two points, corresponding to the changes made
in a month, and all of them concern fixes. Some examples: “Fix proxy
factory class loader issue and component spec as class.”; “Fixed most test
failures caused by "config cleanup" commits”; “Fix component/bootstrap
factory stored as string and as class”.

jason This projects ADI does not show any trend, as can be seen
by the irregular shape of Figure 5.9). However, the number of AS and
CD has an increasing trend. We manually analysed a sampled period,
which comprises the commits between 17/08/2020 and 20/04/2021.

5.2 architectural debt index evaluation 128

Figure 5.8: Evolution of ADI value - Jadex

First we analysed the period from the high peak (ADI=30) to the low-
est point (ADI=19). From the commit comments and the changelog
of the nearest release, it appears that the most meaningful develop-
ment was the implementation of a new tests framework. Even if it is
affected by less AS with respect to Jadex, Jason is the project with the
highest average ADI value. This means that compared to Jadex, its
AS are more critical (have highest severity [210]).

Figure 5.9: Evolution of ADI value - Jason

netlogo NetLogo ADI trend is the only one decreasing (see Fig-
ure 5.10). At the same time, the number of AS has a decreasing trend:
we can deduce that the decrease of the value of ADI is not due to
the decreased severity of the smells, but only due to the decrease of

5.2 architectural debt index evaluation 129

the total number of smells. In general, Netlogo is the projects less af-
fected by architectural smells and with the lowest values of ADI (see
Table 5.11).

We manually analysed the commit history of this project, in particu-
lar we focus on the points where ADI decreases (see Table 5.13). Most
of the associated commit messages indicate improvements: “Minor
improvement to Client Perspective Example.”; “Mostly-irrelevant cor-
rection to a HubNet method’s Scala style”. However, there are no signs
of big, structural changes which could explain the significant drops of
the ADI value, apart from the presence of three pull-requests, corre-
sponding to ADI = 0 and the introduction of a new Scala submodule
providing network analysis tools for use in NetLogo (commit mes-
sage: “Add new network extension submodule!”).

Figure 5.10: Evolution of ADI value - Netlogo

RQ2: What can we observe according to architectural debt of
the considered MultiAgents Systems platforms? All the anal-
ysed projects present architectural debt along their development
history, but with different trends. Jadex has an increasing ADI,
while Jade and Netlogo show a descreasing trend, with Netlogo
having the last commits with zero debt. Jason did not present any
trend.

threats to validity The threats to validity of this study are the
same of the previous one about IoT platforms (Section 5.2.2).

final remarks We exploited our tool Arcan to analyse four Open-
Source MultiAgent Systems (MAS) development platforms and we
evaluated their Architectural Technical Debt (ATD). We investigated
the outcome of the tool by manually analysing the commit comments

5.2 architectural debt index evaluation 130

available on Github, for three of the four projects, and the changelogs
for one of them. From our analysis, we acknowledged that the consid-
ered MAS platforms are affected by architectural debt, in particular
Jade is the most affected, while Netlogo is the less affected, with a
decreasing ADI trend.

From the manual analysis, we could not find clear indication of
practices to manage architectural debt. However, for all the projects,
in the points in time where ADI reaches its minimum, the comments
refer to “Bug fixing”, “Improvements” or pull requests. This could
mean that architectural debt, usually considered only at architectural
level, has also a relationship with issues at code level, such as bugs.

5.2 architectural debt index evaluation 131

5.2.4 Sen4Smells: A tool for ranking architecture-sensitive smells for a debt
index

As outlined in the introduction to the chapter, the quality of a soft-
ware system can be evaluated by considering the technical debt accu-
mulated in the system [123]. To this end, Arcan is not the only tool
offering a Technical Debt Index (TDI): other software analysis tools
such as Sonargraph, CAST and Sonarqube (see Section 2.5) offer their
own index [20] [26]. Once developers have chosen a TDI and have
evaluated it on their project, a relevant aspect for them is the “in-
tepretation” of the index values [155]. By interpretation, we refer to
the ability of examining the index values in order to spot those AS (or
other system elements) that are the main contributors to the current
debt. This task can either involve looking at system elements with
different granularity (e.g., packages, classes, types of smells), or con-
sidering the history of a system element (i.e., the system evolution).
Common questions posed by engineers include: (i) which packages
are the most sensitivity ones for the current architecture health?, or
(ii) which smells have suffered instabilities in the past system ver-
sions that might compromise the design in future versions? As a re-
sult, the AS or packages being sensitive for the system architecture
should be reported, due to their impact on system evolution. Unfor-
tunately, the examination of TDI values is often a cumbersome and
time-consuming task for engineers.

In this context, we developed a tool called Sen4Smells12 that per-
forms an automated Sensitivity Analysis (SA) for a collection of sys-
tem values provided by a predetermined TDI. Our approach relies on
two building blocks: (i) the adaptation of an existing SA method to
debt indexes based on AS, and (ii) a decomposition strategy for the
index at different levels. At the lowest level, we leverage on AS and
TDI metrics (or features) associated to those smells. The goal is to
assess how TDI variations can be attributed to variations in features
of system elements [54]. To do so, the SA performs a screening of the
various system elements affecting the index over time, and returns
a ranking with the most sensitive ones to the tool user. The inputs
for this analysis are: a list of previous system versions, a particular
TDI, and the desired granularity of system elements. Sen4Smells is
designed as a pipeline, in which existing modules for detecting AS
and computing metrics from the source code can be wrapped, and
the user can configure them based on the selected TDI.

The main aim of this tool is the assistance for developers to in-
terpret TDI values in terms of problematic AS and system packages,
as indicators of system quality trends. We do not develop a new SA
technique, but rather select a suitable one and adapt it to our index

12 A publication was extracted from this study [50], done in collaboration with An-
tonela Tommasel and Andres Diaz Pace.

5.2 architectural debt index evaluation 132

Smell history
building

Smell
Information
Extraction

Sensitivity
Analysis

- Input Path
- Versions to process
- Debt Index to use

- Type of analysis
- Level of analysis

Project files

Smell history

Smell Ranking

Figure 5.11: Main processing stages and parameters of Sen4Smells.

interpretation problem. To evaluate the Sen4Smells functionality, we
have instantiated the pipeline with two indexes: our ADI and SDI
(Structural Debt Index), provided by the Sonargraph commercial tool
(see Section 2.5). Sonargraph computes cycles and metrics on Java
code. The SA is currently implemented via the well-known Sobol
method [214]. Other TDI formulas, smell analyzers, or alternative SA
methods can be integrated into the pipeline.

tool architecture & background Sen4Smells is designed as
a 3-stage pipeline architecture, as shown in Figure 5.11. A prototype
and examples are available13.

The first stage, called Smell Information Extraction, processes a se-
quence of Java system versions for the project under analysis, in or-
der to detect instances of AS and to compute features associated to
these AS. The system versions (project files) to analyze are provided
as input by the tool user. We assume she/he is looking for design
problems at the current version (i.e., the latest provided version). The
version processing is delegated to wrappers of existing tools (e.g., Ar-
can, Sonargraph). The user also specifies the debt index to be used.
In our context, a TDI is based on predefined AS types and features.
For example, Sonargraph Structural Debt Index (SDI) is a cumulative
function of the cycles (i.e., the smell type) and the number of depen-
dencies to be removed (e.g., a feature) to break those cycles.

The second stage, called Smell History Building, builds the evolution
history of the different AS across the range of versions. This evolution
history can be seen as a matrix [127], in which each column represents
a version at time t and each row represents a smell instance. As each
row is the combination of a smell and a feature, the cells of the matrix
keep the values of the smell features across versions. In this way, we
can trace “paths” of smell variations over time. Note that the user’s
focus is on AS appearing in the current version (i.e., the last known
version), whose behavior can be explained through the history of the
smell features in past versions. Once computed, the evolution history
of the AS is stored in a CSV file to be processed by the SA. Figure

13 See at https://github.com/tommantonela/Sen4Smells

https://github.com/tommantonela/Sen4Smells

5.2 architectural debt index evaluation 133

openjpa
1.0.0

openjpa
1.1.0

openjpa
1.2.0

openjpa
2.0.0

openjpa
2.1.0

openjpa
2.2.0

openjpa
2.3.0

openjpa
2.4.1

ud13 1.85 4.1 2.05 4.5 2.25 2.3 2.3 2.25

ud36 1.89 2.28 2.56 1.89 1.62 1.35 1.62 0.6

ud12 1.8 2.05 2.1 2.25 4.7 4.8 2.4 2.35

ud76 0.6 1.7 1.7 2.43 1.8 2.43 1.8 2.43

ud4 0.81 0.81 1.26 1.26 1.8 1.8 1.8 2.43

ud17 0.68 0.68 0.36 1.66 1.57 1.42 1.42 1.66

ud49 0.8 0.8 0.8 1 1.53 1.53 1.53 1.53

hl26 0.35 0.5 0.5 0.45 0.5 0.55 1.2 1.2

ud10 0.48 0.13 0.13 0.21 0.28 0.21 0.21 0.28

cd34 - - - - 1.05 0.9 0.9 1.05

cd35 - 0.27 0.2 0.27 0.27 0.3 0.3 0.3

cd48 1.26 1.26 1.26 1.59 1.59 1.59 1.59 1.59

ud7 - - - 0.26 0.26 - - 0.26

Figure 5.12: Evolution of scores for smells across different OpenJPA ver-
sions.

5.12 shows a matrix with the evolution of index scores for a subset of
AS (left-most column) detected in 8 versions of Apache OpenJPA.

The third stage, the last one, is the Sensitivity Analysis, which takes
as input the smell evolution paths and the chosen TDI to report a
ranking of smells (or other system elements) to the user. Given a TDI
formulation (e.g., the ADI definition, Section 5.1), we see it as a black-
box model that relates inputs (the values of the AS features) to a nu-
meric output (the index value for each system version). This model
is exercised with the Sobol method, which is a global SA method
for measuring the contribution of the inputs to the output variance
(other SA methods are also possible). As a result, a sensitivity score
(also known as Sobol index) is assigned to each AS. The higher the
smell score, the higher the chance that variations in the TDI are due
to that smell. Thus, we interpret the score as the architecture sensitive-
ness of each smell regarding the whole system design. The SA can be
performed at the level of AS (which is a fine-grained level), but also
at other granularity levels. For instance, the user can be interested in
grouping the AS according to the system packages or smell types. In
the former case, the smell features are grouped per top-level package,
and the SA returns a ranking of critical packages. In terms of the tool
concepts, this means that the TDI can be decomposed using different
criteria, and then the SA is adjusted accordingly. For example, Fig-
ure 5.13 shows a report of key AS and packages for OpenJPA (X axes)
using the Sobol method.

index decomposition strategy For analyzing TDI values, we
propose a decomposition of the (global) index formula into its con-
stituent parts. These parts (or elements) can refer to different gran-
ularity levels, namely: (i) the AS themselves (bottom level), or (ii)

groups of AS using a predefined criterion. For example, we might
group the AS based on either their type or the package structure of
the system. At each level, the corresponding elements are character-
ized by the features of the index formula, which altogether provide in-
dex values for the elements. This decomposition strategy is sketched

5.2 architectural debt index evaluation 134

ud13 ud36 ud12 ud76 ud4 ud17 ud49 hl26 ud10

S1
(a) Sobol Indices for key smells

S1

(b) Sobol Indices for key packages

Figure 5.13: Results of sensitivity analysis for OpenJPA

in Figure 5.14, with an example of an intermediate level of AS group-
ing.

From a temporal perspective, our strategy looks at the index values
over a range of system versions, independently of the granularity
level under consideration. This way, we can analyze trends in the
evolution of AS, or in the evolution of packages (as groups of AS).
Departing from the index decomposition, the elements at each level
are seen as variables whose values follow a particular distribution
over time. These distributions are fed into the SA for interpreting the
TDI.

. . .arch.
smell 1

Smell score 1 =

feature A

. . .
feature B

arch.
smell 2

Smell score 2 =

feature A

. . .
feature B

arch.
smell N

Smell score N =

feature A

. . .
feature B

Debt Index t

smell
group 1

Smell group
score 1 =

feature A

. . .
feature B

smell
group M

Smell group
score M =

feature A

. . .
feature B

. . .

LE
V

EL
O

F
G

R
A

N
U

LA
R

IT
Y

(D
EC

O
M

P
O

SI
TI

O
N

)

version tversion t-k

Debt Index t-k

(range of versions)

Figure 5.14: Decomposing a debt index in granularity levels and over time.

5.2 architectural debt index evaluation 135

sensitivity analysis SA techniques study how the variation in
the output of a model can be apportioned among model inputs [214].
In our problem, the input variables are the AS features or index scores
(at a given decomposition level), while the model output is the global
index value. If a change in a variable results in a relatively large
change in the index, then we say that the index is sensitive to that
variable. From this analysis, a ranking of key variables (e.g., AS or
system elements) can be obtained. For instance, for OpenJPA in Fig-
ure 5.13, the SA employed a model with around 90 variables for AS.
In general, the selection of a SA method depends on the model char-
acteristics, the computational efforts to run the model, and the SA
objectives, among other factors.

The Sobol method [214] is a global SA technique, which allocates
the output variability to the variability of the inputs taking into ac-
count all the variables and interactions among them. The results of
this method are the so-called Sobol indices for the input variables. The
higher the value of a sensitivity index, the more influential the re-
spective variable is for the model. First-order indices (S1) reflect the
main effect and measure the fractional contribution of a single vari-
able to the output variance. Total-order indices (ST) take into account
the main, second-order and also higher-order effects of variables on
the output variance. Figure 5.13a shows the S1 values for the top-10

AS for the ADI. For instance, an S1 of 0.18 was obtained for ud36,
which indicates that this smell is very likely to influence the index.
A plausible developer’s interpretation of the situation is that a few
UD smells are more problematic (in terms of increased dependencies)
than a large group of CD smells (if their cyclic dependencies remain
stable). If we instead analyze the package org.apache.openjpa.conf

in Figure 5.13b, an S1 value of 0.12 reflects an influential role of (the
AS in) the package for the ADI. The analysis reveals other influential
packages as well, such as: org.apache.openjpa.meta and org.apach

e.openjpa.util.
The transformation of index features into SA variables involves

mainly three tasks: (i) specifying the decomposition level for the vari-
ables (e.g., smells, packages), (ii) sampling values from the evolution
history of those variables, and (iii) computing the Sobol indices. For
sampling the values of the variables, we rely on their distribution in a
range of system versions. For CD smells, the distribution often shows
cycles becoming larger (or smaller) over time; while for UD and HL
smells the variations are due to an increase (or decrease) in the num-
ber of dependencies to the packages affected by the AS. If AS are
grouped, an analogous distribution can be derived.

case-studies Currently, Sem4Smells is able to work with the ADI
(Arcan) and the SDI (Sonargraph) indexes. Each TDI needs an inte-
gration with the corresponding tool, which is adapted and parame-
terized in the pipeline. A video with usage examples for both cases

5.2 architectural debt index evaluation 136

is available14. The whole pipeline is executed from the command line
using different configuration options.

arcan & the architecture debt index The Smell Informa-
tion Extraction component takes the JAR files of the system versions,
and passes them on to a wrapper for the Arcan engine. When in-
voking Arcan on a given version, it generates a “version” object that
contains all the detected AS and their ADI features. To ensure exten-
sibility, this version structure is independent of the particular TDI.
Then, the Smell History Building component merges all versions into a
smell evolution matrix, which is saved to a standard CSV file.

The Sensitivity Analysis component reads from the matrix to run the
Sobol analysis. The desired granularity level for the analysis is con-
figured in this component, which triggers the creation of AS groups
as Sobol variables. This functionality is open to the integration with
any index or AS type. In addition, the TDI formula that maps the
variables to index values needs to be set. For ADI, this formula was
implemented via a general class of the component. A CSV file for
each ranking is finally outputted.

sonargraph & the structural debt index Unlike Arcan,
each system version needs to be initially processed by Sonargraph,
and then exported as an XML report file. This file contains informa-
tion about cycles and SDI features. In the Smell Information Extraction
component, we rely on a Sonargraph API15 for accessing each XML
file as a version object. The process continues with the generation of
the smell evolution file by the Smell History Building component. Fi-
nally, the Sensitivity Analysis component runs the Sobol method as in
the Arcan case, except that the SDI formula is configured as the index
to be used.

final remarks In this section, we have described the Sen4Smells
tool that performs a sensitivity analysis of a TDI based on the under-
lying smells in the formula. A direct benefit of this analysis is that
makes a TDI actionable for engineers, by enabling the identification
of key AS and problematic packages. As future work, we plan to
integrate the tool pipeline within a build process of a project. Also,
visualizations and reports based on the SA rankings could improve
the tool.

Regarding the Sobol method for the SA, we found it useful be-
cause it makes no assumptions about the index formulations. How-
ever, from experiments with projects with a large number of smells,
we observed that the computational efforts required by Sobol might
increase rapidly with the number of variables. In such cases, more
efficient methods should be explored. A possible related study is to

14 See at https://www.youtube.com/watch?v=6RL0qCqZYPM
15 https://github.com/sonargraph/sonargraph-integration-access, accessed October 2021

https://www.youtube.com/watch?v=6RL0qCqZYPM
https://github.com/sonargraph/sonargraph-integration-access

5.2 architectural debt index evaluation 137

validate whether the rankings are correlated with critical parts of the
analyzed systems, where the criticality can be measured with metrics
such as PageRank (see Section 5.3) or can be assigned to each part of
code by the developers working on the project under analysis.

5.3 as criticality evaluation 138

5.3 as criticality evaluation

When describing our Architectural Debt Index (ADI), we made ref-
erence to the computation of the AS PageRank and Severity. They are
metrics useful to evaluate specific properties of AS, namely criticality
and cost-solving (see Section 2.2.2).

Criticality of an AS models the degree of removal urgency associ-
ated to the AS, i.e., the smell should be removed as soon as possible
because it affects a part of the project which is important for the devel-
opers (e.g., frequently changed or highly referenced) or has a strong
impact on the maintainability of the project. On the other hand, cost-
solving (cost of fixing, cost of refactoring) of AS is the effort needed
to remove a smell from the system [209]. This variable depends less
from the perception of the developers but more from the specific char-
acteristics of the interested AS. To resume, during AS management,
developers can take into consideration two distinct aspects concern-
ing smells: their criticality, i.e., how much is important to remove
them as soon as possible (urgency), and their cost-solving, i.e., how
much it costs to remove them.

In this section16 we describe our work regarding the investigation
of the relationship between criticality and cost-solving, measured with
the Severity and PageRank metrics: see Section 2.3 for the definition
of the Severity of each AS, see Formula 12 in Section 5.1 for PageRank
definition. We previously conducted a preliminary study in which
we graphically analysed the trend of Severity and PageRank and also
started investigating their possible correlation [82]. We took in con-
sideration six single-version projects. We then extended the study by
conducting an empirical evaluation on a total of 264 versions of 10

projects with the aim to empirically study criticality and cost-solving
during the evolution of the projects, and investigate whether there
is a correlation between the trends of the two metrics. The following
Section reports the results of the analysis.

5.3.1 Empirical Study Design

The study aims to answer the following Research Questions (RQ):

• RQ1: How PageRank and Severity of the smells evolve in the version
history of a project?

• RQ2: Can we find some correlation between PageRank and Severity
by considering each type of smell?

The answer to RQ1 aims to analyze if the values of the two metrics
tendbut to increase or decrease in the version history of the projects.
Moreover, we are interested in understanding which AS type(s) tend

16 A publication was extracted from this study [200]

5.3 as criticality evaluation 139

to become more critical and/or difficult to remove in the version his-
tory of a project, where the criticality is evaluated through the PageR-
ank and the cost solving is estimated with the Severity metric. In this
way a developer can decide to focus the attention on these types of
smells first.

The answer to RQ2 allows to evaluate the correlation between the
criticality and the cost solving of a smell. If for example the values
tend to go together, highly correlated, for a specific type of AS, it
means that as long as the smell is critical, it is also hard to remove
and vice-versa: in this case, the two metrics would produce the same
ranking of smells, i.e., the prioritization of the smells would be equal
by considering one of the two metrics interchangeably.

In case of positive correlation, it could be also in any case interest-
ing to analyze possible outliers with different values of the metrics
(high/low) and better capture the relevance of the metrics. We could
find that the two metrics have a strong positive correlation for a spe-
cific type of smell, and not for other smells. This scenario can outline
the relevance of the metrics for each type of smell. Otherwise, no cor-
relation, we could infer that there is no link between the urgency of
removing a smell and the cost of removing a smell, as computed by
the proposed metrics. In this case a developer can decide to not re-
move an AS with low PageRank and high cost solving, and to remove
first an AS with high PageRank and low cost solving, since this AS
could become more critical since it appears in a central part of the
project.

We aim with our study to provide developers insights on the evalu-
ation of criticality and cost solving of AS through the PageRank and
Severity metrics. Severity metric is focused on evaluating the cost
solving in terms of the number of project dependencies affected by
the smells, while PageRank is more focused on the importance (crit-
icality) of the affected components (classes/packages). Hence, both
metrics could be useful to determine the prioritization of AS, i.e., help
the developer in choosing which smell to refactor first depending on
the developer’s needs, i.e., the need to address the most critical ones
first or the most expensive ones.

Since, as already outlined, we exploited the two metrics to compute
the ADI value, the results of this study can be useful also to evaluate
whether the two metrics truly capture different aspects of a smell or
not. In the latter case, one of the two metrics could be left out.

We describe below the analyzed projects, the data we collected on
AS, their Severity and PageRank and the data preparation and analy-
sis.

analyzed projects We analyzed several versions of 10 projects,
for a total of 264 versions (see Table 5.14). Most of the chosen projects
were picked from the Qualitas Corpus [239]. We selected these projects

5.3 as criticality evaluation 140

Table 5.14: Summary of the dataset

Project #V #CD-Cl #CD-Pkg #HL-Cl #HL-Pkg #UD #AS

Ant 24 8131 2064 15 92 243 10545

Azureus 24 97172 29801 41 70 3478 130562

FreeCol 24 30488 1652 86 54 356 32636

Hibernate 24 12910 9026 18 129 1267 23350

JMeter 26 3930 2681 79 54 574 7318

JGraph 24 2602 79 79 1 51 2812

Jstock 24 13585 619 64 8 247 14523

Jung 22 894 658 31 27 270 1880

Lucene 31 6241 407 9 59 187 6903

Weka 44 25241 5200 102 41 1042 31626

Acronyms. V: version, CD: Cyclic Dependency, HL: Hub-Like Dependency,
UD: Unstable Dependency

since they have already been the subject of several studies, they are
publicly available and enable the replication of this study. These data
were also combined with data from the MavenRepository17, also pub-
licly available. We considered several releases for each project.

To easily compare the different projects, we chose roughly the same
amount of versions and preferred different releases, major or minor,
over patches when possible. In general, in this paper we use the term
version to refer both minors and majors. The chosen systems also vary
in size and number of smells (see Table 5.14). In the column group last
version we report the projects’ size (in terms of classes/packages) and
number of AS of the last version of the project in the development
history.

data collection and analysis We performed this study by
considering three (HL, CD, UD) of the six AS detected with Arcan,
but also the other AS can be considered in the future. We limited the
analysis on the following three smells since they are the only ones
for which we integrated the Severity metrics into the definition of
ADI. We ran Arcan and we pre-processed the output data in order to
produce the dataset for our analysis. Other than Arcan, we exploited
the Knime platform[114] and R programming language [241] for the
processing and statistical analysis of the data. The resulting dataset
is a collection of 262155 smells categorized by project, version, type,
granularity level, Severity and PageRank. Table 5.14 shows the sum-
mary of our dataset, where we report the project size and the number
of smell instances, divided by type: for each project (considering all
versions in history) we show the number of detected CD at class and

17 https://mvnrepository.com/

https://mvnrepository.com/

5.3 as criticality evaluation 141

package level (CD-Cl and CD-Pkg), of detected HL at class and pack-
age level (HL-C and HL-P), of detected UD (UD) and the sum of all
project’s AS (AS). A smell instance corresponds to one occurrence of
the smell in the project, thus the reported numbers are the counts of
all the occurrences.

We studied two different aspects: 1) Severity and PageRank evolu-
tion, in order to answer RQ1; 2) Severity and PageRank correlation to
answer RQ2.

Concerning evolution, we analyzed the evolution of the two metrics
for each type of smell in order to study their different behaviours.
We summarised the data for each version by averaging the values
of both metrics with respect to the total number of smells detected
in the version. We conducted trend analysis to understand how the
average values of PageRank and the different types of Severity evolve
overtime. We exploited the Mann-Kendall test (see Section 4.1).

We also analyzed the two metrics’ evolution with respect to the
evolution of the projects’ size, where size corresponds to the num-
ber of classes and packages of the projects under analysis, to check
whether the two things are correlated. We ran Spearman and Kendall
correlation tests to investigate this aspect.

Concerning the correlation analysis of PageRank and Severity, we first
tested the normality of our data. Given the large size of our dataset,
we used Q-Q plots [260] to evaluate if the measures do not follow a
normal distribution. A Q-Q plot is a graphical method for comparing
two probability distributions by plotting their quantiles against each
other. These plots are often used when the dataset is large enough to
introduce bias in the Shapiro-Wilk test [219], which is a commonly
used normality test. The Q-Q plots of all the projects showed a non-
normal behaviour. Then, we tested the correlation between Severity
and PageRank for each version of the projects. We computed the cor-
relation on the metrics data of all smell type together and also sep-
arately for each smell type. We also computed the correlation sepa-
rately for each granularity level, to contextualize the results at pack-
age or class level. Given the non-normal distribution of our data, we
chose the Spearman’s [227] and Kendall’s [119] coefficients to calcu-
late the correlation.

5.3.2 Results

We report the results both for PageRank and Severity evolution
and their correlation. At the end of each section, we also report the
answer to the relative RQs. All the results and plots can be found in
the replication package18.

18 https://figshare.com/articles/dataset/_/13636472

https://figshare.com/articles/dataset/_/13636472

5.3 as criticality evaluation 142

Table 5.15: Mann-Kendall results - PageRank

Project Trend P-value Reference AS

Ant + 0.009867 CD-package

Azureus + 2.77E-05 CD-class

Azureus + 0 CD-package

Azureus + 3.81E-06 HL-class

Azureus + 0 HL-package

Azureus + 0 UD-package

Hibernate + 0.030929 CD-class

Hibernate + 0 CD-package

Hibernate + 0.000677 HL-class

Hibernate + 0 HL-package

Hibernate + 2.38E-07 UD-package

Jgraph + 0.001375 HL-class

evolution results In order to answer RQ1, we checked the
trend of PageRank and Severity values throughout the versions of
the projects. For every project and for both PageRank and Severity,
we run the Mann-Kendall test. Table 5.15 and 5.16 show the outcome
of the test, namely reporting the Trend (increasing + or decreasing -),
the P-value and the Reference AS (the type of smell which the PageR-
ank refers to) for PageRank, while Granularity (class or package) for
Severity. The tables report only results where p− value < 0.05, i.e.,
there is a trend. We outline from Table 5.15 and 5.16 the following
remarks:

• PageRank and Severity show a trend during time in few projects.
We found PageRank trend in four over ten projects, while Sever-
ity showed a trend in five projects. The tables only show the
projects with a positive or negative trend.

• Concerning the Severity of CDs, we observed both positive and
negative trend at class level, in 4 projects, and a negative trend
at package level, in one project.

• Concerning the Severity of HLs, we had examples at both class
and package level of positive trends.

• The Severity metric of Unstable Dependency smell does not
show a trend in any project, and we could notice only one
project (Hibernate) where the PageRank of UD smells had a
trend.

5.3 as criticality evaluation 143

Table 5.16: Mann-Kendall results - Severity

Project Trend P-value Granularity

Severity - CD

Azureus + 0.024848 class

Hibernate + 0.000291 class

Jstock - 0.025486 package

Jung - 0.039728 class

Lucene - 3.25E-06 class

Severity - HL

Jstock + 0.002832 package

Lucene + 0.000422 class

Weka + 0.002132 class

Weka + 0.005923 package

We extended our analysis to see if the project size (measured by
number of classes and packages) is correlated with the values of
PageRank and Severity. We tested it for each project over its devel-
opment evolution. We then analyzed the distribution of the correla-
tion on the data of all projects. The first thing we noticed is that the
number of classes and packages increases overtime.

However, this does not happen for Severity and PageRank values:
we do not find a significant correlation between size and the met-
rics except for the correlation between PageRank computed on AS on
packages and the number of packages in the system. The correlation
values, computed for all the projects, have range in [0.34, 0.89], with
median equals to 0.74. We hypothesise that the correlation is high for
PageRank because of how it is computed: the more the number of
packages, the more the dependencies and higher the PageRank val-
ues are. For this reason, one may say that this should be true also
for PageRank computed on classes correlated with the number of
classes: instead, their correlation values range in [−0.87, 0.9] with me-
dian equals to 0.45. This result may be due to the high variance in the
number of classes among the projects (variance which is smaller for
what concerns packages).

RQ1 Answer How PageRank and Severity of the smells evolve in the
version history of a project?: in general we found that the average
values of PageRank and Severity do not have a trend (neither
positive or negative) over time.

Concerning the comparison with projects’ size evolution, we
found out that PageRank computed on packages show a posi-

5.3 as criticality evaluation 144

Table 5.17: Severity and PageRank correlation (last version only)

Project Version Spearman P-value Kendall P-value

Ant 1.10.7 0.582 < 0.001 0.46 < 0.001

Azureus 4.8.1.2 0.871 < 0.001 0.704 < 0.001

FreeCol 0.10.7 0.809 < 0.001 0.64 < 0.001

Hibernate 4.2.2 0.719 < 0.001 0.573 < 0.001

JMeter 5.2.1 0.575 < 0.001 0.455 < 0.001

JGraph 5.13.0.0 0.664 < 0.001 0.581 < 0.001

Jstock 1.0.6w 0.621 < 0.001 0.494 < 0.001

Jung 1.7.6 0.643 < 0.001 0.506 < 0.001

Lucene 4.3.0 0.411 < 0.001 0.33 < 0.001

Weka 3.7.9 0.53 < 0.001 0.428 < 0.001

tive correlation with the evolution of the number of packages:
this is reasonable, since the increase/decrease in the number of
packages has an impact also on the creation/deletion of package
dependencies, thus on PageRank.

correlation results In order to answer RQ2, we report in Ta-
ble 5.17 the results of the correlation between Severity and PageR-
ank, evaluated on all AS, not considering their type. As can be seen,
the majority of the projects presented a strong positive correlation
(ρ > 0.6).

Following, we discuss the correlation results by considering the
different types of AS.

The coefficient values are bounded between:

• (CDs) 0.427 and 0.942 with Spearman’s and between 0.214 and
0.812 with Kendall’s;

• (UDs) 0.253 and 1 with Spearman’s and between 0 and 1 with
Kendall’s;

• (HLs) -1 and 1 for both coefficients.

Due to their low occurrences, the metrics of HL and UD usually
present a strong correlation. However, there are cases in some projects
versions where the scarce number of detected smells makes this cal-
culation misleading: in some cases correlations are very high, in other
ones are very low (fluctuate). On the other hand, CD is the most com-
mon smell in the dataset and this has an effect on the correlation
values: they largely vary in the dataset, making CD the smell type
with some of the highest correlation values and at the same time the
smell with some of the lowest correlation values.

5.3 as criticality evaluation 145

However, a clear result is that for all projects the correlation at
package level between PageRank and Severity of CD is strong, with
the exception of JGraph (see the following paragraph).

observations on weak and negative correlations From
Table 5.17 we can observe that some projects, such as JMeter, Lucene,
Weka and Ant show a weak correlation between the two metrics. We
aim to investigate these behaviours and we start by analyzing two
projects: JMeter, having a weak correlation, and JGraph, showing non-
positive correlation values for CDs at package level. We focus on the
last version of both projects because it is associated to the most up-
dated codebase, hence we assume it is the most exemplary for them.

By analyzing the correlation coefficients of JMeter’s AS, we no-
ticed that when they are calculated separately for each AS type, they
present higher values than the ones reported in Table 5.17. Using
Spearman’s as an example: 0.575 is the ρ value by not considering
the AS type and 0.638, 0.9, 0.881 are the values for CDs, HLs and
UDs respectively. The values seem to imply that actually, while the
correlation in general is weak for this project, when we look at the
specific smell types, the two metrics tend to be positively correlated.
However, the number of HLs and UDs in JMeter is very small com-
pared to the number of CDs. Since correlations computed on few
observations are not significant, we can conclude that only the corre-
lation value computed on CDs is relevant for JMeter, and it explains
why the overall correlation value is weak for this project.

If we closely analyze JGraph evolution, initially it shows a negative
correlation for CDs at package level, which progressively increases
(0.2 in version 5.10.0.1) and becomes strongly positive (0.73) in ver-
sion 5.12.1.0. We further investigated what caused these changes in
the correlation values. In the first versions with negative correlation
we observed 3 CDs at package level, two of them with similar Severity
and PageRank values and one with a strongly higher PageRank value,
probably the cause of the negative correlation. After version 5.10.0.1
we noticed the presence of a 4th one. Its Severity was in line with the
others and also its PagerRank: this likely balanced the PageRank val-
ues and subsequently caused the increase of the positive correlation.
Hence we can conclude that the variations in the correlations values
from negative to positive were due to the introduction of a new smell
instance, whose metrics values strongly impacted the correlation val-
ues due to, as for JMeter, the general small amount of smell instances.
However, this specific case does not represent a common behaviour
in our dataset.

RQ2 Answer Can we find some correlation between PageRank and
Severity by considering each type of smell?, we found out that the
smell type showing the highest PageRank and Severity correla-

5.3 as criticality evaluation 146

tion is CD at package level. However, also the other types, HL
and UD, showed strong correlations, but given the lower amount
of HL and UD instances, we consider the result regarding CDs
more meaningful. We also investigated specific cases of projects
with weak correlation and negative correlation but we did not
find further insights.

5.3.3 Discussion

We found a strong correlation between PageRank and Severity. This
means that, concerning the analysed data and the considered smells,
the criticality and the cost-solving of smells go hand in hand: in the
case of this study, if a smell affects an important (unimportant) part
of the system, then it will also have a high (low) cost solving. We can
outline two different interpretations of the results. The positive corre-
lation could be due to the nature of the two metrics, both bounded
to the dependencies of the system. In this case, the conclusion would
be that PageRank and Severity capture the same characteristic of the
smells, and one of the two is redundant. As consequence, in the ADI
computation [17], only one of the two metrics should be used to eval-
uate AS criticality.

However, given how the metrics are defined, they differ one from
the other. Severity takes into account the dependencies which are
directly affected by the smell, while PageRank considers also depen-
dencies outside the smell which converge towards the components
affected by the smell. Figure 5.15 shows an example of two classes af-
fected by the CD smell: the class on the left presents a high PageRank,
due to the high number of incoming dependencies, and a low critical-
ity; the class on the right has low PageRank, but since it is involved in
two cycles, one of which is also large, its Severity is high. When con-
sidering PageRank, the most dangerous smell is represented by the
first example, but when considering Severity the second example has
the highest value. By combining the two metrics, both smells result
crucial.

With such premise, the two metrics would capture different aspects
of the smells, and their positive correlation could mean that critical
parts of the system attract AS which are more expensive to solve.

Moreover, one could ask where is the difference in using PageR-
ank when we could use simple coupling metrics such as FanIn and
FanOut [150]. However, when evaluating the coupling of a compo-
nent, such metrics take into account only the incoming or outgoing
dependencies of the component itself. On the contrary, the PageRank
value of a component takes into account the PageRank of all the com-
ponents belonging to the dependency graph. In particular, the PageR-
ank of a component is defined recursively and depends on the num-
ber of dependencies and the PageRank metric of all the components

5.3 as criticality evaluation 147

that reference it (incoming dependencies). In this way, a component
having many incoming dependencies but referenced by components
with few incoming dependencies, is less important with respect to an-
other component with many incoming dependencies and referenced
by other components with many incoming dependencies. That is why
PageRank is said to evaluate the importance of a component with re-
spect to the entire graph.

From our analysis it results that the positive correlation is particu-
larly evident in the case of CD. The reasons behind the CD Severity
high correlation can be multiple: a part of code with high PageRank is
interested by more changes [255] with respect to other parts of code,
and thus more open to the introduction of (structurally complex) CDs.
This is interesting because in the literature we find studies which con-
firm the correlation in the other direction [133], i.e., the presence of
AS makes the components more prone to change: if our hypothesis
can be further corroborated, the conclusion would be that the rela-
tionship between PageRank and CD Severity is like a dog chasing its
tail, one triggers the other. Another reason could be that components
with high PageRank are involved in a high number of dependencies,
thus still making easier for a developer to wrongly introduce new
entangled dependencies and create cycles very difficult to remove.

To conclude, there is a positive correlation between AS Severity
and PageRank, however at the moment we cannot draw a definitive
conclusion about how to interpret this finding. We plan to conduct
a validation of our results with developers from industry, who could
evaluate the ability of the two metrics to capture criticality and cost-
solving, and also manually check the specific cases where smells have
high PageRank and high Severity.

PR: high
ASS: low

PR: low
ASS: high

Legend: PR = PageRank, ASS = Architectural Smell Severity

Figure 5.15: JUnit example of CD smells

5.3 as criticality evaluation 148

5.3.4 Threats to validity

Our study presents some threats to validity which we address by
following the structure suggested by Yin [264]. Concerning the con-
struct validity, the two metrics, PageRank and Severity, may not mea-
sure what we claim they do, i.e., the criticality of the AS. However,
this is a preliminary study and the next step is to validate the cur-
rent definition of the metrics with developers, by letting them check
whether the prioritization produced by the metrics is significant or
not.

Other threats regarding the internal validity could be related to the
choice of the statistical methods used for the correlation analysis
and their implementation in the used tools, but we exploited very
well known and used tools (R language). Moreover, we did not val-
idate the two metrics by investigating the perception of developers
of PageRank and Severity. However, PageRank was adopted in other
studies as software ranking metric [192][255][187], and we plan for
the future to validate Severity in industrial setting.

Threats to external validity could be caused by the fact that we only
analyzed projects written in Java and publicly available. However, we
partially mitigate such issues by analyzing 10 projects with more than
22 versions each. Moreover, the high number of CDs could have re-
duced the effect of the other types of detected AS in the results. We
could have mitigated this aspect by sampling the CD instances and
thus balancing the dataset. However, this would additionally reduce
the size of the dataset, mining the validity of the CD results too. In
the future, we aim to extend the study with additional data for the
smells and further remediate to this threat.

Finally, concerning threats to the reliability of the study, we amply
discussed the validation of Arcan results in Section 3.

5.3.5 Final remarks

We performed an empirical analysis on 22 versions of 10 projects of
two software metrics, Severity and PageRank, in order to evaluate the
cost-solving and criticality of AS. We also performed this evaluation
with the perspective to better understand if in the ADI computation
both the two metrics have to be used or not, if they provide hints
on the criticality evaluation of the AS that have to be both taken in
consideration.

To conclude, from the analysis of the evolution and correlation of
PageRank and Severity we found out that the two metrics tend to be
correlated, except for some extreme cases.

It could be useful for developers to analyze the specific cases where
AS have high PageRank and low Severity (and vice-versa), since they
could indicate smell instances which require a tailored prioritization

5.3 as criticality evaluation 149

rationale: developers may be interested in identifying cases where
the smell is easy to solve (low Severity) but in an important part of
the system (high PageRank), and choose to refactor this case first;
on the contrary, s/he could decide not to refactor a smell difficult
to solve (high Severity) and in an unimportant (low PageRank) part
of the system. We can assert that such smells are a signal that both
PageRank and Severity could be useful to define different refactoring
priorities, from different points of view. In particular, PageRank can
be used to identify parts of code which need a continuous inspection,
while Severity can be used to evaluate the cost-solving for the AS
removal.

The smell type presenting the strongest correlation is CD, suggest-
ing that highly critical components (with high PageRank) attract CDs
hard to solve (with high Severity). Thus, developers should pay great
attention to CD smell, also because CD is the most common AS and in
particular those at package level tend to become more critical in terms
of PageRank in the history of the project development. However, we
do not exclude the possibility that the two metrics have strong corre-
lation because they capture the same aspects of smells. In that case,
we could exploit this information to refine the computation of our
ADI and leave out one of the two.

In any case, we need to conduct a validation of both metrics and
on the correlation results, with expert developers or by comparing
the ranking provided by the metrics with information coming from
issue trackers [133]. The intuition behind is that a component affected
by a critical smell (with high PageRank and high Severity) should be
also interested by many issues. Indeed, other studies in the Litera-
ture adopt this idea, for instance Le et al. [133] exploited the issues
reported in the projects’ issue trackers to analyze the impact of smells
on software development and the creators of Titan (DV8) use issues
as input for the identification of “hotspots”, i.e., set of classes affected
by many design flaws [116][163].

5.4 summary of the findings 150

5.4 summary of the findings

This chapter offered an overview of the research we conducted in
the evaluation of the architectural technical debt of Java projects. In
particular we computed an existing index (ADI) over a set of projects
addressing different application domains:

• Internet of Things (IoT) platforms

• MultiAgent System (MAS) platforms

We also studied the fundamental component of the index with the
support of sensitivity analysis and by analysing the single metrics
assessing AS criticality. The three AS that we focused on are Cyclic
Dependency, Unstable Dependency and Hub - Like Dependency, i.e.,
the ones currently included in the ADI computation.

From our analysis, we came to the conclusion that ATD is not only
tied to the growth of the size of software projects, on the contrary,
there are practices (adopted by developers) that can help in manag-
ing the ATD. We found hints of that in software repositories: when
manually analysing the points in the evolution of both IoT and MAS
platforms where the ADI values reach their minimums, we found ev-
idence that periodical refactorings and frequent fixes/improvements to
the code are effective in keeping the debt under control. This could
mean that architectural debt, usually considered only at architectural
level, has also a relationship with issues at code level, such as bugs.

On the other hand, reusing third-party components, which is a rec-
ommended practice as much as refactoring in SE, seems to be detri-
mental for the system’s quality. In particular, in the example projects
that we analysed, it lead to the accumulation of both AS and TD.

Concerning the different types of smells we detected in the anal-
ysed projects, we can say that in general the most present AS in all
the different domains is Cyclic Dependency, followed by Unstable
Dependency. We found very few examples of Hub-Like Dependency.

We also developed a tool pipeline able to decompose a given tech-
nical debt index and indicate to developers the AS which contribute
the most to the debt and the most problematic packages.

Finally, concerning the criticality of the considered AS, we found a
strong correlation between the values of PageRank, used to evaluate
the importance of an AS and Severity, our proxy for AS cost-solving.
This means that, concerning the analysed data and the considered
smells, the criticality and the cost-solving of smells go hand in hand:
if a smell affects an important (unimportant) part of the system, then
it will also have a high (low) cost-solving. Future directions concern-
ing this subject can be found at the end of the thesis in Section 8.2.

6
A R C H I T E C T U R A L S M E L L S D E T E C T I O N I N
M I C R O S E RV I C E S A R C H I T E C T U R E S

In the past few years the microservices field has received large at-
tention, both from industrial and academia world [85]. Microservice
architecture is an architectural style that structures an application as
a collection of small, loosely coupled and self-contained components,
called services, which implement specific business capabilities [175].
These components communicate through lightweight protocols and
are usually developed by dedicated teams which take care of their
entire life cycle, enabling independent deployment. A single com-
ponent (service) in this architecture is elastic, resilient, composable,
minimal, and complete; moreover it is easy to replace it and focused
on a single business capability. Services can be developed with dif-
ferent programming languages and by different teams of developers,
which makes them ideal in a business environment in continuous
evolution. The characteristics of the services enable selective scaling,
which means that the number of instances of each service can be cho-
sen and tailored depending on the particular need; moreover they
enable continuous and fast delivery. For these reasons, many legacy
existing projects are moving from their original monolithic architec-
ture to embrace this new paradigm.

The migration consists in various steps aimed at refactoring and de-
composing the current codebase in independent domain components.
At the moment, these tasks are usually carried out manually [118]
with the partial support of software analysis tools to navigate the
code under inspection. In addition to being time consuming, this pro-
cess requires specialized personnel on software analysis with knowl-
edge about the system to be refactored. Moreover, in large legacy
software the documentation of the architecture and code design is
often missing or does not reflect the actual implementation. In a sur-
vey conducted on 18 practitioners, Di Francesco et al. [65] collected
feedbacks on migration to microservices experiences. The questions
regarded the activities carried out during the migration: reverse engi-
neering, architecture transformation and forward engineering. Con-
cerning in particular the reverse engineering phase, the majority of
the interviewed agreed that understanding the existing system, in
particular by identifying its functionalities and subdomains, is very
important to architect the new system. Moreover, the authors iden-
tified challenges regarding the high level of coupling of the existing
system, the problems in identifying the candidate microservices and
the system decomposition. They suggest that a tool able to support

151

6.1 industrial case studies on the migration 152

practitioners in these activities during migration could be particularly
useful.

The final solution (the migrated architecture) could be subjected to
smells too. Some of the recent works on migration from monolithic
systems to microservices [86][232][147]) highlighted that the migra-
tion process generally increases Technical Debt (TD). The major rea-
son behind this is the need to rewrite the vast majority of the code
to be migrated, an activity which could expose the system to the in-
troduction of new issues. Moreover, the monitoring of the migration
process, the large number of point-to-point connections between ser-
vices, and the presence of business logic in the communication layer
usually increase the dependency between services and consequently
the TD [242].

In order to identify which factors can affect TD in microservices-
based systems, a set of microservices-specific anti-patterns and smells
have been identified [236], [234]. Bogner et al. [37] conducted a Sys-
tematic Literature Review on the subject and created a public catalog
of anti-patterns/smells. Other practitioners and researchers have also
proposed anti-patterns (or smells) [207][7][208], highlighting that they
should be removed from the code since they could decrease software
maintainability, increase bug-proneness, and generate different types
of issues. In this thesis, we call them Microservices Smells (MS).

While various tools exist for monolithic systems that can detect
code smells and architectural smells, few tools support the identifi-
cation of microservice smells, which means that developers need to
manually check whether their systems comply with standards and
do not contain smells. This is due to the usage of recent technologies
for the implementation of this kind of architectures and the difficul-
ties that must be faced when monitoring network communications
among services at runtime [159].

Our work focus on both the migration and the maintenance of mi-
croservices. We conducted two industrial studies about the role of
architectural smells during the migration from Java monolithical sys-
tems towards microservices and then developed 1) an extension of
Arcan for the detection of MS, still based on the static analysis of the
code 2) A brand new tool, named AROMA (Automatic Recovery of
Microservices Architecture), which leverages dynamic analysis tech-
niques to reconstruct the microservices architecture and identify MS.

6.1 industrial case studies on the migration towards

microservices

Before starting the study of smells in microservices systems, we
asked ourselves whether the migration towards microservices was
hampered by the presence of AS in the (monolithical) architecture to
migrate. Given that the core concept behind the design of microser-

6.1 industrial case studies on the migration 153

vices architectures is the extreme cohesion and low coupling of the
services, not only logically, but also technologically, and given that AS
(among the others) hinders those properties, we hypothesized that AS
could represent an obstacle for the migration. Hence, in our studies
we first analyse the existing codebase to identify AS and then attempt
the migration, monitoring the possible difficulties due to the smells.
Our approach is summarised in a process which we implemented in
Arcan (see Section 6.1.1). This extension supports the identification
of candidate microservices through different techniques, which vary
from graph algorithms to topic detection, where the latter has been
previously used in the literature in different contexts such for exam-
ple to analyze code in the context of public projects/repositories la-
belling [143, 203, 256]. In particular the application of Latent Dirichlet
Allocation [36] algorithm has been used in our approach to identify
services depending on the application domain.

Our migration process is not the first one proposed. The discussion
on how to migrate from monolithic architectures to microservices pro-
duced several practical guidelines to help developers in this process:
they usually come from direct experiences in the industry [46], but
also from research in academia [28] [160] [101]. See Section 7.4.2 for
more insights on the related works.

The first study was conducted in collaboration with Alten Italy1,
while the second with Anoki2, an italian company active in the field
of IT consulting.

In the remainings of this section, first we introduce the Arcan ex-
tension for the support to the migration, then we report the results of
the two studies.

6.1.1 Candidate Microservice Identification through Arcan

This Arcan extension offers a set of functionalities to gather infor-
mation on how to decompose the project starting from the monolith-
ical code. We propose a migration approach through different steps:
1) architectural smell detection 2) dependency graph analysis 3) topic
detection (see Figure 6.1). All these steps produce information useful
to identify candidate microservices. The three steps differentiate since
the first offers hints on how to decompose the project under analy-
sis taking in consideration the presence of architectural smells; the
second aims to retrieve blocks of the project that are structurally in-
dependent and can be reused or transformed in microservices, while
the third aims to identify the parts of the project which belong to the
same “domain” in order to return a “semantic map” of the project. In
this way a maintainer involved in the migration is able to collect hints
and information of different kinds coming from different sources, and

1 https://www.alten.it/, accessed October 2021

2 https://www.anoki.it/, accessed October 2021

https://www.alten.it/
https://www.anoki.it/

6.1 industrial case studies on the migration 154

choose the decomposition solution which best fit the project under
analysis.

In particular, as shown in Figure 6.1, the Dependency Graph Anal-
ysis step includes different methods to identify microservices, respec-
tively: connected components detection of the dependency graph 1©
and generation of two views, Vertical Functionality 2© and Logical
Layer 3©; while the Topic Detection step includes the analysis of the
text coming from the code and execution of two topic detection algo-
rithm to extract “hidden concerns”, named Latent Dirichlet Alloca-
tion (LDA) 4© and Seeded Latent Dirichlet Allocation (SLDA) 5©. At
the end of the process, the available information regards the hidden
modules in the monolithic architecture that can be exploited for the
migration to the future microservice architecture: the proposed solu-
tion aims to maximize the modules’ cohesion to ease the activity of
creating single-purpose services.

dependency graph analysis The aim of this step is to obtain
an indication on how the monolithic architecture should be decom-
posed by looking at the static structure of the project under analysis
i.e. its dependency graph. This step is based on an assumption: even
if Java monolithic systems are considered a big mixture of lines of
code, most of the times they are composed by well defined Java ser-
vices [28] such as REST services, JMS services, SOAP services, EJB
services and Servlet/JSP services. The presence of these services is
characterized by the use of dedicated Java libraries which enable their
implementation. These can be detected by inspecting the dependency
graph with graph queries and by executing graph algorithms. The fol-
lowing paragraphs go deeper in the description of the three methods.

• Connected Components Detection: This functionality consists
in applying the Depht First Search (DFS) algorithm [218] in or-
der to find connected components (sets of Java classes or pack-
ages) in the graph by considering the undirected edges. The
subgraph that can be generated has only nodes corresponding
to the identified components. In Arcan, the algorithm is used
to detect totally detached parts of code, which can be extracted
independently from the project.

Dependency Graph
Analysis

Connected
Components

detection

Topic
Detection

SLDA

LDA
Candidate

Microservices
Input

Project

Logical Layer View

Vertical
Functionality

View2

3

1
4

5

Architectural
Smell

Detection

Figure 6.1: Migration to microservices process

6.1 industrial case studies on the migration 155

• Vertical Functionality View: This view aims to isolate and show
each functionality contained in the project under analysis in or-
der to support the extraction of the interested parts of code as
microservice candidates. This is obtained by running the Depht
First Paths (DFP) algorithm [218]: by providing a specific set of
source classes, the algorithm is able to compute for each source
class the paths on the directed graph. The nodes of the paths
represent the Java classes and the edges represent the depen-
dencies among the classes. Then, every path is compared one to
the other in order to find eventual “shared” classes i.e. classes
that belong to more than one path. There are various ways to
provide to Arcan the input source classes to be used as starting
nodes for functionalities search.

a) The simplest one, that can be used when the maintainer has
zero knowledge about the project under analysis, is to choose
the classes with no incoming dependencies. This means that
such classes are never referred from other parts of code in the
project, making them candidate entrypoints.

b) The second way requires more information: it chooses classes
with no incoming dependencies which refer to specific libraries.
For instance if a class exploits the Java API for RESTful Web
Services(JAX RS)3, it may be a good candidate to find an hid-
den REST service inside the monolithic architecture. The tool
already recognizes the libraries which implements the JEE Spec-
ification.

• Logical Layer View: This view allows to divide the classes in
groups depending on the layer they belong to. Layers refers to
the ones of the three tier model, which organizes the code in
presentation layer, application processing (business) layer, and
data management (persistence) layer. The tool is able to separate
and assign each class to its layer by looking at their external
dependencies, in particular checking the Java implementation
packages of the JEE specification. Unlike the vertical function-
ality view, the layered one offers a coarse grained representa-
tion of the project under analysis. In this way it is possible to
understand the role of each class when the maintainer has no
information about how the code is organized.

topic detection Usually microservices are created depending
on specific “domains” or “business concerns” of the project. When
migrating from a monolithic architecture, it is not trivial to automat-
ically extract such concerns from the code without human supervi-
sion. However, a possible solution to this problem could be reached
through topic detection techniques, by considering code as text and
by looking for topics that could correspond to services. In this work,

3 The Java API specification that supports the development of RESTful web service

6.1 industrial case studies on the migration 156

the algorithms exploited to extract topics from code are Latent Dirich-
let Allocation (LDA) [36] and Seeded Latent Dirichlet Allocation (SLDA),
a semi-supervised variant of the original LDA algorithm [112]. The
latter algorithm allows the maintainer to provide some seed words so
that the model is encouraged in finding evidence of some “expected”
topics in the data. The idea behind the choice of the seeded algo-
rithm is that developers may know some of the topics which could
be hidden inside the monolithic system and enhance the results of
the detection. The following paragraph describes the topic detection
process.

1. Document collection: a document is created by selecting com-
ments and source code words from a single Java class, in par-
ticular the class name, its membership package name and the
name of all its methods. Class attributes and variables are not
included since often they do not distinguish a class from each
other by belonging to a specific topic (e.g. “filename”, “x”, “a”,
“temp”). This step is implemented in Java language.

2. Preprocessing: this step consists in manipulating the text con-
tained in the documents to enhance the results of topic detec-
tion. In particular, the documents created starting from Java
classes are tokenized i.e. their stream of characters is broken into
words. After tokenization, filtering is applied. The resulting to-
kens are converted to lower cases and are analyzed in order to
remove numbers, punctuation and stop words, which are the
very common words in a language. This step is implemented in
Python language.

3. (Seeded) Latent Dirichlet Allocation: the last phase is the run-
ning of the topic detection algorithm. In order to run the LDA
algorithms, the Python library guidedLDA4 was used. This li-
brary was chosen because it lets the maintainer to define a set
of seed topics. The output consists in the detected topics repre-
sented as word-topic distribution and the document-topic distri-
bution, that is the proportion of words of each topic associated
to a given document.

At the end of the process, the maintainer can collect hints about the
semantics of the project to be migrated, in particular on which Java
classes are associated to a specific domain.

Notice that this approach differentiate from the feature graph intro-
duced in Section 2.1. Even if both leverage Natural Language Process-
ing (NLP) techniques, the model described in this section requires a
set of input parameters in order to run, one of which is the number of
expected topics (candidate microservices) to extract. The Arcan exten-
sion into which the model is implemented is prior to the development

4 https://guidedlda.readthedocs.io/en/latest/, accessed October 2021

https://guidedlda.readthedocs.io/en/latest/

6.1 industrial case studies on the migration 157

of the feature graph and represents our first attempt to exploit NLP
in combination with classic software analysis. The model performed
satisfactorily in the context of our industrial studies since we had
knowledge of the projects under analysis (both studies involved de-
velopers actively working on the projects) and thus we had enough
information to predict the number of expected topics. However, we
strongly praise the benefit of non-parametric procedures, as the com-
putation of tf-idf exploited in the generation of the feature graph,
which frees us from the definition of the input parameters and sup-
port the software comprehension even when there is lack of project
knowledge.

6.1.2 1st Case study: Alten Italy

We started a collaboration between academy and a company (Alten
Italy) in order to experiment how Arcan could be useful in order
to support the migration towards microservices of a project of the
company5.

The outcome of this study was useful both for academic and in-
dustrial purposes, since the feedback on the tool were exploited to
improve the tool and for the company to identify a useful support to
be used during the migration process.

The analysis was carried out by an experienced developer which
executed Arcan on an industrial project and identified candidate mi-
croservices basing on the tool outcomes. Moreover, he provided sev-
eral feedbacks on the migration techniques offered by Arcan and on
the final candidate microservices solution that he was able to define
thanks to the tool. The industrial project analyzed is a Java enterprise
project developed to manage the collection of information for the ini-
tiation of legal proceedings. It is composed by 267 classes divided
into 27 packages. The developer originally took part in the develop-
ment of the analyzed project, in particular he managed the collection
of requirements and the development process. Hence, he possessed
remarkable knowledge on the design choices and business logic: we
chose this particular case study because we were interested in valu-
able feedbacks on the quality of the solution proposed by Arcan.

The following paragraphs show the results obtained through the
different migration steps implemented in Arcan. The developer fol-
lowed the approach described in Section 6.1.1. The data generated by
the tool are available6.

5 A publication was extracted from this study [198], in collaboration with Andrea
Maggioni

6 https://drive.google.com/drive/folders/1kLJXMPXhG2U8pIrqG_MWVU0STSCdIsMN?

usp=sharing

https://drive.google.com/drive/folders/1kLJXMPXhG2U8pIrqG_MWVU0STSCdIsMN?usp=sharing
https://drive.google.com/drive/folders/1kLJXMPXhG2U8pIrqG_MWVU0STSCdIsMN?usp=sharing

6.1 industrial case studies on the migration 158

Table 6.1: Detected Architectural Smells

Unstable

Dependency (UD)

Hub-Like

Dependency (HL)

Cyclic

Dependency (CD)

Feature

Concentration (FC)

10 1

class package
22

4 2

architectural smells detection results First, the devel-
oper executed Arcan. Table 6.1 shows the number of AS detected in
the project under analysis. The considered AS were Unstable Depen-
dency (UD), Hub-Like Dependency (HL), Cyclic Dependency (CD)
and Feature Concentration (FC) (see Section 2.2). He could retrieve
the most relevant information from the analysis of Cyclic Dependency
and Feature Concentration smells, for the reasons described below.

Cyclic Dependency The developer recognized four cycles as real is-
sues for the monolithic application. However, he reported that “Those
cycles will not be a problem during the migration” except for one cycle
on classes. This particular smell involved 3 classes which are part of
the central logic of the application, whose aim is to create entries on
a calendar basing on a set of deadline rules. He foresaw that in the
new architecture this logic will be completely redefined, in particular
it will be divided into different services. He indicated the presence of
the cycle as a possible obstacle to the decomposition of the applica-
tion.

On the other hand, two of the four CD smells detected on classes
resulted to be false positives. Both are cycles between an anonymous
class and its corresponding container class and this Java feature al-
ways leads to the introduction of a tiny cycle.

Feature Concentration The developer found the detection of this smell
particularly useful. He was able to identify the main domain entities
of the application, that represent the information managed by the ap-
plication, since the smell instances affected the packages containing
business application classes. Table 6.2 shows the identified entities.
The approach he followed to identify entities starting from FC smell
consists in: 1) spotting the affected packages from Arcan results; 2)
exploiting the Neo4J browser to navigate the disconnected subgraphs
and 3) extracting the entities associated to the different subgraphs.

dependency graph analysis results The following paragra
phs show the results of the service detection using the Vertical Func-
tionality and the Logical Layer views. The results of Connected Com-
ponents detection are not discussed since the developer did not use
it to build the final microservices solution; the detected components
did not gave him interesting hints on the business concerns/function-
alities.

6.1 industrial case studies on the migration 159

• Vertical functionality view results The developer chose to run
the generation of the vertical view with the two possible kinds
of input offered by Arcan: classes with no incoming depen-
dencies and classes with no incoming dependencies depending
from specific JEE libraries. The view generation with the first
type of input returns a csv file containing all the directed paths
starting from the classes without incoming relations. In this case
study the total number of detected paths was 69: the developer
found the use of this information expensive in terms of time,
hence moved forward with the next analysis. The second type
of input computes DFS paths from nodes which have been iden-
tified as Web and Web Service in JEE Specifications. The results
of the second view generation returned a total of 3 paths. In
this case, he reported that one of the paths was useful during
the analysis; it helped in identifying the service regarding the
components which manage the entity called Attachments, where
Attachments represents the files uploaded on the application and
saved on a Mongo Database.

• Logical layer view results: Table 6.3 shows the results of the ser-
vice detection process using the Logical Layer View functionality.
The table shows the different layers and the number of classes
assigned to each layer and the value of True Positives (TP) and
False Positive (FP) class assignments, which the developer used
to compute Precision.

By analyzing the false positive results, the developer reported
that Arcan can not assign the correct layer to the classes which
use the Spring framework [229] classes, both for the Persistence
layer and for the Web layer. The matching rules implemented
in this first version of the Logic Layer Detection algorithm have
been thought basing on old functionalities of the Java Enterpise
Edition, which are used in many legacy projects. In more re-
cent Java application Spring is a popular framework, hence the
developer suggested us to introduce new rules taking in consid-
eration the use of Spring to achieve higher precision value on the
layer-class assignation.

topic detection results This step consisted into two main
parts. First the developer ran the Document collection generation of
Arcan, which reads the Java source files and produces for each class
a csv file which contains the meaningful words contained in the class.
In total Arcan produced 267 files which contain 418 different words.
Then the developer executed the two versions of the LDA algorithms.

From the first run of the classic LDA algorithm, he noticed the
noise produced by some words belonging to technical aspects of the
libraries used in the application e.g. the HTTP methods connected
to the “Spring Controller” of Spring Framework. Hence, he excluded

6.1 industrial case studies on the migration 160

Table 6.2: Main Entities

Entity

Event User

DeadlineItem Suspension

Attachment Notification

Society Proceedings

CronologyChange

Table 6.3: Logical Layer Results

Layer Number of Classes EVAL

TP FP

Persistence 1 0 1

Web 8 6 2

Core 267 207 60

Precision: 77,2%

119 words from the vocabulary and added them to the stopwords file.
This because he was interested in retrieving information referring to
the business logic contained in the project respect to the technical one.
The excluded words can be consulted in the available folder7. Once
the developer modified the stopwords file, he proceeded with the run
of both LDA algorithms and compared their results. Both algorithms
needed a parameter setting as input, in addition to the document
collection. The choice of all the parameters except for the number of
topics (which was chosen by the developer) was guided by the state
of the art of the topic detection field [98]. The parameters are:

� number of topics: 10

� alpha - prior weight of each topic in a document: 0.01

� beta - prior weight of each word in a topic: 0.1

Latent Dirichlet Allocation results: Table 6.4 contains the 10 topics
retrieved by the classic LDA algorithm. The developer found the re-
sults interesting since the detected topics contain many words that re-
call the entities and functionalities of the application. For instance he
found references to the functionality of the application which sends
an alert when a proceeding is created by reading the words of topic
8: “creation”, “proceedings”, alert”. Another example, words of topic

7 https://drive.google.com/drive/folders/1kLJXMPXhG2U8pIrqG_MWVU0STSCdIsMN?

usp=sharing

https://drive.google.com/drive/folders/1kLJXMPXhG2U8pIrqG_MWVU0STSCdIsMN?usp=sharing
https://drive.google.com/drive/folders/1kLJXMPXhG2U8pIrqG_MWVU0STSCdIsMN?usp=sharing

6.1 industrial case studies on the migration 161

4 “user”, “change”, “roles” recall the application feature of changing
the roles of a user inside the application.

Moreover, he was able to obtain the same information on the en-
tities identified with the AS analysis (Table 6.2): he could label each
topic (see column Entity in Table 6.4) and became aware of a new
entity which, basing on his past knowledge, he called Key-Value.

Seeded Latent Dirichlet Allocation results: in order to run the modi-
fied version of LDA, the developer defined 5 Seed Topics. He defined
4 of them on the basis of the entities collected through the AS detec-
tion step, while one (Summary) represented an entity expected by the
developer:

1. proceedings, deadline, suspension, item (Deadline)

2. summary, voice, comment, attachment (Summary)

3. society, ragione, sociale, soggetto (Societies)

4. event, reminder, days (Events)

5. notification, recipient, sender, object (Notification)

Table 6.4 contains the results of the Seeded LDA analysis. The exe-
cution of SLDA was not considered useful by the developer because
even if the algorithm retrieved quite the same information from the
execution of classic LDA, he could not easily label each topic with
a corresponding entity. Moreover, the Summary entity was not identi-
fied as expected by the developer (see Section 5.3.3).

After comparing the results coming from all the methods imple-
mented in Arcan, the developer produced the final solution. Table 6.5
shows the candidates microservices, for each service there is a brief
description of the functionality associated to it. As a results of the
topic detection step, the developer chose to incorporate entity Event,
Deadline and Suspension into a unique candidate microservice. More-
over, he introduced Key-Value and discarded CronologyChange on the
base of his past knowledge on the project.

discussion We now discuss the results and feedbacks obtained
from this case study on the microservice migration process through
Arcan. The developer ran Arcan following the steps described in Sec-
tion 6.1.1 in order to identify how many “business services” compose
the industrial application under analysis. The AS detection was the
preferred and most useful step for the developer in order to under-
stand how the application was composed. He was able to identify
the parts of code related to single entities which could become mi-
croservices (Table 6.2). Moreover the AS detection made him aware
of a problem regarding a specific entity named Deadline: the creation
of a Deadline requires the information present in Suspension and Pro-
ceedings and vice-versa, part of the problem was solved by incorpo-
rating entity Deadline with Suspension, while the Cyclic Dependency

6.1 industrial case studies on the migration 162

Table 6.4: Topic Detection results

LDA Seeded LDA

Topic Entity Topic

1 proceedings deadline
suspension attach-
ment start state days
management

Proceedings 1 proceedings deadline
date suspension re-
minder item payment
days

2 user history user-
name process
provvedimento email
finale change

User 2 summary date pro-
ceedings comment
voice data event
description

3 delibera subject col-
legio approvazione
audizione provvedi-
menti area action

Key-Value 3 history event activity
process analize soci-
ety ragione date

4 user change roles
summary user
change roles sum-
mary

User 4 state proceedings
attachment society
management docu-
ment visibile event

5 access data impegni
decisoria payment
avvio procedimento
turnover

Key-Value 5 attachment cronology
history object change
interceptor resolver
changed

6 attachment pro-
ceedings reminder
today date events
notifications recipient

Notification 6 subject impegni de-
cisoria provvedimenti
action istruttoria pro-
cedimento turnover

7 proceedings deadline
event summary date
voice comment item

Suspension 7 user finale roles user-
name email provvedi-
mento data role

8 event state proceed-
ings history creation
proceedigs alert as-
signed

DeadlineItem 8 delibera collegio
access approvazione
documents audizione
data ammissibilita

9 documents audizione
data ammissibilita ap-
peal atto determina
document

Key-Value 9 event deadline pro-
ceedings voice sum-
mary events simpli-
fied owner

10 society data activity
ammissibilita files sta-
tus ragione sociale

Society 10 user date change to-
day event audit state
expire

6.1 industrial case studies on the migration 163

Table 6.5: Candidates Microservices

Candidates Microservices

Proceedings This service will manage the Proceedings, the main entity of the
new system.

Attachment This service will manage the Attachment, an Attachment is a file
associated to a Proceedings.

Society This service will manage the Societies which could be associated
to a Proceedings.

User This service will manage the User authentication and the appli-
cations roles associated to a User.

Notification This service will manage a chat service.

Deadline & Suspension This service will manage the Deadline & Suspension logic.

Key-Value

This service will manage a new type of entity called Key-Value;
this entity will have only a few attributes(e.g. id, value, type).
A Key-Value will be used by the Front-End part to display show
some select tag at the final users.

between Deadline and Suspension should be analyzed and possibly re-
moved during the migration process in order to decouple the services.
The Dependency Graph Analysis is the step which gave him less in-
formation, because the implemented methods are based on the idea
that the application under analysis refers to a JavaEE standard ar-
chitecture used in many legacy projects. The analyzed application is
based on SpringFramework [229], so Arcan could not assign the correct
layer to the classes and put all of them in the Core Layer. Moreover he
did not use the results coming from the Connected Component detec-
tion, because the microservices candidates proposed by the algorithm
were not in accordance with his background knowledge. This tells us
that in general we have to improve our current approach about graph
analysis. Finally, the developer validated the topic detection step. He
preferred the classic version of the LDA algorithm since in his opinion
the resulting topics were more relevant respect to the seeded version.
He supposed that the seeded LDA results are strictly connected to the
chosen seed topics. The topic detection confirmed the results of the
AS detection and provided additional information useful to establish
the final solution (Table 6.5).

In conclusion, the developer stated that “In general the migration pro-
cess is not easy to carry out, since a deep knowledge of the project subjected
to the migration is needed in order to have significant results. Arcan can
be very useful: to retrieve knowledge about the project using the architec-
tural smell detection and the vertical functionality view, and to extract more
information about the services using the LDA algorithm.”

final remarks and lessons learned We collected impor-
tant lessons learned from the collaboration with the industry. First
of all, (1) we received positive feedback concerning the usefulness of
the Arcan tool, which stimulate us to continue working in this direc-

6.1 industrial case studies on the migration 164

tion and increase the collaboration with industry in this context; (2)
we collected several useful feedback to enhance and extend Arcan; (3)
we understood that the analysis of some data are more time consum-
ing than other, such as the information provided by the architectural
smells detection and the dependency graph analysis with respect to
topic detection. (4) We observed that AS detection and dependency
graph analysis are suitable for a deep project comprehension, while
topic detection could be exploited for the initial understanding of the
project, when few knowledge is available to the practitioners. How-
ever, in the case study presented in this paper, topic detection results
enhanced when the developer changed a setting (stopwords file) and
executed the algorithm again: this suggests that the topic detection
functionality works better when applied across multiple iterations.
All these findings could lead to the refinement of the current migra-
tion approach to fully exploit the potential of Arcan functionalities.
Moreover, the current approach addresses only a step of the migra-
tion to microservices i.e. the information extraction from the current
system. We aim to extend our work in order to support the concrete
implementation of the services and provide a method to evaluate the
quality of the migrated architecture, as studied by Carrasco [52]. Hav-
ing a framework to evaluate the software quality before and after
the migration could assist in making decisions during the migration
phase.

6.1.3 2nd Case study: Anoki

The second case study was conducted in collaboration with Anoki8,
an Italian software consultant company which develops mobile and
web applications specialized in open banking and educational plat-
forms.

In particular, the analyzed project was a Business Management Sys-
tem with a monolithic architecture, written in Java. The project was
10 years old and can be considered a medium-large project with 1343

classes and 112 packages.
The team working on it at the time of our study was formed by

three developers: the first one was a junior developer with 4 years of
experience during which he has been working on the project at hand,
the second one was a middle developer with 9 and a half years of
experience of which 1 year and a half spent working on the project
in object, while the third one, the team leader, was a senior devel-
oper with almost 15 years of experience that has been working on
the project for 2 years. In the circumstances of this study we also
validated Arcan results (see Chapter 3).

8 This work was part of the master thesis of Federico Locatelli, who we thank for the
hard and successful work he did.

6.1 industrial case studies on the migration 165

We analysed with Arcan six versions of the project that the devel-
opers indicated as particularly problematic or linked to refactoring
sessions. Along with such versions, we analysed the latest version of
the project at that moment.

In Table 6.6 the total number of detected instances for each archi-
tectural smell are indicated.

Table 6.6: Anoki analysed versions

V CD-Cl #CD-Pkg #HL-Cl #HL-Pkg #UD #FC #SF #GC

10.0.1.1 135 5 3 3 19 4 81 10

9.0.5.0 107 7 3 4 20 8 79 10

9.0.4.0 106 9 3 4 20 7 77 10

8.2.1.0 83 9 3 3 19 4 67 10

8.2.9.9a 70 9 3 3 19 4 71 10

8.1.0.0 48 7 3 3 19 3 74 11

6.5.2.0 6 3 2 1 12 1 48 4

Acronyms. V: version, Cl: classes, Pkg: packages, CD: Cyclic Depen-
dency, HL: Hub-Like Dependency, UD: Unstable Dependency, FC:
Feature Concentration, SF: Scattered Functionality, GC: God Compo-
nent

microservices identification We now describe the identifi-
cation process for each microservice. In particular we describe 1) the
Feature Graph Analysis, 2) the Connected Components analysis 3)
the Vertical View analysis 4) Dependency Graph analysis 5) the Topic
Detection identification.

At the end of the analysis description, for each microservice, we pro-
pose the division of the analyzed classes into three categories: 1) the
classes belonging only to the described microservice, 2) the classes
that should be duplicated (completely or partially) across more than
one microservice and 3) the classes belonging to other microservices
that used or were used by classes of the described microservice. We
made this division to have a clear vision of the microservice bounds
and give to the developers as much information as possible about it.

With respect to the first case study (see Section 6.1.2) we added
the Feature Graph analysis, i.e., we analyzed the Feature Graph (see
Section 2.1) produced by Arcan containing each feature of the project
represented as a node in order to check if there was any feature node
with a name that could recall the microservice we were looking for.
Moreover, before consulting the Arcan results, we asked to the de-
velopers what microservices they expected to extract from the exist-
ing codebase. That is why we present the results separately for each

6.1 industrial case studies on the migration 166

microservice. Finally, we monitored the time spent to identify each
microservice.

Report Engine microservice

The first microservice that we identified takes care of all the report-
ing features of the system and that was indicated by the developers
as one of the easiest to identify in their opinion. Identifying this mi-
croservice took about 8 and a half hours.

1. the Feature Graph Analysis took about 20 minutes. We queried
the graph using the words “report” and “engine” and their stem
(root) forms, finding three nodes called “engin”, “report” and
“repo”: these feature nodes contained an overall of 7 classes of
which 6 had dependencies among each other. Instead, the re-
maining one was completely isolated. All of them appeared to
belong to this microservice at first sight.

2. the Connected Components consulting took about 20 minutes
and showed that 2 classes formed a connected component while
the other ones were part of the largest connected component,
that we defined monolithic connected component (i.e. the connected
component containing most of the project’s classes in the mono-
lithic architecture). Interestingly, one of the two isolated classes
is the implementation of one of the classes included in the large
connected component, meaning that, although there is not a
real dependency between them, they are correlated and they
should be part of the same microservice. This is an important
consideration because it suggests that the relationship between
two classes should be evaluated not only by looking at their
dependencies, but also looking at the type of class and their
responsibility (e.g. one being an interface and one being its im-
plementation).

3. the Vertical View analysis took about 20 minutes and confirmed
our ideas about the already identified classes, additionally giv-
ing us a wider view of the part of project we were examining.
We also noticed some classes and packages with names recall-
ing the microservice’s concerns inside the vertical dependency
path and we considered them worth analyzing.

4. the Dependency Graph analysis took about 3 and a half hours
and helped us to establish the microservice bounds (the set of
classes actually belonging to it). In fact, it allowed us to anal-
yse the dependencies of the already identified classes and clas-
sify the classes based on our opinion of their relationship with
the microservice. During this step, we also noticed that most
of the classes we considered part of the microservice belonged

6.1 industrial case studies on the migration 167

to sub-packages of the same package. Focusing on that pack-
age we discovered that all the classes (except one) contained in
it or in its sub-packages were exclusively part of this microser-
vice and they were also the only ones with such characteris-
tic. Thus, in this case the identification was easier, because the
classes belonging to the microservice were already all part of a
unique package whose name was also recalling the microservice
name. This proves that a package-by-feature structure really en-
ables a migration to microservices process. During this phase
we also spotted classes that were put in a package accidentally
and should have been moved into other packages.

5. the Topic Detection took about 3 hours and in this step we rec-
ognized one topic as the more tied to the microservice, since
it contained all the 3 tokens recalling its concerns: “report”, “re-
ports” and “engine”. Moving forward to examining the topic dis-
tribution file, we noticed that the Topic Detection granularity
was too coarse-grained as the topic contained a high number
of tokens, meaning it was correlated to very different domains
and classes and, thus, making this kind of analysis useless in a
microservice identification process. So, we tried to modify the
parameters of the topic detection algorithm by increasing the
number of topics that had to be detected from a range between
2 and 11 to a range between 21 and 22, because these were the
ones that gave us the best result for the microservice (i.e. there
was a topic containing, with the highest frequency, all the tokens
we were interested in). Thus, by re-calibrating the detection we
were able to check our evaluations with a positive outcome, as
the classes we considered part of the microservice had the high-
est probability of being part of the topic in question (compared
with the other classes). Adjusting the detection took us most
of the time spent on this step, so it is a very time-consuming
activity.

In brief, the classes being part only of this microservice are 66, the
classes that should be duplicated are 12 and the classes belonging to
other microservices that used or were used by classes of this microser-
vice are 10. The developers gave a positive feedback on the result of
the identification of this microservice.

Scheduler microservice

The second identified microservice performs batch operations (i.e.
operations that can be run in background) when invoked. It was in-
dicated by the developers as one of the easiest to identify. Identifying
this microservice took about 4 hours.

1. the Feature Graph Analysis took about 15 minutes and demon-
strated to be valuable starting point once again, even though we

6.1 industrial case studies on the migration 168

could have obtained the same result by looking for the name of
the microservice among the package names. In fact, querying
the graph using the word “scheduler” and its stem (root) form
we found two nodes, both called “schedul”. The identified nodes
contained one class each, with one being the implementation of
the other and both belonging to sub-packages of the same pack-
age. Such package captured our attention because its name was
the same as the microservice’s (“scheduler”). Both the feature
nodes also had a dependency with another node called “proxy”
that contained two classes belonging as well to sub-packages of
the “scheduler” package.

2. the Connected Components consulting, which took about 10
minutes, showed that all the already identified classes were part
of the monolithic connected component. In the case of this mi-
croservice, this step only suggested us that the microservice was
not already isolated from the rest of the architecture and its
bounds needed to be manually identified.

3. the Vertical View analysis took about 5 minutes and unfortu-
nately it was not useful: only one path, starting from an already
identified class, was detected by Arcan and that path contained
only other already discovered classes.

4. the Dependency Graph analysis took about 2 hours and during
this step we managed to determine the microservice bounds.
However, after a discussion with the developers, we realized
we missed some classes. The project leader reported a group of
classes that should belong to this microservice too, since their
concerns are the same as the microservice’s. Such classes were
not found during the previous analysis as they were completely
isolated from the rest of the microservice.

5. the Topic Detection took about 15 minutes and in this step we
recognized two topics containing the token “scheduler”, both
with a low term frequency. This poor result was caused by the
fact that this microservice is much smaller than the “Report En-
gine” microservice, the service on which the topic detection was
calibrated. The granularity problem still persists in this case,
suggesting that the number of expected topics should be ad-
justed for each microservice, unless they are all of the same size
in terms of classes/packages. However, re-calibrating and re-
running the topic detection algorithm would cause a great loss
of time. For this reason, we decided to keep the same detection
granularity for all the successive microservices. In this case the
coarser detection granularity made it impossible to check our
considerations on the classes belonging to the microservice.

6.1 industrial case studies on the migration 169

In brief, the classes belonging only to the Scheduler microservice
are 7, the classes that should be duplicated are 11 and the classes
belonging to other microservices that used or were used by classes of
this microservice are 8. The developers gave a positive feedback on
the outcome of our identification of this microservice.

File Manager microservice

The third microservice to be identified is responsible, as the name
implies, of the project’s file management. It was indicated by the de-
velopers as one of the easiest to identify in their opinion. Identifying
this microservice took about 7 hours.

1. The Feature Graph Analysis took about 10 minutes as we queried
the graph using the words “file” and “manager” and their stem
(root) form and discovered two feature nodes named “manag”.
They were associated to 2 classes with no dependencies between
each other. Even if this outcome was small, it was enough to ob-
tain a starting point for the identification.

2. During the Connected Components consulting, searching the
classes found at the precedent step inside the connected compo-
nents detected by Arcan took about 15 minutes, revealing that the
two classes were both part of the large, monolithic connected
component. While exploring the different connected components
we noticed many classes whose names recalled the microservice
domain, all belonging to the monolithic component, so we con-
sidered them worth to be analyzed in the following steps.

3. the Vertical View analysis took about 20 minutes and gave us a
clearer idea on how the already discovered classes were related
by examining the 2 vertical paths detected by Arcan that start
from those classes.

4. the Dependency Graph analysis took about 1 and a half hours
and allowed me to establish the microservice bounds without
particular difficulties.

5. the Topic Detection took about 1 hour. First of all, we decided to
enhance the topic detection algorithm by adding 66 new words
to the list of the detection stopwords. The new words repre-
sented Java and frameworks key-words and other terms that
had nothing to do with features of the system, so ignoring
them made the Topic Detection results easier to comprehend
and more useful for the identification process. In fact, during
the Topic Detection step of the previous microservices, we no-
ticed that many tokens were insignificant for our goal. we also
removed the word “file” from the stopwords as it was useful
for the specific case of this microservice. After these changes,

6.1 industrial case studies on the migration 170

we found one interesting topic containing the tokens “file” and
“management”, even though they were not the ones appearing
with the highest frequency because of the detection granular-
ity not being adjusted for this microservice (which is smaller
than “Report Engine”, the service on which the calibration was
tailored). For the same problem, looking into the topic distribu-
tion file was not useful to confirm or deny our evaluation, but at
least we were able to corroborate that the classes we considered
part of this microservice were present with a high probability
inside the topic in object.

Before elaborating the final result, we discussed the gathered in-
formations with the developers. They pointed out that a group of 3

classes we did not consider were related to the microservice in the
user interface, inside the JSP (JavaServer Pages) pages and Javascript
files, and in the SQL database. A JavaServer Pages page is a text doc-
ument which constructs dynamic content [60]. The mentioned classes
were not taken into consideration as they did not have dependencies
with other classes belonging to the microservice and because Arcan
does not include the GUI and database analysis. This issue could be
resolved by adding to Arcan the possibility to analyze JSP, Javascript
files and the SQL database and let the user looking for relationships
between them and the Java classes.

In brief, the classes belonging only to the microservice are 23, the
classes that should be duplicated are 18 and the classes belonging to
other microservices that used or were used by classes of this microser-
vice are 3. The developers gave a positive feedback on the outcome of
the identification of this microservice.

final remarks and lessons learned We now resume and
discuss the lessons learned from the experience we had in extracting
the microservices from the Anoki project.

In general, we acknowledged that the process and features pro-
posed by Arcan are useful, but with some limitations.

Concerning the Topic Detection feature, we reported in the descrip-
tion of the Report Engine extraction the granularity issue, i.e., the
topic that we found more related to this microservice was too coarse-
grained. In particular, the topic was correlated to very different do-
mains and classes and the information it provided was useless for
the microservice identification. This was due to the settings of the de-
tection algorithm, programmed to identify few topics and to associate
many tokens to them. After re-calibrating the detection algorithm for
the Report Engine microservice, the issue was fixed for this microser-
vice, but persisted for the successive microservices, probably because
they had different sizes (more classes/packages). Taking into account
the fact that adjusting the detection required a great amount of time
and considering the low relevance of the Topic Detection results in the

6.1 industrial case studies on the migration 171

identification process, we concluded that for future case studies the
best solution is to calibrate the detection algorithm in order to detect
a large number of topics (but with more precise class/tokens associa-
tion) before starting the whole microservices identification process. In
this way, all the microservices would be associated to topics coming
from the same model and the Topic Detection could be run only once,
without re-running it for each microservice. This at the expense of a
less precise microservice identification as every microservice would
have a fixed number of associated tokens, not reflecting the actual
feature dimension.

Turning to another lesson learned, the Project microservice iden-
tification, on the other hand, showed that the right communication
is fundamental while working on a microservices extraction process:
often, the disagreement between the developers and us about this mi-
croservice was only due to misunderstanding. Indeed, the developers
gave a very positive feedback on the results of the microservices iden-
tification implying that identifying microservices using Arcan makes
the process easier and allows to obtain good results.

Thanks to the examination of the metrics extracted from the re-
sults of the microservice identification (i.e. Time needed for the iden-
tification of each microservice and the microservices size), we could
make another important consideration: the experience with the iden-
tification process and with the usage of Arcan, as much as the mi-
croservice size, affect the time required for the identification. In fact,
Report Engine is the microservice which required the longest time to
be identified whilst being the third largest one, probably because it
was the first one to be identified. Anyway, it is right to mention also
the fact that, during its identification, Arcan’s Topic Detection was
adjusted, causing the loss of a lot of time. Scheduler microservice,
on the contrary, was the smallest of all the identified microservices
and, as expected, required a very short time compared to the others,
while Notification and Project took respectively the second and
the fourth longest time to be identified despite being the largest ones,
probably because they were also the last ones to be identified and we
were more experienced at that time.

Finally, the actual application of Arcan in the identification process
showed that analyzing the feature graph is a valuable starting point
and that the dependency graph analysis is the core step of the pro-
cess. In particular, the required (manual) effort to examine the classes
dependencies is significantly reduced compared with a traditional de-
pendency analysis, thanks to the graph opening to consultation and
querying. The other steps and the corresponding Arcan functional-
ities were less relevant in the process, but they have proven to be
helpful to double-check the results of the dependency analysis.

6.2 towards microservice smells detection 172

6.2 towards microservice smells detection

We now introduce the two strategies, based on static and dynamic
analysis respectively, for microservices smells detection. The first one
is implemented in Arcan, extended specifically for this purpose9. It
allows to statically analyse projects implemented with few, specific
technologies and frameworks. In particular, the tool is able to ana-
lyze only projects in Java programming language and to retrieve de-
pendencies only declared with the Spring [229] RestTemplate interface.
This is why we developed also AROMA (Automatic Recovery of Mi-
croservices Architecture), able to reconstruct the MS architecture as
a directed graph without being bounded to a specific programming
language. It exploits dynamic analysis: in particular it relies on the
Zipkin distributed tracing system 10 to dynamically collect informa-
tion about API calls, service names and network attributes. On top of
the recollected architecture, we can detect a set of MS smells.

Both strategies are at an early development stage and we had few
opportunities to validate their results, mainly because it is very dif-
ficult to find both Open Source and industrial microservices projects
suitable for analysis. However, in the sections dedicated to each tool
we report the results on few toy examples which exemplify the tools’
workings.

6.2.1 Microservice Smells identification - Arcan extension

In this Section, we describe the detection strategies of three mi-
croservices smells: Shared Persistence, Hard-Coded Endpoints, and Cyclic
Dependency.

As described in [19], Arcan consists of four components, which
manage the different steps of the provided analysis: Figure 6.2 shows
these components with the new additions. To extend this tool and
make it suitable for the detection of microservice smells, we 1) added
new parsers to the component dedicated to architecture reconstruc-
tion (System Reconstruction) in order to scan Java source files and dock-
er/Spring configuration files. Moreover 2), we developed three new
detectors, one for each microservice smell, and added them to the
component that collects all the architectural smell detectors (Architec-
tural Smells Engine). As described in Section 2.1, Arcan relies on graph
database technology: All the computations are based on the depen-
dency graph, which is the representation of the project under analysis
in the form of a directed graph. Currently, the tool allows storing the
graph in a Neo4j [173] graph database, which also offers a browser
for visualizing and querying the graph. We extended the dependency

9 A publication was extracted from this work [197], in collaboration with Valentina
Lenarduzzi and Davide Taibi

10 Zipkin is a distributed tracing system. https://zipkin.io/

https://zipkin.io/

6.2 towards microservice smells detection 173

Figure 6.2: New Arcan core components for the detection of microservice
smells

graph representation (Graph Manager) in order to include microser-
vices and called it call graph: each node represents a microservice and
each edge represents a microservice call.

Some of the proposed detection strategies are limited to specific
programming languages, technologies, and frameworks. We chose a
selection of them depending on two constraints: availability of com-
pliant open-source projects and ease of automation of the detection
strategy. Next, we will describe each strategy by providing its defini-
tion and the description of the related detection.

cyclic dependency Definition: A cyclic chain of calls among mi-
croservices. e.g., A calls B, B calls C, and C calls back A. Microservices
involved in a cyclic dependency can be hard to maintain or reuse in
isolation.

Detection: Arcan already automatically detects Cyclic Dependencies
in monolithic Java applications by exploiting the dependency graph
representation and graph algorithms. For the detection in microser-
vices, we exploit the newly introduced call graph. Hence, in order to
reuse the original Arcan detector, we implemented the identification
of microservices dependencies. Microservices communication can be
managed in different ways depending on the technologies, frame-
works, and strategies that have been used; hence the call graph gener-
ation must be adapted depending on each specific case. In this paper,
we focus our attention on Java projects exploiting the Spring frame-
work [229] and/or the Docker platform. The nodes representing the
different microservices are generated automatically from the infor-
mation provided by the configuration files. In particular, the consid-
ered Docker files are docker-compose.yml and Dockerfile; the used
Spring file is application.yml: they are all useful for service names
identification. Concerning the microservices dependencies identifica-

6.2 towards microservice smells detection 174

tion, in Spring applications a class named RestTemplate is used to han-
dle http requests from a service to the others, hence we detect its
usages to identify services communication. For the same reason, Ar-
can looks for the usage of Feign [74], which is a Java library for web
services development compatible with Spring.

Dependency detection:

• Input: Java project folder

• Exec: Scan {docker-compose.yml, Dockerfile, application.yml} files to
find microservices names

– FOR EACH service_X, explore service source files and look for
pattern matching of Feign annotations and RestTemplate.

* IF MATCH dependency_pattern = “@FeignClient(name =
“service_y”)”

· dependency = service_x→ service_y

* IF MATCH dependency_pattern = “RestTemplate”

· get service_y name from the methods of RestTemplate
class.

· dependency = service_x→ service_y

• Output: A file with the detected dependencies

Cyclic Dependency detection: Once the microservice dependen-
cies are identified, the output results of the algorithm are processed
by Arcan, which creates the dependency graph. Nodes represent mi-
croservices and edges represent their dependencies. Thanks to the
graph representation, it is possible to detect Cyclic Dependency smells.

• For each microservice, create a node and add it to the call graph.

• For each microservice call, create an edge to model the dependency.

• Run the Depth First Search (DFS) algorithm: each detected cycle is an
instance of a Cyclic Dependency smell.

hard-coded endpoints Definition: Hard-coded IP addresses and
ports of the services between connected microservices. This smell
leads to problems when the service locations need to be changed [236].
Detection:

• Scan the source code and look for pattern matching. The first part of
the pattern (until the semicolumn) identifies IPv4 addresses and the
second part matches ports.

– pattern = \b\d1,3\̇d1,3\.\d1,3\.\d1,3:(6553[0-5]|655[0-2][0-9]\d|65[0-
4] (\d)2|6[0-4](\d)3|[1-5](\d)4|[1-9](\d)0,3)\b

This strategy can be applied to every microservice implementation
since it does not depend on any specific technology or framework. In
this study, we experimented with the detection in Java projects.

6.2 towards microservice smells detection 175

shared persistence Definition: Different microservices access
the same database. In the worst case, different services access the
same entities of the same database [236]. This smell highly couples
the microservices connected to the same data, reducing team and ser-
vice independence.
Detection:

• For each microservice, collect all database references/usages (database
name or database url).

• If two or more different microservices refer to the same database, then
those services are affected by the smell.

The detection of this smell is strictly linked to the technologies used.
At the moment, we are focusing our attention on Java projects exploit-
ing the Spring framework [229], which allows storing configuration
information regarding databases in dedicated files (YAML11 and .prop-
erties files) and we only detect accesses to the same databases (not
entities) i.e. we look for the same connection string.

6.2.2 Validation - Arcan extension

In this Section, we report on the validation of the proposed detec-
tion strategies on open-source projects.

approach We selected projects from the data set proposed by
Marquez et al. [149]. Projects had to be developed with microser-
vices. They had to be implemented using Java with Spring to validate
the Shared Persistence detection and/or using Docker to build the
call graph needed for Cyclic Dependency detection. There were no
constraints for the detection of Hard-Coded Endpoints. We first ran
Arcan on all projects coming from Marquez work (30 projects), detect-
ing possible microservice smells. We identified 5 projects affected by
at least one type of smell (Table 6.7).

Then we validated the results of the detection strategies by man-
ually inspecting the detection of the smells in the five projects. The
manual validation was performed separately by two of the authors;
cases of disagreement were discussed. We obtained a precision value
of 100% since all the found instances represent true instances of mi-
croservice smells. On the other hand, we were not able to compute
the recall value due to the lack of detailed project documentation
and project developers feedback. We aim to extend our validation by
analyzing more open-source or industrial projects, possibly with the
assistance of developers and information about known microservices
defects.

11 YAML is a human-friendly data serialization standard. https://yaml.org/, accessed
October 2021

https://yaml.org/

6.2 towards microservice smells detection 176

Table 6.7: Analyzed projects

Name # Services Link Lang

Micro-company 4 github.com/idugalic/micro-company J

Service Commerce 8 github.com/antonio94js/servicecommerce.git JS

Sharebike 4 github.com/JoeCao/qbike.git J

Sitewhere 19 github.com/sitewhere/sitewhere.git J
Task Track
Support

5

github.com/yun19830206/
CloudShop-MicroService-Architecture.git

J

Legend: J = Java, JS = JavaScript

Figure 6.3: Sharebike call graph

ORDER UC

POSITION

INTENTION

dependsOn

d
e
p
e
n
d
sO

n

The call graph shows microservices as nodes and microservices dependencies as
edges. The Sharebike project is a platform for renting and sharing electric vehicles.
The Order server manages vehicle requests and trip information; the UC (User Cen-
ter) manages user registration; Position handles vehicle discovery and user trip his-
tory; Intention manages the match between user and nearby vehicles.

validation results Out of the five selected projects, Arcan was
able to detect 2 instances of the Shared Persistence smell and 6 in-
stances of the Hard-Coded Endpoints smell. Regarding Cyclic De-
pendency, the projects under analysis were not affected by this smell.
However, Arcan was able to create the dependency graph of the Java
projects developed with Spring and using Feign, and store it in a
Neo4j graph database: Figure 6.3 shows the example of the Sharebike
project. The image was captured by the Neo4j browser.

shared persistence results We detected Shared Persistence
smells in two projects: Micro-company and Sharebike. Table 6.8 shows
the details of the detected smell instances. As for the Micro-company
project, the data is shared by two different services that access the
same Mongo database [166], named “blogpost”. This information can
be found in the configuration files of the two services, stored in the
configuration service of the application. The Mongo database allows
isolating data through the collection feature, where a collection is a set

6.2 towards microservice smells detection 177

of stored document. A set of collections makes up a database, where
collections can be accessed by specific services. However, this is not
the case for Micro-company because all services access the same col-
lection. In the case of the ShareBike project, the smell affects all the ser-
vices. In particular, every configuration file (application.yml) contains
the declaration of the same mysql database, whose name is “qbike”.
From the manual validation we obtained a precision of 100%, since
all the found instances represent true instances of microservice smells.
On the other hand, we were not able to compute the recall value due
to the lack of detailed project documentation and expert support.

Table 6.8: Shared Persistence results

Db Type Affected Services Shared Database Name

Micro-company

mongoDB
query-side-blog

blogposts
command-side-blog

Sharebike

mysql <all> qbike

hard-coded endpoints This smell was detected in the projects
Task Trak Support, Sitewhere, and Service Commerce. Table 6.9 shows for
every affected Java class the detected IPs and ports and the descrip-
tion of the smell instance. Concerning the Task Track Support project,
the DictRequestUrl class contains a set of http requests such as http:

//192.168.1.108:9003/api/gateway/getOrderByUserIdNormal. The
CuratorFrameworkFactoryBean Java class contains the address to the
ZooKeeper service [16], which is used for maintaining configuration
information. The last two rows of the table report hard-coded http
requests in two test classes. As regards Sitewhere, the tool detected
one occurrence of the smell, in the class EventSourceTests with the
value 0.0.0.0:1234, caused by the presence of the configuration of a
test server. Considering the JavaScript project, Service Commerce, the
tool detected one occurrence of the smell in a file containing an http
URL. As in the case of Shared Persistence, all the smell instances
found represent true instances of microservice smells, therefore the
precision obtained is 100%. In this case, too, it was not possible to
calculate recall due to the lack of detailed project documentation and
expert support.

final remarks The application of Arcan to the selected projects
demonstrates that it is possible to automatically detect smells in projects,
and therefore proves that we can propose our implementation to prac-
titioners and researchers. The lack of access to industrial projects de-

6.2 towards microservice smells detection 178

Table 6.9: Hard-Coded Endpoints results

File name Matched ip:port Description

Task Track Support

DictRequestUrl.java 192.168.1.108:9003 hard-coded multiple
times in the list of all the
http requests that can
be made versus the API
gateway

CuratorFrameworkFactoryBean.java 127.0.0.1:2181 zookeper address

CloudShopRequestConcurrentTest.java 192.168.1.108:9002 hard-coded in an http re-
quest to the order API

RequestTestMainApp.java 192.168.4.181:9002 hard-coded in an http re-
quest to the order API

Sitewhere

EventSourceTests.java 0.0.0.0:1234 test server configuration

Service Commerce

mercadopago.js 190.207.117.222:3000 hard-coded assignation
of URLl to a service

veloped with microservices, and the lack of documentation on ex-
isting open-source projects did not allow us to compute the recall.
We aim to extend our validation by analyzing more open-source or
industrial projects, possibly with the support of developers and infor-
mation about known microservices defects.

6.2.3 Micorservices smells identification - Aroma

AROMA is based on dynamic analysis. Tracing information is col-
lected on each host by instrumenting them with Zipkin and then
stored in a Json file. We chose to integrate AROMA with Zipkin, in-
stead of developing our tracing system, because we preferred to reuse
an existing tracing tool with a mature community12. The outcome of
of AROMA is the Microservices call graph, which represents services
as nodes and services dependencies as edges. Examples of analysed
projects and graphs can be found on the AROMA Gitlab page13.

The Json file generated by the execution of Zipkin contains a set of
span: the information collected during a specific remote activity (e.g.,
a Remote Procedure Call or messaging producers and consumers) by
a single host. In our case, spans contain data about client requests,
microservices responses and endpoints from the point of view of
each single microservice. A Zipkin trace is a series of spans which
form a latency tree which provides an overview of the path a request
takes through the entire system. Thanks to spans, we are able to un-
derstand which are the services of the architecture, which endpoints

12 https://zipkin.io/pages/community.html, accessed October 2021

13 https://gitlab.com/essere.lab.public/aroma

https://zipkin.io/pages/community.html
https://gitlab.com/essere.lab.public/aroma

6.2 towards microservice smells detection 179

they expose and which relationships they actually have one versus
the others.

We use a representation named microservices call graph to store as
many information as needed to detect the MS smells. We exploit the
Tinkerpop graph framework, as we already did for other Arcan, since
it allows to both build and then query the call graph and also offers
the drivers for many graph databases. Tinkerpop allows to define
Vertex (node) and Edge objects, and both can have properties. Nodes
in AROMA can be of two types: service or endpoint. Each service
node stores a set of properties related to the Zipkin traces: parentId,
timeUTC and duration. Moreover, they also have a serviceName, indi-
cating the name of the microservice. The other node type, endpoint,
stores network information such as the ipv4 address, the service port
and the type of endpoint, local or remote. Each service can have one or
more associated endpoints, and this information is stored as an edge
with label “has” from a service node towards an endpoint node. Ser-
vice dependencies, which we represent if the Zipkin traces recorded
some kind of communication, are stored as edges with label “call”.
This kind of edges stores an additional information, the weight, i.e.,
the number of requests recorded during a single execution of the tool.
Also Zipkin provides a graph to inspect the results of its monitor-
ing. However, we decided not to directly exploit the Zipkin graph to
enable the future extensions of the AROMA, e.g., extend the graph
with information about network protocols details, message brokers
and containers. The Tinkerpop schema is open by design to further
extensions, and the set of displayed information can be enlarged to
represent other aspects concerning MS architecture, e.g., network pro-
tocols details, message brokers and containers.

Following, the definition and detection strategies of the considered
smells.

megaservice Definition: a Megaservice is a service that does a lot
of things and looks more like a monolith than a microservice [236]. The
problem consists in having several business processes implemented
in the same service, which is against the principles behind MS de-
sign [208]. Detection: we start from the assumption that if a service
receives many requests from the client, with respect to the request
load of the other services, then it could be an example of megaser-
vice. We propose to identify it by a) storing on the call graph the
number of requests received (weight) during a test, i.e., during a sin-
gle execution of the system; b) Check for each service whether the
weight overcomes a given threshold: if true, the service is affected by
the smell. The threshold corresponds to the median value of the dis-
tribution of weight in the analysed project. Setting thresholds is not
a trivial task: our approach consists in setting thresholds through the
adaptive threshold method [18], by adapting its value depending on

6.2 towards microservice smells detection 180

the total number of exchanged requests in the system. Such services
are composed by several modules, and developed by several develop-
ers, or even several teams.

cyclic dependency - dynamic Definition: Cyclic Dependency
arises when two or more services depend on each other. For de-
pendency in the dynamic case we mean an API call between ser-
vices [236]. One way to avoid the appearance of this smell is the
adoption of the API Gateway pattern [208], leaving the role of me-
diator between the different services to the gateway.

Detection: we already proposed the detection of this smell trough
the Depht First Search (DFS) algorithm (see Section 6.2.1). However,
the previous approach limitation was its dependency towards specific
technology stacks: the code had to be written in Java with Spring,
or with Feign. Moreover, we recovered static dependencies, without
actually running the tool and potentially losing many dependencies
(e.g., the ones from the API gateway). With AROMA we can run DFS
on edges created by API calls, only considering actual dependencies
and improving the detection.

lack of api gateway Definition: this smell appears when MS
communicate directly with each other. In the worst case, the client
also communicates directly with each microservice, increasing the
complexity of the system and decreasing its ease of maintenance.
This smell represents the violation of the corresponding MS pattern
defined by Richardson [208], named “API Gateway”, which suggests
that services should not be directly exposed to the outside, but should
be hidden behind a message routing service. The presence of an API
Gateway allows the mitigation of the requests flow coming from the
client, while the internal communication, from gateway to services
and also among services, is managed by the system. The presence
of this smell can occur in two different scenarios: the API Gateway
is absent (not present by design) or the API Gateway is present, but
bypassed by some client requests [233].

Detection: Depending on the two scenarios, we identify the com-
plete lack of gateway if a) the root node (representing the hypothetical
client) has more than 1 outgoing edge, i.e., the client makes requests
directly towards the microservices b) there is no service containing
the term “gateway”. If both a) and b) are not satisfied, then the Gate-
way is absent. In the case there is a service satisfying condition a)
and b), we mark a dependency as “bypass” if the dependency has
as target a microservice and as source a node different from the API
Gateway.

6.2 towards microservice smells detection 181

Figure 6.4: Spring PetClinic microservices - Call graph

6.2.4 Validation - AROMA

We ran AROMA on three Open-Source projects available on Github:
Spring-PetClinic-microservices, LAB Insurance Sales Portal and BookStore-
App. We found evidence of microservices smells only in one of them
(BookStoreApp). Thus, in order to showcase the AROMA features, we
also provide an additional analysis report produced from a synthetic
example.

Given that Aroma requires the usage of Zipkin, we searched for
already instrumented projects, to speed our validation. We had to
execute and explore the projects’ APIs in order to get the necessary
information. This requires to build different environments for differ-
ent projects (e.g., with Docker or Kubernetes) and build the projects
themselves. This was not a trivial task, since there are no public repos-
itories, according to our knowledge, available to test and validate
tools for MS quality assessment, with out-of-the-box examples. We
searched projects on Github, by filtering with the microservices and
Zipkin tags, and selecting the most starred (popular) ones. We pro-
vide the execution traces along with the list of tested APIs for each
project in our replication package14.

The instructions on how to run the examples and replicate the re-
sults are in the AROMA Gitlab repository15.

spring-petclinic-microservices is the distributed version of
the Spring PetClinic sample application, developed to support the
learning and usage of the Spring framework16. Its API is instrumented
through the use of openZipkin [184], making it a convenient example
to test our tool. Figure 6.4 shows the generated call graph17. Thanks
to the Zipkin traces, our tool recovered all the three backend services
and also the API gateway. Moreover, it stored the number of requests

14 https://drive.google.com/drive/folders/1iPhWoulSXkxtz9kfzMb4JkvtfCsG0154?

usp=sharing

15 https://gitlab.com/essere.lab.public/aroma

16 https://github.com/spring-petclinic/spring-petclinic-microservices, ac-
cessed October 2021

17 Picture taken with yEd [263]

https://drive.google.com/drive/folders/1iPhWoulSXkxtz9kfzMb4JkvtfCsG0154?usp=sharing
https://drive.google.com/drive/folders/1iPhWoulSXkxtz9kfzMb4JkvtfCsG0154?usp=sharing
https://gitlab.com/essere.lab.public/aroma
https://github.com/spring-petclinic/spring-petclinic-microservices

6.2 towards microservice smells detection 182

received by each service. Notice that one of the nodes, customers-
service, is dispatched with more requests than the other services, i.e.,
the edge which connects the gateway to this service has weight equals
to 12. By checking the documentation18, this is justified by the fact
that the service addresses both the management of the customer en-
tity and the pet entity. Thanks to trace analysis, we are able to identify
services requests and to detect the services which maximise this at-
tribute. In the case of PetClinic, this means identifying the “biggest”
services in the architecture. In a meaningful system (i.e., not a toy
example), when the biggest service is stressed with many requests, it
results in an instance of the Megaservice smell. Unfortunately, as pre-
viously outlined, this project is very small and in this case the choice
of managing the two concepts (customer and pet) inside the same
microservice is justifiable and does not result in a maintaibility issue.
However, we report this example in order to showcase the tool and
the results it provides. In brief, we did not find the Lack of API Gate-
way smell, but we identified an instance of Megaservice, affecting
customer-service.

lab insurance sales portal LAB Insurance Sales Portal19 is
a project developed by Alktom Lab, a simple insurance sales sys-
tem designed with a microservice architecture using the Micronaut
framework20. Figure 6.5 shows the call graph of the project obtained
through our AROMA tool. As we can be see, AROMA identifies
six microservices, the API Gateway and also Consul, a discovery ser-
vice [57], used to enable the other services to discover each other by
storing location information (like IP addresses) in a single registry.
This is why all dependencies point to this service, because it acts
as a proxy. Even if being able to detect the Consul service is useful
in terms of completeness, it hides the actual interaction among the
microservices. Also Granchelli et. al faced this problem [96] while
developing their tool: they implemented a solution where the soft-
ware architect can indicate, after the reconstruction of the architecture,
which services are actually discovery services, through a graphical
editor. We aim in the future to automatise the detection of discovery
services, to improve the generation of the call graph. Concerning the
detection of smells, we did not found instances in this project.

bookstoreapp This project is an Ecommerce project21 where users
can buy books. The application has been developed using Java, Spring

18 https://github.com/spring-petclinic/spring-petclinic-microservices, ac-
cessed October 2021

19 https://github.com/asc-lab/micronaut-microservices-poc, accessed October
2021

20 https://micronaut.io/, accessed October 2021

21 https://github.com/devdcores/BookStoreApp-Distributed-Application, ac-
cessed October 2021

https://github.com/spring-petclinic/spring-petclinic-microservices
https://github.com/asc-lab/micronaut-microservices-poc
https://micronaut.io/
https://github.com/devdcores/BookStoreApp-Distributed-Application

6.2 towards microservice smells detection 183

and React. Figure 6.6 shows the resulting call graph. As we can see,
we have cases of Lack of API Gateway, specifically of the first scenario:
the client (user-side) has a direct dependency (can make requests) to-
wards all the MS without passing from bookstore-api-gateway-ser

vice (the API Gateway).

synthetic example Given the few available projects for the val-
idation, we produce a synthetic collection of Zipkin traces to be feed
to AROMA. The traces simulate a MS architecture affected by two
smells. Figure 6.7 shows the resulting call graph. The represented ex-
ample is a Zipkin v2 standard reproduction, containing a collection
of traces from an API query. We reproduced a “real” execution of a
microservices system manually instrumented with Zipkin, by taking
into account the mandatory and self-generated fields, such as the id of
the traces and the associated spans. We also associated to each span a
“serviceName” consisting of one letter of the alphabet. This synthetic
study therefore offers the possibility both to analyse a single smell
in detail and to study its multiple occurrences. In this example it is
possible to notice that there is a bypass of the API Gateway (client to-
wards service D) and an instance of Megaservice (service F is stressed
with many requests, compared to the other services).

6.2.5 Final Remarks

We are aware of the limitations of the validation of both Arcan ex-
tension and AROMA. We analysed few projects, however, it is not
easy to find this kind of projects, since there are no public reposito-
ries, according to our knowledge, available to test and validate tools
for MS quality assessment, with out-of-the-box examples. We aim to
validate the tool also on industrial projects to collect feedback from
developers. Concerning AROMA, we also suffer of the intrinsic prob-

Figure 6.5: LAB Insurance Sales Portal - Call graph

6.2 towards microservice smells detection 184

Figure 6.6: BookStore - Call graph

Figure 6.7: Synthetic example - Call graph

lem of dynamic analysis, i.e, the coverage of the tests used to run the
analysis might not be satisfying. However, to enable reproducibility,
we provide the execution traces along with the list of tested APIs for
each project in our replication package22.

22 https://drive.google.com/drive/folders/1iPhWoulSXkxtz9kfzMb4JkvtfCsG0154?

usp=sharing, accessed October 2021

https://drive.google.com/drive/folders/1iPhWoulSXkxtz9kfzMb4JkvtfCsG0154?usp=sharing
https://drive.google.com/drive/folders/1iPhWoulSXkxtz9kfzMb4JkvtfCsG0154?usp=sharing

6.3 summary of the findings 185

6.3 summary of the findings

Along with the studies on monolithic architectures, we started ex-
ploring the architecture erosion of microservices too. This research
line offers many challenges for software analysis tools developers and
AS researchers, due to the change of architectural paradigm: the tech-
nological heterogeneity of services, their distributed nature, the lack
of golden standards for the validation of analysis approaches, among
the others.

We started exploring this research field by analysing the migration
process from Java, monolithical projects towards microservices. We
conducted two case studies in two different industries, with the aim
to investigate whether the presence of AS in the monolithical project
hinders the extraction of self-contained services and also to validate
the Arcan extension for microservices candidate identification. From
our results, we acknowledged that AS slow down the migration pro-
cess. In particular, smells related to dependency issues (CD, UD and
HL) make difficult to define the microservice boundaries, i.e., the
classes and packages which should be included into the single service.
For instance, having a Cyclic Dependency between two packages log-
ically belonging to two different microservices forces the developers
to refactor the architecture by relocating pieces of code from one pack-
age to the other, or to duplicate pieces of code in order to decouple
the packages.

Also smells which impact the separation of concerns principle (SF
and FC) are a problem for the migration. Developers from our case
studies pointed out that such smells indicate the presence of concerns
which should become a service, but at the moment are dispersed
all over the project. This means that, in order to extract a cohesive
service, developers must identify every dispersed piece of concern
and move it into the correct place. Developers underlined also that
tools like Arcan are useful in such cases, because they indicate where
the concerns are scattered. Indeed, Arcan was successfully adopted
in both case studies to obtain the list of candidate microservices to
migrate.

A further step we made in this research field was to implement
a tool for microservices smells detection, the counterpart of archi-
tectural smells in such architectures. We first proposed an extension
of Arcan, to statically detect three microservices smells, and subse-
quently refined our approach by developing AROMA, based on dy-
namic analysis, detecting two additional types of smells.

Our approaches are at the first stages of development and are vali-
dated on small, Open-Source systems. We aim in the future to extend
them, especially the one implemented in AROMA, reinforcing the
model of the reconstructed microservice architecture with more de-
tails, such as information about the infrastructure, and by adding the

6.3 summary of the findings 186

detection of additional smells. Additional future directions concern-
ing this subject can be found at the end of the thesis in Section 8.2.

7
R E L AT E D W O R K

In this Section we introduce some related works concerning the var-
ious research lines we addressed in this thesis, related to architectural
smells and architectural debt. In particular, we describe works from
the literature concerning:

• AS detection techniques and tools;

• Empirical studies on AS, i.e., studies aiming to analyse the be-
haviour and characteristics of smells starting from the data of a
large number of Open-Source or industrial projects;

• Architectural debt evaluation works, concerning approaches de-
veloped to identify ATD. We also introduce some empirical
studies about (generic) technical debt indexes, since there are
few empirical analysis of the architectural ones;

• Case studies about the migration to microservices and tools
for microservices reconstruction and microservices smells de-
tection.

AS are a relatively new concept, without a fully established termi-
nology: they are also called antipatterns [121], design smells [89], or ar-
chitectural flaws [163]. Some authors use these terms interchangeably,
while others propose more complex ontologies, e.g., antipatterns can
be considered as a subtype of architectural smells by some authors,
and some of them, like Tangle or Hub, are called antipatterns [121]
or architectural smells [90, 231]. Concerning the term design smells,
Sharma et al. actually distinguish design smells from architectural
smells. However, some of their design smells correspond to some of
our AS, but at class level. We can map what they call design/architec-
tural smells to our distinction class/package smells.

7.1 architectural smell detection and prioritization

Under the AS detection works expression we gather the literature
which addresses techniques, frameworks and automatic tools for AS
identification. We divide these related works in three parts: works
concerning the detection of dependency issues-based AS, works in-
troducing Natural Language Processing approaches for AS detection
and finally some approaches for AS prioritisation.

187

7.1 architectural smell detection and prioritization 188

7.1.1 Tools and data structures for the detection of dependencies issues-
based AS

We now provide and overview about techniques and tools for the
identification of AS related to dependency issues, namely Unstable
Dependency (UD), Hub-Like Dependency (HL) and Cyclic Depen-
dency (CD). Notice that, apart from few exceptions, the majority of
academic and industrial tools focus on the detection of CD.

In general, the majority of AS detection techniques rely on met-
rics computation. A software metric is a function which measures a
property of the code. Such approaches consist in collecting various
software metrics, such as Lack of Cohesion in Methods (LCOM) and
Coupling Between Objects (CBO) [53], and then set logical rules and
thresholds to detect AS. One example is the work of Moha et al. [164],
who developed a tool named DECOR to detect design smells. This is
a kind of approach inherited from the code smell detection literature,
where the compliance of small snippets of code are checked against
logical rules [128].

The limitation of such approaches lies in the inability of identify
smells which affect the structural dependencies of software systems.
Such smells do not manifest themselves as an anomaly with respect
to a defined rule, but appear as structural patterns, i.e., perceptual
structures which involves architectural components and their depen-
dencies. That is why in the literature many approaches for AS detec-
tion rely on the abstract representation of the software architecture
through models: first, the tool reconstructs the software architecture
by representing it with a suitable data structure (the model), then the
tool run detection algorithms on the model.

Examples of data structures for software architecture representa-
tion are the Design Structure Matrix (DSM) [71], the Design Rule Hier-
archy (DRH) [107] and the Dependency Graph. In the case of DSMs,
the architecture under analysis is represented as a square matrix,
where architectural components are labelled in the rows and in the
columns and the values in the cells indicate the number of depen-
dencies among the different components. Examples of tools based
on DSM are Designite [220], Lattix [130], Structure101 [103], Sonar-
graph [270].

Concerning DRHs, the name design rule refers to Baldwin and Clark’s
design rule theory [29], where design rules are the key architectural
decisions that decouple the rest of the system into independent mod-
ules that can be implemented, revised, or replaced without influenc-
ing other parts of the system. The DRH algorithm takes as input a
DSM and clusters source files so that their architectural roles can be
made explicit, i.e., to manifest the differing architectural importance
of different source files. A DSM, clustered using the DRH algorithm,
has three key features. 1) the design rules and modules are organised

7.1 architectural smell detection and prioritization 189

in a hierarchical structure, with design rules on the upper layers and
the modules decoupled by the design rules on lower layers; 2) the
modules in lower layers depend on the modules in higher layers, but
not vice-versa; 3) modules in the same level are mutually indepen-
dent from each other. Cai et al. [49] refined the DHR algorithm and
conceived the Design Rule Space (DRS) model, on the top of which
the DV8 [48] tool is developed.

Finally, a dependency graph is a graph model where architectural
components are represented as nodes and architectural dependencies
as edges. The tool discussed in this thesis, Arcan, is based on depen-
dency graphs (see Section 2.1), that we prefer because it enables the
exploitation of graph algorithms for AS detection. Other examples of
tools which exploit dependency graphs are Dependency Finder [63],
JArchitect [110], ClassCycle [55] and NDepend [170]. Finally, AI Re-
viewer [6] proposes a custom model called Core Analysis Model (CAM),
a detailed abstract representation of the program source code which
can represent program entities and their relationship.

All the indicated tools focus essentially on the detection of Cyclic
Dependency smell, while AI Reviewer, Arcade, Designite, Arcan and
DV8 can detect more than one AS. See Section 2.5 for a more detailed
comparison of Arcan algorithms with other tools’ strategies.

We have briefly outlined above some tools for AS detection, while
a catalogue of AS detected by tools has been proposed by Azadi et
al. [27], where they report the detailed description of the detected
smells and the corresponding violated design principles.

7.1.2 Natural Language Processing models for the detection of separation
of concerns-based AS

Other approaches exploit techniques coming from the information
retrieval and the Natural Language Processing field, in particular to
model software concerns (see Section 2.1).

Exploiting NLP and Machine Learning (ML) techniques to extract
semantic information from software gained popularity in the last 10

years. We now first introduce some examples of models leveraging
software semantic for software recovery and then we focus on the
approaches aiming to detect AS.

Jalali et al. [212] propose a multi-objective fitness function, named
MOF, which exploits both structural and semantic features (such as
semantic contained in the code comments and identifier names), to
automatically guide optimization algorithms to find a good decom-
position of software systems. They claim that the provided decom-
position is more understandable and meaningful respect to the ones
obtained by exploiting only structural information of the software.
Boaye et al. [32] propose a search-based approach that uses struc-
tural and lexical information to recover the layered architecture, at

7.1 architectural smell detection and prioritization 190

the package level, of an Object-Oriented (OO) system. Lexical infor-
mation consists of significant keywords derived from identifier names
(i.e., names of packages, classes, methods, fields and parameters) and
comments found in the source code. They assume that two packages
are conceptually related if the packages’ lexical information is simi-
lar. The authors model software concerns as topics extracted by using
LDA: the conceptual relationship between two packages is computed
as the cosine similarity between their corresponding topic proportion
vectors.

Corazza et al. [58] consider the source code of Open-Source soft-
ware divided in six “zones”, depending on the granularity level (class
name, method name, attribute name, parameter name, comment, source
code statement) and try to assign to those zones an estimation of
their relevance based on the contained lexical information to improve
the quality of software recovery. They define a probabilistic model of
the lexemes distribution and then exploit it to compute similarities
among source code classes, which are then grouped by a k-Medoid
clustering algorithm.

The presented models and methods aim to recover software archi-
tecture by considering semantic features of software itself. The fol-
lowing works go further by investigating the usage of semantic infor-
mation to detect AS in Open-Source software. Diaz-Pace et al. [66]
explore whether social network analysis is useful to extract infor-
mation from a software architecture in order to predict new depen-
dencies and possible future appearance of AS in Java projects. They
model software architecture as a dependency graph where edges are
enriched with topological and content-based information modeled
as bag-of-words. In particular, they propose to consider Java classes
and packages as a bag-of-words containing the most representative
tokens that characterize their source code, such as identifiers, meth-
ods’ names and comments. Then, they compute edge information as
the Cosine Similarity scores for the different bag-of-words represen-
tations.

Garcia et al [92] propose to recover software systems thanks to
the detection of software concerns. To obtain concerns, they exploit a
statistical language model named Latent Dirichlet Allocation (LDA).
Their approach is implemented in a tool named Arcade, which is also
able to detect Scattered Functionality and Feature Concentration in
Java projects [133]. Their detection approach is based on the number
of topics assigned to each software component.

The limitation of all the above mentioned approaches is that they
do not consider context information of the analyzed code, moreover
they were not designed for source code analysis. Regarding this as-
pect, a study from Hellendoorn et al. [104] suggested that existing
neural networks, born specifically to model natural language, are not
the best solution to represent code semantic. Instead, simpler mod-

7.1 architectural smell detection and prioritization 191

els, such as counting models taking into account only the frequency of
a term, perform better than deep learning models and require also
little computational time. From 2017, when the paper was written,
many other deep learning models were developed, with a focus on
representing the semantic of code. In particular, many works were de-
veloped for software security tasks [73][267] [265] and code summari-
sation [257][47][252]. For what concerns our experience, we experi-
mented with code2vec [12], a neural model which is able to predict
semantic properties of given snippets of code (see Section 2.4). From
our study, we acknowledged that the usage of such model requires a
great amount of resources, in terms of computational capability and
time. That is why we introduce a new technique (see Section 2.1),
based on the tf-idf metrics, to model software concerns. We merge in
a unique data structure the information on architectural dependen-
cies and architectural concerns and exploit it to detect two AS which
violates the separation of concerns principle (Scattered Functionality
and Feature Concentration). In this way, we can identify them not
only by exploiting structural information (as done in Designite [231])
but also semantic information. Moreover, this approach overcomes
the problem of fixing the parameters of concerns detection required
by the topic models’ algorithms (as done in Arcade [133] and also by
us, see Section 6.1.1), since the tf-idf computation is completely auto-
matic and requires far less resources with respect to a neural model.

7.1.3 Architectural smells prioritization and criticality evaluation

We now outline some related works done in the literature on the
evaluation of criticality and prioritization of code and architectural
smells. What distinguishes the following works is the kind of infor-
mation used to estimate the priority of a smell.

For instance, concerning code smells, Vidal et al. [215] presented an
approach to identify the most critical smells based on a combination
of three criteria, namely: past component modifications, important
modifiability scenarios for the system and relevance of the kind of
smell. Also Rani et al. [205] proposed a methodology for code smell
prioritization. First, it detects smelly classes using structural informa-
tion of source code, then mines change history, as done by Vidal et
al., to prioritize the smells. Always according to code smells, Sae Lim
et al. [213] exploited the developers’ context (a list of issues extracted
from an issue tracking system) to define priority. Instead, Arcelli et
al.[83] proposed a severity index of the smells based on how the met-
ric thresholds used for the smells detection are exceeded. Similarly,
Guggulothu et al. [99] proposed a prioritisation approach for four
code smells (Long Method, Feature Envy, God Class and Data Class),
depending on their impact on design quality, where the impact is

7.2 empirical studies on architectural smells 192

measured depending on the overcome of a set of metrics such as cou-
pling, size, complexity and cohesion.

More recently, Pecorelli [190] proposed a machine learning approach
to prioritise the application of refactoring on code smells. They gener-
ated a rank of code smells according to the perceived criticality that
developers assign to them.

According to architectural smells, there are fewer studies about pri-
oritization. Martini et al. [155], performed a study on the analysis
of the most critical AS through the feedback of the developers of
two industrial projects. The smells have top refactoring priority in
the opinion of practitioners are the ones with the highest negative
impact on the maintainability and evolvability of the project. On the
same line, Oliveira et al. [182] investigated criteria that developers use
in practice to prioritize design-relevant smelly elements with the aim
to develop a set of prioritization heuristics. From their results, two
out of nine heuristics reached an average precision higher than 75%.
Finally, Vidal et al. [249] presented and evaluated a set of five crite-
ria for ranking groups of code smells as indicators of architectural
problems in evolving systems.

According to our knowledge no extensive work has been previ-
ously done on the analysis of the evolution and correlation between
criticality and cost-solving, evaluated in terms of PageRank of AS
and Severity metrics. In this thesis we introduced a work (see Sec-
tion 2.2.2) on the evolution of a set of projects (10 projects, 22 versions
each, for a total of 264 versions), and we analyzed the correlation ex-
isting between the two metrics through Spearman and Kendall corre-
lation tests. Moreover, we studied the evolution of the metrics in the
project history. Finally, we proposed to exploit PageRank as a proxy
for criticality, and Severity as a metric to estimate cost-solving.

7.2 empirical studies on architectural smells

The hypothesis of increased change- and defect-proneness result-
ing from the presence of AS was observed by Mo et al. [163], who
proposed five file-level architectural flaws and found their signifi-
cant correlation with error-proneness and change-proneness. Simi-
larly, Oyetoyan [185] identified a positive correlation between the
presence of Cyclic Dependency AS and the change frequency.

Sharma et al. [221] conducted an empirical study to investigate the
relationship between design smells and AS in C# projects. They stud-
ied correlation to check whether, given pairs of design and architec-
tural smells which capture the same concept at different granulari-
ties, one of the two is superfluous. They studied collocation, trying
to understand if certain types of design smells may act as indicators
for specific AS; they also studied causation, by investigating tempo-
ral relationship between design and AS to figure out whether some

7.2 empirical studies on architectural smells 193

types of smells cause the others. Thanks to their analysis, they found
evidence of the individuality and uniqueness of design respect to
AS. In this thesis, we also studies AS correlation, however, differently
from Sharma, we focus on the possible relationship among different
types of AS at the same granularity level. We are interested in finding
whether two or more smells of different types, concerning different
design principle violations, are correlated or collocated. To do so, in
addition to the computation of correlation coefficients, we run the Par-
tial Component Analysis and the association rules extraction, which
allowed to investigate relationship among more than one smell types
at the same moment.

Aversano et al. [24] studied the evolution of design smells in 8 Open
Source Java projects. They discovered that classes affected by design
smells are more subject to change, especially when multiple smells
are detected in the same classes. They also investigated whether the
generic refactoring of the architecture conducted by the developers
led accidentally to the removal of the (unknown) smells, without find-
ing positive evidences.

Other authors have analysed the impact of AS on maintainability.
For instance, Le et al. [133] analyzed the relationships between AS
and issues reported in issue trackers (e.g., Jira). They found that AS
have tangible negative consequences, resulting in implementation is-
sues and increased maintenance effort.

Herold [105] investigated the relationship between the presence of
AS and manually validated architectural violations. He identified the
links for Unstable Dependencies and for Hub-Like Dependencies AS,
but with small effect sizes. He concluded that the presence of AS can-
not alone explain erosion of architecture, but it does play a contribu-
tory role. Brunet et al. [45] also studied the evolution of architectural
violations in 76 versions of four systems, by comparing the intended
and recovered architectures of a system. They found that architec-
tural violations tend to intensify as software evolves, and usually a
few design entities are responsible for the majority of violations.

Architectural smells impact different aspects concerning maintain-
ability, including system understanding. The impact of AS on under-
standing was highlighted in an empirical study by Abbes et al. [2].
They found that the presence of several antipatterns in one code en-
tity significantly impedes the programming performance of develop-
ers.

The comprehensive and diverse nature of AS has also been the
subject of investigation. Sas et al. [216] analysed the evolution of three
AS and their characteristics in 524 versions across 14 different projects.
They focused on growth rate, on the importance in the system of the
elements affected by the smell over time, and on the time each smell
instance affects the system. They found out that the different types of

7.3 architectural debt evaluation 194

AS evolve differently. In our work, we also analyse smells’ evolution:
however, we consider three additional AS respect to Sas work.

Switching to code smell relationship with AS, Arcelli et al. [78] pre-
sented a study on possible correlations between AS and code smells.
They appeared to be linked only in a few cases. Therefore, the pres-
ence of AS cannot be inferred from CS and AS require separate meth-
ods for dealing with them.

Finally, we [17] developed various machine learning models trained
on multiple versions of four Java projects. We found that the presence
of AS in a previous versions of the system also affects them in the
future.

The presented works indicate that the presence of AS affects vari-
ous important properties and quality characteristics of software sys-
tems. In this thesis, we analysed the relationship between AS and
Design Patterns, and also the possible correlations among AS of dif-
ferent types.

7.3 architectural debt evaluation

We addressed the research about ATD in terms of evaluation of
the amount of ATD in projects belonging to different applications
domains. We introduce here some works about approaches for ATD
identification and present also some empirical studies where TD in-
dices are employed. Currently, to the best of our knowledge, there are
only two indices for ATD evaluation based on architectural aspects:
our ADI and ATDx [247]. Further details about ATDx are reported in
Section 5.1, compared to ADI facets.

7.3.1 Identification of ATD

When speaking of “ATD management” we refer to those practices
aimed at identifying ATD items and/or symptoms and remove them.
In the context of this thesis, we focused on ATD identification, and in
particular in this Section we introduce some of the existing, proposed
approaches to identify ATD.

Li et al.[142] conducted multiple case studies on thirteen open
source projects to evaluate the ability of modularity metrics [3] to
indicate the presence of ATD. They focused on such metrics because
they claimed that ATD should be measured starting from source code,
i.e., with metrics calculated on code. In order to verify the ability of
their set of metrics to estimate ATD, they test the correlation between
the metrics and the average number of modified components per com-
mit (ANMCC), a metric indicator of ATD (a higher ANMCC indicates
more ATD in a software system). From their results, it appears that
two modularity metrics, namely Index of Package Changing Impact
(IPCI) and Index of Package Goal Focus (IPGF), have significant cor-

7.3 architectural debt evaluation 195

relation with ANMCC, and therefore can be used as alternative ATD
indicators.

Kazman et al. [116] measure ATD by identifying architecture roots,
i.e., flawed architectural structures (set of connected, defective files).
In particular, they exploit the Design Rule Space (DRSpace) analysis
approach [49] to locate architecture debts in a few clusters of files.
Given a project to be analysed, the approach exploits different kinds
of data: source file dependencies, (Git) revision history and (Jira) is-
sue history. The information are processed by the authors’ tool, Titan,
and represented as DRSpaces. After that, they visualize the results
on Excel spreadsheets, pointing out to the architects how the archi-
tecture flaws propagate errors. After these flaws (named architecture
hotspots) are confirmed by the project’s architects, they extract data
from the development process to quantify the penalty these debts are
incurring, estimate the potential benefits of refactoring, and make a
business case to justify refactoring.

However, not all authors agree about the goodness of source code
metrics in evaluating ATD. For instance, Li et al. [141] argue that
such ATD identification approaches can only identify source code-
related issues (e.g., the modularity violations). They cannot identify
ATD caused by architectural decisions that are not reflected in the
code, such as inappropriate, immature or obsolete technologies used,
and architecture drift [240].

To overcome the limitations of such approaches, they propose to
identify ATD by taking into account architectural decisions made
during the architecting process and change scenarios. They indicate
as Architectural Decision (AD) a design decision that affects the ar-
chitecture design space for a target software system [124]. A change
scenario is a maintenance or evolution task to be performed in the
software system. In their view, ATD items are caused by the ADs
that negatively impact the change scenarios. They validated their ap-
proach by conducting an industrial case study where they asked de-
velopers to validate the identified ATD items, i.e., to indicate whether
the ATD item actually affects the maintainability and evolvability of
the system under analysis. The interviewed developers reported that
the approach is useful and easy to use, and it supports release plan-
ning and ATD interest measurement.

The approaches introduced until this point are automatic or semi-
automatic, and are suitable for the integration into analysis tools.
However, ATD identification can also be manual. For instance, Mar-
tini et al. propose their own approach to identify and manage ATD.
They first conducted a multiple-case study [154] to investigate the fac-
tors responsible for the accumulation of ATD and to understand how
it evolves over time and filed a taxonomy of 16 factors. Subsequently,
they developed and evaluated a method, AnaConDebt[152], for the
estimation and prioritization of refactoring ATD items. AnaConDebt

7.3 architectural debt evaluation 196

provides indicators that would estimate the important factors respon-
sible for the growth of ATD interest and therefore would warn the or-
ganization (including non-technical stakeholders) that the refactoring
is urgent. They validated AnaConDebt by analyzing, together with
several practitioners, 12 existing cases of Architecture Debt in 6 com-
panies, proving useful to support the architects into systematically
analyze and decide upon a case.

Still Martini et al. [156] developed another framework for ATD iden-
tification, but in this case they aimed to obtain an automatic solution.
While AnaConDebt strongly relied on the developers’s actions and
feedback to provide results, in this work the author’s focus on quanti-
fying ATD in the form of lack of modularization. They propose a Mea-
surement System and an estimation formula that indicate to develop-
ers possible candidates for refactoring and support a cost-effective
estimation of the ATD interest. Also in this case, they evaluated the
approach with a large case study: the results provided evidence that
refactoring actions to achieve modularity in a software systems can
pay off in terms of development and maintenance effort.

In this thesis, we presented a set of studies concerning the evolution
of ATD in two application domains and about the impact the reuse
of software components has on the amount of ATD. From our results,
we ackowledged that code-related practices, such as bug fixing and
small improvements, can help in keeping the ATD under control.

7.3.2 Empirical studies on technical debt indexes

Strečanský et al. [230] compared three TD identification techniques:
i. Maintainability Index (MI) [179], ii. SIG TD models [183] and iii.
SQALE analysis [168]. Considering 17 large open source Python li-
braries, they compare TD measurements time series in terms of trends
in different sets of releases (major, minor, micro). While all methods
report generally growing trends of TD over time, MI, SIG TD, and
SQALE all report different patterns of TD evolution.

Similarly, Lefever et al. [135] compared the analysis results of DV8,
Structure101 and SonarQube, finding that there is a strong lack of
consensus among these TD tools in terms of software metrics compu-
tation (same metrics, different results) and TD-affected architectural
components identification.

Amanatidis et al. [13] compared CAST, Squore, and SonarQube TD
estimation. The findings of the inter-rater agreement analysis suggest
that there is a statistically significant and strong agreement among
the three TD tools on the measurement of TD at class level. However,
a substantial degree of disagreement has also been observed for the
measured TD level for numerous classes.

Digkas et al. [67] investigated the relationship between TD, mea-
sured with the SonarQube TD index, and what they call clean new

7.4 architectural smells in microservices 197

code, i.e., code whose TD density is kept below the system average. In
particular they performed a large-scale case study on 27 Open-Source
Apache projects and found some hints indicating that writing clean
new code can be an efficient strategy for reducing TD.

Still Digkas et al. [68] studied the evolution of TD measured with
SonarQube in 60 Java Apache projects, and found that, even if the
project size, the number of SonarQube issues and the value of com-
plexity metrics of the project tend to increase along time, the nor-
malised (with respect to the project size) TD tend to decrease.

Tan et al. [237] ran SonarQube on a large number of commits of 20

Open Source Python projects to investigate self-fixed TD. The results
show that in general the number of self-fixed TD items is small with
the respect to the total number of items and that as long as a (Python)
project evolves,i.e., by growing in size and number of developers, the
number of self-fixed TD items decreases. Moreover, they considered
also the type of TD, finding that Test Debt and Design Debt items are
likely to be fixed by other developers instead of their original creators.

Still concerning works studying TD via SonarQube, Lenarduzzi
et al. conducted some empirical studies about TD [137] and its re-
lationship with bugs [136] and faults [138]: their results revealed that
dirty classes might be more prone to change than classes not affected
by SonarQube issues, even if the actual differences between the two
groups of classes is small and depends also on the type of issue.

Finally, according to the comparison of tools for TD identification
and their indexes, we took part in a study listing and comparing
tools for technical debt measurement [26]. Given a set of selection
criteria, we described 9 TD tools. Our analysis offers practitioners a
clearer overview of the current landscape of TD tools and highlights
their differences in offered features, popularity, empirical validation,
as well as current shortcomings. Our results allow to compare the
tools against each other and make an informed choice on which tool
best suits the needs of individual developers or their teams.

7.4 architectural smells in microservices

This section reports studies both concerning the migration to mi-
croservices architecture from monolithical architectures and also de-
scribes tools for microservices reconstruction and smell detection.

7.4.1 Migration to microservices

The discussion on how to migrate from monolithic architectures to
microservices produced several practical guidelines to help develop-
ers in this process: they usually come from direct experiences in the
industry [46], but also from research in academia. We describe below
some of the most recent proposed approaches. Balalaie [28] present

7.4 architectural smells in microservices 198

a catalog of migration patterns to support the migration from non
cloud-native architectures to microservices architectures. Mazlami [160]
propose a formal approach to identify components of monolithic
applications that can be turned into microservices. Their extraction
model represents the system under analysis as a weighted graph on
which they run graph clustering algorithms. They introduce three ex-
traction methods which differ in how the edge weights of the graph
are computed. Mishra [162] propose an approach to enable the migra-
tion from the monolith to microservices by exploiting data flows anal-
ysis. Their approach exploits the existing data schema joined with
other information obtained by using profiling tools to understand
the data flow and access patterns: this information is used to pro-
pose functional modules, that are candidate microservices. Furda [87]
proposes a set of refactoring and architectural pattern-based migra-
tion techniques relevant to microservice architectures. Baresi [30] pro-
poses a solution to find the adequate microservices granularity based
on the semantic similarity of foreseen/available functionalities de-
scribed through OpenAPI specifications.

The approaches introduced above do not provide tool support, while
in this thesis we introduce a tool to support the microservice migra-
tion process (see Section 6.1.1).

On the other hand, Gysel [101] proposed Service Cutter which is
a method and tool framework for service decomposition based on
16 coupling criteria distilled from the literature and industry experi-
ence. The tool is able to extract coupling information from engineer-
ing artifacts such as domain models and use cases, represented as
an undirected, weighted graph to find and score densely connected
clusters. The tool exploits graph clustering algorithms to suggest can-
didate service cuts which should reduce coupling between services
and raise their cohesion. The tool that we introduce in this paper dif-
fers from Service Cutter since we collect information on candidate
microservices with other techniques such as architectural smell detec-
tion and topic detection. Moreover our graph investigation is based
on graph algorithms and exploits the information coming from the
analysis of the Java bytecode of the project.

For what concerns the detection of architectural smells during the
migration process, Carrasco [52] introduced 9 common pitfalls that
divides in 5 architectural and 4 migration bad smells. However, they
do not offer a tool to automatically identify smells while we propose
to exploit the Arcan tool in order to identify possible architectural
smells before or during the migration process. In this thesis we pro-
vide the description of an Arcan extension, designed specifically for
Java projects, able to support the decomposition of the monolithic ap-
plication allowing to identify the specific Java classes/packages to be
considered during the migration process and we describe our expe-
rience in using it in two industrial case studies (see Section 6). Our

7.4 architectural smells in microservices 199

work is different from the approaches previously described in this
section which often are not implemented in a tool.

7.4.2 Tools for microservice reconstruction and smells detection

In this thesis, we also introduce two tools for the detection of mi-
croservices smells (MS smells), the counterpart of AS in microservices
architectures. One of the tool exploits static analysis while the other
is based on the parsing of dynamic traces (the execution traces of
microservices API calls). Both first reconstruct the microservices ar-
chitecture and then run detection algorithms to spot the smells.

In this section we report a set of works regarding approaches and
tools for the reconstruction of MS and MS smells detection with static
and dynamic analysis.

Granchelli at al. [95] developed a tool named MicroArt for the re-
covering of MS architecture, which combines static code information,
by parsing online github repositories, with data collected at runtime,
and by parsing execution log files. The limitation of their approach
lies in the technological requirements: a project must provide log files
and run on docker platform in order to be analysed. The peculiarity
of their approach is that they manage to remove from their model the
microservices destined to service discovery tasks, to obtain the actual
communication flow among services, not masked by proxy services.
However, the limitation of their approach lies in the technological
requirements: a project must provide log files and run on docker plat-
form in order to be analysed.

Mayer and Weinreich [159] released an approach based on Ope-
nAPI descriptions and runtime data collected via HTTP protocol,
intercepting calls through their own custom library. However, this
approach is limited to REST compliant services, relying on Spring
framework.

Engel et al. [70] created a framework named MAAT which exploits
the OpenTracing API to create a MS model and allow to visualize
the system’s architecture. The framework is also able to compute six
metrics [38]. for the evaluation of the quality attributes of a service-
oriented system, e.g., coupling, cohesion and granularity. The source
code of MAAT is not currently publicly available.

Kleehaus et al. [122] presented an approach named MICROLYZE
for the recovery of MS architecture. They describe their approach as
multi-layer, because it is able to model the business, the application,
the hardware layer of MS architecture, and also the corresponding
relationship among them. They implemented the approach by relying
on existing monitoring tools and by combining the run-time MS data
with static built-time information.

Soldani et al. [224] recently proposed a toolchain named µ-TOSCA
able to reconstruct the architecture of MS systems, identify MS smells

7.4 architectural smells in microservices 200

and support MS refactoring. Their approach mixes both static and
dynamic analysis. However, the analysis is limited only to projects
deployed on Kubernates1, because the architecture is derived from
the declarative specification of the deployment.

The first tool we proposed [197], for microservices recovery and
microservices smell detection, was as extension of our tool for archi-
tectural smell detection Arcan. However, we successively developed
another tool, named AROMA, which detaches from Arcan and over-
comes some limitations, for instance exploits dynamic analysis to en-
able the identification of a broader set of microservices smells. It is
also less subjected to the type of architectures it can analyse, i.e.,
it can recover microservices developed with different frameworks,
languages and platforms. With respect to the the previous works,
AROMA 1) can execute on heterogeneous projects (implemented with
many technologies and frameworks), differently, for example, from
MicroArt (bounded to Docker platform) and µ-TOSCA (bounded to
Kubernates); 2) is based on existing, popular software (Zipkin libraries)
and 3) is Open-Source and open to continuous extensions, to meet the
requirements of developers. The main contribution of AROMA is to
provide an open, extensible tool for the reconstruction and the detec-
tion of MS smells.

1 Kubernates is a platform for the deployment and management of containerized ap-
plications [126]

8
F I N A L R E M A R K S A N D F U T U R E D E V E L O P M E N T S

The following chapter concludes the thesis. We first provide a com-
prehensive discussion which summarises our most relevant results
and findings concerning Architectural Smells and Architectural Tech-
nical Debt. Directly after, we briefly outline the future works by ad-
dressed topic.

8.1 discussion and final remarks

Architectural smells, as long as architectural debt, are powerful, but
yet fuzzy concepts. Every developer experience them, however their
perception is not equal for all. This thesis tries to shed the light about
the perception and evolution of six architectural smells affecting dif-
ferent design principles. We investigated multiple aspects connected
to the AS: How do developers perceive AS, whether they are real
problems, how AS manifest in the system, and if they have a relation-
ship with other measurable aspects related to software architecture.
From our studies, we acknowledge that there is still a lack of culture
about smells and ATD. However, when AS are introduced and are
put under the spotlight, developers recognise the AS and recall the
difficulties they cause during everyday coding.

We now discuss the most prominent results of our studies by an-
swering some recapitulatory questions.

Which is the most recurring smell in Open-Source Java projects? In total,
we analysed over 100 Java projects, some of which also during their
development history. We identified AS with our tool, Arcan, and we
can conclude that the most present smell in the analysed projects
is Cyclic Dependency (CD). Even if this phenomenon is true for all
the considered application domains, this type of AS affects the most
projects belonging to the graphical editors domain, i.e., Java systems
which comprise a Graphical User Interface (GUI). The results of the
study on the relationship between AS and Design Patterns (DP) (Sec-
tion 4.2) gave us even more insights: the GUI components may be
particularly affected by CD because, by design, they could require
the introduction of callbacks or the passing of a self-reference. For in-
stance, imagine a Java class named Plot which manages the drawing
of a graphic. Such class manages also the creation of related objects,
such as Axes and Label. However, since the objects can be modified
by user input (e.g., change labels colour) the Axes and Label objects
may require to notify the Plot class that their status changed. Even
if this specific case could be managed by implementing the Observer

201

8.1 discussion and final remarks 202

pattern and consequently by reallocating the classes’ responsibilities,
developers may not know how to do it and may wrongly add depen-
dencies between classes without realizing that they are introducing
CD. In brief, GUI projects are the most affected by CD because, both
intentionally or unintentionally, their code is particularly open to the
introduction of this type of smell.

What is the perception of developers about AS? What emerged from the
case studies we conducted in industry is that developers experience
the negative impact on quality caused by AS and perceive them as
dangerous phenomena most of the times, even if they do not know
the definitions or have never been told about AS. It was not a surprise
that the quality attribute that they indicated as “the most impacted”
is maintainability. The set of smells we studied leads to concrete prob-
lems: for instance having a God Component (GC) makes it difficult
for developers to navigate the code and modify the required piece of
code and Hub-Like Dependency (HL) is particularly painful in the
case of a small change of the central component, because requires the
developers to remember each related pieces of code to modify along.
We asked them which are the most critical smells, on the base of their
experience. Even if CD is the most diffused smell, it is not considered
the worse in the practitioners opinion, also because we found many
examples of types of CD false positives (existing cycles but with no ac-
tual negative consequences), for instance GUI callbacks (a necessary
evil). Our aim in future works is defining specific contexts where AS
are not problems and enhance Arcan in order to filter AS in such
cases. For instance, we could instruct the tool to avoid signaling CD
in the case of GUI components in projects belonging to the graphical
editors domain.

Concerning the smell’s impact on quality, in the practitioners’ opin-
ion and experience, HL is the one which impacts the most the system
quality and also the smell which gets worse as time passes. An in-
teresting result we had is that also GC is perceived as very danger-
ous. It is one of the most simple to detect (a large and very complex
component can be spot with metrics computation) however the con-
sequences are hard: it leads to the duplication of code (because the
existing one is too entangled to decompose and reuse) and hinders
the easy turn-over of developers in a team, because explaining what
is inside a GC is a time consuming activity. UD, SF and FC are the
smells at the end of the ranking. Even if developers experience them
and agree with the fact that they are detrimental for software quality,
they do not perceive them as the most critical ones, mainly because
they have less experience about them.

One of the most prominent challenge that emerged clearly during
the PhD work is how can we automatically measure AS criticality.
Since the perception of smells varies depending on the personal devel-

8.1 discussion and final remarks 203

oper opinion and uncontrollable external factors, then the criticality
of a given instance of smell can change depending on the context.

In this thesis, we proposed two metrics for criticality evaluation,
Severity and PageRank. From our analysis, we found that the two met-
rics are strongly, positively correlated. Our future aim is to better
understand whether this means that two aspects related to AS (cost-
solving and criticality) are in accordance, i.e., when the costs to solve
an AS are high, also the criticality is high, or instead they capture the
same aspect and thus one of the two is redundant. Of course, these
metrics are a starting point which aim to provide an automatic, static
and repeatable mean to compute the criticality. At the moment, the
two metrics only take into account static facets of the smells (cen-
trality and structural complexity). The interesting challenge is to in-
tegrate such indicators with additional ones, able to capture also dy-
namic and organisational (related to developers teams) aspects [9].

What can we say about ATD evolution of Java projects?
We analysed ATD in many different Java systems, of different ap-

plication domain. The list of the considered coarse-grained domains
is: Libraries and Frameworks, IoT Platforms and Multi-Agents Systems
Platforms. Concerning Libraries and Frameworks, whom the majority
of considered projects belongs to, we analysed many different fine-
grained domains: databases, graphic editors, parsers, IDEs, testing
tools, middlewares and so on. From our analysis, we acknowledge
that the evolution of projects’ size (e.g., numbers of architectural com-
ponents, LOC) and the fact that “the more a projects ages, the more
accumulates debt” are not enough to describe the ATD trend. On the
contrary, the majority of evolution histories present a lack of trend
(i.e., oscillating value of ATD). However, from our manual analysis
and the contributions of other authors [116][133], we can claim that
the intervention of developers in terms of bug fixing, code cleaning
and refactoring is effective in reducing ATD. Even if this conclusion
seems obvious, the real result regards the fact that such information
about bugs and improvements can be collected from issue trackers,
meaning that that this source of information can be exploited to anal-
yse, predict and in general study ATD evolution.

What are the challenges of microservices smells detection? Our research
did not stop at monolithical architectures, but spanned across mi-
croservices architectural style. In particular, we studied how the pres-
ence of AS in a monolithical architecture hinders the migration to-
wards microservices and we developed one tool for dynamic detec-
tion of microservices smells, named AROMA, and extended Arcan
with the same aim, but exploiting static analysis.

The six studied AS are a problem during migration because they
impact software architecture aspects which inevitably must be kept
in consideration in the process. The first step when migrating is the

8.1 discussion and final remarks 204

identification of existing components (in the case of a component base
architecture) or the identification of cross-component functionalities
in layered architectures. This step is necessary to migrate cohesive
components (which we call candidate-microservices) that will become
the actual services in the new architecture. The difficulty comes when
the architecture is affected by smells which couple different compo-
nents among them, for instance CD, when coming in the form of tan-
gles (overlapping of different CD instances) can be very hard to break.
However, in the two case studies we conducted in industrial context,
we found that SF and FC are the AS which makes the migration dif-
ficult the most. This makes sense, because both affect the separation
of concerns principle. Having concerns spread across the architecture
oblige the developer to manually identify the component boundaries,
i.e., to look for the various parts of the service, extract them and at
the same time lose a lot of time in refactoring.

We introduced also the concept of microservices smell, the counter-
part of AS in microservices. With respect to this subject, we did not
conduct empirical studies, however we ran our tools and inspected
the first results. The knowledge we got regards the current challenges
in developing this type of tools. First, we cannot limit the analysis to
static evaluation of code and architecture properties, for the reason
that the “dependencies” among different services cannot be identified
in the same way we identify Java dependencies. That is why dynamic
analysis is needed, to monitor the microservices activity and infer
dependencies from execution traces. Other challenges regard the re-
construction of the infrastructure at the base of microservices deploy-
ment: also, in this case, the environment in which the services execute
is way more complex than the ones of self-contained monolithical ap-
plications. Other than the application layer, studying microservices
requires knowledge and tools to inspect the network layer, the man-
agement of multiple instances allocation, the microservices messag-
ing, the peculiarity of the different platforms, such as Docker and
Kubernates, which play a fundamental role in the design of the archi-
tecture. In brief, while for monolithical architectures we could allow
ourselves to abstract from the implementation choices of an archi-
tecture (such as the choice of frameworks, databases, programming
language and so on), this is no more true when dealing with microser-
vices. Future works aiming at developing completely automatic tools
for microservices smell detection should first investigate and choose
the data that we need to acquire in order to effectively reconstruct
microservices architecture and build the detectors on the top of such
representation.

alternative techniques for as detection We did not fo-
cus only on static analysis when studying AS detection. We imple-
mented in Arcan a detector able to identify two smells basing on

8.1 discussion and final remarks 205

semantic information, and we are currently developing strategies for
AS detection with dynamic analysis.

Concerning natural language techniques to collect semantic infor-
mation, we concluded that (at the moment) simple, term frequency-
based methods perform better than approaches employing neural
networks. First, it appears that the former better represent the se-
mantic of code, probably because the current neural network ap-
proaches were designed for natural (not synthetic) language. Second,
the amount of computational resources required by neural models
goes over the capability of a basic laptop and thus makes the models
unsuitable for integration into detection tools. That is why we inte-
grated into Arcan a strategy based on the tf-idf computation, and
we are now able to provide a semantic map of the software architec-
ture under analysis (i.e., the feature graph). On the top of the feature
graph, we can detect Scattered Functionality and Feature Concentra-
tion. We have already presented the approach to practitioners and
got some feedback [198], however, in the future we plan to extend the
validation of both the feature graph and the detection strategies.

Concerning dynamic analysis for AS detection, we already dis-
cussed our approach to identify microservices smells by exploiting
trace analysis. However, this is not the only research path we are fol-
lowing. We are currently developing an Arcan extension to detect HL,
CD and FC starting from execution traces triggered by integration
tests. At the same time, we are conducting a study on eight Open-
Source Java projects. We compare the results obtained through dy-
namic and static-based analysis to understand if dynamic analysis
can be successfully used for AS detection. Different from the case
of microservices reconstruction, where dynamic analysis is helpful
because it allows collecting information about the services communi-
cation where the static analysis cannot, in this case we aim to exploit
dynamic analysis to discriminate between the AS false positive and
true positive instances. The problem is that static analysis has the
advantage of being an exhaustive analysis, given that it runs on the
entire codebase, but can report false positive instances. Therefore, we
conjecture that integrating dynamic analysis could enhance the de-
tection precision of static approaches. For example, let us consider
the HL smell. Static analysis collects all the possible dependencies of
the component, even if they will never be resolved at runtime, pos-
sibly generating false positives. In these cases, dynamically checking
the component dependencies could help in reducing the number of
false-positive instances.

As done for the feature graph, we merge static information and
dynamic ones in a unique graph, the trace graph. The strategies to
detect the smells are the same adopted in the static case, however,
we also consider the number of times the program executed specific
parts of code (information we get from traces). The early results show

8.1 discussion and final remarks 206

that dynamic analysis can be useful for architectural smells detection,
but in any case, it must be paired with static analysis. This because
dynamic analysis has the opposite drawback: if the integration tests
used to collect traces are not exhaustive, i.e., have a bad code coverage,
then the dynamic analysis could be missing a lot of potential AS.

8.2 future developments 207

8.2 future developments

We now briefly outline some future developments of the research
themes addressed in this thesis.

architectural smells detection Arcan currently detects six
architectural smells violating three different design principle, in ad-
dition to three microservices smells. AROMA detects three microser-
vices smells, by exploiting dynamic analysis. Further developments in
this direction could be the definition of detection strategies for other
types of smells, both architectural and microservices, and enforce the
validation in terms of precision with industrial developers. We plan
also to exploit the feedback about the false positive cases of AS to
implement a set of filters in Arcan. Filters could include the detection
of design patterns (see Section 4.2), to distinguish cases where the
smell is introduced by design while programming a pattern; filters
could also activate depending on the type of implemented architec-
ture: if it is possible to automatically understand or know whether
the architecture is layered, or structured with components, or even
designed with microservices, filters could leave out smell instances
not relevant for the specific architectural paradigm. A challenging fu-
ture work, that would be of great use for the entire community, is the
creation of a dataset of validated AS to be exploited as benchmark for
analysis tool’s developers and AS researchers.

empirical studies on architectural smells

• A Study on Correlations between Architectural Smells and Design
Patterns The study is open to several extensions. What we de-
scribed is a first investigation of the relationships between AS
and DP. For instance, we discovered a hint regarding the pos-
sible correlation between the increase/decrease of AS and the
related decrease/increase of DP. If we could demonstrate this
correlation, that would mean that projects with a large number
of implemented DP are affected by a lower number of AS. In
the future, we aim to investigate this relationship further, by
also exploring the evolution of the number of AS and DP in the
projects with the support of statistical tests. In terms of the asso-
ciation rules, it is clear that Cyclic Dependency (CD) is appears
in the majority of them. This fact is not surprising, given that
CD is the most frequent smell in the analyzed projects. Thus, it
could be interesting to execute the rules extraction once again,
by excluding dependencies affected by CD from the dataset.
This may lead to the identification of more rules involving dif-
ferent smells with different DP.

• Architectural Smells Evolution and Correlation: an Empirical Study
For what concerns other future works on the correlation and

8.2 future developments 208

evolution of AS, we aim to extend our work on industrial projects.
Moreover, we did not consider history-related metrics (code
churns, co-evolution) in our study: we aim in the future to inves-
tigate the relationship between AS, criticality and such metrics,
e.g., whether there is a link between the criticality of AS and
the file change frequency. We also aim to further investigate the
shared causes that we identified as at the base of the colloca-
tion of AS and understand whether/how we can detect them.
Finally, we also aim to study the impact of AS on software ar-
chitecture by analysing the relationship between the presence
of AS and other architectural-related issues, e.g., issues mined
from issue trackers or other kinds of architectural metrics able
to evaluate architecture erosion.

architectural technical debt evaluation

• Architectural Debt Index An interesting future work is the exten-
sion of our Architectural Debt Index (ADI) with further AS,
along with further studies about AS criticality and prioritiza-
tion. Moreover, we aim to compare the ADI with other TD
indexes, such as the SonarQube index, to investigate the rela-
tionship between architectural technical debt measured via AS
and technical debt. In particular, we want to compare ADI with
ATDx [247], i.e, the other index for ATD evaluation that is cur-
rently available (for what we know). ATDx already includes
more architectural related facets with respect to Arcan: do such
facets contribute with additional information with respect to
AS? Do they add noise or confounding factors? These are some
examples of questions that we could try to answer.

• Impact of Opportunistic Reuse Practices to Technical Debt We stud-
ied whether TD is influenced by the adoption of third-party
components. In future work, we plan to evaluate more projects
and repositories and compare them to programs implemented
with other programming languages, like Python. Another re-
search line could include the evaluation of TD and reuse in mi-
croservices projects. In general, we also plan to investigate how
to reduce the initial search effort of the components to reuse, to
enable quicker analysis.

• Evaluating the Architectural Debt of IoT Projects We aim to extend
the ATD analysis on a larger set of IoT projects, and select them,
if possible, depending on how much relevant they are for study-
ing AS impact. Moreover, we are looking for collaborations with
companies to acquire the feedback on architectural debt evalu-
ation of developers who works with IoT projects. We aim to
extend the analysis by considering other kinds of evolution vari-
ables, such as code-churns and the number of changes, to better

8.2 future developments 209

understand the relationship between AS and the project evolu-
tion. Another interesting research line can be the study of AS
which could affect specifically IoT systems, and the develop-
ment of a dedicated tool for their detection.

• Evaluating the architectural debt of agent based systems We found
preliminary evidence of the link between bug fixing and the de-
crease of ATD. Studying the correlation between MAS platform
architectural debt and bugs occurrence/fixing could lead to the
conclusion that code level bugs have an impact on the accumu-
lation/decrease of ATD. Moreover, the validation of the ATD
values found in the projects analysed in the described study
could be refined by testing the correlation with issues coming
from issue trackers (e.g. Jira [113]). In this way, we could further
investigate whether code “Improvements” (which is usually rec-
ognized as a category of issues) do have a relationship with
the decrease of ATD. Another interesting study could investi-
gate the relationship between ATD and MAS platforms’ per-
formance, since a link between performance and design deci-
sions has already been proven. Another next natural step will
be to apply this kind of analysis to real MASs developed with
these platforms, or to enlarge our analysis to the many add-ons
of these four platforms (for example WSIG and OntologyBean-
Generator for Jade [1, 43, 243]), to study if we can identify some
common ATDs for MASs or further problems in MAS develop-
ment platforms.

• AS Criticality Evaluation Concerning the support to AS priori-
tization and the evaluation of AS criticality, we proposed two
metrics: Severity and PageRank. We plan to conduct a valida-
tion of both metrics and on the correlation results, by compar-
ing the ranking provided by the metrics with the perception of
Open-Source developers. In addition to the validation, in future
developments we aim to extend this work by analyzing more
projects, also coming from industry, and verify if the same re-
sults can be confirmed.

architectural smells detection in microservices archi-
tectures

• Industrial case studies on the migration towards microservices We de-
signed a migration to microservices process and extended Ar-
can to support it. We plan to extend the validation, currently
limited to two case studies, on more industrial projects of larger
dimension, both in the same companies or in other companies.
In particular we are interested in validating the support of Ar-
can in the case the developer/maintainer does not have knowl-
edge on the project under analysis. For what concerns the pos-

8.2 future developments 210

sible enhancements of Arcan, it would be interesting to study
and develop a predictive approach based on machine learning
to predict the candidate microservices. Predictors could take into
account both static properties and semantic information of the
monolithical architecture. Moreover, we plan to enhance the Ar-
can support for the identification of candidate microservices. A
specific development that emerged from the second case study
is the addition of the analysis of JSP, Javascript files (front-end
analysis) and the SQL database to allow the user looking for
relationships between the GUI and persistence layers with the
Java classes.

• Towards Microservice Smells Detection We developed an Arcan ex-
tension and the tool AROMA, the latter based on dynamic anal-
ysis, for microservices smell detection. First of all, we aim to de-
tect microservices smells on more and larger projects, even if it
is not easy to find public repositories of this kind of projects. We
aim to validate the tool also on industrial projects to collect feed-
back from developers and identify possible false positives. The
current analysis is limited to the reconstruction of microservices
and their basic dependencies, however we aim in the future to
refine the identification by adding also the detection of infras-
tructure services, such as discovery services (e.g., Consul) and
to detect other kinds of microservices smells, such as ESB Us-
age and Shared Libraries [236]. We are interested to include also
the identification of stored service data, to enable the detection
of smells regarding the usage of data (e.g., Inappropriate Service
Intimacy [236]. Finally, we plan to integrate Arcan and AROMA
with existing versioning platforms and tools, such as Github, in
order to enable to exploit the two tools in continuous integra-
tion pipelines to constantly keep track of architecture erosion.

9
F I N A L P E R S O N A L N O T E

If you reached this point, congratulations, you completed the read-
ing of Ilaria Pigazzini’s thesis. Maybe you jumped here from the start,
then, I should resume in few words what I think about architectural
smells and the future of this research subject. In my opinion, we only
scratched the top of the big iceberg made of smells and ATD, and
three PhD years are not enough for a comprehensive analysis of their
causes and consequences. Given that the main goal of a student is to
be objective and provide replicable, empirically measurable results, I
focused on studying few but sound aspects related to AS. What I en-
vision for future research is to start opening towards interdisciplinary
studies: code is written by developers, who, even if it might sound un-
expected, are real people. Real people think, decide, make mistakes,
sometimes do things without a specific reason. Architectural smells
are the results of human decision, but we still do not own the map
of the human mind and behaviour. So, what can we do? First of all,
I think future research should investigate how to retrieve as much
information as possible about everyday developers process. Current
approaches collect data about git commits, emails, natural languages
text found in issues’ trackers. It is an interesting starting point, and it
poses alone many challenges: how to efficiently collect such informa-
tion and how to organise them in data structures suitable for analysis.
However, another interesting upgrade could be starting asking devel-
opers to be an active part of the research, by building tools for self-
annotation of what happens during the development of a program.
For instance, by creating a plug-in for famous IDEs able with little
effort to track what’s in the mind in the developer during the writing
of a method.

I used the term “interdisciplinary” for a reason. Other than collect-
ing developers data, we should also analyse the psychology of devel-
opers and architects. Why projects starts with the best intentions and
end up accumulating TD? Are there external, non-code-measurable
variables that we are not considering? An interesting paper from Kaz-
man et al. [117] I read during my PhD opens with the following para-
graph:

Much empirical research in software engineering has fo-
cused on studies of “naturalistic” phenomena. But these
studies collect only observational data, and so traditional
analysis techniques yield only correlations between project
practices and characteristics (on the one hand) and mea-
surable outcomes (on the other hand). Without knowing

211

final personal note 212

the causal effects, it is difficult for a manager to act upon
correlational evidence. For example, as source files in a
software project increase in size, they tend to have more
bugs and be touched by more developers. That is, file size,
bugs, and number of developers are all strongly positively
correlated. If one mistakes correlation for causation, then
one might be tempted to conclude that bug rates could be
lowered just by reducing the number of developers who
are working on a file!

What it means is that we need a causal model able to represent the
entire system surrounding the development of a software projects.
Causal models are mathematical models representing causal relation-
ships within an individual system or population, that facilitate in-
ferences about causal relationships from statistical data [106]. Causal
modeling has been largely studied by the mathematician and philoso-
pher Judea Pearl. Pearl not only mathematically defined what a causal
model is, but also developed a theory to exploit such models in prac-
tice [174]. Having such a model allows the extraction of powerful in-
ferences and, in the case of our research field, would allow the merge
of heterogeneous information, such as static code information and de-
velopers ones. For instance, Kazman in the paper proposes a causal
dependency between the project’s age and the number of developer,
which at the same time would influence the number of bugs. How-
ever, at the moment, there are no studies aimed at delving into the
development of causal models for software engineering and it is a
pity, because I think it is a hard, but promising direction.

To conclude, I hope the contributions I provide with this thesis can
be useful for future developments in the management of architectural
smells and technical debt, and that the in next years students will dare
to mix software engineering with more exotic subjects, such as causal
modeling, for exciting results in this fascinating discipline.

A
A P P E N D I X

a.1 additional material of validation and perception

of the architectural smells from the developers

In this Appendix, we report the full survey and interview forms
adopted in the studies described in Chapter 3.

a.1.1 An architectural smell evaluation in an industrial context: survey
questions

The questions asked to the developers in the survey (Section 3.2)
are reported in Table A.1. Each question aims to gather the devel-
oper’s evaluation on specific aspects of the analyzed AS, that is par-
ticularly valuable considering their deep knowledge on the project.

The proposed questions can be grouped by category:
AS detection and awareness [Q1−Q3,Q12]: this set of questions aim to
evaluate the precision of the Arcan detection strategies and investi-
gate the awareness of the developers on the presence of the smells.
AS impact[Q5−Q6]: these questions aim to collect information about
the perceived impact of AS on different software quality attributes.
AS refactoring[Q7−Q9]: such questions gather information about whether
refactoring activities, in the opinion of the developers, should be con-
ducted and the type of refactoring needed to remove the smell.
AS severity, refactoring effort and priority[Q4,Q10 −Q11]: these ques-
tions aim to evaluate the effort/time needed to apply the refactoring
and understand whether the smells can be ranked depending on their
criticality (severity), i.e. if it is possible to quantify the smell impact
thanks to the evaluation of specific smell characteristics, e.g., smell
size (the number of affected classes/packages). To evaluate the an-
swers of these questions, we define and compute three metrics (see
section 5 for more details on the metrics computation), namely Av-
erage Severity of the smells, i.e., the average criticality that develop-
ers’ associate to the smells, the Average Effort needed to refactor the
smells and the Average Priority of refactoring that can be associated to
the smells, i.e., the ordering of the smells depending on which should
be refactored first. We chose to compute these values in order to sum-
marize the collected data and be able to compare them.

The proposed questions are of three types: binary questions, where
the possible answers are Yes or No; closed-ended questions, with
multiple possible answers and open-ended questions, which were op-
tional because we did not want to force the practitioners to spend too

213

A.1 additional material of as validation and perception 214

much time on them and, in some cases, no answer was needed, e.g.,
Q3 if the smell instance is considered as a problem by the practitioner.
In this way we were able to collect both quantitative and qualitative
answers, in particular the latter allowed us to gain insights about the
concrete opinions of the practitioners.

a.1.2 The perception of Architectural Smells in three software companies:
interview guide

The following paragraphs report the interview guide of the study
described in Section 3.3. Along with the interview guide, we prepared
a one-pager containing the definition of the considered Architectural
Smells (AS). The pager about AS was introduced during the interview.
We first gave them the general definition of AS, then we defined the
term “component”, explaining that it could be referring to either a
class (file) or a package (folder). Then we defined each smell, speci-
fying whether it could be identified at only class (file) level, at only
package (folder) level or both. If requested by the participant, we pro-
vided examples of AS to clarify the concept.

demographics

1. What is your current official position?

2. What is your role in your team? (day-to-day tasks example)

3. How many years of experience do you have in the current posi-
tion and in total?

rq1 questions

1. Which of these smells are you already familiar with, from your
work?

2. How many of them are there in the system you currently work
on?

3. What types of smells do you think are the most important in
your case? Why?

rq2 questions

1. What types of smells do you deem to be more detrimental for
the Maintainability of the system? How are they detrimental?

2. Can you remember experiencing any issue while maintaining a
class/package that could be related to an architectural smell?

3. What types of smells do you deem to be more detrimental for
the Evolvability of the system? How are they detrimental?

A.1 additional material of as validation and perception 215

Table A.1: Proposed questions

ID Question Possible Choices

Q1

Does the reported smell represent a problem in the
system?

Yes or No

Q2

Were you aware of the presence of this smell in the
system?

Yes or No

Q3

If it’s not a problem, do you think that this could
be a case of false positive AS? Or an AS not
critical? For which reasons?

N/A (open-response)

Q4

How significant are the negative impacts caused by
the smell in your opinion?

0 - Not a problem
1 - Low severity
2 - Mid-Low severity
3 - Mid-High severity
4 - High severity

Q5

If it has negative impacts, which of the following
software internal qualities has this type of smell an
impact on?

• Reliability (R)
• Efficiency (E)
• Security (S)
• Maintainability (M)
• Other

Q6

If not removed, the impact of this type of smell get
worse as time passes

0 - Disagree
1 - Somewhat Disagree
2 - Somewhat Agree
3 - Agree

Q7

What refactoring would you suggest to conduct?
(e.g. move class, extract class, extract components,
extract layers, etc.. Take in consideration your
best option only)

N/A (open-response)

Q8

Do you think that conducting the refactoring would
create negative side-effects? If yes which
ones?

N/A (open-response)

Q9

If no refactoring should be conducted, which is the
reasons?

• Not a real AS
(false positive)
• The smell does not
represent a problem
because there is not a
better solution
• The removal of this
smell is too expensive
• Other

Q10

How much effort/time can be required to refactor
the smell?

0 - No refactoring needed
1 - Low (< 8 h)
2 - Mid-Low (8-50 h)
3 - Mid-High (50-100 h)
4 - High (>100 h)

Q11

What do you think is the overall priority of
refactoring this smell?

0 - No refactoring needed
1 - Low priority
2 - Mid-Low priority
3 - Mid-High priority
4 - High priority

Q12

There is any architectural issue that you know is
present in the system, but was not treated in this
survey? If there is, describe it briefly

N/A (open-response)

A.1 additional material of as validation and perception 216

4. In your project are there obstacles to the implementation of new
features that you think are related to architectural smells? If yes,
can you tell us about these obstacles?

rq3 questions

1. Did you try to refactor the part involved in the smell? If yes,
how did you do it? If not, why?

2. Are there any practices in your team to manage the smells and
their consequences?

3. Are you using any tools to monitor architectural issues (or at
least dependency analysis)?

4. If yes, why did you choose that tool in particular? If not, are
you aware of such tools that you would consider using?

5. What do you think is the ideal (imaginary) tool that could han-
dle architectural smells issues?

B I B L I O G R A P H Y

[1] C. van Aart, R. Pels, G. Caire, and F. Bergenti. “Creating and
using ontologies in agent communication.” In: Proc. of OAS.
2002.

[2] Marwen Abbes, Foutse Khomh, Yann-Gaël Guéhéneuc, and
Giuliano Antoniol. “An Empirical Study of the Impact of Two
Antipatterns, Blob and Spaghetti Code, on Program Compre-
hension.” In: 15th European Conference on Software Maintenance
and Reengineering, CSMR 2011, 1-4 March 2011, Oldenburg, Ger-
many. 2011, pp. 181–190. doi: 10.1109/CSMR.2011.24.

[3] Hani Abdeen, Stephane Ducasse, and Houari Sahraoui. “Mod-
ularization Metrics: Assessing Package Organization in Legacy
Large Object-Oriented Software.” In: 2011 18th Working Confer-
ence on Reverse Engineering. 2011, pp. 394–398. doi: 10.1109/
WCRE.2011.55.

[4] Rakesh Agrawal, Heikki Mannila, Ramakrishnan Srikant, Hannu
Toivonen, A Inkeri Verkamo, et al. “Fast discovery of associa-
tion rules.” In: Advances in knowledge discovery and data mining
12.1 (1996), pp. 307–328.

[5] Rakesh Agrawal and Ramakrishnan Srikant. “Fast Algorithms
for Mining Association Rules.” In: 20th Int. Conf. on Very Large
Data Bases. Morgan Kaufmann, 1994, pp. 475–486.

[6] Ai Reviewer. Ai Reviewer. http://www.aireviewer.com/, Ac-
cessed October 2021.

[7] V. Alagarasan. “Microservices Antipatterns.” In: Microservices-
Summit, NY. 2016.

[8] Juan M Alberola, Jose M Such, Ana Garcia-Fornes, Agustin Es-
pinosa, and Vicent Botti. “A performance evaluation of three
multiagent platforms.” In: Artificial Intelligence Review 34.2 (2010),
pp. 145–176.

[9] Reem Alfayez, Pooyan Behnamghader, Kamonphop Srisopha,
and Barry Boehm. “An Exploratory Study on the Influence of
Developers in Technical Debt.” In: Proceedings of the 2018 In-
ternational Conference on Technical Debt. TechDebt ’18. Gothen-
burg, Sweden: Association for Computing Machinery, 2018,
1–10. isbn: 9781450357135. doi: 10.1145/3194164.3194165.
url: https://doi.org/10.1145/3194164.3194165.

217

https://doi.org/10.1109/CSMR.2011.24
https://doi.org/10.1109/WCRE.2011.55
https://doi.org/10.1109/WCRE.2011.55
http://www.aireviewer.com/
https://doi.org/10.1145/3194164.3194165
https://doi.org/10.1145/3194164.3194165

bibliography 218

[10] T. Alkhaeir and B. Walter. “The Effect of Code Smells on the
Relationship Between Design Patterns and Defects.” In: IEEE
Access 9 (2021), pp. 3360–3373. doi: 10.1109/ACCESS.2020.
3047870.

[11] Sara HS Almadi, Danial Hooshyar, and Rodina Binti Ahmad.
“Bad Smells of Gang of Four Design Patterns: A Decade Sys-
tematic Literature Review.” In: Sustainability 13.18 (2021), p. 10256.

[12] Uri Alon, Meital Zilberstein, Omer Levy, and Eran Yahav. “Code2Vec:
Learning Distributed Representations of Code.” In: Proc. ACM
Program. Lang. (2019). issn: 2475-1421.

[13] Theodoros Amanatidis, Nikolaos Mittas, Athanasia Moschou,
Alexander Chatzigeorgiou, Apostolos Ampatzoglou, and Left-
eris Angelis. “Evaluating the agreement among technical debt
measurement tools: building an empirical benchmark of tech-
nical debt liabilities.” In: Empirical Software Engineering 25.5
(2020), pp. 4161–4204.

[14] Hugo Sica de Andrade, Eduardo Almeida, and Ivica Crnkovic.
“Architectural Bad Smells in Software Product Lines: An Ex-
ploratory Study.” In: Proceedings of the WICSA 2014 Compan-
ion Volume. WICSA ’14 Companion. Sydney, Australia: ACM,
2014, 12:1–12:6. isbn: 978-1-4503-2523-3. doi: 10.1145/2578128.
2578237. url: http://doi.acm.org/10.1145/2578128.2578237.

[15] Apache Software Foundation. Junit 4. https://junit.org/
junit4, Accessed October 2021.

[16] Apache ZooKeeper. https://zookeeper.apache.org/, Accessed
October 2021.

[17] F. Arcelli Fontana, P. Avgeriou, I. Pigazzini, and R. Roveda.
“A Study on Architectural Smells Prediction.” In: 2019 45th
Euromicro Conference on Software Engineering and Advanced Ap-
plications (SEAA). 2019, pp. 333–337. doi: 10.1109/SEAA.2019.
00057.

[18] F. Arcelli Fontana, V. Ferme, M. Zanoni, and A. Yamashita.
“Automatic Metric Thresholds Derivation for Code Smell De-
tection.” In: 2015 IEEE/ACM 6th International Workshop on Emerg-
ing Trends in Software Metrics. 2015, pp. 44–53.

[19] F. Arcelli Fontana, I. Pigazzini, R. Roveda, and M. Zanoni. “Au-
tomatic Detection of Instability Architectural Smells.” In: Proc.
of the 32nd Intern. Conf. on Software Maintenance and Evolution
(ICSME 2016). ERA Track. Raleigh, North Carolina, USA: IEEE,
Oct. 2016.

[20] F. Arcelli Fontana, R. Roveda, and M. Zanoni. “Technical Debt
Indexes Provided by Tools: A Preliminary Discussion.” In: 2016
IEEE 8th Inter. Work. on Managing Technical Debt (MTD). 2016,
pp. 28–31. doi: 10.1109/MTD.2016.11.

https://doi.org/10.1109/ACCESS.2020.3047870
https://doi.org/10.1109/ACCESS.2020.3047870
https://doi.org/10.1145/2578128.2578237
https://doi.org/10.1145/2578128.2578237
http://doi.acm.org/10.1145/2578128.2578237
https://junit.org/junit4
https://junit.org/junit4
https://zookeeper.apache.org/
https://doi.org/10.1109/SEAA.2019.00057
https://doi.org/10.1109/SEAA.2019.00057
https://doi.org/10.1109/MTD.2016.11

bibliography 219

[21] Francesca Arcelli Fontana, Ilaria Pigazzini, Riccardo Roveda,
Damian Andrew Tamburri, Marco Zanoni, and Elisabetta Di
Nitto. “Arcan: A Tool for Architectural Smells Detection.” In:
Int’l Conf. Software Architecture (ICSA 2017) Workshops. Gothen-
burg, Sweden, Apr. 2017, pp. 282–285. doi: 10.1109/ICSAW.
2017.16.

[22] Francesca Arcelli Fontana and Marco Zanoni. “On investigat-
ing code smells correlations.” In: Proc. IEEE Fourth Interna-
tional Conference on Software Testing, Verification and Validation
Workshops (ICSTW), RefTest Workshop. Berlin, Germany: IEEE,
2011, pp. 474–475. doi: 10.1109/ICSTW.2011.14.

[23] Mafruz Zaman Ashrafi, David Taniar, and Kate Smith. “Re-
dundant Association Rules Reduction Techniques.” In: AI 2005:
Advances in Artificial Intelligence. Ed. by Shichao Zhang and Ray
Jarvis. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005,
pp. 254–263.

[24] Lerina Aversano, Umberto Carpenito, and Martina Iammarino.
“An Empirical Study on the Evolution of Design Smells.” In:
Information 11.7 (2020), p. 348.

[25] Lerina Aversano, Luigi Cerulo, and Massimiliano Di Penta.
“Relationship between design patterns defects and crosscut-
ting concern scattering degree: an empirical study.” In: IET
software 3.5 (2009), pp. 395–409.

[26] Paris Avgeriou, Davide Taibi, Apostolos Ampatzoglou, Francesca
Arcelli Fontana, Terese Besker, Alexander Chatzigeorgiou, Valentina
Lenarduzzi, Antonio Martini, Nasia Moschou, Ilaria Pigazzini,
et al. “An Overview and Comparison of Technical Debt Mea-
surement Tools.” In: IEEE Annals of the History of Computing 01

(2020), pp. 0–0.

[27] Umberto Azadi, Francesca Arcelli Fontana, and Davide Taibi.
“Architectural smells detected by tools: a catalogue proposal.”
In: Proceedings of the Second International Conference on Techni-
cal Debt, TechDebt@ICSE 2019, Montreal, QC, Canada, May 26-
27, 2019. Ed. by Paris Avgeriou and Klaus Schmid. IEEE /
ACM, 2019, pp. 88–97. isbn: 978-1-7281-3371-3. doi: 10.1109/
TechDebt.2019.00027. url: https://dl.acm.org/citation.
cfm?id=3355348.

[28] Armin Balalaie, Abbas Heydarnoori, Pooyan Jamshidi, Damian
A. Tamburri, and Theo Lynn. “Microservices migration pat-
terns.” In: Software: Practice and Experience 0.0 (). doi: 10.1002/
spe.2608. eprint: https://onlinelibrary.wiley.com/doi/
pdf/10.1002/spe.2608. url: https://onlinelibrary.wiley.
com/doi/abs/10.1002/spe.2608.

https://doi.org/10.1109/ICSAW.2017.16
https://doi.org/10.1109/ICSAW.2017.16
https://doi.org/10.1109/ICSTW.2011.14
https://doi.org/10.1109/TechDebt.2019.00027
https://doi.org/10.1109/TechDebt.2019.00027
https://dl.acm.org/citation.cfm?id=3355348
https://dl.acm.org/citation.cfm?id=3355348
https://doi.org/10.1002/spe.2608
https://doi.org/10.1002/spe.2608
https://onlinelibrary.wiley.com/doi/pdf/10.1002/spe.2608
https://onlinelibrary.wiley.com/doi/pdf/10.1002/spe.2608
https://onlinelibrary.wiley.com/doi/abs/10.1002/spe.2608
https://onlinelibrary.wiley.com/doi/abs/10.1002/spe.2608

bibliography 220

[29] Carliss Young Baldwin, Kim B Clark, Kim B Clark, et al. Design
rules: The power of modularity. Vol. 1. MIT press, 2000.

[30] Luciano Baresi, Martin Garriga, and Alan De Renzis. “Microser-
vices Identification Through Interface Analysis.” In: Service-
Oriented and Cloud Computing - 6th IFIP WG 2.14 European Con-
ference, ESOCC 2017, Oslo, Norway, September 27-29, 2017, Pro-
ceedings. Ed. by Flavio De Paoli, Stefan Schulte, and Einar
Broch Johnsen. Vol. 10465. Lecture Notes in Computer Science.
Springer, 2017, pp. 19–33. doi: 10.1007/978-3-319-67262-
5_2. url: https://doi.org/10.1007/978-3-319-67262-
5_2.

[31] M. S. Bartlett. “Properties of Sufficiency and Statistical Tests.”
In: Proceedings of the Royal Society of London. Series A, Mathe-
matical and Physical Sciences 160.901 (1937), pp. 268–282. issn:
00804630. url: http://www.jstor.org/stable/96803.

[32] Alvine Boaye Belle, Ghizlane El Boussaidi, and Sègla Kpod-
jedo. “Combining Lexical and Structural Information to Re-
construct Software Layers.” In: Inf. Softw. Technol. 74.C (June
2016), pp. 1–16. issn: 0950-5849. doi: 10.1016/j.infsof.2016.
01.008. url: http://dx.doi.org/10.1016/j.infsof.2016.01.
008.

[33] Fabio Bellifemine, Giovanni Caire, and Dominic Greenwood.
Developing Multi-Agent Systems with JADE. Wiley, 2007. isbn:
978-0-47005747-6. doi: 10.1002/9780470058411. url: https:
//doi.org/10.1002/9780470058411.

[34] Jacob Benesty, Jingdong Chen, Yiteng Huang, and Israel Co-
hen. “Pearson correlation coefficient.” In: Noise reduction in
speech processing. Springer, 2009, pp. 1–4.

[35] Alexander Binun and Günter Kniesel. “DPJF - Design Pattern
Detection with High Accuracy.” In: 16th European Conference
on Software Maintenance and Reengineering, CSMR 2012, Szeged,
Hungary, March 27-30, 2012. 2012, pp. 245–254. doi: 10.1109/
CSMR.2012.82.

[36] David M. Blei, Andrew Y. Ng, and Michael I. Jordan. “Latent
Dirichlet Allocation.” In: Journal of Machine Learning Research 3

(2003), pp. 993–1022.

[37] J. Bogner, T. Boceck, M. Popp, D. Tschechlov, S. Wagner, and
A. Zimmermann. “Towards a Collaborative Repository for the
Documentation of Service-Based Antipatterns and Bad Smells.”
In: Int. Conf. on Software Architecture Companion (ICSA-C). 2019,
pp. 95–101.

https://doi.org/10.1007/978-3-319-67262-5_2
https://doi.org/10.1007/978-3-319-67262-5_2
https://doi.org/10.1007/978-3-319-67262-5_2
https://doi.org/10.1007/978-3-319-67262-5_2
http://www.jstor.org/stable/96803
https://doi.org/10.1016/j.infsof.2016.01.008
https://doi.org/10.1016/j.infsof.2016.01.008
http://dx.doi.org/10.1016/j.infsof.2016.01.008
http://dx.doi.org/10.1016/j.infsof.2016.01.008
https://doi.org/10.1002/9780470058411
https://doi.org/10.1002/9780470058411
https://doi.org/10.1002/9780470058411
https://doi.org/10.1109/CSMR.2012.82
https://doi.org/10.1109/CSMR.2012.82

bibliography 221

[38] Justus Bogner, Stefan Wagner, and Alfred Zimmermann. “To-
wards a Practical Maintainability Quality Model for Service-
and Microservice-Based Systems.” In: Proc. of the 11th Euro-
pean Conference on Software Architecture. ECSA ’17. Canterbury,
United Kingdom: ACM, 2017. isbn: 9781450352178.

[39] Rafael H. Bordini, Jomi Fred Hübner, and Michael Wooldridge.
Programming Multi-Agent Systems in AgentSpeak Using Jason (Wi-
ley Series in Agent Technology). USA: John Wiley & Sons, Inc.,
2007. isbn: 0470029005.

[40] L. Braubach, Winfried Lamersdorf, and A. Pokahr. “Jadex: im-
plementing a BDI-infrastructure for JADE agents.” In: EXP In
Search of Innovation (Special Issue on JADE) 3 (Dec. 2003).

[41] S. Brin and L. Page. “The Anatomy of a Large-Scale Hyper-
textual Web Search Engine.” In: Seventh International World-
Wide Web Conference (WWW 1998). 1998. url: http://ilpubs.
stanford.edu:8090/361/.

[42] Sergey Brin, Rajeev Motwani, Jeffrey D. Ullman, and Shalom
Tsur. “Dynamic Itemset Counting and Implication Rules for
Market Basket Data.” In: SIGMOD Rec. 26.2 (June 1997), pp. 255–
264. issn: 0163-5808. doi: 10.1145/253262.253325.

[43] Daniela Briola, Viviana Mascardi, and Massimiliano Gioseffi.
“OntologyBeanGenerator 5.0: Extending Ontology Concepts
with Methods and Exceptions.” In: Proceedings of the 19th Work-
shop "From Objects to Agents", Palermo, Italy, June 28-29, 2018.
Ed. by Massimo Cossentino, Luca Sabatucci, and Valeria Sei-
dita. Vol. 2215. CEUR Workshop Proceedings. CEUR-WS.org,
2018, pp. 116–123. url: http : / / ceur - ws . org / Vol - 2215 /

paper_19.pdf.

[44] Nanette Brown et al. “Managing Technical Debt in Software-
Reliant Systems.” In: Proceedings of the FSE/SDP Workshop on
Future of Software Engineering Research. FoSER ’10. Santa Fe,
New Mexico, USA: Association for Computing Machinery, 2010,
47–52. isbn: 9781450304276. doi: 10.1145/1882362.1882373.
url: https://doi.org/10.1145/1882362.1882373.

[45] João Brunet, Roberto Almeida Bittencourt, Dalton Serey Guer-
rero, and Jorge C. A. de Figueiredo. “On the Evolutionary Na-
ture of Architectural Violations.” In: 19th Working Conference on
Reverse Engineering, WCRE 2012, Kingston, ON, Canada, October
15-18, 2012. 2012, pp. 257–266. doi: 10.1109/WCRE.2012.35.

[46] A. Bucchiarone, N. Dragoni, S. Dustdar, S. T. Larsen, and M.
Mazzara. “From Monolithic to Microservices: An Experience
Report from the Banking Domain.” In: IEEE Software 35.03

(2018), pp. 50–55. issn: 0740-7459. doi: 10 . 1109 / MS . 2018 .

2141026.

http://ilpubs.stanford.edu:8090/361/
http://ilpubs.stanford.edu:8090/361/
https://doi.org/10.1145/253262.253325
http://ceur-ws.org/Vol-2215/paper_19.pdf
http://ceur-ws.org/Vol-2215/paper_19.pdf
https://doi.org/10.1145/1882362.1882373
https://doi.org/10.1145/1882362.1882373
https://doi.org/10.1109/WCRE.2012.35
https://doi.org/10.1109/MS.2018.2141026
https://doi.org/10.1109/MS.2018.2141026

bibliography 222

[47] Nghi D. Q. Bui, Yijun Yu, and Lingxiao Jiang. “Self-Supervised
Contrastive Learning for Code Retrieval and Summarization
via Semantic-Preserving Transformations.” In: New York, NY,
USA: Association for Computing Machinery, 2021. isbn: 9781450380379.
doi: 10.1145/3404835.3462840. url: https://doi.org/10.
1145/3404835.3462840.

[48] Yuanfang Cai and Rick Kazman. “DV8: automated architec-
ture analysis tool suites.” In: 2019 IEEE/ACM International Con-
ference on Technical Debt (TechDebt). IEEE. 2019, pp. 53–54.

[49] Yuanfang Cai, Lu Xiao, Rick Kazman, Ran Mo, and Qiong
Feng. “Design Rule Spaces: A New Model for Representing
and Analyzing Software Architecture.” In: IEEE Transactions
on Software Engineering 45.7 (2019), pp. 657–682. doi: 10.1109/
TSE.2018.2797899.

[50] Rafael Capilla, Tommi Mikkonen, Carlos Carrillo, Francesca
Arcelli Fontana, Ilaria Pigazzini, and Valentina Lenarduzzi.
“Impact of Opportunistic Reuse Practices to Technical Debt.”
In: 2021 IEEE/ACM International Conference on Technical Debt
(TechDebt). 2021, pp. 16–25. doi: 10.1109/TechDebt52882.2021.
00011.

[51] Rafael C. Cardoso, Angelo Ferrando, Daniela Briola, Claudio
Menghi, and Tobias Ahlbrecht. “Agents and Robots for Reli-
able Engineered Autonomy: A Perspective from the Organis-
ers of AREA 2020.” In: J. Sens. Actuator Networks 10.2 (2021),
p. 33. doi: 10.3390/jsan10020033. url: https://doi.org/10.
3390/jsan10020033.

[52] Andrés Carrasco, Brent van Bladel, and Serge Demeyer. “Mi-
grating towards Microservices: Migration and Architecture Smells.”
In: Proc. IWoR. ACM, 2018, pp. 1–6. doi: 10.1145/3242163.
3242164.

[53] S. R. Chidamber and C. F. Kemerer. “A Metric Suite for Object-
Oriented Design.” In: IEEE Transactions on Software Engineering
20.6 (1994), pp. 293–318.

[54] H. Christopher Frey and Sumeet R. Patil. “Identification and
Review of Sensitivity Analysis Methods.” In: Risk Analysis 22.3
(2002), pp. 553–578.

[55] ClassCycle. http://classycle.sourceforge.net/, Accessed
October 2021.

[56] Jacob Cohen. Statistical power analysis for the behavioral sciences.
Academic press, 2013.

[57] Consul. https://www.consul.io/, Accessed October 2021.

https://doi.org/10.1145/3404835.3462840
https://doi.org/10.1145/3404835.3462840
https://doi.org/10.1145/3404835.3462840
https://doi.org/10.1109/TSE.2018.2797899
https://doi.org/10.1109/TSE.2018.2797899
https://doi.org/10.1109/TechDebt52882.2021.00011
https://doi.org/10.1109/TechDebt52882.2021.00011
https://doi.org/10.3390/jsan10020033
https://doi.org/10.3390/jsan10020033
https://doi.org/10.3390/jsan10020033
https://doi.org/10.1145/3242163.3242164
https://doi.org/10.1145/3242163.3242164
http://classycle.sourceforge.net/
https://www.consul.io/

bibliography 223

[58] Anna Corazza, Sergio Martino, Valerio Maggio, and Giuseppe
Scanniello. “Weighing Lexical Information for Software Clus-
tering in the Context of Architecture Recovery.” In: Empirical
Softw. Engg. 21.1 (Feb. 2016), pp. 72–103. issn: 1382-3256.

[59] F. Corno, L. De Russis, and J. P. Sáenz. “How is Open Source
Software Development Different in Popular IoT Projects?” In:
IEEE Access 8 (2020), pp. 28337–28348. doi: 10.1109/ACCESS.
2020.2972364.

[60] Oracle Corporation. The Java EE 5 Tutorial. url: https://docs.
oracle.com/javaee/5/tutorial/doc/index.html. (Accessed
October 2021).

[61] Harald Cramér. Mathematical methods of statistics. Vol. 43. Prince-
ton university press, 1999.

[62] Ward Cunningham. “The WyCash portfolio management sys-
tem.” In: OOPS Messenger 4.2 (1993), pp. 29–30. doi: 10.1145/
157710.157715.

[63] Dependency Finder. http://depfind.sourceforge.net/, Ac-
cessed October 2021.

[64] Designite. Tushar Sharma, Pratibha Mishra and Rohit Tiwari. Ac-
cessed October 2021. url: www.designite-tools.com.

[65] Paolo Di Francesco, Patricia Lago, and Ivano Malavolta. “Mi-
grating towards Microservice Architectures: an Industrial Sur-
vey.” In: IEEE International Conference on Software Architecture
(ICSA 2018). Seattle, USA: IEEE, 2018.

[66] J.A. Díaz-Pace, A. Tommasel, and D. Godoy. “Towards An-
ticipation of Architectural Smells Using Link Prediction Tech-
niques.” In: 18th IEEE SCAM, 2018.

[67] George Digkas, Alexander N Chatzigeorgiou, Apostolos Am-
patzoglou, and Paris C Avgeriou. “Can Clean New Code re-
duce Technical Debt Density.” In: IEEE Transactions on Software
Engineering (2020), pp. 1–1. doi: 10.1109/TSE.2020.3032557.

[68] Georgios Digkas, Mircea Lungu, Alexander Chatzigeorgiou,
and Paris Avgeriou. “The evolution of technical debt in the
apache ecosystem.” In: European Conference on Software Archi-
tecture. Springer. 2017, pp. 51–66.

[69] Regine Endsuleit, Jacques Calmet, et al. “A Security Analysis
on JADE (-S) V. 3.2.” In: Proceedings of NORDSEC. Citeseer.
2005, pp. 20–28.

[70] Thomas Engel, Melanie Langermeier, Bernhard Bauer, and Alexan-
der Hofmann. Evaluation of Microservice Architectures: A Metric
and Tool-Based Approach. Ed. by Jan Mendling and Haralambos
Mouratidis. Cham: Springer, 2018, pp. 74–89. isbn: 978-3-319-
92901-9.

https://doi.org/10.1109/ACCESS.2020.2972364
https://doi.org/10.1109/ACCESS.2020.2972364
https://docs.oracle.com/javaee/5/tutorial/doc/index.html
https://docs.oracle.com/javaee/5/tutorial/doc/index.html
https://doi.org/10.1145/157710.157715
https://doi.org/10.1145/157710.157715
http://depfind.sourceforge.net/
www.designite-tools.com
https://doi.org/10.1109/TSE.2020.3032557

bibliography 224

[71] Steven D Eppinger and Tyson R Browning. Design structure
matrix methods and applications. MIT press, 2012.

[72] Neil A. Ernst, Stephany Bellomo, Ipek Ozkaya, Robert L. Nord,
and Ian Gorton. “Measure It? Manage It? Ignore It? Software
Practitioners and Technical Debt.” In: Proc. of the 2015 10th Joint
Meeting on Foundations of Software Engineering. ESEC/FSE 2015.
Italy: ACM, 2015, pp. 50–60. isbn: 978-1-4503-3675-8.

[73] Yong Fang, Cheng Huang, Yu Su, and Yaoyao Qiu. “Detect-
ing malicious JavaScript code based on semantic analysis.”
In: Computers Security 93 (2020), p. 101764. issn: 0167-4048.
doi: https://doi.org/10.1016/j.cose.2020.101764. url:
https://www.sciencedirect.com/science/article/pii/

S0167404820300481.

[74] Feign. https://github.com/OpenFeign/feign, Accessed Octo-
ber 2021.

[75] Daniel Feitosa, Apostolos Ampatzoglou, Paris Avgeriou, Alexan-
der Chatzigeorgiou, and Elisa.Y. Nakagawa. “What can viola-
tions of good practices tell about the relationship between GoF
patterns and run-time quality attributes?” In: Information and
Software Technology 105 (2019), pp. 1 –16. issn: 0950-5849. doi:
https://doi.org/10.1016/j.infsof.2018.07.014.

[76] Daniel Feitosa, Paris Avgeriou, Apostolos Ampatzoglou, and
Elisa Yumi Nakagawa. “The evolution of design pattern grime:
an industrial case study.” In: International Conference on Product-
Focused Software Process Improvement. Springer. 2017, pp. 165–
181.

[77] F. A. Fontana, J. Dietrich, B. Walter, A. Yamashita, and M.
Zanoni. “Antipattern and Code Smell False Positives: Prelimi-
nary Conceptualization and Classification.” In: 2016 IEEE 23rd
International Conference on Software Analysis, Evolution, and Reengi-
neering (SANER). Vol. 1. 2016, pp. 609–613. doi: 10 . 1109 /

SANER.2016.84.

[78] Francesca Arcelli Fontana, Valentina Lenarduzzi, Riccardo Roveda,
and Davide Taibi. “Are architectural smells independent from
code smells? An empirical study.” In: Journal of Systems and
Software 154 (2019), pp. 139 –156. issn: 0164-1212. doi: https:
//doi.org/10.1016/j.jss.2019.04.066. url: http://www.
sciencedirect.com/science/article/pii/S0164121219301013.

[79] Francesca Arcelli Fontana, Federico Locatelli, Ilaria Pigazzini,
and Paolo Mereghetti. “An architectural smell evaluation in an
industrial context.” In: The Fifteenth International Conference on
Software Engineering Advances, ICSEA 2020, 18-22 October 2020,
Porto, Portugal. 2020.

https://doi.org/https://doi.org/10.1016/j.cose.2020.101764
https://www.sciencedirect.com/science/article/pii/S0167404820300481
https://www.sciencedirect.com/science/article/pii/S0167404820300481
https://github.com/OpenFeign/feign
https://doi.org/https://doi.org/10.1016/j.infsof.2018.07.014
https://doi.org/10.1109/SANER.2016.84
https://doi.org/10.1109/SANER.2016.84
https://doi.org/https://doi.org/10.1016/j.jss.2019.04.066
https://doi.org/https://doi.org/10.1016/j.jss.2019.04.066
http://www.sciencedirect.com/science/article/pii/S0164121219301013
http://www.sciencedirect.com/science/article/pii/S0164121219301013

bibliography 225

[80] Francesca Arcelli Fontana and Ilaria Pigazzini. “Evaluating the
Architectural Debt of IoT Projects.” In: 3rd IEEE/ACM Interna-
tional Workshop on Software Engineering Research and Practices
for the IoT SERP4IoT 2021, Madrid, Spain, June 3, 2021. IEEE,
2021, pp. 27–31. doi: 10.1109/SERP4IoT52556.2021.00011.
url: https://doi.org/10.1109/SERP4IoT52556.2021.00011.

[81] Francesca Arcelli Fontana and Ilaria Pigazzini. “Evaluating the
Architectural Debt of IoT Projects.” In: 3rd IEEE/ACM Interna-
tional Workshop on Software Engineering Research and Practices
for the IoT SERP4IoT 2021, Madrid, Spain, June 3, 2021. IEEE,
2021, pp. 27–31. doi: 10.1109/SERP4IoT52556.2021.00011.
url: https://doi.org/10.1109/SERP4IoT52556.2021.00011.

[82] Francesca Arcelli Fontana, Ilaria Pigazzini, Claudia Raibulet,
Stefano Basciano, and Riccardo Roveda. “PageRank and criti-
cality of architectural smells.” In: Proceedings of the 13th Euro-
pean Conference on Software Architecture, ECSA 2019, Paris, France,
September 9-13, 2019, Companion Proceedings (Proceedings Volume
2), 2019, pp. 197–204. doi: 10.1145/3344948.3344982. url:
https://doi.org/10.1145/3344948.3344982.

[83] Francesca Arcelli Fontana and Marco Zanoni. “Code smell
severity classification using machine learning techniques.” In:
Knowl. Based Syst. 128 (2017).

[84] Martin Fowler. Patterns of Enterprise Application Architecture.
Boston, MA, USA: Addison-Wesley Longman Publishing Co.,
Inc., 2002. isbn: 0321127420. url: http://portal.acm.org/
citation.cfm?id=579257.

[85] P. D. Francesco, I. Malavolta, and P. Lago. “Research on Archi-
tecting Microservices: Trends, Focus, and Potential for Indus-
trial Adoption.” In: 2017 IEEE International Conference on Soft-
ware Architecture (ICSA). IEEE, 2017, pp. 21–30. doi: 10.1109/
ICSA.2017.24.

[86] J. Fritzsch, J. Bogner, A. Zimmermann, and S. Wagner. “From
Monolith to Microservices: A Classification of Refactoring Ap-
proaches.” In: Software Engineering Aspects of Continuous Devel-
opment and New Paradigms of Software Production and Deploy-
ment. Springer International Publishing, 2019, pp. 128–141.

[87] A. Furda, C. Fidge, O. Zimmermann, W. Kelly, and A. Bar-
ros. “Migrating Enterprise Legacy Source Code to Microser-
vices: On Multitenancy, Statefulness, and Data Consistency.”
In: IEEE Software 35.3 (2018), pp. 63–72. issn: 0740-7459.

[88] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlis-
sides. Design patterns: elements of reusable object-oriented software.
Addison-Wesley Professional, 1995.

https://doi.org/10.1109/SERP4IoT52556.2021.00011
https://doi.org/10.1109/SERP4IoT52556.2021.00011
https://doi.org/10.1109/SERP4IoT52556.2021.00011
https://doi.org/10.1109/SERP4IoT52556.2021.00011
https://doi.org/10.1145/3344948.3344982
https://doi.org/10.1145/3344948.3344982
http://portal.acm.org/citation.cfm?id=579257
http://portal.acm.org/citation.cfm?id=579257
https://doi.org/10.1109/ICSA.2017.24
https://doi.org/10.1109/ICSA.2017.24

bibliography 226

[89] S.G. Ganesh, Tushar Sharma, and Girish Suryanarayana. “To-
wards a Principle-based Classification of Structural Design Smells.”
In: Journal of Object Technology 12.2 (June 2013), 1:1–29. issn:
1660-1769. doi: 10.5381/jot.2013.12.2.a1.

[90] Joshua Garcia, Daniel Popescu, George Edwards, and Nenad
Medvidovic. “Identifying Architectural Bad Smells.” In: CSMR
2009. Germany: IEEE, 2009, pp. 255–258. doi: 10.1109/CSMR.
2009.59.

[91] Joshua Garcia, Daniel Popescu, George Edwards, and Nenad
Medvidovic. “Toward a Catalogue of Architectural Bad Smells.”
In: Proceedings of the 5th International Conference on the Quality of
Software Architectures (QoSA 2009). East Stroudsburg, PA, USA:
Springer Berlin Heidelberg, June 2009, pp. 146–162. isbn: 978-
3-642-02351-4. doi: 10.1007/978-3-642-02351-4_10.

[92] Joshua Garcia, Daniel Popescu, Chris Mattmann, Nenad Med-
vidovic, and Yuanfang Cai. “Enhancing Architectural Recov-
ery Using Concerns.” In: Proc. of ASE 2011. Washington, DC,
USA: IEEE Computer Society, 2011, pp. 552–555. isbn: 978-1-
4577-1638-6.

[93] GitHub, Inc. Github. https://github.com/, Accessed October
2021.

[94] Google. Snapshot API Docs. https://guava.dev/releases/
snapshot-jre/api/docs/,

[95] G. Granchelli, M. Cardarelli, P. Di Francesco, I. Malavolta, L.
Iovino, and A. Di Salle. “MicroART: A Software Architecture
Recovery Tool for Maintaining Microservice-Based Systems.”
In: 2017 IEEE International Conference on Software Architecture
Workshops (ICSAW). 2017.

[96] Giona Granchelli, Mario Cardarelli, Paolo Francesco, Ivano
Malavolta, Ludovico Iovino, and Amleto Di Salle. “Towards
Recovering the Software Architecture of Microservice-Based
Systems.” In: Apr. 2017, pp. 46–53.

[97] G. Grano, F. Palomba, and H. C. Gall. “Lightweight Assess-
ment of Test-Case Effectiveness using Source-Code-Quality In-
dicators.” In: IEEE Transactions on Software Engineering (2019),
pp. 1–1.

[98] T. L. Griffiths and M. Steyvers. “Finding Scientific Topics.”
In: Proceedings of the National Academy of Sciences 101.Suppl. 1

(2004), pp. 5228–5235.

[99] Thirupathi Guggulothu and Salman Abdul Moiz. “An approach
to suggest code smell order for refactoring.” In: International
Conference on Emerging Technologies in Computer Engineering. Springer.
2019, pp. 250–260.

https://doi.org/10.5381/jot.2013.12.2.a1
https://doi.org/10.1109/CSMR.2009.59
https://doi.org/10.1109/CSMR.2009.59
https://doi.org/10.1007/978-3-642-02351-4_10
https://github.com/
https://guava.dev/releases/snapshot-jre/api/docs/
https://guava.dev/releases/snapshot-jre/api/docs/

bibliography 227

[100] Jilles van Gurp and Jan Bosch. “Design erosion: problems and
causes.” In: Journal of Systems and Software 61.2 (2002), pp. 105–
119. doi: 10.1016/S0164-1212(01)00152-2.

[101] Michael Gysel, Lukas Kölbener, Wolfgang Giersche, and Olaf
Zimmermann. “Service Cutter: A Systematic Approach to Ser-
vice Decomposition.” In: 5th European Conference on Service-
Oriented and Cloud Computing (ESOCC). Ed. by Marco Aiello,
Einar Broch Johnsen, Schahram Dustdar, and Ilche Georgievski.
Vol. LNCS-9846. Service-Oriented and Cloud Computing. Part
5: Compositionality. Vienna, Austria: Springer International
Publishing, Sept. 2016, pp. 185–200. doi: 10.1007/978-3-319-
44482-6_12. url: https://hal.inria.fr/hal-01638590.

[102] Thomas Haitzer, Elena Navarro, and Uwe Zdun. “Reconcil-
ing software architecture and source code in support of soft-
ware evolution.” In: Journal of Systems and Software 123 (2017),
pp. 119–144.

[103] Headway Software Technologies Ltd. Stucture101. https://
structure101.com/, Accessed October 2021.

[104] Vincent J. Hellendoorn and Premkumar Devanbu. “Are Deep
Neural Networks the Best Choice for Modeling Source Code?”
In: Proc. of ESEC/FSE 2017. Paderborn, Germany, 2017. isbn:
978-1-4503-5105-8.

[105] Sebastian Herold. “An Initial Study on the Association Be-
tween Architectural Smells and Degradation.” In: Software Ar-
chitecture. Ed. by Anton Jansen, Ivano Malavolta, Henry Muc-
cini, Ipek Ozkaya, and Olaf Zimmermann. Cham: Springer
International Publishing, 2020, pp. 193–201. isbn: 978-3-030-
58923-3.

[106] Christopher Hitchcock. “Causal Models.” In: The Stanford En-
cyclopedia of Philosophy. Ed. by Edward N. Zalta. Summer 2020.
Metaphysics Research Lab, Stanford University, 2020.

[107] Sunny Huynh, Yuanfang Cai, and Kanwarpreet Sethi. “Design
rule hierarchy and analytical decision model transformation.”
In: Drexel University, Philadelphia, PA, USA, Tech. Rep. DU-CS-
08-04 (2008).

[108] ISO/IEC 25010. ISO/IEC 25010:2011, Systems and software engi-
neering — Systems and software Quality Requirements and Evalu-
ation (SQuaRE) — System and software quality models. 2011.

[109] Clemente Izurieta and James M. Bieman. “A multiple case
study of design pattern decay, grime, and rot in evolving soft-
ware systems.” In: Software Quality Journal 21.2 (2013), pp. 289–
323. issn: 1573-1367. doi: 10.1007/s11219-012-9175-x.

[110] JArchitect. https://www.jarchitect.com/, Accessed October
2021.

https://doi.org/10.1016/S0164-1212(01)00152-2
https://doi.org/10.1007/978-3-319-44482-6_12
https://doi.org/10.1007/978-3-319-44482-6_12
https://hal.inria.fr/hal-01638590
https://structure101.com/
https://structure101.com/
https://doi.org/10.1007/s11219-012-9175-x
https://www.jarchitect.com/

bibliography 228

[111] Fehmi Jaafar, Yann-Gaël Guéhéneuc, Sylvie Hamel, and Foutse
Khomh. “Analysing Anti-patterns Static Relationships with
Design Patterns.” In: Electronic Communications of the European
Association for the Study of Science and Technology 59 (2013). doi:
10.14279/tuj.eceasst.59.930.

[112] Jagadeesh Jagarlamudi, Hal Daumé III, and Raghavendra Udupa.
“Incorporating Lexical Priors into Topic Models.” In: Proceed-
ings of the 13th Conference of the European Chapter of the Associ-
ation for Computational Linguistics. EACL ’12. Avignon, France:
Association for Computational Linguistics, 2012, pp. 204–213.
isbn: 978-1-937284-19-0. url: http://dl.acm.org/citation.
cfm?id=2380816.2380844.

[113] Jira. https://www.atlassian.com/software/jira, Accessed
October 2021.

[114] KNIME AG. KNIME Analytics Platform. https://www.knime.
com/knime-analytics-platform, Accessed October 2021.

[115] Henry F Kaiser. “A second generation little jiffy.” In: Psychome-
trika 35.4 (1970), pp. 401–415.

[116] R. Kazman, Yuanfang Cai, Ran Mo, Qiong Feng, Lu Xiao, S.
Haziyev, V. Fedak, and A. Shapochka. “A Case Study in Locat-
ing the Architectural Roots of Technical Debt.” In: Software En-
gineering (ICSE), 2015 IEEE/ACM 37th IEEE Int. Conf. on. Vol. 2.
2015, pp. 179–188. doi: 10.1109/ICSE.2015.146.

[117] Rick Kazman, Robert Stoddard, David Danks, and Yuanfang
Cai. “Causal Modeling, Discovery, amp; Inference for Software
Engineering.” In: 2017 IEEE/ACM 39th International Conference
on Software Engineering Companion (ICSE-C). 2017, pp. 172–174.
doi: 10.1109/ICSE-C.2017.138.

[118] G. Kecskemeti, A. C. Marosi, and A. Kertesz. “The ENTICE ap-
proach to decompose monolithic services into microservices.”
In: 2016 International Conference on High Performance Computing
Simulation (HPCS). 2016, pp. 591–596.

[119] M.G. Kendall and J.D. Gibbons. Rank Correlation Methods. Charles
Griffin Book. E. Arnold, 1990. isbn: 9780852643051.

[120] Foutse Khomh and Yann-Gaël Guéhéneuc. “Do Design Pat-
terns Impact Software Quality Positively?” In: 12th European
Conference on Software Maintenance and Reengineering, CSMR
2008, April 1-4, 2008, Athens, Greece. 2008, pp. 274–278. doi:
10.1109/CSMR.2008.4493325.

[121] Foutse Khomh, Stephane Vaucher, Yann-Gaël Guéhéneuc, and
Houari Sahraoui. “BDTEX: A GQM-based Bayesian approach
for the detection of antipatterns.” In: Journal of Systems and
Software 84.4 (2011). The Ninth International Conference on

https://doi.org/10.14279/tuj.eceasst.59.930
http://dl.acm.org/citation.cfm?id=2380816.2380844
http://dl.acm.org/citation.cfm?id=2380816.2380844
https://www.atlassian.com/software/jira
https://www.knime.com/knime-analytics-platform
https://www.knime.com/knime-analytics-platform
https://doi.org/10.1109/ICSE.2015.146
https://doi.org/10.1109/ICSE-C.2017.138
https://doi.org/10.1109/CSMR.2008.4493325

bibliography 229

Quality Software, pp. 559–572. issn: 0164-1212. doi: 10.1016/
j.jss.2010.11.921.

[122] Martin Kleehaus, Ömer Uludağ, Patrick Schäfer, and Florian
Matthes. “MICROLYZE: A Framework for Recovering the Soft-
ware Architecture in Microservice-Based Environments.” In:
Int. Conf. on Advanced Information Systems Engineering. Springer.
2018, pp. 148–162.

[123] Ehsan Kouroshfar, Mehdi Mirakhorli, Hamid Bagheri, Lu Xiao,
Sam Malek, and Yuanfang Cai. “A study on the role of soft-
ware architecture in the evolution and quality of software.” In:
vol. 2015-Augus. IEEE International Working Conference on
Mining Software Repositories. IEEE Computer Society, 2015,
pp. 246–257. isbn: 9780769555942. doi: 10.1109/MSR.2015.30.

[124] Philippe Kruchten. “An ontology of architectural design deci-
sions in software intensive systems.” In: 2nd Groningen work-
shop on software variability. Citeseer. 2004, pp. 54–61.

[125] Philippe Kruchten, Robert L. Nord, and Ipek Ozkaya. “Tech-
nical Debt: From Metaphor to Theory and Practice.” In: IEEE
Softw. 29.6 (2012), pp. 18–21.

[126] Kubernetes. . https://www.ibm.com/it-it/cloud/kubernetes-
service/, Accessed October 2021.

[127] Michele Lanza. “The Evolution Matrix: Recovering Software
Evolution Using Software Visualization Techniques.” In: 4th
IWPSE. Vienna, Austria: ACM, 2001, pp. 37–42. isbn: 1-58113-
508-4.

[128] Michele Lanza and Radu Marinescu. Object-oriented metrics in
practice: using software metrics to characterize, evaluate, and im-
prove the design of object-oriented systems. Springer Science &
Business Media, 2007.

[129] X. Larrucea, A. Combelles, J. Favaro, and K. Taneja. “Software
Engineering for the Internet of Things.” In: IEEE Software 34.1
(2017), pp. 24–28. doi: 10.1109/MS.2017.28.

[130] Lattix. http://lattix.com/, Accessed October 2021.

[131] Jannik Laval and Stéphane Ducasse. “Resolving cyclic depen-
dencies between packages with Enriched Dependency Struc-
tural Matrix.” In: Software: Practice and Experience (Nov. 2012).
url: https://hal.inria.fr/hal-00748120.

[132] D. M. Le, P. Behnamghader, J. Garcia, D. Link, A. Shahbazian,
and N. Medvidovic. “An Empirical Study of Architectural Change
in Open-Source Software Systems.” In: Working Conference on
Mining Software Repositories. 2015, pp. 235–245.

https://doi.org/10.1016/j.jss.2010.11.921
https://doi.org/10.1016/j.jss.2010.11.921
https://doi.org/10.1109/MSR.2015.30
https://www.ibm.com/it-it/cloud/kubernetes-service/
https://www.ibm.com/it-it/cloud/kubernetes-service/
https://doi.org/10.1109/MS.2017.28
http://lattix.com/
https://hal.inria.fr/hal-00748120

bibliography 230

[133] D. M. Le, D. Link, A. Shahbazian, and N. Medvidovic. “An
Empirical Study of Architectural Decay in Open-Source Soft-
ware.” In: 2018 IEEE International Conference on Software Archi-
tecture (ICSA). 2018, pp. 176–17609. doi: 10.1109/ICSA.2018.
00027.

[134] Kwanwoo Lee, Kyo C. Kang, Wonsuk Chae, and Byoung Wook
Choi. “Feature-based approach to object-oriented engineering
of applications for reuse.” In: Software: Practice and Experience
30.9 (2000), pp. 1025–1046. doi: 10.1002/1097-024X(20000725).

[135] Jason Lefever, Yuanfang Cai, Humberto Cervantes, Rick Kaz-
man, and Hongzhou Fang. “On the Lack of Consensus Among
Technical Debt Detection Tools.” In: 43rd IEEE/ACM Interna-
tional Conference on Software Engineering: Software Engineering in
Practice, ICSE (SEIP) 2021, Madrid, Spain, May 25-28, 2021. IEEE,
2021, pp. 121–130. doi: 10.1109/ICSE-SEIP52600.2021.00021.
url: https://doi.org/10.1109/ICSE-SEIP52600.2021.00021.

[136] V. Lenarduzzi, F. Lomio, H. Huttunen, and D. Taibi. “Are
SonarQube Rules Inducing Bugs?” In: 27th International Confer-
ence on Software Analysis, Evolution and Reengineering (SANER2020).
2020, pp. 501–511.

[137] Valentina Lenarduzzi, Teemu Orava, Nyyti Saarimäki, Kari
Systa, and Davide Taibi. “An Empirical Study on Technical
Debt in a Finnish SME.” In: 2019 ACM/IEEE International Sym-
posium on Empirical Software Engineering and Measurement (ESEM).
2019, pp. 1–6. doi: 10.1109/ESEM.2019.8870169.

[138] Valentina Lenarduzzi, Nyyti Saarimäki, and Davide Taibi. “Some
SonarQube issues have a significant but small effect on faults
and changes. A large-scale empirical study.” In: Journal of Sys-
tems and Software 170 (2020), p. 110750.

[139] Valentina Lenarduzzi, Alberto Sillitti, and Davide Taibi. “An-
alyzing Forty Years of Software Maintenance Models.” In: 39th
International Conference on Software Engineering Companion. ICSE-
C ’17. 2017, pp. 146–148.

[140] Valentina Lenarduzzi, Alberto Sillitti, and Davide Taibi. “A
Survey on Code Analysis Tools for Software Maintenance Pre-
diction.” In: 6th International Conference in Software Engineer-
ing for Defence Applications. Springer International Publishing,
2020, pp. 165–175.

[141] Zengyang Li, Peng Liang, and Paris Avgeriou. “Architectural
Technical Debt Identification Based on Architecture Decisions
and Change Scenarios.” In: 2015 12th Working IEEE/IFIP Con-
ference on Software Architecture. 2015, pp. 65–74. doi: 10.1109/
WICSA.2015.19.

https://doi.org/10.1109/ICSA.2018.00027
https://doi.org/10.1109/ICSA.2018.00027
https://doi.org/10.1002/1097-024X(20000725)
https://doi.org/10.1109/ICSE-SEIP52600.2021.00021
https://doi.org/10.1109/ICSE-SEIP52600.2021.00021
https://doi.org/10.1109/ESEM.2019.8870169
https://doi.org/10.1109/WICSA.2015.19
https://doi.org/10.1109/WICSA.2015.19

bibliography 231

[142] Zengyang Li, Peng Liang, Paris Avgeriou, Nicolas Guelfi, and
Apostolos Ampatzoglou. “An Empirical Investigation of Mod-
ularity Metrics for Indicating Architectural Technical Debt.”
In: Proceedings of the 10th International ACM Sigsoft Conference
on Quality of Software Architectures. QoSA ’14. Marcq-en-Bareul,
France: Association for Computing Machinery, 2014, 119–128.
isbn: 9781450325769. doi: 10 . 1145 / 2602576 . 2602581. url:
https://doi.org/10.1145/2602576.2602581.

[143] E. Linstead, C. Lopes, and P. Baldi. “An Application of La-
tent Dirichlet Allocation to Analyzing Software Evolution.” In:
2008 Seventh International Conference on Machine Learning and
Applications. IEEE, 2008, pp. 813–818. doi: 10 . 1109 / ICMLA .

2008.47.

[144] Martin Lippert and Stephen Roock. Refactoring in Large Soft-
ware Projects: Performing Complex Restructurings Successfully. Wi-
ley, Apr. 2006, p. 286. isbn: 978-0-470-85892-9.

[145] Barbara H. Liskov and Jeannette M. Wing. “A Behavioral No-
tion of Subtyping.” In: ACM Trans. Program. Lang. Syst. 16.6
(Nov. 1994), 1811–1841. issn: 0164-0925. doi: 10.1145/197320.
197383. url: https://doi.org/10.1145/197320.197383.

[146] Panagiotis Louridas, Diomidis Spinellis, and Vasileios Vlachos.
“Power Laws in Software.” In: ACM Trans. Softw. Eng. Methodol.
18.1 (Oct. 2008). issn: 1049-331X. doi: 10.1145/1391984.1391986.
url: https://doi.org/10.1145/1391984.1391986.

[147] N. Lu, G. Glatz, and D. Peuser. “Moving mountains – prac-
tical approaches for moving monolithic applications to Mi-
croservices.” In: International Conference on Microservices (Mi-
croservices 2019). Dortmund, Germany, 2019.

[148] Radu Marinescu. “Assessing technical debt by identifying de-
sign flaws in software systems.” In: IBM Journal of Research
and Development 56.5 (2012), 9:1–9:13. issn: 0018-8646. doi: 10.
1147/JRD.2012.2204512.

[149] G. Marquez and H. Astudillo. “Actual Use of Architectural
Patterns in Microservices-based Open Source Projects.” In: Asia-
Pacific Software Engineering Conference (APSEC 2018). 2018.

[150] Robert C. Martin. “Object Oriented Design Quality Metrics:
An Analysis of dependencies.” In: ROAD 2.3 (1995).

[151] Robert C. Martin. Agile Software Development: Principles, Pat-
terns, and Practices. Prentice Hall, 2007.

[152] Antonio Martini and Jan Bosch. “An Empirically Developed
Method to Aid Decisions on Architectural Technical Debt Refac-
toring: AnaConDebt.” In: 2016 IEEE/ACM 38th International
Conference on Software Engineering Companion (ICSE-C). 2016,
pp. 31–40.

https://doi.org/10.1145/2602576.2602581
https://doi.org/10.1145/2602576.2602581
https://doi.org/10.1109/ICMLA.2008.47
https://doi.org/10.1109/ICMLA.2008.47
https://doi.org/10.1145/197320.197383
https://doi.org/10.1145/197320.197383
https://doi.org/10.1145/197320.197383
https://doi.org/10.1145/1391984.1391986
https://doi.org/10.1145/1391984.1391986
https://doi.org/10.1147/JRD.2012.2204512
https://doi.org/10.1147/JRD.2012.2204512

bibliography 232

[153] Antonio Martini, Jan Bosch, and Michel Chaudron. “Architec-
ture Technical Debt: Understanding Causes and a Qualitative
Model.” In: 2014 40th EUROMICRO Conference on Software En-
gineering and Advanced Applications. 2014, pp. 85–92. doi: 10.
1109/SEAA.2014.65.

[154] Antonio Martini, Jan Bosch, and Michel Chaudron. “Investi-
gating Architectural Technical Debt accumulation and refac-
toring over time: A multiple-case study.” In: Information and
Software Technology 67 (2015), pp. 237–253. issn: 0950-5849. doi:
https://doi.org/10.1016/j.infsof.2015.07.005. url:
https://www.sciencedirect.com/science/article/pii/

S0950584915001287.

[155] Antonio Martini, Francesca Arcelli Fontana, Andrea Biaggi,
and Riccardo Roveda. “Identifying and Prioritizing Architec-
tural Debt Through Architectural Smells: A Case Study in a
Large Software Company.” In: Software Architecture - 12th Eu-
ropean Conference on Software Architecture, ECSA 2018, Madrid,
Spain, September 24-28, 2018, Proceedings. 2018, pp. 320–335. doi:
10.1007/978-3-030-00761-4_21.

[156] Antonio Martini, Erik Sikander, and Niel Madlani. “A semi-
automated framework for the identification and estimation of
Architectural Technical Debt: A comparative case-study on the
modularization of a software component.” In: Information and
Software Technology 93 (2018), pp. 264–279. issn: 0950-5849. doi:
https://doi.org/10.1016/j.infsof.2017.08.005. url:
https://www.sciencedirect.com/science/article/pii/

S095058491630355X.

[157] Viviana Mascardi, Danny Weyns, and Alessandro Ricci. “En-
gineering Multi-Agent Systems: State of Affairs and the Road
Ahead.” In: ACM SIGSOFT Softw. Eng. Notes 44.1 (2019), pp. 18–
28. doi: 10.1145/3310013.3310035. url: https://doi.org/10.
1145/3310013.3310035.

[158] Massey Archtiecture Explorer. Not available, unreachable web-
site.

[159] B. Mayer and R. Weinreich. “An Approach to Extract the Archi-
tecture of Microservice-Based Software Systems.” In: (SOSE).
2018, pp. 21–30.

[160] Genc Mazlami, Jürgen Cito, and Philipp Leitner. “Extraction
of Microservices from Monolithic Software Architectures.” In:
2017 IEEE International Conference on Web Services, ICWS 2017,
Honolulu, HI, USA, June 25-30, 2017. 2017.

[161] Camilo Mendoza, Kelly Garcés, Rubby Casallas, and José Bo-
canegra. “Detecting Architectural Issues During the Contin-
uous Integration Pipeline.” In: 2019 ACM/IEEE 22nd Interna-

https://doi.org/10.1109/SEAA.2014.65
https://doi.org/10.1109/SEAA.2014.65
https://doi.org/https://doi.org/10.1016/j.infsof.2015.07.005
https://www.sciencedirect.com/science/article/pii/S0950584915001287
https://www.sciencedirect.com/science/article/pii/S0950584915001287
https://doi.org/10.1007/978-3-030-00761-4_21
https://doi.org/https://doi.org/10.1016/j.infsof.2017.08.005
https://www.sciencedirect.com/science/article/pii/S095058491630355X
https://www.sciencedirect.com/science/article/pii/S095058491630355X
https://doi.org/10.1145/3310013.3310035
https://doi.org/10.1145/3310013.3310035
https://doi.org/10.1145/3310013.3310035

bibliography 233

tional Conference on Model Driven Engineering Languages and Sys-
tems Companion (MODELS-C). 2019, pp. 589–597. doi: 10.1109/
MODELS-C.2019.00090.

[162] Mayank Mishra, Shruti Kunde, and Manoj Nambiar. “Crack-
ing the Monolith: Challenges in Data Transitioning to Cloud
Native Architectures.” In: Proceedings of the 12th European Con-
ference on Software Architecture: Companion Proceedings. ECSA
’18. Madrid, Spain: ACM, 2018, 35:1–35:4. isbn: 978-1-4503-
6483-6. doi: 10.1145/3241403.3241440. url: http://doi.
acm.org/10.1145/3241403.3241440.

[163] Ran Mo, Yuanfang Cai, Rick Kazman, and Lu Xiao. “Hotspot
Patterns: The Formal Definition and Automatic Detection of
Architecture Smells.” In: 12th Working IEEE/IFIP Conference on
Software Architecture, WICSA 2015, Montreal, QC, Canada, May
4-8, 2015. 2015, pp. 51–60. doi: 10.1109/WICSA.2015.12.

[164] N. Moha, Y. Gueheneuc, and P. Leduc. “Automatic Generation
of Detection Algorithms for Design Defects.” In: 21st IEEE/ACM
International Conference on Automated Software Engineering (ASE’06).
2006, pp. 297–300.

[165] Naouel Moha, Duc-loc Huynh, Yann-Gaël Guéhéneuc, and
Ptidej Team. “A taxonomy and a first study of design pattern
defects.” In: IEEE International Workshop on Software Technology
and Engineering Practice (STEP) 2005 (2005), p. 225.

[166] Mongo DB. https://www.mongodb.com, Accessed October 2021.

[167] ABM Moniruzzaman and Syed Akhter Hossain. “NoSQL Database:
New Era of Databases for Big data Analytics-Classification,
Characteristics and Comparison.” In: International Journal of
Database Theory and Application 6.4 (), pp. 1–13.

[168] K. Mordal-Manet, F. Balmas, S. Denier, S. Ducasse, H. Wertz,
J. Laval, F. Bellingard, and P. Vaillergues. “The squale model
— A practice-based industrial quality model.” In: 2009 IEEE
International Conference on Software Maintenance. 2009, pp. 531–
534.

[169] Luis Mulet, Jose M Such, and Juan M Alberola. “Performance
evaluation of open-source multiagent platforms.” In: Proceed-
ings of the fifth international joint conference on Autonomous agents
and multiagent systems. 2006, pp. 1107–1109.

[170] NDepend. https://www.ndepend.com/, Accessed October 2021.

[171] Nachiappan Nagappan and Thomas Ball. “Using Software De-
pendencies and Churn Metrics to Predict Field Failures: An
Empirical Case Study.” In: First International Symposium on
Empirical Software Engineering and Measurement (ESEM 2007).
2007, pp. 364–373.

https://doi.org/10.1109/MODELS-C.2019.00090
https://doi.org/10.1109/MODELS-C.2019.00090
https://doi.org/10.1145/3241403.3241440
http://doi.acm.org/10.1145/3241403.3241440
http://doi.acm.org/10.1145/3241403.3241440
https://doi.org/10.1109/WICSA.2015.12
https://www.mongodb.com
https://www.ndepend.com/

bibliography 234

[172] Lloyd S Nelson. “The Anderson-Darling test for normality.”
In: Journal of Quality Technology 30.3 (1998), p. 298.

[173] Neo4j. https://neo4j.com/, Accessed October 2021.

[174] Leland Gerson Neuberg. “Causality: models, reasoning, and
inference, by judea pearl, cambridge university press, 2000.”
In: Econometric Theory 19.4 (2003), pp. 675–685.

[175] Sam Newman. Building Microservices. 1st. O’Reilly Media, Inc.,
2015. isbn: 1491950358, 9781491950357.

[176] T. H. Ng, Yuen Tak Yu, S. C. Cheung, and W. K. Chan. “Hu-
man and Program Factors Affecting the Maintenance of Pro-
grams with Deployed Design Patterns.” In: Inf. Softw. Technol.
54.1 (Jan. 2012), pp. 99–118. issn: 0950-5849. doi: 10.1016/j.
infsof.2011.08.002.

[177] Robert L Nord, Ipek Ozkaya, Philippe Kruchten, and Marco
Gonzalez-Rojas. “In search of a metric for managing architec-
tural technical debt.” In: 2012 Joint Working IEEE/IFIP Confer-
ence on Software Architecture and European Conference on Software
Architecture. IEEE. 2012, pp. 91–100.

[178] Robert L. Nord, Ipek Ozkaya, Edward J. Schwartz, Forrest
Shull, and Rick Kazman. “Can Knowledge of Technical Debt
Help Identify Software Vulnerabilities?” In: 9th Workshop on
Cyber Security Experimentation and Test, CSET ’16, Austin, TX,
USA, August 8, 2016. Ed. by Eric Eide and Mathias Payer. USENIX
Association, 2016. url: https://www.usenix.org/conference/
cset16/workshop-program/presentation/nord.

[179] Ariadi Nugroho, Joost Visser, and Tobias Kuipers. “An Empiri-
cal Model of Technical Debt and Interest.” In: Proceedings of the
2nd Workshop on Managing Technical Debt. MTD ’11. Waikiki,
Honolulu, HI, USA: Association for Computing Machinery,
2011, 1–8. isbn: 9781450305860. doi: 10.1145/1985362.1985364.
url: https://doi.org/10.1145/1985362.1985364.

[180] Odysseus Software GmbH. STAN. http://stan4j.com/. Ac-
cessed 2021.

[181] Steffen Olbrich, Daniela S Cruzes, Victor Basili, and Nico Zaz-
worka. “The evolution and impact of code smells: A case study
of two open source systems.” In: 2009 3rd international sym-
posium on empirical software engineering and measurement. IEEE.
2009, pp. 390–400.

[182] Anderson Oliveira, Leonardo Sousa, Willian Oizumi, and Alessan-
dro Garcia. “On the Prioritization of Design-Relevant Smelly
Elements: A Mixed-Method, Multi-Project Study.” In: Proceed-
ings of the XIII Brazilian Symposium on Software Components, Ar-
chitectures, and Reuse. SBCARS ’19. Salvador, Brazil: Associa-
tion for Computing Machinery, 2019, 83–92. isbn: 9781450376372.

https://neo4j.com/
https://doi.org/10.1016/j.infsof.2011.08.002
https://doi.org/10.1016/j.infsof.2011.08.002
https://www.usenix.org/conference/cset16/workshop-program/presentation/nord
https://www.usenix.org/conference/cset16/workshop-program/presentation/nord
https://doi.org/10.1145/1985362.1985364
https://doi.org/10.1145/1985362.1985364
http://stan4j.com/

bibliography 235

[183] Paul Oman and Jack Hagemeister. “Construction and testing
of polynomials predicting software maintainability.” In: Jour-
nal of Systems and Software 24.3 (1994). Oregon Workshop on
Software Metrics, pp. 251–266. issn: 0164-1212. doi: https://
doi.org/10.1016/0164-1212(94)90067-1. url: https://www.
sciencedirect.com/science/article/pii/0164121294900671.

[184] OpenZipkin a Java 1.8+ service, packaged as an executable jar. url:
https : / / github . com / openzipkin / zipkin / tree / master /

zipkin-server.

[185] T. D. Oyetoyan, J. Falleri, J. Dietrich, and K. Jezek. “Circu-
lar dependencies and change-proneness: An empirical study.”
In: 2015 IEEE 22nd International Conference on Software Analysis,
Evolution, and Reengineering (SANER). 2015, pp. 241–250.

[186] Ipek Ozkaya. “Can We Really Achieve Software Quality?” In:
IEEE Software 38.3 (2021), pp. 3–6. doi: 10 . 1109 / MS . 2021 .

3060552.

[187] Wei-feng PAN, Bing LI, Yu-tao MA, and Bo JIANG. “Identi-
fying the key packages using weighted PageRank algorithm.”
In: ACTA ELECTONICA SINICA 42.11 (2014), p. 2174.

[188] F. Palomba, G. Bavota, M. D. Penta, R. Oliveto, D. Poshyvanyk,
and A. De Lucia. “Mining Version Histories for Detecting Code
Smells.” In: IEEE Transactions on Software Engineering 41.5 (2015),
pp. 462–489.

[189] Pankesh Patel and Damien Cassou. “Enabling high-level ap-
plication development for the Internet of Things.” In: Journal
of Systems and Software 103 (2015), pp. 62 –84. issn: 0164-1212.

[190] Fabiano Pecorelli, Fabio Palomba, Foutse Khomh, and Andrea
De Lucia. “Developer-Driven Code Smell Prioritization.” In:
Proceedings of the 17th International Conference on Mining Soft-
ware Repositories. MSR ’20. Seoul, Republic of Korea: Associa-
tion for Computing Machinery, 2020, 220–231. isbn: 9781450375177.

[191] Sven Peldszus, Géza Kulcsár, Malte Lochau, and Sandro Schulze.
“Continuous detection of design flaws in evolving object-oriented
programs using incremental multi-pattern matching.” In: 2016
31st IEEE/ACM International Conference on Automated Software
Engineering (ASE). 2016, pp. 578–589.

[192] Fabrizio Perin, Lukas Renggli, and Jorge Ressia. “Ranking soft-
ware artifacts.” In: 4th Workshop on FAMIX and Moose in Reengi-
neering (FAMOOSr 2010). Vol. 120. Citeseer. 2010.

[193] Ralph Peters and Andy Zaidman. “Evaluating the lifespan of
code smells using software repository mining.” In: 2012 16th
European Conference on Software Maintenance and Reengineering.
IEEE. 2012, pp. 411–416.

https://doi.org/https://doi.org/10.1016/0164-1212(94)90067-1
https://doi.org/https://doi.org/10.1016/0164-1212(94)90067-1
https://www.sciencedirect.com/science/article/pii/0164121294900671
https://www.sciencedirect.com/science/article/pii/0164121294900671
https://github.com/openzipkin/zipkin/tree/master/zipkin-server
https://github.com/openzipkin/zipkin/tree/master/zipkin-server
https://doi.org/10.1109/MS.2021.3060552
https://doi.org/10.1109/MS.2021.3060552

bibliography 236

[194] Bżej Pietrzak and Bartosz Walter. “Leveraging Code Smell De-
tection with Inter-smell Relations.” In: Extreme Programming
and Agile Processes in Software Engineering. Ed. by Pekka Abra-
hamsson, Michele Marchesi, and Giancarlo Succi. Vol. 4044.
Lecture Notes in Computer Science. Springer Berlin / Heidel-
berg, 2006, pp. 75–84. isbn: 978-3-540-35094-1. doi: 10.1007/
11774129_8.

[195] Ilaria Pigazzini. “Automatic detection of architectural bad smells
through semantic representation of code.” In: Proceedings of the
13th European Conference on Software Architecture, ECSA 2019,
Paris, France, September 9-13, 2019, Companion Proceedings (Pro-
ceedings Volume 2), ed. by Laurence Duchien, Anne Koziolek,
Raffaela Mirandola, Elena Maria Navarro Martínez, Clément
Quinton, Riccardo Scandariato, Patrizia Scandurra, Catia Tru-
biani, and Danny Weyns. ACM, 2019, pp. 59–62. doi: 10.1145/
3344948.3344951. url: https://doi.org/10.1145/3344948.
3344951.

[196] Ilaria Pigazzini, Daniela Briola, and Francesca Arcelli Fontana.
“Architectural Technical Debt of Multi-Agent Systems Devel-
opment Platforms.” In: Proceedings of the 22nd Workshop "From
Objects to Agents", Bologna, Italy, September 1-3, 2021. Ed. by
Roberta Calegari, Giovanni Ciatto, Enrico Denti, Andrea Omicini,
and Giovanni Sartor. Vol. 2963. CEUR Workshop Proceedings.
CEUR-WS.org, 2021, pp. 1–13. url: http://ceur-ws.org/Vol-
2963/./paper13.pdf.

[197] Ilaria Pigazzini, Francesca Arcelli Fontana, Valentina Lenar-
duzzi, and Davide Taibi. Towards Microservice Smells Detection.
TechDebt ’20. Seoul, Republic of Korea: ACM, 2020, 92–97.
isbn: 9781450379601.

[198] Ilaria Pigazzini, Francesca Arcelli Fontana, and Andrea Mag-
gioni. “Tool Support for the Migration to Microservice Archi-
tecture: An Industrial Case Study.” In: Software Architecture -
13th European Conference, ECSA 2019, Paris, France, September 9-
13, 2019, Proceedings. 2019, pp. 247–263. doi: 10.1007/978-3-
030-29983-5_17. url: https://doi.org/10.1007/978-3-
030-29983-5_17.

[199] Ilaria Pigazzini, Francesca Arcelli Fontana, and Bartosz Wal-
ter. “A study on correlations between architectural smells and
design patterns.” In: J. Syst. Softw. 178 (2021), p. 110984. doi:
10.1016/j.jss.2021.110984. url: https://doi.org/10.
1016/j.jss.2021.110984.

[200] Ilaria Pigazzini, Davide Foppiani, and Francesca Arcelli Fontana.
“Two Different Facets of Architectural Smells Criticality: An
Empirical Study.” In: ECSA 2021 Companion Volume, Virtual
(originally: Växjö, Sweden), 13-17 September, 2021. Ed. by Robert

https://doi.org/10.1007/11774129_8
https://doi.org/10.1007/11774129_8
https://doi.org/10.1145/3344948.3344951
https://doi.org/10.1145/3344948.3344951
https://doi.org/10.1145/3344948.3344951
https://doi.org/10.1145/3344948.3344951
http://ceur-ws.org/Vol-2963/./paper13.pdf
http://ceur-ws.org/Vol-2963/./paper13.pdf
https://doi.org/10.1007/978-3-030-29983-5_17
https://doi.org/10.1007/978-3-030-29983-5_17
https://doi.org/10.1007/978-3-030-29983-5_17
https://doi.org/10.1007/978-3-030-29983-5_17
https://doi.org/10.1016/j.jss.2021.110984
https://doi.org/10.1016/j.jss.2021.110984
https://doi.org/10.1016/j.jss.2021.110984

bibliography 237

Heinrich, Raffaela Mirandola, and Danny Weyns. Vol. 2978.
CEUR Workshop Proceedings. CEUR-WS.org, 2021. url: http:
//ceur-ws.org/Vol-2978/msr4sa-paper2.pdf.

[201] Aniket Potdar and Emad Shihab. “An exploratory study on
self-admitted technical debt.” In: 2014 IEEE International Con-
ference on Software Maintenance and Evolution. IEEE. 2014, pp. 91–
100.

[202] L. Prechelt, B. Unger, W. F. Tichy, P. Brossler, and L. G. Votta.
“A controlled experiment in maintenance: comparing design
patterns to simpler solutions.” In: IEEE Transactions on Software
Engineering 27.12 (2001), pp. 1134–1144. issn: 2326-3881. doi:
10.1109/32.988711.

[203] Girish Maskeri Rama, Santonu Sarkar, and Kenneth Heafield.
“Mining business topics in source code using latent dirichlet
allocation.” In: Proceeding of the 1st Annual India Software Engi-
neering Conference, ISEC 2008, Hyderabad, India, February 19-22,
2008. Ed. by Gautam Shroff, Pankaj Jalote, and Sriram K. Raja-
mani. ACM, 2008, pp. 113–120. isbn: 978-1-59593-917-3.

[204] Juan Ramos et al. “Using tf-idf to determine word relevance
in document queries.” In: Proceedings of the first instructional
conference on machine learning. Vol. 242. Piscataway, NJ. 2003,
pp. 133–142.

[205] A. Rani and J. K. Chhabra. “Prioritization of smelly classes: A
two phase approach (Reducing refactoring efforts).” In: 2017
3rd International Conference on Computational Intelligence Com-
munication Technology (CICT). 2017.

[206] Leevi Rantala and Mika Mäntylä. “Predicting technical debt
from commit contents: reproduction and extension with au-
tomated feature selection.” In: Software Quality Journal 28.4
(2020), pp. 1551–1579.

[207] M. Richards. “Microservices AntiPatterns and Pitfalls.” In: O
Reilly eBooks (2016).

[208] C. Richardson. Microservices Patterns: With Examples in Java.
Manning Publications Company, 2018. isbn: 9781617294549.
url: https://books.google.it/books?id=UeK1swEACAAJ.

[209] Luca Rizzi, Francesca Arcelli Fontana, and Riccardo Roveda.
“Support for architectural smell refactoring.” In: 2nd Int. Work-
shop on Refactoring, IWoR@ASE 2018, Montpellier, France, Septem-
ber 4, 2018. 2018, pp. 7–10. doi: 10.1145/3242163.3242165.
url: https://doi.org/10.1145/3242163.3242165.

http://ceur-ws.org/Vol-2978/msr4sa-paper2.pdf
http://ceur-ws.org/Vol-2978/msr4sa-paper2.pdf
https://doi.org/10.1109/32.988711
https://books.google.it/books?id=UeK1swEACAAJ
https://doi.org/10.1145/3242163.3242165
https://doi.org/10.1145/3242163.3242165

bibliography 238

[210] R. Roveda, F. Arcelli Fontana, I. Pigazzini, and M. Zanoni. “To-
wards an Architectural Debt Index.” In: 44th Euromicro Confer-
ence on Software Engineering and Advanced Applications, SEAA
2018, Prague, Czech Republic, August 29-31, 2018. 2018, pp. 408–
416.

[211] Per Runeson and Martin Höst. “Guidelines for Conducting
and Reporting Case Study Research in Software Engineering.”
In: Empirical Softw. Engg. 14.2 (Apr. 2009), pp. 131–164. issn:
1382-3256. doi: 10.1007/s10664-008-9102-8. url: http://dx.
doi.org/10.1007/s10664-008-9102-8.

[212] Nafiseh Sadat Jalali, Habib Izadkhah, and Shahriar Lotfi. “Multi-
objective search-based software modularization: structural and
non-structural features.” In: Soft Computing (Nov. 2018). doi:
10.1007/s00500-018-3666-z.

[213] Natthawute Sae-Lim, Shinpei Hayashi, and Motoshi Saeki. “Context-
based approach to prioritize code smells for refactoring.” In:
Journal of Software: Evolution and Process (2017), e1886.

[214] Andrea Saltelli, Stefano Tarantola, Francesca Campolongo, and
Marco Ratto. Sensitivity Analysis in Practice: A Guide to Assess-
ing Scientific Models. New York, NY, USA: Halsted Press, 2004.
isbn: 0470870931.

[215] Jorge Andrés Díaz Pace Santiago A. Vidal Claudia Marcos.
“An approach to prioritize code smells for refactoring.” In: Au-
tom. Softw. Eng. 23.3 (2016), pp. 501–532.

[216] Darius Sas, Paris Avgeriou, and Francesca Arcelli Fontana. “In-
vestigating Instability Architectural Smells Evolution: An Ex-
ploratory Case Study.” In: 2019 IEEE International Conference
on Software Maintenance and Evolution, ICSME 2019, Cleveland,
OH, USA, September 29 - October 4, 2019. IEEE, 2019, pp. 557–
567. isbn: 978-1-7281-3094-1. doi: 10.1109/ICSME.2019.00090.
url: https://doi.org/10.1109/ICSME.2019.00090.

[217] Darius Sas, Ilaria Pigazzini, Paris Avgeriou, and Francesca Ar-
celli Fontana. “The perception of Architectural Smells in in-
dustrial practice.” In: IEEE Software (2021), pp. 0–0. doi: 10.
1109/MS.2021.3103664.

[218] Robert Sedgewick and Kevin Wayne. Algorithms (Fourth edition
deluxe). Addison-Wesley, 2016. isbn: 978-0-1343-8468-9.

[219] Samuel Sanford Shapiro and Martin B Wilk. “An analysis of
variance test for normality (complete samples).” In: Biometrika
52.3/4 (1965), pp. 591–611.

[220] Tushar Sharma. “How Deep is the Mud: Fathoming Architec-
ture Technical Debt Using Designite.” In: 2019 IEEE/ACM In-
ternational Conference on Technical Debt (TechDebt). 2019, pp. 59–
60. doi: 10.1109/TechDebt.2019.00018.

https://doi.org/10.1007/s10664-008-9102-8
http://dx.doi.org/10.1007/s10664-008-9102-8
http://dx.doi.org/10.1007/s10664-008-9102-8
https://doi.org/10.1007/s00500-018-3666-z
https://doi.org/10.1109/ICSME.2019.00090
https://doi.org/10.1109/ICSME.2019.00090
https://doi.org/10.1109/MS.2021.3103664
https://doi.org/10.1109/MS.2021.3103664
https://doi.org/10.1109/TechDebt.2019.00018

bibliography 239

[221] Tushar Sharma, Paramvir Singh, and Diomidis Spinellis. “An
empirical investigation on the relationship between design and
architecture smells.” In: Empirical Software Engineering (2020),
pp. 1–49.

[222] Miltiadis Siavvas, Dimitrios Tsoukalas, Marija Jankovic, Diony-
sios Kehagias, and Dimitrios Tzovaras. “Technical debt as an
indicator of software security risk: a machine learning approach
for software development enterprises Technical debt as an in-
dicator of software security risk: a machine learning approach
for software development enterprises.” In: Enterprise Informa-
tion Systems (Sept. 2020). doi: 10.1080/17517575.2020.1824017.

[223] Lakshitha de Silva and Dharini Balasubramaniam. “Control-
ling software architecture erosion: A survey.” In: Journal of Sys-
tems and Software 85.1 (2012). doi: 10.1016/j.jss.2011.07.
036.

[224] Jacopo Soldani, Giuseppe Muntoni, Davide Neri, and Antonio
Brogi. “The µTOSCA toolchain: Mining, analyzing, and refac-
toring microservice-based architectures.” In: Software: Practice
and Experience (2021).

[225] SonarSource S.A. SonarQube. http://www.sonarqube.org/.
2015.

[226] Bruno L Sousa, Mariza AS Bigonha, and Kecia AM Ferreira.
“An exploratory study on cooccurrence of design patterns and
bad smells using software metrics.” In: Software: Practice and
Experience 49.7 (2019), pp. 1079–1113.

[227] C. Spearman. “The Proof and Measurement of Association be-
tween Two Things.” In: The American Journal of Psychology 15.1
(1904), pp. 72–101. issn: 00029556. url: http://www.jstor.
org/stable/1412159.

[228] Diomidis Spinellis. “How to Select Open Source Components.”
In: Computer 52.12 (2019), pp. 103–106.

[229] Spring framework. https : / / spring . io/, Accessed October
2021.

[230] Peter Strečanský, Stanislav Chren, and Bruno Rossi. “Compar-
ing Maintainability Index, SIG Method, and SQALE for Techni-
cal Debt Identification.” In: Proceedings of the 35th Annual ACM
Symposium on Applied Computing. SAC ’20. Brno, Czech Repub-
lic: Association for Computing Machinery, 2020, 121–124. isbn:
9781450368667. doi: 10.1145/3341105.3374079. url: https:
//doi.org/10.1145/3341105.3374079.

[231] Girish Suryanarayana, Ganesh Samarthyam, and Tushar Sharma.
Refactoring for Software Design Smells: Managing Technical Debt.
1st. San Francisco, CA, USA: Morgan Kaufmann Publishers
Inc., 2014. isbn: 0128013974, 9780128013977.

https://doi.org/10.1080/17517575.2020.1824017
https://doi.org/10.1016/j.jss.2011.07.036
https://doi.org/10.1016/j.jss.2011.07.036
http://www.sonarqube.org/
http://www.jstor.org/stable/1412159
http://www.jstor.org/stable/1412159
https://spring.io/
https://doi.org/10.1145/3341105.3374079
https://doi.org/10.1145/3341105.3374079
https://doi.org/10.1145/3341105.3374079

bibliography 240

[232] D. Taibi, V. Lenarduzzi, and C. Pahl. “Processes, Motivations,
and Issues for Migrating to Microservices Architectures: An
Empirical Investigation.” In: IEEE Cloud Computing 4.5 (2017),
pp. 22–32.

[233] D. Taibi, V. Lenarduzzi, and C. Pahl. “Architectural Patterns
for Microservices: a Systematic Mapping Study.” In: Int. Conf.
on Cloud Computing and Services Science (CLOSER2018) (2018).

[234] D. Taibi, V. Lenarduzzi, and C. Pahl. “Microservices Anti-patterns:
A Taxonomy.” In: Microservices. Springer International Publish-
ing, Dec. 2019, pp. 111–128. doi: 10.1007/978-3-030-31646-
4_5. url: https://doi.org/10.1007/978-3-030-31646-4_5.

[235] Davide Taibi, Andrea Janes, and Valentina Lenarduzzi. “How
developers perceive smells in source code: A replicated study.”
In: Information and Software Technology 92.Supplement C (2017),
pp. 223 –235. issn: 0950-5849. doi: https://doi.org/10.1016/
j.infsof.2017.08.008. url: http://www.sciencedirect.
com/science/article/pii/S0950584916304128.

[236] Davide Taibi and Valentina Lenarduzzi. “On the Definition of
Microservice Bad Smells.” In: IEEE Software 35.3 (2018), pp. 56–
62. doi: 10.1109/MS.2018.2141031. url: https://doi.org/10.
1109/MS.2018.2141031.

[237] Jie Tan, Daniel Feitosa, and Paris Avgeriou. “An Empirical
Study on Self-Fixed Technical Debt.” In: Proceedings of the 3rd
International Conference on Technical Debt. TechDebt ’20. Seoul,
Republic of Korea: Association for Computing Machinery, 2020,
11–20. isbn: 9781450379601. doi: 10.1145/3387906.3388621.
url: https://doi.org/10.1145/3387906.3388621.

[238] Ewan Tempero, Craig Anslow, Jens Dietrich, Ted Han, Jing Li,
Markus Lumpe, Hayden Melton, and James Noble. “The Qual-
itas Corpus: A Curated Collection of Java Code for Empirical
Studies.” In: Proc. 17th Asia Pacific Software Engineering Confer-
ence (APSEC 2010). Sydney, Australia: IEEE, 2010, pp. 336–345.
doi: 10.1109/APSEC.2010.46.

[239] Ricardo Terra, Luis Fernando Miranda, Marco Tulio Valente,
and Roberto S. Bigonha. “Qualitas.class Corpus: A Compiled
Version of the Qualitas Corpus.” In: Software Engineering Notes
38.5 (2013), pp. 1–4.

[240] Ricardo Terra, Marco Tulio Valente, Krzysztof Czarnecki, and
Roberto S. Bigonha. “Recommending Refactorings to Reverse
Software Architecture Erosion.” In: Proceedings of the 2012 16th
European Conference on Software Maintenance and Reengineering.
CSMR ’12. Washington, DC, USA: IEEE Computer Society, 2012,
pp. 335–340. isbn: 978-0-7695-4666-7. doi: 10.1109/CSMR.2012.
40. url: http://dx.doi.org/10.1109/CSMR.2012.40.

https://doi.org/10.1007/978-3-030-31646-4_5
https://doi.org/10.1007/978-3-030-31646-4_5
https://doi.org/10.1007/978-3-030-31646-4_5
https://doi.org/https://doi.org/10.1016/j.infsof.2017.08.008
https://doi.org/https://doi.org/10.1016/j.infsof.2017.08.008
http://www.sciencedirect.com/science/article/pii/S0950584916304128
http://www.sciencedirect.com/science/article/pii/S0950584916304128
https://doi.org/10.1109/MS.2018.2141031
https://doi.org/10.1109/MS.2018.2141031
https://doi.org/10.1109/MS.2018.2141031
https://doi.org/10.1145/3387906.3388621
https://doi.org/10.1145/3387906.3388621
https://doi.org/10.1109/APSEC.2010.46
https://doi.org/10.1109/CSMR.2012.40
https://doi.org/10.1109/CSMR.2012.40
http://dx.doi.org/10.1109/CSMR.2012.40

bibliography 241

[241] The R Foundation. The R Project for Statistical Computing. https:
//www.r-project.org/, Accessed October 2021.

[242] S. de Toledo, A. Martini, A. Przybyszewska, and D. Sjøberg.
“Architectural Technical Debt in Microservices: A Case Study
in a Large Company.” In: International Conference on Technical
Debt (TechDebt). 2019, pp. 78–87.

[243] Michele Tomaiuolo, Federico Bergenti, Agostino Poggi, and
Paola Turci. “OWLBeans - From ontologies to Java classes.”
In: WOA 2004: Dagli Oggetti agli Agenti. 5th AI*IA/TABOO Joint
Workshop "From Objects to Agents": Complex Systems and Ratio-
nal Agents, 30 November - 1 December 2004, Torino, Italy. Ed. by
Matteo Baldoni, Flavio De Paoli, Alberto Martelli, and Andrea
Omicini. Pitagora Editrice Bologna, 2004, pp. 116–125.

[244] Nikolaos Tsantalis, Alexander Chatzigeorgiou, George Stephanides,
and Spyros T. Halkidis. “Design Pattern Detection Using Simi-
larity Scoring.” In: IEEE Trans. Software Eng. 32.11 (2006), pp. 896–
909. doi: 10.1109/TSE.2006.112.

[245] Carmine Vassallo, Sebastiano Panichella, Fabio Palomba, Se-
bastian Proksch, Harald C. Gall, and Andy Zaidman. “How
developers engage with static analysis tools in different con-
texts.” In: Empirical Software Engineering (2019).

[246] Roberto Verdecchia, Philippe Kruchten, Patricia Lago, and Ivano
Malavolta. “Building and evaluating a theory of architectural
technical debt in software-intensive systems.” In: Journal of Sys-
tems and Software 176 (2021), p. 110925. issn: 0164-1212. doi:
https://doi.org/10.1016/j.jss.2021.110925. url: https:
//www.sciencedirect.com/science/article/pii/S0164121221000224.

[247] Roberto Verdecchia, Patricia Lago, Ivano Malavolta, and Ipek
Ozkaya. “ATDx: Building an Architectural Technical Debt In-
dex.” In: Evaluation of Novel Approaches to Software Engineering
(ENASE). 2020.

[248] Tom Verhoeff. From Callbacks to Design Patterns. 2012.

[249] Santiago Vidal, Willian Oizumi, Alessandro Garcia, Andrés
Díaz Pace, and Claudia Marcos. “Ranking architecturally criti-
cal agglomerations of code smells.” In: Science of Computer Pro-
gramming 182 (2019), pp. 64–85. issn: 0167-6423.

[250] Marek Vokac. “Defect Frequency and Design Patterns: An Em-
pirical Study of Industrial Code.” In: IEEE Trans. Softw. Eng.
30.12 (Dec. 2004), 904–917. issn: 0098-5589. doi: 10.1109/TSE.
2004.99.

[251] Edsger W. Dijkstra. “On the Role Of Scientific Thought.” In:
(Jan. 1974).

https://www.r-project.org/
https://www.r-project.org/
https://doi.org/10.1109/TSE.2006.112
https://doi.org/https://doi.org/10.1016/j.jss.2021.110925
https://www.sciencedirect.com/science/article/pii/S0164121221000224
https://www.sciencedirect.com/science/article/pii/S0164121221000224
https://doi.org/10.1109/TSE.2004.99
https://doi.org/10.1109/TSE.2004.99

bibliography 242

[252] Yaza Wainakh, Moiz Rauf, and Michael Pradel. “IdBench: Eval-
uating Semantic Representations of Identifier Names in Source
Code.” In: 2021 IEEE/ACM 43rd International Conference on Soft-
ware Engineering (ICSE). 2021, pp. 562–573. doi: 10.1109/ICSE43902.
2021.00059.

[253] Bartosz Walter and Tarek Alkhaeir. “The relationship between
design patterns and code smells: An exploratory study.” In:
Information and Software Technology 74 (2016), pp. 127 –142. issn:
0950-5849. doi: https://doi.org/10.1016/j.infsof.2016.
02.003.

[254] Bartosz Walter, Francesca Arcelli Fontana, and Vincenzo Ferme.
“Code smells and their collocations: A large-scale experiment
on open-source systems.” In: Journal of Systems and Software
144 (2018), pp. 1–21.

[255] Rongcun Wang, Rubing Huang, and Binbin Qu. “Network-
based analysis of software change propagation.” In: The Sci-
entific World Journal 2014 (2014).

[256] Tao Wang, Gang Yin, Xiang Li, and Huaimin Wang. “Labeled
Topic Detection of Open Source Software from Mining Mass
Textual Project Profiles.” In: Proceedings of the First International
Workshop on Software Mining. SoftwareMining ’12. Beijing, China:
ACM, 2012, pp. 17–24. isbn: 978-1-4503-1560-9.

[257] Wenhan Wang, Ge Li, Bo Ma, Xin Xia, and Zhi Jin. “Detecting
Code Clones with Graph Neural Network and Flow-Augmented
Abstract Syntax Tree.” In: 2020 IEEE 27th International Confer-
ence on Software Analysis, Evolution and Reengineering (SANER).
2020, pp. 261–271. doi: 10.1109/SANER48275.2020.9054857.

[258] P. Wendorff. “Assessment of design patterns during software
reengineering: lessons learned from a large commercial project.”
In: Proceedings Fifth European Conference on Software Maintenance
and Reengineering. 2001, pp. 77–84. doi: 10.1109/CSMR.2001.
914971.

[259] U. Wilensky. NetLogo. Center for Connected Learning and Computer-
Based Modeling, Northwestern University, Evanston, IL, 1999.
url: http://ccl.northwestern.edu/netlogo/.

[260] Martin B Wilk and Ram Gnanadesikan. “Probability plotting
methods for the analysis of data.” In: Biometrika 55.1 (1968),
pp. 1–17.

[261] Aiko Yamashita, Marco Zanoni, Francesca Arcelli Fontana, and
Bartosz Walter. “Inter-smell relations in industrial and open
source systems: A replication and comparative analysis.” In:
2015 IEEE International Conference on Software Maintenance and
Evolution (ICSME). IEEE. 2015, pp. 121–130.

https://doi.org/10.1109/ICSE43902.2021.00059
https://doi.org/10.1109/ICSE43902.2021.00059
https://doi.org/https://doi.org/10.1016/j.infsof.2016.02.003
https://doi.org/https://doi.org/10.1016/j.infsof.2016.02.003
https://doi.org/10.1109/SANER48275.2020.9054857
https://doi.org/10.1109/CSMR.2001.914971
https://doi.org/10.1109/CSMR.2001.914971
http://ccl.northwestern.edu/netlogo/

bibliography 243

[262] Meng Yan, Xin Xia, Emad Shihab, David Lo, Jianwei Yin, and
Xiaohu Yang. “Automating change-level self-admitted techni-
cal debt determination.” In: IEEE Transactions on Software Engi-
neering 45.12 (2018), pp. 1211–1229.

[263] YeD. https://www.yworks.com/products/yed, Accessed Octo-
ber 2021.

[264] Robert K. Yin. Case Study Research: Design and Methods, 4th Edi-
tion (Applied Social Research Methods, Vol. 5). 4th. SAGE Publi-
cations, Inc, 2009. isbn: 9781412960991.

[265] Zeping Yu, Rui Cao, Qiyi Tang, Sen Nie, Junzhou Huang, and
Shi Wu. “Order Matters: Semantic-Aware Neural Networks for
Binary Code Similarity Detection.” In: Proceedings of the AAAI
Conference on Artificial Intelligence 34.01 (2020), pp. 1145–1152.
doi: 10.1609/aaai.v34i01.5466. url: https://ojs.aaai.
org/index.php/AAAI/article/view/5466.

[266] Franco Zambonelli and Andrea Omicini. “Challenges and Re-
search Directions in Agent-Oriented Software Engineering.”
In: Auton. Agents Multi Agent Syst. 9.3 (2004), pp. 253–283. doi:
10.1023/B:AGNT.0000038028.66672.1e. url: https://doi.
org/10.1023/B:AGNT.0000038028.66672.1e.

[267] Yu Zhang and Binglong Li. “Malicious Code Detection Based
on Code Semantic Features.” In: IEEE Access 8 (2020), pp. 176728–
176737. doi: 10.1109/ACCESS.2020.3026052.

[268] C. Zhu, X. Zhang, Y. Feng, and L. Chen. “An Empirical Study
of the Impact of Code Smell on File Changes.” In: 2018 IEEE
International Conference on Software Quality, Reliability and Secu-
rity (QRS). 2018, pp. 238–248.

[269] Ioannis Zozas, Apostolos Ampatzoglou, Stamatia Bibi, Alexan-
der Chatzigeorgiou, Paris Avgeriou, and Ioannis Stamelos. “REI:
An integrated measure for software reusability.” In: J. Softw.
Evol. Process. 31.8 (2019).

[270] hello2morrow. Sonargraph. www.hello2morrow.com, Accessed
October 2021.

[271] I. Şora. “A PageRank based recommender system for identi-
fying key classes in software systems.” In: 10th Jubilee Interna-
tional Symposium on Applied Computational Intelligence and Infor-
matics. 2015.

https://www.yworks.com/products/yed
https://doi.org/10.1609/aaai.v34i01.5466
https://ojs.aaai.org/index.php/AAAI/article/view/5466
https://ojs.aaai.org/index.php/AAAI/article/view/5466
https://doi.org/10.1023/B:AGNT.0000038028.66672.1e
https://doi.org/10.1023/B:AGNT.0000038028.66672.1e
https://doi.org/10.1023/B:AGNT.0000038028.66672.1e
https://doi.org/10.1109/ACCESS.2020.3026052
www.hello2morrow.com

	Abstract
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Publications
	1.1.1 Published papers
	1.1.2 Submitted papers
	1.1.3 To be submitted papers in November 2021
	1.1.4 Published papers not strictly related to the thesis

	2 Arcan: a tool for architectural smell detection
	2.1 Arcan components
	2.2 Architectural Smells detected by Arcan
	2.2.1 Why did we decided to detect these smells?
	2.2.2 Architectural smells criticality and cost-solving

	2.3 Arcan detection strategies
	2.3.1 Unstable Dependency (UD)
	2.3.2 Hub-Like Dependency (HL)
	2.3.3 Cyclic Dependency (CD)
	2.3.4 God Component (GC)
	2.3.5 Feature Concentration (FC)
	2.3.6 Scattered Functionality (SF)

	2.4 AS detection through Semantic representation of code
	2.4.1 Description of the approach
	2.4.2 Analysis of the vector representation
	2.4.3 Architectural Smells detection
	2.4.4 Findings
	2.4.5 Final remarks

	2.5 Other tools for AS detection
	2.6 Summary of the findings

	3 Validation and perception of the architectural smells from the developers
	3.1 Past studies on the validation of Arcan tool
	3.2 An AS Evaluation in an Industrial Context
	3.3 The perception of AS in three software companies
	3.4 Summary of the findings

	4 Empirical studies on architectural smells
	4.1 Exploited statistical tests and techniques
	4.1.1 Correlation analysis
	4.1.2 Principal Component analysis
	4.1.3 Association rules extraction
	4.1.4 Mann-Kendall test

	4.2 A Study on Correlation between AS and DP
	4.2.1 Empirical Study Design
	4.2.2 Results
	4.2.3 Discussion
	4.2.4 Threats to Validity
	4.2.5 Final remarks

	4.3 AS Evolution and Correlation: an Empirical Study
	4.3.1 Architectural Smells Evolution and Correlations: Study Design
	4.3.2 Results
	4.3.3 Final remarks on correlation and collocation results
	4.3.4 Discussion
	4.3.5 Threats to Validity
	4.3.6 Final remarks

	4.4 Summary of the findings

	5 Architectural Debt Evaluation
	5.1 The Architectural Debt Index
	5.2 Architectural Debt Index Evaluation
	5.2.1 Impact of Opportunistic Reuse Practices to Technical Debt
	5.2.2 Evaluating the Architectural Debt of IoT Projects
	5.2.3 Evaluating the architectural debt of agent based systems
	5.2.4 Sen4Smells: A tool for ranking architecture-sensitive smells for a debt index

	5.3 AS Criticality Evaluation
	5.3.1 Empirical Study Design
	5.3.2 Results
	5.3.3 Discussion
	5.3.4 Threats to validity
	5.3.5 Final remarks

	5.4 Summary of the findings

	6 Architectural smells detection in microservices architectures
	6.1 Industrial case studies on the migration
	6.1.1 Candidate Microservice Identification through Arcan
	6.1.2 1st Case study: Alten Italy
	6.1.3 2nd Case study: Anoki

	6.2 Towards Microservice Smells Detection
	6.2.1 Microservice Smells identification - Arcan extension
	6.2.2 Validation - Arcan extension
	6.2.3 Micorservices smells identification - Aroma
	6.2.4 Validation - AROMA
	6.2.5 Final Remarks

	6.3 Summary of the findings

	7 Related work
	7.1 Architectural smell detection and prioritization
	7.1.1 Tools and data structures for the detection of dependencies issues-based AS
	7.1.2 Natural Language Processing models for the detection of separation of concerns-based AS
	7.1.3 Architectural smells prioritization and criticality evaluation

	7.2 Empirical studies on architectural smells
	7.3 Architectural debt evaluation
	7.3.1 Identification of ATD
	7.3.2 Empirical studies on technical debt indexes

	7.4 Architectural smells in microservices
	7.4.1 Migration to microservices
	7.4.2 Tools for microservice reconstruction and smells detection

	8 Final remarks and future developments
	8.1 Discussion and final remarks
	8.2 Future developments

	9 Final personal note
	A Appendix
	A.1 Additional material of AS validation and perception
	A.1.1 An architectural smell evaluation in an industrial context: survey questions
	A.1.2 The perception of Architectural Smells in three software companies: interview guide

	Bibliography

