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Abstract

The relation between the number of solutions of a nonlinear equation on a Riemannian manifold and the
topology of the manifold itself is studied. The technique is based on Ljusternik–Schnirelmann category and
Morse theory.
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1. Introduction

In this paper we are interested in the relation between the number of solutions of a nonlinear
equation on a Riemannian manifold and the topology of the manifold itself.

Let (M,g) be a compact, connected, orientable, boundary-less Riemannian manifold of class
C∞ with Riemannian metric g. Let dim(M) = n � 3.

We consider the problem

−ε2�u = f ′(u) (1.1)

with u ∈ H 2
1 (M).

As it has been pointed out in [9] problem (1.1) admits solutions on R
n if f ′(0) < 0, while there

are no solutions if f ′(0) > 0. The limiting case f ′(0) = 0, i.e. the “zero mass” case, depends on
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the structure of f . Berestycki and Lions proved the existence of ground state solutions if f (u)

behaves as |u|p for u large and |u|q for u small, with p and q respectively sub- and super-critical.
In [8] they proved also the existence of infinitely many bound state solutions.

Problem (1.1) has been studied also in [7], where existence and non-existence results have
been given on an exterior domain in R

n.
The problem of the multiplicity of solutions of a nonlinear elliptic equation on a Riemannian

manifold has been studied in [3], where the authors consider an equation with sub-critical growth.
The effect of the domain shape on the number of positive solutions of some semilinear elliptic

problems has been widely studied. Here we only mention [1,5,6,10] and [4].
Let f : R → R be an even function such that:

(f1) 0 < μf (s) � f ′(s)s < f ′′(s)s2 for any s �= 0 and for some μ > 2;
(f2) f (0) = f ′(0) = f ′′(0) = 0 and there exist positive constants c0, c1,p, q with 2 < p < 2∗ <

q such that

f (s) �
{

c0|s|p for |s| � 1,

c0|s|q for |s| � 1,
(1.2)

f ′′(s) �
{

c1|s|p−2 for |s| � 1,

c1|s|q−2 for |s| � 1.
(1.3)

We denote by cat(M) the Ljusternik–Schnirelmann category of M and by Pt (M) the Poincaré
polynomial of M .

Our main results are the following:

Theorem 1.1. For ε > 0 sufficiently small, Eq. (1.1) has at least cat(M)+ 1 solutions in H 2
1 (M).

Theorem 1.2. If for ε > 0 sufficiently small the solutions of Eq. (1.1) are non-degenerate, then
there are at least 2P1(M) − 1 solutions.

2. Notation and preliminary results

We denote by B(0,R) the ball in R
n of centre 0 and radius R and by Bg(x,R) the ball in M

of centre x and radius R.
We define a smooth real function χR on R

+ such that

χR(t) =
{

1 if 0 � t � R
2 ,

0 if t � R,
(2.1)

and |χ ′
R(t)| � χ0

R
, with χ0 positive constant.

We recall some definitions and results about compact connected Riemannian manifolds of
class C∞ (see for example [12]).

Remark 2.1. On the tangent bundle T M of M the exponential map exp :T M → M is defined.
This map has the following properties:
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(i) exp is of class C∞;
(ii) there exists a constant R > 0 such that

expx |B(0,R) :B(0,R) → Bg(x,R)

is a diffeomorphism for all x ∈ M .

It is possible to choose an atlas C on M , whose charts are given by the exponential map
(normal coordinates). We denote by {ψC}C∈C a partition of unity subordinate to the atlas C. Let
gx0 be the Riemannian metric in the normal coordinates of the map expx0

.
For any u ∈ H 2

1 (M) we have that∫
M

∣∣∇u(x)
∣∣2
g
dμg =

∑
C∈C

∫
C

ψC(x)
∣∣∇u(x)

∣∣2
g
dμg

=
∑
C∈C

∫
B(0,R)

ψC

(
expxC

(z)
)
g

ij
xC

(z)
∂u(expxC

(z))

∂zi

∂u(expxC
(z))

∂zj

∣∣gxC
(z)

∣∣ 1
2 dz,

where Einstein notation is adopted, that is

gij zizj =
n∑

i,j=1

gij zizj ,

(g
ij
x0(z)) is the inverse matrix of gx0(z) and |gx0(z)| = det(gx0(z)). In particular we have that

gx0(0) = Id. A similar relation holds for the integration of |u(x)|p . For convenience we will also
write for all x0 ∈ M and z, ξ ∈ Tx0M

|ξ |2gx0 (z) = g
ij
x0(z)ξiξj . (2.2)

Remark 2.2. Since M is compact, there are two strictly positive constants h and H such that for
all x ∈ M and all z ∈ TxM

h|z|2 � gx(z, z) � H |z|2,

where | · | is the standard metric in R
n. Hence there holds

hn �
∣∣gx(z)

∣∣ � Hn.

We are going to find the solutions of (1.1) as critical points of the functional Jε :H 2
1 (M) → R,

defined by

Jε(u) = ε2

2εn

∫ ∣∣∇u(x)
∣∣2
g
dμg − 1

εn

∫
f

(
u(x)

)
dμg, (2.3)
M M
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constrained on the Nehari manifold

Nε =
{
u ∈ H 2

1 (M)

∣∣∣ u �= 0 and
∫
M

ε2|∇u|2g dμg =
∫
M

f ′(u)udμg

}
. (2.4)

Let D1,2(Rn) be the completion of C∞
0 (Rn) with respect to the norm

‖v‖2
D1,2(Rn)

=
∫
Rn

∣∣∇v(z)
∣∣2

dz.

We consider also the following functional J :D1,2(Rn) → R defined by

J (v) :=
∫
Rn

(
1

2

∣∣∇v(x)
∣∣2 − f

(
v(x)

))
dx (2.5)

and the associated Nehari manifold

N =
{
v ∈D1,2(

R
n
) ∣∣∣ v �= 0 and

∫
Rn

∣∣∇v(x)
∣∣2

dx =
∫
Rn

f ′(u)udx

}
. (2.6)

The functionals Jε and J are C2 respectively on H 2
1 (M) and on D1,2(Rn). In fact, we have

Lemma 2.3. (i) The functional Fε,M :Lp(M) → R, defined by

Fε,M(u) := 1

εn

∫
M

f
(
u(x)

)
dμg (2.7)

is of class C2 and

F ′
ε,M(u0)u1 = 1

εn

∫
M

f ′(u0(x)
)
u1(x) dμg,

F ′′
ε,M(u0)u1u2 = 1

εn

∫
M

f ′′(u0(x)
)
u1(x)u2(x) dμg.

(ii) The functional F :L2∗
(Rn) → R defined by

F(v) :=
∫
Rn

f
(
v(z)

)
dz (2.8)

is of class C2 and
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F ′(v0)v1 =
∫
Rn

f ′(v0(z)
)
v1(z) dz,

F ′′(v0)v1v2 =
∫
Rn

f ′′(v0(z)
)
v1(z)v2(z) dz.

The proof of this lemma is analogous to the proof of Lemma 2.7 in [7].
We also have the following lemma:

Lemma 2.4. The functionals F̃ε,M :Lp(M) → R, defined by

F̃ε,M(u) := 1

εn

∫
M

[
1

2
f ′(u(x)

)
u(x) − f

(
u(x)

)]
dμg (2.9)

and F̃Ω :L2∗
(Ω) → R defined by

F̃Ω(v) :=
∫
Ω

[
1

2
f ′(v(z)

)
v(z) − f

(
v(z)

)]
dz (2.10)

are strongly continuous.

We write

m(J ) := inf
{
J (v)

∣∣ v ∈ N
}
. (2.11)

There exists a positive, spherically symmetric and decreasing with |z| solution U ∈D1,2(Rn) of

−�U = f ′(U) in R
n, (2.12)

such that J (U) = m(J ) (see [9] and [7]).
The function Uε(z) = U( z

ε
) is solution of

−ε2�Uε = f ′(Uε).

For any δ > 0 we consider the subset of Nε

Σε,δ := {
u ∈Nε

∣∣ Jε(u) < m(J ) + δ
}
. (2.13)

We recall now the definition of Palais–Smale condition:

Definition 2.5. Let J be a C1 functional on a Banach space X. A sequence {um} in X is a Palais–
Smale sequence for J if |J (um)| � c, uniformly in m, while J ′(um) → 0 strongly, as m → ∞.
We say that J satisfies the Palais–Smale condition ((PS) condition) if any Palais–Smale sequence
has a convergent subsequence.
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3. Ideas of the proof for the category theory result

We recall the definition of Ljusternik–Schnirelmann category (see [13]).

Definition 3.1. Let M be a topological space and consider a closed subset A ⊂ M . We say that A

has category k relative to M (catM(A) = k) if A is covered by k closed sets Aj , 1 � j � k, which
are contractible in M and if k is minimal with this property. If no such finite covering exists, we
let catM(A) = ∞. If A = M , we write catM(M) = cat(M).

Remark 3.2. Let M1 and M2 be topological spaces. If g1 :M1 → M2 and g2 :M2 → M1 are con-
tinuous operators such that g2 ◦ g1 is homotopic to the identity on M1, then cat(M1) � cat(M2)

(see [5]).

Using the notation in the previous section, Theorem 1.1 can be stated more precisely like this:

Theorem 3.3. There exists δ0 ∈ (0,m(J )) such that for any δ ∈ (0, δ0) there exists ε0 = ε0(δ) > 0
and for any ε ∈ (0, ε0) the functional Jε has at least cat(M) critical points u ∈ H 1

2 (M) satisfying
Jε(u) < m(J ) + δ and at least one critical point with Jε(u) > m(J ) + δ.

This theorem is a consequence of the following classical result (see for example [6]):

Theorem 3.4. Let J be a C1 real functional on a complete C1,1 submanifold N of a Banach
space. If J is bounded below and satisfies the (PS) condition then it has at least cat(J d) critical
points in J d , where J d := {u ∈ N : J (u) < d}, and at least one critical point u /∈ J d .

More precisely, Theorem 3.3 follows from the previous theorem, Remark 3.2 and the follow-
ing proposition:

Proposition 3.5. There exists δ0 ∈ (0,m(J )) such that for any δ ∈ (0, δ0) there exists ε0 =
ε0(δ) > 0 and for any ε ∈ (0, ε0) we have

cat(M) � cat(Σε,δ).

In order to prove this we will present two suitable functions g1 and g2.
By the embedding theorem, we assume that M is embedded in R

N , with N � 2n.

Definition 3.6. We define the radius of topological invariance r(M) of M as

r(M) := sup
{
ρ > 0

∣∣ cat(Mρ) = cat(M)
}
,

where Mρ := {z ∈ R
N | d(z,M) < ρ}.

We can now show a function φε :M → Σε,δ and a function β :Σε,δ → Mr , with 0 < r < r(M)

such that

Iε := β ◦ φε :M → Mr (3.1)

is well defined and homotopic to the identity on M .
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4. The function φε

Next lemma presents some properties of the Nehari manifold.

Lemma 4.1. (i) The set Nε (respectively N ) is a C1 manifold.
(ii) For all not constant u ∈ H 2

1 (M) (for all v ∈ D1,2(Rn), v �≡ 0), there exists a unique
tε(u) > 0 (t (v) > 0) such that tε(u)u ∈ Nε (t (v)v ∈ N ) and Jε(tε(u)u) (J (t (v)v)) is the maxi-
mum value of Jε(tu) (J (tv)) for t � 0.

(iii) The dependence of tε(u) on u (of t (v) on v) is C1.

For the proof see Lemma 3.1 in [7].
Let U be the function defined in Section 2. We write

Ũ R
ε

= U(z) with z ∈ R
n such that |z| = R

ε
.

For any x0 ∈ M and ε > 0, we consider the function on M

Wx0,ε(x) :=
{

Uε(exp−1
x0

(x)) − Ũ R
ε

if x ∈ Bg(x0,R),

0 otherwise,
(4.1)

where R is chosen as in Remark 2.1(ii).
The function Wx0,ε is in H 2

1 (M) and is not identically zero. Then, by the previous lemma, we
can define

φε :M −→ Nε,

x0 −→ tε
(
Wx0,ε(x)

)
Wx0,ε(x). (4.2)

The choice of the function φε different from the one in [3] has been made for the function U

can be not in L2(Rn).

Proposition 4.2. For any ε > 0 the map φε :M → Nε is continuous. For any δ > 0 there exists
ε0 > 0 such that if ε < ε0

φε(x0) ∈ Σε,δ

for all x0 ∈ M .

Proof. (I) The map φε :M →Nε is continuous.
By Lemma 4.1(iii), it is enough to prove that

lim
k→∞‖Wxk,ε − Wx̂,ε‖H 1

2 (M) = 0

for any sequence {xk} in M , converging to x̂.
We choose a finite atlas C for M , which contains the chart C = Bg(x̂,R). The functions

Wx ,ε and Wx̂,ε have support respectively on Bg(xk,R) and on Bg(x̂,R). Since xk → x̂ the set

k
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Zk = [Bg(xk,R)\Bg(x̂,R)]∪ [Bg(x̂,R)\Bg(xk,R)] is such that μg(Zk) → 0 as k → ∞. Then
we have ∫

Zk

∣∣∇(
Wxk,ε(x) − Wx̂,ε(x)

)∣∣2
g
dμg → 0 as k → ∞.

We still have to check the integral on Bg(xk,R) ∩ Bg(x̂,R). We write Ak = exp−1
x̂

(Bg(xk,R) ∩
Bg(x̂,R)) and ηk(z) = exp−1

xk
(expx̂ (z)),∫

expx̂ (Ak)

∣∣∇[
Wxk,ε(x) − Wx̂,ε(x)

]∣∣2
g
dμg =

∫
Ak

∣∣∇[
Uε

(
ηk(z)

) − Uε(z)
]∣∣2

gx̂ (z)

∣∣gx̂(z)
∣∣ 1

2 dz

� H
n
2

h

∫
Ak

∣∣∇[
Uε

(
ηk(z)

) − Uε(z)
]∣∣2

dz.

Since ηk(z) tends point-wise to z and ∇Uε is continuous, |∇[Uε(ηk(z)) − Uε(z)]|2 tends point-
wise to zero. Applying the Lebesgue theorem, we obtain that∫

M

∣∣∇[
Wxk,ε(x) − Wx̂,ε(x)

]∣∣2
g
dμg → 0.

In an analogous way we have that ‖Wxk,ε − Wx̂,ε‖2
L2(M)

tends to zero.

(II) The limit of ε2

εn

∫
M

|∇Wx0,ε(x)|2g dμg is ‖U‖2
D1,2(Rn)

.
To prove the second statement of this proposition, first we show that

lim
ε→0

ε2

εn

∫
M

∣∣∇Wx0,ε(x)
∣∣2
g
dμg = ‖U‖2

D1,2(Rn)
(4.3)

uniformly with respect to x0 ∈ M .
We evaluate the following:∣∣∣∣ ε2

εn

∫
M

|∇Wx0,ε |2g dμg −
∫
Rn

|∇U |2 dz

∣∣∣∣ =
∣∣∣∣ ε2

εn

∫
Bg(x0,R)

∣∣∇[
Uε

(
exp−1

x0
(x)

)]∣∣2
g
dμg −

∫
Rn

|∇U |2 dz

∣∣∣∣
=

∣∣∣∣ ε2

εn

∫
B(0,R)

∣∣∇Uε(z)
∣∣2
gx0 (z)

∣∣gx0(z)
∣∣ 1

2 dz −
∫
Rn

|∇U |2 dz

∣∣∣∣.
Changing variables, we obtain∣∣∣∣ ∫

n

(
χ

B(0, R
ε
)
(z)g

ij
x0(εz)

∣∣gx0(εz)
∣∣ 1

2 − δij
)∂U

∂zi

∂U

∂zj

dz

∣∣∣∣,

R
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where χ
B(0, R

ε
)
(z) denotes the characteristic function of the set B(0, R

ε
) and where δij is the

Kronecker delta (it takes value 0 for i �= j and 1 for i = j ). The previous integral is bounded
from above by the following sum∣∣∣∣ ∫

B(0,T )

(
χ

B(0, R
ε
)
(z)g

ij
x0(εz)

∣∣gx0(εz)
∣∣ 1

2 − δij
)∂U

∂zi

∂U

∂zj

dz

∣∣∣∣
+

∣∣∣∣ ∫
Rn\B(0,T )

(
χ

B(0, R
ε
)
(z)g

ij
x0(εz)

∣∣gx0(εz)
∣∣ 1

2 − δij
)∂U

∂zi

∂U

∂zj

dz

∣∣∣∣
with T > 0. It is easy to see that the second addendum vanishes as T → ∞. As regards the first
addendum, fixed T , by compactness of the manifold M and regularity of the Riemannian metric
g the limit

lim
ε→0

∣∣χ
B(0, R

ε
)
(z)g

ij
x0(εz)

∣∣gx0(εz)
∣∣ 1

2 − δij
∣∣ = 0

holds true uniformly with respect to x0 ∈ M and z ∈ B(0, T ) and (4.3) is proved.

(III) There exists t1 > 0 such that tε(Wx0,ε) � t1 for any ε ∈ (0,1] and x0 ∈ M .
Let gε,u(t) = Jε(tu). By Lemma 4.1(ii), it is enough to find t1 > 0 such that for all t ∈ [0, t1]

g′
ε,Wx0,ε

(t) > 0 for all ε � 1 and for all x0 ∈ M . Then we look for a lower bound of g′
ε,Wx0,ε

(t):

g′
ε,Wx0,ε

(t) = ε2t

εn

∫
M

|∇Wx0,ε |2g dμg − 1

εn

∫
M

f ′(tWx0,ε)Wx0,ε dμg

= 1

εn

∫
B(0,R)

[
ε2t

∣∣∇Uε(z)
∣∣2
gx0 (z)

− f ′(tUε(z) − tŨ R
ε

)(
Uε(z) − Ũ R

ε

)]∣∣gx0(z)
∣∣ 1

2 dz

=
∫

B(0, R
ε
)

[
t
∣∣∇U(z)

∣∣2
gx0 (εz)

− f ′(tU(z) − tŨ R
ε

)(
U(z) − Ũ R

ε

)]∣∣gx0(εz)
∣∣ 1

2 dz.

Using Remark 2.2, the fact that ε � 1 and the properties of f (f1) and (f2), we obtain the follow-
ing inequality:

g′
ε,Wx0,ε

(t) >
h

n
2 t

H

∫
B(0,R)

∣∣∇U(z)
∣∣2

dz − c1H
n
2

∫
Gt,ε

tp−1
∣∣U(z) − Ũ R

ε

∣∣p dz

− c1H
n
2

∫
Lt,ε

tq−1
∣∣U(z) − Ũ R

ε

∣∣q dz,

where Gt,ε = {z ∈ B(0, R
ε
) | t (U(z) − Ũ R

ε
) � 1} and Lt,ε = {z ∈ B(0, R

ε
) | t (U(z) − Ũ R

ε
) � 1}.

If t � 1, the following inclusions hold:
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Gt,ε ⊂
{
z ∈ B

(
0,

R

ε

) ∣∣∣ U(z) − Ũ R
ε

� 1

}
⊂

{
z ∈ B

(
0,

R

ε

) ∣∣∣ U(z) � 1

}
⊂ {

z ∈ R
n

∣∣ U(z) � 1
} = G.

By these inclusions and the fact that |U(z) − Ũ R
ε
| � |U(z)|,

∫
Gt,ε

tp−1
∣∣U(z) − Ũ R

ε

∣∣p dz �
∫
G

tp−1
∣∣U(z)

∣∣p dz.

Let L = {z ∈ R
n | U(z) � 1}. We have

∫
Lt,ε

tq−1
∣∣U(z) − Ũ R

ε

∣∣q dz =
∫

L∩B(0, R
ε
)

tq−1
∣∣U(z) − Ũ R

ε

∣∣q dz +
∫

Lt,ε\L
tq−1

∣∣U(z) − Ũ R
ε

∣∣q dz

�
∫
L

tq−1
∣∣U(z)

∣∣q dz +
∫

Lt,ε\L
tp−1

∣∣U(z) − Ũ R
ε

∣∣p dz

�
∫
L

tq−1
∣∣U(z)

∣∣q dz +
∫
G

tp−1
∣∣U(z)

∣∣p dz.

We conclude that

g′
ε,Wx0,ε

(t) > γ1t − γ2t
p−1 − γ3t

q−1

with γ1, γ3 positive constants and γ2 nonnegative constant. This proves the existence of t1.

(IV) There exists t2 > 0 such that tε(Wx0,ε) � t2 for any ε ∈ (0,1] and x0 ∈ M .
If u is a function in the Nehari manifold Nε , we have that Jε(u) = F̃ε,M(u), as defined in

(2.9). Then by property (f1) Jε(u) is positive. By Lemma 4.1(ii), it is enough to find t2 > 0 such
that for all t � t2 Jε(tWx0,ε) < 0 for all ε � 1 and for all x0 ∈ M . Then we look for an upper
bound of Jε(tWx0,ε):

Jε(tWx0,ε) = ε2t2

2εn

∫
M

|∇Wx0,ε |2g dμg − 1

εn

∫
M

f (tWx0,ε) dμg

= 1

εn

∫
B(0,R)

[
ε2t2

2

∣∣∇Uε(z)
∣∣2
gx0 (z)

− f
(
tUε(z) − tŨ R

ε

)]∣∣gx0(z)
∣∣ 1

2 dz

=
∫

B(0, R )

[
t2

2

∣∣∇U(z)
∣∣2
gx0 (εz)

− f
(
tU(z) − tŨ R

ε

)]∣∣gx0(εz)
∣∣ 1

2 dz
ε
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� H
n
2 t2

2h
‖U‖2

D1,2(Rn)
− c0h

n
2

∫
Gt,ε

tp
∣∣U(z) − Ũ R

ε

∣∣p dz

− c0h
n
2

∫
Lt,ε

tq
∣∣U(z) − Ũ R

ε

∣∣q dz.

If we consider t � 1 and ŨR = U(z) with z ∈ R
n such that |z| = R, there holds∫

Gt,ε

tp
∣∣U(z) − Ũ R

ε

∣∣p dz +
∫

Lt,ε

tq
∣∣U(z) − Ũ R

ε

∣∣q dz

� tp
[ ∫
G1,ε

∣∣U(z) − Ũ R
ε

∣∣p dz +
∫

Gt,ε\G1,ε

∣∣U(z) − Ũ R
ε

∣∣p dz

+
∫

L1,ε

∣∣U(z) − Ũ R
ε

∣∣q dz −
∫

L1,ε\Lt,ε

∣∣U(z) − Ũ R
ε

∣∣q dz

]

� tp
[ ∫
G1,ε

∣∣U(z) − Ũ R
ε

∣∣p dz +
∫

L1,ε

∣∣U(z) − Ũ R
ε

∣∣q dz

]

� tp
[ ∫
G1,ε∩B(0,R)

∣∣U(z) − Ũ R
ε

∣∣p dz +
∫

L1,ε∩B(0,R)

∣∣U(z) − Ũ R
ε

∣∣q dz

]

� tp
[ ∫
G1,ε∩B(0,R)

∣∣U(z) − ŨR

∣∣p dz +
∫

L1,ε∩B(0,R)

∣∣U(z) − ŨR

∣∣q dz

]

= tp
[ ∫
G1,1

∣∣U(z) − ŨR

∣∣p dz +
∫

G1,ε∩B(0,R)\G1,1

∣∣U(z) − ŨR

∣∣p dz

+
∫

L1,1

∣∣U(z) − ŨR

∣∣q dz −
∫

L1,1\L1,ε

∣∣U(z) − ŨR

∣∣q dz

]

� tp
[ ∫
G1,1

∣∣U(z) − ŨR

∣∣p dz +
∫

L1,1

∣∣U(z) − ŨR

∣∣q dz

]
.

So Jε(tWx0,ε) � γ4t
2 − γ5t

p with γ4, γ5 positive constants and for t big enough it is negative.

(V) The parameter tε(Wx0,ε) tends to 1 for ε tending to zero uniformly with respect to x0 ∈ M .
By the previous steps tε(Wx0,ε) ∈ [t1, t2] for any ε ∈ (0,1] and x0 ∈ M . Let us write tx0,ε =

tε(Wx0,ε). Then there exists a sequence εk → 0 for k → ∞ such that tx0,εk
converges to t∗x0

.

By step (II) we have limk→∞
ε2
k

εn
k

∫
M

|tx0,εk
∇Wx0,εk

(x)|2g dμg = ‖t∗x0
U‖2

D1,2(Rn)
. By definition we

have
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1

εn
k

∫
M

f ′(tx0,εk
Wx0,εk

)tx0,εk
Wx0,εk

dμg

= 1

εn
k

∫
B(0,R)

f ′(tx0,εk

(
Uεk

(z) − Ũ R
εk

))
tx0,εk

(
Uεk

(z) − Ũ R
εk

)∣∣gx0(z)
∣∣ 1

2 dz

=
∫

B(0, R
εk

)

f ′(tx0,εk

(
U(z) − Ũ R

εk

))
tx0,εk

(
U(z) − Ũ R

εk

)∣∣gx0(εkz)
∣∣ 1

2 dz

=
∫
Rn

χ
B(0, R

εk
)
(z)f ′(tx0,εk

(
U(z) − Ũ R

εk

))
tx0,εk

(
U(z) − Ũ R

εk

)∣∣gx0(εkz)
∣∣ 1

2 dz.

The integrand point-wise tends to f ′(t∗x0
U(z))t∗x0

U(z) for k tending to infinity and is bounded
from above by a function in L1(Rn) as follows:

χ
B(0, R

εk
)
(z)f ′(tx0,εk

(
U(z) − Ũ R

εk

))
tx0,εk

(
U(z) − Ũ R

εk

)∣∣gx0(εkz)
∣∣ 1

2

� H
n
2 χ

B(0, R
εk

)
(z)f ′(t2(U(z) − Ũ R

εk

))
t2

(
U(z) − Ũ R

εk

)

�

⎧⎪⎪⎨⎪⎪⎩
c1H

n
2 t

p

2 (U(z) − Ũ R
εk

)p if t2(U(z) − Ũ R
εk

) � 1 and |z| � R
εk

,

c1H
n
2 t

q

2 (U(z) − Ũ R
εk

)q if t2(U(z) − Ũ R
εk

) � 1 and |z| � R
εk

,

0 otherwise

�

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

c1H
n
2 t

p

2 (U(z))p if t2(U(z) − Ũ R
εk

) � 1, U(z) � 1 and |z| � R
εk

,

c1H
n
2 t

q

2 (U(z) − Ũ R
εk

)q if t2(U(z) − Ũ R
εk

) � 1, U(z) < 1 and |z| � R
εk

,

c1H
n
2 t

p

2 (U(z) − Ũ R
εk

)p if t2(U(z) − Ũ R
εk

) < 1, U(z) � 1 and |z| � R
εk

,

c1H
n
2 t

q

2 (U(z))q if t2(U(z) − Ũ R
εk

) < 1, U(z) < 1 and |z| � R
εk

,

0 otherwise

�
{

c1H
n
2 t

p

2 (U(z))p if U(z) � 1,

c1H
n
2 t

q

2 (U(z))q if U(z) < 1

�
c1H

n
2 t

q

2

c0
f

(
U(z)

)
.

Then by the Lebesgue theorem limk→∞ 1
εn
k

∫
M

f ′(tx0,εk
Wx0,εk

)tx0,εk
Wx0,εk

dμg =∫
Rn f ′(t∗x0

U(z))t∗x0
U(z)dz. By the fact that U ∈ N and ‖t∗x0

U‖2
D1,2(Rn)

= ∫
Rn f ′(t∗x0

U(z))t∗x0
×

U(z)dz, we conclude that t∗x0
= 1.

To prove that the convergence is uniform with respect to x0 ∈ M , we show that
limε→0 supx∈M |tx,ε − 1| = 0. For any ε there exists x(ε) ∈ M such that supx∈M |tx,ε − 1| =
|tx(ε),ε − 1|. By compactness there exists a sequence εk → 0 for k → ∞ such that x(εk) tends
to x∗ ∈ M . Let us fix η > 0. There exists k0 such that for all k � k0 |tx∗,ε − 1| <

η . Possibly

k 3
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increasing k0 we also have that for all k � k0 and h > k |tx(εk),εk
− tx(εh),εk

| <
η
3 . Finally there

exists h0 such that for all h � h0 |tx(εh),εk
− tx∗,εk

| <
η
3 . Summing the three terms one has that

|tx(εk),εk
− 1| < η for all k � k0.

(VI) The limit of 1
εn

∫
M

f (tx0,εWx0,ε) dμg is
∫

Rn f (U)dz.
Changing variables and using the mean value theorem, we have

1

εn

∫
M

f (tx0,εWx0,ε) dμg

=
∫

B(0, R
ε
)

[
f

(
U(z) − Ũ R

ε

) + (tx0,ε − 1)f ′(Θx0,ε(z)
(
U(z) − Ũ R

ε

))(
U(z) − Ũ R

ε

)]∣∣gx0(εz)
∣∣ 1

2 dz,

where Θx0,ε(z) = (θx0,ε(z)tx0,ε +1−θx0,ε(z)) with a suitable 0 < θx0,ε(z) < 1. We want to prove
that ∫

B(0, R
ε
)

f
(
U(z) − Ũ R

ε

)∣∣gx0(εz)
∣∣ 1

2 dz
ε→0−−−→

∫
Rn

f (U)dz,

∫
B(0, R

ε
)

(tx0,ε − 1)f ′(Θx0,ε(z)
(
U(z) − Ũ R

ε

))(
U(z) − Ũ R

ε

)∣∣gx0(εz)
∣∣ 1

2 dz
ε→0−−−→ 0 (4.4)

uniformly with respect to x0 ∈ M .
It is easy to see that ∫

B(0, R
ε
)

f
(
U(z) − Ũ R

ε

)∣∣∣∣gx0(εz)
∣∣ 1

2 − 1
∣∣dz

ε→0−−−→ 0

uniformly with respect to x0 ∈ M . The function χ
B(0, R

ε
)
(z)f (U(z) − Ũ R

ε
) tends point-wise to

f (U(z)) for any z ∈ R
n. Moreover

χ
B(0, R

ε
)
(z)f

(
U(z) − Ũ R

ε

)
�

⎧⎪⎨⎪⎩
c1
μ

(U(z) − Ũ R
ε
)p if U(z) − Ũ R

ε
� 1, |z| � R

ε
,

c1
μ

(U(z) − Ũ R
ε
)q if U(z) − Ũ R

ε
� 1, |z| � R

ε
,

0 otherwise

�

⎧⎪⎨⎪⎩
c1
μ

(U(z) − Ũ R
ε
)p if U(z) � 1, |z| � R

ε
,

c1
μ

(U(z) − Ũ R
ε
)q if U(z) < 1, |z| � R

ε
,

0 otherwise

�
{ c1

μ
(U(z))p if U(z) � 1,

c1
μ

(U(z))q if U(z) � 1

� c1
f

(
U(z)

)

c0μ
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and by Lebesgue’s theorem we obtain the first limit in (4.4). The function of t f ′(tu)u is increas-
ing in t , since its derivative is f ′′(tu)u2 > 0. Then we have∫

B(0, R
ε
)

f ′(Θx0,ε(z)
(
U(z) − Ũ R

ε

))(
U(z) − Ũ R

ε

)∣∣gx0(εz)
∣∣ 1

2 dz

< H
n
2

∫
B(0, R

ε
)

f ′((t2 + 1)
(
U(z) − Ũ R

ε

))(
U(z) − Ũ R

ε

)
dz.

By the usual standard inequalities, the previous integral is bounded from above by
c1H

n
2

c0(t2+1)

∫
Rn f ((t2 + 1)U(z)) dz and the second limit in (4.4) is proved, because of (V).

(VII) Conclusion.
By (II), (V) and (VI) we obtain that Jε(φε(x0)) tends to J (U) = m(J ) for ε tending to zero

uniformly with respect to x0. This completes the proof. �
Remark 4.3. By the previous proposition, in particular we know that, given δ > 0, for any posi-
tive ε sufficiently small Σε,δ is not empty.

5. The function β

Given a function u ∈ Lp(M), u �≡ 0, it is possible to define its centre of mass β(u) ∈ R
N by

β(u) =
∫
M

xΦ(u)dμg∫
M

Φ(u)dμg

, (5.1)

where

Φ(u) = 1

2
f ′(u)u − f (u). (5.2)

By the properties of f , Φ(s) > 0 for all s �= 0. To prove that β :Σε,δ → Mr(M) (see Section 3
and Definition 3.6), we use the fact that the functions in Σε,δ concentrate for ε and δ tending to
zero.

First of all we find a positive inferior bound for the functional Jε on the Nehari manifold. Let
us denote

mε = inf
u∈Nε

Jε(u). (5.3)

It is easy to see that

inf
u∈Nε

‖u‖H 1
2 (M) > 0

(the proof is analogous to Lemma 3.2 of [7]) and, since the manifold M is compact, that the
infimum mε is achieved.
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Lemma 5.1. There exist positive constants α and ε0 such that for any 0 < ε < ε0 the inequality
mε � α holds.

To prove this lemma we need the following technical lemma (for the proof see Appendix A).

Lemma 5.2. For any r ∈ (0, r(M)), there exist constants k1, k2, k3, k4 > 0 such that for any
u ∈ H 1

2 (M) there exists v ∈D1,2(Mr) such that v|M ≡ u and

‖v‖2
D1,2(Mr )

� k1

∫
M

|∇u|2g dμg, (5.4)

∫
Mr

f
(
v(z)

)
dz � k2

∫
M

f
(
u(x)

)
dμg, (5.5)

∫
Mr

f
(
v(z)

)
dz � k3

∫
M

f
(
u(x)

)
dμg, (5.6)

‖v‖2
L2(Mr )

� k4‖u‖2
L2(M)

. (5.7)

Proof of Lemma 5.1. By definition mε is the infimum of Jε(u) on the Nehari manifold Nε . If
u ∈Nε we have

Jε(u) �
(

1

2
− 1

μ

)
ε2

εn

∫
M

|∇u|2g dμg.

Rescaling u, it is easy to see that mε is greater than or equal to the infimum of the

functional ( 1
2 − 1

μ
) ε2

εn t2
ε

∫
M

|∇w|2g dμg on the set of the functions w ∈ H 1
2 (M) such that

1
εn

∫
M

f (w)dμg = 1 and where tε = tε(w) is as in (ii), Lemma 4.1. First of all, we check that
there exists a constant α̃ > 0 and for such functions w it holds

ε2

εn

∫
M

|∇w|2g dμg � α̃.

By Lemma 5.2, for any function w there exists a function v ∈D1,2(Mr) such that (5.4) and (5.5)
hold. We consider ṽ ∈D1,2(RN), defined as ṽ(y) = v(y) for all y ∈ Mr and ṽ(y) = 0 for all y ∈
R

N \Mr . We can now consider the following rescalement V (y) = ṽ(εσ y) with σ = 2n−(n−2)p
2N−(N−2)p

.
In case the denominator is equal to 0, we can choose a bigger N . We have

‖V ‖2
D1,2(RN)

= ε2σ

εNσ
‖v‖2

D1,2(Mr )
and

∫
RN

f
(
V (y)

)
dy = 1

εNσ

∫
Mr

f
(
v(y)

)
dy.

By these equalities, (5.4) and (5.5), we have
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ε2

εn

∫
M

|∇w|2g dμg =
ε2

εn

∫
M

|∇w|2g dμg

( 1
εn

∫
M

f (w)dμg)
2
p

�
k

2
p

2

k1

ε2

εn ‖v‖2
D1,2(Mr )

( 1
εn

∫
Mr

f (v) dy)
2
p

= k
2
p

2

k1

ε(N−2)σ

εn−2 ‖V ‖2
D1,2(RN)

( εNσ

εn

∫
RN f (V )dy)

2
p

= k
2
p

2

k1

‖V ‖2
D1,2(RN)

(
∫

RN f (V )dy)
2
p

. (5.8)

We show now that for ε sufficiently small we have
∫

RN f (V )dy < 1. In fact, by (5.6) there holds∫
RN

f (V )dy = 1

εNσ

∫
Mr

f
(
v(y)

)
dy � k3

εNσ

∫
M

f (w)dμg = k3ε
n

εNσ
.

By definition of σ limN→∞ Nσ = 2n−(n−2)p
2−p

< 0 and so there exists N sufficiently big such that
n − Nσ > 0.

Since
∫

RN f (tV (y)) dy is an increasing function of t for positive t , there exists t∗ > 1 such
that

∫
Mr

f (t∗V (y)) dy = 1. Let V∗(y) = t∗V (y) for any y ∈ R
N . With the usual computation we

obtain∫
RN

f
(
V (y)

)
dy =

∫
RN

f

(
1

t∗
V ∗(y)

)
dy

<
c1

μ

( ∫
{y∈RN ||V∗(y)|�t∗}

1

t
p∗

∣∣V∗(y)
∣∣p dy +

∫
{y∈RN ||V∗(y)|�t∗}

1

t
q∗

∣∣V∗(y)
∣∣q dy

)

� c1

μ

( ∫
{y∈RN ||V∗(y)|�1}

1

t
p∗

∣∣V∗(y)
∣∣p dy +

∫
{y∈RN ||V∗(y)|�1}

1

t
q∗

∣∣V∗(y)
∣∣q dy

)

� c1

c0μt
p∗

∫
RN

f
(
V∗(y)

)
dy = c1

c0μt
p∗
.

Concluding we have that the last term in (5.8) is equal to

k
2
p

2

k1

1
t2∗

‖V∗‖2
D1,2(RN)

(
∫

RN f ( 1
t∗ V∗) dy)

2
p

�
k

2
p

2

k1

(
c0μ

c1

) 2
p ‖V∗‖2

D1,2(RN)
,

which is bounded from below because (see [9])

inf
V ∈D1,2(RN)∫
RN f (V )dy=1

‖V ‖2
D1,2(RN)

= α̂ > 0.

We still have to show that tε is bounded from below by a positive constant. By the properties
(f1) and (f2) we have
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1

εn

∫
M

f ′(tεw)tεw dμg <
c1

εn

[ ∫
{x∈M||tεw(x)|�1}

∣∣tεw(x)
∣∣p dμg +

∫
{x∈M||tεw(x)|�1}

∣∣tεw(x)
∣∣q dμg

]

� c1

εn

[ ∫
{x∈M||w(x)|�1}

∣∣tεw(x)
∣∣p dμg +

∫
{x∈M||w(x)|�1}

∣∣tεw(x)
∣∣q dμg

]

� c1t
p
ε

c0εn

∫
M

f
(
w(x)

)
dμg = c1t

p
ε

c0
,

where the last equality is due the property of the functions w. Since tεw ∈ Nε ,
1
εn

∫
M

f ′(tεw)tεw dμg = ε2t2
ε

εn

∫
M

|∇w|2g dμg and by the previous inequalities we have

tp−2
ε � c0

c1

ε2

εn

∫
M

|∇w|2g dμg � c0

c1
α̃

and this completes the proof. �
In the following lemma for every function u ∈ Nε it is stated the existence of a point in the

manifold where u in some sense concentrates.

Lemma 5.3. Let C be an atlas for M with open cover given by Bg(xi,R), i = 1, . . . ,A, and
partition of unity {ψi}i=1,...,A. There exists a constant γ > 0 such that for any 0 < ε < ε0, where
ε0 is defined in Lemma 5.1, if u ∈Nε there exists i = i(u) such that

1

εn

∫
Bg(xi ,

R
2 )

[
1

2
f ′(u)u − f (u)

]
dμg � γ,

ε2

2εn

∫
Bg(xi ,

R
2 )

|∇u|2g dμg − 1

εn

∫
Bg(xi ,

R
2 )

f (u)dμg � γ. (5.9)

Proof. Let u be in Nε . We assume that C̃ = {Bg(xi,
R
2 )}i=1,...,A is still an open cover (otherwise

we complete C). Let {ψ̃i}i=1,...,A be a partition of unity subordinate to the atlas C̃. If F̃ε,M(u) is
as in (2.9), it is possible to write

Jε(u) = (
F̃ε,M(u)

) 1
2
(
Jε(u)

) 1
2

=
(

1

εn

A∑
i=1

∫
Bg(xi ,

R
2 )

ψ̃i(x)

[
1

2
f ′(u(x)

)
u(x) − f

(
u(x)

)]
dμg

) 1
2 (

Jε(u)
) 1

2

�
√

A max
(
F̃

ε,Bg(xi ,
R
2 )

(u)
) 1

2
(
Jε(u)

) 1
2 .
1�i�A
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By this inequality and Lemma 5.1 we conclude that

max
1�i�A

F̃
ε,Bg(xi ,

R
2 )

(u) � 1

A
Jε(u) � α

A
.

The second equation in (5.9) is proved analogously. �
In the following proposition the concentration property is better specified.

Proposition 5.4. For any η ∈ (0,1) there exists δ0 < m(J ) such that, for any δ ∈ (0, δ0) there
exists ε0 = ε0(δ) > 0 and for any ε ∈ (0, ε0) with every function u ∈ Σε,δ it is associated a point
x0 = x0(u) in M with the property

F̃
ε,Bg(x0,

r(M)
2 )

(u) > ηm(J ).

The proof of this proposition needs the following lemmas. The first lemma we need is the
splitting lemma proved in [7, Lemma 4.1]:

Lemma 5.5. Let {vk}k∈N ⊂ N be a sequence such that

J (vk) → m(J ) as k → ∞,

J ′(vk) → 0 in D1,2(
R

n
)

as k → ∞.

Then

• either vk converges strongly in D1,2(Rn) to a ground state solution of (2.12), or
• there exist a sequence of points {yk}k∈N ⊂ R

n with |yk| → ∞ as k → ∞, a ground state
solution U of (2.12) and a sequence of functions {v0

k }k∈N such that, up to a subsequence:

(i) vk(z) = v0
k (z) + U(z − yk) for all z ∈ R

n;
(ii) v0

k → 0 as k → ∞ in D1,2(Rn).

Lemma 5.6. Let εk and δk be two positive sequences tending to zero for k tending to infinity. For
any k ∈ N let uk be a function in Σεk,δk

such that for any u ∈ H 1
2 (M)

∣∣J ′
εk

(uk)(u)
∣∣ = o

(
εk

ε
n
2
k

‖u‖H 1
2 (M)

)
.

There exist a sequence {xk}k∈N of points in M and a sequence of functions wk on R
n, defined as

wk(z) = uk

(
expxk

(εkz)
)
χ R

εk

(|z|), (5.10)

such that the following properties hold:

(i) There exists w ∈ D1,2(Rn) such that, up to a subsequence, wk tends to w weakly in D1,2(Rn)

and strongly in L
p

(Rn).
loc
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(ii) The function w is a weak solution of −�w = f ′(w) on R
n.

(iii) The function w is a ground state solution.
(iv) The following equality holds

lim
k→∞Jεk

(uk) = m(J ).

Proof. To get started we consider xk to be the points in M such that uk has the property (5.9).
We will be more precise in point (iii).

(i) It is sufficient to prove that the sequence wk is bounded in D1,2(Rn). We write

‖wk‖2
D1,2(Rn)

=
∫

B(0, R
εk

)

∣∣∇wk(z)
∣∣2

dz

� 2
∫

B(0, R
εk

)

∣∣∇[
uk

(
expxk

(εkz)
)]∣∣2[

χ R
εk

(|z|)]2
dz

+ 2
∫

B(0, R
εk

)

[
χ ′

R
εk

(|z|)]2[
uk

(
expxk

(εkz)
)]2

dz = I1 + I2.

We consider the following inequality:

ε2
k

εn
k

∫
M

|∇uk|2g dμg �
ε2
k

εn
k

∫
Bg(xk,R)

|∇uk|2g dμg

= ε2
k

εn
k

∫
B(0,R)

∣∣∇uk

(
expxk

(z)
)∣∣2

gxk
(z)

∣∣gxk
(z)

∣∣ 1
2 dz

=
∫

B(0, R
εk

)

∣∣∇uk

(
expxk

(εkz)
)∣∣2

gxk
(εkz)

∣∣gxk
(εkz)

∣∣ 1
2 dz

� h
n
2

H

∫
B(0, R

εk
)

∣∣∇uk

(
expxk

(εkz)
)∣∣2

dz � h
n
2

2H
I1. (5.11)

Moreover the following inequality holds

I2 �
2χ2

0 ε2
k

R2

∫
B(0, R

εk
)

[
uk

(
expxk

(εkz)
)]2

dz

= 2χ2
0 ε2

k

R2εn
k

∫
B(0,R)

[
uk

(
expxk

(z)
)]2

dz

�
2χ2

0 ε2
k

h
n
2 R2εn

k

∫
B (x ,R)

(
uk(x)

)2
dμg. (5.12)
g k



2416 D. Visetti / J. Differential Equations 245 (2008) 2397–2439
By (5.11) and (5.12), we have that the sum I1 + I2 is bounded by a constant times
ε2
k

εn
k
‖uk‖2

H 1
2 (M)

.

We show then that this quantity must be bounded. Since uk ∈ Σεk,δk
and

Jεk
(uk) �

(
1

2
− 1

μ

)
ε2
k

εn
k

∫
M

|∇uk|2g dμg,

the right-hand side of the preceding inequality must be bounded. We still have to check that
ε2
k

εn
k
‖uk‖2

L2(M)
is bounded too. In fact, by (5.7) in Lemma 5.2 we have a sequence vk of functions

in D1,2(Mr) and

ε2
k

εn
k

‖uk‖2
L2(M)

�
ε2
k

k4ε
n
k

‖vk‖2
L2(Mr )

�
Cε2

k

k4ε
n
k

‖vk‖2
D1,2(Mr )

�
Ck1ε

2
k

k4ε
n
k

∫
M

|∇uk|2g dμg,

where C is the constant in the Poincaré inequality and we have used (5.4) in the last inequality.
(ii) First of all we prove that for any ξ ∈ C∞

0 (Rn) J ′(wk)(ξ) tends to zero for k tending to
infinity:

J ′(wk)(ξ) =
∫
Rn

∇wk(z) · ∇ξ(z) dz −
∫
Rn

f ′(wk(z)
)
ξ(z) dz

=
∫
Rn

[∇[
uk

(
expxk

(εkz)
)
χ R

εk

(|z|)] · ∇ξ(z) − f ′(uk

(
expxk

(εkz)
)
χ R

εk

(|z|))ξ(z)
]
dz

=
∫
Rn

[∇[
uk

(
expxk

(εkz)
)] · ∇ξ(z) − f ′(uk

(
expxk

(εkz)
))

ξ(z)
]
dz,

where in the last equality we have used the fact that for k sufficiently large for any z in the support
of ξ χ R

εk

(|z|) = 1. Now we define the function ξ̃k in H 1
2 (M) as follows:

ξ̃k(x) =
{

ξ(
exp−1

xk
(x)

εk
) ∀x ∈ Bg(xk,R),

0 otherwise.

Then we want to write

J ′(wk)(ξ) = ε2
k

εn
k

∫
M

gxk

(∇uk(x),∇ ξ̃k(x)
)
dμg − 1

εn
k

∫
M

f ′(uk(x)
)
ξ̃k(x) dμg + Ek,

where Ek is an error. By hypothesis
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∣∣∣∣ ∫
M

[
ε2
k

εn
k

gxk

(∇uk(x),∇ ξ̃k(x)
) − 1

εn
k

f ′(uk(x)
)
ξ̃k(x)

]
dμg

∣∣∣∣
= ∣∣J ′

εk
(uk)(ξ̃k)

∣∣ = o

(
εk

ε
n
2
k

‖ξ̃‖H 1
2 (M)

)
= o

(‖ξ‖H 1
2 (Rn)

)
.

Now we have to check the error:

|Ek| =
∣∣∣∣ ∫
Rn

[∇[
uk

(
expxk

(εkz)
)] · ∇ξ(z) − f ′(uk

(
expxk

(εkz)
))

ξ(z)
]
dz

− ε2
k

εn
k

∫
M

gxk

(∇uk(x),∇ ξ̃k(x)
)
dμg − 1

εn
k

∫
M

f ′(uk(x)
)
ξ̃k(x) dμg

∣∣∣∣
�

∣∣∣∣ ∫
Rn

∇[
uk

(
expxk

(εkz)
)] · ∇ξ(z) dz − ε2

k

εn
k

∫
M

gxk

(∇uk(x),∇ ξ̃k(x)
)
dμg

∣∣∣∣
+

∣∣∣∣ ∫
Rn

f ′(uk

(
expxk

(εkz)
))

ξ(z) dz − 1

εn
k

∫
M

f ′(uk(x)
)
ξ̃k(x) dμg

∣∣∣∣
= |E1,k| + |E2,k|.

For the first term we have

|E1,k| �
∫
Ξ

∣∣∣∣(δij − g
ij
xk

(εkz)
∣∣gxk

(εkz)
∣∣ 1

2
)∂[uk(expxk

(εkz))]
∂zi

∂ξ(z)

∂zj

∣∣∣∣dz,

where Ξ denotes the compact support of ξ . The limit

lim
k→∞

∣∣δij − g
ij
xk

(εkz)
∣∣gxk

(εkz)
∣∣ 1

2
∣∣ = 0

is uniform with respect to z ∈ Ξ . Since

∫
Ξ

∣∣∣∣∂[uk(expxk
(εkz))]

∂zi

∂ξ(z)

∂zj

∣∣∣∣dz �
∥∥uk

(
expxk

(εkz)
)∥∥

D1,2(Ξ)
‖ξ‖D1,2(Rn)

and for k sufficiently large

∫
Ξ

∣∣∇[
uk

(
expxk

(εkz)
)]∣∣2

dz � H

h
n
2

ε2
k

εn
k

∫
M

|∇uk|2g dμg

� 2μH
n Jεk

(uk) � 4μHm(J )
n ,
(μ − 2)h 2 (μ − 2)h 2
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we conclude that |E1,k| tends to zero. For the second term we have

|E2,k| =
∣∣∣∣ ∫
Ξ

(
1 − ∣∣gxk

(εkz)
∣∣ 1

2
)
f ′(uk

(
expxk

(εkz)
))

ξ(z) dz

∣∣∣∣.
As before, limk→∞ |gxk

(εkz)| 1
2 is 1 uniformly with respect to z ∈ Ξ and∫

Ξ

∣∣f ′(uk

(
expxk

(εkz)
))

ξ(z)
∣∣dz

�
( ∫

{z∈Ξ ||uk(expxk
(εkz))|�1}

∣∣f ′(uk

(
expxk

(εkz)
))∣∣ p

p−1 dz

) p−1
p ‖ξ‖Lp(Rn)

+
( ∫

{z∈Ξ ||uk(expxk
(εkz))|�1}

∣∣f ′(uk

(
expxk

(εkz)
))∣∣ q

q−1 dz

) q−1
q ‖ξ‖Lq(Rn).

It is easy to see that there exists a positive constant C such that the right side is bounded from
above by

C

[(
1

εn
k

∫
M

f ′(uk)uk dμg

) p−1
p ‖ξ‖Lp(Rn) +

(
1

εn
k

∫
M

f ′(uk)uk dμg

) q−1
q ‖ξ‖Lq(Rn)

]

� C

[(
2μ

μ − 2

(
m(J ) + 1

)) p−1
p ‖ξ‖Lp(Rn) +

(
2μ

μ − 2

(
m(J ) + 1

)) q−1
q ‖ξ‖Lq(Rn)

]
and this proves that |E2,k| tends to zero. Our second and last step is to prove that for any ξ ∈
C∞

0 (Rn) J ′(wk)(ξ) tends to J ′(w)(ξ) for k tending to infinity. It is immediate that
∫

Rn ∇wk ·
∇ξ dz tends to

∫
Rn ∇w · ∇ξ dz. By the mean value theorem there exists a function θ(z) with

values in (0,1) such that∫
Rn

∣∣f ′(wk(z)
) − f ′(w(z)

)∣∣∣∣ξ(z)
∣∣dz

=
∫
Rn

∣∣f ′′(θ(z)wk(z) + (
1 − θ(z)

)
w(z)

)∣∣∣∣wk(z) − w(z)
∣∣∣∣ξ(z)

∣∣dz.

By Hölder inequality the right-hand side is bounded from above by

‖wk − w‖Lp(Ξ)‖ξ‖Lp(Ξ)

( ∫
Rn

∣∣f ′′(θ(z)wk(z) + (
1 − θ(z)

)
w(z)

)∣∣ p
p−2 dz

) p−2
p

,

where ‖wk − w‖Lp(Ξ) tends to zero by (i). Besides, we have
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∫
Rn

∣∣f ′′(θ(z)wk(z) + (
1 − θ(z)

)
w(z)

)∣∣ p
p−2 dz

� c1

∫
{z∈Ξ ||θ(z)wk(z)+(1−θ(z))w(z)|�1}

∣∣θ(z)wk(z) + (
1 − θ(z)

)
w(z)

∣∣p dz + c1 vol(Ξ)

� c12p−1(‖wk‖p

Lp(Ξ) + ‖w‖p

Lp(Ξ)

) + c1 vol(Ξ)

and this quantity is bounded by a constant.
(iii) Let tk = t (wk) be the multiplier defined in (ii), Lemma 4.1. First of all we prove that there

exist 0 < t1 � 1 � t2 such that for all k t1 � tk � t2. Let gw(t) = J (tw). By Lemma 4.1(ii), it is
enough to find t1 > 0 such that for all t ∈ [0, t1] g′

wk
(t) > 0 for all k ∈ N. There holds

g′
wk

(t) = t

∫
Rn

∣∣∇wk(z)
∣∣2

dz −
∫
Rn

f ′(twk(z)
)
wk(z) dz

> t

∫
Rn

∣∣∇wk(z)
∣∣2

dz − c1t
p−1

c0

∫
Rn

f
(
wk(z)

)
dz.

Since we have∫
Rn

∣∣∇wk(z)
∣∣2

dz �
hε2

k

H
n
2 εn

k

∫
Bg(xk,

R
2 )

|∇uk|2g dμg

� 2h

H
n
2

(
ε2
k

2εn
k

∫
Bg(xk,

R
2 )

|∇uk|2g dμg − 1

εn
k

∫
Bg(xk,

R
2 )

f (uk) dμg

)
� 2h

H
n
2
γ,

where we have used the second equation of (5.9), and∫
Rn

f
(
wk(z)

)
dz � 1

h
n
2 εn

k

∫
Bg(xk,

R
2 )

f (uk) dμg

� 2

h
n
2 (μ − 2)εn

k

∫
Bg(xk,

R
2 )

[
1

2
f ′(uk)uk − f (uk)

]
dμg � 2(m(J ) + 1)

h
n
2 (μ − 2)

,

then there exist C1,C2 > 0 such that g′
wk

(t) > C1t − C2t
p−1. So we consider t1 = (C1

C2
)

1
p−2 .

If v is a function in the Nehari manifold N , J (v) = F̃Rn(v), as defined in (2.10). Then by
property (f1) J (v) is positive. By Lemma 4.1(ii), it is enough to find t2 > 0 such that for all
t � t2 J (twk) < 0 for all k ∈ N. Since

J (twk) = t2

2

∫
n

∣∣∇wk(z)
∣∣2

dz −
∫
n

f
(
twk(z)

)
dz
R R
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and we already proved that {wk}k∈N is bounded in D1,2(Rn), we still have to bound the second
part for t � 1

∫
Rn

f
(
twk(z)

)
dz � c0t

p

( ∫
{z∈Rn||wk(z)|�1}

∣∣wk(z)
∣∣p dz +

∫
{z∈Rn||wk(z)|�1}

∣∣wk(z)
∣∣q dz

)

>
c0t

p

c1

∫
Rn

f ′′(wk(z)
)(

wk(z)
)2

dz >
2c0t

p

c1 − 2c0
F̃Rn(wk)

� 2c0t
p

(c1 − 2c0)H
n
2
F̃

εk,Bg(xk,
R
2 )

(uk) � 2c0γ tp

(c1 − 2c0)H
n
2
,

where we have used (5.9). So there exist C3,C4 > 0 such that J (twk) < C3t
2 − C4t

p and t2 =
(
C3
C4

)
1

p−2 .
By the boundedness of tk we conclude that up to subsequences tk converges to t̄ for k tending

to infinity.
We apply the splitting lemma (Lemma 5.5) to the sequence tkwk . Then in the first case we

have that tkwk converges strongly in D1,2(Rn) to a ground state solution w̄. It is easy to see that
tkwk weakly converges to t̄w, in fact for any ξ ∈ C∞

0 (Rn) there holds

∣∣∣∣ ∫
Rn

∇(tkwk − t̄w) · ∇ξ

∣∣∣∣ =
∣∣∣∣ ∫
Rn

∇(tkwk − t̄wk) · ∇ξ +
∫
Rn

∇(t̄wk − t̄w) · ∇ξ

∣∣∣∣
� |tk − t̄ |‖ξ‖D1,2(Rn)‖wk‖D1,2(Rn) + o(1) = o(1).

We can conclude that w̄ = t̄w. In particular w �≡ 0 and by the fact that both w̄ and w are in N ,
t̄ = 1 and we have finished.

Otherwise, there exist a sequence of points {yk}k∈N tending to infinity, a ground state solution
U and a sequence of functions {w0

k}k∈N such that, up to a subsequence, tkwk(z) = w0
k(z)+U(z−

yk) for all z ∈ R
n and w0

k tends strongly to zero. We consider three different cases: limk→∞ |yk|−
R
εk

= 2T > 0, limk→∞ |yk| − R
εk

= 0 and limk→∞ R
εk

− |yk| = 2T > 0. In the first case, since by

definition wk ≡ 0 in R
n \ B(0, R

εk
), w0

k(z) = −U(z − yk). Then we have

∫
Rn\B(0, R

εk
)

∣∣∇w0
k(z)

∣∣2
dz =

∫
Rn\B(0, R

εk
)

∣∣∇U(z − yk)
∣∣2

dz

�
∫

B(yk,T )

∣∣∇U(z − yk)
∣∣2

dz =
∫

B(0,T )

∣∣∇U(z)
∣∣2

dz > 0

and this is in contradiction with the fact that w0
k tends strongly to zero. If limk→∞ |yk| − R

εk
= 0,

let π(yk) denote the projection of yk onto the sphere centred in the origin with radius R
εk

and
T > 0. Then



D. Visetti / J. Differential Equations 245 (2008) 2397–2439 2421
∫
{z∈B(π(yk),T )||z|� R

εk
}

∣∣∇U
(
z − π(yk)

)∣∣2
dz =

∫
{z∈B(0,T )||z+π(yk)|� R

εk
}

∣∣∇U(z)
∣∣2

dz

� min
ζ∈Sn

∫
{z∈B(0,T )|z·ζ�0}

∣∣∇U(z)
∣∣2

dz = C > 0,

where Sn is the unit sphere in R
n and z · ζ is the scalar product in R

n. Similarly to the first case
we have ∫

Rn\B(0, R
εk

)

∣∣∇w0
k(z)

∣∣2
dz =

∫
Rn\B(0, R

εk
)

∣∣∇U(z − yk)
∣∣2

dz

�
∫

{z∈B(yk,T )||z|� R
εk

}

∣∣∇U(z − yk)
∣∣2

dz

=
∫

{z∈B(π(yk),T )||z|� R
εk

}

∣∣∇U
(
z − π(yk)

)∣∣2
dz + o(1)

and this is greater than C
2 for k sufficiently large, which is a contradiction. Finally, if limk→∞ R

εk
−

|yk| = 2T > 0, for k sufficiently large B(yk, T ) is contained in B(0, R
εk

). There holds

∫
B(yk,T )

[
1

2
f ′(U(z − yk)

)
U(z − yk) − f

(
U(z − yk)

)]
dz

=
∫

B(0,T )

[
1

2
f ′(U(z)

)
U(z) − f

(
U(z)

)]
dz = γ0 > 0.

We consider the new sequence of points

x̃k = expxk
(εkyk) ∈ Bg(xk,R).

For any k sufficiently large, let U(x̃k) be the neighborhood of x̃k defined as expxk
(εkB(yk, T )),

then

1

εn
k

∫
U(x̃k)

[
1

2
f ′(uk)uk − f (uk)

]
dμg

= 1

εn
k

∫
εkB(yk,T )

[
1

2
f ′(uk

(
expxk

(z)
))

uk

(
expxk

(z)
) − f

(
uk

(
expxk

(z)
))]∣∣gxk

(z)
∣∣ 1

2 dz

� h
n
2

∫ [
1

2
f ′(wk(z)

)
wk(z) − f

(
wk(z)

)]
dz.
B(yk,T )
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Since tk ∈ (t1, t2) and using the properties of the function f we obtain∫
B(yk,T )

[
1

2
f ′(wk(z)

)
wk(z) − f

(
wk(z)

)]
dz

�
∫

B(yk,T )

[
1

2
f ′

(
tk

t2
wk(z)

)
tk

t2
wk(z) − f

(
tk

t2
wk(z)

)]
dz

>
(μ − 2)c0

(c1 − 2c0)t
q

2

∫
B(yk,T )

[
1

2
f ′(tkwk(z)

)
tkwk(z) − f

(
tkwk(z)

)]
dz.

By the splitting lemma we have∫
B(yk,T )

[
1

2
f ′(tkwk(z)

)
tkwk(z) − f

(
tkwk(z)

)]
dz

=
∫

B(yk,T )

[
1

2
f ′(w0

k(z) + U(z − yk)
)(

w0
k(z) + U(z − yk)

) − f
(
w0

k(z) + U(z − yk)
)]

dz

=
∫

B(yk,T )

[
1

2
f ′(U(z − yk)

)(
U(z − yk)

) − f
(
U(z − yk)

)]
dz + o(1)

= γ0 + o(1).

So we have proved that for any k sufficiently large

1

εn
k

∫
U(x̃k)

[
1

2
f ′(uk)uk − f (uk)

]
dμg > γ̃0 > 0. (5.13)

By definition, for k big enough U(x̃k) is contained in Bg(x̃k,R) and so we can substitute xk by x̃k

and wk by w̃k , defined as in (5.10) with the new choice of points. Steps (i) and (ii) are independent
of xk (provided wk is not identically zero) and so w̃k tends weakly to a weak solution w̃. It is
possible to see that there exists T̃ > 0 such that for any k U(x̃k) ⊂ Bg(x̃k, εkT̃ ). Then we have

∫
B(0,T̃ )

[
1

2
f ′(w̃k(z)

)
w̃k(z) − f

(
w̃k(z)

)]
dz

� 1

H
n
2 εn

k

∫
Bg(x̃k,εkT̃ )

[
1

2
f ′(uk(x)

)
uk(x) − f

(
uk(x)

)]
dμg

� 1

H
n
2 εn

k

∫ [
1

2
f ′(uk(x)

)
uk(x) − f

(
uk(x)

)]
dμg.
U(x̃k)
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By (5.13) and by the strong convergence of w̃k to w̃ in Lp(B(0, T̃ )), we conclude that∫
B(0,T̃ )

[
1

2
f ′(w̃(z)

)
w̃(z) − f

(
w̃(z)

)]
dz � γ̃0

H
n
2

and so w̃ �≡ 0 and w̃ ∈N .
From now on we will write as before wk instead of w̃k , xk instead of x̃k and w instead of w̃.

The last step is to verify that J (w) = m(J ). Let us consider the following inequalities

m(J ) + δk � Jεk
(uk) = 1

εn
k

∫
M

[
1

2
f ′(uk)uk − f (uk)

]
dμg

�
∫
Rn

[
1

2
f ′(wk)wk − f (wk)

]∣∣gxk
(εkz)

∣∣ 1
2 dz. (5.14)

We define the sequence of functions in L2(Rn):

Fk(z) =
[

1

2
f ′(wk(z)

)
wk(z) − f

(
wk(z)

)] 1
2 ∣∣gxk

(εkz)
∣∣ 1

4 .

By (5.14) this sequence is bounded in L2(Rn) and there exists a weak limit F ∈ L2(Rn). We
prove that

F(z) =
[

1

2
f ′(w(z)

)
w(z) − f

(
w(z)

)] 1
2

. (5.15)

Let ξ be in C∞
0 (Rn). On Ξ , the support of ξ , wk strongly converges to w in Lp(Ξ). So up to a

subsequence wk(z) converges to w(z) almost everywhere. Then point-wise

Fk(z)ξ(z) →
[

1

2
f ′(w(z)

)
w(z) − f

(
w(z)

)] 1
2

ξ(z)

for almost every z ∈ Ξ . We can now apply Lebesgue’s theorem. In fact, there holds

∣∣Fk(z)
∣∣∣∣ξ(z)

∣∣ <

{
H

n
4 ( c1

2 − c0)
1
2 |wk(z)| p

2 |ξ(z)| if |wk(z)| � 1,

H
n
4 ( c1

2 − c0)
1
2 |wk(z)| q

2 |ξ(z)| if |wk(z)| � 1

� H
n
4

(
c1

2
− c0

) 1
2 (

1 + ∣∣wk(z)
∣∣ p

2
)∣∣ξ(z)

∣∣
and, since wk converges strongly to w in Lp(Ξ), there exists W ∈ Lp(Ξ) such that for all k

|wk(z)| � W(z) almost everywhere and |Fk(z)||ξ(z)| � H
n
4 ( c1

2 − c0)
1
2 (1 + (W(z))

p
2 )|ξ(z)| ∈

L2(Ξ). So (5.15) is proved. By weak lower semicontinuity of the norm
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‖F‖2
L2(Rn)

� lim inf
k→∞ ‖Fk‖2

L2(Rn)
,

that is ∫
Rn

[
1

2
f ′(w)w − f (w)

]
dz � lim inf

k→∞

∫
Rn

[
1

2
f ′(wk)wk − f (wk)

]∣∣gxk
(εkz)

∣∣ 1
2 dz.

By this inequality and (5.14) we conclude that

m(J ) = lim
k→∞m(J ) + δk � lim

k→∞Jεk
(uk)

� lim inf
k→∞

∫
Rn

[
1

2
f ′(wk)wk − f (wk)

]∣∣gxk
(εkz)

∣∣ 1
2 dz

�
∫
Rn

[
1

2
f ′(w)w − f (w)

]
dz � m(J ).

(iv) The equality is immediate from (5.14). �
We recall here Ekeland principle (see for instance [11]).

Definition 5.7. Let X be a complete metric space and Ψ :X → R ∪ {+∞} be a lower semi-
continuous function on X, bounded from below. Given η > 0 and ū ∈ X such that

Ψ (ū) < inf
u∈X

Ψ (u) + η

2
,

for all λ > 0 there exists uλ ∈ X such that

Ψ (uλ) < Ψ (ū), d(uλ, ū) < λ

and for all u �= uλ it holds

Ψ (uλ) < Ψ (u) + η

λ
d(uλ,u).

Remark 5.8. 1. We apply Lemma 5.6 when uk is a minimum solution uk ∈ Nεk
, Jεk

(uk) = mεk
.

By (iv) we have limk→∞ mεk
= m(J ). In particular for any δ > 0 there exists ε0 = ε0(δ) > 0

sufficiently small such that for all ε � ε0 |mε − m(J )| < δ.
2. Applying Ekeland principle for X = Σε,δ , with ε � ε0(δ) as in 1, we obtain that for all

ū ∈ Σε,δ there exists uδ ∈ Σε,δ such that

Jε(uδ) < Jε(ū),
ε

ε
n
2
‖uδ − ū‖H 1

2 (M) < 4
√

δ

and for all u ∈ T Σε,δ ∣∣J ′
ε(uδ)(u)

∣∣ <

√
δε
n ‖u‖H 1(M). (5.16)
ε 2 2
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Proof of Proposition 5.4. We choose ε0(δ) as in point 1 of Remark 5.8. We also assume that
ε0(δ0) is less than ε0 in Lemma 5.1.

By contradiction, we assume that there is η0 ∈ (0,1) such that there exist two positive se-
quences {δk}k∈N, {εk}k∈N tending to zero as k tends to infinity and a sequence of functions
{uk}k∈N, with uk ∈ Σεk,δk

, and for any x ∈ M

F̃
εk,Bg(x,

r(M)
2 )

(uk) � η0m(J ). (5.17)

By Ekeland principle for any k we can consider ũk as in 2 of Remark 5.8. Property (5.17) be-
comes

F̃
εk,Bg(x,

r(M)
2 )

(ũk) � η1m(J ) (5.18)

with η1 still in (0,1). To prove this we have to evaluate the difference

1

εn
k

∫
Bg(x,

r(M)
2 )

∣∣∣∣1

2
f ′(ũk)ũk − f (ũk) − 1

2
f ′(uk)uk + f (uk)

∣∣∣∣dμg,

which by the mean value theorem can be written

1

2εn
k

∫
B

∣∣f ′′(u∗
k

)
u∗

k − f ′(u∗
k

)∣∣|ũk − uk|dμg, (5.19)

where B is Bg(x,
r(M)

2 ) and u∗
k(x) = θ(x)ũk(x) + (1 − θ(x))uk(x) for a suitable function θ(x)

with values in (0,1). By Hölder’s inequality (5.19) is bounded from above by

1

2

(
1

εn
k

∫
B

∣∣f ′′(u∗
k

)
u∗

k − f ′(u∗
k

)∣∣ 2n
n+2 dμg

) n+2
2n

(
1

εn
k

∫
B

|ũk − uk| 2n
n−2 dμg

) n−2
2n

.

We prove that the first factor is bounded and the second one is infinitesimal. In fact, we have(
1

εn
k

∫
B

|ũk − uk| 2n
n−2 dμg

) n−2
2n = εk

ε
n
2
k

‖ũk − uk‖
L

2n
n−2 (B)

� C
εk

ε
n
2
k

‖ũk − uk‖H 1
2 (M) < 4C

√
δ.

The proof of the bound

1

εn
k

∫
B

∣∣f ′′(u∗
k

)
u∗

k − f ′(u∗
k

)∣∣ 2n
n+2 dμg � C (5.20)

for a positive constant C can be found in Appendix A.
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We apply Lemma 5.6 to the sequences {δk}k∈N, {εk}k∈N and {ũk}k∈N, obtaining a sequence
of functions on R

n {wk}k∈N (it is easy to see that (5.16) holds for any u ∈ H 1
2 (M)). Let w be

the weak limit in D1,2(Rn) of wk . Let η2 be a constant in (0,1) such that η2 >
1+η1

2 . Since
J (w) = m(J ), there exists T > 0 such that

∫
B(0,T )

[
1

2
f ′(w(z)

)
w(z) − f

(
w(z)

)]
dz � η2m(J ). (5.21)

On the other hand, up to a subsequence, we have

∫
B(0,T )

[
1

2
f ′(w)w − f (w)

]
dz

= lim
k→∞

∫
B(0,T )

[
1

2
f ′(wk)wk − f (wk)

]
dz

= lim
k→∞

1

εk

∫
B(0,εkT )

[
1

2
f ′(ũk ◦ expxk

)ũk ◦ expxk
−f (ũk ◦ expxk

)

]
dz. (5.22)

By compactness the sequence xk converges (up to a subsequence) to x̄ and for any z ∈ B(0, T ) the

limit of |gxk
(εkz)| 1

2 for k tending to infinity is |gx̄(0)| 1
2 = 1. Since 2η1

1+η1
∈ (0,1), for k sufficiently

big for any z ∈ B(0, εkT ) we have |gxk
(z)| 1

2 >
2η1

1+η1
. So the last limit in (5.22) is less than

1 + η1

2η1
lim

k→∞
1

εk

∫
B(0,εkT )

[
1

2
f ′(ũk ◦ expxk

)ũk ◦ expxk
−f (ũk ◦ expxk

)

]∣∣gxk
(z)

∣∣ 1
2 dz

= 1 + η1

2η1
lim

k→∞
1

εk

∫
B(xk,εkT )

[
1

2
f ′(ũk)ũk − f (ũk)

]
dμg � 1 + η1

2
m(J ),

where we have used property (5.18). By this inequality together with (5.22) and (5.21) we get
η2 � 1+η1

2 which is in contradiction with the choice of η2. �
It is now possible to prove the following proposition:

Proposition 5.9. There exists δ0 ∈ (0,m(J )) such that for any δ ∈ (0, δ0) there exists ε0 =
ε0(δ) > 0 and for any ε ∈ (0, ε0) and u ∈ Σε,δ the barycentre β(u) is in Mr(M).

Proof. By Proposition 5.4, for any η ∈ (0,1) and for any u ∈ Σε,δ with ε and δ sufficiently small
there exists a point x0 such that

F̃ r(M) (u) > ηm(J ).

ε,Bg(x0, 2 )
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Since u ∈ Σε,δ we also have

F̃ε,M(u) � m(J ) + δ.

We define

ρ
(
u(x)

) =
1
2f ′(u(x))u(x) − f (u(x))∫

M
[ 1

2f ′(u(x))u(x) − f (u(x))]dμg

.

By the previous inequalities we have then

∫
Bg(x0,

r(M)
2 )

ρ
(
u(x)

)
dμg >

η

1 + δ
m(J )

.

We can now esteem

∣∣β(u) − x0
∣∣ =

∣∣∣∣ ∫
M

(x − x0)ρ
(
u(x)

)
dμg

∣∣∣∣
�

∣∣∣∣ ∫
Bg(x0,

r(M)
2 )

(x − x0)ρ
(
u(x)

)
dμg

∣∣∣∣ +
∣∣∣∣ ∫
M\Bg(x0,

r(M)
2 )

(x − x0)ρ
(
u(x)

)
dμg

∣∣∣∣
<

r(M)

2
+ D

(
1 − η

1 + δ
m(J )

)
,

where D is the diameter of the manifold M . For η near to 1 and δ sufficiently small we obtain
β(u) ∈ Mr(M). �
6. The function Iε

We prove now that the composition Iε of φε and β is well defined and homotopic to the
identity on M :

Proposition 6.1. There exists ε0 > 0 such that for any ε ∈ (0, ε0) the composition

Iε = β ◦ φε :M → Mr(M)

is well defined and homotopic to the identity on M .

Proof. Let us consider the function H : [0,1] × M → Mr(M), defined by H(t, x) = tIε(x) +
(1 − t)x. This function is a homotopy if for any t ∈ [0,1] H(t, x) ∈ Mr(M). It is enough to prove
that for any x0 ∈ M |Iε(x0) − x0| < r(M). Since the support of φε(x0) is contained in Bg(x0,R)
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Iε(x0) − x0 =
∫
M

(x − x0)ρ
(
φε(x0)(x)

)
dμg =

∫
Bg(x0,R)

(x − x0)ρ
(
φε(x0)(x)

)
dμg

=
∫
B(0,R)

zΦ(tε(Wx0,ε)Wx0,ε(expx0
(z)))|gx0(z)|

1
2 dz∫

B(0,R)
Φ(tε(Wx0,ε)Wx0,ε(expx0

(z)))|gx0(z)|
1
2 dz

=
ε
∫
B(0, R

ε
)
zΦ(tε(Wx0,ε)Wx0,ε(expx0

(εz)))|gx0(εz)|
1
2 dz∫

B(0, R
ε
)
Φ(tε(Wx0,ε)Wx0,ε(expx0

(εz)))|gx0(εz)|
1
2 dz

,

where Φ is defined in (5.2). We recall that for any ε ∈ (0,1] and x0 ∈ M t1 � tε(Wx0,ε) � t2. By
definition of φε , we have∫

B(0, R
ε
)

Φ
(
tε(Wx0,ε)Wx0,ε

(
expx0

(εz)
))∣∣gx0(εz)

∣∣ 1
2 dz � h

n
2

∫
B(0,R)

Φ
(
t1

(
U(z) − ŨR

))
dz > 0,

where ŨR is the value U(z) for any z ∈ R
n such that |z| = R. Furthermore, we have

ε

∫
B(0, R

ε
)

|z|Φ(
tε(Wx0,ε)Wx0,ε

(
expx0

(εz)
))∣∣gx0(εz)

∣∣ 1
2 dz

� εH
n
2

∫
B(0, R

ε
)

|z|Φ(
t2U(z)

)
dz

<
(c1 − 2c0)H

n
2 ε

2

[ ∫
{z∈B(0, R

ε
)|t2U(z)�1}

|z|tp2
(
U(z)

)p
dz +

∫
{z∈B(0, R

ε
)|t2U(z)�1}

|z|tq2
(
U(z)

)q
dz

]
.

Since U is spherically symmetric and decreasing, there exists ρ0 > 0 such that the last quantity
is equal to

(c1 − 2c0)H
n
2 ε

2

[ ∫
B(0,ρ0)

|z|tp2
(
U(z)

)p
dz +

∫
B(0, R

ε
)\B(0,ρ0)

|z|tq2
(
U(z)

)q
dz

]
. (6.1)

Obviously, the integral

∫
B(0,ρ0)

|z|tp2
(
U(z)

)p
dz � t

p

2 ρ0

∫
B(0,ρ0)

(
U(z)

)p
dz

is bounded. For the second integral in (6.1), we use the well-known inequality by Strauss (see
[15]):



D. Visetti / J. Differential Equations 245 (2008) 2397–2439 2429
ε

∫
B(0, R

ε
)\B(0,ρ0)

|z|(U(z)
)q

dz � Cn‖U‖q

D1,2(Rn)
ε

∫
B(0, R

ε
)\B(0,ρ0)

|z|
|z| (n−2)q

2

dz,

where Cn is a positive constant. Then we conclude that there exist two positive constants C1,C2

such that (6.1) is bounded from above by C1ε + C2ε
(n−2)q−2n

2 , where the second exponent is
positive and so |Iε(x0) − x0| tends to zero as ε tends to zero. �

Finally, by standard arguments it is easy to see that the Palais–Smale condition holds for Jε

constrained on Nε .

7. The Morse theory result

For an introduction to Morse theory we refer the reader to [14], while for the applications to
problems of functional analysis we mention [2].

Let (X,Y ) be a couple of topological spaces, with Y ⊂ X, and Hk(X,Y ) be the kth homology
group with coefficients in some field. We recall the following definition:

Definition 7.1. The Poincaré polynomial of (X,Y ) is the formal power series

Pt (X,Y ) =
∞∑

k=0

dim
[
Hk(X,Y )

]
tk.

The Poincaré polynomial of X is defined as Pt (X) = Pt (X,∅).

If X is a compact n-dimensional manifold dim[Hk(X)] is finite for any k and dim[Hk(X)] = 0
for any k > n. In particular Pt (X) is a polynomial and not a formal series.

We define now the Morse index.

Definition 7.2. Let J be a C2 functional on a Banach space X and let u be an isolated critical
point of J with J (u) = c. The (polynomial) Morse index of u is defined as

it (u) =
∞∑

k=0

dim
[
Hk

(
J c, J c \ {u})]tk,

where J c = {v ∈ X | J (v) � c}. If u is a non-degenerate critical point then it (u) = tμ(u), where
μ(u) is the (numerical) Morse index of u and represents the dimension of the maximal subspace
on which the bilinear form J ′′(u)[·,·] is negative definite.

It is now possible to state Theorem 1.2 more precisely:

Theorem 7.3. There exists ε0 > 0 such that for any ε ∈ (0, ε0), if the set Kε of solutions of
Eq. (1.1) is discrete, then∑

u∈Kε

it (u) = tPt (M) + t2[Pt (M) − 1
] + t (1 + t)Qε(t),

where Qε(t) is a polynomial with nonnegative integer coefficients.
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In the non-degenerate case, the above theorem becomes:

Corollary 7.4. There exists ε0 > 0 such that for any ε ∈ (0, ε0), if the set Kε of solutions of
Eq. (1.1) is discrete and the solutions are non-degenerate, then

∑
u∈Kε

tμ(u) = tPt (M) + t2[Pt (M) − 1
] + t (1 + t)Qε(t),

where Qε(t) is a polynomial with nonnegative integer coefficients.

Since we have proved that the composition Iε of φε and β from M to Mr(M) for ε sufficiently
small is homotopic to the identity on M , the following equation holds (see [4]):

Pt (Σε,δ) = Pt (M) +Z(t), (7.1)

where Z(t) is a polynomial with nonnegative integer coefficients (here ε and δ are chosen as in
Proposition 5.9).

Let α and ε be as in Lemma 5.1, δ > 0, then

Pt

(
Jm(J )+δ

ε , J
α
2

ε

) = tPt (Σε,δ),

Pt

(
H 1

2 (M),Jm(J )+δ
ε

) = t
[
Pt

(
Jm(J )+δ

ε , J
α
2

ε

) − t
]
. (7.2)

By Morse theory we have

∑
u∈Kε

it (u) = Pt

(
H 1

2 (M),Jm(J )+δ
ε

) +Pt

(
Jm(J )+δ

ε , J
α
2

ε

) + (1 + t)Qε(t),

where Qε(t) is a polynomial with nonnegative coefficients. Using this relation with (7.1) and
(7.2), we obtain Theorem 7.3 and Corollary 7.4. Theorem 1.2 easily follows by evaluating the
power series in t = 1.
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Appendix A

Proof of Lemma 5.2. Given any 0 < r < r(M), we can choose ρ < r small enough so that there
exists a finite open cover of Mρ {Cα}α=1,...,k of subsets of R

N with smooth charts ξα :Dα ⊂
R

N → Cα induced on Mρ by the manifold structure of M . We assume that Dα = Zα × Tα , with
Zα a subset of R

n star-shaped centred in the origin and Tα the ball of R
N−n with centre the origin

and radius ρ. For any α and any (z,0) ∈ Zα × Tα , let ξα(z,0) ∈ C̃α = Cα ∩ M . Vice versa for
any x ∈ C̃α , let ξ−1(x) = (z,0).
α
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We denote by {ψα(y)}α=1,...,k a partition of unity subordinate to the cover {Cα}α=1,...,k . For
all y ∈ Mρ we write ξ−1

α (y) = (zα(y), tα(y)).
Given a function u ∈ H 1

2 (M), we define a function v ∈ D1,2(Mr) by v(y) ≡ 0 for all
y ∈ Mr \ Mρ and

v(y) =
k∑

α=1

ψα(y)u
(
ξα

(
zα(y),0

))
χρ

(∣∣tα(y)
∣∣)

for all y ∈ Mρ , where χρ is defined in (2.1).

Inequality (5.4). Let us write

C0 =
[

sup
i,j=1,...,N

sup
α=1,...,k

sup
y∈Cα

(
Dy

(
ξα

(
zα(y),0

)))
ij

]2
,

C1 =
[

sup
i=1,...,N

j=1,...,N−n

sup
α=1,...,k

sup
y∈Cα

(
D

(
tα(y)

))
ij

]2
,

C2 = sup
α=1,...,k

sup
y∈Cα

(∣∣∇ψα(y)
∣∣2 + 1

)
,

C3 = sup
α=1,...,k

sup
(z,t)∈Dα

∣∣detD
(
ξα(z, t)

)∣∣,
C4 =

∫
RN−n

[(
χρ

(|t |))2 + (
χ ′

ρ

(|t |))2]
dt.

Then we can estimate

∫
Mr

∣∣∇v(y)
∣∣2

dy � 2
k∑

α=1

∫
Cα

[∣∣∇ψα(y)
∣∣2(

u
(
ξα

(
zα(y),0

))
χρ

(∣∣tα(y)
∣∣))2

+ ∣∣∇y

(
u
(
ξα

(
zα(y),0

)))∣∣2(
ψα(y)χρ

(∣∣tα(y)
∣∣))2

+ ∣∣∇y

(
χρ

(∣∣tα(y)
∣∣))∣∣2(

ψα(y)u
(
ξα

(
zα(y),0

)))2]
dy

� 2
k∑

α=1

∫
Cα

[∣∣∇ψα(y)
∣∣2(

u
(
ξα

(
zα(y),0

))
χρ

(∣∣tα(y)
∣∣))2

+ C0
∣∣∇u

(
ξα

(
zα(y),0

))∣∣2(
ψα(y)χρ

(∣∣tα(y)
∣∣))2

+ C1
(
χ ′

ρ

(∣∣tα(y)
∣∣))2(

ψα(y)u
(
ξα

(
zα(y),0

)))2]
dy

�
k∑

α=1

∫
Cα

[
2C0

∣∣∇u
(
ξα

(
zα(y),0

))∣∣2(
χρ

(∣∣tα(y)
∣∣))2

+ 2(1 + C1)C2
(
u
(
ξα

(
zα(y),0

)))2[(
χρ

(∣∣tα(y)
∣∣))2 + (

χ ′
ρ

(∣∣tα(y)
∣∣))2]

dy
]
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� 2C0C3

k∑
α=1

∫
Dα

∣∣∇u
(
ξα(z,0)

)∣∣2(
χρ

(|t |))2
dzdt

+ 2(1 + C1)C2C3

k∑
α=1

∫
Dα

(
u
(
ξα(z,0)

))2[(
χρ

(|t |))2 + (
χ ′

ρ

(|t |))2]
dzdt

� 2C3
(
C0 + (1 + C1)C2

) k∑
α=1

[∫
Tα

(
χρ

(|t |))2
dt

∫
Zα

∣∣∇u
(
ξα(z,0)

)∣∣2
dz

+
∫
Tα

[(
χρ

(|t |))2 + (
χ ′

ρ

(|t |))2]
dt

∫
Zα

(
u
(
ξα(z,0)

))2
dz

]

� 2C3
(
C0 + (1 + C1)C2

)
C4

k∑
α=1

∫
Zα

[∣∣∇u
(
ξα(z,0)

)∣∣2 + (
u
(
ξα(z,0)

))2]
dz

� 2C3
(
C0 + (1 + C1)C2

)
C4

H

h
n
2

k∑
α=1

∫
C̃α

[∣∣∇u(x)
∣∣2
g

+ (
u(x)

)2]
dμg.

One can easily see that there exists a constant C5 > 0, depending only on the charts ξα and on
the partition of unity ψα , such that

k∑
α=1

∫
C̃α

[∣∣∇u(x)
∣∣2
g

+ (
u(x)

)2]
dμg � C5‖u‖2

H 1
2 (M)

and by the Sobolev embedding of H 1
2 (M) in L2(M) (5.4) is proved.

Inequality (5.5). We show that for any s, t ∈ R, s + t �= 0,

f (s + t) >
c0μ

c1

[
f (s) + f (t)

]
.

Let us consider first the case |s + t | � 1, |s| � 1 and |t | � 1:

f (s + t) � c0|s + t |p � c0
(|s|p + |t |p)

� c0

c1

(
f ′′(s)s2 + f ′′(t)t2) >

c0μ

c1

(
f (s) + f (t)

)
.

If |s + t | � 1, |s| � 1 and |t | < 1, we have

f (s + t) � c0
(|s|p + |t |p)

� c0
(|s|p + |t |q)

>
c0μ

c1

(
f (s) + f (t)

)
.

The same kind of inequalities holds true in the other cases.
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Hereafter, for all y ∈ Mr we denote vα(y) = ψα(y)u(ξα(zα(y),0))χρ(|tα(y)|). The following
integrals are always meant on the intersection with the support of v:

∫
Mr

f
(
v(y)

)
dy =

∫
Mr

f

(
k∑

α=1

vα(y)

)
dy >

c0μ

c1

k∑
α=1

∫
Cα

f
(
vα(y)

)
dy

�
c2

0μ

c1

k∑
α=1

[ ∫
{y∈Cα ||vα(y)|�1}

∣∣vα(y)
∣∣p dy +

∫
{y∈Cα ||vα(y)|�1}

∣∣vα(y)
∣∣q dy

]
.

For all α = 1, . . . , k it is possible to choose C′
α ⊂ Cα such that on this subset ψα(y) � 1

k
. Then

the previous chain of inequalities is bounded from below by

c2
0μ

c1kq

k∑
α=1

[ ∫
{y∈C′

α ||vα(y)|�1}

∣∣u(
ξα

(
zα(y),0

))
χρ

(∣∣tα(y)
∣∣)∣∣p dy

+
∫

{y∈C′
α ||vα(y)|�1}

∣∣u(
ξα

(
zα(y),0

))
χρ

(∣∣tα(y)
∣∣)∣∣q dy

]
. (A.1)

Let D′
α be the set ξ−1

α (C′
α). We consider the following constants:

C6 = inf
α=1,...,k

inf
(z,t)∈Dα

∣∣detD
(
ξα(z, t)

)∣∣,
C7 =

∫
RN−n

(
χρ

(|t |))q
dt,

C8 = inf
α=1,...,k

inf
x∈C̃α

∣∣detD
(
zα(x)

)∣∣.
The inequality (A.1) is bounded from below by

c2
0μC6

c1kq

k∑
α=1

[ ∫
{(z,t)∈D′

α ||vα(ξα(z,t))|�1}

∣∣u(
ξα(z,0)

)
χρ

(|t |)∣∣p dz dt

+
∫

{(z,t)∈D′
α ||vα(ξα(z,t))|�1}

∣∣u(
ξα(z,0)

)
χρ

(|t |)∣∣q dz dt

]

�
c2

0μC6

c1kq

k∑
α=1

[ ∫
{(z,t)∈D′

α ||u(ξα(z,0))|�1}

∣∣u(
ξα(z,0)

)∣∣p(
χρ

(|t |))q
dz dt

+
∫

′

∣∣u(
ξα(z,0)

)∣∣q(
χρ

(|t |))q
dz dt
{(z,t)∈Dα ||u(ξα(z,0))|�1}
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−
∫

{(z,t)∈D′
α ||vα(ξα(z,t))|�1, |u(ξα(z,0))|�1}

∣∣u(
ξα(z,0)

)∣∣p(
χρ

(|t |))q
dz dt

+
∫

{(z,t)∈D′
α ||vα(ξα(z,t))|�1, |u(ξα(z,0))|�1}

∣∣u(
ξα(z,0)

)∣∣q(
χρ

(|t |))q
dz dt

]

= c2
0μC6C7

c1kq

k∑
α=1

[ ∫
{(z,0)∈D′

α ||u(ξα(z,0))|�1}

∣∣u(
ξα(z,0)

)∣∣p dz

+
∫

{(z,0)∈D′
α ||u(ξα(z,0))|�1}

∣∣u(
ξα(z,0)

)∣∣q dz

]

�
c2

0μC6C7C8

c1kq

k∑
α=1

[ ∫
{x∈C̃α |x∈C′

α, |u(x)|�1}

∣∣u(x)
∣∣p dx

+
∫

{x∈C̃α |x∈C′
α, |u(x)|�1}

∣∣u(x)
∣∣q dx

]
.

Since for all x ∈ M the sum of the ψα(x) is one, there exists α̂ such that x ∈ C′
α . Then for any

u ∈ L1(M)

k∑
α=1

∫
C′

α∩M

∣∣u(x)
∣∣dx =

k∑
α=1

∫
M

χC′
α
(x)

∣∣u(x)
∣∣dx =

∫
M

(
k∑

α=1

χC′
α
(x)

)∣∣u(x)
∣∣dx

�
∫
M

∣∣u(x)
∣∣dx.

This means that

k∑
α=1

[ ∫
{x∈C̃α |x∈C′

α, |u(x)|�1}

∣∣u(x)
∣∣p dx +

∫
{x∈C̃α |x∈C′

α, |u(x)|�1}

∣∣u(x)
∣∣q dx

]

�
∫

{x∈M||u(x)|�1}

∣∣u(x)
∣∣p dx +

∫
{x∈M||u(x)|�1}

∣∣u(x)
∣∣q dx

� 1

c1

∫
M

f ′′(u(x)
)(

u(x)
)2

dx >
μ

c1

∫
M

f
(
u(x)

)
dx � μ

c1H
n
2

∫
M

f
(
u(x)

)
dμg.
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Inequality (5.6). For s > 0 f (s) is increasing. Then we have

∫
Mr

f
(
v(y)

)
dy <

c1

c0μ

∫
Mr

f
(∣∣v(y)

∣∣)dy � c1

c0μ

∫
Mr

f

(
k∑

α=1

∣∣vα(y)
∣∣)dy

� c1

c0μ

∫
Mr

f

(
k∑

α=1

∣∣ψα(y)u
(
ξα

(
zα(y),0

))∣∣)dy

= c1

c0μ

k∑
β=1

∫
Cβ

ψβ(y)f

(
k∑

α=1

∣∣ψα(y)u
(
ξα

(
zα(y),0

))∣∣)dy

� c1C3

c0μ

k∑
β=1

∫
Dβ

f

(
k∑

α=1

∣∣χDα(z, t)u
(
ξα(z,0)

)∣∣)dzdt

� c1C3C9

c0μ

k∑
β=1

∫
Zβ

f

(
k∑

α=1

∣∣χZα (z)u
(
ξα(z,0)

)∣∣)dz,

where C9 is the volume of the ball of radius ρ in R
N−n. Proceeding with the chain of inequalities

we obtain

k∑
β=1

∫
Zβ

f

(
k∑

α=1

∣∣χZα (z)u
(
ξα(z,0)

)∣∣)dz

=
k∑

β=1

∫
C̃β

f

(
k∑

α=1

∣∣χC̃α
(x)u(x)

∣∣)dx

� k

∫
M

f
(
k
∣∣u(x)

∣∣)dx

<
kc1

μ

[ ∫
{x∈M|k|u(x)|�1}

kp
∣∣u(x)

∣∣p dx +
∫

{x∈M|k|u(x)|�1}
kq

∣∣u(x)
∣∣q dx

]

= kc1

μ

[ ∫
{x∈M||u(x)|�1}

kp
∣∣u(x)

∣∣p dx +
∫

{x∈M||u(x)|�1}
kq

∣∣u(x)
∣∣q dx

+
∫

kp
∣∣u(x)

∣∣p dx −
∫

kq
∣∣u(x)

∣∣q dx

]

{x∈M||u(x)|�1, k|u(x)|�1} {x∈M||u(x)|�1, k|u(x)|�1}



2436 D. Visetti / J. Differential Equations 245 (2008) 2397–2439
� kc1

μ

[ ∫
{x∈M||u(x)|�1}

kp
∣∣u(x)

∣∣p dx +
∫

{x∈M||u(x)|�1}
kq

∣∣u(x)
∣∣q dx

]

� kq+1c1

c0μ

∫
M

f
(
u(x)

)
dx � kq+1c1

c0μh
n
2

∫
M

f
(
u(x)

)
dμg.

Inequality (5.7). The proof is analogous to the proof of (5.5). �
We complete now the proof of Proposition 5.4.

Proof of Eq. (5.20). The following inequalities hold:

1

εn
k

∫
B

∣∣f ′′(u∗
k

)
u∗

k − f ′(u∗
k

)∣∣ 2n
n+2 dμg

� 2
2n

n+2

εn
k

∫
B

(∣∣f ′′(u∗
k

)
u∗

k

∣∣ 2n
n+2 + ∣∣f ′(u∗

k

)∣∣ 2n
n+2

)
dμg

<
2(2c1)

2n
n+2

εn
k

( ∫
{x∈B||u∗

k (x)|�1}

∣∣u∗
k(x)

∣∣ (p−1)2n
n+2 dμg +

∫
{x∈B||u∗

k (x)|�1}

∣∣u∗
k(x)

∣∣ (q−1)2n
n+2 dμg

)

� 2(2c1)
2n

n+2

εn
k

( ∫
{x∈B||u∗

k (x)|�1}

∣∣u∗
k(x)

∣∣p dμg +
∫

{x∈B||u∗
k (x)|�1}

∣∣u∗
k(x)

∣∣q dμg

)
,

where in the last inequality we have used the fact that (p−1)2n
n+2 < p and (q−1)2n

n+2 > q . We can
write ∫

{x∈B||u∗
k (x)|�1}

∣∣u∗
k(x)

∣∣p dμg +
∫

{x∈B||u∗
k (x)|�1}

∣∣u∗
k(x)

∣∣q dμg

=
∫

{x∈B||u∗
k (x)|�1, |ũk(x)|�1, |uk(x)|�1}

∣∣u∗
k(x)

∣∣p dμg

+
∫

{x∈B||u∗
k (x)|�1, |ũk(x)|�1, |uk(x)|�1}

∣∣u∗
k(x)

∣∣p dμg

+
∫

{x∈B||u∗
k (x)|�1, |ũk(x)|�1, |uk(x)|�1}

∣∣u∗
k(x)

∣∣p dμg

+
∫

{x∈B||u∗(x)|�1, |ũ (x)|�1, |u (x)|�1}

∣∣u∗
k(x)

∣∣p dμg
k k k
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+
∫

{x∈B||u∗
k (x)|�1, |ũk(x)|�1, |uk(x)|�1}

∣∣u∗
k(x)

∣∣q dμg

+
∫

{x∈B||u∗
k (x)|�1, |ũk(x)|�1, |uk(x)|�1}

∣∣u∗
k(x)

∣∣q dμg

+
∫

{x∈B||u∗
k (x)|�1, |ũk(x)|�1, |uk(x)|�1}

∣∣u∗
k(x)

∣∣q dμg

+
∫

{x∈B||u∗
k (x)|�1, |ũk(x)|�1, |uk(x)|�1}

∣∣u∗
k(x)

∣∣q dμg

�
∫

{x∈B||u∗
k (x)|�1, |ũk(x)|�1, |uk(x)|�1}

∣∣u∗
k(x)

∣∣p dμg

+
∫

{x∈B||u∗
k (x)|�1, |ũk(x)|�1, |uk(x)|�1}

∣∣u∗
k(x)

∣∣q dμg

+
∫

{x∈B||u∗
k (x)|�1, |ũk(x)|�1, |uk(x)|�1}

∣∣u∗
k(x)

∣∣p dμg

+
∫

{x∈B||u∗
k (x)|�1, |ũk(x)|�1, |uk(x)|�1}

∣∣u∗
k(x)

∣∣p dμg

+
∫

{x∈B||u∗
k (x)|�1, |ũk(x)|�1, |uk(x)|�1}

∣∣u∗
k(x)

∣∣p dμg

+
∫

{x∈B||u∗
k (x)|�1, |ũk(x)|�1, |uk(x)|�1}

∣∣u∗
k(x)

∣∣q dμg

+
∫

{x∈B||u∗
k (x)|�1, |ũk(x)|�1, |uk(x)|�1}

∣∣u∗
k(x)

∣∣p dμg

+
∫

{x∈B||u∗
k (x)|�1, |ũk(x)|�1, |uk(x)|�1}

∣∣u∗
k(x)

∣∣p dμg

�
∫

{x∈B||u∗
k (x)|�1, |ũk(x)|�1, |uk(x)|�1}

2p
(∣∣ũk(x)

∣∣p + ∣∣uk(x)
∣∣p)

dμg

+
∫

{x∈B||u∗(x)|�1, |ũ (x)|�1, |u (x)|�1}
2q

(∣∣ũk(x)
∣∣q + ∣∣uk(x)

∣∣q)
dμg
k k k
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+
∫

{x∈B||u∗
k (x)|�1, |ũk(x)|�1, |uk(x)|�1}

2p
∣∣ũk(x)

∣∣p dμg

+
∫

{x∈B||u∗
k (x)|�1, |ũk(x)|�1, |uk(x)|�1}

2p
∣∣uk(x)

∣∣p dμg

+
∫

{x∈B||u∗
k (x)|�1, |ũk(x)|�1, |uk(x)|�1}

2p
(∣∣ũk(x)

∣∣p + ∣∣uk(x)
∣∣p)

dμg

+
∫

{x∈B||u∗
k (x)|�1, |ũk(x)|�1, |uk(x)|�1}

2q
(∣∣ũk(x)

∣∣q + ∣∣uk(x)
∣∣q)

dμg

+
∫

{x∈B||u∗
k (x)|�1, |ũk(x)|�1, |uk(x)|�1}

2p
∣∣ũk(x)

∣∣p dμg

+
∫

{x∈B||u∗
k (x)|�1, |ũk(x)|�1, |uk(x)|�1}

2p
∣∣uk(x)

∣∣p dμg

�
∫

{x∈B||ũk(x)|�1}
2p

∣∣ũk(x)
∣∣p dμg +

∫
{x∈B||ũk(x)|�1}

2q
∣∣ũk(x)

∣∣q dμg

+
∫

{x∈B||uk(x)|�1}
2p

∣∣uk(x)
∣∣p dμg +

∫
{x∈B||uk(x)|�1}

2q
∣∣uk(x)

∣∣q dμg

� 2q

c0

∫
M

[
f (ũk) + f (uk)

]
dμg.

Concluding there exists a constant C > 0 such that

1

εn
k

∫
B

∣∣f ′′(u∗
k

)
u∗

k − f ′(u∗
k

)∣∣ 2n
n+2 dμg <

C

εn
k

∫
M

[
f (ũk) + f (uk)

]
dμg

� 2C

(μ − 2)

[
Jεk

(ũk) + Jεk
(ũk)

]
� 8Cm(J )

(μ − 2)

and this completes the proof of (5.20). �
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