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Abstract: Extra virgin olive oil (EVOO) is one of the main ingredients of the Mediterranean diet. It is
claimed as a functional food for its unique content of health-promoting compounds. Tyrosol (Tyr),
Hydroxytyrosol (Htyr), and their phenolic derivatives present in EVOO show beneficial properties,
and their identification and quantification, both in their free form and after the hydrolysis of more
complex precursors, are important to certify its quality. An alternative method for quantifying free
and total Tyr and Htyr in EVOO is presented using an LC–MS interface based on electron ionization
(EI), called liquid electron ionization (LEI). This method requires neither sample preparation nor
chromatography; the sample is diluted and injected. The selectivity and sensitivity were assessed
in multiple reaction monitoring mode (MRM), obtaining confirmation and quantification in actual
samples ranging from 5 to 11 mg/Kg for the free forms and from 32 to 80 mg/Kg for their total
amount after hydrolysis. Two MS/MS transitions were acquired for both compounds using the
Q/q ratios as confirmatory parameters. Standard addition calibration curves demonstrated optimal
linearity and negligible matrix effects, allowing a correct quantification even without expensive
and difficult to find labeled internal standards. After several weeks of operation, the system’s
repeatability was excellent, with an intraday RSD (%) spanning from five to nine and an interday
RSD (%) spanning from 9 to 11.

Keywords: extra virgin olive oil (EVOO); liquid electron ionization (LEI); LC–MS; tyrosol; hydroxytyrosol

1. Introduction

Extra virgin olive oil (EVOO) is widely used in the Mediterranean diet. EVOO is
obtained after mechanical treatments of olives aimed to preserve their nutritional character-
istics, and it is gaining interest worldwide thanks to its well-known dietary and nutraceu-
tical values associated with several health benefits [1–4]. It is characterized by a unique
composition of minor components, together with many monounsaturated fatty acids,
triacylglycerols, vitamin K, and vitamin E. Minor components are phenolic compounds
belonging to four major classes: flavonoids, lignans, simple phenols, and secoiridoids [5].
Polyphenols in olives are unique and responsible for their organoleptic and sensory proper-
ties, such as the characteristic and distinctive aroma [6]. Polyphenols may inhibit oxidation
reactions of EVOO and indirectly play a significant role in preventing cancer, aging, and
chronic diseases, such as atherosclerosis, obesity, diabetes, and many others. [7–15].

Several parameters contribute to the presence of phenolic compounds and their
derivatives in EVOO, such as cultivar, fruit integrity and maturity, agricultural practices,
production processes, and storage length. In the literature of the last ten years, many
studies aimed to optimize all of those parameters that can improve the qualitative and
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quantitative composition of the phenolic profile. Several other studies have attempted
to elucidate the ultimate mechanisms through which EVOO-derived phenols contribute
to health benefits. Among all the phenols, hydroxytyrosol (Htyr) was listed as one of
the most potent therapeutic and nutraceutical agents for its antimicrobial, antithrombotic,
and anti-inflammatory effects and its capacity to eradicate intracellular and extracellular
reactive oxygen species [16,17].

European Commission (EC) Regulation No. 432/2012 has listed the permitted health
claims for foods and nutrients that refer to the reduction of disease risk and children’s
development and health [18]. Olive oil polyphenols are claimed to “contribute to the
protection of blood lipids from oxidative stress”, and “the claim may be used only for olive
oil containing at least 5 mg of hydroxytyrosol and its derivatives (e.g., oleuropein complex
and tyrosol, Tyr) per 20 g of olive oil. In order to bear the claim, information shall be given
to the consumer that the beneficial effect is obtained with a daily intake of 20 g of olive
oil” [19].

Starting from this regulation, the EC encourages EVOO producers to dose polyphenols
in their products to certify high-quality and healthy properties. A clear, descriptive label
on the bottles should inform consumers of the potential nutritional benefits. Despite this
suggestion, the regulation does not indicate the official methods to obtain these data, and,
at present, only a limited number of EVOO products are labeled with this information.
This gap lies in the difficulty of determining the polyphenols content accurately and the
lack of official methods and a list of specific molecules to be determined. Most of the
recommended methods have been proposed by the International Olive Council (IOC).

In 2009, the IOC approved a method in which polyphenols are extracted with a
hydroalcoholic solution and analyzed by HPLC–DAD [20]. Even though the detection
and quantification of all the phenolic substances, including flavonoids, is demonstrated,
retention times and UV absorbance at 280 nm might not be sufficient to exclude false posi-
tives or erroneous quantification. Olive oil composition was explored in many scientific
publications, and different protocols were presented. None of these methods can be consid-
ered “official” because no new regulations have been issued to fulfill this purpose [21,22].
GC–FID and LC–DAD are commonly used because they are relatively inexpensive, straight-
forward, readily available, and suitable with quality control laboratory practices [20,22–27].
The LC–MS and LC–MS/MS methods enhance selectivity and sensitivity in combination
with complex and time-consuming sample preparation steps, such as liquid–liquid extrac-
tion (LLE), solid-phase extraction (SPE), or derivatization protocols. In most cases, sample
preparation involves a hydrolysis step where all the polyphenols are reduced to simple
phenols (Tyr and Htyr) to quantify their total content either in the polar fraction or directly
in oil or olive oil mill wastewaters [28–33]. However, Tyr and Htyr are simple phenols to
dose in oil samples to comply with EC regulation N. 432/2012, either in their free form or
after the hydrolysis of more complex phenols. Simplified analytical protocols and confirma-
tory techniques are invoked to fulfill the lack of official methods for olive oil certification
in terms of quality and nutritional properties [34]. Recently, paper spray tandem mass
spectrometry was applied to quantify free and total Tyr and Htyr with good results in
terms of reliability, rapidity, and sensitivity [35]. Alternatively, EVOO was characterized by
the direct determination of the secoiridoids without the hydrolysis of the sample [36].

In this work, we present an alternative method to quantify free and total Tyr and
Htyr in EVOO samples using a liquid electron ionization (LEI–MS/MS) approach in flow
injection analysis (FIA) mode. LEI is a new LC–MS interface able to vaporize a nano-flow
liquid effluent at ambient pressure before entering into an electron ionization MS source.
One of the peculiar advantages of the LEI interface is the relatively low matrix effects
(ME), which guarantees quantitative results from over- or underestimations [37,38]. A
chromatographic pump conveys the samples into the LEI interface, where they vaporize
before entering the EI source. Compared to previous attempts, the proposed method does
not require chromatographic separation due to MS/MS selectivity and LEI robustness.
This approach can be used for the preliminary screening of oil samples to identify and
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quantify free Tyr and Htyr to rapidly certify the excellent quality of olive oils, bypassing
the purification or pre-concentration steps and time-consuming sample preparations. Oil
samples with a low concentration of free Tyr and Htyr should be investigated deeper, after
polyphenols hydrolysis, before quantification. This method was applied to the analysis
of Htyr and Tyr of three EVOO samples produced in Italy in different regions: Marche,
Sardinia, and Apulia. High-molecular weight polyphenols that do not vaporize using
the LEI interface were hydrolyzed before the analysis to determine the total Tyr and Htyr
amount required for the health claim.

2. Materials and Methods
2.1. Chemicals

The analytical standards of 3-hydroxytyrosol (Htyr) (CAS 10597-60-1) and of
2-(4-hydroxyphenyl)ethanol (Tyr) (CAS 501-94-0) (purity ≥ 98%) were purchased from
Sigma-Aldrich (Milan, Italy). Water, acetonitrile, ethanol, and acetone (HyperSolv Chro-
manorm LC–MS grade) were purchased from VWR, Part of Avantor (Milan, Italy). HCl
(37%), and HCOOH (≥96%) was purchased from Sigma-Aldrich (Milan, Italy).

2.2. Standard Solutions and Extra Virgin Olive Oil Samples

Tyr and Htyr stock solutions were prepared gravimetrically at the concentration of
1 and 10 mg/mL in acetone. All solutions were stored at 4 ◦C in sealed amber glass vials.
Working solutions of each compound were prepared daily by diluting the stock solutions
with acetone.

EVOO samples (n = 3) from Apulia, Marche, and Sardinia regions were produced
from local groves in 2019–2020 and stored in dark containers. Before determining the free
analytes, each sample was weighted to obtain 100 mg of sample and diluted 1:10 (w:v) with
acetone before analysis.

EVOO samples were submitted to hydrolysis [30] to quantify Tyr and Htyr total
amount. An aliquot (500 mg) of each sample was extracted with 1 mL of EtOH/H2O
(0.1% HCOOH) 7:3 (v:v) vortexing for 3 min and then centrifuged. 100 µL of 2M HCl was
added to 100 µL of the extract and hydrolyzed at 950 W microwave power at 130 ◦C for
10 min (MDS-2100-CEM-Microwave Technology Ltd., Buckingham, UK). The procedure
was carried out in triplicate. Each hydrolysate was then diluted with 200 µL of acetone
before the analysis.

Five-point calibration curves were plotted using the standard addition method for
each EVOO sample (∼=100 µL) by adding 2, 4, 6, 8 µL of the 1 mg/mL standard solutions.
The same procedure was used to construct five-point calibration curves to determine the
total amount of Tyr and Htyr after the hydrolysis process for each EVOO sample. Amounts
of 2, 4, 6, and 8 µL of the 10 mg/mL standard solutions of Tyr and Htyr were added to the
hydrolyzed samples.

After quantification (free and hydrolyzed Tyr and Htyr), fortified samples in acetone
were prepared at the same concentration levels, and standard addition curves were plotted
utilizing the procedure described above for matrix effect evaluation.

Free Tyr concentration determined in EVOO Marche and free Htyr concentration
determined in EVOO Apulia were utilized to fortify corn oil samples, and standard addition
curves were plotted starting from these fortified samples. Furthermore, standard addition
calibration curves for corn oil were plotted from Tyr and Htyr concentrations determined
in the hydrolyzed EVOO Marche sample. These corn oil curves helped to compare actual
and acetone samples with a similar complex sample free of the analytes.

2.3. LC–LEI–MS/MS Apparatus and Working Conditions

An Agilent 1100 series nanoPump (Agilent Technologies, Palo Alto, CA, USA) was
coupled to a triple quadrupole MS (Agilent 7010B, Agilent Technologies) operating in EI
via an LEI interface and equipped with a high-efficiency source (HES) that allowed high
ionization efficiency. The mobile phase was 20:80 H2O:ACN (v:v) at a 400 nL/min flow rate.
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A nano-column (Agilent Zorbax SB-C18, 0.075× 150 mm, 3.5 µm particle size) was installed
between the pump flow rate exit and the injector to guarantee sufficient backpressure to
work in stable conditions and not for chromatographic purposes. Standard solutions and
EVOO actual samples were analyzed in FIA using an external injector equipped with a
100 nL internal sample loop (VICI AG International, Schenkon, Switzerland). The LEI
interface was thoroughly described elsewhere [36,37]; in this application, the vaporization
micro-channel temperature was set at 300 ◦C. MS tuning was performed weekly at an
ion source temperature of 280 ◦C using perfluorotributylamine as a reference compound.
Check tune was performed daily in the same conditions. No mobile phase was admitted
into the ion source during the tuning procedure. Analyses were carried out in full scan
and multiple reaction monitoring (MRM) using the m/z range and transitions reported in
Table 1. Ions at m/z 138 and 154 are radical ions formed during the EI process. They are
used as precursor ions in MS/MS experiments. In Figure 1, structures and LEI–MS spectra
of Tyr and Htyr are shown.

Table 1. Full scan, MS/MS parameters, and Q/q ratios (reference and experimental) of the selected phenolic compounds.
Q/q ratios were calculated as the average of five injections at five calibration levels (three replicates each); relative standard
deviation for solvent (Reference) and diluted EVOO samples (Experimental) are reported in parentheses.

Compound Quantitative
Transition (Q) CE (eV) Qualitative

Transition (q) CE (eV) Reference
Q/q ± RSD(%)

Experimental
Q/q ± RSD(%)

Tyr 138→107 15 138→77 10 5.5 (10) 5.7 (9)

Htyr 154→123 10 154→77 10 6.4 (5) 6.8 (7)

Full scan
m/z Data sample Cyc/s

55–250 700 1.4
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3. Results and Discussion

LEI–MS/MS offers a valid alternative in analyzing free and hydrolyzed phenols in
EVOO because it relies on EI, a gas-phase ionization technique that occurs in-source at a
high temperature and high vacuum where ion–ion or ion–molecule reactions are infrequent.
These conditions explain why matrix effects (ME) are limited or absent compared with
other LC–MS approaches [38]. Methods based on ESI–MS can provide accurate quantita-
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tive results only after addressing ME issues. Coeluted matrix components can represent a
significant limitation when no sample preparation and fast analysis are required. Time-
consuming and expensive extraction and purification procedures are needed to avoid or
limit signal suppression or enhancement and develop adequate ME evaluation procedures.
The EI process is highly reproducible, suitable for inter-laboratory assays, and the result-
ing spectra can be compared with those present in database libraries for the undoubted
identification in targeted and untargeted analysis.

3.1. Qualitative Results

Qualitative identification in the target analysis of complex actual samples can benefit
from the MS/MS approach increasing sensitivity and selectivity, even in the presence of
high concentrations of interfering compounds. The Q/q ratio was calculated to confirm
the peak identity in actual and fortified samples. Experimental Q/q ratios obtained
from the actual samples were compared with those obtained with standard solutions.
The confirmation of the analytes in the EVOO samples was considered positive when
the experimental Q/q ratio was within ±20% of the average Q/q value calculated from
the standards [39]. In Table 1, the reference and experimental Q/q ratios are reported,
confirming the presence of the target analytes in the actual samples. This comparison is
fundamental for the undoubted analytes identification, especially in direct analysis without
chromatographic separation. Blank specimens were analyzed to assess the presence of
possible interferents.

3.2. Method Validation

The method was validated considering linearity (R2), LODs, LOQs, intraday, interday
precision, and ME evaluation.

3.2.1. Linear Range

Linearity was evaluated using the standard addition method, as described in Section 2.2.
Calibration curves were plotted using the least-squares regression analysis of the signal
intensity (peak area) versus the Tyr and Htyr absolute added amount. The linearity was
evaluated from X to X + 8 µg for the determination of free Tyr and Htyr and from X to
X + 80 µg for the compounds determination after hydrolysis. Each point on the curve is the
mean of five replicates. The same experiments were conducted on the EVOO samples after
hydrolysis to quantify the Tyr and Htyr total amount. The linear regression equations and
Pearson square determination coefficients (R2) obtained from the actual samples, solvent
samples, and corn oil samples are reported in Table 2. The R2 values are between 0.9942
and 0.9999, demonstrating a good linearity given the high matrix complexity. Acetone
and corn oil samples were used to evaluate the ME and compare the linear regression in a
complex matrix without analytes.
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Table 2. Linear regression equations, LODs, and LOQs of free and hydrolyzed samples.

Matrix Working Range (µg)

Free

LODs (ng/mL)Tyr
R2

Htyr
R2

Equations Equations

Acetone

0–8

y = 2964x − 179.44 0.9942 — 0.9957 Tyr Htyr

EVOO Marche y = 2808.2x − 167.4 0.9981 n.d — 10 30

Corn oil y = 2924.2x − 171.4 0.9974 y = 2282x + 89.24 0.9984 LOQs (ng/mL)

Acetone y = 3324.7x −315.64 0.9922 y = 2337.4x + 134.28 0.9957 Tyr Htyr

EVOO Apulia y = 3293.6x − 288.72 0.9910 y = 2235x + 119.6 0.9997 50 70

Hydrolyzed

Acetone y = 1968.5x + 8385.8 0.9993 y = 1145.6x + 2605.1 0.9994

EVOO Marche

0–80

y = 1925.3x + 8121.1 0.9995 y = 1136.4x + 2302.4 0.9997

Corn oil y = 1959.8x + 8241.7 0.9978 y = 1132.4x + 2285.3 0.9998

Acetone y = 2337.2x + 11639 0.9991 y = 1636.7x + 4617.8 0.9999

EVOO Apulia y = 2309.7x + 11540 0.9992 y = 1615.9x + 4406.3 0.9999

Acetone y = 1591.8x + 6979.6 0.9998 y = 1446.8x + 3336.1 0.9984

EVOO Sardinia y = 1537.3x + 6593.1 0.9991 y = 1406x + 3053.9 0.9986

3.2.2. Limits of Detection and Quantification

The instrumental LOD was considered as the absolute amount of the compound,
giving an S/N of 3/1, whereas the instrumental LOQ was set at an S/N of 10/1, expressing
the lowest amount of the analyte that can be determined quantitatively. The LODs and
LOQs were calculated by injecting a standard solution of 20 and 100 ng/mL of Tyr and
Htyr. All of the data are reported in Table 2. These values are comparable with those
obtained with other methods using LC–UV or DAD detectors or, in some cases, LC–MS,
demonstrating the robustness of the method [22,35].

3.2.3. Evaluation of Matrix Effects

Interfering compounds present in the matrix represent a possible drawback that must
be addressed in quantitative MS analysis. These compounds can enhance or suppress the
analyte’s signal and cause misleading results. The LEI shows negligible ME, as already
demonstrated [37,40]. Nevertheless, because EVOO is a complex matrix, a thorough
evaluation of the ME is mandatory. The evaluation of the ME was made comparing the
calibration curves of the Tyr and Htyr standards in acetone, corn oil, and EVOO (Figure 2).
In ideal conditions, the total absence of ME is observed when the two slopes are identical.
The slopes are overlapping, spanning from 95% to 97% for both compounds in all the
EVOO samples (Table 3). The slight difference in the values can be ascribed to normal
instrumental variations in LC–MS/MS experimental data acquisition. The ME evaluation
demonstrates method robustness, especially considering that neither sample pretreatment
nor chromatographic separation was performed. The corn oil overlapping value (99%) for
free and hydrolyzed Tyr and Htyr in the three samples confirms that matrix components
do not interfere considerably with analytes quantification.

3.2.4. Precision

The intraday and interday precisions were evaluated by injecting nine replicates of
a 100 mg Marche EVOO sample at the concentration of X + 4 mg of both compounds for
five consecutive days. The results obtained show good repeatability: the intraday RSD
spanned from 4.5% to 9.0% for Tyr and from 3% to 7% for Htyr. The interday precision
values spanned from 9.0% to 11.0% for Tyr and from 7.5% to 10.5% for Htyr. The precision
data were not acquired for hydrolyzed samples.
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Table 3. Matrix effects evaluation of the quantified EVOO samples.

Compound Matrix Effects Evaluation (a)

Free Tyr

EVOO Marche 95%

EVOO Apulia 99%

Corn oil 99%

Free Htyr
EVOO Apulia 96%

Corn oil 97%

Hydrolyzed Tyr

EVOO Marche 98%

Corn oil 99%

EVOO Apulia 99%

EVOO Sardinia 96%

Hydrolyzed Htyr

EVOO Marche 99%

Corn oil 99%

EVOO Apulia 99%

EVOO Sardinia 97%
(a) Ratio between real matrix, corn oil, and acetone slopes of the standard addition calibration curves * 100.

3.3. Real Samples Analyses

After dilution or hydrolysis-and-dilution, the EVOO sample was injected via a 100 nL
injection loop of the MS working in steady MRM conditions. The signals appearance and
analysis time are only one minute for each sample. As no chromatography was involved,
the samples could be injected in sequence without delay. Blanks were injected between
samples, revealing no carryover.

The EVOO actual samples were produced in three different Italian regions: Marche,
Apulia, and Sardinia. Different Tyr and Htyr contents were expected because the specimens
come from different cultivars and soil compositions. All of the samples were diluted in
acetone and hydrolyzed as described in Section 2.2. The validated method was used for
the quali-quantitative analyses of Tyr and Htyr and to verify their free and total phenols
content. The results obtained are reported in Table 4. The analytes’ content was determined
using the standard addition method described in Section 3.2.1. The free Tyr and Htyr were
both below the LOQs in the Sardinia samples, whereas the free Htyr was below the LOQs
in the Marche samples. The total Tyr–Htyr content spans between 32 and 44 mg/Kg for
Htyr and 67 and 80 mg/Kg for Tyr in all of the samples.

Table 4. Free and total content of Tyr and Htyr in the selected oil samples. Average value of three aliquots for each EVOO
sample and relative standard deviation in parentheses. b.l.: below limit of quantification. The analyte total content in 20 mg
of EVOO samples are also reported, following the 432/2012 EU Regulation.

Sample Compounds Free Tyr–Htyr-mg/Kg
(RSD%)

Total Tyr–Htyr-mg/Kg
(RSD%)

Total
Tyr–Htyr-mg/20 g

(RSD%) (a)

Apulia Tyr
Htyr

9 (4)
5 (5)

80 (6)
44 (8) 5 (8)

Marche Tyr
Htyr

6 (7)
b.l.

67 (9)
32 (4) 4 (10)

Sardinia Tyr
Htyr

b.l.
b.l.

69 (6)
35 (7) 4 (9)

(a) These values were calculated in accordance with the literature [35].
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In Table 4, the results are also expressed as the absolute amount of compounds per
20 g of EVOOs to attest to the possible assignment of the nutraceutical label. The three
oils are close to the concentration limit required to obtain the nutraceutical brand, but only
Apulia oil fulfills it and could officially exhibit this claim. Although the selected EVOO
samples come from regions with a rich tradition of oil, they all show poor quality, at least
in their polyphenols content. None of them could bear the EU health claim based on the
determination of free Tyr and Htyr.

4. Conclusions

Compared to other approaches recommended by the IOC, this method is simpler
because it does not involve complex sample preparation procedures or chromatographic
separation, only dilution before injection to determine the free analytes. Hydrolysis is
necessary for the determination of the total Tyr and Htyr. The method is robust, and
FIA ensures a rapid analysis of only one minute per sample. LEI–MS/MS quantitatively
measures Tyr and Htyr without considerable ME, typical of other MS approaches, even
with complex matrices, such as olive oil, and it does not require the support of other
confirmatory techniques. The LEI–MS/MS proved to be accurate and sensitive in the
range of the selected concentrations and can be used as an alternative method for the
rapid screening of the free and total Tyr and Htyr content in EVOO to certify potential
nutraceutical properties.
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