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Abstract
The use of statistical tools for predicting the winner in tennis matches has enjoyed an increase
in popularity over the last two decades and, currently, a variety of methods are available.
In particular, paired comparison approaches make use of latent ability estimates or rating
calculations to determine the probability that a player will win a match. In this paper, we
extend this latter class of models by using network indicators for the predictions. We propose
a measure based on eigenvector centrality. Unlike what happens for the standard paired
comparisons class (where the rates or latent abilities only change at time t for those players
involved in the matches at time t), the use of a centrality measure allows the ratings of the
whole set of players to vary every time there is a new match. The resulting ratings are then
used as a covariate in a simple logit model. Evaluating the proposed approach with respect
to some popular competing specifications, we find that the centrality-based approach largely
and consistently outperforms all the alternative models considered in terms of the prediction
accuracy. Finally, the proposed method also achieves positive betting results.

Keywords Network · Eigenvector centrality · Tennis · Forecasting

1 Introduction

The advent of big data has significantly favoured the application of statistical tools in sports.
From this aspect, Morgulev et al. (2018) presented a survey of data-driven analyses for
a variety of sports, before and since the advent of the computerized era. The increasing
popularity of statistical tools to forecast the outcomes of sport events is facilitated by at least
two factors. First, the outcome is observable (contrary to what happens for predictions in
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financial markets, where the variable of interest may be latent, i.e. the volatility, and a proxy
has to be used). Second, the vast number of variables potentially influencing the outcome of
a match enriches the set of statistical methods at our disposal.

In the literature aimed at predicting the outcomes of sporting events, soccer (Koopman
and Lit 2015; Angelini and De Angelis 2017; Mattera 2021, among others) and tennis play
a prominent role. Regarding the latter, Kovalchik (2016) identifies three main categories of
statistical methods used to forecast thewinner of thematch, namely regression-based (see, for
instance, Del Corral and Prieto-Rodriguez 2010; Lisi and Zanella 2017), point-based (Barnett
and Clarke 2005; Knottenbelt et al. 2012, among others), and paired comparisons (like the
Bradley-Terry-type model of McHale and Morton 2011) approaches. Recently, the methods
for predicting the probability of winning in tennis have been further extended. For example,
artificial neural networks have been considered by Cornman et al. (2017) and Candila and
Palazzo (2020). Within the paired comparison class of models, some weighted versions of
the popular Elo method have been proposed, as in the contributions of Kovalchik (2020) and
Angelini et al. (2022).

Although paired comparison methods seem to provide consistently better forecasts than
other models (as reported, for instance, by Kovalchik 2016, 2020; Angelini et al. 2022),
they have a not insignificant drawback–the latent ability, also defined rating, of players is
calculated before each match. Thus, the probability of winning for the upcoming match is
calculated using the previously obtained abilities. The rating of a player is only updated if that
player participates in a match. In other words, when a player does not face any competitor,
his/her rating remains constant. Hence, such models do not allow for dynamic updates to
the ability/rating of a player, when the player is not playing. The aim of this paper is to
fill this gap. In particular, for the first time, we compute the abilities/ratings in a network
context. In this framework, every new match serves to update the full network, rather than
only the ratings of the players involved. Network theory offers an effective tool for describing
and capturing the ability of players (see Brandão et al. 2015; Arriaza-Ardiles et al. 2018).
A directed network can accurately describe the outcomes of matches, where nodes denote
players and a weighted link from one player to another quantifies the number of lost matches.
In the context of complex networks, we focus on centrality measures, and specifically on the
eigenvector centrality (Bonacich 1972). Indeed, the characteristic of this measure is that a
node is highly central when it is connected to nodes which are themselves central, that is
a node has a high score when is connected to nodes having themselves a high score. This
measure is then particularly effective in representing the quality of players. This concept has
been explored in the literature by Radicchi (2011), who used the PageRank to identify the
best player from the records of professional sport competitions. By means of a particular
network that incorporates a temporal memory of the matches, we propose a new measure
based on the directed version of the eigenvector centrality, the so-called Bonacich centrality
(Bonacich and Lloyd 2001).

Once the ratings have been calculated, we obtain the probability of winning for the upcom-
ing match through a simple logit model. We evaluate the proposed model over two large
datasets covering 14,170 male and 15,181 female matches over the period from 2016 to
2020. In terms of results, the eigenvector centrality-based model has a superior and statis-
tically significant forecasting ability with respect to other models, independent of the year
and type of dataset (i.e. male or female matches). The other models compared in this work
include regression-based and paired comparison approaches. In particular, the competing
models are the standard Elo model (Elo 1978); a recently proposed Elo-based model with the
margin of victory (Kovalchik 2020); the logit-based models of Klaassen andMagnus (2003),
Boulier and Stekler (1999), and Clarke and Dyte (2000); and, the Bradley-Terry-type model
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of McHale and Morton (2011). We also evaluate the proposed model from a betting perspec-
tive, by evaluating the gains or losses of the centrality-based specification with respect to the
other models.

The remainder of this paper is structured as follows. In Sect. 2, we propose a newmeasure
for determining the players’ rating. Section 3 reports the empirical analysis. We evaluate
the players’ ratings and use previous results to predict the winning probabilities. The results
achieved by our model are compared with those of the other models. Finally, the conclusions
of this study are summarized in Sect. 4.

2 A network approach for players ratings

Some definitions regarding directed graphs are essential before we introduce our measure
for players ratings. The appendix gives these definitions in detail.

As the mathematical object representing the network is a graph, in the rest of this paper,
we will refer to the network using the words “network” or “graph” interchangeably.

Let i and j be two generic players among the n different available players. Moreover, let
t0, t1, t2, . . . , tT denote the successive points in time atwhich thematches between the players
are collected. Let t indicate the time at which a set of matches is disputed. Such notation is
useful for characterizing the time series nature of the ratings, which will be described below.

The proposed rating system we propose is based on a centrality measure of a particular
digraph G = (V , A), where V is the set of n nodes, representing the unique players, and A
is the set of arcs. Moreover, this digraph evolves over time, and its evolution determines the
n time series (one for each player) of the rating system. We focus on the definition of the
digraph at a given time t , Gt = (Vt , At ). We assume that the set of nodes V of the digraph
is constant in time and corresponds to the players, and that arc (i, j) goes from i to j if the
player i loses against the player j . In fact, the direction of the arc can be interpreted as a skill
transfer from the losing player toward the winning player. Through this approach, a stronger
player has more corresponding incoming arcs.

In relation to the centrality definition, a stronger player is one who wins more matches.
Moreover, we apply theBonacich centrality to graphGt , which returns high scores for players
that win against other players with high scores. Such scores are normalized so that they are
comparable in time and in different digraphs (see the appendix for the precise definition).

Consider that, before the time t , player i may have lost more than once against j .
Therefore, we introduce a function ct to digraph Gt , representing the weights of the arcs,
Gt = (V , At , ct ), where ct represents the number of lost matches in the time interval [t0, t],
with t0 denoting the origin of the observation time. This approach is in line with Radicchi
(2011).

An important property of the Bonacich centrality of the digraph Gt is that it depends
on the whole network and if, for instance, a player stops playing for a period, then his/her
score decreases. On the contrary, other rating systems remain constant. Moreover, in the
application of the Bonacich centrality, young and emerging players are penalized due to the
shorter observation time. Thus, we weigh the matches in inverse proportion to their oldness.

Therefore, the final definition of the function ct is provided through the corresponding
weighted adjacency matrix:

Wt =
∑

t∗∈[t0,t]
f (t∗, t, α) · Lt∗ , (1)
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where Lt∗ is the n × n (corresponding to the n players) matrix of the number of lost matches
exactly at time t∗ ∈ [t0, t] and

f (t∗, t, α) =
(
1 + t − t∗

α

)−1

with t∗ ∈ [t0, t], α > 0. (2)

The parameter α is a “memory” parameter; higher values of α assign higher weights to the
oldest matches. In particular,

lim
α→+∞ f (t∗, t, α) = 1∀t and t∗ ∈ [t0, t]

and all the matches have the same weight. Moreover, Eq. (2) decreases as the difference
between t and t∗ increases. In particular, if the difference is 0 then f (t, t, α) = 1, and if it
is α then f (t − α, t, α) = 0.5. This last observation helps in choosing a suitable value of α

that can be interpreted as the time distance in which the relevance of the matches is halved.
Note that if a player does not play, his/her score depends on the memory of function f ,

but it is also captured by the network context. In fact, if the player j stops playing, his/her
weightswi j do not increase, differently from the other players. Under the proposed measure,
however, the Bonacich centrality captures the weights variations of the whole network.

In conclusion, we summarize the steps involved in computing and interpreting the pro-
posed measure. As it is based on the Bonacich centrality, we call this measure the B-score.

1. Construction of the matrix Lt∗ of the number of lost matches
2. Construction of the matrix Wt associated with the digraph Gt , as defined in Eq. (1);
3. Calculation of the B-score at time t for each player by computing the Bonacich centrality

of the matrix W′
t (see Eq. (11) in the appendix for details);

4. Repeat steps 1-3 for all t .

3 Empirical analysis

The data used in this work were collected from the site www.tennis-data.co.uk, which pro-
vides a large number of statistics concerning the match results of professional tennis players.
This archive has recently been used also by Angelini et al. (2022) and Baker and McHale
(2017), among others. We use both the male and female archives. The information included
are the match scores of all the most important tennis tournaments, the (closing) betting odds
of different professional bookmakers, and the official rankings and the points for each player
at the time of the match. The sample under investigation covers the period from July 4,
2005, to November 22, 2020, for the male’s matches and the period from January 1, 2007,
to October 25, 2020, for the female’s matches. We have restricted the sample to the matches
involved in the Masters 1000 (governed by the Association of Tennis Professionals (ATP))
and Premier (organized by the Women’s Tennis Association (WTA)) tournaments, as well
as in the Grand Slams. After running the clean function of the R package ‘welo’ (Candila
2021), 14,170 male and 15,181 female matches remained. Overall, the data include 470 male
and 455 female players.

At the beginning of the analysis, the full sample was divided into two non-overlapping
periods: a training sample (from 2005 to 2015, consisting of 10,029 male and 9654 female
matches) and a testing sample (from 2016 to 2020, that is, 4141 male and 5527 female
matches). The training sample was used to estimate all the models predicting the probability
of the winner, to which we dedicate the next subsection. The testing period was the out-
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of-sample period, which was used to evaluate the performances of the set of models. The
process for obtaining the probability of winning is described by the following algorithm:

1. Estimate all the models from the beginning of the sample up to 2015.
2. Using the estimated parameters, obtain the probability of winning for the following 300

matches.
3. Add thematches of the previous step to the estimation sample. Re-estimate all themodels

and calculate the probability of winning for the following 300 matches.
4. Repeat steps 2 and 3 until the end of the sample.

3.1 Application of the centrality-basedmeasure

Figure 1 shows the evaluation of the B-scores for the five players that have the highest scores
at the end of the sample period for both the male and female circuits.

We only present the B-scores for the test sample period, as described at the beginning of
this section.

As the Euclidean norm of the scores is one, they can be compared in time and between
circuits. First, note that the maximum score that can be reached is one. Moreover, the second
moment is constant, and so the variability is inversely proportional to the square of the average
value. In the last years of the sample period, the average value in the male circuit is greater
than that for the female circuit. Thus, it can be concluded that the female circuit is more
variable, even if this cannot be observed from the plots because only the top five are shown.

Observe the decreasing trend of AndyMurray’s B-scores starting from 2017. Themeasure
catches his hip injury and his retirement from the remainder of the season. This can be
observed because the scores depend on the whole network at time t and because older
matches are assigned lower weights in the network definition.

We used α = 365 days, in line with the ATP and WTA ranking systems, where the points
earned during an ATP orWTA approved tournament remain in the system for 52 consecutive
weeks.1

Finally, the normalization of the measure allows us to observe that the centrality of Serena
Williams in the female circuit at the beginning of the testing sample period is similar to that
of Rafael Nadal in the male circuit.

3.2 Competingmodels for the winning probabilities

The competing models used in this work are: the standard Elo model (Elo 1978); the mod-
els, based on the logit regression, proposed by Klaassen and Magnus (2003), Boulier and
Stekler (1999), and Clarke and Dyte (2000), labelled as (KM-reg), (BS-reg) and (CD-reg),
respectively; and the Bradley-Terry-type model (BT-m) of McHale and Morton (2011). As
mentioned above, we compute the probability ofwinning starting from theB-scores bymeans
of a logit model. The set of models is briefly described in Table 1.

In the following, we describe the process through which we transform the B-scores into
probabilities. The other specifications employed in this work are then discussed.

The proposed centrality-based model returns the rates for players i and j for each match
at time t , denoted by CRi,t and CR j,t , respectively. CRi,t and CR j,t are observed after the
end of the match between players i and j . These rates are then converted into probabilities
through a simple logit regression, where CRi,t and CR j,t are the covariates used to predict

1 Except during the first Covid-19 period, where the rule of 12-month ranking changed.
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(a) B-scores from 2016. Male matches
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(b) B-scores from 2016. Female matches
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Fig. 1 B-scores from 2016

the probability pi, j,t+1, that is, the probability that player i wins over player j for a match
at time t + 1 (the probability that player j wins over player i , that is, p j,i,t+1, is obtained as
the complement to one of pi, j,t+1). Formally,

pi, j,t+1 = exp(β0 + β1CRi,t + β2CR j,t )

1 + exp(β0 + β1CRi,t + β2CR j,t )
. (3)

Let Ei,t and E j,t be the Elo ratings for the match at time t for players i and j , respectively.
Then, the probability that player i defeats player j in a match at time t is:

pi, j,t = 1

1 + 10(E j,t−Ei,t)/400
. (4)
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Table 1 Competing models

Label Full name Source

B-sc B-score

Elo Elo Elo (1978)

Lin-Elo Linear Elo Kovalchik (2020)

J-A-Elo Joint Additive Elo Kovalchik (2020)

Mult-Elo Multiplicative Elo Kovalchik (2020)

Log-Elo Logistic Elo Kovalchik (2020)

KM-reg Logit regression Klaassen and Magnus (2003)

BS-reg Logit regression Boulier and Stekler (1999)

CD-reg Logit regression Clarke and Dyte (2000)

BT-m Bradley-Terry model McHale and Morton (2011)

The table illustrates the set of competing models

The updating procedure for obtaining the Elo ratings for player i (and similarly for player
j) is:

Ei,t+1 = Ei,t + Ki,t
[
Wi,t − pi, j,t

]
, (5)

where Wi,t is an indicator function equal to one if player i wins the match at time t and zero
otherwise, and Ki,t represents a scale factor. This scale factor expresses how much the Elo
rating varies after the match at time t . According to Kovalchik (2016), the scale factor is
assumed to depend on the number of matches. This means that the scale factor varies less
when player i has played more matches. Recently, Kovalchik (2020) extended the Elo ratings
by incorporating the margin of victory. She proposed four additional Elo rates: the Linear
Elo (Lin-Elo), Joint Additive Elo (J-A-Elo), Multiplicative Elo (Mult-Elo), and Logistic-Elo
(Log-Elo). For further details on these models, see Kovalchik (2020).

For the other models employing the logit regression, we use the following standard nota-
tions. Let Fi,t and Fj,t be, respectively, a feature of players i and j for the match at time t .
All these logit-based models define

Dt = Fi,t − Fj,t (6)

as the regressor to include in the equation

pi, j,t = exp(λDt )

1 + exp(λDt )
, (7)

where pi, j,t is the probability of winning for player i over player j at time t and λ is the
parameter to be estimated.

The KM-reg model defines the feature F as a logarithmic transformation of the rankings
of the players (Ri,t and R j,t ), that is:

Fi,t = 8 − 2 log2
(
Ri,t

)
,

and

Fj,t = 8 − 2 log2
(
R j,t

)
.

The BS-reg model considers F to be the ranking at time t , without making any type of
transformation. Hence, Dt = Ri,t − R j,t .
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The CD-reg model defines the feature F as:

Fi,t = log
(
Pi,t

)
,

and

Fj,t = log
(
Pi,t

)
,

where Pi,t and Pj,t are the points gained by players i and j at time t .
The BT-reg model calculates the probability of winning of player i beating player j as a

function of (past) ability to win a game. Let αi, j,t and α j,i,t be the abilities of player i to win
a game over j and vice versa, in the match at time t . The probability of player i winning the
match at time t , denoted as pgi, j,t , is:

pgi, j,t = αi, j,t

αi, j,t + α j,i,t
. (8)

The abilities for all the players are obtained bymaximizing the likelihood provided inMcHale
andMorton (2011) (see their Eq. (1)). Once the abilities for each player have been estimated,
it is then possible to calculate the probabilities of winning the match.

3.3 Statistical evaluation

The loss functions used in this work to evaluate the forecasts in this work are the Brier
Score (BS, Brier 1950) and the log-loss. Further forecast evaluation methods in sports are
discussed in Reade et al. (2021). As in Angelini et al. (2022) and Gorgi et al. (2019), we
use the Diebold and Mariano (1995) (DM) test to statistically assess the performance of the
proposed model with respect to each competing specification. The results of this evaluation
are presented in Tables 2 (male matches) and 3 (female matches). The tables illustrate the
averages of the losses, for each model, and the DM test statistics with their significance.
Notably, the DM test statistic is built on the difference between the losses of the proposed
model and each competing specification. Therefore, if the test statistic is negative, it means
that, on average, the losses produced by the B-scores are smaller than those of the competing
model. Interestingly, the null hypothesis of equal predictive ability is almost always rejected,
meaning that the proposed model largely outperforms all the other models. These results
hold independently of the single year within the out-of-sample period considered, the loss
used, and the male or female set of matches under investigation. Finally, the proposed model
always achieves superior predictive ability for the full out-of-sample period.

3.4 Economic evaluation: betting opportunities

In this section, we describe the benefits of applying the centrality-based model on the betting
markets. We use a simple betting strategy, on the basis of that described in Angelini et
al. (2022) and the references therein. Let oi, j,h,t and o j,i,h,t denote the odds provided by
professional bookmaker h, with h = 1, . . . , H , for players i and j , respectively, at time
t . Moreover, let qi, j,h,t and q j,i,h,t be, respectively, the implied probabilities for i and j ,
obtained as the reciprocal of the odds provided by bookmaker h:

qi, j,h,t = (
oi, j,h,t

)−1 and q j,i,h,t = (
o j,i,h,t

)−1
.

To take benefit from the betting markets, we use the best odds available on the market at
the time of the match. Hence, the best odds among the H bookmakers for player i are defined
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as:

oBi, j,t = max
h=1,...,H

oi, j,h,t , (9)

while those for player j is:

oBj,i,t = max
h=1,...,H

o j,1,h,t . (10)

The adopted betting strategy for player i , according to the thresholds r and q , is defined
as follows:

Definition 1 The amount of 1 is placed on the best odds oBi, j,t in Eq. (9) for player i for all
the matches where it holds that

pi, j,t > r and qi, j,Bet365,t > q,

where qi, j,Bet365,t is the implied probability offered by the professional bookmaker Bet365.

The same betting rule is applied to player j , using p j,i,t , q j,i,Bet365,t , and oBj,i,t . For a
givenmatch at time t , the probability that the player i wins over player j can be smaller, equal
to, or greater than the threshold r . From the bettor’s point of view, it would be convenient to
bet on those matches where the probabilities of a certain player winning are high. The higher
the value of r , the higher will be the probability of winning using a given model. From the
other side, when r increases, a larger number of matches are excluded. Thus, the threshold
q is used instead to exclude heavy underdogs. In particular, if q = 0, all the matches are
considered. As q increases, the matches whose implied probabilities are smaller than the
chosen value for q are excluded.

We applied this betting strategy to all the male and female matches in the test sample
(from 2016 to 2020) and for all the probabilities obtained using the models synthesized
in Table 1. The resulting return-on-investment (ROI), expressed in percentage terms, for
different values of the thresholds r and q are reported in Figs. 2 (male matches) and 3
(female matches). These figures illustrate the surfaces (in green for the proposed model, in
red for the competing specifications) as well as the grey plane denoting the case ROI = 0. For
the male matches, when 0.50 < r < 0.60, the centrality-based model gives a negative ROI,
independently of the threshold q . However, when r is greater than 0.60, the ROI becomes
to be positive and, in general, it is almost always larger than that of the competing models.
For the female matches, the economic performance of the B-scores is largely better than the
competing specifications: in fact, the green surfaces are almost always above the red surfaces,
except for some combinations of very high r and q thresholds.

To conclude, the proposed centrality-based model appears to be superior to all the con-
sidered specifications, for the data and period under consideration, from a statistical and
economic point of view.

4 Conclusions

In the big data era, statistical methods are increasingly used to predict the outcomes of
sporting events. In this paper, we have described a method for computing the abilities/ratings
of tennis players in a network context. By doing so, every newmatch updates the full network,
rather than only the ratings of the players involved. We proposed a new measure called the
B-score to rate the tennis players, who are considered as nodes of a network. The network
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(a) vs Elo (b) vs Lin-Elo (c) vs J-A-Elo

(d) vs Mult-Elo (e) vs Log-Elo (f) vs KM-reg

(g) vs BS-reg (h) vs CD-reg (i) vs BT-m

Fig. 2 ROI for centrality-based and competing models (male matches). Notes: The figures depict the surfaces
of the ROIs for the centrality-based model (green surface) against the ROIs of the competing models (red
surface). Grey plane represents the case ROI = 0. (Color figure online)

incorporates the memory over time of previous matches, and the B-scores are obtained
through the Bonacich centrality (Bonacich and Lloyd 2001). These scores are used in a logit
regression model to determine the winning probabilities.

The B-scores take advantage of the network approach to better capture the evolution of
each players’ ability. Specifically, for three tennis players i , j and k who have played each
other at time t−1, if player i faces player j at time t , the standard paired comparison approach
only updates the rates/abilities of players i and j. Player k’s rate remains unchanged, because
k has not played any match at time t . In this situation, the proposed B-score allows the rate
of k to vary at time t due to the dynamic relationship among all the players. In other words,
the rate of k at time t changes because, in the past, player k has involved in a match against
player i and/or player j .

Theproposed approachhas been extensively evaluatedunder twoperspectives: fore casting
ability and betting results. The forecasting ability was tested against several popular and
recently developed alternatives.

Irrespectively of the period or tour (i.e. male of female matches) considered, the proposed
approach has a statistically significant superiority in terms of forecasting ability with respect
to all the competing models. In terms of betting returns, the proposed approach very often
achieve superior ROIs with respect to all the other models under investigation.

In future research, the current centrality-based model will be expanded to account for
different match conditions, such as the playing surface, through specific network structures.
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(a) vs Elo (b) vs Lin-Elo (c) vs J-A-Elo

(d) vs Mult-Elo (e) vs Log-Elo (f) vs KM-reg

(g) vs BS-reg (h) vs CD-reg (i) vs BT-m

Fig. 3 ROI for centrality-based and competingmodels (femalematches).Notes:The figures depict the surfaces
of the ROIs for the centrality-based model (green surface) against the ROIs of the competing models (red
surface). Grey plane represents the case ROI = 0. (Color figure online)

Also the choice of the parameter α is worthy of investigation, and further research may
propose data-driven methods to calculate it. Finally, the current approach could be extended
to other sports.
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Appendix

This appendix presents some definitions about graphs and networks, especially focusing on
directed networks. This is intended to facilitate an understanding of the paper for readers
who are not familiar with the mathematical framework.
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Graphs definitions

A network is a set of entities (agents) linked by pairwise relations. It is mathematically
represented by a graph, the structure that models these relations. A graph is characterized
by nodes connected by edges (or links). Graphs are undirected if the edges symmetrically
connect two nodes; otherwise, the graph is said to be directed. We focus on directed graphs
and provide some further definitions for them.

A directed graph or digraph is a graph in which the edges have an orientation. Formally,
a directed graph (or digraph) G = (V , A) is a pair of sets V and A, where V is the set of n
nodes and A is the set of m ordered pairs (arcs) of nodes of V ; if (i, j) and/or ( j, i) is an
element of A, then nodes i and j are adjacent. A directed walk of length l ≥ 1 is any sequence
of nodes i0, i1, . . . , il such that (ik−1, ik) ∈ A, k = 1, . . . , l. Thus, an i → j directed walk
is a sequence of nodes and arcs from i to j such that all arcs have the same direction. This
definition leads to the idea of strong connectivity: a graph is strongly connected if any two
nodes i, j are connected by (at least) an i → j directed walk.

A weight wi j > 0 can be associated with each arc (i, j) so that a weighted digraph is
obtained. Formally, this is a directed graph G along with a mapping c : A → 	 such that
c(i, j) = wi j , that is a triple G = (V , A, c). The elements wi j can be collected in a real
n-square matrix W (the weighted adjacency matrix) where the entries are wi j if (i, j) ∈ A
and zero otherwise. Note that, by definition, the elements of such a matrix describe both the
adjacency relationships between the nodes in V and the weights on the arcs and, in general,
wi j 
= w j i . In the unweighted case, nonnull weights can take only unitary values, so that
the matrix W provides only information about the adjacency relationships. In the case of
unweighted networks, we denoteW by A (the adjacency matrix).

An important result states that the graph G is strongly connected if and only if
W is irreducible, and this allows the application of the Perron-Frobenius Theorem. Let
{λ1, λ2, . . . , λn} be the set of the eigenvalues ofW and ρ = maxi |λi | be its spectral radius.
By the Perron-Frobenius Theorem, if W is irreducible and nonnegative, ρ is an eigenvalue
of W and there exists a positive eigenvector x associated with ρ. The vector x is called the
principal eigenvector. See Horn and Johnson (2012) for a more detailed description of this
concepts.2

Centrality in networks

One of the major topics in network analysis concerns centrality. This concept, when applied
to nodes, measures the importance of their position in the network.

Centrality does not have a unique definition, but depends on the characteristics of the
network and the context. For instance, a node can be important because it has many connec-
tions, or conveys crucial information along paths, or is connected to nodes that are powerful
themselves.

The first case (i.e. many connections) is the most intuitive and it is formally described by
the degree centrality of a node i , which counts the number of edges incident to i . In a directed
network this centrality measure is replaced by the out-degree and in-degree of a node i . In
particular, the in-degree dini is the number of arcs arriving to the node i and the out-degree
douti is the number of arcs starting from i .

2 To evaluate the matrix eigenvectors, the programming language R uses an algorithm from the LAPACK
Fortran library (Anderson et al. 1999) whose time-efficiency is O(n2).
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Moving toweightednetworks, the degree centrality is generalizedby the strength centrality
of the node i , which sums theweights of the edges incident to i . In the directed case, we define
the in-strength centrality sini (out-strength centrality souti ) of i as the sum of the weights of
all the edges coming to (going from) i .

The centralitymeasure that best represents the case inwhich a node i is central if connected
to nodes that are central themselves is the eigenvector centrality (Bonacich 1972). For a
node, this measure accounts for its connections, similar to the degree centrality. Indeed, the
centrality scores of the node’s neighbours contribute to its centrality.

Mathematically, the measure is defined as the i-th component of the principal eigenvector
of the matrix A, normalized with the Euclidean norm ‖ x ‖2. Indeed, by the definition of
the adjacency matrix A, provided in the previous subsection, the score xi of the node i is
proportional to the scores of its neighbours. The vector collecting the centrality scores is
x = 1

ρ
Ax.

The generalization of the eigenvector centrality to weighted digraphs can be introduced
as follows. We assume that the entry w j i ≥ 0 means that the node j contributes (with weight
w j i ) to i’s status, so the score of node i is proportional to the sum of scores of all nodes j
pointing to i (see Bonacich and Lloyd 2001). Formally

x = 1

ρ
W′x (11)

Notice that, as the matrixW is not symmetric, the vector x (normalized with the Euclidean
norm) is the principal eigenvector associated with ρ of the irreducible matrix W′. We refer
to this centrality measure as Bonacich centrality.

In concluding this appendix, it is worth comparing the described measures in the weighted
case, i.e. in-strength and Bonacich centrality. As done for the eigenvector centrality, we can
collect the in-strength centrality into a vector:

sin = W′1

As already stressed, the i-th element of this vector is the sum of the weights of the nodes
pointing to i . This means that its centrality sini only depends on the weights of its incoming
links. On the contrary, by the Eq. (11), the centrality score of node i is proportional to the sum
of the centrality scores of the nodes pointing to i , weighted with the entries of the matrixW.
In this sense, a node is highly central if pointed to by nodes that are highly central themselves.
Thus, a powerful and strong node is determined by how strong and powerful are the nodes
that point to it.
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