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Abstract

Inferring models of program behavior from execution samples can provide useful information about a system, also in the
increasingly common case of systems that evolve and adapt in their lifetime, and without requiring large developers’ effort.
Techniques for learning models of program behavior from execution traces shall address conflicting challenges of recall,
specificity and performance: They shall generate models that comprehensively represent the system behavior (recall) while
limiting the amount of illegal behaviors that may be erroneously accepted by the model (specificity), and should infer the
models within a reasonable time budget to process industrial scale systems (performance).

In our early work, we designed GK-tail, an approach that can infer guarded finite state machines that model the
behavior of object-oriented programs in terms of sequences of method calls and constraints on the parameter values. GK-tail
addresses well two of the three main challenges, since it infers guarded finite state machines with a high level of recall and
specificity, but presents severe limitations in terms of performance that reduce its scalability.

In this paper, we present GK-tail+, a new approach to infer guarded finite state machines from execution traces of object-
oriented programs. GK-tail+ proposes a new set of inference criteria that represent the core element of the inference process:
It largely reduces the inference time of GK-tail while producing guarded finite state machines with a comparable level of recall
and specificity. Thus, GK-tail+ advances the preliminary results of GK-tail by addressing all the three main challenges of
learning models of program behavior from execution traces.
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1 INTRODUCTION

MODELS play a central role in software engineering, and have been extensively studied to increase the effectiveness
and efficiency of technical tasks. Software engineering uses models both defined independently from the code, for

example for software specification and design, and derived from the code, for example for program analysis and testing.
Models defined independently from the code are useful, but may be expensive to produce and difficult to maintain

while the code evolves. On the contrary, models automatically derived from software systems can be produced with limited
human effort, and are perfectly aligned with the implementation.

Models may be extracted from the code either by statically analyzing the source code [1]–[3] or by dynamically
analyzing the execution traces [4]–[9]. Models dynamically learned from execution traces can capture dynamic aspects
that the static analysis techniques may miss, and suffer less from the presence of infeasible elements than statically inferred
models. They find various applications that include specification mining [10]–[12] program comprehension [4], [5], test
case generation [7]–[9], [13], fault diagnosis [14], bug fixing [15] and performance evaluation [16].

The many model learning techniques that have been introduced so far can infer different kinds of models, achieve
various levels of precision, and provide heterogeneous types of data with diverse applications. Some techniques generate
invariants [10]–[12], others transition systems [6], yet others finite state machines [15], [17], [18], message sequence
charts [11], [19] or temporal properties [20]. Inferred models have been used to represent a variety of behaviors, including
status information, ordering of events, and pre- and post-conditions. So far inference techniques have focused on a specific
aspect of the modeled system, and little work has addressed the interplay of the different aspects that characterise complex
systems, and that can hardly be captured with a single kind of model.

In this paper, we focus on models dynamically learned from execution traces, and address the problem of learning
finite state machines (FSMs) annotated with guard conditions, which integrate information about the ordering of execution
of the operations with the conditions on the parameters that govern those operations.

Techniques for learning models of program behavior from execution traces shall address conflicting challenges of recall,
specificity and performance: They shall generate models that comprehensively represent the system behavior (recall) while
limiting the amount of illegal behaviors that may be erroneously accepted by the model (specificity), and should infer
models within a reasonable time budget to process industrial scale systems (performance). The precision of the inferred
models in terms of recall and specificity is a paramount property in many application domains, in particular in specification
mining, debugging and test generation, where many false negatives (low recall) and many false positives (low specificity)
impact on the usefulness of the inferred specifications and on the effectiveness of testing and analysis activities [5], [7],



[14]. The performance of the inference process in terms of inference time impacts on the scalability of the approach. Many
application domains, specifically test generation, fault diagnosis and bug fixing, require detailed models that may be quite
large already at the class level, and need efficient inference algorithms to scale to industrial size applications [7], [14], [15].

Several approaches address the problem of inferring annotated FSM models from sample traces. Cassel et al. and Aarts
et al. exploit active learning techniques [21]–[24]. They incrementally generate the input data for the inference process,
and repeatedly check the compliance of the incrementally inferred model with the target software. The many compliance
checks heavily impact on the inference costs.

Walkinshaw et al. infer FSMs with classifiers associated with transitions, and constrain the values that can be assigned
to the parameters [25]. They infer classifiers on a per label basis, for instance per method, and address well systems where
the values of the parameters strongly influence the event sequences.

Other approaches infer guards that characterize the states of the FSM model and do not capture the constraints on the
values of the parameters of the transitions [26]–[29]. They require traces with detailed state information, which may not be
always easy to mine efficiently.

In previous work, we defined GK-tail, an approach that infers FSMs with transitions associated with conditions that
combine information about the ordering of the events and the values of the parameters [6]. The results reported in [6] show
that GK-tail addresses well two of the three main challenges, since it infers guarded FSMs with a high level of recall and
specificity, but presents severe limitations in terms of performance that can impact on the applicability of the approach
to increasingly complex and rapidly evolving systems. GK-tail produces models that seldom overgeneralize the samples
available in the traces, but may require several hours to complete, becoming impractical when dealing with large and
quickly evolving software systems [30].

GK-tail extends the classic k-Tail algorithm [31] to capture sequences of method invocations, and combines it with
Daikon [32] to synthesize constraints on parameter values. GK-tail suffers from the large number of Daikon executions,
since it invokes Daikon for every method invocation in the traces. This strategy produces a number of Daikon invocations
of the order of the number of events that must be processed. Since it is easily possible to collect millions of events even
with few executions, the resulting computational cost becomes quickly too high, with a strong impact on the efficiency of
GK-tail, thus limiting its applicability to rapidly evolving systems.

In this paper, we present a new approach that maintains the excellent precision and recall of GK-tail while dramatically
improving the inference performance. In particular, we define a new algorithm, GK-tail+, that derives an initial finite state
machine from traces by considering only the events in the sequences, and limits the invocations of Daikon to the number
of transitions in the final model, instead of invoking it for each event in the sequences. Although in the worst case the
number of transitions in the model can be of the same order of the number of events in the traces, in practical applications
the number of transitions is much smaller than the number of processed events, thus leading to a dramatic improvement
on the efficiency of the inference process.

GK-tail+ does not suffer from the performance problems observed when using active learning techniques, since it
implements a passive black-box style of learning which does not impose any relevant constraint for its application and
does not require compliance checking. GK-tail+ is more suitable than the approach by Walkinshaw et al. for systems
where the parameters do not always influence the sequences of events that can be executed next, since it does not exploit
constraints in the generalization process, and infers constraints on a per transition basis, discriminating the values that
can be assigned to each specific occurrence of an event, for instance each individual occurrence of a same method in the
model. GK-tail+ overcomes the performance limitations of GK-tail by proposing a novel process to efficiently infer guards
associated to the transitions.

This paper advances the state of the art in model learning by improving the initial results presented in [6] with (i) a new
algorithm and two new criteria for generating behavioral models that integrate event sequences and parameter values,
(ii) a complete formalization of GK-tail+, and (iii) a set of experimental results that confirm the comparable effectiveness
and the dramatic improvement in the efficiency of GK-tail+ with respect to GK-tail.

This paper is organized as follows. Section 2 formally defines GK-tail+, and discusses the main differences with respect
to GK-tail. Section 3 presents a set of experimental results that indicate the validity and the limitations of the proposed
approaches. Section 4 surveys the related work. Section 5 summarises the main contributions of the paper.

2 GK-TAIL+
GK-tail+ learns guarded finite state machine (gFSM) models of the dynamic behavior of software systems from sets of
execution traces. Differently from Extended FSM (EFSM), the parameters used in gFSMs cannot be shared between
transitions, that is a parameter in a transition is not visible from other transitions.

Figure 1 illustrates the main steps of the approach. GK-tail+ processes input traces that encode sequences of events
annotated with values assigned to the parameters of the events, for example, sequences of method calls annotated with the
values of the parameters used in the calls.

Step 1: The merging traces step merges the subsets of the input traces that represent a same scenario, which includes
all the traces composed of the same sequence of events with possibly different values of the parameters, into a single
generalized trace, which is composed of the same sequence of events of the merged traces, and is annotated with the sets of
values associated with the events in the input traces.



Fig. 1. An overview of GK-tail+

The generalized traces correspond to the same scenario represented by the merged traces, but summarize the values
that can be assigned to parameters within a single annotation per event. For example, when merging three traces that
include an invocation to method setAge(int age) with the parameter values age=15, age=51 and age=28, respectively,
the merging traces step produces a generalized trace with a single invocation to the method setAge(int age) annotated
with the set {age=15, age=51, age=28} that indicates the values used to invoke setAge(int age) in any of the original
traces.

Step 2: The generating the initial FSM step creates an initial FSM shaped as a tree, where each branch of the tree accepts
the sequence of events in a generalized trace. The transitions of the initial FSM are labeled with an event and are associated
with a set of parameters as the corresponding generalized trace.

Step 3: The merging states step merges the states of the initial FSM that accept the same sequences of operations.
Intuitively these states are redundant representations of a same logical state, and thus can be reduced to a single state of
the model. The merging states step merges also redundant transitions, which are transitions that start from the same state,
end at the same state, and have a same label. Redundant transitions might be created as a consequence of the state merging
process. Two redundant transitions are merged into a single transition annotated with the values that annotate the two
merged transitions. The resulting annotated FSM is a FSM with transitions annotated with sets of values for the parameters
of the represented events.

Step 4: The generating constraints step processes the values that annotate the transitions to generate constraints, which
are used as guards for the same transitions. For instance, the generating constraints step may generate the constraint age>0



from the values {age=15, age=51, age=28} as the guard of a transition that accepts the event setAge(int age). The
resulting gFSM is a guarded finite state machine, that is, a FSM with transitions annotated with guard conditions.

2.1 Guarded Finite State Machines

Fig. 2. Step 1: Merging Traces

In this section we introduce guarded finite state machines (gFSMs), the models that GK-tail+ infers from execution traces
to represent the behavior of software systems. gFSM transitions represent the occurrence of the events in the input traces,
and are annotated with guards that represent the conditions for their occurrence.

A trace is a sequence of events, each composed of an action and a set of parameters with their values. Actions are
operations, and parameters represent the values of the variables associated with an action. For instance, the sequence

〈(setFullName(String name, String surname), name=John surname=Smith)
(setAge(int age), age=18)
(setWeight(int weight), weight=66) 〉
is a trace with three events that correspond to the method calls: setFullName with two parameters name and surname,
and the methods setAge and setWeight with one parameter each, age and weight, respectively. The values associated
with the parameters are John, Smith, 18 and 66, respectively.

Definition 2.1. Trace Let E be a finite set of events and V a finite set of values, a trace tr is a sequence tr = 〈tr1, . . . trn〉
with tri = (ei, vi), ei ∈ E and vi ∈ V , for i = 1 . . . n. We denote with TR the set of all the traces.

Since an event might be associated with multiple parameters, V is a set that includes all combinations of values for
any number of parameters. V might include individual values, such as 18 and 66, but also tuples that can represent the
values of multiple parameters. For example the tuple (John, Smith) can represent the values of two parameters associated
with an event in E. While in the formalization we identify the value associated with the parameters by their position
abstracting the name of the parameters, in the figures we explicitly indicate the name of the parameters to highlight the
correspondence with the parameters in the traces.

Some domains may restrict the pairs (ei, vi) ∈ V to a proper subset. We can cope with these restrictions by simply
considering a domain D ⊆ E × V and require tri ∈ D for i = 1 . . . n. Without loss of generality, in the rest of this paper
we do not consider such a restriction.

GK-tail+ generates gFSMs with a set of steps that produce FSMs annotated with sets of values as intermediate models.
The right-hand side of Figure 6 shows an example of FSMs whose transitions are annotated with sets of values, indicated
with the name of the parameter and the associated value. In the following, we define FSMs, which are used jointly with an
annotation function later in this section, and then guarded FSMs.

Definition 2.2. Finite State Machine A finite state machine (FSM) is a tuple (S, s0, E, T ) where:
• S is a finite set of states
• s0 ∈ S is the initial state
• E is a finite set of events
• T is a transition relation T : S × E → S

FSMs accept traces independently from the values associated with the events. Formally, a FSM accepts a trace tr =
〈tr1, . . . , trn〉, with tri = (ei, vi) if ∀i = 1 . . . n ∃(si−1, ei, si) ∈ T .

Guarded finite state machines extend FSMs with a set of values and by augmenting transitions with conditions on
values.

Definition 2.3. Guarded Finite State Machine A guarded finite state machine (gFSM) is a tuple (S, s0, E, V,G, T ) where:
• S is a finite set of states



• s0 ∈ S is the initial state
• E is a finite set of events
• V is a finite set of values
• G is a finite set of guard functions gi : V → {0, 1}
• T is a transition relation T : S × E ×G→ S

A gFSM accepts a trace tr = 〈tr1, . . . trn〉, with tri = (ei, vi), such that ∀i = 1 . . . n ∃(si−1, ei, gi, si) ∈ T , gi(vi) = 1.

gFSMs accept only traces with events that match the transition labels and parameter values that satisfy the guards. More
formally, a gFSM accepts the set of traces {tr = 〈tr1, . . . , trn〉, with tri = (ei, vi), such that ∀i = 1 . . . n ∃(si−1, ei, gi, si) ∈ T ,
g(vi) = 1}.

2.2 Step 1 – Merging traces

Fig. 3. Step 2 - Generating the Initial FSM

In the merging traces step, GK-tail+ merges single execution traces into generalized traces, which group traces that
correspond to the same sequence of events.

GK-tail+ produces generalized traces that associate multiple values with the parameters of a same event, by exploiting
Event Equivalence. Two traces are deemed to be event equivalent if they encode the same sequence of events, with
possibly different values of the associated parameters. Intuitively, event equivalent traces represent scenarios that have
been executed multiple times with possibly different values of the parameters. For example, people who interact with a
system to create a new account execute sequences of operations that differ in the values entered in the registration form,
but not in the events in the sequence. GK-tail+ merges all these executions into a single generalized trace that encodes the
sequence of operations and the values used during the executions of the corresponding traces.

Figure 2 illustrates the input/output behavior of the merging traces step. In the input traces, the events are associated
with a value for each parameter. In the output generalized traces, the events are associated with sets of values. In the
example, GK-tail+ merges the first two and the last two input traces into two generalized output traces, respectively. The
events of the generalized traces are associated with sets of values for the parameters.

GK-tail+ identifies the traces that must be merged by processing events in the context of their traces, rather than
independently from the scenario. It thus merges the data associated with the calls of a same method in a set of event
equivalent sequences, and merges differently the calls to the same method in the context of a different set of event
equivalent sequences. For example, the data associated with setAge(int age) might be values greater than 50 when
invoked in a context of retired people, and simply natural numbers in other scenarios. Merging the data without considering
the different scenarios would lead to the same set of values and eventually a same constraint for setAge(int age), thus
missing the interesting information about the different set of data exchanged in the different scenarios.

Merging single traces into generalized traces improves the overall performance of the approach, by reducing the amount
of traces to be processed in the following steps.

Definition 2.4. Event Equivalent Traces Given tr = 〈tr1, . . . trn〉 with tri = (ei, vi) and tr’ = 〈tr’1, . . . tr’n′〉 with tr’i =
(e′i, v

′
i), we say that tr is event equivalent to tr′ if:

• n = n’, and
• ei = e′i for i = 1 . . . n

Event Equivalence is a reflexive, symmetric and transitive binary relation, and thus is an equivalence relation that
partitions traces in equivalent classes. Given a set TR of traces, we denote the set of equivalent classes with TR/∼ and the
elements of this set with [tr].

The merging traces step computes a generalized trace for each element in TR/∼, that is, it turns a set of event equivalent
traces into a generalized trace.



The events of a generalized trace are associated with multisets of values, where a multiset is a set that may contain
multiple instances of the same element. A multiset is a pair (A,m), where A is a set and m : A → N+ is a function that
returns the cardinality of each element. The cardinality of an element is 1 if the element occurs once, 2 if the element occurs
twice, and so on. Given a set S, we denote with M(S) the multiset (S,m).

Definition 2.5. Generalized Traces A generalized trace is a trace gt = 〈gt1, . . . , gtn〉, where gti = (evi, wi) with evi ∈ E and
wi ∈ M(V ). We indicate with GT the set of all the generalized traces.

Given an input set TR of traces for each [tr] ∈ TR/∼, the merging traces step produces a generalized trace
gt = 〈gt1, . . . , gtn〉 ∈ GT with gti = (evi, wi) as follows:

evi = ei, for any 〈(e1, v1), . . . (en, vn)〉 ∈ [tr]

wi =
⋃

〈(e1,v1),...(en,vn)〉∈[tr]

vi

2.3 Step 2 – Generating The Initial FSM
In the generating the initial FSM step, GK-tail+ produces an annotated FSM by simply merging the set of generalized traces
produced in the former step into a tree shaped FSM, with an annotation function that keeps track of the values associated
with the events in the input generalized traces. The initial FSM accepts all and only the input generalized traces. Differently
from the classic state merging processes [31], [33], [34], GK-tail+ does not merge the common prefixes of the branches in
the tree, but merges operations later in the process (Step 3).

Figure 3 illustrates the input/output behavior of this step. In the output FSM each branch of the tree corresponds to an
input generalized trace.

Fig. 4. Step 3 - Merging States

More formally, given a set of m generalized traces gtj = 〈gtj1, . . . , gtjnj
〉, j = 1 . . .m with gtji = (evji , w

j
i ), GK-tail+

generates a FSM = (S, s0, E, T ) and an annotation function A : T → M(V ) defined as follows:

• S = {s0, . . . , sl}, where l =
m∑
j=1

nj + 1 is a set of states

• s0 is the initial state

• E =
m⋃
j=1

nj⋃
i=1

evji is the set of event symbols

• T (sa, e) = sa+1 iff ∃i, k s.t.

– a =
i−1∑
j=1

nj + k, a represents the position of the kth symbol in the ith generalized trace

– e = evik
• V is a set of tuples of arbitrary size, and with values in R ∪ String , V represents the set of variable values
• A is an annotation function that associates the transitions with multisets of values in V and A(t) = v, iff eventw(t) = v,

where
– v ∈ V
– t ∈ T
– event(t) indicates the item (evik, w

i
k) in the generalized trace that corresponds to t

– eventev(t) and eventw(t) indicate the event and the set of parameter values, respectively



2.4 Step 3 – Merging States
In the merging states step, GK-tail+ generalizes the initial FSM into an FSM that accepts a larger set of events, to better reflect
the behavior of the monitored software system.

GK-tail+ generalizes the initial FSM by exploiting a notion of observationally equivalent states: two states are observation-
ally equivalent if they accept the same set of behaviors. When the FSM model is complete, observationally equivalent states
are redundant representations of a same program state, and the model can be safely simplified into a more compact model
by merging the observationally equivalent states.

Since the input traces represents a partial sample of the system behavior, although the initial FSM might include multiple
redundant representations of equivalent program states, these potentially redundant states may not be observationally
equivalent because they might accept different subsets of the full set of event sequences that they should accept. Merging
such potentially redundant states produces a more compact and useful model, which may overgeneralize the system
behavior.

GK-tail+ merges states that are observationally equivalent with respect to bounded sequences of events, following the
approach of the well known kTail algorithm [31].

The set of the event sequences with a maximum length k accepted by a state s is called the kFuture of s, also denoted as
kFuture(s), and is defined as follows.

Definition 2.6. kFuture Given an FSM = (S, s0, E, T ), s ∈ S, and k ∈ N, kFuture(s) is the set of all the sequences
{seq1, . . . seqn}, s.t., seqi = {e1, . . . eni

}, ni ≤ k and ∃(s′j , ej , s′j+1) ∈ T , with j = {0, . . . , ni} and s′0 = s.

To further accommodate model incompleteness, GK-tail+ considers two criteria for comparing kFutures. The Event
Equivalence criterion merges two states if their kFutures are the same. The Event Subsumption criterion merges two states if
the kFuture of one state includes the kFuture of the other state. The Event Subsumption criterion tolerates a higher degree
of incompleteness in the model than the Event Equivalence criterion. In fact, it is enough that one of the redundant states
has been well covered in the traces, to merge the well-covered state with all the other redundant and partially covered
representations of the same state, if any. This is not possible with Event Equivalence that only merges states that accept
exactly the same behaviors.
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[val = 1]
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[val = 0]
[val = 0]
[val = 1]
[val = 1]

closeFile
[name = out.txt]
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[name = out.txt]
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Fig. 5. Comparing Event Equivalence and Event Subsumtion merging criteria

Definition 2.7. Event Equivalence Given an FSM = (S, s0, E, T ), two states s1, s2 ∈ S, and k ∈ N, we say that s1 is event
equivalent to s2, indicated as s1 =eq s2, iff kFuture(s1) = kFuture(s2).

The Event Equivalence criterion merges two states s1 and s2 iff s1 =eq s2.



Definition 2.8. Event Subsumption Given an FSM = (S, s0, E, T ), two states s1, s2 ∈ S, and k ∈ N, we say that s1 is event
subsumed by s2, indicated as s1 ⊆ s2, iff kFuture(s1) ⊆ kFuture(s2).

The Event Subsumption criterion merges two states s1 and s2 iff s1 ⊆ s2 or s2 ⊆ s1.

In the merging state step, GK-tail+ substitutes two states that are equivalent according to the chosen criterion with a
merged state, and replaces the input/output transitions of the deleted states with new input/output transitions of the
merged state. GK-tail+ obtains the new transitions from the removed transitions by substituting the deleted states with the
merged state. This process may produce pairs of similar transitions, that is, transitions that connect the same pair of states
and share the same label. GK-tail+ removes one of two similar transitions, merges the annotation of the removed transition
with the annotation of the remaining transition, and updates the annotation function accordingly.

GK-tail+ merges states according to the selected criterion iteratively until there are no more states that can be merged,
without enforcing any specific order on the comparison of the states. The resulting FSM accepts all the input traces.

Figure 4 illustrates the input/output behavior of the merging states step. In the simple example shown in the figure,
GK-tail+ produces the same FSM with either of the two merging criteria, however in general GK-tail+ produces different
FSMs depending on the chosen criterion.

Figure 5 shows an example of different FSMs produced with the two merging criteria. The top of the figure shows an
excerpt of a FSM obtained after few iterations of the state merging process, while the bottom of the figure presents the
different FSMs produced from the top excerpt with the two merging criteria.

The kFuture of state 10 in the FSM at the top of Figure 5 strictly includes the kFuture of state 1: kFuture(1) =
{{write,write, closeFile}} and kFuture(10) = {{write,write, closeFile}, {write, closeFile}}. The different kFuture of the two
states may easily depend on the limited amount of input traces: In state 1, the system has been executed only with a
sequence of two write operations followed by a file close operation, while in state 10, the system has also executed both
with the former sequence of operations and with a sequence of a write operation followed by a file close operation. A
richer set of traces might have produced the same kFuture for both states.

States 1 and 10 cannot be merged according to the Event Equivalence criterion because kFuture(1) 6= kFuture(10), but
they can be merged according to the Event Subsumption criterion because kFuture(1) ⊂ kFuture(10). This example illustrates
the different flexibility of the two criteria, when traces are largely incomplete, as often happen for large systems.

The FSM obtained with Event Equivalence contains more states but accepts less behaviors than the FSM obtained with
Event Subsumption. While this overgeneralization may introduce some spurious sequences, in the case of a relatively sparse
sampling of the execution space, it may capture many legal behaviors of the monitored system. For example, both criteria
generate a self-loop transition, but the self-loop transition of the Event Subsumption FSM captures many legal behaviors of
the system that the Event Equivalence FSM does not accept.

We discuss in details the usefulness of the two criteria in Section 3 when we present the results of a large set of
experiments.

2.5 Step 4 – Generating Constraints

Fig. 6. Step 4 - Generating Constraints

In the generating constraints step, GK-tail+ produces a gFSM from the FSM and the annotation function produced in the
merging states step by substituting the values that the annotation function associates with the transitions of the input FSM
with constraints associated with the produced gFSM transitions.

Figure 6 illustrates the input/output behavior of the generating constraints step. GK-tail+ generates the constraints
associated with the output gFSM by using the Daikon invariant detection technique [32].

Given a set A of 〈variable, value〉 pairs, we indicate the constraints that Daikon generate from A with Daikon(A(t)).
GK-tail+ invokes Daikon for each transition to synthetize a constraint from the values associated with the transition in the



input FSM. The constraints that Daikon generates are statistically relevant Boolean expressions that accept all the values
provided as input.

More formally, given an FSM (S, s0, E, T ) and an annotation function A : T → M(V ), the generating constraints step
produces a gFSM GSM = (S′, s′0, E

′, V ′, G′, T ′) defined as follows:
• S′ = S
• s′0 = s0
• E′ = E
• V ′ = V
• ∀t ∈ T , t = (sa, e, sb), ∃t′ ∈ T ′, t′ = (sa, e, g, sb), with g = Daikon(A(t))

• G′ =
⋃

(sa,e,g,sb)∈T ′
g

2.6 Delayed constraint computation
GK-tail+ largely improves over the original GK-tail approach thanks to the delayed computation of the constraints.

While GK-tail generates constraints early in the process for each element of the generalized traces, GK-tail+ synthesises
constraints late in the process for the values associated with the transitions of the FSM after merging the states of the initial
FSM. Computing constraints after merging states can both dramatically reduce the expensive computation of constraints
that limit the scalability of GK-tail and produce a model that better approximates the behavior of the original system,
especially when dealing with a limited set of samples.

GK-tail associates constraints with traces by running Daikon on the generalized traces. More formally, given a gener-
alized trace gt = 〈gt1, . . . , gtn〉, with gti = (evi, wi), GK-tail runs Daikon on each set of samples wi and generates traces
enriched with constraints where each item of the trace is a pair (evi, ci), with ci = Daikon(wi). As discussed earlier in this
section, GK-tail+ delays the computation of constraints after the merging states step.

By computing constraints early over generalized traces rather then late over the annotated FSM, GK-tail (i) requires
many invocations of Daikon, one for each element of each trace, while GK-tail+ requires far less invocations of Daikon (ii)
generates constraints from smaller data sets than GK-tail+ and consequently generates constraints that more likely overfit
the observations than GK-tail+, (iii) adopts a more complex and expensive state merging process than GK-tail+, because
comparing the kFuture of two states requires comparing both event sequences and constraints.

In the next section we present empirical results that confirm our hypotheses about the improved efficiency of GK-tail+
with respect to GK-tail.

2.7 Convergence
GK-tail+ shares several properties with k-Tail [31]. When applied to a set of traces produced from a given FSM, both GK-tail+
and k-Tail may not converge to the original FSM, and may produce an imprecise FSM with respect to both completeness
and soundness, that is, the FSM produced with GK-tail+ may accept traces that the original FSM rejects, and may reject
traces that the original FSM accepts.

Since we do not have control over the traces, which correspond to a set of executions, the lack of convergence is not a
problem as long as the inferred models are of good quality in the practical cases, that is, they capture well the behavior of
the analyzed program, as confirmed by the experimental results reported in Section 3.

GK-tail+ infers models that accept all the traces used for the inference. This could be easily demonstrated by analysing
the inference process.

In the first step, GK-tail+ merges the (event equivalent) input traces into a set of generalized traces. Since the merging
process associates multiple parameter values to each event without dropping any sequence of events, the set of generalized
traces includes all the executions that correspond to the input traces.

In the second step, GK-tail+ generates an initial FSM that accepts exactly all and only the executions represented with
the generalized traces. In fact each trace is mapped to a branch of the FSM and each set of parameter values associated
with an event is used to annotate the corresponding transition.

In the third step, GK-tail+ iteratively merges states. The FSM obtained by merging two states accepts a set of traces that
contains all the traces accepted by the FSM before the merging. This condition holds when looking both at the events, like
in the k-Tail algorithm, and at the parameter values, which are not dropped during the state merging process.

In the fourth step, GK-tail+ uses Daikon to generate guards from the sets of parameter values associated with the
transitions. Since Daikon always generates constraints that accept all the input samples, the guards associated with the
transitions are guaranteed to accept all the samples that annotate the same transitions. If Daikon generates no constraint
for a set of parameter values, the corresponding transition is associated with no guard, and accepts every possible value of
the parameters, including the ones that annotate the same transition. Thus a model generated with GK-tail+ accepts all the
input samples by construction.



TABLE 1
Source code metrics and properties of the trace sets

Source Code Traces

Subject Class Locs WMC Number Total Length Alphabet

Guava
ArrayListMultimap 72 11 900 7721 71
ConcurrentHashMultiset 349 73 620 6888 48
HashBiMap 54 9 1430 7578 44
HashMultimap 63 9 20 2278 64
HashMultiset 44 7 30 782 46
ImmutableBiMap 141 27 310 992 42
ImmutableListMultimap 201 26 220 1009 21
ImmutableListMultiset 301 37 620 2676 42
LinkedHashMultimap 209 15 850 7889 76
LinkedHashMultiset 46 7 260 5060 46
LinkedListMultimap 696 66 360 4556 42
TreeMultimap 80 12 850 11386 75
TreeMultiset 418 47 20 4101 55

Joda-Time
DateMidnight 370 92 140 3560 106
DateTime 620 141 220 6185 138
Duration 126 38 40 151 23

GraphStream
MultiGraph 22 3 30 4241 85
SingleGraph 22 3 10 5536 69

Legend
Column Subject Class indicates the name of the class.
Column Source Code reports the size of the class as number of Locs and the Weighted Methods per Class metric WMC.
Column Traces reports properties about the traces collected for the subject classes: Number indicates the number of traces,
Total Length indicates the total number of events in the traces, and Alphabet indicates the number of distinct events in the traces.

3 EXPERIMENTAL EVALUATION

GK-tail+ builds on top of GK-Tail by defining and formalizing new algorithms and criteria for generating behavioral models
that integrate event sequences and parameter values aiming to overcome the performance limitations of the original GK-Tail
approach.

In this section we present the results of a comparative evaluation of GK-tail+ and Gk-tail, which shows that GK-tail+ can
indeed generate models of the same quality as Gk-tail in less than half of the time, thus confirming the progresses in terms
of applicability and scalability fostered by the new algorithms and criteria that characterize GK-tail+.

Section 3.1 introduces the setup of our empirical evaluation. Section 3.2 discusses the recall, specificity and balanced
classification rate metrics that we use to evaluate the inference algorithms. Section 3.3 presents the results of an initial
experiment for tuning the parameter k for both GK-tail+ and Gk-tail, Sections 3.4, 3.5 and 3.6 discuss the quality of the
inferred models in terms of recall, specificity and balanced classification rate (BCR), respectively. Section 3.7 empirically
evaluates the degree of dependence of the algorithms from the amount of traces used to generate the models. Section 3.8
provides comparative data about the performance of GK-tail+ and GK-tail. Section 3.9 discusses the main threats to the
validity of the results presented in the paper.

3.1 Empirical Setup
We evaluate GK-tail+ comparatively with Gk-tail to assess both the quality of the inferred gFSMs and the cost of the
inference process. In our comparative evaluation, we consider the full range of inference criteria defined for both techniques:
Equivalence, Weak Subsumption and Strong Subsumption for Gk-tail, Event Equivalence and Event Subsumption for GK-tail+.

Both GK-Tail and GK-tail+ produce generalized traces to infer gFSMs, but GK-tail produces guards before building the
initial FSM, by running Daikon on the samples associated with every event, while GK-tail+ merges states before generating
constraints, and runs Daikon fewer times on larger sets of samples. Thus, transitions are associated with guards in the initial
FSM generated by GK-tail, while transitions are associated with values only in the initial FSM generated by GK-tail+.

The GK-Tail criteria merge states by comparing their kFuture, which includes both events and guards. The Equivalence
criterion requires both the same events and guards in the kFuture, the Weak Subsumption criterion requires the same events,
and the guards of one sequence be included in the guards of the other sequence in the kFuture, and the Strong Subsumption
criterion requires both events and guards of one sequence be included in the events and guards of the other sequence in the
kFuture. The readers interested in a detailed description of the GK-Tail criteria can refer to [6]. As discussed in the former
sections of this paper, the GK-tail+ Event Equivalence and Event Subsumption criteria merge states with the same or included
events in the kFuture, respectively.

We designed our empirical study referring to the practical situation of developers who want to infer models of the
available artifacts, without paying the extra effort of implementing additional test cases and modifying the application to



TABLE 2
Subject classes and inferred gFSMs

GK-tail GK-tail+

Event Event
Equivalence Weak Strong Equivalence Subsumption

Subject Class CC States Transitions CC States Transitions CC States Transitions CC States Transitions CC States Transitions

Guava
ArrayListMultimap 425 975 1398 425 844 1267 358 773 1129 313 504 815 255 443 696
CuncurrentHashMultiset 203 422 623 273 386 657 197 297 492 178 297 473 146 210 354
HashBiMap 276 840 1214 659 673 1330 332 374 704 349 413 760 210 246 454
HashMultimap 208 430 636 224 406 628 207 371 576 205 319 522 206 318 522
HashMultiset 142 222 362 142 221 361 144 216 358 145 208 351 147 202 347
ImmutableBiMap 136 286 94 46 92 136 44 89 131 46 90 134 45 79 122
ImmutableListMultimap 24 74 96 28 67 93 22 57 77 20 56 74 19 51 68
ImmutableMultiset 202 418 618 210 402 610 185 304 487 196 293 487 137 175 310
LinkedHashMultimap 476 1057 1531 502 942 1442 415 784 1197 337 524 859 279 457 734
LinkedHashMultiset 242 356 596 244 349 591 189 280 467 238 319 555 166 236 400
LinkedListMultimap 382 1196 1576 411 1087 1496 342 678 1018 174 309 481 151 297 446
TreeMultimap 695 1579 2272 777 1431 2206 664 1272 1934 450 628 1076 372 553 923
TreeMultiset 480 716 1194 891 500 1389 218 384 600 160 226 384 160 225 383

Joda-Time
DateMidnight 469 1140 1607 484 973 1455 470 872 1340 323 431 752 304 425 727
DateTime 774 1525 2297 750 1394 2142 650 1175 1823 491 648 1137 454 641 1093
Duration 13 54 65 13 54 65 10 47 55 15 52 65 17 40 55

GraphStream
MultiGraph 407 824 1229 407 809 1214 403 789 1190 243 346 587 241 340 579
SingleGraph 418 761 1177 418 749 1165 418 749 1165 196 277 471 196 277 471

Legend
Column Subject Class indicates the name of the class used in the evaluation.
Columns GK-tail and GK-tail+ indicate the inference algorithm used to generate the FSMs.
Columns Equivalence, Weak, Strong, Event Equivalence and Event Subsumption indicate the specific criterion used to infer the gFSMs.
Columns CC, States and Transitions indicate the cyclomatic complexity, the number of states, and the number of transitions of the
model inferred with k = 2, respectively.

ease the model inference task. For this reason, we selected a set of subject classes from widely used applications, and used
the original test suites distributed with these applications to produce the input traces.

We generated models of the behavior of the subject classes by considering the calls to the methods implemented by
the target class and the values assigned to the parameters of the invoked methods, if any. Each test execution produces a
different trace. We recorded traces using the TPTP Probe kit1 [37].

We selected the subject classes from Guava, a large utility library developed by Google2, Joda-Time, a library to process
dates and times3, and GraphStream, a library to model and analyze dynamic graphs4. Analyzing classes with a simple state-
base behavior is trivial and would not produce interesting results, thus we focused on classes with a complex state-based
behavior, referring to the set of 18 classes used by Carzaniga et al. [38] to experience self-healing solutions.

Table 1 reports some metrics that size the source code and the traces analyzed in the experiments. The table indicates
the size and complexity of the subject classes in terms of lines of code (Locs) and weighted methods per class (WMC), and
quantifies the size and complexity of the behavioral information processed by the algorithms in terms of number of traces
(Number), total number of events (Total Length) and number of distinct events in the traces (Alphabet). Table 2 provides
data about the size and the structure of the inferred models. The table shows the cyclomatic complexity (CC), the number
of states (States), and the number of transitions (Transitions) of the models generated with the different inference criteria
(Equivalence, Weak, Strong, Event Equivalence, Event Sumsumption) of Gk-tail and GK-tail+. Since the FSMs are connected
graphs, we used the standard formula #transitions − #states + 2 to compute their cyclomatic complexity. The size and
complexity of both the classes and the models vary a lot, for example the number of locs per class ranges from 22 to 696,
and the number of states ranges from 51 to 1579, indicating the variety of situations faced in our study. All the classes
produce models of non-negligible size and complexity, with some highly challenging cases.

In Table 2 we highlight the smallest value of the different metrics (cyclomatic complexity, number of states and number
of transitions) for each class in bold. In the vast majority of the cases, the Event Subsumption criterion of GK-tail+ produces
the most compact model, and, in the few cases where the most compact models is produced with a different criterion, the
size of the model produced by GK-tail+ with Event Subsumption approximates well the size of the most compact one. This
suggests that GK-tail+ with Event Subsumption can best generalize the observations. This is a desirable property because

1. The TPTP project is not active anymore. However many other monitoring solutions, such as AspectJ [35] and BCEL [36], can be used to collect
method invocations producing the same result.

2. https://code.google.com/p/guava-libraries
3. http://joda-time.sourceforge.net
4. http://graphstream-project.org



the inferred models, especially the ones combining information about sequences of events and constraints on parameter
values, often lack generalization [30]. Moreover, small models can be manipulated and used more conveniently than large
models.

3.2 Metrics
We compare GK-tail+ with GK-tail in terms of recall, specificity and Balanced Classification Rate (BCR) of the inferred models.

The recall measures the completeness of the inferred models, and is defined as the fraction of traces accepted by an
inferred model with respect to the number of traces used to infer the model [39]. More formally, given a model M for a
program P and a set of legal traces T obtained by executing P , the recall of M is:

recall(M) =
number of traces that M accepts

number of traces in T

We produced the traces for this study by executing the subject programs with the test cases distributed with the
programs themselves, and recording the sequences of method calls and parameter values. We generated the gFSMs for
each subject program using both the two inference criteria implemented in GK-tail+ and the three criteria implemented in
GK-tail. We computed the recall of the models generated for a program P with the n-fold cross-validation process [40],
which consists in partitioning the set of traces obtained by executing P into n sets of the same size, and using n − 1
sets for inferring the model (training) and the remaining set to compute the number of legal traces accepted by the model
(validation). This process is repeated n times, each time using a different set for the validation phase. The recall is computed
as the average of the n values collected with this process. We use n = 10 in all the experiments unless differently indicated.

The specificity measures the ability of the inferred gFSMs to reject illegal behaviors, that is behaviors that do not
correspond to legal execution of the program P , and is defined as the fraction of illegal traces that are correctly rejected by
the inferred gFSMs [39]. More formally, given a model M for a program P inferred with a set of legal traces T and a set of
illegal traces I | I ∩ T = ∅, the specificity of M is:

specificity(M) =
number of traces in I that M rejects

number of traces in I

We computed the specificity of each gFSM by feeding the gFSM with illegal traces and calculating the fraction of illegal
traces that GK-Tail and GK-tail+ correctly reject. We generated illegal behaviors by permuting the correct traces used to
infer the gFSMs with three operators, swap, r-swap and del, and keeping only the illegal traces.

Given an interaction trace 〈tr1 . . . trn〉, where each element tri is a pair (ei, vi) composed of an event ei and a set of
values vi associated with the event, the operators work on randomly selected elements. The swap operator swaps two
consecutive elements tri and tri+1, the r-swap operator swaps two non consecutive elements tri and trj , where j > i+ 1,
and the del operator removes an element tri from the interaction trace. Since traces represent sequences of method calls
produced by executing the body of the methods in the classes under test, changing the order of events or removing events
are likely to produce illegal traces, that is, traces that do not correspond to the control flow of the program under test.

Changing the order of events or removing events may produce legal traces by chance. To reduce the impact of legal
traces produced by chance, we discard traces that match a trace in the set of traces used to infer the model. In this way,
we reject trivial mutations that correspond to legal traces. This has not happened frequently, but improved the value of the
estimated specificity.

We assessed the suitability of the sets of illegal traces to compute valid values for the specificity of the models, by
computing both the Clopper-Pearson and the Agresti-Coull confidence intervals [41], [42], which work well for binomial
confidence intervals, that correspond to our case. We considered two confidence intervals to mitigate the bias that might be
introduced by using only one criterion. For each operator and subject class, we continue generating illegal traces until the
computed specificity value reached a 95% confidence interval with an error in the range±0.03 for both the Clopper-Pearson
and the Agresti-Coull confidence intervals.

Finally, we also compare the effectiveness of GK-tail+ and GK-tail in terms of both recall and specificity with the Balanced
Classification Rate (BCR), which is defined as the average value of recall and specificity.

3.3 Parameter Tuning
The state merging process in both GK-tail and GK-tail+ may depend on the value of the parameter k that determines the
maximum length of the event sequences in the kFuture of a state. It is well-known that small values of k are needed
to achieve a reasonable generalization of the behavior represented with the input traces, and in many studies, the most
common values for k are 2 or 3 [14], [30], [33], [43]. In this subsection we report the results of an empirical study about the
impact of k on the GK-tail+ and GK-Tail approaches, to determine the value of k that we used in our empirical investigation.

We compare the models inferred with the five criteria considered in this evaluation (the old three criteria for GK-
tail and two new criteria for GK-tail+) considering the values 1, 2, 3 and 4 for k, leading to a total of 20 configurations
investigated for each class. We conducted exhaustive experiments with the 20 configurations on five classes of vari-
ous sizes and complexity, preferring classes that can be assessed quickly: the classes HashMultiset, HashMutimap,



TABLE 3
Experiments about tuning of parameter k

GK-tail GK-tail+

Event Event
Equivalence Weak Strong Equivalence Subsumption

k States BCR Time States BCR Time States BCR Time States BCR Time States BCR Time

1 113 53.28% 1973 (0) 98 (-13%) 53.78% 2103 (0) 80 (-29%) 50.88% 1965 (0) 61 (-46%) 53.06% 337 (0) 56 (-51%) 49.25% 331 (0)
2 299 57.36% 2520 (0) 249 (-17%) 57.75% 2860 (0) 215 (-28%) 53.84% 3131 (0) 172 (-43%) 57.38% 875 (0) 167 (-44%) 53.94% 866 (0)
3 465 57.92% 2324 (0) 383 (-18%) 58.06% 8171 (0) 336 (-28%) 53.79% 2895 (0) 273 (-41%) 57.89% 971 (0) 270 (-42%) 53.97% 1076 (0)
4 584 61.54% 21481 (1) 473 (-19%) 62.16% 18387 (1) 428 (-27%) 56.99% 8070 (1) 360 (-38%) 61.94% 45673 (1) 356 (-39%) 57.08% 48150 (1)

Legend
The first column indicates the value of parameter k.
The other columns refer to the two techniques and the five criteria compared in this paper: States indicates the average number
of states in the model generated for each criterion and value of k, BCR indicates the average BCR of the inferred models, and
Time indicates the average time required for the inference process in seconds.
The value in parenthesis indicates the percentage of state reduction achieved with each criterion compared to the size of the
model obtained with Gk-tail when executed with the Equivalence criterion.

TABLE 4
Comparative evaluation of the recall of GK-tail+ and GK-tail

Recall (10-fold cross-validation) Traces Rejected Due to Guards

GK-tail GK-tail+ GK-tail GK-tail+

Event Event Event Event
Subject Class Traces Equivalence Weak Strong Equivalence Subsumption Equivalence Weak Strong Equivalence Subsumption

HashBiMap 1430 97.97% 97.97% 98.25% 97.97% 98.81% 0.00% 0.00% 0.14% 0.14% 0.14%
ArrayListMultimap 900 91.20% 92.09% 92.53% 93.87% 94.65% 3.12% 2.90% 4.01% 2.67% 2.56%
LinkedHashMultimap 850 89.34% 89.81% 91.00% 92.06% 92.54% 4.15% 4.04% 4.27% 4.04% 3.91%
TreeMultimap 850 86.92% 87.04% 88.22% 90.33% 91.98% 6.01% 6.01% 7.19% 5.78% 5.19%
ImmutableListMultiset 620 82.09% 82.09% 83.06% 82.60% 84.55% 11.23% 11.23% 11.41% 10.73% 10.24%
CuncurrentHashMultiset 620 95.40% 95.40% 95.72% 95.56% 96.05% 2.42% 2.42% 2.58% 2.26% 2.26%
LinkedListMultimap 360 80.78% 81.33% 86.61% 83.83% 87.16% 4.44% 4.51% 4.79% 7.08% 5.13%
ImmutableBiMap 310 97.74% 97.74% 97.74% 97.74% 98.39% 0.65% 0.65% 0.65% 0.65% 0.00%
LinkedHashMultiset 260 84.13% 84.13% 87.26% 87.21% 91.92% 5.38% 5.38% 6.20% 2.31% 1.54%
ImmutableListMultimap 220 97.73% 97.73% 98.18% 97.73% 98.18% 0.00% 0.00% 0.00% 0.00% 0.00%

Median (first ten classes) 90.27% 90.95% 91.76% 92.96% 93.60% 3.64% 3.47% 4.14% 2.49% 2.41%

DateTime 220 28.69% 28.69% 30.96% 37.53% 38.08% 8.74% 8.74% 10.30% 3.18% 3.64%
DateMidnight 140 30.57% 30.57% 31.29% 30.57% 32.00% 5.00% 5.00% 4.29% 5.71% 5.00%
Duration 40 23.33% 28.33% 33.33% 28.33% 35.83% 31.67% 26.67% 26.67% 26.67% 24.17%
HashMultiset 30 14.81% 14.81% 14.81% 14.81% 14.81% 0.00% 0.00% 0.00% 0.00% 0.00%
MultiGraph 30 37.04% 37.04% 40.74% 40.74% 40.74% 3.70% 3.70% 3.70% 0.00% 3.70%
HashMultimap 20 0.00% 0.00% 0.00% 0.00% 0.00% 21.43% 21.43% 21.43% 21.43% 21.43%
TreeMultiset 20 0.00% 0.00% 0.00% 0.00% 0.00% 12.50% 12.50% 12.50% 12.50% 12.50%
SingleGraph 10 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Median (all the classes) 81.43% 81.71% 84.84% 83.21% 85.86% 4.30% 4.27% 4.28% 2.93% 3.67%

Legend
Column Subject Class identifies the case studies.
Column Traces reports the number of traces collected for the subject class.
Column Recall (10-fold cross-validation) presents the recall values obtained with the different inference criteria with the 10-fold
cross-validation process.
Column Traces Rejected Due to Guards indicates the number of traces that have been rejected due to the presence of an inaccurate
guard condition in the inferred model.

ImmutablesListMultimap and TreeMultiset from the Guava library, and the class Duration from the Joda-Time
library. We compare the models obtained with the different values of k in terms of size and BCR of the inferred models,
and inference time.

Table 3 reports the results. Columns States indicate the average number of states in the models inferred with each
criterion. They also indicate the reduction in the number of states in percentage with respect to model generated with
GK-tail executed with the Equivalence criterion, which produces the largest models. Columns BCR indicate the average BCR
of the inferred models. Low BCR values characterize only the classes chosen for this experiment and are not representative
of the general results reported in Section 3.6. Columns Time indicate the time required for the inference process in seconds
as the average among the runs for each criterion. The number in parentheses indicates the number of timeouts that we set
to 6 hours.

We can observe that the size of the model grows with k, while the degree of reduction does not depend significantly on
the criteria. The dependency on k confirms the intuition that larger values of k that identify larger kFutures thus reduce the



number of states that can be merged. The magnitude of this phenomenon is significant: The models for k = 4 and k = 3
are 2 and 1.5 times larger that the models for k = 2, respectively.

The quality of the models inferred with k = 4 is slightly higher than the models inferred with lower values of k,
but their inference time is an order of magnitude higher than the inference time of the other configurations. Moreover
the configuration with k = 4 is the only configuration that experiences several timeouts, indicating a lack of practical
applicability of configurations with k = 4.

The configuration with k = 1 is the fastest to compute, but it is showing a non-negligible degradation of the quality
of the models compared to the models obtained with k = 2 and k = 3. The configurations with k = 2 and k = 3 are
characterized by comparable time and BCR, with the configuration with k = 2 producing smaller models than the one with
k = 3. Since conducting all the experiments with both configurations would be infeasible, and since the models produced
with k = 2 and k = 3 are comparable, we conducted all the experiments only with the k = 2 configuration that generates
smaller and potentially most practical models than the k = 3 configuration.

3.4 Recall
Table 4 presents the results of the experimental comparison of the recall rate of GK-tail+ and GK-tail. Columns Recall
report the recall of the models generated with the five inference criteria for the subject classes. Since the accuracy of the
inferred models depends on the amount of input traces, we sorted the subject classes by the number of available traces,
and computed the median both for all and for the top ten classes.

Both GK-tail+ and GK-tail produce high-quality models when the amount of available traces is large (recall > 80% for
the top ten classes in the table), and low-quality models when the amount of available traces is low (recall < 41% for the
bottom ten classes.) This result intuitively confirms the dependency of the quality of the models on the extensiveness of
the executions used for the inference. This observation is further confirmed by comparing the ratio of the traces used in
the inference with the size of the classes shown in Table 1. Such ratio is significantly higher for the top ten classes than for
the bottom ten classes, suggesting that extensively covering the behaviors of a class may largely impact on the quality of
the inferred models.

Differently from other approaches that infer FSMs, both GK-tail and GK-tail+ produce FSMs augmented with guards
(gFSMs). Guards improve the expressive power of the models, but may reduce the accuracy of the model that may reject
a large amount of legal behaviors. We evaluated this phenomenon by measuring the percentage of legal traces that are
rejected by the inferred models due to inaccurate guards. Column Traces Rejected due to Guards of Table 4 reports the results
highlighting in bold the values higher than 5%. The number of traces rejected due to inaccurate guards is always small and
only in few cases higher than 5%, especially when considering the models generated with a set of traces that sample well
the program execution space.

The results show that adding guards to FSMs has a negligible negative effect on recall, which is largely compensated
by the reduction of false positives, that is the ability of rejecting traces with illegal data values. This capability is unique of
models with guards, and is outside the capability of classic FSMs, including the one inferred with k-Tail.

Figure 7 visualizes the data reported in Table 4 in the form of a box plot diagram both for the whole set of subject
programs (left hand side) and for the ten subject programs with accurate sample traces (right hand side). The box plot
visually indicates that all criteria present comparable recall values, with a large improvement in the consistency of good
results in the presence of good samples of the execution space. The data indicate also that GK-tail+ slightly improves over
GK-tail, especially for the Event Subsumption criterion.
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TABLE 5
Comparative evaluation of the specificity of the inference criteria of GK-tail and GK-tail+ for the swap permutation operator

Specificity

Traces swap

Event Event
Subject Class Min Max Equivalence Weak Strong Equivalence Subsumption

HashBiMap 662 1099 84.29% 81.50% 57.63% 81.50% 54.23%
ArrayListMultimap 227 491 97.80% 97.80% 90.79% 94.85% 90.02%
LinkedHashMultimap 187 444 98.93% 98.93% 94.10% 98.93% 91.44%
TreeMultimap 202 373 98.51% 98.51% 95.47% 98.51% 93.57%
ImmutableListMultiset 292 762 99.66% 99.66% 83.85% 99.66% 80.45%
CuncurrentHashMultiset 249 609 100.00% 100.00% 96.14% 97.19% 86.21%
LinkedListMultimap 171 499 100.00% 100.00% 98.14% 99.42% 98.51%
ImmutableBiMap 499 511 100.00% 100.00% 89.66% 100.00% 89.43%
LinkedHashMultiset 277 721 96.39% 95.90% 88.95% 95.68% 82.11%
ImmutableListMultimap 499 1099 100.00% 100.00% 50.32% 100.00% 50.14%

Median (first ten classes) 97.56% 97.23% 84.51% 96.57% 81.61%

DateTime 499 756 100.00% 87.86% 83.21% 84.47% 80.69%
DateMidnight 576 729 87.33% 87.01% 82.02% 86.90% 81.76%
Duration 390 499 100.00% 100.00% 93.08% 100.00% 93.08%
HashMultiset 238 238 97.48% 97.48% 97.48% 97.48% 97.48%
MultiGraph 187 187 98.93% 98.93% 98.93% 98.93% 98.93%
HashMultimap 227 227 97.80% 97.80% 97.80% 97.80% 97.80%
TreeMultiset 363 426 99.77% 99.72% 99.72% 99.77% 99.77%
SingleGraph 187 187 98.93% 98.93% 98.93% 98.93% 98.93%

Median (all the classes) 97.54% 96.67% 88.68% 96.11% 86.92%

Legend
Columns Traces, Min, Max reports the number of traces, from smallest to largest, fed to the subject class.
Columns Equivalence, Weak, Strong, Event Equivalence and Event Subsumption identify the inference criteria.
Column Subject Class identifies the case studies.
Column swap identify the permutation operator.
Columns Specificity presents the specificity values obtained with the different inference criteria.

In summary, enriching the model with guards improves the expressiveness of the models with little impact on the
recall.

3.5 Specificity
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Fig. 8. Aggregated data of specificity for the five criteria



TABLE 6
Comparative evaluation of the specificity of the inference criteria of GK-tail and GK-tail+ for the r-swap permutation operator

Specificity

Traces r-swap

Event Event
Subject Class Min Max Equivalence Weak Strong Equivalence Subsumption

HashBiMap 1024 1095 59.55% 56.45% 36.27% 55.71% 34.38%
ArrayListMultimap 665 1054 84.21% 82.54% 71.55% 76.26% 62.71%
LinkedHashMultimap 733 1031 81.58% 81.02% 68.94% 78.06% 64.99%
TreeMultimap 696 986 83.05% 82.79% 73.11% 78.37% 68.66%
ImmutableListMultiset 1059 1100 62.13% 62.13% 55.66% 61.31% 50.91%
CuncurrentHashMultiset 675 991 82.50% 83.85% 74.91% 82.54% 68.31%
LinkedListMultimap 1091 1100 57.10% 57.10% 46.13% 51.82% 44.62%
ImmutableBiMap 1004 1053 67.33% 67.13% 64.99% 67.13% 62.87%
LinkedHashMultiset 1083 1099 56.59% 54.23% 45.95% 53.78% 41.27%
ImmutableListMultimap 1099 1100 47.45% 46.22% 47.45% 46.64% 46.22%

Median (first ten classes) 68.15% 67.35% 58.50% 65.16% 54.49%

DateTime 171 1063 99.42% 69.01% 65.69% 62.71% 61.62%
DateMidnight 951 1042 70.98% 70.42% 68.11% 67.13% 64.01%
Duration 944 1048 71.40% 71.40% 63.36% 71.40% 63.36%
HashMultiset 963 1038 70.20% 70.20% 64.51% 70.12% 64.35%
MultiGraph 576 636 87.33% 86.70% 85.62% 85.71% 85.22%
HashMultimap 667 881 84.11% 83.58% 76.47% 74.91% 74.91%
TreeMultiset 1081 1099 45.59% 44.02% 42.61% 41.22% 40.98%
SingleGraph 947 971 71.28% 70.20% 70.20% 69.72% 69.72%

Median (all the classes) 71.21% 68.83% 62.31% 66.36% 59.40%

Legend
Columns Traces, Min, Max reports the number of traces, from smallest to largest, fed to the subject class.
Columns Equivalence, Weak, Strong, Event Equivalence and Event Subsumption identify the inference criteria.
Column Subject Class identifies the case studies.
Column r-swap identify the permutation operator.
Columns Specificity presents the specificity values obtained with the different inference criteria.

TABLE 7
Comparative evaluation of the specificity of the inference criteria of GK-tail and GK-tail+ for the del permutation operator

Specificity

Traces del

Event Event
Subject Class Min Max Equivalence Weak Strong Equivalence Subsumption

HashBiMap 657 1053 84.47% 82.35% 63.92% 82.17% 62.77%
ArrayListMultimap 171 268 99.42% 99.42% 97.48% 98.51% 96.64%
LinkedHashMultimap 236 282 99.65% 99.65% 97.48% 99.58% 97.19%
TreeMultimap 202 268 98.51% 98.51% 96.64% 98.81% 96.64%
ImmutableListMultiset 204 650 99.51% 99.51% 85.90% 99.51% 84.77%
CuncurrentHashMultiset 171 499 100.00% 100.00% 99.44% 99.42% 96.39%
LinkedListMultimap 171 499 100.00% 100.00% 99.42% 100.00% 99.42%
ImmutableBiMap 453 499 100.00% 100.00% 91.17% 100.00% 91.17%
LinkedHashMultiset 238 550 97.48% 97.48% 92.77% 97.48% 88.18%
ImmutableListMultimap 499 1099 100.00% 100.00% 50.32% 100.00% 50.32%

Median (first ten classes) 97.90% 97.69% 87.45% 97.52% 86.35%

DateTime 277 499 100.00% 96.39% 94.10% 95.90% 93.92%
DateMidnight 309 395 95.47% 95.47% 94.46% 94.85% 92.91%
Duration 368 499 100.00% 100.00% 93.75% 100.00% 93.75%
HashMultiset 499 499 100.00% 100.00% 100.00% 100.00% 100.00%
MultiGraph 499 499 100.00% 100.00% 100.00% 100.00% 100.00%
HashMultimap 499 499 100.00% 100.00% 100.00% 100.00% 100.00%
TreeMultiset 171 171 99.42% 99.42% 99.42% 99.42% 99.42%
SingleGraph 295 295 99.66% 99.66% 99.66% 99.66% 99.66%

Median (all the classes) 98.53% 98.21% 92.00% 98.06% 91.29%

Legend
Columns Traces, Min, Max reports the number of traces, from smallest to largest, fed to the subject class.
Columns Equivalence, Weak, Strong, Event Equivalence and Event Subsumption identify the inference criteria.
Column Subject Class identifies the case studies.
Column del identify the permutation operator.
Columns Specificity presents the specificity values obtained with the different inference criteria.
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Fig. 9. Aggregated data of specificity for the five criteria limited to the top 10 classes

The values of recall that we measured for GK-tail and GK-tail+ indicate that the inferred gFSMs accept a large amount
of correct behaviors, and thus are good candidates for approximating the system behavior. In this section we measure the
specificity of the models inferred with GK-tail and GK-tail+.

The box plots in Figures 8 and 9 visually present the results according to the permutation operators; Tables 5, 6 and 7
analytically report the values obtained with the swap, r-swap, and del operators, respectively. Each table indicates the
subject class, the number of illegal traces that have been used to compute specificity (columns Min and Max), and the
specificity for the five criteria. Since the confidence depends on both the number of traces and the specific criterion, the
number of illegal traces necessary to reach 95% confidence varies case by case. For this reason column trace reports the
minimum and maximum number of traces that have been used to compute the specificity for the different criteria. Each
table is split in two parts. The top part reports the results for the models generated with a good number of traces, while
the bottom part reports the results for the models generated from few traces, consistently with the previous tables.

The results show that the specificity of the models generated with the Event Equivalence criterion is consistent with the
specificity of the models generated with Equivalence and Weak Subsumption criteria. Similarly, the specificity of the models
generated with the Event Subsumption criterion is consistent with the specificity of the models generated with the Strong
Subsumption criterion. The precision of GK-tail is slightly better than the precision of GK-tail+ in average, because merging
states after inferring the constrains as done in GK-tail more likely produces a model that may overfit the traces than by
merging states before inferring constraints as done in GK-tail+. The recall and performance results reported in Sections 3.4
and 3.8, respectively, indicate that GK-tail+ merges many more states than GK-tail, and thus confirm this observation.

The different specificity of the models generated with the different criteria, which is lower for the models generated
with Strong Subsumption and Event Subsumption than for the models generated with Equivalence, Weak Subsumption and
Event Equivalence, indicates that the choice of GK-tail or GK-tail+ depends on the relative importance of rejecting as many
as possible illegal behaviors over accepting as many as possible legal ones.

3.6 Balanced Classification Rate
Table 8 summarizes the recall and specificity of the criteria of GK-tail+ and Gk-Tail in terms of the balance classification
rate (BCR) computed for the subject classes. The values reported in the table confirm that GK-tail and GK-tail+ perform
comparably. In particular, the Event Equivalence criterion of GK-tail+ performs similarly to the Equivalence and Weak
Subsumption criteria of Gk-Tail, with an average difference of BCR values less than 1% and a maximum difference of
4.97%, while the Event Subsumption criterion GK-tail+ performs similarly to the Strong Subsumption criterion of Gk-Tail, with
an average difference of BCR values less than 1% and a maximum difference less than 3.1%.

All the criteria perform better for the top ten than the bottom ten classes. As already observed in Section 3.4, the low
BCR values of the bottom ten classes are due to inaccurate sampling of the execution space, as low recall values indicate.
In fact, the bottom ten classes are characterized by the availability of a small number of traces compared to the size of the
classes.

The similarity of the corresponding criteria confirmed by the BCR values indicates the execution time, which we discuss
in Section 3.8, as the key distinguishing feature between the GK-tail+ and the Gk-Tail criteria.



TABLE 8
Summary comparative evaluation of the inference criteria of GK-tail and GK-tail+ in terms of balance classification rate (BCR)

Balanced Classification Rate

GK-tail GK-tail+

Event Event
Subject Class Equivalence Weak Strong Equivalence Subsumption

HashBiMap 87.04% 85.70% 75.43% 85.55% 74.64%
ArrayListMultimap 92.50% 92.67% 89.57% 91.87% 88.89%
LinkedHashMultimap 91.36% 91.50% 88.92% 92.12% 88.54%
TreeMultimap 90.14% 90.16% 88.31% 91.07% 89.14%
ImmutableListMultiset 84.60% 84.60% 79.10% 84.71% 78.30%
CuncurrentHashMultiset 94.78% 95.01% 92.94% 94.30% 89.84%
LinkedListMultimap 83.24% 83.52% 83.92% 83.79% 84.01%
ImmutableBiMap 93.43% 93.39% 89.84% 93.39% 89.77%
LinkedHashMultiset 83.81% 83.33% 81.57% 84.76% 81.22%
ImmutableListMultimap 90.11% 89.90% 73.77% 89.97% 73.54%

Median (first ten classes) 90.12% 90.03% 86.12% 90.52% 86.27%

DateTime 64.25% 56.55% 55.98% 59.28% 58.41%
DateMidnight 57.58% 57.43% 56.41% 56.77% 55.78%
Duration 56.90% 59.40% 58.36% 59.40% 59.61%
HashMultiset 52.02% 52.02% 51.07% 52.01% 51.05%
MultiGraph 66.23% 66.12% 67.80% 67.81% 67.73%
HashMultimap 46.98% 46.90% 45.71% 45.45% 45.45%
TreeMultiset 40.79% 40.53% 40.29% 40.07% 40.03%
SingleGraph 44.98% 44.80% 44.80% 44.72% 44.72%

Median (all the classes) 83.52% 83.43% 74.60% 84.25% 74.09%

Legend
Column Subject Class identifies the target class.
Columns Equivalence, Weak, Strong, Event Equivalence and Event Subsumption report the BCR for the corresponding criteria of
GK-tail and GK-tail+.

3.7 Degree of Dependence from the Number of Traces
In this paper, we performed most of the experiments with 10-fold validation. In this section we study the impact of the
number of traces used in the inference process on the quality of the models produced by GK-tail and GK-tail+. Fewer traces
may impact positively on the specificity of the inferred models and negatively on the recall, thus, we focus our validation
on the recall that we measure for the models inferred with 10-fold, 4-fold and 2-fold cross validation, that is, using 90%,
75% and 50% of the available traces for the inference, respectively. We limit the analysis to the top ten subject classes.

TABLE 9
Recall of GK-tail+ and GK-tail when using 75% and 50% of the traces to infer the models with the different criteria

Recall (4-fold cross-validation) Recall (2-fold cross-validation)

GK-tail GK-tail+ GK-tail GK-tail+

Event Event Event Event
Subject Class Traces Equivalence Weak Strong Equivalence Subsumption Equivalence Weak Strong Equivalence Subsumption

HashBiMap 1430 96.57% 96.57% 96.85% 96.57% 97.55% 93.84% 93.84% 95.17% 93.98% 96.15%
ArrayListMultimap 900 88.70% 89.04% 91.06% 92.17% 93.96% 84.90% 85.23% 86.80% 88.14% 89.82%
LinkedHashMultimap 850 88.25% 88.84% 89.91% 90.03% 91.21% 83.49% 83.61% 84.92% 86.58% 88.00%
TreeMultimap 850 83.73% 84.79% 86.09% 88.10% 90.34% 78.80% 78.80% 79.98% 81.51% 82.80%
ImmutableListMultiset 620 80.92% 80.92% 81.90% 80.76% 82.55% 76.51% 76.51% 77.16% 77.82% 79.77%
CuncurrentHashMultiset 620 94.11% 95.25% 95.58% 95.25% 95.58% 89.85% 91.65% 92.80% 91.82% 93.78%
LinkedListMultimap 360 78.82% 80.23% 85.57% 82.76% 86.14% 72.81% 72.81% 81.03% 77.06% 83.01%
ImmutableBiMap 310 96.41% 96.41% 96.41% 96.41% 96.41% 90.20% 90.20% 90.20% 90.20% 91.50%
LinkedHashMultiset 260 80.55% 80.55% 83.66% 83.28% 87.97% 73.15% 73.15% 76.27% 75.49% 79.39%
ImmutableListMultimap 220 97.69% 97.69% 98.15% 97.69% 98.15% 97.69% 97.69% 98.15% 97.69% 98.15%

Median 88.48% 88.94% 90.48% 91.10% 92.59% 84.20% 84.42% 85.86% 87.36% 88.91%

Legend
Column Subject Class identifies the target class.
Column Traces reports the total number of traces collected for the subject class.
Columns Equivalence, Weak, Strong, Event Equivalence and Event Subsumption identify the inference criteria of GK-tail and GK-tail+.
Columns Recall (4-fold cross-validation) show the recall values obtained with the 4-fold cross-validation process.
Columns Recall (2-fold cross-validation) show the recall values obtained with the 2-fold cross-validation process.

Table 9 reports the recall values for the models inferred with 4-fold and 2-fold cross validation, which can be compared
with the recall values for the models inferred with 10-fold cross validation reported in Table 4.

The box plot in Figure 10 compares the values of recall for all the three settings. Results indicate that the recall values
gracefully degrade when fewer traces are available. For instance, when halving the number of available traces, the recall
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Fig. 10. Aggregated data of recall for 10-fold, 4-fold and 2-fold cross-validation

decreases only by a small fraction. Results also show that changing the number of traces does not impact on the relative
performance of the five criteria: All the criteria perform similarly, with the two GK-tail+ criteria performing slightly better
than the others.

3.8 Performance
The experimental data discussed in the previous subsections indicate that the recall and specificity of the equivalence
criteria of GK-tail and GK-tail+ are comparable. In particular the Event Equivalence criterion is comparable to the Equivalence
and Weak Subsumption criteria, and the Event Subsumption criterion is comparable to the Strong Subsumption criterion.

In this section we investigate the efficiency of these criteria and we show that Event Equivalence and Event Subsumption
criteria can be computed definitely faster than the other criteria, thus improving the scalability of GK-tail+ over GK-Tail.

Fig. 11. Visual comparative evaluation of the execution time of the inference criteria of GK-tail+ and GK-tail

We measure the costs of inferring the models with all the criteria when applied to the subject programs listed in Table 2.
Table 10 reports both the cost of the individual steps and the total inference time for all the criteria.

The Merging Trace step is described in Section 2.2, and is the same for all the considered criteria of both GK-tail+ and
GK-tail.

The Merging States step includes both the generation of the initial FSM and the merging of the states. GK-tail+ creates
the initial FSM and merges the states referring only to the events, as described in Sections 2.3 and 2.4, while GK-tail refers
both to events and values to identify the states to be merged, as discussed in [6].



TABLE 10
Comparative evaluation of the execution time of the inference criteria of GK-tail+ and GK-tail

GK-tail GK-tail+

Event Event
Inference Step Equivalence Weak Strong Equivalence Subsumption

Merging Traces 201 sec
Merging States 2549 sec 1572 sec 10875 sec 1877 sec 2794 sec
Generating Constraints 4794 sec 980 sec 953 sec

Inference Time 7545 sec 6567 sec 15870 sec 3058 sec 3949 sec

Legend The table reports the median value of the time required to complete each step of the inference process and the overall
inference process for each criterion.

Consequently, the Generating Constraints step is executed at different moments in the GK-tail and the GK-tail+ infer-
ence processes. GK-tail generates constraints from the annotations associated with the events, while GK-tail+ generates
constraints from the annotations associated with the transitions in the final gFSM, as described in Section 2.5. Since GK-
tail generates the constraints before merging the states, the cost of this step is the same for all the GK-tail criteria. On the
contrary, GK-tail+ executes this step after the state merging process, thus the cost of this step differs for the Event Equivalence
and Event Subsumption criteria.
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Fig. 12. Comparative evaluation of the inference time of the individual steps of GK-tail+ and GK-tail

Figure 11 visually summarizes the inference time of the criteria reported in Table 10, detailing the cost of the individual
steps. Both the GK-tail+ Event Equivalence and Event Subsumption criteria perform much better the corresponding GK-tail
criteria. The GK-tail+ Event Equivalence criterion requires half of the time than the GK-tail Equivalence and Weak Subsumption
criteria, and the GK-tail+ Event Subsumption criterion is four time faster than the GK-tail Strong Subsumption criterion.
This impressive performance improvement derives from the new GK-tail+ algorithmic organization that generates the
constraints at the end of the inference process and simplifies the state merging process. By generating constraints at the
end of the inference process, GK-tail+ reduces the amount of expensive invocations of the inference engine. In fact, GK-tail+
invokes the inference engine for each transition in the final gFSM, while GK-tail invokes the engine for each event in the
merged traces, and this might reduce the amount of invocations of the inference engine by an order of magnitude. The
simplified GK-tail+ state merging process does not require comparing constraints as in GK-tail, and thus eliminates another
expensive activity.

Figure 12 shows the comparative evaluation of the different phases of the GK-tail+ and GK-tail criteria. The box plot of
the merging traces step confirms the marginal contribution of this step, which is shared among all the criteria, to the overall
inference cost. The box plots of the merging states and generating constraints steps indicate the major contribution of these
two activities to the performance improvements of GK-tail+ over GK-tail. While the merging state step presents some
variability in the runtime cost, the generating constraints step is consistently less expensive for the GK-tail+ criteria with
respect to the corresponding GK-tail criteria. The box plots of the total inference time confirm the substantial performance
improvement of GK-tail+ over GK-tail.



Fig. 13. Inference time of Equivalence (GK-tail), Weak Subsumption (GK-tail) and Event Equivalence (GK-tail+ ) with respect to the number of input
events

Fig. 14. Inference time of Strong Subsumption (GK-tail) and Event Subsumption (GK-tail+) with respect to the number of input events

Figure 13 and 14 show the variation of the runtime cost of the inference process with respect to the number of input
events.

Figure 13 presents the scatter plot of the inference time for the Equivalence, Weak Subsumption and Event Equivalence
criteria with respect to the number of events in the input traces, that is with respect to the sum of the length of all the input
traces. Figure 14 presents the scatter plot of the inference time for the Strong Subsumption and Event Subsumption criteria. In
both figures, the small black arrow at the top indicates the existence of outlier values in correspondence of the arrow.

The scatter plots confirm that the inference time of the Event Equivalence and Event Subsumption criteria is significantly



TABLE 11
Comparative evaluation about the use of Daikon between GK-tail+ and GK-tail

Number of Calls Number of Samples

GK-tail GK-tail+ GK-tail GK-tail+

Event Event Event Event
Subject Class Equivalence Weak Strong Equivalence Subsumption Equivalence Weak Strong Equivalence Subsumption

HashBiMap 1478 361 213 1.98 6.97 9.64
ArrayListMultimap 1772 420 343 1.83 7.01 7.40
LinkedHashMultimap 1756 396 327 1.61 6.25 6.60
TreeMultimap 2739 499 414 1.52 6.92 7.51
ImmutableListMultiset 259 125 90 1.84 3.76 5.02
CuncurrentHashMultiset 1105 302 232 2.43 6.89 8.31
LinkedListMultimap 1846 339 318 1.49 4.30 4.34
ImmutableBiMap 114 47 39 2.84 6.87 6.84
LinkedHashMultiset 1199 228 159 1.51 4.79 5.34
ImmutableListMultimap 153 21 19 1.14 6.66 7.51

Median 1338 320 222 1.72 6.77 7.12

Legend
Column Subject Class identifies the case studies.
Columns Equivalence, Weak, Strong, Event Equivalence and Event Subsumption identify the inference criteria of GK-tail and GK-tail+.
Column Number of Calls presents the number of times Daikon has been executed.
Column Number of Samples presents the number of samples Daikon is executed on.

and systematically lower than the inference time of the other criteria, and indicate that the inference time growths gracefully
when the number of traces increases, suggesting a good scalability of the approach, in particular for the Event Equivalence
criterion.

To confirm the hypothesis that the improvement of GK-tail+ over Gk-Tail depends on both the reduced amount
of invocations of Daikon and the increased amount of samples for each Daikon invocations, we compare the Daikon
invocations when executing the GK-tail+ and Gk-Tail criteria.

Table 11 reports the number of calls to the Daikon inference engine when analysing the first 10 subject classes with the
GK-tail+ and Gk-Tail criteria. GK-Tail executed with the three criteria (Equivalence, Weak and Strong) interacts with Daikon
in the same way, and thus perform the same number of calls that is reported once for all the criteria in the figure. GK-tail+
dramatically reduces the number of calls to Daikon. The median number of calls to Daikon with GK-Tail is 1338 for all
the criteria, while with GK-tail+ the median is 320 and 222, with the Event Equivalence and the Event Subsumption criteria,
respectively, with a reduction of number of calls between 76% and 83% with respect to GK-Tail

The reduced number of calls to Daikon comes with an increased amount of samples for each call, which goes from
a median number of 1.72 samples for GK-Tail to a median number of 6.77 and 7.12 samples for GK-tail+ with the Event
Equivalence and the Event Subsumption criteria, respectively, that corresponds to a 3.9X and 4.1X improvement, respectively.
The box plot in Figure 15 provides an intuitive visualisation of the increasing amount of samples for each Daikon invocation
when moving from the GK-Tail to the GK-tail+ criteria, which can have only a positive impact on the precision of Daikon
results.

Overall, the empirical results indicate the relevant improvement of GK-tail+ over GK-tail: The Event Equivalence and
Event Subsumption criteria defined in GK-tail+ largely improve in performance and scalability over the corresponding
GK-tail criteria, with comparable recall and specificity.

3.9 Threats to Validity
The main threats to the validity of the experimental results reported in this paper derive from the choice of values for the
parameter k and the generation of illegal traces used in the experiments.

Different values of k produce different models and hence different results. Section 3.3 reports the results of our
experimental investigation on the impact of different values of k that confirm that k = 2 is an excellent choice and
that small changes to the values of k, for instance k = 1 or k = 3, do not significantly affect the experimental results.

We generated the (likely) illegal traces by changing the order of events in the monitored traces, with the risk of
generating legal traces. We mitigate such risk by excluding the mutated traces that match a trace known to be legal.
Although this does not completely eliminate the risk of incidentally generating legal traces, it contributes to improve the
quality of the experiments. Due to the large number of generated traces and the complexity of the manual checking, we
could not verify all the traces manually. We inspected a set of sample traces for each subject class, and we did not find any
legal trace, thus confirming the validity of the generated illegal traces.

We would like to remark that the experiments refer to traces obtained with unit test suites. Although we do not see
any reason that prevents the generalisation of the results to traces obtained with integration and system test suites, the
hypothesis is not substantiate by experimental results yet.
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Fig. 15. Number of samples processed by Daikon with the GK-Tail and and GK-tail+ criteria

4 RELATED WORK

In this section, we frame the contribution of this paper in the context of inference techniques that dynamically analyze
execution traces. We discuss approaches for learning simple FSMs, for generating augmented FSMs and for inferring other
kinds of models of relations among events.

4.1 Learning FSMs
Learning FSMs from execution traces is an instance of the well-known regular inference problem, which consists of
identifying a language from a set of sample sentences. In the early seventies, Biermann and Feldman proposed the seminal
and inspiring kTail algorithm, a notable example of procedural trace-based inference, which refines an initial Prefix Tree that
combines the input traces into a FSM with an iterative state merging process [31]. GK-tail+ extends kTail to gFSMs.

Several variants of state-based inference address different contexts and with various goals: Cook and Wolf’s approach
reduces the size of the model inferred with kTail [33]; Ammons et al.’s technique extends kTail to generate a probabilistic
FSM [44]; Walkinshaw et al.’s method extends the state-based inference process with the capability to deal with a set of
user-provided temporal rules that should not be violated by the language accepted by the inferred model [20]. Walkinshaw
et al.’s rules steer the inference process, and improve the accuracy of the final model. Lo et al.’s rule inference process fully
automates Walkinshaw et al.’s approach [34].

Some inference approaches take advantage of pre- and post-conditions that may be present in the code. The approach
proposed by de Caso et al. requires compatible pre-conditions, respectively post-conditions, for the operations that can
lead to, respectively can leave from, a given state [45]. Although effective, these strategies are inevitably limited to software
operations documented with pre- and post-conditions.

The kBehavior approach proposed by Mariani et al. implements an alternative inference strategy that exploits similarities
between sequences of events rather than similarity between states to infer FSMs [14], [46]. Algorithms that exploit state merging
process and algorithms based on similarities between sequences of events are characterized by complementary precision
and recall [30].

An alternative strategy is the one defined both in the Synoptic approach proposed by Beschastnikh et al. [4] and the
approach proposed by Lo et al. [34], which exploits mined temporal rules to build the final FSM.

Declarative inference algorithms, like InvariMint [17], [47], define the inference algorithm in terms of a set of properties
that the final model must satisfy, without worrying about the inference process. For instance, a property may specify that
two events that consistently occur together in all the traces should necessarily occur together also in the final model. This
learning style increases the control over the characteristics of the resulting model compared to procedural algorithms, but
requires to identify a-priori the relevant properties that must be satisfied by the inferred model, which might be hard for
complex software systems and non-trivial application domains.

Approaches that generate FSMs from execution traces have been combined with testing and monitoring techniques
to obtain additional traces and improve the accuracy of the inferred models: Dallmeier et al.’s approach systematically



generates test cases that cover the possible sequences of operations to fully discover software protocols [7]; Bertolino et
al.’s technique uses the results of testing and monitoring to improve the inference process in the context of service-oriented
applications [48]; The TTT algorithm proposed by Isberner et al. improves the accuracy of the inferred model in the
presence of long traces [49].

The many approaches that infer simple FSMs provide a solid background for the approaches to generate gFSMs that
we discuss in the next subsection and that include GK-tail+.

4.2 Learning Augmented FSMs
Approaches that infer FSMs augmented with various kinds of information capture a wider set of details of the monitored
behavior.

The most relevant approaches to learn augmented FSMs are the state-based inference algorithms, which process traces that
include information about both the sequences of the monitored events and the sequences of concrete states that have been
traversed between the execution of the events. State-based inference algorithms rely on a state abstraction function that
computes the abstract states in the FSMs from the concrete states in the traces, annotates the abstract states with the state
invariants computed with the abstraction function, and infers the transitions between states from the sequence of monitored
events. Well-known instances of state-based inference algorithms are ADABU, which works with Java applications [29];
ReAjax, which works with Web applications [28]; and Revolution, which provides an incremental version of the state-based
inference process [27].

The SEKT algorithm presented in [26] increases the level of automation of state-based inference by mining constraints
that characterize the states in the model. Although both SEKT and GK-tail+ use Daikon to infer the constraints, they use
the inferred constraints for different purposes. SEKT exploits the inferred constraints to identify the states in the model,
while GK-tail+ exploits the inferred constraints to augment transitions with guard conditions.

Krka et al. have recently demonstrated that state-based inference algorithms might provide more accurate information
than trace-based inference algorithms [26], but suffer from the limitation of requiring the logging of the state of the
application in addition to the events, which might be often infeasible or simply too expensive.

Only few techniques address the challenging task of inferring FSMs augmented with information about the values of the
parameters associated with the monitored events. The KLFA approach of Mariani and Pastore generates FSMs with labels
associated with transitions that encode both event names and information about the recurrence of the parameter values
across events [50]. The KLFA approach captures a different kind of information than the GK-tail+ guards. For example,
KLFA may infer that a set of login and purchase events have been executed by a same user, but cannot learn constraints
over the parameters, for instance the information that the username is longer than N characters or that the user has
purchased more than M items, which are conditions that GK-tail+ can capture and encode in the guarded FSMs. Lo et al.
show that models generated by KLFA are usually less accurate than models generated by GK-Tail, when applied to traces
that encode sequences of method calls [30].

An interesting body of work has proposed active learning techniques to infer FSMs augmented with guards [21]–
[24]. These techniques iteratively generate and execute test cases to produce new traces for the learner, until proving the
compliance of the model with the application. Compliance checking is extremely expensive, and is usually performed using
either model checking or testing. Model checking can be applied only when the source code is available and is known
to suffer when the complexity of the code growths. Testing can be applied without source code, but compliance checking
through testing is always inaccurate and its cost grows with the number of tests to be executed. Differently from active
learning approaches, GK-tail+ implements a black-box passive learning strategy, which is always applicable and does not
require expensive compliance checking.

The recent Walkinshaw et al.’s MINT algorithm infers FSMs with transitions annotated with classifiers inferred from
traces. MINT generates the classifiers with (potentially any) data mining algorithm, and constrains the values that can be
assigned to the parameters of a given label, for instance a given method [25].

MINT exploits a learning style complementary to GK-tail+. MINT exploits the inferred constraints during the general-
ization process, to determine if the states in the model have to be merged, and determines the constraints on a per label
basis. GK-tail+ infers the constraints on a per transition basis, that is the same label can be associated with completely
different constraints when occurring on different transitions. Thus, MINT is more suitable to infer FSMs where parameters
have a significant influence on the sequences of events that follow in the execution, while GK-tail+ is more suitable to infer
FSMs where the guards on the transitions constrain the parameter values, but have little influence on the events that follow
in the execution.

4.3 Learning Models of Relations Among Events
Some approaches encode the relations among events with other kinds of models, notably event patterns [51], [52] and
temporal logic rules [53]–[55]. Event patterns and temporal rules can capture well some partial but relevant facts about
the behavior of complex software systems that can be hardly addressed with techniques that infer FMSs, while FSMs can
represent well the full behavior of a software component of medium complexity. In this paper, we presented a technique that
can efficiently produce models that capture information about both the sequence of events and the values of the parameters
of the events.



5 CONCLUSIONS

In this paper, we present a technique to efficiently infer models of the behavior of software systems in the form of guarded
finite state machines, which capture the sequences of method calls together with the constraints on the parameter values.

Learning models from program execution traces provides important information about the software behavior without
requiring expensive human effort. Useful models shall comprehensively represent the system behavior, limit the amount
of illegal behaviors that may be erroneously accepted, and be inferred within a reasonable time budget to scale to cases
of interesting size. Dynamically generated models of the software behavior find interesting applications in the fields of
specification mining, program comprehension, test case generation, fault diagnosis and bug fixing.

In this paper we address the problem of efficiently learning state-based models augmented with data information.
In our early work, we have investigated the problem of generating guarded finite state machines from execution traces

and we proposed GK-tail, an approach that generates accurate guarded finite state machines, that is, models with a high
rate of acceptance of valid traces and of rejection of invalid ones, albeit with generation costs that limit the applicability of
GK-tail to cases of small size.

In this paper we redefine the inference criteria that characterize GK-tail, and we propose GK-tail+, an approach that
embeds the new inference criteria, and generates guarded finite state machines with comparable rates of both accepted
valid traces and rejected invalid ones, and with largely improved performance over GK-tail.

In detail this paper presents a new algorithm, GK-tail+, and two new criteria for generating behavioral models that
integrate event sequences and parameter values, provides a complete formalization of GK-tail+, and reports a set of
experimental results that confirm the comparable effectiveness and the improvement in the efficiency. The experimental
results reported in this paper indicate that the difference in the recall and specificity of the models inferred with GK-tail+
and GK-tail is negligible, while the inference time of GK-tail+ is from 50% to 75% lower than the one of GK-tail, depending
on the inference criteria. The experiments also indicate a limited growth rate of the inference time with respect to the input
events, thus confirming the scalability of the approach.
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