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Abstract 

In a series of three behavioral experiments, we found a systematic distortion of proba-

bility judgments concerning elementary visual stimuli. Participants were briefly shown a set of 

figures that had two features (e.g., a geometric shape and a color) with two possible values 

each (e.g., triangle or circle and black or white). A figure was then drawn, participants were 

informed about the value of one of its features (e.g., that the figure was a “circle”) and had to 

predict the value of the other feature (e.g., whether the figure was “black” or “white”). We 

repeated this procedure for various sets of figures and, by varying the statistical association 

between features in the sets, we manipulated the probability of a feature given the evidence of 

another (e.g., the posterior probability of hypothesis “black” given the evidence “circle”) as 

well as the support provided by a feature to another (e.g., the impact, or confirmation, of evi-

dence “circle” on the hypothesis “black”). Results indicated that participants’ judgments were 

deeply affected by impact, although they only should have depended on the probability distri-

butions over the features, and that the dissociation between evidential impact and posterior 

probability increased the number of errors. The implications of these findings for lower- and 

higher-level cognitive models are discussed. 
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Introduction 

Within the Bayesian framework for modelling inductive reasoning, the relation be-

tween evidence (e) and hypothesis (h) is captured by two distinct notions: the posterior prob-

ability of the hypothesis in light of the evidence, Pr(h|e), and the impact (or degree of confir-

mation) of the evidence on the hypothesis, Imp(h,e). Consider, for example, a set of figures 

comprising 12 white circles, 12 black circles, 20 white triangles, and 4 black triangles. Imagine 

that a figure is randomly and covertly drawn from this set. Its shape is then revealed: the figure 

is a circle (e). You might be interested in updating the probability that the drawn figure is white 

(h) or black (not-h) in light of this new information, and/or in considering how knowing that 

the figure is a circle affects the credibility of the two alternative hypotheses at issue. While the 

former is a probability judgment, the latter is an impact judgment.  

The qualitative notion of impact is defined as follows: 

(1) Imp (h, e)  �
≥ 0 𝑖𝑖𝑖𝑖𝑖𝑖 𝑃𝑃𝑃𝑃(ℎ|𝑒𝑒) ≥ 𝑃𝑃𝑃𝑃(ℎ);
= 0 𝑖𝑖𝑖𝑖𝑖𝑖 𝑃𝑃𝑃𝑃(ℎ|𝑒𝑒) = 𝑃𝑃𝑃𝑃(ℎ);
≤ 0 𝑖𝑖𝑖𝑖𝑖𝑖 𝑃𝑃𝑃𝑃(ℎ|𝑒𝑒) ≤ 𝑃𝑃𝑃𝑃(ℎ).

 

This means that evidence e has a positive [negative] impact on hypothesis h iff the posterior 

probability of the hypothesis h in light of evidence e is higher [lower] than the prior probability 

of h. In case posterior and prior probability coincide, e is irrelevant with respect to h. In the 

above example, the posterior probability of the two hypotheses given the evidence is equal, 

Pr(white|circle) = Pr(black|circle) = .5, however, the evidence that the figure is a circle is not 

neutral with respect to these hypotheses: it strengthens the probability that the figure is black 

while it weakens the probability that the figure is white (indeed Pr(black) = .33 < .5 < .67 = 

Pr(white)). One might also be interested in quantifying impact, that is, to assess the amount of 

confirmation/disconfirmation that e brings to h. This has been addressed in a variety of 

measures (for a review see Fitelson, 1999; Crupi, Tentori, & Gonzalez, 2007). In our paper, we 

will make use of one prominent model that has been demonstrated to capture participants’ naïve 
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impact judgments (Tentori, Crupi, Bonini, & Osherson, 2007) and corresponds to a monotone 

transformation of the likelihood ratio in the bounded interval [–1,+1]:  

(2) ImpL (h, e) = 
𝑃𝑃𝑟𝑟(𝑒𝑒 | ℎ)−𝑃𝑃𝑟𝑟(𝑒𝑒 | ¬ℎ)
𝑃𝑃𝑟𝑟(𝑒𝑒 | ℎ)+𝑃𝑃𝑟𝑟(𝑒𝑒 | ¬ℎ)

  (Kemeny & Oppenheim, 1952; Good, 1984). 

In most real-life circumstances, posterior probability and impact are positively corre-

lated: when evidence strongly supports [opposes] a hypothesis, then the probability of the latter 

in light of the former is usually rather high [low]. However, posterior probability and evidential 

impact can be dissociated, as is often the case when the prior is extreme. For example, the 

probability that a man in his fifties has prostate cancer remains low even in light of evidence 

in its favor such as a positive PSA screening test result. Similarly, the probability that it will 

snow in Helsinki during the next winter remains high in spite of evidence pointing in the op-

posite direction, such as news that the coming winter in northern Europe will be particularly 

mild.  

As clarified by the above examples, there are two key differences between evidential 

impact and posterior probability that are worth emphasizing here. First, while evidential impact 

is by definition a relative notion (it expresses the relevance of e with regards to h), posterior 

probability is an absolute value (it represents the “arrival point” of the belief in h once e is 

known). Second, the assessment of these two quantities is generally required in different rea-

soning tasks. The evaluation of impact has an important, albeit often implicit, role in all the 

situations where the value of information or the soundness of arguments has to be assessed, 

while the evaluation of posterior probability is fully acknowledged as a crucial component of 

various cognitive processes, including decision-making under uncertainty and forecasting. 

Given the importance, also in economic terms, of the latter activities, it is not surprising that 

historically the notion of posterior probability has received more attention than that of impact.  

Over the last few decades, many empirical findings have questioned the accuracy of 

laypeople’s and experts’ intuitive probability judgments by showing their systematic departure 
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from normative benchmarks: the axioms of probability theory and their consequences, such as 

Bayes’ theorem. Documented errors include, among others: conservatism (Edwards, 1968), 

base-rate neglect (Kahneman & Tversky, 1973; Tversky & Kahneman, 1982), order effects 

(Hogarth & Einhorn, 1992), conjunction (Tversky & Kahneman, 1983) and disjunction (Bar-

Hillel & Neter, 1993) fallacies. Studies that considered various Bayesian models of inductive 

reasoning but also learning, categorization, language processing, and even lower-level cogni-

tive processes, such as sensorimotor control and perception, provided more encouraging results 

by showing that cognitive behavior is often aligned with the “real” statistics of the environment 

(e.g., Chater, Oaksford, Hahn, & Heit, 2010; Kemp & Tenenbaum, 2009; Körding & Wolpert, 

2006; Shen & Ma, 2016; Tenenbaum, Griffiths, & Kemp, 2006; Yuille & Kersten, 2006). How-

ever, most researchers agree now that such models should be intended as tools for testing psy-

chological explanations of behavior rather than proper descriptions of how high and low-level 

probabilistic inferences work (see, for example, Griffiths, Chater, Norris, & Pouget, 2012; Mar-

cus & Davies, 2013; Tauber, Navarro, Perfors, & Steyvers, 2017).   

The empirical study of impact judgments is more recent, but data have converged in 

suggesting a good alignment with normative models. Indeed, participants’ judgments of evi-

dential impact consistently proved to be accurate both when referring to artificial material (e.g., 

opaque urns with balls of different colors, Tentori, Crupi, Bonini, & Osherson, 2007) and a 

variety of real-world predicates (e.g., “to be a male/female” and “to like ice-figure skating”, 

“to support a football team”, etc., Tentori, Chater, & Crupi, 2016). Sound judgments have also 

been found in tasks in which participants had to quantify the impact of uncertain evidence 

(Mastropasqua, Crupi, & Tentori, 2010) or the value of evidence with regards to competing 

hypotheses (Crupi, Tentori, & Lombardi, 2009; Rusconi, Marelli, D’Addario, Russo, & Che-

rubini, 2014). These results are consistent with those from the study of category-based induc-

tion, according to which not only adults, but also young children from 5 years old, evaluate 
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argument strength by following popular principles of evidential impact, such as the similarity 

between premises and conclusions or the diversity of premises (Heit & Hahn, 2001; Lo, Sides, 

Rozelle, & Osherson, 2002; López, Gelman, Gutheil, & Smith, 1992; Osherson, Smith, Wilkie, 

López, & Shafir, 1990; Zhong, Lee, Huang, & Mo, 2014).  

Taken together, the above-mentioned empirical results suggest that human inductive 

ability might rely more on estimating evidential impact than posterior probability. This issue 

was directly explored by comparing the two kinds of assessments on the very same experi-

mental materials (Tentori et al., 2016). Results indicated that impact judgments were more 

accurate (i.e., closer to objective values) and consistent across time (in a test-retest interval of 

one week) than corresponding posterior probability judgments.  

The intuitive assessment of impact or, in other terms, the perceived relevance of infor-

mation, has been proved to be a key determinant of classical probability reasoning errors, such 

as the conjunction fallacy (Bhatia, 2017; Tentori & Crupi, 2012; Tentori, Crupi, & Russo, 

2013) and the base-rate neglect (Kahneman & Tversky, 1973; Bar-Hillel, 1980; Turpin et al., 

2020). Similarly, the spontaneous and implicit appreciation of evidential impact has been 

shown to play a role, often under other names, in a variety of linguistic and psycholinguistic 

phenomena that have inherent probabilistic components, including representation of word 

meanings (Bullinaria & Levy, 2007), semantic priming (Nadalini, Marelli, Bottini, & Crepaldi, 

2018), and estimation of the word co-occurrence likelihood (Paperno, Marelli, Tentori, & 

Baroni, 2014). 

The aim of the present study is to examine whether impact relations can affect proba-

bility judgments even when the link between evidence and hypotheses is completely new and 

low-level, as in the case of the arbitrary association between visual features in briefly presented 

figures. This is a much stricter test than those already carried out since it looks for a systematic 

distortion in probability judgments that is not mediated by any consolidated semantic 
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knowledge or linguistic competence. Moreover, the use of abstract perceptual material provides 

a powerful way to fully disentangle impact and posterior. As these two quantities are often 

positively correlated in natural environments, one typically provides precious information on 

the other. As a consequence, the influence of impact on probability judgments referring to fa-

miliar stimuli might somehow be epistemically justified. The employment of novel artificial 

relations between two discrete perceptual features offers, instead, the possibility to document 

a net effect of impact over probability judgments that goes beyond these kinds of pragmatic 

concerns. Additionally, the results of our study may have implications relevant to perceptual 

research by contributing to a better understanding of how people create and manipulate their 

experience of physical events. Indeed, knowing whether and to what extent implicit detection 

of impact relations affects probability expectations regarding elementary visual stimuli would 

help inform us about how contingencies between basic visual features are represented, and 

might contribute to the current debate on probabilistic models of perception by specifying new 

elements that influence the accuracy of percepts (for a specific discussion on the importance of 

clarifying the accuracy-conditions in Bayesian perceptual psychology, see for example 

Rescorla, 2015). 

General method 

Three behavioral computer-based experiments were conducted using the same method-

ology. All experimental stimuli were controlled using MATLAB and the Psychophysics 

toolbox.  

Participants 

Participants were 104 students of the University of Trento (40, 32, and 32 for Experi-

ments 1, 2, and 3 respectively). Demographic characteristics of the sample are described in the 

left part of Table 1. The study was approved by the Human Research Ethics committee of the 

University of Trento, and informed consent was obtained for all participants.  
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Stimuli and procedure 

In all experiments, we employed 40 different sets of figures made of two features (e.g., 

a geometric shape and a color in Exp. 1) that could take two possible values each (e.g., triangle 

vs. circle for the geometric shape and black vs. white for the color). The kinds of figures, their 

overall number per set, and their presentation time were kept constant within an experiment 

but varied across experiments (details are provided in the right part of Table 1).  

Table 1 

Overview of the characteristics of the participants and the sets of figures used in the three experiments 

 

Exp. 
 Participants  Figures 

 N (Female %) Mean age (SD)  N per set Presentation 
time 

 Feature 1 Feature 2 

1  40 (75%) 23.9 (2.8) 
 

46 or 48 3s 
 

Color 

Black  
(rgb 0 0 0) 

Shape 
Circular 

  
White  

(rgb 255 255 255) 
Triangular 

2  32 (69%) 20.4 (2.2) 
 

23 or 24 4s 
 

Pattern 

Striped 
(thickness: 0.07° VA) 

Shape 
Circular 

  
Dotted 

(diameter: 0.17° VA) 
Triangular 

3  32 (84%) 22.4 (3) 
 

23 or 24 4s 
 

Curvature 

Wavy 
(thickness: 0.2° VA) 

Orientation 
Horizontal 

  
Straight 

(thickness: 0.2° VA) 
Vertical 

 
Participants were seated at a 60cm-distance from the computer screen (resolution: 1920 x 1080). Triangles and 
circles were inscribed in a (transparent) square of 2.6° visual angle (VA) per side, and they were randomly dis-
played at a minimum distance of 0.4° VA from each other. The background of the screen was mid gray in Exper-
iment 1 (rgb 128 128 128) and light gray in Experiments 2 and 3 (rgb 200 200 200). 

 
Trials proceeded as follows (see also Figure 1): A set of figures was displayed on the 

screen for 3s (Experiment 1) or 4s (Experiments 2 and 3); a figure was then drawn; participants 

were informed about one of its features (which served as evidence, for example, “triangle”) 

and had to predict the value of the other feature by choosing between the two possible alterna-

tives (which counted as hypotheses, for example, “black” vs. “white”). The position of the 

figures in the sets was randomized, as was the presentation order of the trials, with a 30s break 

after every 20 trials.  

The experimental trials were preceded by four training trials. As a test of consistency, 
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participants were presented with the same sets of figures and the same evidence (i.e., they were 

asked the same judgment) twice, for a total of 80 trials (= 40 stimuli X 2 presentations per 

stimulus).  

Stimuli were generated in order to fully balance posteriors and impacts. More specifi-

cally, by manipulating the statistical association between the values of the features in the sets 

as well as the features that served as evidence and hypothesis, we obtained 20 pairs of argu-

ments with the same posterior (e.g., Pr(black|triangle) = .6) but opposite impacts, i.e., a confir-

mation and a disconfirmation which were equal in absolute strength according to equation (2) 

(e.g., Imp(black, triangle) = +.4 and Imp(black, triangle) = -.4). Moreover, we imposed that 

each value of the two features (e.g., triangle) served as evidence one fourth of the time, in half 

of which it confirmed and in the other half disconfirmed to the same extent each level of the 

other feature, while posterior probability was held constant.  

Participants were tested individually. They were instructed to be as fast and accurate as 

possible and had 30s to submit their answer. No immediate feedback on the accuracy of re-

sponses was provided; at the end of the task, participants earned €0.15 for each correct predic-

tion.  

Participants were not asked to report their strategies. Note, however, that counting was 

almost impossible, as it would have meant to independently update four different numbers, one 

for each of the relevant conjunctions. Indeed, when exploring the set of figures participants did 

not know yet which one of the two features or which value of this specific feature they would 

have received as evidence (each of the four possibilities had equal prior probability, because 

as explained above, each value of the two features served as evidence exactly one fourth of the 

times).  

Specific verbal instructions, all experimental stimuli, and comprehensive data sets have 

been deposited in the Open Science Framework (doi: 10.17605/OSF.IO/QNEMY). 
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Data analysis 

Data analysis was conducted using SPSS statistical analysis software (version 23). The 

same analytical strategy was used for all the three experiments. Since each participant contrib-

uted to many data points, we employed generalized mixed models that take this non-independ-

ence into account by adding random effects for participants.     

First, to investigate whether participants’ probability judgments were affected by evi-

dential impact, we developed a binomial generalized linear mixed model on participants’ 

choice for the hypothesis that was confirmed versus disconfirmed by the evidence, including 

random intercept for participants (we will refer to this analysis as GLMM1). Then, to see 

whether participants’ choices for the confirmed versus disconfirmed hypothesis were affected 

by the specific feature that served as evidence (e.g., shape or color in Exp. 1), we included, in 

the previous model, this dichotomic variable (we will label it type of evidence) both as a fixed 

effect and as random slope for participants (we will refer to this analysis as GLMM2). Similarly, 

to test whether the type of evidence affected the time required to make a choice we ran a gen-

eralized linear mixed model on response times (RTs) using a logarithmic transformation of the 

values in order to approximate a normal distribution (Newell & Rosenbloom, 1981). We in-

cluded the type of evidence in the model both as a fixed effect and random slope for partici-

pants, along with random intercepts for participants (GLMM3). 

Only for trials in which posterior probability differed from .5 (that is, trials in which 

there was a normatively correct response), we first checked whether the most and least probable 

hypotheses were equally chosen by developing a binomial generalized linear mixed model on 

participants’ errors, including random intercept for participants (we will refer to this analysis 

as GLMM4). Then we compared the frequency of errors (i.e., the choices for the less probable 

hypothesis) when the more probable hypothesis was confirmed versus disconfirmed by the 
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evidence (i.e., when Pr(h|e) > .5 and Imp(h, e) > 0 vs. Pr(h|e) > .5 and Imp(h, e) <0). To this 

aim, we performed a GLMM analysis (GLMM5) on participants’ errors by including the agree-

ment between posterior probability and impact (we will label this variable Pr-Imp agreement) 

both as a fixed effect and as random slope for participants, along with random intercept for 

participants. Finally, a GLMM analysis (GLMM6) was conducted to evaluate if the agreement 

between probability and impact was a significant predictor of the decision time. This last model 

investigated participants’ RTs as dependent variable and included Pr-Imp agreement as fixed 

factor and random slope for participants, along with random intercept for participants (a loga-

rithmic transformation of the RT values was applied).  

The same six analyses described above were also run for consistent trials only, that is 

for trials in which participants gave the same answer to the two occurrences of the same set of 

figures and evidence. Since the results of the analyses on consistent trials duplicate in all es-

sential details the results obtained with all trials, we will report only the latter.   

The proportion of choice for the confirmed hypothesis and the proportion of errors (for 

all trials and for consistent trials only) in the three experiments are presented in Tables 2 and 

3, respectively. Main statistics of the GLMM analyses are reported in Table 4. Figure 2, 3, and 

4 displays, for Experiment 1, 2, and 3, respectively, the proportions, at participant-level, of 

choices for the confirmed hypothesis and of errors when posterior probability and impact agree 

versus disagree. 
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Table 2 

Choices of the confirmed hypothesis in the three experiments 

Experiment 
1 

All  
trials 

Consistent  
trials 

 Experiment 
2 

All  
Trials 

Consistent  
trials 

 Experiment 
3 

All  
trials 

Consistent  
Trials 

Evidence Conf Conf n  Evidence Conf Conf n  Evidence Conf Conf n 

Color .70 .78 .65  Pattern .68 .79 .61  Orientation .64 .72 .62 
Shape .45 .41 .56  Shape .49 .49 .62  Curvature .61 .66 .61 

Overall .57 .61 .61  Overall .59 .64 .61  Overall .63 .70 .62 

“Conf” stands for the proportion of choices favoring the confirmed hypothesis in all trials (column “All trials”) 
or in consistent trials only (column “Consistent trials”). These proportions have been computed by averaging 
across participants the proportion of choices for the confirmed hypothesis provided by each participant in trials in 
which the two features served as evidence. “n” stands for the average proportion of consistent trials out of the 
total amounts of trials.  
 

Table 3 

Proportion of errors in the three experiments 

Experiment 1 All  
trials 

Consistent  
trials 

 Experiment 2 All  
Trials 

Consistent  
trials 

 Experiment 3 All  
trials 

Consistent  
Trials 

Pr-Imp 
Agreement 

Err 
 

Err 
 

n 
  Pr-Imp 

Agreement 
Err 

 
Err 

 
n 

  Pr-Imp 
Agreement 

Err 
 

Err 
 

n 
 

Disagreement .48 .47 .62  Disagreement .49 .46 .60  Disagreement .53 .54 .61 
Agreement .33 .25 .63  Agreement .30 .19 .65  Agreement .27 .17 .66 

Overall .41 .35 .62  Overall .39 .32 .62  Overall .40 .34 .64 

“Err” stands for the proportion of errors in trials in which posterior probability and impact disagreed (row “Disa-
greement”) or agreed (row “Agreement”), when all trials (column “All trials”) or only consistent trials (column 
“Consistent trials”) were considered. These proportions have been computed by averaging across participants the 
proportion of errors made by each participant in which posterior probability and impact disagreed or agreed. 
“n” stands for the average proportion of consistent trials out of the total amounts of trials in which posterior prob-
ability differed from .5 (that is, trials in which there was a normatively correct response). 
 

Experiment 1 

Experiment 1 represented a first exploration of whether and how evidential impact 

might affect probability judgments when simple perceptual features like color (black vs. white) 

and shape (triangle vs. circle) were at issue. 

Results 

The first analysis (GLMM1) revealed that participants were significantly more likely to 

choose the confirmed hypothesis (mean = .57; SD = .14; 95% CI = .53-.62) than the (on average 

equally probable) disconfirmed hypothesis, Exp(B) = 1.37; CI = 1.14-1.64. The proportion of 
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choices favoring the confirmed hypothesis (across all types of evidence) is displayed in the 

upper panel of Figure 2. The GLMM2 showed that the type of evidence was a significant pre-

dictor of participants’ choices for the confirmed hypothesis, F(1, 3,198) = 55.7, p < .001. Spe-

cifically, participants more frequently selected the confirmed hypothesis when the evidence 

was color (mean = .70; SD = .17) rather than shape (mean = .45; SD = .17). The GLMM3 

analysis revealed a significant main effect of the type of evidence on RTs, F(1, 3,198) = 17.69, 

p < .001. Specifically, RTs were longer when the type of evidence was color (mean = 2,208ms; 

SD = 645ms) rather than shape (mean = 2,056ms; SD = 737ms).  

GLMM4 revealed that, overall, the less probable hypotheses were less likely to be cho-

sen (mean = .41; SD = .01; 95% CI = .39-.43) than the more probable ones, Exp(B) = .686; CI 

= .63-.75. The agreement between posterior probability and impact significantly predicted par-

ticipants’ errors, F(1, 2,558) = 20.08, p < .001. Indeed, the number of errors was greater when 

the more probable hypothesis was disconfirmed (mean = .48; SD = .15) rather than confirmed 

(mean = .33; SD = .15); the proportion of errors in the two conditions for each participant is 

reported in the lower panel of Figure 2. As revealed by GLMM6, however, the time required to 

make a choice was not significantly affected by the agreement between posterior probability 

and impact, F(1, 2,558) = .336, p = .562 (mean = 2,153ms, SD = 726ms and mean = 2,121ms, 

SD = 639ms, for disagreement and agreement between posterior probability and impact, re-

spectively). 

To sum up, in Experiment 1, there was an overall effect of impact over probability 

judgments: participants chose more often the confirmed hypotheses over the (on average 

equally probable) disconfirmed ones and made more errors (i.e., they chose the less probable 

hypothesis) when posterior probability and impact were dissociated (i.e., when the more prob-

able hypothesis was disconfirmed by the evidence). There was also an effect of the feature that 

served as evidence: participants chose more frequently the confirmed hypothesis when they 
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were provided the color of the figure and had to predict its shape rather than when it was the 

other way around. Such an asymmetry could originate from a different salience of the two 

features used (at least as regards the levels through which we have operationalized them: white 

vs. black and triangle vs. circle). In line with the empirical findings that indicate a privileged 

role of color in visual search (Wolfe & Horowitz, 2004, 2017) as well as in modulating atten-

tional capture and unconscious priming (Adamo, Wozny, Pratt, & Ferber, 2010; Breitmeyer, 

Ogmen, & Chen 2004), color might have been a more compelling factor than shape in deter-

mining participants’ responses. More specifically, it is possible that, when the color of the fig-

ure was provided as evidence, participants exploited it for updating their prediction concerning 

the shape of the figure, whereas, when the evidence was the shape of the figure, judgments 

were driven mainly by the prior probabilities of two alternative colors, without these being 

updated on information regarding shape. The RTs analysis is coherent with this interpretation: 

participants’ judgments were faster when the color was used as hypothesis rather than evidence, 

which is compatible with the former judgments being driven only by priors, while the latter 

being the results of a probabilistic updating.  

Experiment 2 

In order to balance the salience of the two perceptual features used in the stimuli of 

Experiment 1, in Experiment 2 we replaced color with pattern (lines vs. dots, see Figure 1). 

Moreover, to simplify the task and reduce possible noise, we halved the number of figures in 

the sets and incremented the presentation time of each trial (see Table 1).  

Results   

As in Experiment 1, the first analysis (GLMM1) showed that participants were signifi-

cantly more likely to choose the confirmed hypothesis (mean = .59; SD = .15; 95% CI = .53-

.65) than the (on average equally probable) disconfirmed hypothesis, Exp(B) = 1.39; CI = 1.19-

1.64. The proportion of choices favoring the confirmed hypothesis (across all types of 
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evidence) is displayed in the upper panel of Figure 3. Again, the type of evidence was a signif-

icant predictor of participants’ choices for the confirmed hypothesis, F(1, 2,558) = 52.39, p < 

.001. Specifically, participants more frequently selected the confirmed hypothesis when the 

evidence was pattern (mean = .68; SD = .18) rather than shape (mean = .49; SD = .15). As in 

Experiment 1, the type of evidence also predicted the RTs, F(1, 2,558) = 27.57, p < .001. In 

particular, RTs were longer when the type of evidence was pattern (mean = 1,389ms; SD = 

448ms) rather than shape (mean = 1,195ms; SD = 354ms).  

GLMM4 revealed that, overall, the less probable hypotheses were less likely to be cho-

sen (mean = .39; SD = .01; 95% CI = .38-.42) than the more probable ones, Exp(B) = .671; CI 

= .59-.76. The GLMM5 analysis showed a significant effect of the agreement between posterior 

probability and impact on participants’ errors, F(1, 2,046) = 29.04, p < .001. As in Experiment 

1, the number of errors was greater when the more probable hypothesis was disconfirmed 

(mean = .49; SD = .18) than confirmed (mean = .30; SD = .18) by the evidence; the proportion 

of errors in the two conditions for each participant is reported in the lower panel of Figure 3. 

Again, the agreement between posterior probability and impact did not significantly predict the 

time required to make a choice, F(1, 2,046) = .42, p = .519 (mean = 1,314ms, SD = 422ms and 

mean = 1,275ms, SD = 390ms, for disagreement and agreement, respectively). 

Therefore, the results of Experiment 2 replicated those of Experiment 1 and showed 

that overall the confirmed hypothesis was selected more often than the (on average equally 

probable) disconfirmed hypothesis, and that errors increased when there was no agreement 

between evidential impact and posterior probability. The choice for the confirmed hypothesis, 

however, was still influenced by the type of evidence: participants more frequently chose the 

confirmed hypothesis when they were provided with the pattern of the figure and had to predict 

its shape rather than when it was the other way around. Therefore, yet again, the shape of the 

figure appeared as the least salient feature, and, exactly as observed in Experiment 1, RTs were 
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faster when the other feature (in this case pattern) was used as hypothesis rather than evidence. 

This is compatible with the possibility that evidence about shape was not salient enough to 

drive a probabilistic updating of the pattern. 

Experiment 3 

The replacement of color with pattern which was intended to eliminate the asymmetry 

observed between the two types of evidence employed in Experiment 1 was unsuccessful since 

pattern also resulted as being more compelling than shape in determining participants’ choices. 

To contrast such asymmetry, in Experiment 3, we employed figures with two different features: 

line orientation (i.e., horizontal vs. vertical) and line curvature (i.e., wavy vs. straight), which 

have been claimed to be among the simplest line properties (Treisman & Gormican, 1988) and 

most relevant visual search attributes (Wolfe & Horowitz, 2017).  

Results 

 As in Experiments 1 and 2, participants were significantly more likely to choose the 

confirmed hypothesis (mean = .63; SD = .14; 95% CI = .58-.68) than the (on average equally 

probable) disconfirmed hypothesis, Exp(B) = 1.75; CI = 1.39-2.19. The proportion of choices 

favoring the confirmed hypothesis (across all types of evidence) is displayed in the upper panel 

of Figure 4. Unlike Experiments 1 and 2, however, the type of evidence was not a significant 

predictor of participants’ choices for the confirmed hypothesis, F(1, 2,558) = .97, p = .326: 

participants selected the confirmed hypothesis equally often when the type of evidence was 

line orientation (mean = .64; SD = .16) or line curvature (mean = .61; SD = .18). Nevertheless, 

the type of evidence significantly affected participants’ RTs, F(1, 2,558) = 6.87, p = .009. Spe-

cifically, choices took longer when the type of evidence was line curvature (mean = 1,330ms; 

SD = 461ms) rather than line orientation (mean = 1,245ms; SD = 453ms). 

 As in previous experiments, GLMM4 revealed that, overall, the less probable hypothe-

ses were less likely to be chosen (mean = .40; SD = .01; 95% CI = .38-.42) than the more 
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probable ones, Exp(B) = .670; CI = .60-.74. GLMM5 revealed that the agreement between pos-

terior probability and impact was a significant predictor of participants’ errors, F(1, 2,046) = 

39.47, p < .001. Errors were more frequent when the evidence disconfirmed (mean = .53, SD 

= .18) rather than confirmed (mean = .27, SD = .14) the more likely hypothesis; the proportion 

of errors in the two conditions for each participant is reported in the lower panel of Figure 4. 

In this last experiment, however, the agreement between posterior probability and impact sig-

nificantly predicted also RTs, F(1, 2,046) = 6.51, p = .011: participants’ choices were faster 

when posterior probability and impact were in agreement (mean = 1,256ms, SE = 472ms) rather 

than in disagreement (mean = 1,321ms, SE = 420ms).  

To summarize, Experiment 3 replicated one more time the two main effects of interest 

documented in Experiments 1 and 2: the confirmed hypothesis was selected more often than 

the (on average equally probable) disconfirmed hypothesis, and errors were significantly more 

frequent when impact and posterior probability were dissociated. However, in Experiment 3, 

the type of evidence did not affect participants’ choices for the confirmed hypothesis, indicat-

ing that the combination of line curvature and orientation was the most balanced pair of features 

among those employed in the present study (even if RTs were longer for arguments which 

employed line curvature as evidence). This clean pattern is corroborated further by longer RTs 

when impact and posterior probability were dissociated, a result that, consistently with the in-

creased number of errors observed in the same condition, suggests a more difficult inference. 
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Table 4. 

Main results of the six GLMM analyses performed for Experiment 1, 2, and 3 

Experiment Analysis Dependent 
variable 

Predictors B SE t Sig. Exp(B) CI 

1 GLMM1 Choicea  Intercept .315 .093 3.391 .001 1.370 1.14/1.64 

 GLMM2 Choicea Intercept .953 .131 7.270 .000 2.594 2.01/3.35 
   Type of evidencec  -1.177 .158 -7.467 .000 .308 .27/.42 

 GLMM3 RT Intercept 7.54 .049 155.296 .000  7.45/7.64 
   Type of evidencec  -.097 .023 -4.207 .000  -.14/-.05 

 GLMM4 Errorb Intercept -.376 .044 -8.577 .000 .686 .63/.75 

 GLMM5 Errorb Intercept -.071 .103 -.687 .492 .931 .76/1.14 
   Pr-Imp agreementd -.662 .148 -4.48 .000 .516 .39/.69 

 GLMM6 RT Intercept 7.503 .048 155.803 .000  7.41/7.60 
   Pr-Imp agreementd -.011 .019 -.580 .562  -.05/.03 

2 GLMM1 Choicea  Intercept .331 .082 4.040 .000 1.393 1.19/1.64 

 GLMM2 Choicea Intercept .714 .100 7.106 .000 2.042 1.68/2.49 
   Type of evidencec  -.738 .102 -7.238 .000 .478 .39/.58 

 GLMM3 RT Intercept 7.06 .057 124.727 .000  6.95/7.17 
   Type of evidencec  -.147 .028 -5.251 .000  -.20/-.09 

 GLMM4 Errorb Intercept -.399 .063 -6.283 .000 .671 .59/.76 

 GLMM5 Errorb Intercept -.027 .103 -.268 .789 .973 .80/1.19 
   Pr-Imp agreementd -.797 .148 -5.389 .000 .451 .34/.60 

 GLMM6 RT Intercept 6.993 .056 123.678 .000  6.88/7.10 
   Pr-Imp agreementd -.017 .026 -.645 .519  -.07/.034 

3 GLMM1 Choicea  Intercept .558 .116 4.786 .000 1.747 1.39/2.19 

 GLMM2 Choicea Intercept .653 .143 4.546 .000 1.922 1.45/2.55 
   Type of evidencec  -.157 .159 -.983 .326 .855 .63/1.17 

 GLMM3 RT Intercept 6.945 .048 143.733 .000  6.85/7.04 
   Type of evidencec  .080 .031 2,621 .009  .02/.14 

 GLMM4 Errorb Intercept -.401 .054 -7.456 .000 .670 .60/.74 

 GLMM5 Errorb Intercept .138 .131 1.056 .291 1.148 .89/1.48 
   Pr-Imp agreementd -1.183 -188 -6.282 .000 .306 .21/.44 

 GLMM6 RT Intercept 7.014 .047 147.887 .000  8.92/7.11 
   Pr-Imp agreementd -.056 .022 -2.552 .011  -.10/-.01 

 
a Choice is codified as 1 = choice for the confirmed alternative and 0 = choice for the disconfirmed alternative 
b Error is codified as 0 = choice for the more probable alternative; 1 = choice for the less probable alternative 
c Type of evidence is codified as 1 = pattern and 2 = shape 
d Pr-Imp agreement is codified as 0 = disagreement between posterior probability and impact and 1 = agreement between posterior probability 
and impact 
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Discussion 

Inductive inferences are being drawn continuously. Whether voluntary or automatic, 

they all contribute to an active understanding of the world and determine how efficiently we 

adapt to it. Improving knowledge of the extent to which such inferences are accurate and, pos-

sibly, identifying their biasing factors is important not only for theoretical reasons but also 

because it may allow us to prevent the most common mistakes from taking place. The three 

experiments reported in this study provided consistent data (both across individuals and across 

stimuli) indicating that probabilistic judgments concerning simple visual stimuli are systemat-

ically distorted by impact relations between evidence and hypothesis. Indeed, all things being 

equal, participants tended to overestimate [underestimate] the probability of confirmed [dis-

confirmed] hypotheses and made more errors in their probability judgments when the hypoth-

eses were disconfirmed by the evidence (i.e., when posteriors and impacts were dissociated).1  

The results of this study complemented and extended those obtained in previous works 

which employed arguments whose evaluation involved reference to a large body of beliefs and 

assumptions (such as, for example, the common knowledge about gender differences in inter-

ests or hobbies). They supported the centrality of the detection of impact relationships for in-

ductive reasoning and reinforced the conjecture that, although impact is formally defined as a 

function of probability values, psychologically it constitutes a primitive kind of judgment that 

people implicitly make when reasoning under uncertainty, even in the case of purely probabil-

istic tasks (for a similar conclusion in the context of the conjunction fallacy, see Crupi et al., 

                                                            
1 Note that, as pointed out by an anonymous reviewer, the results of this study are compatible with the occurrence 
of a base-rate fallacy. Unlike classic base-rate fallacy scenarios, participants were not explicitly provided with 
numerical information regarding base rates nor regarding the statistical association between evidence and hypoth-
eses. However, when posteriors and impacts were dissociated, incorrect responses mathematically implied that 
base rates were not appropriately considered. Such a connection between the effect of evidential impact on pos-
terior probability judgments and the base-rate fallacy is not surprising since, as mentioned in the Introduction, the 
most convincing explanations of the latter (as well as of other probabilistic reasoning errors) make use of concepts 
such as representativeness or relevance that can be (and have been) formalized in terms of a prevalence of impact 
over probability judgments.  
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2007, and Tentori et al., 2013). Moreover, for the very first time, our results showed that the 

effect of impact on probability judgments extends to perceptual materials and, in particular, to 

arguments that concern arbitrary artificial associations between evidence and hypothesis. Such 

a finding reveals that the same inferential processes that bias probabilistic reasoning, language 

and associative learning may also affect more basic cognitive functions, as perception. Further-

more, it casts serious doubts on the possibility that the preeminence of impact over probability 

judgments has an intrinsic epistemological value. Indeed, while the direction of impact rela-

tionships between real-world evidence and hypotheses typically conveys important infor-

mation, for example, with regard to the existence and nature of causal links, in case of simple 

perceptual arguments like those used in these experiments, impact relations express a purely 

structural property of the stimuli, which is completely uninformative for the probability task 

considered.  

The results of this study might also contribute to the growing literature aimed at under-

standing how the perceptual system encodes information of visual stimuli, since they specify a 

new and well-determined way in which the internal representation of the association between 

basic features and consequent inferences might be sub-optimal. Indeed, we can be quite confi-

dent that our participants’ probability errors did not stem from the difficulty of interpreting the 

sensory data, because the perceptual features employed in the stimuli were simple and distin-

guishable, and, especially for Experiments 2 and 3, time was more than enough to fully explore 

the set of figures. It is also unlikely that errors originated from an ambiguity of priors, since, in 

such an artificial context, these were completely independent of any pre-existing background 

knowledge and corresponded exactly to the (available) base-rates of the two alternative hy-

potheses. Our results showed that the observed probability errors were not random either but 

depended on one specific aspect of the relationship between hypotheses and evidence: the di-

rection of impact. To our knowledge, such a source of bias has not yet been considered within 
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the literature on perceptual updating and could offer a new perspective on Bayesian inference 

in this field. 

Finally, the asymmetry in the effect of impact found in Experiments 1 and 2 seems to 

indicate that, all probabilities being equal, the inductive inferences between visual features of 

different salience differed depending on whether the most salient feature was used as evidence 

or hypothesis. More specifically, our results suggest that participants used information on the 

most salient feature to update their predictions about the less salient feature, but not vice-versa. 

When the evidence concerned the less salient feature, in fact, participants’ judgments seemed 

driven by the priors of the values of the most salient feature, without these being updated on 

information regarding the less salient feature. If confirmed in further studies, such a pattern 

would indicate that inferences involving visual features with varying levels of salience depend 

mainly on the information conveyed by the most salient feature (for a similar conclusion in the 

domain of the detection of regularities from multiple feature dimensions, see Yu, Luo, Osher-

son & Zhao, 2019).  

The very limited range of impact (around +/-.4 or +/-.3) and posterior probability (6-.4, 

.5-.5, or .45-.55) values in our stimuli, on one hand, allowed us to fully balance these two 

variables while keeping the overall number of figures rather low, but on the other, did not 

permit us to insert these variables as quantitative predictors into our analyses. Future work 

might then consider a refinement of our experimental design by quantifying more precisely the 

distortion in percepts that can be ascribed to various degrees of impact relations across various 

levels of posteriors.  

Another investigation that, in our opinion, is worth pursuing in future research concerns 

why people’s probability judgments in various reasoning, language and perception tasks are 

systematically biased by impact relationships, and more in general why there is a prominence 

of evidential over posterior probability assessment. The answer to these questions constitutes 



 
22 

 

an intriguing puzzle from an evolutionary point of view since, as specified in the Introduction 

section, probabilistic reasoning is acknowledged as crucial for many important activities, such 

as decision making between risky prospects. According to what has been conjectured by Ten-

tori, Chater, and Crupi (2016), people might be more sensitive to impact relationships than they 

are to posterior probabilities because, by tracking direct or indirect causal dependencies be-

tween evidence and hypothesis, the former achieves a higher degree of stability than the latter 

in response to background knowledge or changing environments. Such a proposal is inspired 

by the assumption that confirmation is a necessary (albeit not sufficient) condition for proba-

bilistic causation and considers the ability to detect impact relationships as fundamental for 

building reliable and stable representations of the world. The replication of the effect of impact 

on probability judgments concerning artificial perceptual materials documented in this study 

offers a different, although potentially complementary, perspective. The notion of Bayesian 

confirmation has a striking formal correspondence with that of Bayesian surprise, which has 

been defined exactly in terms of some divergence between posterior and prior beliefs (for two 

proposals see, for example, Itti & Baldi, 2009, and Reisenzein, Horstmann, & Schützwohl, 

2019). Since surprise is acknowledged as one of the main attractors of human attention and a 

driver for learning, memory, and creativity (Ranganath & Rainer, 2003, Macedo & Cardoso, 

2019), one might speculate that prioritizing evidential assessment is well-suited to detecting 

novelty in incoming data and that, in the long run, the epistemic advantage provided by this 

surprise-search behavior well compensates for suboptimal accuracy of probability estimates. 

Hopefully, new experimental paradigms and simulations aimed at estimating more directly the 

costs and benefits of evidence versus probability evaluation across various cognitive domains 

will allow us a more in-depth exploration of these, and maybe other, suggestions.  
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Figure 1. Examples of sets of figures used in the three experiments, with corresponding 
questions and answers. 

 

In each trial, participants were first presented with a set of figures on uniform grey background. Figures were made up of two features with two 
possible values each (i.e., black or white color and circular or triangular shape in Exp. 1, striped or dotted pattern and circular or triangular shape 
in Exp. 2, horizontal or vertical line orientation and wavy or straight curvature in Exp. 3, for examples, see 1a, 2a, and 3a respectively). At the 
end of the presentation time, a figure was drawn from the set and the value of one of its features was revealed (i.e., “black” in 1b). In light of 
this evidence, participants had to report their expectation about the value of the other feature of the figure by selecting one of the two icons at 
the bottom of the screen (which counted as alternative hypotheses, i.e., “circle” vs. “triangle” in 1b). In Exp 2 and 3, we communicated the 
evidence verbally to prevent the graphical display of the figure from potentially cueing the levels of the other feature. Once the response was 
provided, the selected hypothesis appeared in the center of the screen for 1.5s, and participants were prompted to press the spacebar to proceed 
with the next trial.  
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Figure 2. For each participant of Experiment 1, the upper panel displays the proportion of 
choices favoring the confirmed hypothesis (across all types of evidence), while the lower panel 
displays the proportion of errors when posterior probability and impact were in agreement 
versus disagreement (and related group means).  
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Figure 3. For each participant of Experiment 2, the upper panel displays the proportion of 
choices favoring the confirmed hypothesis (across all types of evidence), while the lower 
panels displays the proportion of errors when posterior probability and impact were in in 
agreement versus disagreement (and related group means).  
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Figure 4. For each participant of Experiment 3, the upper panel displays the proportion of 
choices favoring the confirmed hypothesis (across all types of evidence), while the lower 
panels displays the proportion of errors when posterior probability and impact were in 
agreement versus disagreement (and related group means).  

 


