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Abstract The risk management of rainfall-induced landslides re-
quires reliable rainfall thresholds to issue early warning alerts. The
practical application of these thresholds often leads to misclassifi-
cations, either false negative or false positive, which induce costs
for the society. Since missed-alarm (false negative) and false-alarm
(false positive) cost may be significantly different, it is necessary to
find an optimal threshold that accounts for and minimises such
costs, tuning the false-alarm and missed-alarm rates. In this paper,
we propose a new methodology to develop cost-sensitive rainfall
thresholds, and we also analyse several factors that produce un-
certainty, such as the accuracy of rainfall intensity values at land-
slide location, the time of occurrence, the minimum rainfall
amount to define the non-triggering event, and the variability of
cost scenarios. Starting from a detailed mapping of landslides that
occurred during five large-scale rainfall events in the Italian Cen-
tral Alps, we first developed rainfall threshold curves with a ROC-
based approach by using both rain gauge and bias-adjusted weath-
er radar data. Then, based on a reference cost scenario in which we
quantified several cost items for both missed alarms and false
alarms, we developed cost-sensitive rainfall threshold curves by
using cost-curve approach (Drummond and Holte 2000). Finally,
we studied the sensitivity of cost items. The study confirms how
important is the information regarding rainfall intensity at the
landslide site for the development of rainfall thresholds. Although
the use of bias-corrected radar strongly improves these values, a
large uncertainty related to the exact time of landslide occurrence
still remains, negatively affecting the analysis. Accounting for the
different missed-alarm and false-alarm misclassification costs is
important because different combinations of these costs make an
increase or decrease of the rainfall thresholds convenient. In our
reference cost scenario, the most convenient threshold is lower
than ROC-based thresholds because it seeks to minimise the num-
ber of missed alarms, whereas the missed-alarm costs are almost
seven times greater than false-alarm costs. However, for different
cost scenarios, threshold may vary significantly, as much as half an
order of magnitude.

Keywords Shallow landslides - Rainfall - ROC - Cost
curve - Thresholds

Introduction

Rainfall is one of the most significant triggering factors for shallow
landslides. Although many physically based, empirical and prob-
abilistic approaches have been proposed in the literature
(Campbell 1974; Pierson 1980; Larsen and Simon 1993;
Montgomery and Dietrich 1994; Crozier and Glade 1999;
Wieczorek et al. 2000), the prediction of landslides triggered by
rainfall is still problematic to the complexity and the variability (in
space and time) and scale dependency of rainfall and other con-
trolling factors such as soil depth, soil resistance parameters, and
soil hydraulic parameters. However, while the prediction of the
exact location and timing of failure is almost impossible, a
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prediction of critical rainfall conditions that may lead to landslid-
ing is reasonably possible, especially for large rainfall events that
trigger tens or hundreds of landslides. This case of large rainfall
events may lead to critical emergency conditions that are extreme-
ly relevant for administrators that are called to issue alerts and
manage civil protection actions.

A necessary condition for risk management through alerting is
the availability of a rainfall threshold, that defines a level of rainfall
needed for landslide triggering, and that may be used for issuing
an alert. The most popular approach for the definition of a thresh-
old is to define a rainfall intensity-duration (ID) threshold curve
which accounts for both the intensity and duration of events that
can trigger landslides (Stevenson 1977; Caine 1980; Glade et al.
2000; Wieczorek et al. 2000; Crosta and Frattini 2001; Guzzetti
et al. 2007; Frattini et al. 2009; Martelloni et al. 2012).

There are few typical problems in the definition of the rainfall-
threshold curves. First, the rainfall actually responsible for the
triggering of landslides is frequently unknown. In fact, the exact
timing of occurrence is usually undefined (Crosta and Frattini
2001; Aleotti 2004; Staley et al. 2013) and the rainfall is usually
measured at rain gauges that may be kilometres apart from the
landslide location. For the latter, a major improvement can be
made by using meteorological radar and satellite data (David-
Novak et al. 2004; Chiang and Chang 2009; Marra et al. 2014;
Nikolopoulos et al. 2015; Iadanza et al. 2016; Postance et al. 2018;
Mathew et al. 2014; Brunetti et al. 2018). In particular, rainfall radar
data provide a good picture of the rainfall pattern in space, but the
estimates of rainfall are burdened with errors that are very often
quite significant (Krajewski 1987; Schleiss et al. 2020). The sources
of errors in radar rainfall measurement can be categorised as: (i)
errors in estimating radar reflectivity factor, (ii) variations in the
Z-R relationship, and (iii) gauge and radar sampling differences
(Hitschfeld and Bordan 1954; Wilson and Brandes 1979).

A second problem with rainfall threshold is that landslide
triggering is controlled by site-specific variables, such as local
topographical and soil conditions. Although local rainfall thresh-
olds may better characterise the actual site-specific triggering
condition (Crosta 1998), most of the rainfall thresholds are defined
at regional scale, for areas of similar meteorological, climatic, and
physiographic characteristics (Guzzetti et al. 2007) for two reasons.
First, because the need for a landslide database large enough to be
statistically significant usually requires the information to be gen-
eralised over larger areas. Second, because regional-scale thresh-
olds are more suited for operational landslide warning systems
(Guzzetti et al. 2007). At the same time, the same amount of
rainfall in the same location may trigger a landslide or not, ac-
cording to other factors that may change in time such as initial soil
wetness (Godt et al. 2006; Mirus et al. 2018; Marino et al. 2020),
root cohesion (Wu et al. 1979; Schmidt et al. 2001), frost conditions
(McRoberts and Morgenstern 1974). Therefore rainfall thresholds
should be probabilistic in nature (Frattini et al. 2009; Berti et al.
2012), with different level of rainfall and triggering probability
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potentially associated to different warning actions (Mirus et al.
2018; Piciullo et al. 2017). The modelling of probabilistic thresholds
requires the identification of non-triggering events (Berti et al.
2012), i.e. strong rainfall events that do not trigger landslides. This
identification is very difficult and somehow arbitrary because it
requires a minimum level of rainfall to be used for the selection of
rainfall events that do not cause failure. On the other side, it may
be extremely important because it strongly affects the threshold
levels.

A third problem with rainfall thresholds is the evaluation of
their quality. Several performance techniques have been used, such
as threat score (TS) and True Skill Statistic (TSS), but the most
common approach is to use receiver operating characteristic
(ROC) metrics. The ROC analysis has been frequently adopted to
assess the success of binary prediction in different fields, such as
medical testing (Goodenough 1974, Hanley and McNeil 1982),
machine learning (Egan 1975, Adams and Hand 1999), and also
landslide studies (Beguerfa 2006; Frattini et al. 2010). In the defi-
nition of rainfall triggering thresholds, ROC curves have been
recently adopted for evaluating the performance of the thresholds
(Staley et al. 2013; Mathew et al. 2014; Gariano et al. 2015; Piciullo
et al. 2017; Leonarduzzi et al. 2017; Hong et al. 2018; Vaz et al. 2018),
but also as a technique to identify the optimal threshold that
minimise the false alarms while maximising the true alarms (e.g.
correct alarms) (Postance et al. 2018).

A problem that is widely neglected in the definition of rainfall
thresholds to be used as a practical tool for early warning is that
issuing on alert always produces economic consequences. A cor-
rect classification of a harmful rainfall event (true alarm) with an
alert issued when the threshold is exceeded may result in a timely
evacuation of people from endangered locations, saving lives and
goods, but also causes the interruption of roads or economic
activities, with an indirect cost that may be relevant. The misclas-
sification of rainfall events also produces economic costs that may
be significantly different in case of false alarm or missed alarm.
Hence, the performance of the thresholds could be evaluated by
assessing these costs, in order to select the best thresholds, i.e. the
one that minimises costs to society. This has been typically done in
disciplines such as machine learning (Drummond and Holte 2000;
Provost and Fawcett 2001) and biometrics (Briggs and Ruppert
2005), but also for landslide susceptibility (Frattini et al. 2010).

As far as we know, the techniques used in the literature to
define rainfall thresholds do not account for misclassification
costs. This limitation is significant as the costs of misclassifications
are very different depending on the error type. Error type II
(missed alarm) means that a harmful rainfall event is classified
as non-harmful, and the alert is not issued. This exposes people to
landslide hazard, potentially causing loss of lives and damages to
mobile goods, such as cars. The missed alarm misclassification
cost, C(—| +), is equal to the loss of elements at risk that can be
impacted by landslides during the event. This cost is aleatory, since
the landslides may occur in non-inhabited slopes, and depends on
the economic value and the vulnerability of elements at risk (e.g.
lives, buildings and lifelines), the intensity of landslides, and the
spatial distribution of landslides with respect to the elements at
risk. In general, we can say that these costs are extremely difficult
to quantify precisely, due to the uncertainty about the variables
that control such costs.
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Error Type I (false alarm) means that a non-harmful rainfall
event is classified as harmful, thus causing the issue of an alert.
Hence, the false alarm misclassification cost, C(+| —), amounts to
the indirect costs related to evacuation, interruption of infrastruc-
tures, and suspension of economic activities. This cost is certain
and may be potentially calculated as a function of the socio-
economic condition of the area. Based on these costs, the optimal
threshold may change significantly, as illustrated in this paper.

The research hypothesis of this paper is that classification costs
accounted for the selection of the optimal thresholds to be used for
landslide risk management. We tried to demonstrate this hypoth-
esis by developing new ROC-based thresholds in Lombardy Re-
gion (Northern Italy). For this, we needed to face several problems,
such as the definition of a representative rainfall value, the selec-
tion of non-triggering events and the quantification of reliable
misclassification costs.

Methods

In general, the definition of rainfall thresholds requires: (i) a
statistical or empirical approach to define the triggering thresholds
and their probability; (ii) an inventory of landslides that were
triggered during a storm, with a reliable idea of the triggering
time; and (iii) rainfall data of enough resolution that can be
correlated to landslide triggering or non-triggering. Further, the
selection of an optimal minimum-cost threshold requires the
estimation of the probability of landslide events, and the quanti-
fication of misclassification costs.

The cost-sensitive rainfall threshold
To explicitly represent costs in the definition of the triggering
rainfall thresholds, we adopted the cost curve approach
(Drummond and Holte 2006; Frattini et al. 2010) (Fig. 1b). The
cost curve represents the normalized expected cost (NEC) as a
function of a probability-cost (PC(+)) function.

The normalized expected cost, NEC is calculated as:

(1=TAr)p(+)-C(=|+) + FArp(=)-C(+|-)

NEC = (=) + p(o)-C(H)

where TAr is the true alarm rate, FAr is the false alarm rate, p(+) is
the a priori probability of having a landslide, p(-) of not having,
C(—|+) are the misclassification costs associated to missed alarms,
and C(+|-) to false alarm. The expected cost is normalized by the
maximum expected cost that occurs when all cases are incorrectly
classified, i.e. when FAr (false alarm rate) and MAr (missed alarm
rate) are both one. The maximum normalized cost is 1 and the
minimum is o.
The probability-cost function, PC(+), is:

p(+)-C(=|+)
PC(+) = (2)
p(+):C(=1+) + p(=)C(+]-)
which represents the normalized version of p(+)c(—| +), so that
PC(+) ranges from o to 1. When misclassification costs are equal,
PC(+) = p(+). In general, PC(+) = 0 occurs when cost is only due
to negative cases, i.e. positive cases never occur (p(+) = o) or their
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misclassification cost, C(—| +), is null. PC(+) =1 corresponds to the
other extreme, i.e. (p(=) =0) or C(+| -) =o.

The optimal cost-sensitive cutoff is therefore the one that min-
imises the normalized expected cost, given a certain probability-
cost function.

In order to calculate these cut-off values, it is therefore neces-
sary to define:

i) The a priori probability of having a landslide, p(+) or no
landslide, p(=) = 1-p(+) for the rainfall events considered in
the analysis (i.e. events that overcome the threshold used in
Lombardy Region for issuing the second-level meteorological
alert);

ii) The costs of misclassification of the different error types,
C(+|-) and C(—|+).>

The misclassification costs depend on landslide magnitude,
extension, and organisational model needed to deal with. The
main costs are the direct costs for buildings and infrastructures
damages, for evacuation, for civil protection engagement, and for
human costs (both killed and injured people), and the indirect
costs for interrupted traffic and for unrealized gain of evacuated
people. Among these costs, we considered only those that occur
due to misclassification (missed alarms, and false alarms) and may
be avoided in case of opposite decision. The direct costs of damage
to buildings and infrastructures were not considered because they
would occur, in case of landslide, whatever the fact that we alert or
not.

When the costs of misclassification and the a priori probability
of having a landslide, p(+) or no landslide, p(—) are equal, the cost-
curve approach reduces to Receiver Operating Characteristic
(ROC) analysis, which only maximises the probability of detection
and minimises false alarm rate (Fig. 1a).

For the construction of the triggering rainfall threshold curves,
the cost-curve approach or the ROC analysis are applied to differ-
ent rainfall durations (D) to identify the rainfall-intensity (I) cut-
off points in the I-D plot. Therefore, the cut-off points are inter-
polated by the least-square regression.

Demonstration site

The cost-based approach is demonstrated in the central sector of
Alpine area of Lombardy Region (Italy), which extents about
350,000 km”, ranging in elevation from about 200 m to 3050 m
a.s.l. (Pizzo di Coca), where hundreds of landslides were triggered
during four extreme rainfall events in June 1997, November 2000,
November 2002, and July 2008 (Fig. 2).

This area is located in the Central European Alps and is
characterised by three main structural units: Southern Alps,
Pennidic unit, and Austroalpine domain. The Pennidic and the
Austroalpine domains are located to the north, respectively in the
eastern and western parts. The first represents the deepest part of
the Alpine belt and is composed of metamorphic rocks from
oceanic lithosphere and European margin basement. The second
one includes metamorphic and sedimentary formations detached
from the lithosphere during the orogenesis. The Southern Alps
domain is separated from the other domains by the Insubric fault
zone (Fig. 2), a regional trending east-west fault. This domain
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Fig. 2 Demonstration area. The coloured boxes show the extent of the areas
affected by the landslide events considered in the paper. Black: June 1997 event;
green: November 200 event; blue: November 13-16 2002; yellow: November 23—
26 2002; red: July 2008

includes a fold-and-thrust system characterised by basement and
sedimentary cover rocks, and two younger intrusive bodies, the
Adamello and the Val Masino-Bregaglia. The geological structure,
the lithologies of different strength and the climate result in a high
relief, deep valleys and high mountains. Most of the demonstra-
tion site has a continental climate with rainfall concentrated in
spring and autumn, ranging between 950 and 2000 mm/a.

From the landslide database of the Lombardy Region (GeolFFI,
Frattini et al. 2003; Trigila et al. 2010), which includes 144.000
landslides classified as rockfalls, debris flows, shallow landslides,
and deep-seated landslides, we extracted shallow landslides that
occurred during the 1997, 2000, 2002 and 2008 rainfall events.
Then, we improved the inventory by mapping additional land-
slides from digital orthophotos, obtaining 607 landslides (271 in
1997, 194 in 2000, 86 in 2002, and 56 in 2008). A careful historical
research, based on bibliographic and archival data source, allowed
the definition of the day and, in some cases, the hour of the
occurrence of most of the landslides.

Both rain-gauge and radar data were collected to extract trig-
gering and non-triggering rainfall events. Rain gauge data were
collected from ARPA Lombardia (https://www.arpalombardia.it).
According to the data availability at the time of the event, the
analysis was performed on 22 rain gauges for the June 1997 event,
33 for the November 2000 event, 34 for the November 2002 event,
and 99 for the July 2008 event. Radar data were collected from
Monte Lema radar images, provided by Meteo Swiss. The Monte
Lema radar station, installed in 1993, is located at an altitude of
1626 m a.s.l. and it operates with a sampling interval of 5 minutes.
It is a C-band Doppler radar with an antenna diameter of 4.2 m
and it covers a cylindrical volume with a radius of 200 km and a
height of 12 km; the full volume is scanned with a 1° beam at 20
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elevations. The spatially distributed radar data consists of GIF
images representing rainfall intensities in mm/h for s-minutes
time intervals. Each image consists of 1 km X 1 km resolution
pixels.

Early warning management

The alert system adopted by Lombardy Region is well-structured
in two phases: forecasting, based on weather models, and moni-
toring, to integrate direct and instrumental observations. The
system is based on three alert levels: ordinary (1st level), moderate
(2nd level), and high (3rd level), associated with rainfall thresh-
olds. The ordinary alert does not activate specific actions but the
notice of attention to regional and municipal authorities. The
moderate alert activates the civil protection operational centres
and the surveillance points, while the high alert activates the alarm
operational phase, including ban on risk areas, road closure,
evacuation of the population, and rescue of people in danger.
The adoptable actions activated at different alert levels are not
mandatory. The responsibility of the civil protection managers
encloses a case-specific discretionary assessment of the actions to
be taken, even to limit crying-wolf effect (Brenitz, 1984) in terms of
loss of confidence in the warning system.

Analysis and results

Radar data correction

In this research, the systematic comparison of rain-gauge and
radar data showed a substantial difference between the two
sources. To combine the advantages of accurate point rainfall
estimates of rain gauges with the large areas survey ability of radar
and to improve the accuracy of radar while preserving its spatial
description of rainfall fields, we applied a radar bias adjustment
method. First of all, we calculated for each rain gauge station and
for each rainfall event a bias adjustment factor, 3, defined as:

_ 1w Rg;
f= g )

where Rg is the rain-gauge data, Rr is the radar data at the location
of the rain gauge, and N is the number of hourly rainfall data.
Values of (3 greater than 1 imply a radar underestimation com-
pared to the rain gauges and values between o and 1 imply a radar
overestimation.

In order to attain the best radar correction, three different
approaches were performed: i) a mean-field bias adjustment
(Smith and Krajewski 1991; Anagnostou et al. 1998; Seo et al.
1999; Ochoa-Rodriguez et al. 2019), consisting in the calculation
of an average regional value of bias adjustment factor, ii) a corre-
lation function between bias adjustments and geographic param-
eters, such as the distance from the radar, the elevation, and the
visibility in order to account and correct limitations of the instru-
ment, and the potential horizontal and vertical errors (Gabella and
Notarpietro 2004), iii) an interpolation of the local bias adjust-
ments by using the inverse distance weighting (IDW) interpolator,
in order to adapt the radar data to the rain gauge data, still
maintaining the fine granularity of radar information
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The mean-field bias adjustment (3, Eq. 3) was applied consid-
ering rain gauges within 100 km of distance from Monte Lema
radar station. The resulting precipitation mean-field bias adjust-
ment values in many cases overrate local bias adjustment values,
leading to great errors in the rainfall radar estimate. For this
reason, this strategy was abandoned.

To compensate the radar underestimation bias in the overall
area, we tried to correlate the bias adjustment factor with: (i)
distance between the radar and the gauges, (ii) the elevation of
the gauges, and (iii) their visibility (the minimum height that
needs to be added to each rain gauge to make it visible by the
radar) (Fig. 3). While in some cases we could identify significant
trends (e.g. with distance in 1997 event, Fig. 3c), these trends were
not consistent for the different events, giving low R-square values
in the least-square regression. Given the impossibility to identify
consistent relationships, we abandoned also this strategy.

The interpolation of the bias adjustment factors has been de-
veloped by applying the inverse distance weighting (IDW) exact
interpolator. Figure 4 reports the interpolated maps of the local
bias adjustments. In 1997, 2000 and 2002 event I and event II (A, B,
C and D respectively), the IDW interpolation displays an increase
in the local adjustments in the north-east direction, more evident
in the 2000 event (B), whereas in the 2008 event a minor range of
bias interpolation is reported. The values of bias adjustment are
almost always larger than 1, suggesting that the rain-gauge values
are always greater than the radar measurements (Fig. 5), probably
due to a decreasing vertical profile of reflectivity with height,
combined with beam shielding and/or occultation by orography
(Gabella and Notarpietro 2004).

The values of interpolated adjustment factors were used to
correct rainfall radar estimations for each rainfall event (Fig. 6),

® Monte Lema radar station
A Rain gauge
IDW interpolation of bias

0.65-5 15-35
- |5-6 35 -60
- 16-7 60 - 105
- 17-10 105 - 150
| 110-12 150 - 336
- 112-15

Fig. 4 Interpolation of bias adjustment factor by means of inverse distance
weighting: a) June 1997; b) November 2000; c¢) November 13-16, 2002; d)
November 23-26, 2002; e) July 2008. In (a), CO = Como; LC = Lecco; CH =
Switzerland
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Fig. 4)

multiplying the interpolated map of the local bias adjustments by
the radar map.

Triggering and non-triggering rainfall data

The dataset of non-triggering rainfall (NLR) values was obtained
by analysing hourly rainfall data of 14 rain gauges evenly distrib-
uted over Lombardy Region from 2008 and 2017 (years). For each
station, we extracted the maximum monthly I-D values for the
same durations of the triggering events; we removed solid precip-
itations occurred in winter and precipitations related to all land-
slide events reported in archival data source. Antecedent soil
moisture conditions were not considered. In order to filter out
very low rainfall values that may be affected by measurement
uncertainty, and that will never trigger landslides due to the
negligible infiltration into the soil, we selected as non-triggering
rainfall (NLR) values for the statistical analysis only those that
exceed a threshold used in the Lombardy Region for issuing the
second-level meteorological alert, i.e. rainfall I-D values with a
return time of 2 years. The second-level alert was chosen for the
analysis because it corresponds to a level of pre-alarm in view of
the third-level alert, for which an evacuation could be required. By
using this filtering strategy, a total of 332 NLR values were
collected.

The landslide-triggering rainfall (LR) values were extracted for
each landslide occurred during the five events (1997, 2000, 2002-],
2002-11, 2008) by using the local bias-corrected radar data. In lack
of the exact information of the triggering time for each single
landslide occurred during an event, the rainfall duration was
assumed to be equal for each landslide and defined from the

@® Landslide event
A Rain gauge
® Monte Lema radar station

‘ Event rainfall [mm)]

Fig. 6 Study area and rainfall events measured by Mt Lema weather radar, by using corrected radar data: a) June 27 and 28 (event duration: 27 h), 1997; b) November
12-18, 2000 (124 h); ¢) November 13-16, 2002 (79 h); d) November 23-26, 2002 (72 h); e) July 12-13, 2008 (35 h)
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beginning of the rainfall to the known time of occurrence of most
of the landslides, as obtained from archival sources (Fig. 7). The
2000 and 2008 rainfall were considered single events because
landslides occurred only at the end of the last rainfall peak. A
total of 607 landslide-triggering rainfall (LR) values were detected.

Cost-sensitive triggering rainfall thresholds

Cost-sensitive thresholds require the definition of an a priori
probability of having a landslide and the costs of different error-
type misclassifications.

The a priori probability of landslide occurrence was calculated
by dividing the annual frequency of rainfall events causing at least
one documented landslide by the annual frequency of rainfall
events with a return period exceeding two years (i.e. the second-
level meteorological alert threshold in Lombardy Region), which is
the same filter value used to select the non-triggering rainfalls.
Rainfall events causing landslides were detected from a detailed
analysis of historical documents, landslide inventories and specific

Google Search for the period 2010-2019. Landslide events occurred
before 2009 were not considered because the catalogue was not
complete, apart for large events such as the ones that we used for
building the rainfall threshold curves. A total of 11 events were
collected. On the other hand, 42 rainfall events with a return
period larger than two years were recorded by the 14 rain gauges
located in the demonstration area for the period 2008-2017. The
resulting p(+) and p(—) amount to 0.26 and 0.74, respectively.

To assess the misclassification costs, we made reference to a
representative emergency scenario in the Sondrio province that
involves a mountain village located in a landslide-prone area (Civo
village, close to Morbegno town, Fig. 2). For this scenario we
assumed consequences both in case of alarm and in case of missed
alarm, and we quantified these consequences based on past events
occurred in Lombardy Region and the literature (e.g. Guzzetti
et al. 2005, for human costs in terms of casualties and injuries).

In case of alarm, the scenario is assumed to cause a 1-day
evacuation of 200 people, the interruption of a local road

: 500 : .
1997 . 12000 . 900 { 2002 |
200 |8 8| 450 4 | 4 :
152 gl R 1 1 A
= 8 g a0 | | 078 g
£ |_% §| 350 1 o =]l 7004 18 L2
. 1 1 T K=} el 11> >
— 150 © © j 2. N 3 3,
= N ! ‘E | 600_\2 =
s I 3004 1T 3! 1z o'
1 E 1 1 (ks -
= | 250_ lZO ZI 500‘\ |
[0] ~ 41 1
= 1004 | 1 ¢ - 4004 |
© 1 200+ 1 —_\ 1
_ . E | 1
g 1 150 H 1 300__\
3 %09 1 200 |
3 ! 100 1!
! 504 ! , 100 !
0 1 O‘ 1 1 0'\ p
T T T T T | L T T T T T T T T I T T T T T T T T T T 1
o o o o o o o bO o o o o o o o o o o o o o o o
@@s 8 8 8 8 8 8 (M8 8 8 8 8 8 8 8 ()8 8 8 &8 8 &8 &8 &
¥ 8 ¢ 8 ¢ 8 ¢ 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
S 5 5 5 5 5§ § 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
il - - - - - - zZ z z zZ Z z z zZ z z zZ zZ z zZ zZ zZ
€ & & & & 2 % e 3 e @ -2 Q2 e 3 2 @ = 2 2 g
450 : ‘ 200 ‘ :
o o
1 | 1o ol
400‘200218 8}/_— .200813 ﬁ}
— 350 1Q Qi [ =l
E ] '3 3 150 N o
3004 12 <! 1 l
E | N N\ 1 1
© 250 - | |
o ! 100 !
2 200 ! !
© 1 |
S 150 1 :
£ ! 50 |
S 100 ! |
O : I I
50 I ! 1
I 1 1
| 1 4 1
0 T T T T 0 T 1 T T T T T T
= = = ) S = S = =] = S o
8 S 8 3 8 8 o 8 o 8 o 8
> > > > > > =5 = = = =5 =
2 2 2 2 2 2 3 3 3 3 3 3
8 I & 8§ K 8 = s s 2 2 =

Fig. 7 Cumulative rainfall recorded at rain gauges during the five rainfall events. Although the figures show that the time of rainfall peaks may be shifted due to the
storm motion across the mountains terrain, a constant time-window was selected for each event due to the lack of information about the exact timing of landslides

occurrence
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connecting Civo to Morbegno used an average by 270 commuters
by car, the activation of 100 Civil Protection technicians and
volunteers, the loss of profit for both evacuees and commuters.

In case of missed alarm, the scenario is assumed to cause 0.6
affected people, calculated from the average number of people
affected during the 1997, 2000, 2002, and 2008 events. Of these,
83.2% are expected to die, 15.1 to be heavily injured, and only 1.7%
lightly injured (Guzzetti et al. 2005), totaling 0.50, 0.09 and 0.01
people per event, respectively. Costs related to vehicles and other
moveable assets were neglected.

Table 1 summarises the expected misclassification costs.

Based on the misclassification costs and the a priori probability
calculated for the reference scenario, we applied the cost curve
approach to identify the optimal intensity threshold for each
duration, and we interpolated the threshold to obtain the cost-
sensitive threshold curve (R* = 0.86):

I =50.24 x D7°7 (4)

For comparison, we also built ROC-based rainfall threshold
curves by using either the corrected radar data and nearest rain-
gauge rainfall data (Fig. 8).

The normalized expected cost (NEC) for the cost curve thresh-
old results 0.25, while the NEC value of the corresponding ROC
threshold with radar data, obtained performing a cost curve anal-
ysis taking into account equal cost and equal probability of p(-)

Landslide event

No-landslide event <

Rainfall intensity [mm/h]

- - --Cancelli and Nova (1985)

‘‘‘‘‘‘ Ceriani (1992)

————— Ceriani et al. (1994)

------- Crosta and Frattini (2001)

—— ROC threshold (corrected radar)
—— ROC threshold (rain gauge)
Cost-sens (ref. scenario)

0.1-+= T
10 100

Duration [h]

Fig. 8 Landslide-triggering rainfall threshold curves based on ROC approach and
cost-curve approach and comparison with literature thresholds proposed for
Lombardy Region: Cancelli and Nova 1985 (I =44.668 x D — 0.78); Ceriani, 1992
(I=16.24 X D — 0.46); Ceriani et al. 1994 (I =20 x D — 0.55); Crosta and Frattini
2001 (I =12 x (*/) +0.07))

and p(+), is 0.30. Therefore, in terms of avoidable cost, the new
cost-sensitive threshold outperforms the ROC threshold.

Discussion

Cost-sensitive rainfall thresholds

Cost-sensitive rainfall thresholds allow to account for misclassifi-
cation costs in the definition of the thresholds. Working on a
reasonable reference scenario, we were able to produce a curve
that minimises the normalized expected cost with respect to the
ROC-based approach. The cost-sensitive threshold curve lies be-
low the ROC-based curve, especially for longer durations, because
the costs associated to missed alarms are much higher than the
costs for false alarm (Fig. 8). Given these misclassification costs, it
is reasonable to expect that an optimal cost-sensitive threshold
curve should prefer to issue more false alarm in order to minimise
missed alarm costs with respect to a threshold curve in which the
costs are assumed to be equal.

Due to the uncertainty in the definition of the reference sce-
nario, we performed a sensitivity analysis to assess the weight of
the controlling parameters on the threshold. Starting from the
reference scenario, we varied one at a time the following param-
eters, multiplying then by 0.2, 0.3, 0.7, 1.5, 3, and 5: days of
evacuation, evacuated people, involved emergency technicians,
evacuated workers, involved commuters, number of fatalities,
and number of injured people. In total, we calculated 42 sce-
narios for each rainfall duration. The unit costs were included
in this sensitivity analysis because they are homogenous in the
entire country and they remain constant for any possible alert
scenario.

Figure ¢ illustrates the results for the rainfall duration of 27h
(see Supplementary F1 for other durations). We can identify two
different behaviours for parameters that control the MA misclas-
sification costs (number of deaths and injured people) and param-
eters that control the FA misclassification costs (days of
evacuation, evacuated people, involved emergency technicians,
evacuated workers, involved commuters).

An increase in the number of deaths or injured people causes
an increase of MA misclassification costs. Therefore, the optimal
cutoff needs to reduce the MA rate with respect to the FA rate,
leading to an increase of the FAr/MAr ratio (Fig. 9a) and a de-
crease of the rainfall cutoff (Fig. 9b). On the contrary, an increase
in parameters that control the FA misclassification costs leads to a
decrease of the FAr/MAr ratio (Fig. 9a), which is obtained with an
increase of the rainfall cutoff (Fig. ob).

In particular, we can observe that for the rainfall duration of
27 h the number of fatalities and the number of evacuation days
are the most sensitive parameters. On the other side, the number
of injured people, involved commuters, evacuees, emergency tech-
nicians and evacuated workers are almost insensitive. The param-
eters that involve higher costs are most sensitive. The fatalities
item has the greater unit cost, while the evacuation includes all the
false alarm costs because it involves that all the alarm actions are
carried out.

False-alarm cost varies for different rainfall duration (as shown
in the Supplementary Material), and this could affect the shape of
the threshold that shall be flatter and no more log-linear. So, when
the costs are considered, the threshold equation may be different,
also considering that costs may vary with the duration. We
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Fig. 9 Sensitivity of (a) the FAr/MAr ratio and (b) the rainfall cutoff (in mm) to changes of parameters that control the misclassification costs for a rainfall duration of 27 h.
FAr/MAr ratio represents how much is advantageous to produce false alarms with respect to missed alarms

preferred to adopt the standard log-linear ID curve to keep the
focus on how each cost item affects the cut-off definition regard-
less the rainfall duration.

Based on the range of variation of costs used for the sensitivity
analysis, we defined three different threshold-scenarios, in addi-
tion to the reference scenario, in order to evaluate the importance
of the misclassification costs in the rainfall threshold curves:

- A “maximum missed alarm costs scenario” with minimum
false alarm cost: c(—|+)max c(+|—)vmns

A “maximum false alarm cost scenario” characterised by min-
imum missed alarm cost: c(—|+)pm c(+]—)maxs

An equal costs scenario characterised by same misclassification
costs both for missed-alarm and false-alarm costs. This scenar-
io differs from the ROC-based threshold because it accounts
for the probability of landslide events. If the probability of
rainfall events were 0.5 for all the durations, this scenario
would be identical to the ROC-threshold.

Figure 10 shows the effect of different cost scenarios on the
rainfall threshold curve. The maximum missed alarm costs sce-
nario threshold curve is the lowest with respect to all the other
scenarios. This is because an increase of missed alarm costs would
favour a low value of the rainfall threshold curve, which therefore

2988 | Landslides 18 - (2021)

would issue continuous alerts (with numerous false alarms) in
order to avoid missed alarms. In such scenario, in fact, the human
costs of missed alarms are more than 6 times higher than Civil
Protection, evacuation and traffic interruption costs.

On the other side, the maximum false alarm cost scenario
threshold curve is higher than the reference scenario cost-
sensitive threshold curve and much higher than the equal-cost
scenario and the ROC-based threshold curves. Taking into account
the greater probability of p(—) with respect to p(+) in the investi-
gated area, and since the avoidable costs of missed alarm scenario
are part of an expensive bet (amounting to potential fatalities and/
or injuries) whereas in false alarm they are certain (amounting to
the indirect costs related to evacuation, interruption of infrastruc-
tures, and suspension of economic activities), preferring a higher
threshold that increases the risk of fatalities and injured people is
suitable from a cynical pure-cost perspective, even if potentially
questionable from an ethical point of view. The major limitation of
this decision-making model is that it is reasonable only under
rare-events conditions, because in case of frequent events, the
choice of adopting a lower threshold is always desirable from a
precautionary perspective. In other words, this model can be
applied only with a high degree of belief that the probability of
events is very low, which is not always the case.

An aspect that was not considered for the thresholds is the
crying-wolf effect. Both intuition and theory suggest that false
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Fig. 10 Landslide-triggering rainfall threshold curves obtained with different cost
scenarios. ROC-based curve is also reported for comparison

alarms should reduce warning response (Breznitz 1984; Simmons
and Sutter 2009). This may lead to additional costs occurring even
in case of true alarm that could potentially affect the optimal
cutoff. However, the empirical evidences for the crying-wolf effect
are elusive (Dow and Cutter 1998; Sorensen 2000). Moreover,
according to the national regulation, the evacuation is managed
at the municipal level and carried out by the executive authority,
thus limiting the discretionary component linked to the citizen
behaviour.

Issues for rainfall threshold construction

The lack of accuracy of both the rainfall data and the inventory of
landslides complicates the definition of an optimal rainfall thresh-
old curve.

While analysing rainfall data obtained by rain gauges and
radar, inconsistencies between the two sources were detected.
The classical strategy of using the rainfall of the nearest rain gauge
provides a rainfall threshold that performs worse than the ones
existing in the literature for the same area (Fig. 11). The need for a
regionalisation of rainfall data was accomplished by combining
the point rainfall estimates of rain gauges with the large areas
survey ability of radar, through the interpolation of local bias
adjustment values. Unfortunately, a more physically meaning cor-
relation of local bias adjustment with other spatial variables (i.e.
elevation, distance from the radar) was not possible because the
accuracy and the level of detail of the archive data were not
enough to identify significant correlations.

In Fig. 11, we can observe that ROC-based threshold based on
corrected radar data outperforms the literature thresholds, with
the exception of Ceriani et al. (1992). The new cost-sensitive curve
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False Alarm rate (FAr)

Fig. 11 Performance of ROC-based landslide-triggering rainfall threshold, cost-
sensitive threshold and literature thresholds

plots more to the right, because it tends to increase the false alarm
rate (Fig. 11). However, these thresholds still provide a perfor-
mance that is not optimal, as demonstrated by the high value of
the false alarm rate, especially for the cost-sensitive curve (Fig. 11).
This is due to several factors. First of all, the threshold is defined
based on a limited number of landslide-triggering events for which
a reliable inventory was available. In addition, even if the location
of each landslide is reliable due to an accurate mapping of the
events, the exact triggering time is unknown, leading to large
uncertainties in triggering rainfall at the landslide site. More in
detail, the lack of time information leads to a simplification: the
specific critical rainfall of each event is generalised, assuming that
all landslides were occurring simultaneously. Moreover, the con-
struction of rainfall thresholds ignores the role of antecedent
rainfall and soil moisture, which can both deeply affect the trig-
gering condition at site. In particular, one of the five events (23-26
November 2002) occurred soon after a previous rainfall event,
making the initial conditions significantly different from the
others. The nature of the rainfall events also affects the rainfall
thresholds. The 2008 event was a localised summer cloudburst.
For such phenomena, the values of rainfall collected at rain gauges
are strongly underestimated (Fig. 12), but also the bias-corrected
radar may be slightly underestimated (Marra et al. 2014). This can
be observed looking at the landslide-triggering rainfall intensity
values (crosses in Fig. 8) for the duration of 35 h (i.e. the 2008
event), which appear significantly lower than the triggering thresh-
old obtained by interpolating all the different durations, giving a
high number of missed alarms.

Finally, another key-parameter in the construction of rainfall
thresholds is the amount of minimum rainfall that is used to select
the non-triggering rainfall (NLR) values, filtering out trivial very-
low rainfall, which may bias the analysis by reducing the higher
false-alarm rate, leading to lower landslide-triggering rainfall
thresholds. To evaluate the effect of this minimum filtering rain-
fall, we built the threshold curves with four different populations
of NLR values: (i) one that consists in the whole dataset of non-
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Fig. 12 Detail of the 2008 rainfall event. The cloudburst was extremely localised
along a NS strip. Rain gauges mostly did not recognise the rainfall event

triggering rainfall events, (ii) and three derived from filtering the
dataset with the Lombardy thresholds adopted by the region civil
protection, corresponding to the activation of the 1st (5-year return
time), 2nd (2-year return time), and 3rd (1.5-year return time) alert
levels. Figure 13 shows that the final threshold curves remain quite
stable, thus demonstrating that the cost-curve approach is not
much sensitive to the choice of the minimum rainfall. In general,
we observe that the lower the minimum filtering rainfall, the lower
the threshold curve. Using the whole dataset of non-triggering
rainfalls, without any filter, is not convenient because it introduces

Rainfall intensity [mm/h]

Landslide triggering rainfall threshold curves
with filters of minimum rainfall:

All non-triggering events
——— First level critical alert (Tr = 1.5 yr)
---~-Second level critical alert (Tr =2 yr)
------- Third level critical alert (Tr =5 yr)

0.1-+— T
10 100

Duration [h]

Fig. 13 Landslide-triggering rainfall threshold curves developed by using different
amounts of minimum rainfall in the definition of non-triggering events. The
minimum amount of rainfall is also reported in the figure
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further uncertainty in the cut-off definition by adding trivial very-
low rainfall values that may be affected by measurement errors
and that give a negligible contribution to the soil strength reduc-
tion and to landslide triggering.

Operational implementation of cost-based thresholds

The Lombardy Region alert system works on homogeneous areas,
but it is the Civil Protection together with the municipal authority
to choose whether and where to implement the possible actions.
Experiences from the past showed that evacuation is rare, and
limited to single slopes or watershed already known to be prone
to landslides. This makes difficult to identify a representative
evacuation scenario, which could be a single building, a village, a
municipality or a larger area. It is evident that there is no point in
formalising each possible evacuation scenario, because both the
costs of false and missed alarms will vary locally.

However, although the quantified consequences and costs are
site-specific, we believe that the proposed method is applicable at
different scales because both false and missed alarm costs mainly
depend on the population density. Assuming that both costs varies
linearly with the density, we can expect that, within the same
socio-economic context and alert system (e.g. northern Lombardy
Region), the ratio between the two costs would remain
approximatively constant by increasing or decreasing the popula-
tion density. Remaining constant the ratio, the proposed threshold
would also remain constant for scenarios with different size.

On the other side, the application of the cost-based approach in
a different socio-economic context and with a different alert sys-
tem requires to recalculate the costs.

Conclusions
The results of this research lead to the following conclusions:

- The new cost-sensitive rainfall thresholds allow to explicitly
account for misclassification costs in rainfall threshold defini-
tion. This is very important because missed-alarm costs and
false-alarm costs may be significantly different, making an
increase or decrease of the rainfall thresholds, according to
these misclassification costs, convenient. As far as we know,
this is the first attempt to build a cost-sensitive rainfall thresh-
old for landslides.

- Considering a representative emergency scenario, we found
that the cost-sensitive rainfall threshold curve is lower than
the ROC curve (Fig. 8). In fact, since the missed-alarm costs
(i.e. human costs for fatalities and injured people) are almost
seven times greater than false-alarm costs (587,000 euro and
87,000 euro, respectively), the most convenient threshold
should be low enough to minimise the missed alarms (i.e. the
number of missed alarms).

- For different socio-economical settings (e.g. different popula-
tion density, transport facilities, civil protection organisation)
the misclassification costs may vary significantly and so their
cost-sensitive threshold curves, accordingly. In order to quan-
tify the range of variation of these curves, we made a sensitivity
analysis of the main parameters that control costs, and we
produced thresholds for two opposite cost scenarios. We find
that thresholds range were as much as half an order of
magnitude.



- The information regarding rainfall intensity at the landslide
site is very sensitive. As reported in the literature, the use of
weather radar allows to significantly improve the accuracy of
rainfall intensity values at the site of landslide. However, radar
data needs a correction of the value that may vary in time and
space. In this paper, we applied a simple interpolation of the
local bias adjustment to the five landslide-triggering rainfall
events, and we did not find more significant correlation with
distance from radar or with local morphometric conditions.

- The exact time of landslide occurrence is unknown for most
events, especially for large-scale landslide events.
Crowdsourced landslide reporting may partially overcome this
limitation, but it would be largely ineffective for landslides
occurring in remote areas where witnesses are missing.

- The minimum rainfall amount that is used for the definition of
a non-triggering rainfall event is commonly an arbitrary
choice. In this work we used as minimum rainfall the alert
threshold values of Lombardy Region, which are defined in
terms of probability of occurrence. However, we showed that
the use of different thresholds does not affect significantly the
rainfall threshold curves.

Supplementary InformationThe online version contains
supplementary material available at https://doi.org/10.1007/s10346-
021-01707-4.
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