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Abstract

The relation between the number of solutions of a nonlinear equation on a Riemannian manifold and the
topology of the manifold itself is studied. The technique is based on Ljusternik—Schnirelmann category and
Morse theory.
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1. Introduction

In this paper we are interested in the relation between the number of solutions of a nonlinear
equation on a Riemannian manifold and the topology of the manifold itself.

Let (M, g) be a compact, connected, orientable, boundary-less Riemannian manifold of class
C®° with Riemannian metric g. Let dim(M) =n > 3.

We consider the problem

—e2Au = f'(u) (1.1)

with u € H3(M).
As it has been pointed out in [9] problem (1.1) admits solutions on R” if f'(0) < 0, while there
are no solutions if f/(0) > 0. The limiting case f’(0) =0, i.e. the “zero mass” case, depends on
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the structure of f. Berestycki and Lions proved the existence of ground state solutions if f (i)
behaves as |u|? for u large and |u|? for u small, with p and g respectively sub- and super-critical.
In [8] they proved also the existence of infinitely many bound state solutions.

Problem (1.1) has been studied also in [7], where existence and non-existence results have
been given on an exterior domain in R”.

The problem of the multiplicity of solutions of a nonlinear elliptic equation on a Riemannian
manifold has been studied in [3], where the authors consider an equation with sub-critical growth.

The effect of the domain shape on the number of positive solutions of some semilinear elliptic
problems has been widely studied. Here we only mention [1,5,6,10] and [4].

Let f:IR — R be an even function such that:

(f1) 0 < uf(s) < f'(s)s < f"(s)s? for any s # 0 and for some ;1 > 2;
(f2) f(0) = f'(0) = f”(0) =0 and there exist positive constants co, c1, p, g wWith2 < p <2* <

q such that
Fs) > cols|? for|s| =1, (12)
~ leolsl? forls| <1, '
f,,(s)<{c1|s|ﬂ—2 for |s| > 1. (L3)
h cils|97? for|s| < 1

We denote by cat(M) the Ljusternik—Schnirelmann category of M and by P, (M) the Poincaré
polynomial of M.
Our main results are the following:

Theorem 1.1. For € > 0 sufficiently small, Eq. (1.1) has at least cat(M) + 1 solutions in HIZ(M).

Theorem 1.2. If for € > 0 sufficiently small the solutions of Eq. (1.1) are non-degenerate, then
there are at least 2Py (M) — 1 solutions.

2. Notation and preliminary results

We denote by B(0, R) the ball in R" of centre 0 and radius R and by B, (x, R) the ball in M
of centre x and radius R.
We define a smooth real function xz on RT such that

1 ifo<r< &,

2.1)
0 iftr >R,

XR(t)={

and |x ()| < %, with xo positive constant.
We recall some definitions and results about compact connected Riemannian manifolds of
class C* (see for example [12]).

Remark 2.1. On the tangent bundle 7 M of M the exponential map exp: T M — M is defined.
This map has the following properties:
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(1) exp is of class C*°;
(i1) there exists a constant R > 0 such that

exp,|Bwo,r): B(0,R) = By(x, R)
is a diffeomorphism for all x € M.
It is possible to choose an atlas C on M, whose charts are given by the exponential map

(normal coordinates). We denote by {¥/¢}cec a partition of unity subordinate to the atlas C. Let
8x, be the Riemannian metric in the normal coordinates of the map exp,, .

For any u € HIZ(M) we have that

/|Vu(x>| dug—Z/wc<x)|Vu(x>| dpg

M CECC
ou(exp,.(z)) du(exp,.(z)) 1
-y f Ve (expy ()8 ()= ¢ S g @] dz,
CECB(O,R) i J

where Einstein notation is adopted, that is

g lej Zg ZiZj,

i,j=1
()(2)) is the inverse matrix of gy, (z) and |gx (2)| = det(gy(2)). In particular we have that

8x,(0) =1d. A similar relation holds for the integration of |« (x)|”. For convenience we will also
write for all xo € M and z,§ € T, M

612, 0 = 85 (QEiE. 2.2)

Remark 2.2. Since M is compact, there are two strictly positive constants # and H such that for
allxeMandallze T\M

hlzl* < gx(z,2) < Hlzl,
where | - | is the standard metric in R”. Hence there holds
h" < |gx(2)| < H"

We are going to find the solutions of (1.1) as critical points of the functional J¢ : H 12 (M) —> R,
defined by

Jew) = 7= /|Vu(x)| dug——/f u(x)) dpg, (2.3)

M
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constrained on the Nehari manifold

N, = {u € HX(M) ‘ u #0 and /62|Vu|§dug=/f’(u)udug}. (2.4)
M

M

Let DL2(R™) be the completion of Cg°(R™) with respect to the norm
2 = [ Vo) d
”v”Dl,Z(Rn) - | U(Z)| Z.
Rn
We consider also the following functional J : D2(R") — R defined by

|
J(v) ::/<§|Vv(x)|2 - f(v(x))> dx 2.5)

]er

and the associated Nehari manifold

N:{UGDI’Z(R") u;éOand/\W(x)|2dx=ff’(u)udx}. (2.6)
Rn Rn

The functionals J, and J are C2 respectively on H IZ(M ) and on DL2(R™). In fact, we have

Lemma 2.3. (i) The functional Fe p: L? (M) — R, defined by

1
Fem():=— / Flu) dpg @7
M

is of class C* and

1
F. y(uo)uy = e—nff/(uo(X))Ml(X)d,ug,

M

1
F/ yp(uo)uiuz = o / I (o () )ur (X)uz (x) .
M

(1) The functional F : LY (R™) — R defined by

Flv) = / F(v() dz 238)
]Rn

is of class C* and
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F'(vo)vy :/f’(vo(z))vl(z)dz,

Rll

F"(vo)vrvs = / 7 (50(2)v1 (D02 (2) dz.
Rn

The proof of this lemma is analogous to the proof of Lemma 2.7 in [7].
We also have the following lemma:

Lemma 2.4. The functionals I?g, m:LP (M) — R, defined by

~ 1 1
Fom@) :=— / [Ef/(u(x))u(x) — f(M(x))} dug (2.9)
M

and Fo : LY (82) — R defined by

~ 1,
Fa(v):= [[Ef (v@)v(2) — f(v(z))] dz (2.10)
2
are strongly continuous.
We write
m(J) ==inf{J(v) [v e N}. (2.11)

There exists a positive, spherically symmetric and decreasing with |z| solution U € D12(R") of
—AU = f(U) inR", (2.12)

such that J(U) =m(J) (see [9] and [7]).
The function Ue(z) = U (%) is solution of

—* AU = f'(Ue).
For any § > 0 we consider the subset of N
Tes={ueN:| Jew) <m(J) +8}. (2.13)
We recall now the definition of Palais—Smale condition:
Definition 2.5. Let J be a C' functional on a Banach space X. A sequence {u,,} in X is a Palais—
Smale sequence for J if |J (u;,)| < ¢, uniformly in m, while J’(u,,) — 0 strongly, as m — 00.

We say that J satisfies the Palais—Smale condition ((PS) condition) if any Palais—Smale sequence
has a convergent subsequence.
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3. Ideas of the proof for the category theory result

We recall the definition of Ljusternik—Schnirelmann category (see [13]).

Definition 3.1. Let M be a topological space and consider a closed subset A C M. We say that A
has category k relative to M (caty (A) = k) if A is covered by k closed sets A, 1 < j <k, which
are contractible in M and if £ is minimal with this property. If no such finite covering exists, we
let catps (A) = o0. If A = M, we write caty; (M) = cat(M).

Remark 3.2. Let M and M> be topological spaces. If g1 : M — M> and g» : My — M are con-
tinuous operators such that g, o g1 is homotopic to the identity on M1, then cat(M;) < cat(M>)
(see [S]).

Using the notation in the previous section, Theorem 1.1 can be stated more precisely like this:
Theorem 3.3. There exists 8o € (0, m(J)) such that for any é € (0, 8o) there exists €g = €p(8) > 0
and for any € € (0, €o) the functional J¢ has at least cat(M) critical points u € H21 (M) satisfying
Je(u) <m(J) + § and at least one critical point with Jc(u) > m(J) + 6.

This theorem is a consequence of the following classical result (see for example [6]):
Theorem 3.4. Let J be a C! real functional on a complete C-' submanifold N of a Banach
space. If J is bounded below and satisfies the (PS) condition then it has at least cat(J 4y critical

points in J4, where J9 := {u e N: J(u) <d}, and at least one critical point u ¢ J4.

More precisely, Theorem 3.3 follows from the previous theorem, Remark 3.2 and the follow-
ing proposition:

Proposition 3.5. There exists 5o € (0,m(J)) such that for any § € (0, 8y) there exists €y =
€9(8) > 0 and for any € € (0, €g) we have

cat(M) < cat(Xe 5).

In order to prove this we will present two suitable functions g; and g».
By the embedding theorem, we assume that M is embedded in RV, with N > 2n.

Definition 3.6. We define the radius of topological invariance r (M) of M as
r(M) :=sup{p > 0| cat(M,) = cat(M)},
where M, :={z € RN |d(z, M) < p}.

We can now show a function ¢ : M — X 5 and a function B : X¢ 5 — M,, withO <r <r(M)
such that

Ic:=Bo¢p.: M — M, (3.1

is well defined and homotopic to the identity on M.
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4. The function ¢
Next lemma presents some properties of the Nehari manifold.

Lemma 4.1. (i) The set N, (respectively N) is a C' manifold.

(i1) For all not constant u € HIZ(M) (for all v € DV2(RY), v £ 0), there exists a unique
te(u) > 0 (t(v) > 0) such that te W)u € N (t(v)v e N) and Je(te (wu) (J (¢t (v)v)) is the maxi-
mum value of Je(tu) (J(tv)) fort > 0.

(iii) The dependence of t.(u) on u (of t (v) on v) is cl.

For the proof see Lemma 3.1 in [7].
Let U be the function defined in Section 2. We write

~ R
Ur =U(z) withzeR"suchthat|z| = —.
€ €
For any xp € M and € > 0, we consider the function on M

Ue(expy,!(x)) — Uz if x € By(x0, R),

Wio,e(x) 1= { 4.1)
0

otherwise,

where R is chosen as in Remark 2.1(ii).
The function Wy, ¢ isin H 12(M ) and is not identically zero. Then, by the previous lemma, we
can define

P M —> N@
X0 —> te(on,e(x))on,e(x)- 4.2)

The choice of the function ¢, different from the one in [3] has been made for the function U
can be not in L2(R").

Proposition 4.2. For any € > 0 the map ¢. : M — N is continuous. For any § > O there exists
€9 > 0 such that if € < €9

Pe(x0) € e s
forall xo e M.

Proof. (I) The map ¢ : M — N is continuous.
By Lemma 4.1(iii), it is enough to prove that

5 m || Xk, e — W3xe ”Hzl (M)
for any sequence {Xk} in M, COHVCI‘gng to )2

We choose a finite atlas C for M, which contains the chart C = B, (x, R). The functions
Wy e and W; . have support respectively on B, (xi, R) and on B, (X, R). Since xx — X the set
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Zi =[By(xk, R)\ Bg(X, R)JU[Bg (X, R) \ Bg(xi, R)] is such that j14(Zy) — 0 as k — oo. Then
we have

f\v(ka,e(x) - W,;,E(x))@dug 50 ask— oo
Zy

We still have to check the integral on Bg (xz, R) N B, (x, R). We write Ay = exp);1 (Bg(xr, R)N
By (%, R)) and mi(z) = expy (exp; (2)),

/ V[We e () = W e 0)] 2 dpag = / V[Ue(me@) — Ue@]2, . le: )| dz

exp; (Ag) Ak

HS
<= /|V[Ue(77k(z)) ~Ue@]| dz.
Ak

Since nx(z) tends point-wise to z and VU is continuous, |V[Uc(nx(z)) — Ue (2)1]? tends point-
wise to zero. Applying the Lebesgue theorem, we obtain that

[ 19150 = W 0] diag
M

In an analogous way we have that ||Wy, . — W; . ”iZ(M) tends to zero.

.o 2 .
(1) The limit of & [y, |V Wxy.e (0)|3 dpag is |U ||%,VZ(RH).

To prove the second statement of this proposition, first we show that

2
. € 2
lim & f 9 W )2 dit = 1U oy 4.3)

e—0 €
M

uniformly with respect to xo € M.
We evaluate the following:

2 2

€ 2 2 € -1 2 2

6—n/|vwxo,e|gdug—/|VU| dz pry / |V[Ue (expy, (x))]|gdug—/|VU| dz
M R” By (x0.R) R"

2

€ 2 1 5

e / ‘VUf(Z”gxo(z)‘gxo(Z)VdZ—/IVUI dz
BO.R) o

Changing variables, we obtain

P 1 . oU aU
‘/(XB(O,g)(Z)gi{)(GZ)|gxo(EZ)|2 —8)—_—dz
]Rn

’

0z; 0z
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where BO.E )(z) denotes the characteristic function of the set B(0, g) and where 8"/ is the

Kronecker delta (it takes value O for i # j and 1 for i = j). The previous integral is bounded
from above by the following sum

i 1 . oU oU
/ (XB((),5)(2)8%(62)|8x0(62)|2—511)3—155&’
B(0,T) o
i 1 . oU oU
+’ / (X0, 2) (2830 (€2) |8y (€2) | —alf)a—zgdz'
R"\B(0,T) t

with T > 0. It is easy to see that the second addendum vanishes as 7' — oo. As regards the first
addendum, fixed T, by compactness of the manifold M and regularity of the Riemannian metric
g the limit

.. 1 ..
: 1y 2 —
lim | g, 2, ()83 (€2)|gxg (€2)]* = 8V[ =0

holds true uniformly with respect to xo € M and z € B(0, T) and (4.3) is proved.

(III) There exists t; > 0 such that te(Wy, ) > t1 for any € € (0, 1] and xo € M.

Let ge ., (t) = Je(tu). By Lemma 4.1(ii), it is enough to find #; > 0 such that for all ¢ € [0, #1]
gé w. (&) >0forall € <1 and for all xo € M. Then we look for a lower bound of gé w.  (©):

s Wxg.e » Wxp,€

2
€t 1 ,
gé,WxO,e(t)Z6—n/|VWx0,e|§dﬂg_ G—nff (tho,e)on,ed/Lg
M M

:i / [€2t|VU€(Z)’2

en 8xq (2) -
B(0,R)

' (tUe(z) — tﬁg)(Ue(z) — 65)]|gxo(z)|%dz

B ./ [IWU(Z)@YO(@) ~ (U@ ~1Ux)(U) - ﬁg)]\gxo(ez)ﬁ dz.
B0, %)

Using Remark 2.2, the fact that € < 1 and the properties of f (f1) and (f2), we obtain the follow-
ing inequality:

hit n ~

8w (D) > / |VU(Z)|2dz—ClH7/fp—1|U(Z)—U£|pdz
B(0,R) Gie
—clH%/tq_l\U(z)—ﬁﬂqdz,

Lie

where G, = {z € B(0, é) |t(U(z) —Uzr) =1} and L, . = {z € B(0, §) |1(U(z) — Ur) < 1.
If t < 1, the following inclusions hold:
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R ~
Gre C {z e B(o, —) (U@ T > 1}
€ 3
R
C {Z€B<O, —) ‘ U(z) > 1} C {zeR" | U(z) > 1}:G.
€

By these inclusions and the fact that |U (z) — ﬁg | <|U @),

ft!’*WU(z)—ﬁg}”dz</rl’*‘|U(z)|sz.
Gie G

Let L={z€R"|U(z) < 1}. We have

/t"_1|U(z)—l75|qdz= / 117U — Ur|"dz + / 117U (2) - Ur|"dz
Lie LNB(0, %) Li\L

g/t‘l‘1|U(z)|qdz+ / " U @) - U |’ dz
L Lie\L

</ﬂ—l|U(z>|"dz+/r1’“}U<z)|”dz.

L G

We conclude that

—1 —1
8wy, () > yit =yt —yst

with y1, y3 positive constants and y» nonnegative constant. This proves the existence of #;.

(IV) There exists t > 0 such that te(Wy, ¢) < tp for any € € (0, 1] and xo € M.

If u is a function in the Nehari manifold N, we have that J. (1) = 1?6, m(u), as defined in
(2.9). Then by property (f1) Je (u) is positive. By Lemma 4.1(ii), it is enough to find #; > 0 such
that for all ¢ > 1 Je(tWy, ) < 0 for all € <1 and for all xo € M. Then we look for an upper
bound of Je(t Wy, ¢):

2.2
€t 1
Je(tho,e) = 2en flvwxo,e|§dﬂg - G_n/f(tho,e)d,ug
M M
1 €22 2 ~ 1
== / T|VU€(z)|gx0(Z) — f(tUc(2) —tUg)i||ng(z)|2 dz

B(0,R)

2 ~ 1
_ / [’va(z)@m@ —f(tU@) - fUé)] [810(€2)|? dz

B(0,%)
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542

U B, — ok [ 170G~ T d:

Gire

X

—coh? / tq‘U(z) — ﬁg\qdz.
Lic

If we consider ¢t > 1 and U g = U(z) with z € R" such that |z| = R, there holds

ftp|U(z)—l75|pdz+[t‘]|U(z)—(75|qdz
Gj,g Lt,e

>t1’[/]U(z)—ﬁR|pdz+ / U@ ~Ux|"dz
Gl.e Gz,e\Gl,e

+/|U(z)—l73|qdz— / |U(z)—(7g|qdz]
Ly

Ll,e\Lt,e

> 1P /|U(z)—l75|pdz+/|U(z)—(75|qdz}

G],s Ll,e

> 1P / UG@) - Uz |"dz+ / |U(Z)_l75|qdz]

"G1.NB(O,R) L1..NB(O,R)

> 1P / \U(2) — Ug|" dz+ / \U(z)—ﬁR\qdz]

"G1,NB(O,R) L1..NBO.R)
_.»| Unl? Ur|?
=t /|U(z)—UR| dz + / |U(z) — Ugl|” dz
G11 G1,NBO,R\G1,1

+/|U(z)—l71e|qdz— / |U(Z)—6R‘qd2i|
L

1.1 Lia\L1e

>ﬂ’[/|U(z)—z7R|”dz+f|U(z)—t7R|"dz}.

G],| Ll,l

So Je(tWyye) < y4t2 — y5tP with y4, ys positive constants and for ¢ big enough it is negative.

(V) The parameter t.(Wy, ¢) tends to 1 for € tending to zero uniformly with respect to xo € M.
By the previous steps f.(Wy, ) € [t1, 2] for any € € (0, 1] and xo € M. Let us write ty, =
te(Wy,.e). Then there exists a sequence €, — 0 for k — oo such that t,, , converges to t;‘o.
2
By step (II) we have limg_, » z—]’é fM [txg, e V Wap. e (x)|§, dug = ||t;*0U||2D112(R,,). By definition we
have
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1
G_n / f/(txo,ek on,ek)lxo,ek on,ek d/-'Lg
k

M

/ f/(txo,ek (Usk (2) — ﬁ%))tm,ek (Uék () = ﬁ%)‘gxo (Z)|% dz
0,R

1
E}’l
K soo)

(

~ ~ 1
= / F(tx0.6 (U @) = U))txg.e (U ) - Ug)|gx0 (ex2)|? dz
B(o,g)
~ ~ 1
= / X0, £ (0.6 (U@ = U ))tne, (U@) = U)o (@2)|* dz.
R"

The integrand point-wise tends to f” (thU (z))t;‘OU (z) for k tending to infinity and is bounded
from above by a function in LY(R") as follows:

~ ~ 1
XB(og)(Z)f/(%,ek (U@ - Ug))’xo,ek (U@ - U%) |gx (€2 |?

< H%xB@%)(z)f/(tz(U(z) - ﬁg))fz(U@ - ﬁg)

ctH2t) (U(z) = Uz)? if(U(z) —Ur)>1and 2] < X,
€k €k
SVl U@ -Tr) U@ -Tr)<land|z| <2,
€k €k
0 otherwise
i H?td (U(2))? if r(U(z) —Ur)>1, U(z) > 1and 2] < £,
€k
clHIU(2) —Ux)? ifU()—Us)>1, UR) <land |z < &,
ék E/\,
SVaH U@ -Ux)? ifnU@ —Ur) <1, UR)>1and[z] < £,
€k €k
e H3 (U (2))4 if n(U(z) —Ur) <1, Ux) < 1and [z] < X,
€k
0 otherwise
_ aH3YU@)Y? ifU@) =1,
TaHRH U@ ifUR) <
ClH%l‘q
< 2 f(U®2).

€0

Then by the Lebesgue theorem limj_, g—LfM I (o6 Wxo.e) Exo. e Wao.en du, =
k
Jn £1(@5,U @)1, U (2) dz. By the fact that U € N and [|1,U 13,15y = o f (65, U ()15, %

0
U () dz, we conclude that t;‘o =1.
To prove that the convergence is uniform with respect to xop € M, we show that
lime_osup,cpy ltx,e — 1] = 0. For any € there exists x(e) € M such that sup,cp ltxe — 1| =
|tx(ey,e — 1|. By compactness there exists a sequence €, — 0 for kK — oo such that x(e) tends

to x, € M. Let us fix n > 0. There exists ko such that for all k > kg |tx, ¢, — 1] < % Possibly
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increasing kg we also have that for all k > ko and & > k ltyen,e — teen),al <3 Flnally there
exists hg such that for all & > ho |tx(,),e, — trs, ] < 3 Summing the three terms one has that
[ty ), — 11 < n forall k > ko.

(VD) The limit of }n fM S (txg,e Wro,e) dig is fR" fWU)dz.
Changing variables and using the mean value theorem, we have

1
e_n/f(txo,ewxo,e)dﬂg
M

= / [F(U@ = T2) + (g = D (Oroc QUG = Ta)) (U@ — T)] g0 €2)| d,

B(0,%)

where Oy ¢ (2) = (Oxg,e(DDtxg,e + 1 —0y,,e(2)) with asuitable 0 < 6y «(z) < 1. We want to prove
that

/ f(U(z)—ﬁg)’gxo(ez)ﬁdz =0 /f(U)dZ,

B(0,%)

f (e = DF (Orpc QU = Ta)) (U@ ~ Tn) gy (c0)|*dz =S 0 44)

B0, %)

uniformly with respect to xo € M.
It is easy to see that

f U@ - ﬁg)ngO(ez)}% —1]dz =% 0

B(0,%)

uniformly with respect to xo € M. The function yx BO 5)(1) fWU(z) — U ®) tends point-wise to
f(U(z)) for any z € R". Moreover

QU@ -Ur)? iU =T 21, Jz<
X505 (U@ = Ur) Sy @)~ Te)? iU —Te <1, 2] <

0 otherwise
QU@ -T)P fUER 1, |2 <

S14WeR-Us) U@ <1, 2 <&,
0 otherwise
%(U(z))” ifU(z) 21,

<

LU U@ <]

1
<—Lf(U
cwf( ()
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and by Lebesgue’s theorem we obtain the first limit in (4.4). The function of ¢ f’(¢u)u is increas-
ing in ¢, since its derivative is f”(tu)u2 > (. Then we have

| FOn@Ue -0 e - T d:

B(0,%)

<H? / f(2+D(UE ~Uk))(U) ~ Ux)dz.

B(0,%)

By the usual standard inequalities, the previous integral is bounded from above by

A2 fan £ (2 + DU (2)) dz and the second limit in (4.4) is proved, because of (V).

(VII) Conclusion.
By (II), (V) and (VI) we obtain that J¢ (¢ (xp)) tends to J(U) = m(J) for € tending to zero
uniformly with respect to xo. This completes the proof. O

Remark 4.3. By the previous proposition, in particular we know that, given é > 0, for any posi-
tive € sufficiently small ¥ 5 is not empty.

5. The function g

Given a function u € L? (M), u # 0, it is possible to define its centre of mass 8 (u) € RN by

[y x®@)dug
= 5.1
B = s 5.1)
where
1
D)= Ef/(u)u = f). (5.2)

By the properties of f, @(s) > 0 for all s # 0. To prove that 8: X s — M, ) (see Section 3
and Definition 3.6), we use the fact that the functions in ¥ ;5 concentrate for € and é tending to
Zero.

First of all we find a positive inferior bound for the functional J¢ on the Nehari manifold. Let
us denote

me = inf J(u). (5.3)

ueNe

It is easy to see that
inf lull ;1 >0
ueN. H, (M)

(the proof is analogous to Lemma 3.2 of [7]) and, since the manifold M is compact, that the
infimum m. is achieved.
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Lemma 5.1. There exist positive constants o and € such that for any 0 < € < €q the inequality
me = o holds.

To prove this lemma we need the following technical lemma (for the proof see Appendix A).

Lemma 5.2. For any r € (0,r(M)), there exist constants ki, k, k3, ks > O such that for any
ue H21 (M) there exists v € DV2(M,) such that vy =u and

10010y, <t [ 190 i, (5.4

/f(v(z))dz>k2/f(u(x))dug, (5.5)
M

ff(v(z))dz<k3/f(u(x))dug, (5.6)

M,

”v”LZ(M )y & k4||u||L2(M) (57)

Proof of Lemma 5.1. By definition m, is the infimum of J, (#) on the Nehari manifold N. If
u € N we have

1 1) €2 2

Je(u) = 5_; o |vu|gdﬂg~
M

Rescaling u, it is easy to see that m. is greater than or equal to the infimum of the

functional (% - i)i—jtez fM |Vw|§,dug on the set of the functions w € H21 (M) such that

eL" fM f(w)dug =1 and where t. =t.(w) is as in (ii), Lemma 4.1. First of all, we check that
there exists a constant @ > 0 and for such functions w it holds

o / |Vw|gd,ug >a.
M

By Lemma 5.2, for any function w there exists a function v € D2(M,) such that (5.4) and (5.5)

hold. We consider 9 € D12(RY), defined as #(y) = v(y) forall y € M, and 9(y) =0 forall y €
2n—(n—2)p

RN \ M,. We can now consider the following rescalement V (y) = 0(¢° y) with o = INT(N=2)p

In case the denominator is equal to 0, we can choose a bigger N. We have

20
€
”V”DIZ(RN) No ”U”DIZ(M) and f(viy)d /f v(y))d
RN

By these equalities, (5.4) and (5.5), we have
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Vwl2d A M
—/|Vw| dpg = fM' wl a ];{ REUA 2
(& fydpr K L, fdy)T

2 _(N-20o 2
v £ 4 ko IvIz
T _n—2 1.2(RpN 1.2(mN
Ry € DL2(R ) 2 DL2(R )z. (5.8)

ok (L2 fon FVYd? KU (Lo F(V)dy)?

‘We show now that for € sufficiently small we have f]RN f(V)dy < 1.1In fact, by (5.6) there holds

k3€

1
/f(V)dy=6Wff(v(y))dy /f(w)dug——

2n—(n—2)p

By definition of o limy oo No = == 5 < 0 and so there exists N sufficiently big such that

n—No >0.
Since fRN f(@V(y))dy is an increasing function of ¢ for positive ¢, there exists 7, > 1 such

that er ft,V(y)dy =1.Let Vi(y) =1,V (y) for any y € RV. With the usual computation we
obtain

1
/f(V(y))dy=/f(t—V*(y)) dy
RN

RN

C1l 1 1
<;( / E}V*(y)|pdy+ / g|V*(y)|qdy>

YERN Vi) 21:) (YeRNIVa()I<1:)

1 1
<C—1( / —|[Ve)|" dy + / —q\V*(y)!qdy>
158 Iy Ly

{yeRN[|Vi(»)|=1} YeRNIVa(mILL

() dy =

conty

Concluding we have that the last term in (5.8) is equal to

2

VA > 2

k2 13 * 'DI.Z(RN) >k2 oM\ P v 5

k_ 1 2 Z k_ ” *||’D1,2(RN)7
U fGEVOdyr R

which is bounded from below because (see [9])

inf 2 =a>0.
Vei)IPZ(RN) ||V||’D1,2(RN) a>0
Jan F(V)dy=1

We still have to show that 7, is bounded from below by a positive constant. By the properties
(f1) and (f2) we have
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1 , cl p q
o fewtewdpg < o |t6w(x)| dug + ’tew(x)| dig
M {xeM|ltew(x)| =1} {xeM|tew(x)|<1}

a1
<o [tew ()| dpeg + / |r5w<x>|"dug}
{reM|lwx)|[>1} {reM|lw(x)|<1}
p
Clt cit,
i,ff wx))dpg = —=,
c € o

Where the last equality is due the property of the functions w. Since few € N,

2.2
o f [ tew)tewdug = % /, I |Vw|§, d g and by the previous inequalities we have

_ COG 0
P2 Vwl|;d —
rrp 22 / Vg >

and this completes the proof. O

In the following lemma for every function u € N it is stated the existence of a point in the
manifold where u in some sense concentrates.

Lemma 5.3. Let C be an atlas for M with open cover given by By(x;,R), i =1,..., A, and
partition of unity {y;}i=1,... a. There exists a constant y > 0 such that for any 0 < € < €9, where
€9 is defined in Lemma 5.1, if u € N there exists i = i(u) such that

1 1
o / [Ef/(u)u_f(u)}dﬂg>y

Bo(x;, ®)

€2 1
o f Vulgdug — = f faydug >y. (5.9)

By(xi, %) Bg(xi, )

Proof. Let u be in N.. We assume that C= {Bg (xi, %)}izl ,,,,,
we complete C). Let {Jf,-},-: 1.....A be a partition of unity subordinate to the atlas C. If fé, m(u) is
as in (2.9), it is possible to write

4 is still an open cover (otherwise

JeG) = (B ) (Jew)?

1

1 & . 1 2
(6_",2 f wi(X)[Ef’(u(X))u(X)—f(u(x))}dug> (Je(w))

=1
By(xi. %)

Bl—

g‘/z max (ﬁ Bg(x;,g)(u))i(‘le(u))%'

I<i<A™ ©
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By this inequality and Lemma 5.1 we conclude that

~ 1 o
max Fe,Bg(x,-,g)(“) > ng(u) > 1

1<i<A
The second equation in (5.9) is proved analogously. O
In the following proposition the concentration property is better specified.

Proposition 5.4. For any n € (0, 1) there exists 8o < m(J) such that, for any § € (0, 8g) there
exists € = €0(8) > 0 and for any € € (0, €y) with every function u € X s it is associated a point
xo = xo(u) in M with the property

i () > m(J).

Fe,Bg (xo0,

The proof of this proposition needs the following lemmas. The first lemma we need is the
splitting lemma proved in [7, Lemma 4.1]:

Lemma 5.5. Let {vi}xeny C N be a sequence such that

J(r) > m(J) ask— oo,

J'(vp) =0 in DI’Z(R") as k — oo.
Then

e cither vy converges strongly in DI’Z(R”) to a ground state solution of (2.12), or
e there exist a sequence of points {yi}ren C R" with |yx| — 0o as k — 0o, a ground state
solution U of (2.12) and a sequence of functions {v,?}keN such that, up to a subsequence:

1) vw(z) = v,?(z) 4+ U(z — yx) for all z € R";
(ii) v,? — 0 as k — oo in DL2(RM).

Lemma 5.6. Let € and 8y be two positive sequences tending to zero for k tending to infinity. For
any k € N let uy be a function in X¢,_ s, such that for any u € H21 (M)

J! —o &
Ve o] = o =z lull gy )-
€k
There exist a sequence {xy}xeN of points in M and a sequence of functions wy on R", defined as
wi (2) = ug (expy, (€ 2)) x & (I2), (5.10)
&
such that the following properties hold:

(i) There exists w € DV2(R") such that, up to a subsequence, wy, tends to w weakly in DV-2(R")
and strongly in LY _(R™).

loc
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(ii) The function w is a weak solution of —Aw = f'(w) on R".
(iii) The function w is a ground state solution.
@iv) The following equality holds

lim Je, (ux) =m(J).
k— 00

Proof. To get started we consider x; to be the points in M such that u; has the property (5.9).
We will be more precise in point (iii).
(1) It is sufficient to prove that the sequence wy is bounded in DL2Z(R"). We write
2
g = [ [Vurdz
B(0, 5)

<2 [ |Vlm(expy @) Txe ()T oz
B(O.%)

+2 fi[xzﬂdﬂzhk@mang»fdzz1y+h.

€k
BO.Z)

We consider the following inequality:

i 2 i 2
LTS ) AT
M

k
Bg(x,R)

2

1
8 (@) ‘gxk (Z)‘ 2 dz

€
= / ’Vuk (expxk (Z))‘
B(O,R)

1
= / \Vuk(expxk(ekz))|;€(€kz)|gxk(ekz)|2dz
B(o,g)
h2

|Vur(expy, (e2))[*dz > - 1h. (5.11)

1%
“H
R
BO.2)
Moreover the following inequality holds

2 2.2
R [ e, @o)fa
3(0,5)

2)(262 2
=g [ lulew, @) ¢

B(O,R)

2%

TR R%¢}!
By (x,R)

(ux () g (5.12)
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By (5.11) and (5.12), we have that the sum /] + I» is bounded by a constant times ||uk ||H1(M)

We show then that this quantity must be bounded. Since u; € X¢, 5, and

I 1 e,%
Jo(u) 2\ 5 —— IVukI dug,
2 u ek
M

the right-hand side of the preceding inequality must be bounded. We still have to check that
2

i_% |lug ||i2 M) is bounded too. In fact, by (5.7) in Lemma 5.2 we have a sequence vy of functions

in Dl’z(M,) and

2 2 Ce,% 2 < kie; Vi P d
n ”uk”LZ(M) X k ||vk||L2(M) X 461’: ”Uk”Dl,Z(Mr) X W | uklg Mg

where C is the constant in the Poincaré inequality and we have used (5.4) in the last inequality.
(ii) First of all we prove that for any & € Cj°(R") J "(w) (&) tends to zero for k tending to
infinity:

T (wo) ) = / Vur(2) - VER) dz - / Fwe(@)E @) dz

Rn

=f[V[uk(eprk(Ekz))xg(Izl)] - VE(z) — f/(uk(eprk(ekz))x§(Izl))é(z)]dz

Rn

_ / [9 [k (expy, (€2))] - VEG) — /(s (expy, (€12)))E )] d.

RV[

where in the last equality we have used the fact that for & sufficiently large for any z in the support
of & x & (Jz]) = 1. Now we define the function & in Hzl (M) as follows:
€

E(x) = {g(exmk W) vreB ¢ (Xk, R),
0 otherwise.
Then we want to write
/ 61% P 1 / £
J (we)(§) = E/gxk (Vur(x), V& (x)) dpg — o I (ur(x))éx(x) dpg + Ex,
k k
M M

where Ej is an error. By hypothesis
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2 5 1 -
‘/[:—ﬁgxk (Vur(x), Vé (x)) — e_nf/(”k(x))ék(x)} dig

k k

= [V, w0 @ =o<e—§||§||H21(M)) = o1& 11 )

€k

Now we have to check the error:

Byl = ' [V ltewn @) V6@ - 5 (e, @)@ dz
Rn

e,% ~ 1 , ~
—gfgxk(VMk(X),VSk(X))dﬂg— %/f (ur (X)) & (x) d g
M M

2

< ‘ / V[uk(expy, (€x2))] - VE(z) dz — j—" f 8 (Vi (x), VE(x)) dpug

K

Rn

1 -
+ ‘ / I (uk (expy, (€x2)))E(z) dz — o I (i (x))Ex(x) d g
Rl’l

k
=|E1 k| + | E2kl.
For the first term we have

Oluk (expy, (€x2))] 3&(2)
0z 0z

dz,

|E1 k] </‘ (8" —gxk(ekz)|gxk(6kz)} )

Ic3

where & denotes the compact support of £. The limit

lim |67 — g1 (€42)| g, (1) *] =
k— 00

is uniform with respect to z € Z. Since

a
/‘ [uk(expxk(ekz)) BE(Z) < ||uk(eXPXk(€kZ)) ||ID1,2(E)||$”D1*2(R")

0z

and for k sufficiently large

H 2
[N e
& M

2uH 4uHm((J)
S——Jqup) < ———,
(n—2)h2 (n—2)h2
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we conclude that | E | tends to zero. For the second term we have

|Ex x| = ’/(1 - |gxk(6kz)\%)f’(uk(expxk(ekz)))é(z)dz .

. 1. . . —
As before, limy_, o0 |8y, (€42)|2 is 1 uniformly with respect to z € 5 and

/ | (i (expy, (€12)))§ ()] dz

p—1

' o
r=ldz &1l Lp ®m

s ( / | £ (ux (expy, (€x2)))
(2€ 5 g (expy (€20 [>1)

+< / | (s (expy, (ex2))) |77 dz) T E D o).

{ze & luk (expy, (ex2)) <1}

It is easy to see that there exists a positive constant C such that the right side is bounded from
above by

p—1 g=1
1 e 1 K
C[(g—n/f/(uk)ukd/ig> I§ N Lr ey + (:nff/(uk)ukdug) IISIIquRn)}
k M k M

p—1 gqg—1

2 N 2 KB
< C[(M—Mz(m(f) + 1)) 1§ Lr ey + (M—fz(mu) + 1)>

q

IIEIILq(Rn)]

and this proves that |E; | tends to zero. Our second and last step is to prove that for any & €
CP(R™) J'(wi)(§) tends to J'(w)(&) for k tending to infinity. It is immediate that fR,, Vuwy -
V& dz tends to fR” Vw - VEdz. By the mean value theorem there exists a function 6(z) with
values in (0, 1) such that

[150@) - 7w eco)l

Rn

=/|f”(9<z>wk(z)+(1 —0@)w@)||wk (@) — w(@)||&()]| dz.
Rn

By Holder inequality the right-hand side is bounded from above by
-2

p—=
_pP_ p
p—2 dZ ,

lwr — w”L!’(E)“E”LP(E)( /|f”(9(z)wk(z) + (1 -6@)w()

Rn

where ||wy — wl|r(z) tends to zero by (i). Besides, we have
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/|f//(9(z)wk(z) +(1- 9(z))w(z))|ﬁ dz
R~

<c / 0(@wi(2) + (1 = 0(2)w ()| dz + c1 vol(&)
{zeE 10 @Qwr (2)+(1-0(2)w(2) =1}
<2 (lwill gy + Iwll] 5 (z)) + €1 vol(E)
and this quantity is bounded by a constant.
(iii) Let t = ¢ (wg) be the multiplier defined in (ii), Lemma 4.1. First of all we prove that there

exist 0 < #;1 < 1 < 1 such that for all k 11 < # < fp. Let gy (f) = J (fw). By Lemma 4.1(ii), it is
enough to find #; > 0 such that for all 7 € [0, #1] g{vk (t) > 0O for all k € N. There holds

g,’ﬂk(t)=t/|Vwk(z)|2dz—/f’(twk(z))wk(z)dz

R~ R7
2 ctP!
>t/|Vwk(Z)| dz — ICO /f(wk(z))dz~
R” R”
Since we have
2
2 he
/\Vwk(z)| dz> —* / IVukli,dMg
Hzel
R Bg(xk’g)
L2 (& / VR iy — - / fudg ) > 22
u - — u )
1\ 2e e =g ERSVAEE
By (xr, %) By (x, %)

where we have used the second equation of (5.9), and

1

/f(wk(z)) dz < h%—" / Sur)dpg
€

R" kBg<xk,§)

2 1
<— —f - dpg <
W=Dl [ [2f (ui)ug f(uk)} g

By (i, %)

2m(J)+1)
h3(u—2)

1
then there exist Cy, C2 > 0 such that g{uk () > Cit — CotP~1. So we consider 1] = (g—;)l’*z.

If v is a function in the Nehari manifold N, J(v) = fRn (v), as defined in (2.10). Then by
property (f1) J(v) is positive. By Lemma 4.1(ii), it is enough to find 7, > 0 such that for all
t >t J(@wg) <0 forall k € N. Since

t2 2
T =" f|Vwk<z)| dz— / F (@) dz

R» Rn
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and we already proved that {wy }xen is bounded in DL2(R™), we still have to bound the second
partfort > 1

/f twi(z))d cot”( / lwi ()| dz+ / }wk(z)|qdz>

R" {zeR" [ () >1} {zeR"[Jwe (2)|< 1}

it /f” wi (2)) (i (2))° dz > lc 2es Fan (wy)

2cot? ~ 2coytP
z— 7 F . W) 22—
(c1 —2co)H?2 (c1 —2co)H?2

’

where we have used (5.9). So there exist C3, C4 > 0 such that J (twg) < C3t2 — Cat? and 1 =

By the boundedness of #;, we conclude that up to subsequences #; converges to 7 for k tending
to infinity.

We apply the splitting lemma (Lemma 5.5) to the sequence #;wy. Then in the first case we
have that #;wy converges strongly in D2(R") to a ground state solution w. It is easy to see that
trwy weakly converges to fw, in fact for any & € C§°(R") there holds

‘/V(tkwk—t_wyvg“‘:'/V(tkwk—t_wk)-VS—f-/V(t_wk—t_w)-VE
R® R?

Rn

< te = HIE Ipragn lwel prageey +o(1) = o(1).

We can conclude that w = fw. In particular w # 0 and by the fact that both w and w are in NV,
f = 1 and we have finished.

Otherwise, there exist a sequence of points {yk }xen tending to infinity, a ground state solution
U and a sequence of functions {wg}keN such that, up to a subsequence, t;w (z) = wy Y2)+U(z—

yk) forall z € R" and w;, Y tends strongly to zero. We consider three different cases: limg_, o0 | yi| —
5 =2T > 0, limg— o |yk| — = =0 and limg 00 & o — |yk| =2T > 0. In the first case, since by
definition wy =0 in R" \ B(O, 6k), wy, (z) = —U(z — yx). Then we have

/ ‘Vw,?(z)|2dz= / |VU(z—yk)’2dz

RN\B(O. ) RN\B(O. )

> / |VU(z—yk)|2dz= / |VU(Z)|2dZ>O
B(yx,T) B(0,T)

and this is in contradiction with the fact that w? ¢ tends strongly to zero. If limy_, o0 |yk| — =- =0,

let (yx) denote the projection of y; onto the sphere centred in the origin with radlus 5 and
T > 0. Then
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/ VU (z — w() | dz = / VU@ dz
{zeB( (). Dz >F) {z€BO.D)llz+m ()1 > &)
> min / |VU(z)|2dz=C>0,
rest

{zeB(0,7)|z:¢ 20}

where S” is the unit sphere in R” and z - ¢ is the scalar product in R”. Similarly to the first case
we have

/ ‘Vw,?(z)|2dz= / ’VU(Z—)’k)|2dZ

RM\B(O, £) RM\B(O, £)

> / ’VU(z—yk)|2dz

leeBOETIIzI> &)

= / |VU(z—n(yk))|2dz+o(1)

{zeBGr o). DllzI= )

and this is greater than % for k sufficiently large, which is a contradiction. Finally, if limj_, g -
|yk| =2T > 0, for k sufficiently large B(yx, T) is contained in B(0, g). There holds

/ [lf’(U(Z —y) U@ —y) — f(U@— )’k)):| dz

2
B(yk,T)

= / Bf’(U(z))U(z)—f(U(z))}dz=yo>O.

B(0,T)
We consider the new sequence of points
X = expy, (€kyk) € Bg(xk, R).

For any k sufficiently large, let U (k) be the neighborhood of Xy defined as exp,, (€xB(yk, T)),
then

1 1
% / [Ef/(uk)uk - f(uk):| dug

U (%)
1 1 2
-/ [zfxuk(expm<z>>>uk<eprk<z>>—f<uk<expx»«<z>>>}'g”@'%"‘7’
kékB(}’ksT)
" 1
sit [ [Armeme - s

B(yx,T)
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Since t; € (t1, t2) and using the properties of the function f we obtain

/ [%f’(wk(z))wk(z) - f(wk(z))} d

B(yx,T)
1
> / [5f<— k(Z)> we (@) — f(t—ka(Z)ﬂdz
5]
B(y,T)

(1 —2)co
(c1 — 2co)t]

1
/ [Ef/(tkwk(z))fkwk(Z) - f(tkwk(z))} dz

B(yk,T)

By the splitting lemma we have

1
/ I:Ef/(tkwk(z))fkwk(z) - f(tkwk(Z)):| dz

B(yx,T)
1
- f [Ef/(w'?(z) +UGE =) (W@ + UG =) = f(w) @+ U - )’k))i| d
B(yk,T)
1
= / |:§f/(U(Z —y)) (UG =) — f(U@E— yk))i| dz+o(1)
B(yk,T)
=y +o(1).

So we have proved that for any k sufficiently large

1 1 -
= [Ef/(uk)uk - f(uk)] dug > o> 0. (5.13)
k
U (%)
By definition, for k big enough U (X ) is contained in B, (Xx, R) and so we can substitute xj by X
and wy by wy, defined as in (5.10) with the new choice of points. Steps (i) and (ii) are independent
of x; (provided wy is not 1dentlcally zero) and so wy tends weakly to a weak solution w. It is
possible to see that there exists T > 0 such that for any k U(Xx) C By (X, € T) Then we have

/ Bf’(ﬁ)k(z))ﬁ)k(z) - f(ﬁ)k(z))} dz

B(0,T)
1 1
2 Haen / [Ef/(uk(x))uk(x) - f(uk(x)):| dug
By (G, T)
Z H%lef f [%f’(uk(x))uk(x) - f(uk(x))] ditg.

U (Xx)
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By (5.13) and by the strong convergence of wy to w in L”(B(0, T)), we conclude that

/ [lf’(u“)(z))zb(z) - f(lb(z))} dz > IZO%

2
B(0,T)

andso w#0and w € NV.
From now on we will write as before wy, instead of wy, x; instead of X; and w instead of w.

The last step is to verify that J(w) = m(J). Let us consider the following inequalities

1 1
m(J) + 6 = Jo (uy) = e—n/|:§f/(uk)’/lk - f(uk):| dug
k
M

1 i
> / [gf/(wwwk - f(wza}|gxk<ezcz)|é dz. (5.14)

]Rn

We define the sequence of functions in L2(R"):

1
1 2 1
Fi(z) = [Ef,(wk(Z))wk(Z) —~ f(wk(z))} 2 | (ex2) |3

By (5.14) this sequence is bounded in L?(R") and there exists a weak limit F € L>(R"). We
prove that

1

1
F(z) = [Ef/(w(z))w(z) - f(w(z))] 2. (5.15)

Let & be in Cj°(R"). On &, the support of &, wy strongly converges to w in LP(Z). Soup to a
subsequence wy (z) converges to w(z) almost everywhere. Then point-wise

1

1 2
Fi(2)§(2) = [Ef’(w(z))w@ - f(w(z))} §()
for almost every z € &. We can now apply Lebesgue’s theorem. In fact, there holds

1’
1

4 —co)2 w5 E@] if [we ()]

(
(4 —co) Tl @IFIEQ@)]  if [wi ()]

(C_l _ 00)2(1 + || ) @)

==

VAN

H
|Fi(2)| 6] <{
H

==

I

<H
2
and, since wy converges strongly to w in L?(Z), there exists W € LP(&) such that for all k
n o . 1 p
lwk(2)| < W(z) almost everywhere and |Fi(2)[1§(2)| < H* (5 — co)2(1 + W@)DIER) €
L%(Z). So (5.15) is proved. By weak lower semicontinuity of the norm
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2 s 2
”F”LZ(Rn) g liggcl)f”Fk ”Lz(R")’

that is
1 1 1
/[Ef'(w)w - f(w)] dz < lirggf/[if/(wk)wk - f(wk)] |8 (€x2)| dz.
R® R

By this inequality and (5.14) we conclude that

m(J) = hm m(J)+ 6, > hm Jg,((uk)

> l}ggf/ [Ef/(wk)wk - f(wk)i| |8xi (GkZ)|% dz

Rn

> f Bf’(w)w _ f(w)} dz > m(J).

Rn

(iv) The equality is immediate from (5.14). O
We recall here Ekeland principle (see for instance [11]).

Definition 5.7. Let X be a complete metric space and ¥ : X — R U {+00} be a lower semi-
continuous function on X, bounded from below. Given n > 0 and & € X such that

W (@) < inf W)+ 2,
ueX 2
for all A > O there exists u) € X such that
Y (uy) <), d(u;,u) <A
and for all u # u, it holds
(uy) <¥u)+ %d(uk, u).

Remark 5.8. 1. We apply Lemma 5.6 when u; is a minimum solution u € Mk, Je (up) =me,.
By (iv) we have limy_, oo m¢, = m(J). In particular for any § > 0 there exists €y = €p(6) > 0
sufficiently small such that for all € < €9 |me —m(J)| <.

2. Applying Ekeland principle for X = ¥, 5, with € < €0(8) as in 1, we obtain that for all
u € X, 5 there exists us € X s such that

_ € -
Je(us) < Je(u), —%Huﬁ - u”Hzl(M) <4vs
€
and forallu e T X¢ 5

EACHIGIES f — el any- (5.16)
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Proof of Proposition 5.4. We choose €((§) as in point 1 of Remark 5.8. We also assume that
€0(8p) is less than € in Lemma 5.1.

By contradiction, we assume that there is ng € (0, 1) such that there exist two positive se-
quences {8x}keN, {€r}ken tending to zero as k tends to infinity and a sequence of functions
{ur)ken, with uy € X, 5., and for any x e M

Fek,Bg(x,'(zﬂ)(Mk) < nom(J). (5.17)

By Ekeland principle for any k we can consider i, as in 2 of Remark 5.8. Property (5.17) be-
comes

fgk,Bg(x,Lg”))(ﬁk) <nm(J) (5.18)

with 1 still in (0, 1). To prove this we have to evaluate the difference

1 1 1
— / ‘Ef/(ﬁk)ﬁk — fug) — Ef/(“k)“k + f )| dg,

€k

By(x, 250

which by the mean value theorem can be written

2 /\f” £ ()l — uxldisg, (5.19)

where B is Bg(x, r(lz”)) and u,’j(x) =0(x)ur(x) + (1 —6(x))ur(x) for a suitable function 6 (x)
with values in (0, 1). By Holder’s inequality (5.19) is bounded from above by

( /‘fﬁ ( k)|"+2 d“g) - ( /|“k_’4k|" zd“g> ; .

We prove that the first factor is bounded and the second one is infinitesimal. In fact, we have

n=2

1 - 2n_ o €k | ~

— | g —ugln=2 dug = — g —urll 20

€ 2 L7-2(B)
B

k

€k~
C g ik = il gy ary < 4C/5.
€
k

The proof of the bound

2n
2 dp, < C (5.20)

1 (oK), % 1 %
_nf|f (i )ui — f'(uz)

for a positive constant C can be found in Appendix A.
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We apply Lemma 5.6 to the sequences {8k }xeN, {€x}ren and {iix }xen, Obtaining a sequence

of functions on R” {wy}xen (it is easy to see that (5.16) holds for any u € H2l (M)). Let w be

the weak limit in D'2(R") of wy. Let 1 be a constant in (0, 1) such that 7, > Hz'“. Since

J(w) =m(J), there exists T > 0 such that

1 !
/ |:§f (w(@)w(z) — f(w(z))] dz = nom(J). (5.21)

B(0,T)
On the other hand, up to a subsequence, we have
1 I
Ef (w)w — f(w) |dz
B(0,T)
. 1 /
= lim = fwwi — f(wy) [dz
k— 00 2

B(0,T)

k—00 €}
B0, T)

1 1 - - -
= lim — / [Ef/(uk o exp,, )itk o exp, —f(ix o eprk):| dz. (5.22)

By compactness the sequence x; converges (up to a subsequence) to x and for any z € B(0, T') the

limit of | gy, (€x2) |% for k tending to infinity is | gz (0) |% = 1. Since ]2;7,1“ € (0, 1), for k sufficiently

big for any z € B(0, €, T) we have |g,, (z)|% > lzﬁrl“ . So the last limit in (5.22) is less than

I1+n . 1 | - - 1
s im = [ [5G e, i oo, — oo, w0
B(0,e,T)

1+n .. 1 ., . .. ~
= — " fim — - - du, <
o ki)ngoek / |:2f(uk)’4k f(”k)i| g
B(xi,exT)

14+
2

m(J),

where we have used property (5.18). By this inequality together with (5.22) and (5.21) we get

N2 < H% which is in contradiction with the choice of ;. O

It is now possible to prove the following proposition:

Proposition 5.9. There exists 5o € (0,m(J)) such that for any § € (0, 8g) there exists €y =
€0(8) > 0 and for any € € (0, €g) and u € X¢ 5 the barycentre B(u) is in M, ).

Proof. By Proposition 5.4, for any 1 € (0, 1) and for any u € X 5 with € and § sufficiently small
there exists a point xo such that

F Bg(XO,@)(u) > nm(J).

€,



D. Visetti / J. Differential Equations 245 (2008) 2397-2439 2427
Since u € X, s we also have
Fem) <m(J) +38.
We define

T @))ux) — fux))
fM[%f’(u(x))u(x) - f(u(x))]dug

p(u(x)) =
By the previous inequalities we have then

,o(u(x)) divg > T

‘m

By (xo, ")

‘We can now esteem

|Bw) —xo| = ‘ /(x — x0)p (u(x)) dpag
M

< ‘ / (x —x0)p(u(x))dug| + ‘ / (x — x0)p(u(x)) dpg

By (xo, ") M\ Bg (xo, "))

M
<r( )+D<1—L5>,
2 l+m

where D is the diameter of the manifold M. For n near to 1 and § sufficiently small we obtain
Bw) e Myy. O

6. The function I,

We prove now that the composition /. of ¢ and B is well defined and homotopic to the
identity on M:

Proposition 6.1. There exists €y > 0 such that for any € € (0, €g) the composition
le=Bode: M — Mym)

is well defined and homotopic to the identity on M.

Proof. Let us consider the function H :[0, 1] x M — M, ), defined by H (¢, x) = tl.(x) +

(1 —#)x. This function is a homotopy if for any # € [0, 1] H (¢, x) € M, . It is enough to prove
that for any xo € M |l (x0) — xo| < r(M). Since the support of ¢, (xo) is contained in B, (xo, R)
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Ie(x0) — %0 = / (x — x0) 0 (e (x0) (1)) dtg = / (x — x0)p (e (x0) () d i
M Bg (x0,R)
L0, 2P (te Wrg ) Wag e (€D, ()3 ()12 iz
Sa0.1) @ (e (Wep.) W e (€D, (D)) |y (2)] 2 dz

1
€ fg(()) %) 7P (te(on,e)on,e(expxo (€2)))gx(€2)]2dz

= 1 ,
fB(O, g) D (1c (on,e)on,e (GXPXO (GZ)))lgxo (ez)|2dz

where @ is defined in (5.2). We recall that for any € € (0, 1] and xg € M 11 <t (Wyye) < 2. By
definition of ¢., we have

l n ~
/ D (te Wiy, ) Wi e (expy, (€2))) | gxo(€2)|* dz > h? f @ (t1(U(z) — Ur))dz >0,
B(0,%) B(0,R)

where U g is the value U (z) for any z € R" such that |z| = R. Furthermore, we have

1
€ / |2 D (te (W) Wag . (€XDy, (€2))) | 820 (€2)| * dz

<en’ / 121 (U (2)) dz

B0, %)

< %[ f 2|t} (U ()" dz + / lzIt] (U (2))? dzi|.

{zeB 0. ®)nU@)>1} {zeB(0, ®)|nU @)1}

Since U is spherically symmetric and decreasing, there exists pg > 0 such that the last quantity
is equal to

(c1 —2co)H%e

5 2|t} (U (2))" dz + / |21t (U (2))? dz]. (6.1)

B(0,p0) B(0,£)\B(0,p0)
Obviously, the integral
/ lzlty (U (2))" dz <13 po / (V@)"dz
B(0,p0) B(0.p0)

is bounded. For the second integral in (6.1), we use the well-known inequality by Strauss (see

[15]):
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€ / |Z|(U(Z))q dzg Cn”U”q'DIJ(Rn)E /

B(0,2)\B(0.p0) B(0.2)\B(0.p0)

where C,, is a positive constant. Then we conclude that there exist two positive constants Cq, C2
A (n—2)qg—2n .
such that (6.1) is bounded from above by Cie + Cse 7, where the second exponent is

positive and so |l (xg) — xo| tends to zero as € tends to zero. O

Finally, by standard arguments it is easy to see that the Palais—Smale condition holds for J¢
constrained on N.

7. The Morse theory result

For an introduction to Morse theory we refer the reader to [14], while for the applications to
problems of functional analysis we mention [2].

Let (X, Y) be a couple of topological spaces, with Y C X, and H; (X, Y) be the kth homology
group with coefficients in some field. We recall the following definition:

Definition 7.1. The Poincaré polynomial of (X, Y) is the formal power series
o
P(X,Y) = Zdim[Hk(X, V)]ek.
k=0

The Poincaré polynomial of X is defined as P;(X) = P, (X, 0).

If X is a compact n-dimensional manifold dim[ H; (X)] is finite for any k and dim[Hx(X)] =0
for any k > n. In particular P;(X) is a polynomial and not a formal series.
We define now the Morse index.

Definition 7.2. Let J be a C? functional on a Banach space X and let u be an isolated critical
point of J with J(#) = c. The (polynomial) Morse index of u is defined as

i)=Y dim[ H (J¢, J\ {u})]e*,
k=0

where J¢ = {v € X | J(v) < c}. If u is a non-degenerate critical point then i, () = t*® where
w(u) is the (numerical) Morse index of u and represents the dimension of the maximal subspace
on which the bilinear form J” (u)[-,-] is negative definite.

It is now possible to state Theorem 1.2 more precisely:

Theorem 7.3. There exists €9 > 0 such that for any € € (0, €y), if the set K. of solutions of
Eq. (1.1) is discrete, then

D i) =tP (M) + 2[Pi(M) — 1]+ (1 + 1) Qc (1),

ueke

where Q¢ (t) is a polynomial with nonnegative integer coefficients.
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In the non-degenerate case, the above theorem becomes:

Corollary 7.4. There exists €y > 0 such that for any € € (0, €p), if the set K¢ of solutions of
Eq. (1.1) is discrete and the solutions are non-degenerate, then

Z 4 = tPy(M) + [Pi(M) — 1] +1(1 + 1) Qe (1),

ueke

where Q. (t) is a polynomial with nonnegative integer coefficients.

Since we have proved that the composition /. of ¢ and B from M to M, for € sufficiently
small is homotopic to the identity on M, the following equation holds (see [4]):

Pi(Zes) =Pi(M) + Z(), (1.1)

where Z(t) is a polynomial with nonnegative integer coefficients (here € and § are chosen as in
Proposition 5.9).
Let @ and € be as in Lemma 5.1, § > 0, then

P JE) = 1P (Ze o),

Po(HL (M), JMOH0) = o[, (4D 1 3) —1]. (7.2)

By Morse theory we have

3" i) =Py (HY (M), IO 4P, (3D E) £ (1 4+ Q. (1),

ueke

where Q. () is a polynomial with nonnegative coefficients. Using this relation with (7.1) and
(7.2), we obtain Theorem 7.3 and Corollary 7.4. Theorem 1.2 easily follows by evaluating the
power series in t = 1.
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Appendix A

Proof of Lemma 5.2. Given any 0 <r < r(M), we can choose p < r small enough so that there
exists a finite open cover of M, {Cy}o=1,...k Of subsets of RV with smooth charts &, : Dy C
RN — C, induced on M » by the manifold structure of M. We assume that Dy, = Z, x Ty, with
Zy asubset of R" star-shaped centred in the origin and 7, the ball of RN =" with centre the origin
and radilis p. For any « and any (z,0) € Z, x Ty, let £4(z,0) € C,, = C, N M. Vice versa for
any x € Cy, let 5071 (x) =(z,0).
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We denote by {¥,(¥)}a=1,... x a partition of unity subordinate to the cover {Cy}y=1
all y € M, we write £, ' (y) = (2o (), fa ()

Given a function u € H21(M), we define a function v € D“2(M,) by v(y) = 0 for all
y€eM,\ M, and

.....

k
v(3) =Y Va0 (Ea (20 (). 0)) X0 (|t )])

a=1
for all y € M, where y,, is defined in (2.1).
Inequality (5.4). Let us write

2
Co=[ sup sup sup(Dy(éa(za(y),O)))ij],
i,j=1,...Na=1,...k yeCqy

2
C = [ sup sup sup (D(ta(y)))ij] ,
i:l ..... N oa=l1,..,kyeCqy

j=1,..,N—n

Cr= sup sup (Ve[ +1),
=1,...,kyeCqy

C3= sup sup |detD(£(z,1))],
=1,...,k (z,t)€Dy,

Com [ L0+ G )
Ran

Then we can estimate

/|w<y); dy<22/ 199 (10 (20 0. 0)) o (1))

+ [V (1 (8 (2 ), 0))) P (Y 0 20 (1 0)]))?

+ 1V, (o (e ) (Ve 0 (e (20 (), 0))) ] dy
<22/ V% )] (1(Ea (2 ), 0) X (| D))

+co|W(so,(zo,(y>,0))|2(wa<y>><p(|ra<y)|))2

+C1 (0 (Je)) (Ya 0 (B (2 (), 0))) ] dy
2> / 2G|t (ze . O (1 (a9 ])°

+2(1 + CNCa (1 (Ea (2 (1), 0)))*[ (% (|t D)) + () (22 1)])) ] 5]
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k
<2600 Y [ [9u(eatz. 0) (xp (1)) dz

a:1Da

20406 Y [ et 0) T (1) + (1)

O‘ZIDO,
L 2 2
<2C3(Co+(1+C1)C2)Z[/(Xp(|t|)) dt/|Vu(Ea(z,0))| dz
a=1 T, Za

1) + G ) 1 f (et )

T, Zg

k
<2C3(Co+ (1 +C1NC)Cs Y /[|W(sa(z, 0)[” + (u(6a(z. 0)))*] dz

(x:lza

a=1x

k
H
<263(Co+ (14 CNC)Ca > f[|w(x)}§ + ()] dpg.
Co

One can easily see that there exists a constant C5 > 0, depending only on the charts £, and on
the partition of unity 1, such that

k
Zl /[[Vu(x)‘z + (u(x))z] dug < C5||u||§121(M)

Ca
and by the Sobolev embedding of H, (M) in L*(M) (5.4) is proved.
Inequality (5.5). We show that for any 5,7 e R, s +¢ #0,

cop

f(S+t)>c—1[f(S)+f(l)]-
Let us consider first the case |s +¢| > 1, |s| > 1 and [¢]| > 1:

P p p €O/ o1 2 14 42 Copt
fls+1)=cols + 117 = co(Is]” + || )>a(f ()s”+ ()1 )>C—1(f(S)+f(t)).

If|s+¢t|>1,]|s| >1and|t| <1, we have

P P P q) - COH

fs+0) =co(ls1? +1117) = co(Is|” + ] )>?(f(s)+f(t)).

The same kind of inequalities holds true in the other cases.
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Hereafter, for all y € M, we denote vy (y) = Yo (¥)u(€x (2o (), 0)) X (12« (3)]). The following
integrals are always meant on the intersection with the support of v:

k colt k
/f(v(y))dy=/f<2va(y)) dy > g—IZ/f(va(w)dy
M, M, a=1 Ol:lca

2 k
1
> S—IZ / lva()|” dy + / |va(y)|qdy]
=y eCallva()21) (yeCallta <)

Forall @ =1, ...,k it is possible to choose C;, C Cy such that on this subset ¥, (y) > % Then
the previous chain of inequalities is bounded from below by

2 k
ffk"ZZ[ [ Il 0 (] dy
=17 ecy eIz

+ / !u(éa(za(yx0))xp(!ta<y)\)|qdy}. (A.1)

{yeCullva (NI}

Let D/, be the set £, (C.,). We consider the following constants:

’

Ce= inf infD |det D(&q (2, 1))

a=l,..., k (Zst)e o

cr= [ (i)’ .
Ran
Co= inf inf |det D (24 (x))].

The inequality (A.1) is bounded from below by

2 C k
cgf’}{qﬁz / (a2 00) x, (111)|” dzdt
=1 neD] v o z)|=1)

+ / }“(éa(za0))Xp(|l‘|)|qdzdt:|

{(z.0) €Dy |lva (6o (2,1)) < 1}

ZuCe
> glkq Z / |u(&a(z, 0)|” (%0 (171))? dz dt
=152 e Dy llu(Ea (2,001 1)
+ / |u(Ea (2, ) |? (x,(121))? dzdt

{(z.0)eDg |lu(éx(2,0)I< 1}
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B / |u (a2, 0)|" (xo(111))" dzar

{0 eDg|Iva (Ga (20K, |uEa(2,0)[21}

! f |u($"‘(z’0))|q(Xp(|l|))qdzdt}

{z.0eDg v (o (2D L, |u(Ea (2,0)[ 21}

2 k

comuCeCr

ZOcTE: / |u(Ea(z,0))|" dz
=172, 00eD, |l 2.0)1>1)

+ f |u(Ea(z, 0)) |7 dz}

{(z.0)eDg llu(6a(2,0) <1}

2 k
O
o

= xeCulrecy, wwiz1

+ / ]u(x)‘qui|.

{(xeCqlxeCy, u(x)I<1)

Since for all x € M the sum of the ¥, (x) is one, there exists & such that x € C/,. Then for any
ue L' (M)

Z / ‘u(x)’dx—Z/Xc/ (x)’u(x)‘dx-/(ZXc/ (x))’u(x)’dx

a=leray a=1y
2/’u(x)‘dx.
M

This means that

k

Z[ / |uo)|” dx + / ‘u(x)|qu:|

*=1 e,y lxeCy, w11} {xeCqlxeCl, lu()|<1)

> / }u(x)|pdx—|— / |u(x)|qu

{xeM|lu(x)| =1} {xeM|lu()|<1}

1 ” 2 n
>— [ f ‘
> - / (u(x))(u(x)) dx > - /f(u(x))dx > CIM % /‘f(u(x))dug
M M M
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Inequality (5.6). For s > 0 f(s) is increasing. Then we have

/f v(y) dy<—ff () <Z|va(y>|>

k

<L f(Z|1//a(y)u(sa(za<y),0))|> dy

cop —
M, o=

Z /w,smf(zwa(y)u (Ea (20 (), 0))|>

1
ﬂcﬁ

3 & k
<Cl 3Z/f Z|XDQ(Z,I)M(§0[(Z,O))| dz dt

a=1

k

1C3Co &
guzf (Z‘XZQ(Z)M(EO‘(Z’O)”) 4z,
=)

a=1

where Cy is the volume of the ball of radius p in R¥ ", Proceeding with the chain of inequalities
we obtain

k
> f(lez @)u(Ea (2, 0))!)
p=1z, a=1
k k
= Z /f(Z|X5a(x)u(x)|> dx
ﬁ=15ﬂ a=1
<k/f(k|u(x)|)dx
M
<kﬂ|: / kp|u(x)|pdx+ / kq|u(x)|qu]
"
(xeMIku(o)|>1) (e M ki) <1}
—%[ kp|u(x)‘pdx+ / kq|u(x)|qu
(xeMlu(o|>1) (reMlu(I<1)

+ / kP |u(x)|” dx — f kq|u(x)|qu]
{reM|lu@)|<1, klu@)|>1} {reMu()|<1, klu@)|>1}
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k
< ] k”|u(x)|pdx+ / kq|u(x)|qu:|
{xeM|lu(x)| =1} {reM|lu(x)|<1}
kq-i—lcl kq—Hcl
< / flu())d f £ ) dpg.
= coph

Inequality (5.7). The proof is analogous to the proof of (5.5). O
We complete now the proof of Proposition 5.4.

Proof of Eq. (5.20). The following inequalities hold:

1 2
oo 1wty = ) g
k3
2% 2
n+ 2n_
< (7" )75 + | ) [ 72) dig
kB
22 )2_’12 (p=1)2 —1)2
Cl n+ (p—1)2n n
<T |"‘k(x)| 2 dpg + / |uk(x)| L dﬂ«)
k
{xeBlluf(x)|>1} {xeBlluf (x)I<1}
2n
2(2c))7%2
<EE( [ m@Pdes [ el aw,).
k
{xeBllup(x)|>=1} {xeBllup ()<}
where in the last inequality we have used the fact that ‘2 Jzzn < p and (q 1)2” > g. We can

write

@l dier [ ] g
{xeB|luf(x)|>1) {xeBllu; ()<}

= / |”Z(x)|pdﬂg

{xeBllup ()21, liag ()| =1, Juk(x)|>1}

+ / |”z(x)|pd“g

{xeBllup ()= 1, i ()<, Jux (x)|<1}

+ / |“lt(x)‘pdﬂg

{xeBlluy ()I1Z1, ()21, luk(0)|<1}

+ / )| dig

{xeBlluy ()= 1, lir ()<L, lug(x)| =1}
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+ / )| di

{xeBlluf (I, g () =1, Juk ()| =1}

+ / )| di

{xeBllup )<, Jiug ()<, Jug ()<}

+ / }”Z(x)rj dig

{xeBllup @I, g ()21, lug()|<1}

¥ / Wl dg

{xeBlluf (I i (OIS, Juk ()1 =1}

< / )| dig

{(xeBllup )21, liux(x)1Z1, Jug ()| =1}

+ / }”Z(x”q dig

{xeBllup()I1Z1, a1, Juk(x)|<1}

+ / i) g

{xeBllup ()21, i ()21, Juk(0)|<1}

+ / i d

{(xeBllup ()21, liug ()<, Jug(x)| =1}

+ / }“Z(x)v)d“g

{(xeBlluy (I, ()| =1, Juk ()| =1}

+ / )| di

{xeBlup I, Jiur ()], Jug(x)]<1}

+ / ‘“z(x)|pdﬂg

{xeBllup I, Jiug ()| =1, Jug()|<1}

+ / }”Z(x)vidﬂg

{xeBlluf (OIS i), Juk ()1 =1}

< / 22 (i )|” + g o)) g
{xeBllug ()21, lig ()| =1, Jup(x)|>1}

+ / 29 (|7 ()| + [k ()] ) dpg

{xeBlluy ()I1Z1, i ()<L, Juk()I<1}
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+ / 29[ () |”
{xeBllug ()21, lig ()| =1, Jup(x)<1}

+ / 2P |u(x)|” dpg

{xeBllup ()21, i (I, Jug(x)| 21}

+ / 2 (fik ()] + e ()]”) dieg

{xeBlluy (I, lig ()21, lug(x)| =1}

- 29 (|ar (O] + Ju(0)]7) dpag

—

{xeBlluy (I, Jir (I, Jug (0)<1}

+ 27| ()| dpeg

—

{xeBlluy (I, Jir ()21, Juk(0)|<1}

+ / 27| (0" diag
{xeBlluy ()<, lig ()T, Jug(x)|>1}

< [ rEePaes [ el

{xeB||ig (x)| =1} {xeB|lig (x)|<1}

[ Y@l [ 2| an
{xeB|ug(x)|>1} {xeB||ug(x)|<1}

24 5

<u / [f @) + f (ur) ] d .

M

Concluding there exists a constant C > 0 such that
1 2n_ C .
[y = ) i < [T+ ] dug
B M

2C

< [ 8Cm(J)
(n—=2)

Je (ix) + Je, ()] < =2

and this completes the proof of (5.20). O
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